Skip to content

πŸπŸ•Έ Python library to run WebAssembly binaries.

Notifications You must be signed in to change notification settings

NguyenKhong/python-ext-wasm

Β 
Β 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Wasmer logo

Join the Wasmer Community Pypi Number of downloads on Pypi License

Wasmer is a Python library for executing WebAssembly binaries:

  • Easy to use: The wasmer API mimics the standard WebAssembly API,
  • Fast: wasmer executes the WebAssembly modules as fast as possible, close to native speed,
  • Safe: All calls to WebAssembly will be fast, but more importantly, completely safe and sandboxed.

Install

To install the wasmer Python library, just run this command in your shell:

$ pip install wasmer

Note: There is a limited set of wheels published so far. More are coming.

View the wasmer on Pypi.

Example

There is a toy program in examples/simple.rs, written in Rust (or any other language that compiles to WebAssembly):

#[no_mangle]
pub extern fn sum(x: i32, y: i32) -> i32 {
    x + y
}

After compilation to WebAssembly, the examples/simple.wasm binary file is generated. (Download it).

Then, we can excecute it in Python:

from wasmer import Instance

wasm_bytes = open('simple.wasm', 'rb').read()
instance = Instance(wasm_bytes)
result = instance.exports.sum(5, 37)

print(result) # 42!

And then, finally, enjoy by running:

$ python examples/simple.py

For a soft introduction about how different languages compile to Wasm, it is possible to give it a try at WebAssembly Studio.

API of the wasmer extension/module

The Instance class

Instantiates a WebAssembly module represented by bytes, and calls exported functions on it:

from wasmer import Instance

# Get the Wasm module as bytes.
wasm_bytes = open('my_program.wasm', 'rb').read()

# Instantiate the Wasm module.
instance = Instance(wasm_bytes)

# Call a function on it.
result = instance.exports.sum(1, 2)

print(result) # 3

Exported functions

All exported functions are accessible on the exports getter. Arguments of these functions are automatically casted to WebAssembly values. If one wants to explicitely pass a value of a particular type, it is possible to use the Value class, e.g. instance.exports.sum(Value.i32(1), Value.i32(2)). Note that for most usecases, this is not necessary.

Exported memory

The memory getter exposes the Memory class representing the memory of that particular instance, e.g.:

view = instance.memory.uint8_view()

Instance.memory can return None if no memory is exported.

See below for more information.

The Module class

Compiles a sequence of bytes into a WebAssembly module. From here, it is possible to instantiate it:

from wasmer import Module

# Get the Wasm bytes.
wasm_bytes = open('my_program.wasm', 'rb').read()

# Compile the bytes into a Wasm module.
module = Module(wasm_bytes)

# Instantiate the Wasm module.
instance = module.instantiate()

# Call a function on it.
result = instance.exports.sum(1, 2)

print(result) # 3

Exports, imports, and custom sections

It is also possible to query the module to get a list of exports, of imports, or of custom sections.

from wasmer import Module, ExportKind, ImportKind

# Get the Wasm bytes.
wasm_bytes = open('my_program.wasm', 'rb').read()

# Compile the bytes into a Wasm module.
module = Module(wasm_bytes)

# Check all the exports.
assert module.exports == [{'kind': ExportKind.MEMORY,   'name': 'memory'},
                          {'kind': ExportKind.TABLE,    'name': '__indirect_function_table'},
                          {'kind': ExportKind.GLOBAL,   'name': '__heap_base'},
                          {'kind': ExportKind.GLOBAL,   'name': '__data_end'},
                          {'kind': ExportKind.FUNCTION, 'name': 'sum'}]

# Check all the imports.
assert module.imports == [{'kind': ImportKind.FUNCTION,
                           'namespace': 'ns',
                           'name': 'func'},
                          {'kind': ImportKind.MEMORY,
                           'namespace': 'ns',
                           'name': 'mem',
                           'minimum_pages': 3,
                           'maximum_pages': 4},
                          {'kind': ImportKind.GLOBAL,
                           'namespace': 'ns',
                           'name': 'glo',
                           'mutable': False,
                           'type': 'f32'},
                          {'kind': ImportKind.TABLE,
                           'namespace': 'ns',
                           'name': 'tab',
                           'minimum_elements': 1,
                           'maximum_elements': 2,
                           'element_type': 'anyfunc'}]

# Check all the custom sections.
assert sorted(module.custom_section_names) == ['section1', 'section2']

# Check one specific custom section content (in bytes).
custom_section1 = module.custom_section('section1')

assert type(custom_section1) == bytes
assert custom_sections1 == b'Wasmer'

Note the ExportKind and ImportKind enumerations. They are precisely IntEnum.

