-
Notifications
You must be signed in to change notification settings - Fork 355
/
benchmark_template_chunked.cuh
1025 lines (897 loc) · 33.5 KB
/
benchmark_template_chunked.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* SPDX-FileCopyrightText: Copyright (c) 2020-2024 NVIDIA CORPORATION & AFFILIATES.
* All rights reserved. SPDX-License-Identifier: LicenseRef-NvidiaProprietary
*
* NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
* property and proprietary rights in and to this material, related
* documentation and any modifications thereto. Any use, reproduction,
* disclosure or distribution of this material and related documentation
* without an express license agreement from NVIDIA CORPORATION or
* its affiliates is strictly prohibited.
*/
#ifndef NVCOMP_BENCHMARKS_BENCHMARK_TEMPLATE_CHUNKED_CUH
#define NVCOMP_BENCHMARKS_BENCHMARK_TEMPLATE_CHUNKED_CUH
// nvcc has a known issue with MSVC debug iterators, leading to a warning
// hit by thrust::device_vector construction from std::vector below, so this
// pragma disables the warning.
// More info at: https://github.com/NVIDIA/thrust/issues/1273
#ifdef __CUDACC__
#pragma nv_diag_suppress 20011
#endif
#include "benchmark_common.h"
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <thrust/device_vector.h>
#include <vector>
namespace nvcomp {
template <typename U, typename T>
constexpr __host__ __device__ U roundUpDiv(U const num, T const chunk)
{
return (num + chunk - 1) / chunk;
}
template <typename U, typename T>
constexpr __host__ __device__ U roundDownTo(U const num, T const chunk)
{
return (num / chunk) * chunk;
}
template <typename U, typename T>
constexpr __host__ __device__ U roundUpTo(U const num, T const chunk)
{
return roundUpDiv(num, chunk) * chunk;
}
}
// Each benchmark must implement this, returning true if the argument
// was handled. If the benchmark has no custom arguments, its
// implementation can just return false.
static bool handleCommandLineArgument(
const std::string& arg,
const char* const* additionalArgs,
size_t& additionalArgsUsed);
// A helper function for if the input data requires no validation.
static bool inputAlwaysValid(const std::vector<std::vector<char>>& data)
{
return true;
}
static nvcompType_t string_to_data_type(const char* name, bool& valid)
{
valid = true;
if (strcmp(name, "char") == 0) {
return NVCOMP_TYPE_CHAR;
}
if (strcmp(name, "short") == 0) {
return NVCOMP_TYPE_SHORT;
}
if (strcmp(name, "int") == 0) {
return NVCOMP_TYPE_INT;
}
if (strcmp(name, "longlong") == 0) {
return NVCOMP_TYPE_LONGLONG;
}
if (strcmp(name, "uchar") == 0) {
return NVCOMP_TYPE_UCHAR;
}
if (strcmp(name, "ushort") == 0) {
return NVCOMP_TYPE_USHORT;
}
if (strcmp(name, "uint") == 0) {
return NVCOMP_TYPE_UINT;
}
if (strcmp(name, "ulonglong") == 0) {
return NVCOMP_TYPE_ULONGLONG;
}
if (strcmp(name, "bits") == 0) {
return NVCOMP_TYPE_BITS;
}
if (strcmp(name, "uint8") == 0) {
return NVCOMP_TYPE_UINT8;
}
if (strcmp(name, "float16") == 0) {
return NVCOMP_TYPE_FLOAT16;
}
std::cerr << "ERROR: Unhandled type argument \"" << name << "\""
<< std::endl;
valid = false;
return NVCOMP_TYPE_BITS;
}
using namespace nvcomp;
namespace
{
constexpr const char * const REQUIRED_PARAMTER = "_REQUIRED_";
static size_t compute_batch_size(
const std::vector<std::vector<char>>& data, const size_t chunk_size)
{
size_t batch_size = 0;
for (size_t i = 0; i < data.size(); ++i) {
const size_t num_chunks = (data[i].size() + chunk_size - 1) / chunk_size;
batch_size += num_chunks;
}
return batch_size;
}
std::vector<size_t> compute_chunk_sizes(
const std::vector<std::vector<char>>& data,
const size_t batch_size,
const size_t chunk_size)
{
std::vector<size_t> sizes(batch_size, chunk_size);
size_t offset = 0;
