forked from dmmiller612/bert-extractive-summarizer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsummarize.py
31 lines (22 loc) · 1.01 KB
/
summarize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from summarizer import Summarizer
import argparse
def run():
parser = argparse.ArgumentParser(description='Process and summarize lectures')
parser.add_argument('-path', dest='path', default=None, help='File path of lecture')
parser.add_argument('-model', dest='model', default='bert-large-uncased', help='')
parser.add_argument('-hidden', dest='hidden', default=-2, help='Which hidden layer to use from Bert')
parser.add_argument('-reduce-option', dest='reduce_option', default='mean', help='How to reduce the hidden layer from bert')
parser.add_argument('-greedyness', dest='greedyness', help='Greedyness of the NeuralCoref model', default=0.45)
args = parser.parse_args()
if not args.path:
raise RuntimeError("Must supply text path.")
with open(args.path) as d:
text_data = d.read()
model = Summarizer(
model=args.model,
hidden=args.hidden,
reduce_option=args.reduce_option
)
print(model(text_data))
if __name__ == '__main__':
run()