-
Notifications
You must be signed in to change notification settings - Fork 134
/
Copy pathinference.py
515 lines (450 loc) · 22.3 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
#BSD 3-Clause License
#
#Copyright (c) 2022, FourCastNet authors
#All rights reserved.
#
#Redistribution and use in source and binary forms, with or without
#modification, are permitted provided that the following conditions are met:
#
#1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
#2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
#3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
#THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
#AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
#IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
#DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
#FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
#DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
#SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
#CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
#OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
#OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#The code was authored by the following people:
#
#Jaideep Pathak - NVIDIA Corporation
#Shashank Subramanian - NERSC, Lawrence Berkeley National Laboratory
#Peter Harrington - NERSC, Lawrence Berkeley National Laboratory
#Sanjeev Raja - NERSC, Lawrence Berkeley National Laboratory
#Ashesh Chattopadhyay - Rice University
#Morteza Mardani - NVIDIA Corporation
#Thorsten Kurth - NVIDIA Corporation
#David Hall - NVIDIA Corporation
#Zongyi Li - California Institute of Technology, NVIDIA Corporation
#Kamyar Azizzadenesheli - Purdue University
#Pedram Hassanzadeh - Rice University
#Karthik Kashinath - NVIDIA Corporation
#Animashree Anandkumar - California Institute of Technology, NVIDIA Corporation
import os
import sys
import time
import numpy as np
import argparse
sys.path.append(os.path.dirname(os.path.realpath(__file__)) + '/../')
from numpy.core.numeric import False_
import h5py
import torch
import torchvision
from torchvision.utils import save_image
import torch.nn as nn
import torch.cuda.amp as amp
import torch.distributed as dist
from collections import OrderedDict
from torch.nn.parallel import DistributedDataParallel
import logging
from utils import logging_utils
from utils.weighted_acc_rmse import weighted_rmse_torch_channels, weighted_acc_torch_channels, unweighted_acc_torch_channels, weighted_acc_masked_torch_channels
logging_utils.config_logger()
from utils.YParams import YParams
from utils.data_loader_multifiles import get_data_loader
from networks.afnonet import AFNONet
import wandb
import matplotlib.pyplot as plt
import glob
from datetime import datetime
fld = "z500" # diff flds have diff decor times and hence differnt ics
if fld == "z500" or fld == "2m_temperature" or fld == "t850":
DECORRELATION_TIME = 36 # 9 days (36) for z500, 2 (8 steps) days for u10, v10
else:
DECORRELATION_TIME = 8 # 9 days (36) for z500, 2 (8 steps) days for u10, v10
idxes = {"u10":0, "z500":14, "2m_temperature":2, "v10":1, "t850":5}
def gaussian_perturb(x, level=0.01, device=0):
noise = level * torch.randn(x.shape).to(device, dtype=torch.float)
return (x + noise)
def load_model(model, params, checkpoint_file):
model.zero_grad()
checkpoint_fname = checkpoint_file
checkpoint = torch.load(checkpoint_fname)
try:
new_state_dict = OrderedDict()
for key, val in checkpoint['model_state'].items():
name = key[7:]
if name != 'ged':
new_state_dict[name] = val
model.load_state_dict(new_state_dict)
except:
model.load_state_dict(checkpoint['model_state'])
model.eval()
return model
def downsample(x, scale=0.125):
return torch.nn.functional.interpolate(x, scale_factor=scale, mode='bilinear')
def setup(params):
device = torch.cuda.current_device() if torch.cuda.is_available() else 'cpu'
#get data loader
valid_data_loader, valid_dataset = get_data_loader(params, params.inf_data_path, dist.is_initialized(), train=False)
