-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_ensemble_grid.py
152 lines (133 loc) · 6.06 KB
/
run_ensemble_grid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import collections
import json
from evaluate_squad import squad_evaluate
from data_utils import get_examples
def get_score1(cof, best_cof, args, examples):
all_scores = collections.OrderedDict()
idx = 0
for input_file in args.input_null_files.split(","):
with open(input_file, 'r') as reader:
input_data = json.load(reader, strict=False)
for (key, score) in input_data.items():
if key not in all_scores:
all_scores[key] = []
all_scores[key].append(cof[idx] * score)
idx += 1
output_scores = {}
for (key, scores) in all_scores.items():
mean_score = 0.0
for score in scores:
mean_score += score
mean_score /= float(len(scores))
output_scores[key] = mean_score
idx = 0
all_nbest = collections.OrderedDict()
for input_file in args.input_nbest_files.split(","):
with open(input_file, "r") as reader:
input_data = json.load(reader, strict=False)
for (key, entries) in input_data.items():
if key not in all_nbest:
all_nbest[key] = collections.defaultdict(float)
for entry in entries:
all_nbest[key][entry["text"]] += best_cof[idx] * entry["probability"]
idx += 1
output_predictions = {}
for (key, entry_map) in all_nbest.items():
null_score = output_scores[key]
if null_score > args.null_score_diff_threshold:
output_predictions[key] = ""
else:
sorted_texts = sorted(
entry_map.keys(), key=lambda x: entry_map[x], reverse=True)
best_text = sorted_texts[0]
output_predictions[key] = best_text
if args.predict_test:
with open("results.json", "w") as f:
json.dump(output_predictions, f, indent= 4)
return output_predictions
eval_score = squad_evaluate(examples, output_predictions, output_scores,
args.null_score_diff_threshold)
return eval_score
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--input_null_files', type=str, default=
"cls_score.json,ensemble/model1/null_odds.json,ensemble/model2/null_odds.json,ensemble/model3/null_odds.json"
)
parser.add_argument('--input_nbest_files', type=str, default="ensemble/model1/nbest_predictions.json,ensemble/model2/nbest_predictions.json,ensemble/model3/nbest_predictions.json"
)
parser.add_argument('--null_score_diff_threshold',
type=float, default=0,
help="If null_score - best_non_null is greater than the threshold predict null.")
parser.add_argument("--predict_file", default="dev-v2.0.json")
parser.add_argument("--v2", default=False, action='store_true', help="Whether to run training.")
parser.add_argument('--fin_cof', type=str, default= None)
parser.add_argument('--fin_best_cof', type=str, default= None)
parser.add_argument("--predict_test", default=False, action='store_true', help="Whether to test.")
args = parser.parse_args()
examples = get_examples(args.predict_file, is_training= False)
if args.fin_cof is None:
fin_cof = None
best_score = 0.
fin_best_cof = None
for C1 in range(10, -1, -1):
for C2 in range((10 - C1) + 1):
for C3 in range((10 - C1 - C2) + 1):
C4 = 10 - C1 - C2 - C3
c1 = float(C1) / 10.
c2 = float(C2) / 10.
c3 = float(C3) / 10.
c4 = float(C4) / 10.
cof = [c1, c2, c3, c4]
best_cof = [1, 1, 1]
scores = get_score1(cof, best_cof, args, examples)
score = scores['best_f1']
if score > best_score:
best_score = score
fin_cof = cof
fin_best_cof = best_cof
print("cur_score", score, "\t", cof, "\t", best_cof,"\t", "cur_best", best_score, "\t", fin_cof,
"\t", fin_best_cof)
else:
fin_cof = [float(x.strip()) for x in args.fin_cof.split(",")]
if args.fin_best_cof is None:
best_score = 0.
best_thresh = 0.
fin_best_cof = None
for C1 in range(10, -1, -1):
for C2 in range((10 - C1) + 1):
C3 = 10 - C1 - C2
c1 = float(C1)/10.
c2 = float(C2)/10.
c3 = float(C3)/10.
cof = fin_cof
best_cof = [c1, c2, c3]
scores = get_score1(cof, best_cof, args, examples)
score = scores['best_f1']
if score > best_score:
best_score = score
best_thresh = scores['best_f1_thresh']
fin_cof = cof
fin_best_cof=best_cof
print("cur_score", score, "\t", cof, "\t", best_cof, "\t","cur_best", best_score, "\t", fin_cof, "\t", fin_best_cof)
else:
fin_best_cof = [float(x.strip()) for x in args.fin_best_cof.split(",")]
scores = get_score1(fin_cof, fin_best_cof, args, examples)
print(json.dumps(scores, indent= 4, ensure_ascii=False))
# print("\nbest", best_score, "thresh", best_thresh, "\t", fin_cof, "\t", fin_best_cof)
if __name__ == "__main__":
main()