for (size_t i = 0; i < data.size(); ++i) {
const size_t num_chunks = (data[i].size() + chunk_size - 1) / chunk_size;
if (data[i].size() % chunk_size != 0) {
sizes[offset] = data[i].size() % chunk_size;
}
offset += num_chunks;
}
return sizes;
}
class BatchData
{
public:
BatchData(
const std::vector<std::vector<char>>& host_data) :
m_ptrs(),
m_sizes(),
m_data(),
m_size(0)
{
m_size = host_data.size();
// find max chunk size and build prefixsum
std::vector<size_t> prefixsum(m_size+1,0);
size_t chunk_size = 0;
for (size_t i = 0; i < m_size; ++i) {
if (chunk_size < host_data[i].size()) {
chunk_size = host_data[i].size();
}
// align to 8B boundaries for now
// TODO: Set appropriate alignment based on reqs for each compressor
prefixsum[i+1] = nvcomp::roundUpTo(prefixsum[i] + host_data[i].size(), 8);
}
m_data = nvcomp::thrust::device_vector<uint8_t>(prefixsum.back());
std::vector<void*> uncompressed_ptrs(size());
for (size_t i = 0; i < size(); ++i) {
uncompressed_ptrs[i] = static_cast<void*>(data() + prefixsum[i]);
}
m_ptrs = nvcomp::thrust::device_vector<void*>(uncompressed_ptrs);
std::vector<size_t> sizes(m_size);
for (size_t i = 0; i < sizes.size(); ++i) {
sizes[i] = host_data[i].size();
}
m_sizes = nvcomp::thrust::device_vector<size_t>(sizes);
size_t batch_bytes_required = prefixsum.back() * sizeof(uint8_t);
size_t gpu_bytes_free, gpu_bytes_total;
CUDA_CHECK(cudaMemGetInfo( &gpu_bytes_free, &gpu_bytes_total ));
if(gpu_bytes_free < batch_bytes_required){
std::cerr << "WARNING: Cannot fit compressed file in GPU memory. Could not run benchmark." << std::endl;
std::exit(0);
}
// copy data to GPU
for (size_t i = 0; i < host_data.size(); ++i) {
CUDA_CHECK(cudaMemcpy(
uncompressed_ptrs[i],
host_data[i].data(),
host_data[i].size(),
cudaMemcpyHostToDevice));
}
}
BatchData(const size_t max_output_size, const size_t batch_size) :
m_ptrs(),
m_sizes(),
m_data(),
host_ptrs(batch_size),
m_size(batch_size)
{
size_t batch_bytes_required = max_output_size * size() * sizeof(uint8_t);
size_t gpu_bytes_free, gpu_bytes_total;
CUDA_CHECK(cudaMemGetInfo( &gpu_bytes_free, &gpu_bytes_total ));
if(gpu_bytes_free < batch_bytes_required){
std::cerr << "WARNING: Cannot fit compressed file in GPU memory. Could not run benchmark." << std::endl;
std::exit(0);
}
m_data = nvcomp::thrust::device_vector<uint8_t>(max_output_size * size());
std::vector<size_t> sizes(size(), max_output_size);
m_sizes = nvcomp::thrust::device_vector<size_t>(sizes);
for (size_t i = 0; i < batch_size; ++i) {
host_ptrs[i] = data() + max_output_size * i;
}
m_ptrs = nvcomp::thrust::device_vector<void*>(host_ptrs);
}
BatchData(BatchData&& other) = default;
// disable copying
BatchData(const BatchData& other) = delete;
BatchData& operator=(const BatchData& other) = delete;
void load_data (const std::vector<std::vector<char>>& host_data)
{
// copy data to GPU
for (size_t i = 0; i < host_data.size(); ++i) {
CUDA_CHECK(cudaMemcpy(
get_ptrs()[i],
host_data[i].data(),
host_data[i].size(),
cudaMemcpyHostToDevice));
}
}
void** ptrs()
{
return m_ptrs.data().get();
}
nvcomp::thrust::device_ptr<void *> get_ptrs()
{
return m_ptrs.data();
}
size_t* sizes()
{
return m_sizes.data().get();
}
uint8_t* data()
{
return m_data.data().get();
}
size_t total_size() const
{
return m_data.size();
}
size_t size() const
{
return m_size;
}
private:
std::vector<void*> host_ptrs;
nvcomp::thrust::device_vector<void*> m_ptrs;
nvcomp::thrust::device_vector<size_t> m_sizes;
nvcomp::thrust::device_vector<uint8_t> m_data;
size_t m_size;
};
std::vector<char> readFile(const std::string& filename)
{
std::ifstream fin(filename, std::ifstream::binary);
if (!fin) {
std::cerr << "ERROR: Unable to open \"" << filename << "\" for reading."