img_shape_x = valid_dataset.img_shape_x
img_shape_y = valid_dataset.img_shape_y
params.img_shape_x = img_shape_x
params.img_shape_y = img_shape_y
if params.log_to_screen:
logging.info('Loading trained model checkpoint from {}'.format(params['best_checkpoint_path']))
in_channels = np.array(params.in_channels)
out_channels = np.array(params.out_channels)
n_in_channels = len(in_channels)
n_out_channels = len(out_channels)
if params["orography"]:
params['N_in_channels'] = n_in_channels + 1
else:
params['N_in_channels'] = n_in_channels
params['N_out_channels'] = n_out_channels
params.means = np.load(params.global_means_path)[0, out_channels] # needed to standardize wind data
params.stds = np.load(params.global_stds_path)[0, out_channels]
# load the model
if params.nettype == 'afno':
model = AFNONet(params).to(device)
else:
raise Exception("not implemented")
checkpoint_file = params['best_checkpoint_path']
model = load_model(model, params, checkpoint_file)
model = model.to(device)
# load the validation data
files_paths = glob.glob(params.inf_data_path + "/*.h5")
files_paths.sort()
# which year
yr = 0
if params.log_to_screen:
logging.info('Loading inference data')
logging.info('Inference data from {}'.format(files_paths[yr]))
valid_data_full = h5py.File(files_paths[yr], 'r')['fields']
return valid_data_full, model
def autoregressive_inference(params, ic, valid_data_full, model):
ic = int(ic)
#initialize global variables
device = torch.cuda.current_device() if torch.cuda.is_available() else 'cpu'
exp_dir = params['experiment_dir']
dt = int(params.dt)
prediction_length = int(params.prediction_length/dt)
n_history = params.n_history
img_shape_x = params.img_shape_x
img_shape_y = params.img_shape_y
in_channels = np.array(params.in_channels)
out_channels = np.array(params.out_channels)
n_in_channels = len(in_channels)
n_out_channels = len(out_channels)
means = params.means
stds = params.stds
#initialize memory for image sequences and RMSE/ACC
valid_loss = torch.zeros((prediction_length, n_out_channels)).to(device, dtype=torch.float)
acc = torch.zeros((prediction_length, n_out_channels)).to(device, dtype=torch.float)
# compute metrics in a coarse resolution too if params.interp is nonzero
valid_loss_coarse = torch.zeros((prediction_length, n_out_channels)).to(device, dtype=torch.float)
acc_coarse = torch.zeros((prediction_length, n_out_channels)).to(device, dtype=torch.float)
acc_coarse_unweighted = torch.zeros((prediction_length, n_out_channels)).to(device, dtype=torch.float)
acc_unweighted = torch.zeros((prediction_length, n_out_channels)).to(device, dtype=torch.float)
seq_real = torch.zeros((prediction_length, n_in_channels, img_shape_x, img_shape_y)).to(device, dtype=torch.float)
seq_pred = torch.zeros((prediction_length, n_in_channels, img_shape_x, img_shape_y)).to(device, dtype=torch.float)
acc_land = torch.zeros((prediction_length, n_out_channels)).to(device, dtype=torch.float)
acc_sea = torch.zeros((prediction_length, n_out_channels)).to(device, dtype=torch.float)
if params.masked_acc:
maskarray = torch.as_tensor(np.load(params.maskpath)[0:720]).to(device, dtype=torch.float)
valid_data = valid_data_full[ic:(ic+prediction_length*dt+n_history*dt):dt, in_channels, 0:720] #extract valid data from first year
# standardize
valid_data = (valid_data - means)/stds
valid_data = torch.as_tensor(valid_data).to(device, dtype=torch.float)
#load time means
if not params.use_daily_climatology:
m = torch.as_tensor((np.load(params.time_means_path)[0][out_channels] - means)/stds)[:, 0:img_shape_x] # climatology
m = torch.unsqueeze(m, 0)
else:
# use daily clim like weyn et al. (different from rasp)
dc_path = params.dc_path
with h5py.File(dc_path, 'r') as f:
dc = f['time_means_daily'][ic:ic+prediction_length*dt:dt] # 1460,21,721,1440
m = torch.as_tensor((dc[:,out_channels,0:img_shape_x,:] - means)/stds)
m = m.to(device, dtype=torch.float)
if params.interp > 0:
