Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement Aria block cipher #44

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
305 changes: 305 additions & 0 deletions include/nil/crypto3/block/aria.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,305 @@
//---------------------------------------------------------------------------//
// Copyright (c) 2018-2020 Mikhail Komarov <nemo@nil.foundation>
// Copyright (c) 2020 Nikita Kaskov <nbering@nil.foundation>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//---------------------------------------------------------------------------//

#ifndef CRYPTO3_BLOCK_ARIA_HPP
#define CRYPTO3_BLOCK_ARIA_HPP

#include <boost/endian/arithmetic.hpp>
#include <boost/endian/conversion.hpp>

#include <nil/crypto3/block/detail/aria/aria_policy.hpp>

#include <nil/crypto3/block/detail/block_stream_processor.hpp>
#include <nil/crypto3/block/detail/cipher_modes.hpp>

#include <nil/crypto3/block/detail/utilities/cpuid/cpuid.hpp>

namespace nil {
namespace crypto3 {
namespace block {
/*!
* @brief Aria. South Korean cipher used in industry there. No reason
* to use it otherwise.
* @ingroup block
*
* @tparam KeyBits Block cipher key bits. Supported values are: 128, 192, 256
*
* This ARIA implementation is based on the 32-bit implementation by Aaram Yun from the
* National Security Research Institute, KOREA. Aaram Yun's implementation is based on
* the 8-bit implementation by Jin Hong. The source files are available in ARIA.zip from
* the Korea Internet & Security Agency website.
* [RFC 5794, A Description of the ARIA Encryption Algorithm](https://tools.ietf.org/html/rfc5794),
* [Korea Internet & Security Agency
* homepage](http://seed.kisa.or.kr/iwt/ko/bbs/EgovReferenceList.do?bbsId=BBSMSTR_000000000002)
*/
template<std::size_t KeyBits>
class aria {
protected:
constexpr static const std::size_t version = KeyBits;
typedef detail::aria_policy<KeyBits> policy_type;

constexpr static const std::size_t key_schedule_words = policy_type::key_schedule_words;
typedef typename policy_type::key_schedule_type key_schedule_type;

public:
constexpr static const std::size_t word_bits = policy_type::word_bits;
typedef typename policy_type::word_type word_type;

constexpr static const std::size_t key_bits = policy_type::key_bits;
constexpr static const std::size_t key_words = policy_type::key_words;
typedef typename policy_type::key_type key_type;

constexpr static const std::size_t block_bits = policy_type::block_bits;
constexpr static const std::size_t block_words = policy_type::block_words;
typedef typename policy_type::block_type block_type;

constexpr static const std::size_t rounds = policy_type::rounds;
typedef typename policy_type::round_constants_type round_constants_type;

template<class Mode, typename StateAccumulator, std::size_t ValueBits>
struct stream_processor {
struct params_type {

constexpr static const std::size_t value_bits = ValueBits;
constexpr static const std::size_t length_bits = policy_type::word_bits * 2;
};

typedef block_stream_processor<Mode, StateAccumulator, params_type> type;
};

typedef typename stream_endian::little_octet_big_bit endian_type;

public:
aria(const key_type &key) {
schedule_key(key);
}

virtual ~aria() {
encryption_round_key.fill(0);
decryption_round_key.fill(0);
}

inline block_type encrypt(const block_type &plaintext) const {
return encrypt_block(plaintext);
}

inline block_type decrypt(const block_type &ciphertext) const {
return decrypt_block(ciphertext);
}

protected:
key_schedule_type encryption_round_key, decryption_round_key;

inline block_type encrypt_block(const block_type &plaintext) const {
return transform(plaintext, encryption_round_key);
}

inline block_type decrypt_block(const block_type &ciphertext) const {
return transform(ciphertext, decryption_round_key);
}

void schedule_key(const key_type &key) {
const size_t CK0 = (policy_type::key_bits / 64) - 2;
const size_t CK1 = (CK0 + 1) % 3;
const size_t CK2 = (CK1 + 1) % 3;

word_type w0[4];
word_type w1[4];
word_type w2[4];
word_type w3[4];

w0[0] = boost::endian::native_to_big(key[0]);
w0[1] = boost::endian::native_to_big(key[1]);
w0[2] = boost::endian::native_to_big(key[2]);
w0[3] = boost::endian::native_to_big(key[3]);

w1[0] = w0[0] ^ policy_type::round_constants[CK0][0];
w1[1] = w0[1] ^ policy_type::round_constants[CK0][1];
w1[2] = w0[2] ^ policy_type::round_constants[CK0][2];
w1[3] = w0[3] ^ policy_type::round_constants[CK0][3];

policy_type::fo(w1[0], w1[1], w1[2], w1[3]);

if (policy_type::key_bits / 8 == 24 || policy_type::key_bits / 8 == 32) {
w1[0] ^= boost::endian::native_to_big(key[4]);
w1[1] ^= boost::endian::native_to_big(key[5]);
}
if (policy_type::key_bits / 8 == 32) {
w1[2] ^= boost::endian::native_to_big(key[6]);
w1[3] ^= boost::endian::native_to_big(key[7]);
}