<< std::endl;
throw std::runtime_error("Error opening file for reading.");
}
fin.exceptions(std::ifstream::failbit | std::ifstream::badbit);
fin.seekg(0, std::ios_base::end);
auto fileSize = static_cast<std::streamoff>(fin.tellg());
fin.seekg(0, std::ios_base::beg);
std::vector<char> host_data(fileSize);
fin.read(host_data.data(), fileSize);
if (!fin) {
std::cerr << "ERROR: Unable to read all of file \"" << filename << "\"."
<< std::endl;
throw std::runtime_error("Error reading file.");
}
return host_data;
}
std::vector<std::vector<char>> readFileWithPageSizes(const std::string& filename)
{
std::vector<std::vector<char>> res;
std::ifstream fin(filename, std::ifstream::binary);
while (!fin.eof()) {
uint64_t chunk_size;
fin.read(reinterpret_cast<char *>(&chunk_size), sizeof(uint64_t));
if (fin.eof())
break;
res.emplace_back(chunk_size);
fin.read(reinterpret_cast<char*>(res.back().data()), chunk_size);
}
return res;
}
std::vector<std::vector<char>>
multi_file(const std::vector<std::string>& filenames, const size_t chunk_size,
const bool has_page_sizes, const size_t multiple_of, const size_t duplicate_count)
{
std::vector<std::vector<char>> split_data;
for (auto const& filename : filenames) {
if (!has_page_sizes) {
std::vector<char> filedata = readFile(filename);
const size_t filedata_original_size = filedata.size();
const size_t filedata_padding_size = (multiple_of - (filedata_original_size % multiple_of)) % multiple_of;
const size_t filedata_padded_size = filedata_original_size + filedata_padding_size;
const size_t num_chunks
= (filedata_padded_size + chunk_size - 1) / chunk_size;
size_t offset = 0;
for (size_t c = 0; c < num_chunks; ++c) {
const size_t size_of_this_chunk = std::min(chunk_size, filedata_padded_size-offset);
std::vector<char> tmp(size_of_this_chunk, 0);
if(offset < filedata_original_size) {
std::copy(filedata.data() + offset,
filedata.data() + offset + min(filedata_original_size-offset, size_of_this_chunk),
tmp.begin());
}
split_data.emplace_back(std::move(tmp));
offset += size_of_this_chunk;
assert(offset <= filedata_padded_size);
}
} else {
std::vector<std::vector<char>> filedata = readFileWithPageSizes(filename);
split_data.insert(split_data.end(), filedata.begin(), filedata.end());
}
}
if (duplicate_count > 1) {
// Make duplicate_count copies of the contents of split_data,
// but copy into a separate std::vector, to avoid issues with the
// memory being reallocated while the contents are being copied.
std::vector<std::vector<char>> duplicated;
const size_t original_num_chunks = split_data.size();
duplicated.reserve(original_num_chunks * duplicate_count);
for (size_t d = 0; d < duplicate_count; ++d) {
duplicated.insert(duplicated.end(), split_data.begin(), split_data.end());
}
// Now that there are duplicate_count copies of split_data in
// duplicated, swap them, so that they're in split_data.