m_coarse = downsample(m, scale=params.interp)
std = torch.as_tensor(stds[:,0,0]).to(device, dtype=torch.float)
orography = params.orography
orography_path = params.orography_path
if orography:
orog = torch.as_tensor(np.expand_dims(np.expand_dims(h5py.File(orography_path, 'r')['orog'][0:720], axis = 0), axis = 0)).to(device, dtype = torch.float)
logging.info("orography loaded; shape:{}".format(orog.shape))
#autoregressive inference
if params.log_to_screen:
logging.info('Begin autoregressive inference')
with torch.no_grad():
for i in range(valid_data.shape[0]):
if i==0: #start of sequence
first = valid_data[0:n_history+1]
future = valid_data[n_history+1]
for h in range(n_history+1):
seq_real[h] = first[h*n_in_channels : (h+1)*n_in_channels][0:n_out_channels] #extract history from 1st
seq_pred[h] = seq_real[h]
if params.perturb:
first = gaussian_perturb(first, level=params.n_level, device=device) # perturb the ic
if orography:
future_pred = model(torch.cat((first, orog), axis=1))
else:
future_pred = model(first)
else:
if i < prediction_length-1:
future = valid_data[n_history+i+1]
if orography:
future_pred = model(torch.cat((future_pred, orog), axis=1)) #autoregressive step
else:
future_pred = model(future_pred) #autoregressive step
if i < prediction_length-1: #not on the last step
seq_pred[n_history+i+1] = future_pred
seq_real[n_history+i+1] = future
history_stack = seq_pred[i+1:i+2+n_history]
future_pred = history_stack
#Compute metrics
if params.use_daily_climatology:
clim = m[i:i+1]
if params.interp > 0:
clim_coarse = m_coarse[i:i+1]
else:
clim = m
if params.interp > 0:
clim_coarse = m_coarse
pred = torch.unsqueeze(seq_pred[i], 0)
tar = torch.unsqueeze(seq_real[i], 0)
valid_loss[i] = weighted_rmse_torch_channels(pred, tar) * std
acc[i] = weighted_acc_torch_channels(pred-clim, tar-clim)
acc_unweighted[i] = unweighted_acc_torch_channels(pred-clim, tar-clim)
if params.masked_acc:
acc_land[i] = weighted_acc_masked_torch_channels(pred-clim, tar-clim, maskarray)
acc_sea[i] = weighted_acc_masked_torch_channels(pred-clim, tar-clim, 1-maskarray)
if params.interp > 0:
pred = downsample(pred, scale=params.interp)
tar = downsample(tar, scale=params.interp)
valid_loss_coarse[i] = weighted_rmse_torch_channels(pred, tar) * std
acc_coarse[i] = weighted_acc_torch_channels(pred-clim_coarse, tar-clim_coarse)
acc_coarse_unweighted[i] = unweighted_acc_torch_channels(pred-clim_coarse, tar-clim_coarse)
if params.log_to_screen:
idx = idxes[fld]
logging.info('Predicted timestep {} of {}. {} RMS Error: {}, ACC: {}'.format(i, prediction_length, fld, valid_loss[i, idx], acc[i, idx]))
if params.interp > 0:
logging.info('[COARSE] Predicted timestep {} of {}. {} RMS Error: {}, ACC: {}'.format(i, prediction_length, fld, valid_loss_coarse[i, idx],
acc_coarse[i, idx]))
seq_real = seq_real.cpu().numpy()
seq_pred = seq_pred.cpu().numpy()
valid_loss = valid_loss.cpu().numpy()
acc = acc.cpu().numpy()
acc_unweighted = acc_unweighted.cpu().numpy()
acc_coarse = acc_coarse.cpu().numpy()
acc_coarse_unweighted = acc_coarse_unweighted.cpu().numpy()
valid_loss_coarse = valid_loss_coarse.cpu().numpy()
acc_land = acc_land.cpu().numpy()
acc_sea = acc_sea.cpu().numpy()
return (np.expand_dims(seq_real[n_history:], 0), np.expand_dims(seq_pred[n_history:], 0), np.expand_dims(valid_loss,0), np.expand_dims(acc, 0),
np.expand_dims(acc_unweighted, 0), np.expand_dims(valid_loss_coarse, 0), np.expand_dims(acc_coarse, 0),
np.expand_dims(acc_coarse_unweighted, 0),
np.expand_dims(acc_land, 0),
np.expand_dims(acc_sea, 0))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--run_num", default='00', type=str)
parser.add_argument("--yaml_config", default='./config/AFNO.yaml', type=str)
parser.add_argument("--config", default='full_field', type=str)
parser.add_argument("--use_daily_climatology", action='store_true')
parser.add_argument("--vis", action='store_true')
parser.add_argument("--override_dir", default=None, type = str, help = 'Path to store inference outputs; must also set --weights arg')
