-
Notifications
You must be signed in to change notification settings - Fork 183
/
Copy pathtutorial_2_using_mulitple_datasets.py
76 lines (64 loc) · 2.38 KB
/
tutorial_2_using_mulitple_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
"""
===================================
Tutorial 2: Using multiple datasets
===================================
We extend the previous example to a case where we want to analyze the score of
a classifier with three different MI datasets instead of just one. As before,
we begin by importing all relevant libraries.
"""
# Authors: Pedro L. C. Rodrigues, Sylvain Chevallier
#
# https://github.com/plcrodrigues/Workshop-MOABB-BCI-Graz-2019
import warnings
import matplotlib.pyplot as plt
import mne
import seaborn as sns
from mne.decoding import CSP
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
from sklearn.pipeline import make_pipeline
import moabb
from moabb.datasets import BNCI2014_001, Zhou2016
from moabb.evaluations import WithinSessionEvaluation
from moabb.paradigms import LeftRightImagery
moabb.set_log_level("info")
mne.set_log_level("CRITICAL")
warnings.filterwarnings("ignore")
##############################################################################
# Initializing Datasets
# ---------------------
#
# We instantiate the two different datasets that follow the MI paradigm
# (with left-hand/right-hand classes) but were recorded with different number
# of electrodes, different number of trials, etc.
datasets = [Zhou2016(), BNCI2014_001()]
subj = [1, 2, 3]
for d in datasets:
d.subject_list = subj
##############################################################################
# The following lines go exactly as in the previous example, where we end up
# obtaining a pandas dataframe containing the results of the evaluation. We
# could set `overwrite` to False to cache the results, avoiding to restart all
# the evaluation from scratch if a problem occurs.
paradigm = LeftRightImagery()
evaluation = WithinSessionEvaluation(
paradigm=paradigm, datasets=datasets, overwrite=False
)
pipeline = make_pipeline(CSP(n_components=8), LDA())
results = evaluation.process({"csp+lda": pipeline})
##############################################################################
# Plotting Results
# ----------------
#
# We plot the results using the seaborn library. Note how easy it
# is to plot the results from the three datasets with just one line.
results["subj"] = [str(resi).zfill(2) for resi in results["subject"]]
g = sns.catplot(
kind="bar",
x="score",
y="subj",
col="dataset",
data=results,
orient="h",
palette="viridis",
)
plt.show()