-
Notifications
You must be signed in to change notification settings - Fork 0
/
planner.cpp
1229 lines (1088 loc) · 49.5 KB
/
planner.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
planner.c - buffers movement commands and manages the acceleration profile plan
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
/*
Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
s == speed, a == acceleration, t == time, d == distance
Basic definitions:
Speed[s_, a_, t_] := s + (a*t)
Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
Distance to reach a specific speed with a constant acceleration:
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
Speed after a given distance of travel with constant acceleration:
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
m -> Sqrt[2 a d + s^2]
DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
When to start braking (di) to reach a specified destionation speed (s2) after accelerating
from initial speed s1 without ever stopping at a plateau:
Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
*/
#include "Marlin.h"
#include "planner.h"
#include "stepper.h"
#include "temperature.h"
#include "ultralcd.h"
#include "language.h"
#ifdef MESH_BED_LEVELING
#include "mesh_bed_leveling.h"
#include "mesh_bed_calibration.h"
#endif
//===========================================================================
//=============================public variables ============================
//===========================================================================
unsigned long minsegmenttime;
float max_feedrate[NUM_AXIS]; // set the max speeds
float axis_steps_per_unit[NUM_AXIS];
unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
float minimumfeedrate;
float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
// Jerk is a maximum immediate velocity change.
float max_jerk[NUM_AXIS];
float mintravelfeedrate;
unsigned long axis_steps_per_sqr_second[NUM_AXIS];
#ifdef ENABLE_AUTO_BED_LEVELING
// this holds the required transform to compensate for bed level
matrix_3x3 plan_bed_level_matrix = {
1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0,
};
#endif // #ifdef ENABLE_AUTO_BED_LEVELING
// The current position of the tool in absolute steps
long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
static float previous_nominal_speed; // Nominal speed of previous path line segment
static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
#ifdef AUTOTEMP
float autotemp_max=250;
float autotemp_min=210;
float autotemp_factor=0.1;
bool autotemp_enabled=false;
#endif
unsigned char g_uc_extruder_last_move[3] = {0,0,0};
//===========================================================================
//=================semi-private variables, used in inline functions =====
//===========================================================================
block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
volatile unsigned char block_buffer_head; // Index of the next block to be pushed
volatile unsigned char block_buffer_tail; // Index of the block to process now
#ifdef PLANNER_DIAGNOSTICS
// Diagnostic function: Minimum number of planned moves since the last
static uint8_t g_cntr_planner_queue_min = 0;
#endif /* PLANNER_DIAGNOSTICS */
//===========================================================================
//=============================private variables ============================
//===========================================================================
#ifdef PREVENT_DANGEROUS_EXTRUDE
float extrude_min_temp=EXTRUDE_MINTEMP;
#endif
#ifdef FILAMENT_SENSOR
static char meas_sample; //temporary variable to hold filament measurement sample
#endif
// Returns the index of the next block in the ring buffer
// NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
static inline int8_t next_block_index(int8_t block_index) {
if (++ block_index == BLOCK_BUFFER_SIZE)
block_index = 0;
return block_index;
}
// Returns the index of the previous block in the ring buffer
static inline int8_t prev_block_index(int8_t block_index) {
if (block_index == 0)
block_index = BLOCK_BUFFER_SIZE;
-- block_index;
return block_index;
}
//===========================================================================
//=============================functions ============================
//===========================================================================
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
// given acceleration:
FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
{
if (acceleration!=0) {
return((target_rate*target_rate-initial_rate*initial_rate)/
(2.0*acceleration));
}
else {
return 0.0; // acceleration was 0, set acceleration distance to 0
}
}
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
// a total travel of distance. This can be used to compute the intersection point between acceleration and
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
{
if (acceleration!=0) {
return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
(4.0*acceleration) );
}
else {
return 0.0; // acceleration was 0, set intersection distance to 0
}
}
#define MINIMAL_STEP_RATE 120
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
{
// These two lines are the only floating point calculations performed in this routine.
uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
// Limit minimal step rate (Otherwise the timer will overflow.)
if (initial_rate < MINIMAL_STEP_RATE)
initial_rate = MINIMAL_STEP_RATE;
if (initial_rate > block->nominal_rate)
initial_rate = block->nominal_rate;
if (final_rate < MINIMAL_STEP_RATE)
final_rate = MINIMAL_STEP_RATE;
if (final_rate > block->nominal_rate)
final_rate = block->nominal_rate;
uint32_t acceleration = block->acceleration_st;
if (acceleration == 0)
// Don't allow zero acceleration.
