-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathutils.py
326 lines (297 loc) · 14.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
"""
/***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************/
"""
import math
import re
from qgis.core import QgsUnitTypes, QgsPointXY
from qgis.PyQt.QtCore import QCoreApplication
from .settings import geod
def tr(string):
return QCoreApplication.translate('@default', string)
DISTANCE_LABELS = [tr("Kilometers"), tr("Meters"), tr("Centimeters"), tr("Miles"), tr('Yards'), tr("Feet"), tr("Inches"), tr("Nautical Miles")]
DISTANCE_ABBREVIATIONS = ["km", "m", "cm", "mi", 'yd', "ft", "in", "nm"]
def conversionToMeters(units):
if units == 0: # Kilometers
measureFactor = 1000.0
elif units == 1: # Meters
measureFactor = 1.0
elif units == 2: # Centimeters
measureFactor = QgsUnitTypes.fromUnitToUnitFactor(QgsUnitTypes.DistanceCentimeters, QgsUnitTypes.DistanceMeters)
elif units == 3: # Miles
measureFactor = QgsUnitTypes.fromUnitToUnitFactor(QgsUnitTypes.DistanceMiles, QgsUnitTypes.DistanceMeters)
elif units == 4: # Yards
measureFactor = QgsUnitTypes.fromUnitToUnitFactor(QgsUnitTypes.DistanceYards, QgsUnitTypes.DistanceMeters)
elif units == 5: # Feet
measureFactor = QgsUnitTypes.fromUnitToUnitFactor(QgsUnitTypes.DistanceFeet, QgsUnitTypes.DistanceMeters)
elif units == 6: # Inches
measureFactor = QgsUnitTypes.fromUnitToUnitFactor(QgsUnitTypes.DistanceFeet, QgsUnitTypes.DistanceMeters) / 12.0
elif units == 7: # Nautical Miles
measureFactor = QgsUnitTypes.fromUnitToUnitFactor(QgsUnitTypes.DistanceNauticalMiles, QgsUnitTypes.DistanceMeters)
return measureFactor
def conversionFromMeters(units):
if units == 0: # Kilometers
measureFactor = 0.001
elif units == 1: # Meters
measureFactor = 1.0
elif units == 2: # Centimeters
measureFactor = QgsUnitTypes.fromUnitToUnitFactor(QgsUnitTypes.DistanceMeters, QgsUnitTypes.DistanceCentimeters)
elif units == 3: # Miles
measureFactor = QgsUnitTypes.fromUnitToUnitFactor(QgsUnitTypes.DistanceMeters, QgsUnitTypes.DistanceMiles)
elif units == 4: # Yards
measureFactor = QgsUnitTypes.fromUnitToUnitFactor(QgsUnitTypes.DistanceMeters, QgsUnitTypes.DistanceYards)
elif units == 5: # Feet
measureFactor = QgsUnitTypes.fromUnitToUnitFactor(QgsUnitTypes.DistanceMeters, QgsUnitTypes.DistanceFeet)
elif units == 6: # Inches
measureFactor = QgsUnitTypes.fromUnitToUnitFactor(QgsUnitTypes.DistanceMeters, QgsUnitTypes.DistanceFeet) * 12.0
elif units == 7: # Nautical Miles
measureFactor = QgsUnitTypes.fromUnitToUnitFactor(QgsUnitTypes.DistanceMeters, QgsUnitTypes.DistanceNauticalMiles)
return measureFactor
def hasIdlCrossing(pts):
ptlen = len(pts)
if(ptlen == 0):
return(False)
x_last = pts[0].x()
for i in range(1, ptlen):
x = pts[i].x()
if (x_last < 0 and x >= 0):
if (x - x_last) > 180:
return(True)
elif (x_last >= 0 and x < 0):
if(x_last - x) > 180:
return(True)
return( False )
def makeIdlCrossingsPositive(pts, force=False):