duplicated.swap(split_data);
}
return split_data;
}
}
template<
typename CompGetTempT,
typename CompGetSizeT,
typename CompAsyncT,
typename DecompGetTempT,
typename DecompAsyncT,
typename DecompGetSizeT,
typename IsInputValidT,
typename FormatOptsT>
void
run_benchmark_template(
CompGetTempT BatchedCompressGetTempSize,
CompGetSizeT BatchedCompressGetMaxOutputChunkSize,
CompAsyncT BatchedCompressAsync,
DecompGetTempT BatchedDecompressGetTempSize,
DecompAsyncT BatchedDecompressAsync,
DecompGetSizeT BatchedDecompressGetSize,
IsInputValidT IsInputValid,
const FormatOptsT format_opts,
const std::vector<std::vector<char>>& data,
const bool warmup,
const size_t count,
const bool csv_output,
const bool use_tabs,
const size_t duplicate_count,
const size_t num_files,
const bool compressed_inputs = false,
const bool single_output_buffer = false,
const bool file_output = false,
const std::string output_filename = "")
{
benchmark_assert(IsInputValid(data), "Invalid input data");
const std::string separator = use_tabs ? "\t" : ",";
size_t total_bytes = 0;
size_t chunk_size = 0;
for (const std::vector<char>& part : data) {
total_bytes += part.size();
if (part.size() > chunk_size) {
chunk_size = part.size();
}
}
cudaEvent_t start, end;
CUDA_CHECK(cudaEventCreate(&start));
CUDA_CHECK(cudaEventCreate(&end));
// build up metadata
BatchData input_data(data);
cudaStream_t stream;
CUDA_CHECK(cudaStreamCreate(&stream));
const size_t batch_size = input_data.size();
std::vector<size_t> h_input_sizes(batch_size);
CUDA_CHECK(cudaMemcpy(h_input_sizes.data(), input_data.sizes(),
sizeof(size_t)*batch_size, cudaMemcpyDeviceToHost));
size_t compressed_size = 0;
double comp_time = 0.0;
double decomp_time = 0.0;
for (size_t iter = 0; iter < count; ++iter) {
// compression
nvcompStatus_t status;
size_t comp_bytes = 0;
float compress_ms = 0;
size_t max_out_bytes;
if(compressed_inputs){
max_out_bytes = chunk_size;
}else{
status = BatchedCompressGetMaxOutputChunkSize(
chunk_size, format_opts, &max_out_bytes);
benchmark_assert(status == nvcompSuccess,
"BatchedGetMaxOutputChunkSize() failed.");
}
size_t* d_decomp_sizes;
CUDA_CHECK(cudaMalloc(
&d_decomp_sizes, batch_size*sizeof(*d_decomp_sizes)));
size_t* d_uncomp_sizes;
CUDA_CHECK(cudaMalloc(
&d_uncomp_sizes, batch_size*sizeof(*d_uncomp_sizes)));
std::vector<size_t> h_ucomp_sizes(batch_size);
BatchData compress_data(max_out_bytes, batch_size);
if(!compressed_inputs){
// Compress on the GPU using batched API
size_t comp_temp_bytes;
status = BatchedCompressGetTempSize(
batch_size, chunk_size, format_opts, &comp_temp_bytes);
benchmark_assert(status == nvcompSuccess,
"BatchedCompressGetTempSize() failed.");
void* d_comp_temp;
CUDA_CHECK(cudaMalloc(&d_comp_temp, comp_temp_bytes));
CUDA_CHECK(cudaEventRecord(start, stream));
status = BatchedCompressAsync(
input_data.ptrs(),
input_data.sizes(),
chunk_size,
batch_size,
d_comp_temp,
comp_temp_bytes,
compress_data.ptrs(),
compress_data.sizes(),
format_opts,
stream);
benchmark_assert(status == nvcompSuccess,
"BatchedCompressAsync() failed.");
CUDA_CHECK(cudaEventRecord(end, stream));
CUDA_CHECK(cudaStreamSynchronize(stream));
// free compression memory
CUDA_CHECK(cudaFree(d_comp_temp));
CUDA_CHECK(cudaEventElapsedTime(&compress_ms, start, end));
// compute compression ratio
std::vector<size_t> compressed_sizes_host(compress_data.size());
CUDA_CHECK(cudaMemcpy(
compressed_sizes_host.data(),
compress_data.sizes(),
compress_data.size() * sizeof(*compress_data.sizes()),
cudaMemcpyDeviceToHost));
for (size_t ix = 0 ; ix < batch_size; ++ix) {
comp_bytes += compressed_sizes_host[ix];
}
h_ucomp_sizes = h_input_sizes;
CUDA_CHECK(cudaMemcpy(d_uncomp_sizes, h_input_sizes.data(), sizeof(size_t) * batch_size, cudaMemcpyDefault));
// Then do file output
if (file_output) {
std::vector<uint8_t> comp_data(comp_bytes);
