An AI-driven resume feedback system built using Langchain and the Gemini API, with a Django backend framework and a Next.js/TypeScript frontend.
The project consists of two main components: the backend (Django) and the frontend (Next.js).
Create a .env.dev
file in the backend directory with the following content:
DEBUG=1
SECRET_KEY=ai_resume_insights
DJANGO_ALLOWED_HOSTS=localhost 127.0.0.1 [::1]
SQL_ENGINE=django.db.backends.postgresql
SQL_DATABASE=airesumeinsights
SQL_USER=postgresuser
SQL_PASSWORD=postgrespassword
SQL_HOST=airesume_db
SQL_PORT=5432
DATABASE=postgres
GOOGLE_API_KEY=your_google_api_key
GOOGLE_CLIENT_ID=your_google_client_id
GOOGLE_CLIENT_SECRET=your_google_client_secret
Replace your_google_api_key
, your_google_client_id
and your_google_client_secret
with your credentials.
Ensure these align with the settings in the Docker Compose YAML file.
Use Docker to build and run the backend:
sudo docker compose up --build
To stop the application:
sudo docker-compose down
Create a .env.local
file in the frontend directory with the following content:
NEXT_PUBLIC_API_HOST=http://localhost:8001
Run the following command in the frontend directory to install dependencies:
npm install
Start the development server:
npm run dev
- Ensure that Docker and Node.js are installed on your system.
- The backend will be available at
http://localhost:8001
and the frontend athttp://localhost:3000
by default. - Update environment variables as necessary for your deployment.
npm i
npm run dev
To run : sudo docker compose up --build
To create new apps : sudo docker-compose exec
web python manage.py startapp app-name
To abort: sudo docker-compose down
To allow vscode to edit : sudo chown -R $USER folder name
To create a virtual env : python3 -m venv env source env/bin/activate
To open shell in container:
sudo docker exec -it backend-web-1 bash
Django Rest Framwork
NextJS
Typescript
Postgres
TailwindCSS
Docker
Gemini
Langchain
LangGraph
Zustand
Material UI
Headless UI