w2[0] = w1[0] ^ policy_type::round_constants[CK1][0];
w2[1] = w1[1] ^ policy_type::round_constants[CK1][1];
w2[2] = w1[2] ^ policy_type::round_constants[CK1][2];
w2[3] = w1[3] ^ policy_type::round_constants[CK1][3];

policy_type::fe(w2[0], w2[1], w2[2], w2[3]);

w2[0] ^= w0[0];
w2[1] ^= w0[1];
w2[2] ^= w0[2];
w2[3] ^= w0[3];

w3[0] = w2[0] ^ policy_type::round_constants[CK2][0];
w3[1] = w2[1] ^ policy_type::round_constants[CK2][1];
w3[2] = w2[2] ^ policy_type::round_constants[CK2][2];
w3[3] = w2[3] ^ policy_type::round_constants[CK2][3];

policy_type::fo(w3[0], w3[1], w3[2], w3[3]);

w3[0] ^= w1[0];
w3[1] ^= w1[1];
w3[2] ^= w1[2];
w3[3] ^= w1[3];

if (policy_type::key_bits / 8 == 16) {
encryption_round_key.resize(4 * 13);
} else if (policy_type::key_bits / 8 == 24) {
encryption_round_key.resize(4 * 15);
} else if (policy_type::key_bits / 8 == 32) {
encryption_round_key.resize(4 * 17);
}

policy_type::rol128<19>(w0, w1, &encryption_round_key[0]);
policy_type::rol128<19>(w1, w2, &encryption_round_key[4]);
policy_type::rol128<19>(w2, w3, &encryption_round_key[8]);
policy_type::rol128<19>(w3, w0, &encryption_round_key[12]);
policy_type::rol128<31>(w0, w1, &encryption_round_key[16]);
policy_type::rol128<31>(w1, w2, &encryption_round_key[20]);
policy_type::rol128<31>(w2, w3, &encryption_round_key[24]);
policy_type::rol128<31>(w3, w0, &encryption_round_key[28]);
policy_type::rol128<67>(w0, w1, &encryption_round_key[32]);
policy_type::rol128<67>(w1, w2, &encryption_round_key[36]);
policy_type::rol128<67>(w2, w3, &encryption_round_key[40]);
policy_type::rol128<67>(w3, w0, &encryption_round_key[44]);
policy_type::rol128<97>(w0, w1, &encryption_round_key[48]);

if (policy_type::key_bits / CHAR_BIT == 24 || policy_type::key_bits / CHAR_BIT == 32) {
policy_type::rol128<97>(w1, w2, &encryption_round_key[52]);
policy_type::rol128<97>(w2, w3, &encryption_round_key[56]);

if (policy_type::key_bits / 8 == 32) {
policy_type::rol128<97>(w3, w0, &encryption_round_key[60]);
policy_type::rol128<109>(w0, w1, &encryption_round_key[64]);
}
}

// Now the decryption key gets scheduled

for (size_t i = 0; i != decryption_round_key.size(); i += 4) {
decryption_round_key[i] = encryption_round_key[encryption_round_key.size() - 4 - i];
decryption_round_key[i + 1] = encryption_round_key[encryption_round_key.size() - 3 - i];
decryption_round_key[i + 2] = encryption_round_key[encryption_round_key.size() - 2 - i];
decryption_round_key[i + 3] = encryption_round_key[encryption_round_key.size() - 1 - i];
}

for (size_t i = 4; i != decryption_round_key.size() - 4; i += 4) {
for (size_t j = 0; j != 4; ++j) {
decryption_round_key[i + j] = policy_type::rotr<8>(decryption_round_key[i + j]) ^
policy_type::rotr<16>(decryption_round_key[i + j]) ^
policy_type::rotr<24>(decryption_round_key[i + j]);
}

decryption_round_key[i + 1] ^= decryption_round_key[i + 2];
decryption_round_key[i + 2] ^= decryption_round_key[i + 3];
decryption_round_key[i + 0] ^= decryption_round_key[i + 1];
decryption_round_key[i + 3] ^= decryption_round_key[i + 1];
decryption_round_key[i + 2] ^= decryption_round_key[i + 0];
decryption_round_key[i + 1] ^= decryption_round_key[i + 2];

decryption_round_key[i + 1] = ((decryption_round_key[i + 1] << 8) & 0xFF00FF00) |
((decryption_round_key[i + 1] >> 8) & 0x00FF00FF);
decryption_round_key[i + 2] = policy_type::rotr<16>(decryption_round_key[i + 2]);
decryption_round_key[i + 3] = reverse_bytes(decryption_round_key[i + 3]);

decryption_round_key[i + 1] ^= decryption_round_key[i + 2];
decryption_round_key[i + 2] ^= decryption_round_key[i + 3];
decryption_round_key[i + 0] ^= decryption_round_key[i + 1];
decryption_round_key[i + 3] ^= decryption_round_key[i + 1];
decryption_round_key[i + 2] ^= decryption_round_key[i + 0];
decryption_round_key[i + 1] ^= decryption_round_key[i + 2];
}
}

block_type transform(const block_type &plaintext, const key_schedule_type &schedule) {
// Hit every state line of S1 and S2
const size_t cache_line_size = cpuid::cache_line_size();

