-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_utils.py
762 lines (660 loc) · 32.5 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
import json, os
import re
import os
import json
import torch
import tqdm
import collections
import numpy as np
from torch.utils.data import DataLoader, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data.sampler import RandomSampler, SequentialSampler
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def _padding(seq, max_length, pad_id= 0):
if len(seq) < max_length:
seq += [pad_id]* (max_length - len(seq))
def load_features_cls(data, max_length, tokenizer, do_lower_case):
input_ids = []
attention_masks = []
type_ids = []
impossibles = []
start_positions = []
end_positions = []
vocab = tokenizer.get_vocab()
cls_id = vocab[tokenizer.cls_token]
sep_id = vocab[tokenizer.sep_token]
pad_id = vocab[tokenizer.pad_token]
id_map = {}
for i, id in enumerate(data):
id_map[i] = id
text = data[id]['context']
question = data[id]['question']
is_imposible = int(data[id]['is_impossible'])
if do_lower_case:
question = question.lower()
text = text.lower()
question_token_ids = tokenizer.encode(question)[1:-1]
text_token_ids = tokenizer.encode(text)[1:-1]
_truncate_seq_pair(question_token_ids, text_token_ids, max_length - 4) #placehold for <s>...</s></s>...</s>
input_id = [cls_id] + question_token_ids + [sep_id, sep_id] + text_token_ids + [sep_id]
attention_mask = [1] * len(input_id)
_padding(input_id, max_length, pad_id)
_padding(attention_mask, max_length, 0)
type_id = [0] * len(input_id)
assert len(input_id) == max_length, "Error with input length {} vs {}".format(len(input_id), max_length)
assert len(attention_mask) == max_length, "Error with input length {} vs {}".format(len(attention_mask), max_length)
assert len(type_id) == max_length, "Error with input length {} vs {}".format(len(type_id), max_length)
input_ids.append(input_id)
attention_masks.append(attention_mask)
type_ids.append(type_id)
impossibles.append(is_imposible)
if not is_imposible:
answer = data[id]['answers'][0]
start_positions.append(answer['answer_start'])
end_positions.append(answer['answer_start'] + len(answer['text']))
else:
start_positions.append(-1)
end_positions.append(-1)
# for i in range(10):
# print(tokenizer.convert_ids_to_tokens(input_ids[i]))
# print(attention_masks[i])
# print(impossibles[i])
return id_map, input_ids, attention_masks, type_ids, impossibles, start_positions, end_positions
def getData_cls(data, max_seq_len, tokenizer, batch_size, sampler, do_lower_case):
def toDataLoader(input_id, attention_mask, type_id, label, batch_size, sampler):
input_id_ = torch.tensor(input_id, dtype= torch.long)
attention_mask_ = torch.tensor(attention_mask, dtype= torch.long)
type_id_ = torch.tensor(type_id, dtype= torch.long)
label_ = torch.tensor(label, dtype= torch.long)
TensorData = TensorDataset(input_id_, attention_mask_, type_id_, label_)
Sampler = sampler(TensorData)
dataloader = DataLoader(TensorData, sampler=Sampler, batch_size= batch_size)
return dataloader
id_map, input_ids, attention_masks, type_ids, impossibles, start_positions, end_positions = load_features_cls(data, max_seq_len, tokenizer, do_lower_case)
loader = toDataLoader(input_ids, attention_masks, type_ids, impossibles, batch_size, RandomSampler)
return loader, id_map
def convert_examples_to_cls_features(examples, tokenizer, max_length, return_dataset):
id_map = {}
input_ids = []
attention_masks = []
type_ids = []
impossibles = []
cls_token= tokenizer.cls_token
sep_token = tokenizer.sep_token
pad_token = tokenizer.pad_token
for idx, example in enumerate(examples):
id_map[idx] = example.qas_id
text = example.context_text
question = example.question_text
is_imposible = int(example.is_impossible)
question_tokens = tokenizer.tokenize(question)
text_tokens = tokenizer.tokenize(text)
_truncate_seq_pair(question_tokens, text_tokens, max_length - 4) #placehold for <s>...</s></s>...</s>
input_id = [cls_token] + question_tokens + [sep_token, sep_token] + text_tokens + [sep_token]
attention_mask = [1] * len(input_id)