acceleration = 1;
// estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
// (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
uint32_t initial_rate_sqr = initial_rate*initial_rate;
//FIXME assert that this result fits a 64bit unsigned int.
uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
uint32_t final_rate_sqr = final_rate*final_rate;
uint32_t acceleration_x2 = acceleration << 1;
// ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
// floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
// Size of Plateau of Nominal Rate.
uint32_t plateau_steps = 0;
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
// have to use intersection_distance() to calculate when to abort acceleration and start braking
// in order to reach the final_rate exactly at the end of this block.
if (accel_decel_steps < block->step_event_count) {
plateau_steps = block->step_event_count - accel_decel_steps;
} else {
uint32_t acceleration_x4 = acceleration << 2;
// Avoid negative numbers
if (final_rate_sqr >= initial_rate_sqr) {
// accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
// intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
// (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
#if 0
accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
#else
accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
if (block->step_event_count & 1)
accelerate_steps += acceleration_x2;
accelerate_steps /= acceleration_x4;
accelerate_steps += (block->step_event_count >> 1);
#endif
if (accelerate_steps > block->step_event_count)
accelerate_steps = block->step_event_count;
} else {
#if 0
decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
#else
decelerate_steps = initial_rate_sqr - final_rate_sqr;
if (block->step_event_count & 1)
decelerate_steps += acceleration_x2;
decelerate_steps /= acceleration_x4;
decelerate_steps += (block->step_event_count >> 1);
#endif
if (decelerate_steps > block->step_event_count)
decelerate_steps = block->step_event_count;
accelerate_steps = block->step_event_count - decelerate_steps;
}
}
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
if (! block->busy) { // Don't update variables if block is busy.
block->accelerate_until = accelerate_steps;
block->decelerate_after = accelerate_steps+plateau_steps;
block->initial_rate = initial_rate;
block->final_rate = final_rate;
}
CRITICAL_SECTION_END;
}
// Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
// decceleration within the allotted distance.
FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
{
// assert(decceleration < 0);
return sqrt(target_velocity*target_velocity-2*decceleration*distance);
}
// Recalculates the motion plan according to the following algorithm:
//
// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
// so that:
// a. The junction jerk is within the set limit
// b. No speed reduction within one block requires faster deceleration than the one, true constant
// acceleration.
// 2. Go over every block in chronological order and dial down junction speed reduction values if
// a. The speed increase within one block would require faster accelleration than the one, true
// constant acceleration.
//
// When these stages are complete all blocks have an entry_factor that will allow all speed changes to
// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
// the set limit. Finally it will:
//
// 3. Recalculate trapezoids for all blocks.
//
//FIXME This routine is called 15x every time a new line is added to the planner,
// therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
// if the CPU is found lacking computational power.
//
// Following sources may be used to optimize the 8-bit AVR code:
// http://www.mikrocontroller.net/articles/AVR_Arithmetik
// http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
//
// https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
// https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
// https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
//
// https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
// https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
// https://github.com/rekka/avrmultiplication
//
// https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
// https://courses.cit.cornell.edu/ee476/Math/
// https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
//
void planner_recalculate(const float &safe_final_speed)
{
// Reverse pass
// Make a local copy of block_buffer_tail, because the interrupt can alter it
// by consuming the blocks, therefore shortening the queue.
unsigned char tail = block_buffer_tail;
uint8_t block_index;
block_t *prev, *current, *next;
// SERIAL_ECHOLNPGM("planner_recalculate - 1");
// At least three blocks are in the queue?
unsigned char n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
if (n_blocks >= 3) {
// Initialize the last tripple of blocks.
block_index = prev_block_index(block_buffer_head);
next = block_buffer + block_index;
current = block_buffer + (block_index = prev_block_index(block_index));
// No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
// Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
// 1) it may already be running at the stepper interrupt,
// 2) there is no way to limit it when going in the forward direction.
while (block_index != tail) {
if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
// Don't modify the entry velocity of the starting block.
// Also don't modify the trapezoids before this block, they are finalized already, prepared
// for the stepper interrupt routine to use them.
tail = block_index;
// Update the number of blocks to process.
n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
// SERIAL_ECHOLNPGM("START");
break;
}
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
// If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
// check for maximum allowable speed reductions to ensure maximum possible planned speed.
if (current->entry_speed != current->max_entry_speed) {
// assert(current->entry_speed < current->max_entry_speed);
// Entry speed could be increased up to the max_entry_speed, limited by the length of the current
// segment and the maximum acceleration allowed for this segment.
