From f292e1151f244b25563e297503b58c2751c98709 Mon Sep 17 00:00:00 2001 From: Boris Bonev Date: Tue, 24 Oct 2023 13:53:00 +0200 Subject: [PATCH] Update README.md --- README.md | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/README.md b/README.md index 9ed75d0..4859f84 100644 --- a/README.md +++ b/README.md @@ -119,21 +119,21 @@ $$ realizes the projection of a signal $f(\theta, \lambda)$ on $S^2$ onto the spherical harmonics basis. The SHT generalizes the Fourier transform on the sphere. Conversely, a truncated series expansion of a function $f$ can be written in terms of spherical harmonics as $$ -f (\theta, \lambda) = \sum_{m=-M}^{M} \exp(im\lambda) \sum_{l=|m|}^{M} \hat{f}_l^m \overline{P_l^m} (\cos \theta), +f (\theta, \lambda) = \sum_{m=-M}^{M} \exp(im\lambda) \sum_{l=|m|}^{M} \hat{f}_l^m P_l^m (\cos \theta), $$ -where $\hat{f}_l^m$, are the expansion coefficients associated to the mode $m,n$. +where $\hat{f}_l^m$, are the expansion coefficients associated to the mode $m$, $n$. The implementation of the SHT follows the algorithm as presented in [2]. A direct spherical harmonic transform can be accomplished by a Fourier transform $$ -\hat{f}^m(\theta) = \frac{1}{2 \pi} \int_{0}^{2\pi} f(\theta, \lambda) \exp(-im\lambda) \, \mathrm{d} \lambda +\hat{f}^m(\theta) = \frac{1}{2 \pi} \int_{0}^{2\pi} f(\theta, \lambda) \exp(-im\lambda) \mathrm{d} \lambda $$ in longitude and a Legendre transform $$ -\hat{f}_{l}^{m} = \frac{1}{2} \int_{0}^{\pi} \hat{f}^m(\theta) \overline{P_{l}^{m}} (\cos \theta) \sin \theta \mathrm{d} \theta +\hat{f}_l^m = \frac{1}{2} \int^{\pi}_0 \hat{f}^{m} (\theta) P_l^m (\cos \theta) \sin \theta \mathrm{d} \theta $$ in latitude. @@ -143,13 +143,13 @@ in latitude. The second integral, which computed the projection onto the Legendre polynomials is realized with quadrature. On the Gaussian grid, we use Gaussian quadrature in the $\cos \theta$ domain. The integral $$ -\hat{f}_l^m = \frac{1}{2} \int_{-1}^1 \hat{f}^m(\arccos x) \, \overline{P_l^m} (x) \; \mathrm{d} x +\hat{f}_{l}^{m} = \frac{1}{2} \int_{-1}^1 \hat{f}^m(\arccos x) P_l^m (x) \mathrm{d} x $$ is obtained with the substitution $x = \cos \theta$ and then approximated by the sum $$ -\hat{f}_l^m = \sum_{j=1}^{N_\theta} \hat{f}^m(\arccos x_j) \bar{P}_n^m(x_j) \, w_j. +\hat{f}_{l}^{m} = \sum_{j}^{N_\theta} \hat{f}^m(\arccos x_j) P_l^m(x_j) w_j. $$ Here, $x_j \in [-1,1]$ are the quadrature nodes with the respective quadrature weights $w_j$.