if force or hasIdlCrossing(pts):
ptlen = len(pts)
for i in range(ptlen):
x = pts[i].x()
if x < 0:
pts[i].setX(x + 360)
def normalizeLongitude(pts):
ptlen = len(pts)
for i in range(ptlen):
pts[i].setX((pts[i].x() + 180) % 360 - 180)
def checkIdlCrossings(pts):
outseg = []
ptlen = len(pts)
pts2 = [pts[0]]
for i in range(1, ptlen):
if pts[i - 1].x() < -120 and pts[i].x() > 120: # We have crossed the date line going west
ld = geod.Inverse(pts[i - 1].y(), pts[i - 1].x(), pts[i].y(), pts[i].x())
try:
(intrlat, intrlon) = intersection_point(-89, -180, 0, pts[i - 1].y(), pts[i - 1].x(), ld['azi1'])
ptnew = QgsPointXY(-180, intrlat)
pts2.append(ptnew)
outseg.append(pts2)
ptnew = QgsPointXY(180, intrlat)
pts2 = [ptnew]
except Exception:
pts2.append(pts[i])
if pts[i - 1].x() > 120 and pts[i].x() < -120: # We have crossed the date line going east
ld = geod.Inverse(pts[i - 1].y(), pts[i - 1].x(), pts[i].y(), pts[i].x())
try:
(intrlat, intrlon) = intersection_point(-89, 180, 0, pts[i - 1].y(), pts[i - 1].x(), ld['azi1'])
ptnew = QgsPointXY(180, intrlat)
pts2.append(ptnew)
outseg.append(pts2)
ptnew = QgsPointXY(-180, intrlat)
pts2 = [ptnew]
except Exception:
pts2.append(pts[i])
else:
pts2.append(pts[i])
outseg.append(pts2)
return(outseg)
def intersection_point(lat1, lon1, bearing1, lat2, lon2, bearing2):
o1 = math.radians(lat1)
lam1 = math.radians(lon1)
o2 = math.radians(lat2)
lam2 = math.radians(lon2)
bo_13 = math.radians(bearing1)
bo_23 = math.radians(bearing2)
diff_fo = o2 - o1
diff_la = lam2 - lam1
d12 = 2 * math.asin(math.sqrt(math.sin(diff_fo / 2) * math.sin(diff_fo / 2) + math.cos(o1) * math.cos(o2) * math.sin(diff_la / 2) * math.sin(diff_la / 2)))
if d12 == 0: # intersection_not_found
raise ValueError('Intersection not found')
bo_1 = math.acos((math.sin(o2) - math.sin(o1) * math.cos(d12)) / (math.sin(d12) * math.cos(o1)))
bo_2 = math.acos((math.sin(o1) - math.sin(o2) * math.cos(d12)) / (math.sin(d12) * math.cos(o2)))
if math.sin(lam2 - lam1) > 0:
bo_12 = bo_1
bo_21 = 2 * math.pi - bo_2
else:
bo_12 = 2 * math.pi - bo_1
bo_21 = bo_2
a_1 = ((bo_13 - bo_12 + math.pi) % (2 * math.pi)) - math.pi
a_2 = ((bo_21 - bo_23 + math.pi) % (2 * math.pi)) - math.pi
if (math.sin(a_1) == 0) and (math.sin(a_2) == 0): # infinite intersections
raise ValueError('Intersection not found')
if math.sin(a_1) * math.sin(a_2) < 0: # ambiguous intersection
raise ValueError('Intersection not found')
a_3 = math.acos(-math.cos(a_1) * math.cos(a_2) + math.sin(a_1) * math.sin(a_2) * math.cos(d12))
be_13 = math.atan2(math.sin(d12) * math.sin(a_1) * math.sin(a_2), math.cos(a_2) + math.cos(a_1) * math.cos(a_3))
fo_3 = math.asin(math.sin(o1) * math.cos(be_13) + math.cos(o1) * math.sin(be_13) * math.cos(bo_13))
diff_lam13 = math.atan2(math.sin(bo_13) * math.sin(be_13) * math.cos(o1), math.cos(be_13) - math.sin(o1) * math.sin(fo_3))
la_3 = lam1 + diff_lam13
return (math.degrees(fo_3), math.degrees(la_3))