assert len(input_id) == len(attention_mask), f"{len(input_id)} vs {len(attention_mask)}"
if len(input_id) < max_length:
input_id = input_id + [pad_token] * (max_length - len(input_id))
attention_mask = attention_mask + [0] * (max_length - len(attention_mask))
input_id = tokenizer.convert_tokens_to_ids(input_id)
type_id = [0] * len(input_id)
assert len(input_id) == max_length, "Error with input length {} vs {}".format(len(input_id), max_length)
assert len(attention_mask) == max_length, "Error with input length {} vs {}".format(len(attention_mask), max_length)
assert len(type_id) == max_length, "Error with input length {} vs {}".format(len(type_id), max_length)
input_ids.append(input_id)
attention_masks.append(attention_mask)
type_ids.append(type_id)
impossibles.append(is_imposible)
if idx < 0:
print(" ".join(tokenizer.convert_ids_to_tokens(input_id)))
print(attention_mask)
print(type_id)
print(is_imposible)
if return_dataset == 'pt':
input_id_ = torch.tensor(input_ids, dtype= torch.long)
attention_mask_ = torch.tensor(attention_masks, dtype= torch.long)
type_id_ = torch.tensor(type_ids, dtype= torch.long)
label_ = torch.tensor(impossibles, dtype= torch.long)
TensorData = TensorDataset(input_id_, attention_mask_, type_id_, label_)
return TensorData, id_map
return input_ids, attention_masks, type_ids, impossibles, id_map
################SQUAD MRC###########################################################
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
def _is_whitespace(c):
if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
return True
return False
def get_examples(data_file, is_training):
with open(data_file, 'r') as f:
input_data = json.load(f)['data']
bads = 0
examples = []
for entry in input_data:
title = entry["title"]
for paragraph in entry["paragraphs"]:
context_text = paragraph["context"]
for qa in paragraph["qas"]:
qas_id = qa["id"]
question_text = qa["question"]
start_position_character = None
answer_text = None
answers = []
if "is_impossible" in qa:
is_impossible = qa["is_impossible"]
else:
is_impossible = False
if not is_impossible:
if is_training:
if len(qa["answers"]) == 0:
print("empty answer!!!")
continue
answer = qa["answers"][0]
answer_text = answer["text"]
start_position_character = answer["answer_start"]
if answer_text == context_text[start_position_character: start_position_character + len(answer_text)]:
start_position_character = start_position_character
elif answer_text == context_text[start_position_character + 1: start_position_character + len(answer_text) + 1]:
start_position_character = start_position_character + 1
elif answer_text == context_text[start_position_character - 1: start_position_character + len(answer_text) - 1]:
start_position_character = start_position_character - 1
elif answer_text == context_text[start_position_character - 2: start_position_character + len(answer_text) - 2]:
start_position_character = start_position_character - 2
else:
# print(f"'{answer_text}' || '{context_text[start_position_character: start_position_character + len(answer_text)]}'")
# print(context_text.index(answer_text))
bads += 1
else:
if "answers" in qa:
answers = qa["answers"]
example = SquadExample(
qas_id=qas_id,
question_text=question_text,
context_text=context_text,
answer_text=answer_text,
start_position_character=start_position_character,
is_impossible=is_impossible,
answers=answers,
)
examples.append(example)
print("Bad:", bads)
return examples
class SquadExample(object):
"""
A single training/test example for the Squad dataset, as loaded from disk.
Args:
qas_id: The example's unique identifierg cụ phụ trợ như trình biên dịch, trình hợp dịch hay trình liên kế does not match các công cụ phụ trợ như trình biên dịch, trình hợp dịch hay trình liên kết
question_text: The question string
context_text: The context string
answer_text: The answer string
start_position_character: The character position of the start of the answer
answers: None by default, this is used during evaluation. Holds answers as well as their start positions.
is_impossible: False by default, set to True if the example has no possible answer.