std::vector<uint8_t*> comp_ptrs(batch_size);
cudaMemcpy(comp_ptrs.data(), compress_data.ptrs(), sizeof(size_t) * batch_size, cudaMemcpyDefault);
size_t ix_offset = 0;
for (int ix_chunk = 0; ix_chunk < batch_size; ++ix_chunk) {
cudaMemcpy(&comp_data[ix_offset], comp_ptrs[ix_chunk], compressed_sizes_host[ix_chunk], cudaMemcpyDefault);
ix_offset += compressed_sizes_host[ix_chunk];
}
std::ofstream outfile{output_filename.c_str(), outfile.binary};
outfile.write(reinterpret_cast<char*>(comp_data.data()), ix_offset);
outfile.close();
}
}else{
compress_data.load_data(data);
status = BatchedDecompressGetSize(
compress_data.ptrs(),
compress_data.sizes(),
d_uncomp_sizes,
batch_size,
stream);
benchmark_assert(
status == nvcompSuccess,
"BatchedDecompressGetSize() not successful");
CUDA_CHECK(cudaStreamSynchronize(stream));
CUDA_CHECK(cudaMemcpy(h_ucomp_sizes.data(), d_uncomp_sizes, sizeof(size_t) * batch_size, cudaMemcpyDefault));
comp_bytes = total_bytes;
}
//Decompression
size_t decomp_temp_bytes;
status = BatchedDecompressGetTempSize(
compress_data.size(), chunk_size, &decomp_temp_bytes);
benchmark_assert(status == nvcompSuccess,
"BatchedDecompressGetTempSize() failed.");
void* d_decomp_temp;
CUDA_CHECK(cudaMalloc(&d_decomp_temp, decomp_temp_bytes));
nvcompStatus_t* d_decomp_statuses;
CUDA_CHECK(cudaMalloc(
&d_decomp_statuses, batch_size*sizeof(*d_decomp_statuses)));
std::vector<void*> h_output_ptrs(batch_size);
nvcomp::thrust::device_vector<void*> d_output_ptrs_tight;
size_t total_uncomp_size = 0;
for (size_t i = 0; i < batch_size; ++i) {
total_uncomp_size += h_ucomp_sizes[i];
}
nvcomp::thrust::device_vector<uint8_t> one_buffer( total_uncomp_size);
void ** d_output_ptrs;
if(single_output_buffer){
size_t offset = 0;
for (size_t i = 0; i < batch_size; ++i) {
h_output_ptrs[i] = static_cast<void*>(one_buffer.data().get() + offset);
offset += h_ucomp_sizes[i];
}
d_output_ptrs_tight = nvcomp::thrust::device_vector<void*>(h_output_ptrs);
CUDA_CHECK(cudaEventRecord(start, stream));
status = BatchedDecompressAsync(
compress_data.ptrs(),
compress_data.sizes(),
d_uncomp_sizes,
d_decomp_sizes,
batch_size,
d_decomp_temp,
decomp_temp_bytes,
d_output_ptrs_tight.data().get(),
d_decomp_statuses,
stream);
benchmark_assert(
status == nvcompSuccess,
"BatchedDecompressAsync() not successful");
CUDA_CHECK(cudaEventRecord(end, stream));
CUDA_CHECK(cudaStreamSynchronize(stream));
}else{
size_t gpu_bytes_free, gpu_bytes_total;
size_t benchmark_out_bytes = 0;
CUDA_CHECK(cudaMemGetInfo( &gpu_bytes_free, &gpu_bytes_total ));
for (size_t i = 0; i < batch_size; ++i) {
benchmark_out_bytes += h_ucomp_sizes[i];
}
if(gpu_bytes_free < benchmark_out_bytes){
std::cerr << "WARNING: Not enough memory. Could not run benchmark." << std::endl;
std::exit(0);
}
for (size_t i = 0; i < batch_size; ++i) {
CUDA_CHECK(cudaMalloc(&h_output_ptrs[i], h_ucomp_sizes[i]));
}
CUDA_CHECK(cudaMalloc(&d_output_ptrs, sizeof(*d_output_ptrs)*batch_size));
CUDA_CHECK(cudaMemcpy(d_output_ptrs, h_output_ptrs.data(),
sizeof(*d_output_ptrs)*batch_size, cudaMemcpyHostToDevice));
CUDA_CHECK(cudaEventRecord(start, stream));
status = BatchedDecompressAsync(
compress_data.ptrs(),
compress_data.sizes(),
d_uncomp_sizes,
d_decomp_sizes,
batch_size,
d_decomp_temp,
decomp_temp_bytes,
d_output_ptrs,
d_decomp_statuses,
stream);
benchmark_assert(
status == nvcompSuccess,
"BatchedDecompressAsync() not successful");
CUDA_CHECK(cudaEventRecord(end, stream));
CUDA_CHECK(cudaStreamSynchronize(stream));
}
float decompress_ms;
CUDA_CHECK(cudaEventElapsedTime(&decompress_ms, start, end));
// verify success each time
std::vector<size_t> h_decomp_sizes(batch_size);
CUDA_CHECK(cudaMemcpy(h_decomp_sizes.data(), d_decomp_sizes,
sizeof(*d_decomp_sizes)*batch_size, cudaMemcpyDeviceToHost));
std::vector<nvcompStatus_t> h_decomp_statuses(batch_size);