parser.add_argument("--interp", default=0, type=float)
parser.add_argument("--weights", default=None, type=str, help = 'Path to model weights, for use with override_dir option')
args = parser.parse_args()
params = YParams(os.path.abspath(args.yaml_config), args.config)
params['world_size'] = 1
params['interp'] = args.interp
params['use_daily_climatology'] = args.use_daily_climatology
params['global_batch_size'] = params.batch_size
torch.cuda.set_device(0)
torch.backends.cudnn.benchmark = True
vis = args.vis
# Set up directory
if args.override_dir is not None:
assert args.weights is not None, 'Must set --weights argument if using --override_dir'
expDir = args.override_dir
else:
assert args.weights is None, 'Cannot use --weights argument without also using --override_dir'
expDir = os.path.join(params.exp_dir, args.config, str(args.run_num))
if not os.path.isdir(expDir):
os.makedirs(expDir)
params['experiment_dir'] = os.path.abspath(expDir)
params['best_checkpoint_path'] = args.weights if args.override_dir is not None else os.path.join(expDir, 'training_checkpoints/best_ckpt.tar')
params['resuming'] = False
params['local_rank'] = 0
logging_utils.log_to_file(logger_name=None, log_filename=os.path.join(expDir, 'inference_out.log'))
logging_utils.log_versions()
params.log()
n_ics = params['n_initial_conditions']
if fld == "z500" or fld == "t850":
n_samples_per_year = 1336
else:
n_samples_per_year = 1460
if params["ics_type"] == 'default':
num_samples = n_samples_per_year-params.prediction_length
stop = num_samples
ics = np.arange(0, stop, DECORRELATION_TIME)
if vis: # visualization for just the first ic (or any ic)
ics = [0]
n_ics = len(ics)
elif params["ics_type"] == "datetime":
date_strings = params["date_strings"]
ics = []
if params.perturb: #for perturbations use a single date and create n_ics perturbations
n_ics = params["n_perturbations"]
date = date_strings[0]
date_obj = datetime.strptime(date,'%Y-%m-%d %H:%M:%S')
day_of_year = date_obj.timetuple().tm_yday - 1
hour_of_day = date_obj.timetuple().tm_hour
hours_since_jan_01_epoch = 24*day_of_year + hour_of_day
for ii in range(n_ics):
ics.append(int(hours_since_jan_01_epoch/6))
else:
for date in date_strings:
date_obj = datetime.strptime(date,'%Y-%m-%d %H:%M:%S')
day_of_year = date_obj.timetuple().tm_yday - 1
hour_of_day = date_obj.timetuple().tm_hour
hours_since_jan_01_epoch = 24*day_of_year + hour_of_day
ics.append(int(hours_since_jan_01_epoch/6))
n_ics = len(ics)
logging.info("Inference for {} initial conditions".format(n_ics))
try:
autoregressive_inference_filetag = params["inference_file_tag"]
except:
autoregressive_inference_filetag = ""
if params.interp > 0:
autoregressive_inference_filetag = "_coarse"
autoregressive_inference_filetag += "_" + fld + ""
if vis:
autoregressive_inference_filetag += "_vis"
# get data and models
valid_data_full, model = setup(params)
#initialize lists for image sequences and RMSE/ACC
valid_loss = []
valid_loss_coarse = []
acc_unweighted = []
acc = []
acc_coarse = []
acc_coarse_unweighted = []
seq_pred = []
seq_real = []
acc_land = []
acc_sea = []
#run autoregressive inference for multiple initial conditions
for i, ic in enumerate(ics):
logging.info("Initial condition {} of {}".format(i+1, n_ics))
sr, sp, vl, a, au, vc, ac, acu, accland, accsea = autoregressive_inference(params, ic, valid_data_full, model)
if i ==0 or len(valid_loss) == 0:
seq_real = sr
seq_pred = sp
valid_loss = vl
valid_loss_coarse = vc
acc = a
acc_coarse = ac
acc_coarse_unweighted = acu
acc_unweighted = au
acc_land = accland
acc_sea = accsea
else:
# seq_real = np.concatenate((seq_real, sr), 0)
# seq_pred = np.concatenate((seq_pred, sp), 0)
valid_loss = np.concatenate((valid_loss, vl), 0)
valid_loss_coarse = np.concatenate((valid_loss_coarse, vc), 0)
acc = np.concatenate((acc, a), 0)
acc_coarse = np.concatenate((acc_coarse, ac), 0)