def GCdistanceTo(lat1, lon1, lat2, lon2, R=6371000.0):
'''Compute the distance between two points. The average earth
radius is 6371000 meters. The returned distance is in the same
units as R which by default is meters'''
phi1 = math.radians(lat1)
lambda1 = math.radians(lon1)
phi2 = math.radians(lat2)
lambda2 = math.radians(lon2)
deltaphi = phi2 - phi1
deltalambda = lambda2 - lambda1
a = (math.sin(deltaphi / 2.0) * math.sin(deltaphi / 2.0) + math.cos(phi1) * math.cos(phi2) * math.sin(deltalambda / 2.0) * math.sin(deltalambda / 2.0))
c = 2.0 * math.atan2(math.sqrt(a), math.sqrt(1.0 - a))
d = R * c
return d
def GCintermediatePointTo(lat1, lon1, lat2, lon2, fraction):
'''Return the fractional point between [lat1, lon1] and [lat2, lon2]
Coordinates are in degrees and fraction is between 0 and 1'''
phi1 = math.radians(lat1)
lambda1 = math.radians(lon1)
phi2 = math.radians(lat2)
lambda2 = math.radians(lon2)
sinphi1 = math.sin(phi1)
cosphi1 = math.cos(phi1)
sinlambda1 = math.sin(lambda1)
coslambda1 = math.cos(lambda1)
sinphi2 = math.sin(phi2)
cosphi2 = math.cos(phi2)
sinlambda2 = math.sin(lambda2)
coslambda2 = math.cos(lambda2)
# distance between points
deltaphi = phi2 - phi1
deltalambda = lambda2 - lambda1
a = math.sin(deltaphi / 2.0) * math.sin(deltaphi / 2.0) + math.cos(phi1) * math.cos(phi2) * math.sin(deltalambda / 2.0) * math.sin(deltalambda / 2.0)
delta = 2.0 * math.atan2(math.sqrt(a), math.sqrt(1.0 - a))
A = math.sin((1.0 - fraction) * delta) / math.sin(delta)
B = math.sin(fraction * delta) / math.sin(delta)
x = A * cosphi1 * coslambda1 + B * cosphi2 * coslambda2
y = A * cosphi1 * sinlambda1 + B * cosphi2 * sinlambda2
z = A * sinphi1 + B * sinphi2
phi3 = math.atan2(z, math.sqrt(x * x + y * y))
lambda3 = math.atan2(y, x)
# Returns lat, lon and normalize lon from -180 to 180 degrees
return math.degrees(phi3), ((math.degrees(lambda3) + 540.0) % 360.0 - 180.0)
def GCgetPointsOnLine(lat1, lon1, lat2, lon2, minSegLength=1000.0, maxNodes=500):
'''Get points along a great circle line between the two coordinates.
minSegLength is the minimum segment length in meters before a new
node point is created. maxNodes is the maximum number of points on
the line to create.'''
dist = GCdistanceTo(lat1, lon1, lat2, lon2)
numPoints = int(dist / minSegLength)
if numPoints > maxNodes:
numPoints = maxNodes
pts = [QgsPointXY(lon1, lat1)]
f = 1.0 / (numPoints - 1.0)
i = 1
while i < numPoints - 1:
newlat, newlon = GCintermediatePointTo(lat1, lon1, lat2, lon2, f * i)
pts.append(QgsPointXY(newlon, newlat))
i += 1
pts.append(QgsPointXY(lon2, lat2))
return pts
def parseDMSString(str, order=0):
'''Parses a pair of coordinates that are in the order of
"latitude, longitude". The string can be in DMS or decimal
degree notation. If order is 0 then then decimal coordinates are assumed to
be in Lat Lon order otherwise they are in Lon Lat order. For DMS coordinates
it does not matter the order.'''
