forked from mlcommons/algorithmic-efficiency
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
68735ea
commit 0455f6e
Showing
8 changed files
with
745 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -8,7 +8,7 @@ venv/ | |
workdir/ | ||
makefile | ||
*.out | ||
*.sh | ||
# *.sh | ||
*.swp | ||
*/data/ | ||
*events.out.tfevents* | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
#!/bin/bash | ||
|
||
module load cuda/12.1 | ||
|
||
source ~/miniforge3/etc/profile.d/conda.sh | ||
conda activate alpe | ||
|
||
# forcefully enable TF32 | ||
export NVIDIA_TF32_OVERRIDE=1 | ||
|
||
# Env vars | ||
export OMP_NUM_THREADS=2 # TODO: check | ||
export HOME=/home/najroldi | ||
export CODE_DIR=/home/najroldi/algorithmic-efficiency | ||
export EXP_DIR=/fast/najroldi/exp/algoperf | ||
export DATA_DIR=/fast/najroldi/data | ||
|
||
# Job specific vars | ||
workload_or_id=$1 | ||
framework=$2 | ||
submission=$3 | ||
search_space=$4 | ||
name=$5 | ||
study=$6 | ||
num_tuning_trials=$7 | ||
rng_seed=$8 | ||
|
||
workload_list=( | ||
criteo1tb | ||
fastmri | ||
imagenet_resnet | ||
imagenet_vit | ||
librispeech_conformer | ||
librispeech_deepspeech | ||
ogbg | ||
wmt | ||
) | ||
|
||
# in bash need to explicitly declare an associative array | ||
declare -A workload_to_dataset=( | ||
[criteo1tb]="criteo1tb" | ||
[fastmri]="fastmri" | ||
[imagenet_resnet]="imagenet" | ||
[imagenet_vit]="imagenet" | ||
[librispeech_conformer]="librispeech" | ||
[librispeech_deepspeech]="librispeech" | ||
[ogbg]="ogbg" | ||
[wmt]="wmt" | ||
) | ||
|
||
# Determine workload based on workload_or_id | ||
if [[ "$workload_or_id" =~ ^[0-7]+$ ]]; then | ||
# workload_or_id is a valid index (0-7), treat it as job ID and get workload from list | ||
job_id=$workload_or_id | ||
workload=${workload_list[$job_id]} | ||
else | ||
# treat workload_or_id as an explicit workload name | ||
workload=$workload_or_id | ||
fi | ||
|
||
dataset=${workload_to_dataset[$workload]} | ||
|
||
# Experiment name | ||
# experiment_name="${name}_${workload}_${framework}" | ||
experiment_name=${name} | ||
|
||
# Librispeech tokenizer path | ||
tokenizer_path='' | ||
if [ "$dataset" = "librispeech" ]; then | ||
tokenizer_path="${DATA_DIR}/librispeech/spm_model.vocab" | ||
fi | ||
|
||
# Increase num_workers on imagenet | ||
eval_num_workers=0 | ||
if [ "$dataset" == "imagenet" ] && [ "$framework" == "pytorch" ]; then | ||
eval_num_workers=4 | ||
fi | ||
|
||
# Execute python script | ||
python \ | ||
$CODE_DIR/submission_runner.py \ | ||
--workload=$workload \ | ||
--framework=$framework \ | ||
--tuning_ruleset=external \ | ||
--data_dir=$DATA_DIR/$dataset \ | ||
--imagenet_v2_data_dir=$DATA_DIR/$dataset \ | ||
--librispeech_tokenizer_vocab_path=$tokenizer_path \ | ||
--submission_path=$submission \ | ||
--tuning_search_space=$search_space \ | ||
--num_tuning_trials=$num_tuning_trials \ | ||
--hparam_start_index=0 \ | ||
--hparam_end_index=1 \ | ||
--max_pct_of_global_steps=0.1 \ | ||
--experiment_dir=$EXP_DIR \ | ||
--experiment_name=$experiment_name \ | ||
--save_intermediate_checkpoints=False \ | ||
--save_checkpoints=False \ | ||
--use_wandb \ | ||
--rng_seed=$rng_seed \ | ||
