This face tracker is proposed in a bachelor thesis at HCM University of Science, Vietnam National University.
The distilled work is detailed in manuscript-1.pdf
Full documents can be found at: (Upcoming...)
These instructions will get you a copy of the project up and running on your local machine for development and testing purposes. See deployment for notes on how to deploy the project on a live system.
This project require installing of these tools:
- Docker CE (~=18.09)
- NVidia Docker driver
This is a step by step guide to help you install this project
First, build the Docker image using this command
docker build . -f Dockerfile --tag face
Build a network dockernet
docker network create -d bridge --subnet 192.168.0.0/24 --gateway 192.168.0.1 dockernet
Second, start a Docker container using NVidia Docker driver,
replace your absolute path to cloned project with {absolute path to face_service}
:
i.e.,'/home/face_service/:/workplace/
NV_GPU=3 nvidia-docker run -d --name=face_dtm -v {absolute path to face_service}:/workspace/ --net dockernet --entrypoint="tail" face:latest -f /dev/null
Finally, you can access to the container:
docker exec -it face_dtm /bin/bash
Some demo:
-
Create
office3
folder:mkdir data/videos/office3
-
Decode and extract frames from video:
ffmpeg -i {path_to_test_video} data/videos/office3/%05d.jpg -hide_banner
. Decode with specific framesffmpeg -i in.mp4 -vf select='between(n\,55111\,55800)' -vsync 0 -start_number 55111 data/videos/office3/%05d.jpg
-
Run the test
python3 main.py
(Upcoming...)
(Upcoming...)
- Tensorflow
- OpenCV
- imageio
(Upcoming...)
(Upcoming...)
- Nguyen Thanh Tan - NguyenThanhTan
- Vong Chi Tai - vchitai
(Upcoming...)
(Upcoming...)