str = str.strip().upper() # Make it all upper case
try:
if re.search(r"[NSEW]", str) is None:
# There were no annotated dms coordinates so assume decimal degrees
# Remove any characters that are not digits and decimal
str = re.sub(r"[^\d.+-]+", " ", str).strip()
coords = re.split(r'\s+', str, 1)
if len(coords) != 2:
raise ValueError('Invalid Coordinates')
if order == 0:
lat = float(coords[0])
lon = float(coords[1])
else:
lon = float(coords[0])
lat = float(coords[1])
else:
# We should have a DMS coordinate
if re.search(r'[NSEW]\s*\d+.+[NSEW]\s*\d+', str) is None:
# We assume that the cardinal directions occur after the digits
m = re.findall(r'(.+)\s*([NS])[\s,;:]*(.+)\s*([EW])', str)
if len(m) != 1 or len(m[0]) != 4:
# This is either invalid or the coordinates are ordered by lon lat
m = re.findall(r'(.+)\s*([EW])[\s,;:]*(.+)\s*([NS])', str)
if len(m) != 1 or len(m[0]) != 4:
# Now we know it is invalid
raise ValueError('Invalid DMS Coordinate')
else:
# The coordinates were in lon, lat order
lon = parseDMS(m[0][0], m[0][1])
lat = parseDMS(m[0][2], m[0][3])
else:
# The coordinates are in lat, lon order
lat = parseDMS(m[0][0], m[0][1])
lon = parseDMS(m[0][2], m[0][3])
else:
# The cardinal directions occur at the beginning of the digits
m = re.findall(r'([NS])\s*(\d+.*?)[\s,;:]*([EW])(.+)', str)
if len(m) != 1 or len(m[0]) != 4:
# This is either invalid or the coordinates are ordered by lon lat
m = re.findall(r'([EW])\s*(\d+.*?)[\s,;:]*([NS])(.+)', str)
if len(m) != 1 or len(m[0]) != 4:
# Now we know it is invalid
raise ValueError('Invalid DMS Coordinate')
else:
# The coordinates were in lon, lat order
lon = parseDMS(m[0][1], m[0][0])
lat = parseDMS(m[0][3], m[0][2])
else:
# The coordinates are in lat, lon order
lat = parseDMS(m[0][1], m[0][0])
lon = parseDMS(m[0][3], m[0][2])
except Exception:
raise ValueError('Invalid Coordinates')
return lat, lon
def parseDMS(str, hemisphere):
'''Parse a DMS formatted string.'''
str = re.sub(r"[^\d.]+", " ", str).strip()
parts = re.split(r'[\s]+', str)
dmslen = len(parts)
if dmslen == 3:
deg = float(parts[0]) + float(parts[1]) / 60.0 + float(parts[2]) / 3600.0
elif dmslen == 2:
deg = float(parts[0]) + float(parts[1]) / 60.0
elif dmslen == 1:
dms = parts[0]
if hemisphere == 'N' or hemisphere == 'S':
dms = '0' + dms
# Find the length up to the first decimal
ll = dms.find('.')
if ll == -1:
# No decimal point found so just return the length of the string
ll = len(dms)
if ll >= 7:
deg = float(dms[0:3]) + float(dms[3:5]) / 60.0 + float(dms[5:]) / 3600.0
elif ll == 6: # A leading 0 was left off but we can still work with 6 digits
deg = float(dms[0:2]) + float(dms[2:4]) / 60.0 + float(dms[4:]) / 3600.0
elif ll == 5:
deg = float(dms[0:3]) + float(dms[3:]) / 60.0
elif ll == 4: # Leading 0's were left off
deg = float(dms[0:2]) + float(dms[2:]) / 60.0
else:
deg = float(dms)
else:
raise ValueError('Invalid DMS Coordinate')
if hemisphere == 'S' or hemisphere == 'W':
deg = -deg
return deg