"""
def __init__(
self,
qas_id,
question_text,
context_text,
answer_text,
start_position_character,
answers=[],
is_impossible=False,
):
self.qas_id = qas_id
self.question_text = question_text
self.context_text = context_text
self.answer_text = answer_text
self.is_impossible = is_impossible
self.answers = answers
self.start_position, self.end_position = 0, 0
doc_tokens = []
char_to_word_offset = []
prev_is_whitespace = True
# Split on whitespace so that different tokens may be attributed to their original position.
for c in self.context_text:
if _is_whitespace(c):
prev_is_whitespace = True
else:
if prev_is_whitespace:
doc_tokens.append(c)
else:
doc_tokens[-1] += c
prev_is_whitespace = False
char_to_word_offset.append(len(doc_tokens) - 1)
self.doc_tokens = doc_tokens
self.char_to_word_offset = char_to_word_offset
# Start end end positions only has a value during evaluation.
if start_position_character is not None and not is_impossible:
self.start_position = char_to_word_offset[start_position_character]
self.end_position = char_to_word_offset[
min(start_position_character + len(answer_text) - 1, len(char_to_word_offset) - 1)
]
class SquadFeatures(object):
"""
Single squad example features to be fed to a model.
Those features are model-specific and can be crafted from :class:`~transformers.data.processors.squad.SquadExample`
using the :method:`~transformers.data.processors.squad.squad_convert_examples_to_features` method.
Args:
input_ids: Indices of input sequence tokens in the vocabulary.
attention_mask: Mask to avoid performing attention on padding token indices.
token_type_ids: Segment token indices to indicate first and second portions of the inputs.
cls_index: the index of the CLS token.
p_mask: Mask identifying tokens that can be answers vs. tokens that cannot.
Mask with 1 for tokens than cannot be in the answer and 0 for token that can be in an answer
example_index: the index of the example
unique_id: The unique Feature identifier
paragraph_len: The length of the context
token_is_max_context: List of booleans identifying which tokens have their maximum context in this feature object.
If a token does not have their maximum context in this feature object, it means that another feature object
has more information related to that token and should be prioritized over this feature for that token.
tokens: list of tokens corresponding to the input ids
token_to_orig_map: mapping between the tokens and the original text, needed in order to identify the answer.
start_position: start of the answer token index
end_position: end of the answer token index
"""
def __init__(
self,
input_ids,
attention_mask,
token_type_ids,
cls_index,
p_mask,
example_index,
unique_id,
paragraph_len,
token_is_max_context,
tokens,
token_to_orig_map,
start_position,
end_position,
is_impossible,
pq_end_pos=None,
tag_seq = None,
):
self.input_ids = input_ids
self.attention_mask = attention_mask
self.token_type_ids = token_type_ids
self.cls_index = cls_index
self.p_mask = p_mask
self.example_index = example_index
self.unique_id = unique_id
self.paragraph_len = paragraph_len
self.token_is_max_context = token_is_max_context
self.tokens = tokens
self.token_to_orig_map = token_to_orig_map
self.start_position = start_position
self.end_position = end_position
self.is_impossible = is_impossible
self.pq_end_pos = pq_end_pos
self.tag_seq = tag_seq
def convert_examples_to_features(examples,
tokenizer,
max_seq_length,
doc_stride,
max_query_length,
is_training,
return_dataset=False, regression=False, pq_end=False,
add_prefix_space=False,
sequence_a_segment_id=0,
sequence_b_segment_id=1,
cls_token_segment_id=0,
pad_token_segment_id=0,
mask_padding_with_zero=True):
"""
Loads a data file into a list of `InputBatch`s.
