-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathSimulation.py
133 lines (99 loc) · 3.8 KB
/
Simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# -*- coding: utf-8 -*-
from Population import Population
import numpy as np
from matplotlib import pyplot as pl
class Simulation:
""" Class for running a large number of simulations
"""
def __init__(self, size, name="None"):
self.nsims = size
self.name = name
self.data = np.empty([0,4])
self.rounds = 0
self.popSize = 0
self.offers = []
self.responses = []
self.probs = []
self.storeall = False
self.data = np.empty(size, dtype=np.matrix)
def Initialize(self, rounds, popSize, offers, responses, probs, storeall=False):
print("Initialize")
self.rounds = rounds
self.popSize = popSize
self.offers = offers
self.responses = responses
self.probs=probs
#print(probs)
if storeall:
self.storeall = storeall
self.populations = np.empty(self.nsims, dtype=object)
def Run(self, verbose=False, save=False):
for i in range(self.nsims):
if verbose:
print("Now running simulation: ",(i+1))
population = Population(self.popSize)
population.populate(self.offers, self.responses, self.probs)
population.play(self.rounds)
# Retain all populations in memory
# Not yet implemented
#if self.storeall:
#self.populations[i] = population
self.data[i] = population.getData()
if self.storeall:
name = "Sim_"+str(self.name)+"_r"+str(self.rounds)+"_p"+str(self.popSize)
print("Storing data under name: "+name)
for i in range(self.nsims):
np.savetxt("data/"+name+"("+str(i)+").csv", self.data[i], delimiter=",")
#print(self.data[i])
def printData(self):
print(self.data)
def plotAverageBid(self):
x = np.arange(self.rounds)
y = np.empty(self.rounds, dtype=float)
err = np.empty(self.rounds, dtype=float)
for i in range(self.rounds):
m = 0
v = 0
for j in range(self.nsims):
m += self.data[j][i,1]
v += (self.data[j][i,2] / np.sqrt(self.popSize))
m = m / self.nsims
v = v / self.nsims
y[i] = m
err[i] = v
self.plotLines(x, y, err, "Average offer per round")
def plotAverageProfit(self):
x = np.arange(self.rounds)
y = np.empty(self.rounds, dtype=float)
err = np.empty(self.rounds, dtype=float)
for i in range(self.rounds):
m = 0
v = 0
for j in range(self.nsims):
m += self.data[j][i,3]
v += (self.data[j][i,4] / np.sqrt(self.popSize))
m = m / self.nsims
v = v / self.nsims
y[i] = m
err[i] = v
self.plotLines(x, y, err, "Average profit per round")
def plotAverageResponse(self):
x = np.arange(self.rounds)
y = np.empty(self.rounds, dtype=float)
#err = np.empty(self.rounds, dtype=float)
for i in range(self.rounds):
m = 0
for j in range(self.nsims):
m += self.data[j][i,5]
m = m / self.nsims
y[i] = m
pl.plot(x, y, 'k-')
pl.ylim([0,1])
pl.title("Average response per round")
pl.show()
def plotLines(self, x, y, err, name="None"):
pl.plot(x,y, 'k-')
pl.title(name)
pl.ylim([0,10])
pl.fill_between(x, y+err, y-err)
pl.show()