--torch_compile=True \ | ||
--allow_tf32=False \ | ||
--halve_CUDA_mem=False \ | ||
--pytorch_eval_num_workers=$eval_num_workers \ | ||
--overwrite |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
#!/bin/bash | ||
|
||
module load cuda/12.1 | ||
|
||
source ~/miniforge3/etc/profile.d/conda.sh | ||
conda activate alpe_jax | ||
|
||
# Env vars | ||
export OMP_NUM_THREADS=2 # TODO: check | ||
export HOME=/home/najroldi | ||
export CODE_DIR=/home/najroldi/algorithmic-efficiency | ||
export EXP_DIR=/fast/najroldi/exp/algoperf | ||
export DATA_DIR=/fast/najroldi/data | ||
|
||
# Job specific vars | ||
workload_or_id=$1 | ||
framework=$2 | ||
submission=$3 | ||
search_space=$4 | ||
name=$5 | ||
study=$6 | ||
num_tuning_trials=$7 | ||
rng_seed=$8 | ||
|
||
workload_list=( | ||
criteo1tb | ||
fastmri | ||
imagenet_resnet | ||
imagenet_vit | ||
librispeech_conformer | ||
librispeech_deepspeech | ||
ogbg | ||
wmt | ||
) | ||
|
||
# in bash need to explicitly declare an associative array | ||
declare -A workload_to_dataset=( | ||
[criteo1tb]="criteo1tb" | ||
[fastmri]="fastmri" | ||
[imagenet_resnet]="imagenet" | ||
[imagenet_vit]="imagenet" | ||
[librispeech_conformer]="librispeech" | ||
[librispeech_deepspeech]="librispeech" | ||
[ogbg]="ogbg" | ||
[wmt]="wmt" | ||
) | ||
|
||
# Determine workload based on workload_or_id | ||
if [[ "$workload_or_id" =~ ^[0-7]+$ ]]; then | ||
# workload_or_id is a valid index (0-7), treat it as job ID and get workload from list | ||
job_id=$workload_or_id | ||
workload=${workload_list[$job_id]} | ||
else | ||
# treat workload_or_id as an explicit workload name | ||
workload=$workload_or_id | ||
fi | ||
|
||
dataset=${workload_to_dataset[$workload]} | ||
|
||
# Experiment name | ||
# experiment_name="${name}_${workload}_${framework}" | ||
experiment_name=${name} | ||
|
||
# Librispeech tokenizer path | ||
tokenizer_path='' | ||
if [ "$dataset" = "librispeech" ]; then | ||
tokenizer_path="${DATA_DIR}/librispeech/spm_model.vocab" | ||
fi | ||
|
||
# Increase num_workers on imagenet | ||
eval_num_workers=0 | ||
if [ "$dataset" == "imagenet" ] && [ "$framework" == "pytorch" ]; then | ||
eval_num_workers=4 | ||
fi | ||
|
||
# Execute python script | ||
python \ | ||
$CODE_DIR/submission_runner.py \ | ||
--workload=$workload \ | ||
--framework=$framework \ | ||
--tuning_ruleset=external \ | ||
--data_dir=$DATA_DIR/$dataset \ | ||
--imagenet_v2_data_dir=$DATA_DIR/$dataset \ | ||
--librispeech_tokenizer_vocab_path=$tokenizer_path \ | ||
--submission_path=$submission \ | ||
--tuning_search_space=$search_space \ | ||
--num_tuning_trials=$num_tuning_trials \ | ||
--hparam_start_index=0 \ | ||
--hparam_end_index=1 \ | ||
--max_pct_of_global_steps=0.1 \ | ||
--experiment_dir=$EXP_DIR \ | ||
--experiment_name=$experiment_name \ | ||
--save_intermediate_checkpoints=False \ | ||
--save_checkpoints=False \ | ||
--use_wandb \ | ||
--rng_seed=$rng_seed \ | ||
--allow_tf32=False \ | ||
--halve_CUDA_mem=False \ | ||
--pytorch_eval_num_workers=$eval_num_workers \ | ||
--overwrite |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
#!/bin/bash | ||
|
||
source ~/miniforge3/etc/profile.d/conda.sh | ||
conda activate alpe | ||
|