Module.exports always returns a list of dictionnaries with the kind and name pairs. Module.imports always returns a list of dictionnaries with at least the namespace and name pairs. Some specific pairs exist, see the following table.

ExportKind/ImportKind variants Meaning Specific pairs for imports
FUNCTION Function none
GLOBAL Global variable mutable and type
MEMORY Memory minimum_pages and maximum_pages (None if absent)
TABLE Table minimum_elements, maximum_elements (None is absent) and element_type

Serialization and deserialization

The Module.serialize method and its complementary Module.deserialize static method help to respectively serialize and deserialize a compiled WebAssembly module, thus saving the compilation time for the next use:

from wasmer import Module

# Get the Wasm bytes.
wasm_bytes = open('my_program.wasm', 'rb').read()

# Compile the bytes into a Wasm module.
module1 = Module(wasm_bytes)

# Serialize the module.
serialized_module = module1.serialize()

# Let's forget about the module for this example.
del module1

# Deserialize the module.
module2 = Module.deserialize(serialized_module)

# Instantiate and use it.
result = module2.instantiate().exports.sum(1, 2)

print(result) # 3

A serialized module is a sequence of bytes. They can be saved in any storage.

The Module.validate static method check whether the given bytes represent valid WebAssembly bytes:

from wasmer import Module

wasm_bytes = open('my_program.wasm', 'rb').read()

if not Module.validate(wasm_bytes):
    print('The program seems corrupted.')

The Value class

Builds WebAssembly values with the correct types:

from wasmer import Value

# Integer on 32-bits.
value_i32 = Value.i32(7)

# Integer on 64-bits.
value_i64 = Value.i64(7)

# Float on 32-bits.
value_f32 = Value.f32(7.42)

# Float on 64-bits.
value_f64 = Value.f64(7.42)

# Integer on 128-bits.
value_v128 = Value.v128(7)

The Value.([if](32|64)|v128) static methods must be considered as static constructors.

The __repr__ method allows to get a string representation of a Value instance:

print(repr(value_i32)) # I32(7)

The Memory class

A WebAssembly instance has its own memory, represented by the Memory class. It is accessible by the Instance.memory getter.

The Memory.grow method allows to grow the memory by a number of pages (of 65kb each).

instance.memory.grow(1)

The Memory class offers methods to create views of the memory internal buffer, e.g. uint8_view, int8_view, uint16_view etc. All these methods accept one argument: offset, to subset the memory buffer at a particular offset. These methods return respectively a *Array object, i.e. uint8_view returns a Uint8Array object etc.

offset = 7
view = instance.memory.uint8_view(offset)

print(view[0])

The *Array classes

These classes represent views over a memory buffer of an instance.

Class View buffer as a sequence of… Bytes per element
Int8Array int8 1
Uint8Array uint8 1
Int16Array int16 2
Uint16Array uint16 2
Int32Array int32 4
Uint32Array uint32 4

All these classes share the same implementation. Taking the example of Uint8Array, the class looks like this:

class Uint8Array:
    @property
    def bytes_per_element()

    def __len__()
    def __getitem__(index|slice)
    def __setitem__(index, value)

Let's see it in action:

from wasmer import Instance

# Get the Wasm module as bytes.
wasm_bytes = open('my_program.wasm', 'rb').read()

# Instantiate the Wasm module.
instance = Instance(wasm_bytes)

# Call a function that returns a pointer to a string for instance.
pointer = instance.exports.return_string()

# Get the memory view, with the offset set to `pointer` (default is 0).
memory = instance.memory.uint8_view(pointer)
memory_length = len(memory)

# Read the string pointed by the pointer.
nth = 0;
string = ''

while nth < memory_length:
    char = memory[nth]

    if char == 0:
        break

    string += chr(char)
    nth += 1

print(string) # Hello, World!