acc_coarse_unweighted = np.concatenate((acc_coarse_unweighted, acu), 0)
acc_unweighted = np.concatenate((acc_unweighted, au), 0)
acc_land = np.concatenate((acc_land, accland), 0)
acc_sea = np.concatenate((acc_sea, accsea), 0)
prediction_length = seq_real[0].shape[0]
n_out_channels = seq_real[0].shape[1]
img_shape_x = seq_real[0].shape[2]
img_shape_y = seq_real[0].shape[3]
#save predictions and loss
if params.log_to_screen:
logging.info("Saving files at {}".format(os.path.join(params['experiment_dir'], 'autoregressive_predictions' + autoregressive_inference_filetag + '.h5')))
with h5py.File(os.path.join(params['experiment_dir'], 'autoregressive_predictions'+ autoregressive_inference_filetag +'.h5'), 'a') as f:
if vis:
try:
f.create_dataset("ground_truth", data = seq_real, shape = (n_ics, prediction_length, n_out_channels, img_shape_x, img_shape_y), dtype = np.float32)
except:
del f["ground_truth"]
f.create_dataset("ground_truth", data = seq_real, shape = (n_ics, prediction_length, n_out_channels, img_shape_x, img_shape_y), dtype = np.float32)
f["ground_truth"][...] = seq_real
try:
f.create_dataset("predicted", data = seq_pred, shape = (n_ics, prediction_length, n_out_channels, img_shape_x, img_shape_y), dtype = np.float32)
except:
del f["predicted"]
f.create_dataset("predicted", data = seq_pred, shape = (n_ics, prediction_length, n_out_channels, img_shape_x, img_shape_y), dtype = np.float32)
f["predicted"][...]= seq_pred
if params.masked_acc:
try:
f.create_dataset("acc_land", data = acc_land)#, shape = (n_ics, prediction_length, n_out_channels), dtype =np.float32)
except:
del f["acc_land"]
f.create_dataset("acc_land", data = acc_land)#, shape = (n_ics, prediction_length, n_out_channels), dtype =np.float32)
f["acc_land"][...] = acc_land
try:
f.create_dataset("acc_sea", data = acc_sea)#, shape = (n_ics, prediction_length, n_out_channels), dtype =np.float32)
except:
del f["acc_sea"]
f.create_dataset("acc_sea", data = acc_sea)#, shape = (n_ics, prediction_length, n_out_channels), dtype =np.float32)
f["acc_sea"][...] = acc_sea
try:
f.create_dataset("rmse", data = valid_loss, shape = (n_ics, prediction_length, n_out_channels), dtype =np.float32)
except:
del f["rmse"]
f.create_dataset("rmse", data = valid_loss, shape = (n_ics, prediction_length, n_out_channels), dtype =np.float32)
f["rmse"][...] = valid_loss
try:
f.create_dataset("acc", data = acc, shape = (n_ics, prediction_length, n_out_channels), dtype =np.float32)
except:
del f["acc"]
f.create_dataset("acc", data = acc, shape = (n_ics, prediction_length, n_out_channels), dtype =np.float32)
f["acc"][...] = acc
try:
f.create_dataset("rmse_coarse", data = valid_loss_coarse, shape = (n_ics, prediction_length, n_out_channels), dtype =np.float32)
except:
del f["rmse_coarse"]
f.create_dataset("rmse_coarse", data = valid_loss_coarse, shape = (n_ics, prediction_length, n_out_channels), dtype =np.float32)
f["rmse_coarse"][...] = valid_loss_coarse
try:
f.create_dataset("acc_coarse", data = acc_coarse, shape = (n_ics, prediction_length, n_out_channels), dtype =np.float32)
except:
del f["acc_coarse"]
f.create_dataset("acc_coarse", data = acc_coarse, shape = (n_ics, prediction_length, n_out_channels), dtype =np.float32)
f["acc_coarse"][...] = acc_coarse
try:
f.create_dataset("acc_unweighted", data = acc_unweighted, shape = (n_ics, prediction_length, n_out_channels), dtype =np.float32)
except:
del f["acc_unweighted"]
f.create_dataset("acc_unweighted", data = acc_unweighted, shape = (n_ics, prediction_length, n_out_channels), dtype =np.float32)
f["acc_unweighted"][...] = acc_unweighted
try:
f.create_dataset("acc_coarse_unweighted", data = acc_coarse_unweighted, shape = (n_ics, prediction_length, n_out_channels), dtype =np.float32)
except:
del f["acc_coarse_unweighted"]
f.create_dataset("acc_coarse_unweighted", data = acc_coarse_unweighted, shape = (n_ics, prediction_length, n_out_channels), dtype =np.float32)
f["acc_coarse_unweighted"][...] = acc_coarse_unweighted
f.close()