CUDA_CHECK(cudaMemcpy(h_decomp_statuses.data(), d_decomp_statuses,
sizeof(*d_decomp_statuses)*batch_size, cudaMemcpyDeviceToHost));
for (size_t i = 0; i < batch_size; ++i) {
benchmark_assert(h_decomp_statuses[i] == nvcompSuccess, "Batch item not successfuly decompressed: i=" + std::to_string(i) + ": status=" +
std::to_string(h_decomp_statuses[i]));
if(!compressed_inputs){
benchmark_assert(h_decomp_sizes[i] == h_input_sizes[i], "Batch item of wrong size: i=" + std::to_string(i) + ": act_size=" +
std::to_string(h_decomp_sizes[i]) + " exp_size=" +
std::to_string(h_input_sizes[i]));
}
}
CUDA_CHECK(cudaFree(d_decomp_temp));
CUDA_CHECK(cudaFree(d_decomp_statuses));
// only verify last iteration
if (iter + 1 == count && !compressed_inputs) {
std::vector<void*> h_input_ptrs(batch_size);
CUDA_CHECK(cudaMemcpy(h_input_ptrs.data(), input_data.ptrs(),
sizeof(void*)*batch_size, cudaMemcpyDeviceToHost));
for (size_t ix_chunk = 0; ix_chunk < batch_size; ++ix_chunk) {
std::vector<uint8_t> exp_data(h_input_sizes[ix_chunk]);
CUDA_CHECK(cudaMemcpy(exp_data.data(), h_input_ptrs[ix_chunk],
h_input_sizes[ix_chunk], cudaMemcpyDeviceToHost));
std::vector<uint8_t> act_data(h_decomp_sizes[ix_chunk]);
CUDA_CHECK(cudaMemcpy(act_data.data(), h_output_ptrs[ix_chunk],
h_decomp_sizes[ix_chunk], cudaMemcpyDeviceToHost));
for (size_t ix_byte = 0; ix_byte < h_input_sizes[ix_chunk]; ++ix_byte) {
if (act_data[ix_byte] != exp_data[ix_byte]) {
benchmark_assert(false, "Batch item decompressed output did not match input: ix_chunk="+std::to_string(ix_chunk) + ": ix_byte=" + std::to_string(ix_byte) + " act=" + std::to_string(act_data[ix_byte]) + " exp=" +
std::to_string(exp_data[ix_byte]));
}
}
}
}
if(compressed_inputs && file_output){
total_bytes = 0;
for (size_t ix = 0 ; ix < batch_size; ++ix) {
total_bytes += h_decomp_sizes[ix];
}
std::vector<uint8_t> uncomp_data(total_bytes);
size_t ix_offset = 0;
for (int ix_chunk = 0; ix_chunk < batch_size; ++ix_chunk) {
CUDA_CHECK(cudaMemcpy(&uncomp_data[ix_offset], h_output_ptrs[ix_chunk],
h_decomp_sizes[ix_chunk], cudaMemcpyDeviceToHost));
if(single_output_buffer){
std::ofstream outfile{output_filename.c_str() + std::to_string(ix_chunk), outfile.binary};
outfile.write(reinterpret_cast<char*>(&uncomp_data[ix_offset]), h_decomp_sizes[ix_chunk]);
outfile.close();
}
ix_offset += h_decomp_sizes[ix_chunk];
}
if(!single_output_buffer){
std::ofstream outfile{output_filename.c_str(), outfile.binary};
outfile.write(reinterpret_cast<char*>(uncomp_data.data()), total_bytes);
outfile.close();
}
}
if(!single_output_buffer){
CUDA_CHECK(cudaFree(d_output_ptrs));
for (size_t i = 0; i < batch_size; ++i) {
CUDA_CHECK(cudaFree(h_output_ptrs[i]));
}
}
CUDA_CHECK(cudaFree(d_decomp_sizes));
CUDA_CHECK(cudaFree(d_uncomp_sizes));
// count everything from our iteration
compressed_size += comp_bytes;
comp_time += compress_ms * 1.0e-3;
decomp_time += decompress_ms * 1.0e-3;
}
CUDA_CHECK(cudaStreamDestroy(stream));
CUDA_CHECK(cudaEventDestroy(start));
CUDA_CHECK(cudaEventDestroy(end));
// average iterations
compressed_size /= count;
comp_time /= count;
decomp_time /= count;
if (!warmup) {
const double comp_ratio = (double)total_bytes / compressed_size;
const double compression_throughput_gbs = (double)total_bytes / (1.0e9 *
comp_time);
const double decompression_throughput_gbs = (double)total_bytes / (1.0e9 *
decomp_time);
if (!csv_output) {
std::cout << "----------" << std::endl;
std::cout << "files: " << num_files << std::endl;
std::cout << "uncompressed (B): " << total_bytes << std::endl;
std::cout << "comp_size: " << compressed_size
<< ", compressed ratio: " << std::fixed << std::setprecision(4)
<< comp_ratio << std::endl;
std::cout << "compression throughput (GB/s): " << compression_throughput_gbs << std::endl;
std::cout << "decompression throughput (GB/s): " << decompression_throughput_gbs << std::endl;