A slice can be used as index of the __getitem__ method, which is useful when we already know the size of the data we want to read, e.g.:

print(''.join(map(chr, memory[0:13]))) # Hello, World!

Notice that *Array treat bytes in little-endian, as required by the WebAssembly specification, Chapter Structure, Section Instructions, Sub-Section Memory Instructions:

All values are read and written in little endian byte order.

Each view shares the same memory buffer internally. Let's have some fun:

int8 = instance.memory.int8_view()
int16 = instance.memory.int16_view()
int32 = instance.memory.int32_view()

               b₁
            β”Œβ”¬β”¬β”¬β”¬β”¬β”¬β”
int8[0] = 0b00000001
               bβ‚‚
            β”Œβ”¬β”¬β”¬β”¬β”¬β”¬β”
int8[1] = 0b00000100
               b₃
            β”Œβ”¬β”¬β”¬β”¬β”¬β”¬β”
int8[2] = 0b00010000
               bβ‚„
            β”Œβ”¬β”¬β”¬β”¬β”¬β”¬β”
int8[3] = 0b01000000

// No surprise with the following assertions.
                       b₁
                    β”Œβ”¬β”¬β”¬β”¬β”¬β”¬β”
assert int8[0] == 0b00000001
                       bβ‚‚
                    β”Œβ”¬β”¬β”¬β”¬β”¬β”¬β”
assert int8[1] == 0b00000100
                       b₃
                    β”Œβ”¬β”¬β”¬β”¬β”¬β”¬β”
assert int8[2] == 0b00010000
                       bβ‚„
                    β”Œβ”¬β”¬β”¬β”¬β”¬β”¬β”
assert int8[3] == 0b01000000

// The `int16` view reads 2 bytes.
                        bβ‚‚       b₁
                     β”Œβ”¬β”¬β”¬β”¬β”¬β”¬β” β”Œβ”¬β”¬β”¬β”¬β”¬β”¬β”
assert int16[0] == 0b00000100_00000001
                        bβ‚„       b₃
                     β”Œβ”¬β”¬β”¬β”¬β”¬β”¬β” β”Œβ”¬β”¬β”¬β”¬β”¬β”¬β”
assert int16[1] == 0b01000000_00010000

// The `int32` view reads 4 bytes.
                        bβ‚„       b₃       bβ‚‚       b₁
                     β”Œβ”¬β”¬β”¬β”¬β”¬β”¬β” β”Œβ”¬β”¬β”¬β”¬β”¬β”¬β” β”Œβ”¬β”¬β”¬β”¬β”¬β”¬β” β”Œβ”¬β”¬β”¬β”¬β”¬β”¬β”
assert int32[0] == 0b01000000_00010000_00000100_00000001

Development

The Python extension is written in Rust, with pyo3 and maturin.

To set up your environment, run only once:

$ just prelude

It will install pyo3 and maturin for Python and for Rust. It will also install virtualenv.

Then, simply run:

$ .env/bin/activate
$ just build
$ just python-run examples/simple.py

If you need to interact with Python, or run a specific file, use the following commands:

$ just python-run
$ just python-run file/to/run.py

Finally, to inspect the extension; run:

$ just inspect

(Yes, you need just).

Testing

Once the extension is compiled and installed (just run just build), run the following command:

$ just test

What is WebAssembly?

Quoting the WebAssembly site:

WebAssembly (abbreviated Wasm) is a binary instruction format for a stack-based virtual machine. Wasm is designed as a portable target for compilation of high-level languages like C/C++/Rust, enabling deployment on the web for client and server applications.

About speed:

WebAssembly aims to execute at native speed by taking advantage of common hardware capabilities available on a wide range of platforms.

About safety:

WebAssembly describes a memory-safe, sandboxed execution environment […].

License

The entire project is under the MIT License. Please read the LICENSE file.

About

πŸπŸ•Έ Python library to run WebAssembly binaries.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 84.3%
  • Makefile 8.0%
  • Rust 6.2%
  • WebAssembly 1.5%