diff --git a/README.md b/README.md index 6043ca9..2e5fd4f 100644 --- a/README.md +++ b/README.md @@ -94,10 +94,10 @@ docker run --gpus all -it --rm --ipc=host --ulimit memlock=-1 --ulimit stack=671 ### Spherical harmonics -The [spherical harmonics](https://en.wikipedia.org/wiki/Spherical_harmonics) are special functions defined on the two-dimensional sphere $S^2$ (embedded in three dimensions). They form an orthonormal basis of the space of square-integrable functions defined on the sphere ($L^2(S^2)$) and are comparable to the harmonic functions defined on a circle/torus. The spherical harmonics are defined as +The [spherical harmonics](https://en.wikipedia.org/wiki/Spherical_harmonics) are special functions defined on the two-dimensional sphere $S^2$ (embedded in three dimensions). They form an orthonormal basis of the space of square-integrable functions defined on the sphere $L^2(S^2)$ and are comparable to the harmonic functions defined on a circle/torus. The spherical harmonics are defined as $$ -Y_l^m(\theta, \lambda) = \sqrt{\frac{(2l + 1)}{4 \pi} \frac{(l - m)!}{(l + m)!}} \, P_l^m(\cos \theta) \, \exp(im\lambda), +Y_l^m(\theta, \lambda) = \sqrt{\frac{(2l + 1)}{4 \pi} \frac{(l - m)!}{(l + m)!}} P_l^m(\cos \theta) \exp(im\lambda), $$ where $\theta$ and $\lambda$ are colatitude and longitude respectively, and $P_l^m$ the normalized, [associated Legendre polynomials](https://en.wikipedia.org/wiki/Associated_Legendre_polynomials). @@ -133,7 +133,7 @@ $$ in longitude and a Legendre transform $$ -\hat{f}_l^m = \frac{1}{2} \int_{0}^\pi \hat{f}^m(\theta) \, \overline{P_l^m} (\cos \theta) \, \sin \theta \;\mathrm{d} \theta +\hat{f}_l^m = \frac{1}{2} \int_{0}^\pi \hat{f}^m(\theta) \, \overline{P_l^m} (\cos \theta) \, \sin \theta \; \mathrm{d} \theta $$ in latitude.