} else {
// header
std::cout << "Files";
std::cout << separator << "Duplicate data";
std::cout << separator << "Size in MB";
std::cout << separator << "Pages";
std::cout << separator << "Avg page size in KB";
std::cout << separator << "Max page size in KB";
std::cout << separator << "Ucompressed size in bytes";
std::cout << separator << "Compressed size in bytes";
std::cout << separator << "Compression ratio";
std::cout << separator << "Compression throughput (uncompressed) in GB/s";
std::cout << separator << "Decompression throughput (uncompressed) in GB/s";
std::cout << std::endl;
// values
std::cout << num_files;
std::cout << separator << duplicate_count;
std::cout << separator << (total_bytes * 1e-6); // MB
std::cout << separator << data.size();
std::cout << separator << ((1e-3*total_bytes) / data.size()); // KB
std::cout << separator << (1e-3*chunk_size); // KB
std::cout << separator << total_bytes;
std::cout << separator << compressed_size;
std::cout << separator << std::fixed << std::setprecision(2)
<< comp_ratio;
std::cout << separator << compression_throughput_gbs;
std::cout << separator << decompression_throughput_gbs;
std::cout << std::endl;
}
}
}
void run_benchmark(
const std::vector<std::vector<char>>& data,
const bool warmup,
const size_t count,
const bool csv_output,
const bool tab_separator,
const size_t duplicate_count,
const size_t num_files,
const bool compressed_inputs,
const bool single_output_buffer);
struct args_type {
int gpu;
std::vector<std::string> filenames;
size_t warmup_count;
size_t iteration_count;
// Represents the number of bytes the input data needs to be a multiple of.
// If it is not the case, the input data will be padded with zeros to satisfy the
// requirement.
size_t multiple_of;
// Indicates the number of times the input data will be duplicated. In case
// the input data went under some padding to satisfy `multiple_of`, the padded
// data is duplicated.
size_t duplicate_count;
bool csv_output;
bool use_tabs;
bool has_page_sizes;
size_t chunk_size;
bool compressed_inputs;
bool single_output_buffer;
};
struct parameter_type {
std::string short_flag;
std::string long_flag;
std::string description;
std::string default_value;
};
bool parse_bool(const std::string& val)
{
std::istringstream ss(val);
std::boolalpha(ss);
bool x;
if (!(ss >> x)) {
std::cerr << "ERROR: Invalid boolean: '" << val << "', only 'true' and 'false' are accepted." << std::endl;
std::exit(1);
}
return x;
}
void usage(const std::string& name, const std::vector<parameter_type>& parameters)
{
std::cout << "Usage: " << name << " [OPTIONS]" << std::endl;
for (const parameter_type& parameter : parameters) {
std::cout << " -" << parameter.short_flag << ",--" << parameter.long_flag;
std::cout << " : " << parameter.description << std::endl;
if (parameter.default_value.empty()) {
// no default value
} else if (parameter.default_value == REQUIRED_PARAMTER) {
std::cout << " required" << std::endl;
} else {
std::cout << " default=" << parameter.default_value << std::endl;
}
}
}
std::string bool_to_string(const bool b) {
if (b) {
return "true";
} else {
return "false";
}
}
args_type parse_args(int argc, char ** argv) {
args_type args;
args.gpu = 0;
args.warmup_count = 1;
args.iteration_count = 1;
args.multiple_of = 1;
args.duplicate_count = 0;
args.csv_output = false;
args.use_tabs = false;
args.has_page_sizes = false;
args.chunk_size = 65536;
args.compressed_inputs = false;
args.single_output_buffer = false;
const std::vector<parameter_type> params{
{"?", "help", "Show options.", ""},
{"g", "gpu", "GPU device number", std::to_string(args.gpu)},
{"f", "input_file", "The list of inputs files. All files must start "
"with a character other than '-'", "_required_"},
{"w", "warmup_count", "The number of warmup iterations to perform.",
std::to_string(args.warmup_count)},