/*
* This initializer ensures Z == 0xFFFFFFFF for any state line size
* in {32,64,128,256,512}
*/
volatile word_type Z = 0x11101010;
for (size_t i = 0; i < policy_type::constants_size; i += cache_line_size / sizeof(word_type)) {
Z |= policy_type::s1[i] | policy_type::s2[i];
}

word_type t0 = boost::endian::native_to_big(plaintext[0]);
word_type t1 = boost::endian::native_to_big(plaintext[1]);
word_type t2 = boost::endian::native_to_big(plaintext[2]);
word_type t3 = boost::endian::native_to_big(plaintext[3]);

t0 &= Z;

for (size_t r = 0; r < rounds; r += 2) {
t0 ^= schedule[4 * r];
t1 ^= schedule[4 * r + 1];
t2 ^= schedule[4 * r + 2];
t3 ^= schedule[4 * r + 3];
policy_type::fo(t0, t1, t2, t3);

t0 ^= schedule[4 * r + 4];
t1 ^= schedule[4 * r + 5];
t2 ^= schedule[4 * r + 6];
t3 ^= schedule[4 * r + 7];

if (r != rounds - 2) {
policy_type::fe(t0, t1, t2, t3);
}
}

return {policy_type::x1[policy_type::extract_uint_t<CHAR_BIT>(t0, 0)] ^
policy_type::extract_uint_t<CHAR_BIT>(schedule[4 * rounds], 0),
policy_type::x2[policy_type::extract_uint_t<CHAR_BIT>(t0, 1)] >> 8 ^
policy_type::extract_uint_t<CHAR_BIT>(schedule[4 * rounds], 1),
policy_type::s1[policy_type::extract_uint_t<CHAR_BIT>(t0, 2)] ^
policy_type::extract_uint_t<CHAR_BIT>(schedule[4 * rounds], 2),
policy_type::s2[policy_type::extract_uint_t<CHAR_BIT>(t0, 3)] ^
policy_type::extract_uint_t<CHAR_BIT>(schedule[4 * rounds], 3),
policy_type::x1[policy_type::extract_uint_t<CHAR_BIT>(t1, 0)] ^
policy_type::extract_uint_t<CHAR_BIT>(schedule[4 * rounds + 1], 0),
policy_type::x2[policy_type::extract_uint_t<CHAR_BIT>(t1, 1)] >> 8 ^
policy_type::extract_uint_t<CHAR_BIT>(schedule[4 * rounds + 1], 1),
policy_type::s1[policy_type::extract_uint_t<CHAR_BIT>(t1, 2)] ^
policy_type::extract_uint_t<CHAR_BIT>(schedule[4 * rounds + 1], 2),
policy_type::s2[policy_type::extract_uint_t<CHAR_BIT>(t1, 3)] ^
policy_type::extract_uint_t<CHAR_BIT>(schedule[4 * rounds + 1], 3),
policy_type::x1[policy_type::extract_uint_t<CHAR_BIT>(t2, 0)] ^
policy_type::extract_uint_t<CHAR_BIT>(schedule[4 * rounds + 2], 0),
policy_type::x2[policy_type::extract_uint_t<CHAR_BIT>(t2, 1)] >> 8 ^
policy_type::extract_uint_t<CHAR_BIT>(schedule[4 * rounds + 2], 1),
policy_type::s1[policy_type::extract_uint_t<CHAR_BIT>(t2, 2)] ^
policy_type::extract_uint_t<CHAR_BIT>(schedule[4 * rounds + 2], 2),
policy_type::s2[policy_type::extract_uint_t<CHAR_BIT>(t2, 3)] ^
policy_type::extract_uint_t<CHAR_BIT>(schedule[4 * rounds + 2], 3),
policy_type::x1[policy_type::extract_uint_t<CHAR_BIT>(t3, 0)] ^
policy_type::extract_uint_t<CHAR_BIT>(schedule[4 * rounds + 3], 0),
policy_type::x2[policy_type::extract_uint_t<CHAR_BIT>(t3, 1)] >> 8 ^
policy_type::extract_uint_t<CHAR_BIT>(schedule[4 * rounds + 3], 1),
policy_type::s1[policy_type::extract_uint_t<CHAR_BIT>(t3, 2)] ^
policy_type::extract_uint_t<CHAR_BIT>(schedule[4 * rounds + 3], 2),
policy_type::s2[policy_type::extract_uint_t<CHAR_BIT>(t3, 3)] ^
policy_type::extract_uint_t<CHAR_BIT>(schedule[4 * rounds + 3], 3)};
}
};
} // namespace block
} // namespace crypto3
} // namespace nil
#endif
Loading