"""
cls_token = tokenizer.cls_token
sep_token = tokenizer.sep_token
pad_token_id = tokenizer.pad_token_id
unique_id = 1000000000
features = []
for (example_index, example) in enumerate(examples):
if add_prefix_space:
query_tokens = tokenizer.tokenize(example.question_text, add_prefix_space= True)
else:
query_tokens = tokenizer.tokenize(example.question_text)
if len(query_tokens) > max_query_length:
query_tokens = query_tokens[0:max_query_length]
tok_to_orig_index = []
orig_to_tok_index = []
all_doc_tokens = []
# `token`s are separated by whitespace; `sub_token`s are separated in a `token` by symbol
for (i, token) in enumerate(example.doc_tokens):
orig_to_tok_index.append(len(all_doc_tokens))
if add_prefix_space:
sub_tokens = tokenizer.tokenize(token)
else:
sub_tokens = tokenizer.tokenize(token)
for sub_token in sub_tokens:
tok_to_orig_index.append(i)
all_doc_tokens.append(sub_token)
tok_start_position = None
tok_end_position = None
if is_training and example.is_impossible:
tok_start_position = -1
tok_end_position = -1
if is_training and not example.is_impossible:
tok_start_position = orig_to_tok_index[example.start_position]
if example.end_position < len(example.doc_tokens) - 1:
tok_end_position = orig_to_tok_index[example.end_position + 1] - 1
else:
tok_end_position = len(all_doc_tokens) - 1
(tok_start_position, tok_end_position) = _improve_answer_span(all_doc_tokens,
tok_start_position,
tok_end_position,
tokenizer,
example.answer_text)
if 'phobert' in str(type(tokenizer)) or 'roberta' in str(type(tokenizer)):
max_tokens_for_doc = max_seq_length - len(query_tokens) - 4 # phobert use 2 sep tokens
else:
max_tokens_for_doc = max_seq_length - len(query_tokens) - 3
# We can have documents that are longer than the maximum sequence length. To deal with this we do a
# sliding window approach, where we take chunks of the up to our max length with a stride of `doc_stride`.
_DocSpan = collections.namedtuple("DocSpan", ["start", "length"])
doc_spans = []
start_offset = 0
while start_offset < len(all_doc_tokens):
length = len(all_doc_tokens) - start_offset
if length > max_tokens_for_doc:
length = max_tokens_for_doc
doc_spans.append(_DocSpan(start=start_offset, length=length))
if start_offset + length == len(all_doc_tokens):
break
start_offset += min(length, doc_stride)
for (doc_span_index, doc_span) in enumerate(doc_spans):
tokens = []
token_to_orig_map = {}
token_is_max_context = {}
segment_ids = []
# `p_mask`: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer)
# Original TF implem also keeps the classification token (set to 0) (not sure why...)
p_mask = []
# `[CLS]` token at the beginning
tokens.append(cls_token)
segment_ids.append(cls_token_segment_id)
p_mask.append(0)
cls_index = 0
# Query
for token in query_tokens:
tokens.append(token)
segment_ids.append(sequence_a_segment_id)
p_mask.append(1)
# [SEP] token
if 'phobert' in str(type(tokenizer)) or 'roberta' in str(type(tokenizer)):
tokens.extend([sep_token, sep_token])
segment_ids.extend([sequence_a_segment_id, sequence_a_segment_id])
p_mask.extend([1,1])
else:
tokens.append(sep_token)
segment_ids.append(sequence_a_segment_id)
p_mask.append(1)
# Paragraph built based on `doc_span`
for i in range(doc_span.length):
split_token_index = doc_span.start + i
token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index]
is_max_context = _check_is_max_context(doc_spans, doc_span_index, split_token_index)
token_is_max_context[len(tokens)] = is_max_context
tokens.append(all_doc_tokens[split_token_index])
segment_ids.append(sequence_b_segment_id)
p_mask.append(0)
paragraph_len = doc_span.length
# [SEP] token
tokens.append(sep_token)
segment_ids.append(sequence_b_segment_id)
p_mask.append(1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real tokens are attended to.