{"i", "iteration_count", "The number of runs to average.",
std::to_string(args.iteration_count)},
{"m", "multiple_of", "Add padding to the input data such that its "
"length becomes a multiple of the given argument (in bytes). Only applicable to "
"data without page sizes.",
std::to_string(args.multiple_of)},
{"x", "duplicate_data", "Clone uncompressed chunks multiple times.",
std::to_string(args.duplicate_count)},
{"c", "csv_output", "Output in column/csv format.",
bool_to_string(args.csv_output)},
{"e", "tab_separator", "Use tabs instead of commas when "
"'--csv_output' is specificed.",
bool_to_string(args.use_tabs)},
{"s", "file_with_page_sizes", "File(s) contain pages, each prefixed "
"with int64 size.", bool_to_string(args.has_page_sizes)},
{"p", "chunk_size", "Chunk size when splitting uncompressed data.",
std::to_string(args.chunk_size)},
{"compressed", "compressed_inputs", "The input dataset is compressed.",
std::to_string(args.compressed_inputs)},
{"single", "single_output_buffer", "There is only one tight output buffer.",
std::to_string(args.single_output_buffer)},
};
char** argv_end = argv + argc;
const std::string name(argv[0]);
argv += 1;
while (argv != argv_end) {
std::string arg(*(argv++));
bool found = false;
for (const parameter_type& param : params) {
if (arg == "-" + param.short_flag || arg == "--" + param.long_flag) {
found = true;
// found the parameter
if (param.long_flag == "help") {
usage(name, params);
std::exit(0);
}
// everything from here on out requires an extra parameter
if (argv >= argv_end) {
std::cerr << "ERROR: Missing argument" << std::endl;
usage(name, params);
std::exit(1);
}
if (param.long_flag == "gpu") {
args.gpu = std::stol(*(argv++));
break;
} else if (param.long_flag == "input_file") {
// read all following arguments until a new flag is found
char ** next_argv_ptr = argv;
while (next_argv_ptr < argv_end && (*next_argv_ptr)[0] != '-') {
args.filenames.emplace_back(*next_argv_ptr);
next_argv_ptr = ++argv;
}
break;
} else if (param.long_flag == "warmup_count") {
args.warmup_count = size_t(std::stoull(*(argv++)));
break;
} else if (param.long_flag == "iteration_count") {
args.iteration_count = size_t(std::stoull(*(argv++)));
break;
} else if (param.long_flag == "multiple_of") {
args.multiple_of = size_t(std::stoull(*(argv++)));
break;
} else if (param.long_flag == "duplicate_data") {
args.duplicate_count = size_t(std::stoull(*(argv++)));
break;
} else if (param.long_flag == "csv_output") {
std::string on(*(argv++));
args.csv_output = parse_bool(on);
break;
} else if (param.long_flag == "tab_separator") {
std::string on(*(argv++));
args.use_tabs = parse_bool(on);
break;
} else if (param.long_flag == "file_with_page_sizes") {
std::string on(*(argv++));
args.has_page_sizes = parse_bool(on);
break;
} else if (param.long_flag == "chunk_size") {
args.chunk_size = size_t(std::stoull(*(argv++)));
break;
} else if (param.long_flag == "compressed_inputs") {
std::string on(*(argv++));
args.compressed_inputs = parse_bool(on);
break;
} else if (param.long_flag == "single_output_buffer") {
std::string on(*(argv++));
args.single_output_buffer = parse_bool(on);
break;
} else {
std::cerr << "INTERNAL ERROR: Unhandled paramter '" << arg << "'." << std::endl;
usage(name, params);
std::exit(1);
}
}
}
size_t argumentsUsed = 0;
if (!found && !handleCommandLineArgument(arg, argv, argumentsUsed)) {
std::cerr << "ERROR: Unknown argument '" << arg << "'." << std::endl;
usage(name, params);
std::exit(1);
}
argv += argumentsUsed;
}
if (args.filenames.empty()) {
std::cerr << "ERROR: Must specify at least one input file." << std::endl;
std::exit(1);
}
if(args.multiple_of > 1 && args.has_page_sizes) {
std::cerr << "ERROR: If the input files contain page sizes, the argument 'multiple_of' is not permitted." << std::endl;
std::exit(1);
}