||
# Env vars | ||
export OMP_NUM_THREADS=2 # TODO: check | ||
export HOME=/home/najroldi | ||
export CODE_DIR=/home/najroldi/algorithmic-efficiency | ||
export EXP_DIR=/fast/najroldi/exp/algoperf | ||
export DATA_DIR=/fast/najroldi/data | ||
|
||
# Job specific vars | ||
workload_or_id=$1 | ||
framework=$2 | ||
submission=$3 | ||
search_space=$4 | ||
name=$5 | ||
study=$6 | ||
num_tuning_trials=$7 | ||
rng_seed=$8 | ||
allow_tf_32=$9 | ||
halve_cuda_mem=$10 | ||
|
||
workload_list=( | ||
criteo1tb | ||
fastmri | ||
imagenet_resnet | ||
imagenet_vit | ||
librispeech_conformer | ||
librispeech_deepspeech | ||
ogbg | ||
wmt | ||
) | ||
|
||
# in bash need to explicitly declare an associative array | ||
declare -A workload_to_dataset=( | ||
[criteo1tb]="criteo1tb" | ||
[fastmri]="fastmri" | ||
[imagenet_resnet]="imagenet" | ||
[imagenet_vit]="imagenet" | ||
[librispeech_conformer]="librispeech" | ||
[librispeech_deepspeech]="librispeech" | ||
[ogbg]="ogbg" | ||
[wmt]="wmt" | ||
) | ||
|
||
# Determine workload based on workload_or_id | ||
if [[ "$workload_or_id" =~ ^[0-7]+$ ]]; then | ||
# workload_or_id is a valid index (0-7), treat it as job ID and get workload from list | ||
job_id=$workload_or_id | ||
workload=${workload_list[$job_id]} | ||
else | ||
# treat workload_or_id as an explicit workload name | ||
workload=$workload_or_id | ||
fi | ||
|
||
dataset=${workload_to_dataset[$workload]} | ||
|
||
# Experiment name | ||
# experiment_name="${name}_${workload}_${framework}" | ||
experiment_name=${name} | ||
|
||
# Librispeech tokenizer path | ||
tokenizer_path='' | ||
if [ "$dataset" = "librispeech" ]; then | ||
tokenizer_path="${DATA_DIR}/librispeech/spm_model.vocab" | ||
fi | ||
|
||
# Increase num_workers on imagenet | ||
eval_num_workers=0 | ||
if [ "$dataset" == "imagenet" ] && [ "$framework" == "pytorch" ]; then | ||
eval_num_workers=4 | ||
fi | ||
|
||
# allow_tf_32 | ||
allow_tf_32_flag=False | ||
if [ "$allow_tf_32" == "1" ]; then | ||
allow_tf_32_flag=True | ||
fi | ||
|
||
# allow_tf_32 | ||
halve_cuda_mem_flag=False | ||
if [ "$halve_cuda_mem" == "1" ]; then | ||
halve_cuda_mem_flag=True | ||
fi | ||
|
||
# Execute python script | ||
torchrun \ | ||
--redirects 1:0 \ | ||
--standalone \ | ||
--nnodes=1 \ | ||
--nproc_per_node=2 \ | ||
$CODE_DIR/submission_runner.py \ | ||
--workload=$workload \ | ||
--framework=$framework \ | ||
--tuning_ruleset=external \ | ||
--data_dir=$DATA_DIR/$dataset \ | ||
--imagenet_v2_data_dir=$DATA_DIR/$dataset \ | ||
--librispeech_tokenizer_vocab_path=$tokenizer_path \ | ||
--submission_path=$submission \ | ||
--tuning_search_space=$search_space \ | ||
--num_tuning_trials=$num_tuning_trials \ | ||
--hparam_start_index=0 \ | ||
--hparam_end_index=1 \ | ||
--max_pct_of_global_steps=0.1 \ | ||
--experiment_dir=$EXP_DIR \ | ||
--experiment_name=$experiment_name \ | ||
--save_intermediate_checkpoints=False \ | ||
--save_checkpoints=False \ | ||
--use_wandb \ | ||
--rng_seed=$rng_seed \ | ||
--torch_compile=True \ | ||
--allow_tf32=$allow_tf_32_flag \ | ||
--halve_CUDA_mem=$halve_cuda_mem_flag \ | ||
--pytorch_eval_num_workers=$eval_num_workers \ | ||
--overwrite |
Oops, something went wrong.