// If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
// Only compute for max allowable speed if block is decelerating and nominal length is false.
// entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
// therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
// together with an assembly 32bit->16bit sqrt function.
current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
current->max_entry_speed :
// min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
current->flag |= BLOCK_FLAG_RECALCULATE;
}
next = current;
current = block_buffer + (block_index = prev_block_index(block_index));
}
}
// SERIAL_ECHOLNPGM("planner_recalculate - 2");
// Forward pass and recalculate the trapezoids.
if (n_blocks >= 2) {
// Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
block_index = tail;
prev = block_buffer + block_index;
current = block_buffer + (block_index = next_block_index(block_index));
do {
// If the previous block is an acceleration block, but it is not long enough to complete the
// full speed change within the block, we need to adjust the entry speed accordingly. Entry
// speeds have already been reset, maximized, and reverse planned by reverse planner.
// If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
// Check for junction speed change
if (current->entry_speed != entry_speed) {
current->entry_speed = entry_speed;
current->flag |= BLOCK_FLAG_RECALCULATE;
}
}
// Recalculate if current block entry or exit junction speed has changed.
if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
// Reset current only to ensure next trapezoid is computed.
prev->flag &= ~BLOCK_FLAG_RECALCULATE;
}
prev = current;
current = block_buffer + (block_index = next_block_index(block_index));
} while (block_index != block_buffer_head);
}
// SERIAL_ECHOLNPGM("planner_recalculate - 3");
// Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
current = block_buffer + prev_block_index(block_buffer_head);
calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
current->flag &= ~BLOCK_FLAG_RECALCULATE;
// SERIAL_ECHOLNPGM("planner_recalculate - 4");
}
void plan_init() {
block_buffer_head = 0;
block_buffer_tail = 0;
memset(position, 0, sizeof(position)); // clear position
previous_speed[0] = 0.0;
previous_speed[1] = 0.0;
previous_speed[2] = 0.0;
previous_speed[3] = 0.0;
previous_nominal_speed = 0.0;
}
#ifdef AUTOTEMP
void getHighESpeed()
{
static float oldt=0;
if(!autotemp_enabled){
return;
}
if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
return; //do nothing
}
float high=0.0;
uint8_t block_index = block_buffer_tail;
while(block_index != block_buffer_head) {
if((block_buffer[block_index].steps_x != 0) ||
(block_buffer[block_index].steps_y != 0) ||
(block_buffer[block_index].steps_z != 0)) {
float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
//se; mm/sec;
if(se>high)
{
high=se;
}
}
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
}
float g=autotemp_min+high*autotemp_factor;
float t=g;
if(t<autotemp_min)
t=autotemp_min;
if(t>autotemp_max)
t=autotemp_max;
if(oldt>t)
{
t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
}
oldt=t;
setTargetHotend0(t);
}
#endif
void check_axes_activity()
{
unsigned char x_active = 0;
unsigned char y_active = 0;
unsigned char z_active = 0;
unsigned char e_active = 0;
unsigned char tail_fan_speed = fanSpeed;
block_t *block;
if(block_buffer_tail != block_buffer_head)
{
uint8_t block_index = block_buffer_tail;
tail_fan_speed = block_buffer[block_index].fan_speed;
while(block_index != block_buffer_head)
{
block = &block_buffer[block_index];
if(block->steps_x != 0) x_active++;
if(block->steps_y != 0) y_active++;
if(block->steps_z != 0) z_active++;
if(block->steps_e != 0) e_active++;
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
}
}
if((DISABLE_X) && (x_active == 0)) disable_x();
if((DISABLE_Y) && (y_active == 0)) disable_y();
if((DISABLE_Z) && (z_active == 0)) disable_z();
if((DISABLE_E) && (e_active == 0))
{
disable_e0();
disable_e1();
disable_e2();
}
#if defined(FAN_PIN) && FAN_PIN > -1
#ifdef FAN_KICKSTART_TIME
static unsigned long fan_kick_end;
if (tail_fan_speed) {
if (fan_kick_end == 0) {
// Just starting up fan - run at full power.
fan_kick_end = millis() + FAN_KICKSTART_TIME;
tail_fan_speed = 255;
} else if (fan_kick_end > millis())
// Fan still spinning up.
