-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathaugmentation.py
81 lines (71 loc) · 2.87 KB
/
augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
"""
This file used to add augmented images to our dataset for classes with lack of images according to the output of the "sets_visualization".
"""
import pickle
import numpy as np
from tqdm import tqdm
import matplotlib.pyplot as plt
from skimage.transform import rotate
x_train = pickle.load(open('train_val_test_sets6/after_aug/x_train', 'rb'))
y_train = pickle.load(open('train_val_test_sets6/after_aug/y_train', 'rb'))
x_val = pickle.load(open('train_val_test_sets6/x_val', 'rb'))
y_val = pickle.load(open('train_val_test_sets6/y_val', 'rb'))
x_test = pickle.load(open('train_val_test_sets6/x_test', 'rb'))
y_test = pickle.load(open('train_val_test_sets6/y_test', 'rb'))
x_t = len(x_train)
x_copy = x_train.copy()
count = 0
ecz, ker, ros = 0, 0, 0
for i in tqdm(range(x_t)):
if y_train[i] == 0:
x_train = np.append(x_train, [rotate(x_copy[i], angle=45, mode='wrap')], axis=0)
y_train = np.append(y_train, 0)
elif y_train[i] == 2:
if ecz % 3 == 0:
x_train = np.append(x_train, [rotate(x_copy[i], angle=45, mode='wrap')], axis=0)
x_train = np.append(x_train, [np.flipud(x_copy[i])], axis=0)
for j in range(2):
y_train = np.append(y_train, 2)
ecz += 1
elif y_train[i] == 3:
if ker % 6 == 0:
x_train = np.append(x_train, [rotate(x_copy[i], angle=45, mode='wrap')], axis=0)
x_train = np.append(x_train, [np.flipud(x_copy[i])], axis=0)
for j in range(2):
y_train = np.append(y_train, 3)
ker += 1
elif y_train[i] == 4:
x_train = np.append(x_train, [rotate(x_copy[i], angle=45, mode='wrap')], axis=0)
x_train = np.append(x_train, [np.flipud(x_copy[i])], axis=0)
x_train = np.append(x_train, [np.fliplr(x_copy[i])], axis=0)
x_train = np.append(x_train, [rotate(np.fliplr(x_copy[i]), angle=270, mode='wrap')], axis=0)
for j in range(4):
y_train = np.append(y_train, 4)
elif y_train[i] == 5:
if ros % 9 == 0:
x_train = np.append(x_train, [rotate(x_copy[i], angle=45, mode='wrap')], axis=0)
x_train = np.append(x_train, [np.flipud(x_copy[i])], axis=0)
for j in range(2):
y_train = np.append(y_train, 5)
ros += 1
indices = np.random.permutation(len(x_train))
x_train = x_train[indices]
y_train = y_train[indices]
f = open("dir../after_aug/x_train", "wb")
pickle.dump(x_train, f)
f.close()
f = open("dir../after_aug/y_train", "wb")
pickle.dump(y_train, f)
f.close()
f = open("dir../after_aug/x_val", "wb")
pickle.dump(x_val, f)
f.close()
f = open("dir../after_aug/y_val", "wb")
pickle.dump(y_val, f)
f.close()
f = open("dir../after_aug/x_test", "wb")
pickle.dump(x_test, f)
f.close()
f = open("dir../after_aug/y_test", "wb")
pickle.dump(y_test, f)
f.close()