input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(pad_token_id)
input_mask.append(0 if mask_padding_with_zero else 1)
segment_ids.append(pad_token_segment_id)
p_mask.append(1)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(p_mask) == max_seq_length
span_is_impossible = example.is_impossible
start_position = None
end_position = None
num_special_tokens = 3 if 'phobert' in str(type(tokenizer)) or 'roberta' in str(type(tokenizer)) else 2
# Get `start_position` and `end_position`
if is_training and not span_is_impossible:
# For training, if our document chunk does not contain an annotation we throw it out,
# since there is nothing to predict.
doc_start = doc_span.start
doc_end = doc_span.start + doc_span.length - 1
out_of_span = False
if not (tok_start_position >= doc_start and
tok_end_position <= doc_end):
out_of_span = True
if out_of_span:
start_position = 0
end_position = 0
span_is_impossible = True
else:
doc_offset = len(query_tokens) + num_special_tokens
start_position = tok_start_position - doc_start + doc_offset
end_position = tok_end_position - doc_start + doc_offset
if is_training and span_is_impossible:
start_position = cls_index
end_position = cls_index
question_end_index = len(query_tokens)
doc_end_index = question_end_index + paragraph_len + num_special_tokens
pq_end_pos = [question_end_index,doc_end_index]
# Display some examples
if example_index < 0:
print("*** Example ***")
# *** Example ***
print("unique_id: %s" % (unique_id))
print("example_index: %s" % (example_index))
print("doc_span_index: %s" % (doc_span_index))
print("tokens: %s" % " ".join(tokens))
print("end_ques: {}, end_text: {}".format(pq_end_pos[0], pq_end_pos[1]))
print("token_to_orig_map: %s" % " ".join([
"%d:%d" % (x, y) for (x, y) in token_to_orig_map.items()]))
print("token_is_max_context: %s" % " ".join([
"%d:%s" % (x, y) for (x, y) in token_is_max_context.items()
]))
print("input_ids: %s" % " ".join([str(x) for x in input_ids]))
print("input_mask: %s" % " ".join([str(x) for x in input_mask]))
print("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
print("p_mask: %s" % " ".join([str(x) for x in p_mask]))
if is_training and span_is_impossible:
print("impossible example")
if is_training and not span_is_impossible:
answer_text = " ".join(tokens[start_position:(end_position + 1)])
print("start_position: %d" % (start_position))
print("end_position: %d" % (end_position))
print("answer: %s" % (answer_text))
print("original answer: %s" % (example.answer_text))
print("="*100)
if pq_end:
features.append(
SquadFeatures(
input_ids= input_ids,
attention_mask= input_mask,
token_type_ids= segment_ids,
cls_index= cls_index,
p_mask= p_mask,
example_index= example_index,
unique_id= unique_id,
paragraph_len= paragraph_len,
token_is_max_context= token_is_max_context,
tokens= tokens,
token_to_orig_map= token_to_orig_map,
start_position= start_position,
end_position= end_position,
is_impossible= span_is_impossible,
pq_end_pos=pq_end_pos,
tag_seq = None,
)
)
else:
features.append(
SquadFeatures(
input_ids= input_ids,
attention_mask= input_mask,
token_type_ids= segment_ids,
cls_index= cls_index,
p_mask= p_mask,
example_index= example_index,
unique_id= unique_id,
paragraph_len= paragraph_len,
token_is_max_context= token_is_max_context,
tokens= tokens,
token_to_orig_map= token_to_orig_map,
start_position= start_position,
end_position= end_position,
is_impossible= span_is_impossible,
pq_end_pos=None,
tag_seq = None,
)
)
unique_id += 1
if return_dataset == "pt":
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_attention_masks = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
all_cls_index = torch.tensor([f.cls_index for f in features], dtype=torch.long)
all_p_mask = torch.tensor([f.p_mask for f in features], dtype=torch.float)
if not is_training:
all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
if regression:
all_is_impossibles = torch.tensor([int(f.is_impossible) for f in features], dtype=torch.float)
else:
all_is_impossibles = torch.tensor([int(f.is_impossible) for f in features], dtype=torch.long)
if pq_end:
all_pq_end_pos = torch.tensor([f.pq_end_pos for f in features], dtype=torch.long)