tail_fan_speed = 255;
} else {
fan_kick_end = 0;
}
#endif//FAN_KICKSTART_TIME
#ifdef FAN_SOFT_PWM
fanSpeedSoftPwm = tail_fan_speed;
#else
analogWrite(FAN_PIN,tail_fan_speed);
#endif//!FAN_SOFT_PWM
#endif//FAN_PIN > -1
#ifdef AUTOTEMP
getHighESpeed();
#endif
}
bool waiting_inside_plan_buffer_line_print_aborted = false;
/*
void planner_abort_soft()
{
// Empty the queue.
while (blocks_queued()) plan_discard_current_block();
// Relay to planner wait routine, that the current line shall be canceled.
waiting_inside_plan_buffer_line_print_aborted = true;
//current_position[i]
}
*/
#ifdef PLANNER_DIAGNOSTICS
static inline void planner_update_queue_min_counter()
{
uint8_t new_counter = moves_planned();
if (new_counter < g_cntr_planner_queue_min)
g_cntr_planner_queue_min = new_counter;
}
#endif /* PLANNER_DIAGNOSTICS */
void planner_abort_hard()
{
// Abort the stepper routine and flush the planner queue.
quickStop();
// Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
// First update the planner's current position in the physical motor steps.
position[X_AXIS] = st_get_position(X_AXIS);
position[Y_AXIS] = st_get_position(Y_AXIS);
position[Z_AXIS] = st_get_position(Z_AXIS);
position[E_AXIS] = st_get_position(E_AXIS);
// Second update the current position of the front end.
current_position[X_AXIS] = st_get_position_mm(X_AXIS);
current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
current_position[E_AXIS] = st_get_position_mm(E_AXIS);
// Apply the mesh bed leveling correction to the Z axis.
#ifdef MESH_BED_LEVELING
if (mbl.active)
current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
#endif
// Apply inverse world correction matrix.
machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
memcpy(destination, current_position, sizeof(destination));
// Resets planner junction speeds. Assumes start from rest.
previous_nominal_speed = 0.0;
previous_speed[0] = 0.0;
previous_speed[1] = 0.0;
previous_speed[2] = 0.0;
previous_speed[3] = 0.0;
// Relay to planner wait routine, that the current line shall be canceled.
waiting_inside_plan_buffer_line_print_aborted = true;
}
float junction_deviation = 0.1;
// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
// calculation the caller must also provide the physical length of the line in millimeters.
void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
{
// Calculate the buffer head after we push this byte
int next_buffer_head = next_block_index(block_buffer_head);
// If the buffer is full: good! That means we are well ahead of the robot.
// Rest here until there is room in the buffer.
if (block_buffer_tail == next_buffer_head) {
waiting_inside_plan_buffer_line_print_aborted = false;
do {
manage_heater();
// Vojtech: Don't disable motors inside the planner!
manage_inactivity(false);
lcd_update();
} while (block_buffer_tail == next_buffer_head);
if (waiting_inside_plan_buffer_line_print_aborted) {
// Inside the lcd_update() routine the print has been aborted.
// Cancel the print, do not plan the current line this routine is waiting on.
#ifdef PLANNER_DIAGNOSTICS
planner_update_queue_min_counter();
#endif /* PLANNER_DIAGNOSTICS */
return;
}
}
#ifdef PLANNER_DIAGNOSTICS
planner_update_queue_min_counter();
#endif /* PLANNER_DIAGNOSTICS */
#ifdef ENABLE_AUTO_BED_LEVELING
apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
#endif // ENABLE_AUTO_BED_LEVELING
// Apply the machine correction matrix.