dataset = TensorDataset(
all_input_ids, all_attention_masks, all_token_type_ids, all_example_index, all_is_impossibles, all_pq_end_pos, all_cls_index, all_p_mask
)
else:
dataset = TensorDataset(
all_input_ids, all_attention_masks, all_token_type_ids, all_example_index, all_is_impossibles, all_cls_index, all_p_mask
)
else:
all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long)
all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long)
if regression:
all_is_impossibles = torch.tensor([int(f.is_impossible) for f in features], dtype=torch.float)
else:
all_is_impossibles = torch.tensor([int(f.is_impossible) for f in features], dtype=torch.long)
print("Impossible: {}, Possible: {}".format(sum(all_is_impossibles == 1), sum(all_is_impossibles == 0)))
if pq_end:
all_pq_end_pos = torch.tensor([f.pq_end_pos for f in features], dtype=torch.long)
dataset = TensorDataset(
all_input_ids,
all_attention_masks,
all_token_type_ids,
all_start_positions,
all_end_positions,
all_is_impossibles,
all_pq_end_pos,
all_cls_index,
all_p_mask,
)
else:
dataset = TensorDataset(
all_input_ids,
all_attention_masks,
all_token_type_ids,
all_start_positions,
all_end_positions,
all_is_impossibles,
all_cls_index,
all_p_mask,
)
return features, dataset
return features
def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, orig_answer_text):
"""Returns tokenized answer spans that better match the annotated answer."""
tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text))
for new_start in range(input_start, input_end + 1):
for new_end in range(input_end, new_start - 1, -1):
text_span = " ".join(doc_tokens[new_start : (new_end + 1)])
tok_text_span = doc_tokens[new_start : (new_end + 1)]
if 'phobert' in str(type(tokenizer)):
string_text_span = " ".join(tok_text_span).replace("@@ ","").replace("@@", "")
elif 'roberta' in str(type(tokenizer)):
string_text_span = tokenizer.convert_tokens_to_string(tok_text_span).strip("_")
else:
string_text_span = " ".join(tok_text_span).replace(" ##","").replace("##", "")
if text_span == tok_answer_text or string_text_span.lower() == orig_answer_text.lower():
return (new_start, new_end)
return (input_start, input_end)
def _check_is_max_context(doc_spans, cur_span_index, position):
"""Check if this is the 'max context' doc span for the token."""
best_score = None
best_span_index = None
for (span_index, doc_span) in enumerate(doc_spans):
end = doc_span.start + doc_span.length - 1
if position < doc_span.start:
continue
if position > end:
continue
num_left_context = position - doc_span.start
num_right_context = end - position
score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
if best_score is None or score > best_score:
best_score = score
best_span_index = span_index
return cur_span_index == best_span_index
def _new_check_is_max_context(doc_spans, cur_span_index, position):
"""Check if this is the 'max context' doc span for the token."""
# if len(doc_spans) == 1:
# return True
best_score = None
best_span_index = None
for (span_index, doc_span) in enumerate(doc_spans):
end = doc_span["start"] + doc_span["length"] - 1
if position < doc_span["start"]:
continue
if position > end:
continue
num_left_context = position - doc_span["start"]
num_right_context = end - position
score = min(num_left_context, num_right_context) + 0.01 * doc_span["length"]
if best_score is None or score > best_score:
best_score = score
best_span_index = span_index
return cur_span_index == best_span_index
class SquadResult(object):
"""
Constructs a SquadResult which can be used to evaluate a model's output on the SQuAD dataset.
Args:
unique_id: The unique identifier corresponding to that example.
start_logits: The logits corresponding to the start of the answer
end_logits: The logits corresponding to the end of the answer
"""
def __init__(self, unique_id, start_logits, end_logits, choice_logits=None, start_top_index=None, end_top_index=None, cls_logits=None):
self.start_logits = start_logits
self.end_logits = end_logits
self.unique_id = unique_id
if choice_logits:
self.choice_logits = choice_logits
if start_top_index:
self.start_top_index = start_top_index
self.end_top_index = end_top_index
self.cls_logits = cls_logits