{
#if 0
SERIAL_ECHOPGM("Planner, current position - servos: ");
MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("Planner, target position, initial: ");
MYSERIAL.print(x, 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(y, 5);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("Planner, world2machine: ");
MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("Planner, offset: ");
MYSERIAL.print(world2machine_shift[0], 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(world2machine_shift[1], 5);
SERIAL_ECHOLNPGM("");
#endif
world2machine(x, y);
#if 0
SERIAL_ECHOPGM("Planner, target position, corrected: ");
MYSERIAL.print(x, 5);
SERIAL_ECHOPGM(", ");
MYSERIAL.print(y, 5);
SERIAL_ECHOLNPGM("");
#endif
}
// The target position of the tool in absolute steps
// Calculate target position in absolute steps
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
long target[4];
target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
#ifdef MESH_BED_LEVELING
if (mbl.active){
target[Z_AXIS] = lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]);
}else{
target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
}
#else
target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
#endif // ENABLE_MESH_BED_LEVELING
target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
#ifdef PREVENT_DANGEROUS_EXTRUDE
if(target[E_AXIS]!=position[E_AXIS])
{
if(degHotend(active_extruder)<extrude_min_temp)
{
position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
SERIAL_ECHO_START;
SERIAL_ECHOLNRPGM(MSG_ERR_COLD_EXTRUDE_STOP);
}
#ifdef PREVENT_LENGTHY_EXTRUDE
if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
{
position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
SERIAL_ECHO_START;
SERIAL_ECHOLNRPGM(MSG_ERR_LONG_EXTRUDE_STOP);
}
#endif
}
#endif
// Prepare to set up new block
block_t *block = &block_buffer[block_buffer_head];
// Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
block->busy = false;
// Number of steps for each axis
#ifndef COREXY
// default non-h-bot planning
block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
#else
// corexy planning
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
#endif
block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
if (volumetric_multiplier[active_extruder] != 1.f)
block->steps_e *= volumetric_multiplier[active_extruder];
if (extrudemultiply != 100) {
block->steps_e *= extrudemultiply;
block->steps_e /= 100;
}
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
// Bail if this is a zero-length block
if (block->step_event_count <= dropsegments)
{
#ifdef PLANNER_DIAGNOSTICS
planner_update_queue_min_counter();
#endif /* PLANNER_DIAGNOSTICS */
return;
}
block->fan_speed = fanSpeed;
// Compute direction bits for this block
block->direction_bits = 0;
#ifndef COREXY
if (target[X_AXIS] < position[X_AXIS])
{
block->direction_bits |= (1<<X_AXIS);
}
if (target[Y_AXIS] < position[Y_AXIS])
{
block->direction_bits |= (1<<Y_AXIS);
}
#else
if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
{
block->direction_bits |= (1<<X_AXIS);
}
if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
{
block->direction_bits |= (1<<Y_AXIS);
}
#endif
if (target[Z_AXIS] < position[Z_AXIS])
{
block->direction_bits |= (1<<Z_AXIS);
}
if (target[E_AXIS] < position[E_AXIS])
{
block->direction_bits |= (1<<E_AXIS);
}
block->active_extruder = extruder;
//enable active axes
#ifdef COREXY
if((block->steps_x != 0) || (block->steps_y != 0))
{
enable_x();
enable_y();
}
#else
if(block->steps_x != 0) enable_x();
if(block->steps_y != 0) enable_y();
#endif
#ifndef Z_LATE_ENABLE
if(block->steps_z != 0) enable_z();
#endif
// Enable extruder(s)
if(block->steps_e != 0)
{
if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
{
if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
switch(extruder)
{
case 0:
enable_e0();
g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
if(g_uc_extruder_last_move[1] == 0) disable_e1();
if(g_uc_extruder_last_move[2] == 0) disable_e2();
break;
case 1:
enable_e1();
g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
if(g_uc_extruder_last_move[0] == 0) disable_e0();
if(g_uc_extruder_last_move[2] == 0) disable_e2();
break;
case 2:
enable_e2();
g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
if(g_uc_extruder_last_move[0] == 0) disable_e0();
if(g_uc_extruder_last_move[1] == 0) disable_e1();
break;
}
}
else //enable all
{
enable_e0();
enable_e1();
enable_e2();
}
}
if (block->steps_e == 0)
{
if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
}
else
{
if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
}
/* This part of the code calculates the total length of the movement.
For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
*/
#ifndef COREXY
float delta_mm[4];
delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
#else
float delta_mm[6];
delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];
delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
#endif
delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*volumetric_multiplier[active_extruder]*extrudemultiply/100.0;
if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
{
block->millimeters = fabs(delta_mm[E_AXIS]);
}
else
{
#ifndef COREXY
block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
#else
block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
#endif
}
float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
// Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
float inverse_second = feed_rate * inverse_millimeters;
int moves_queued = moves_planned();
// slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
#ifdef SLOWDOWN
//FIXME Vojtech: Why moves_queued > 1? Why not >=1?
// Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
// segment time in micro seconds
unsigned long segment_time = lround(1000000.0/inverse_second);
if (segment_time < minsegmenttime)
// buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
}
#endif // SLOWDOWN
block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
#ifdef FILAMENT_SENSOR
//FMM update ring buffer used for delay with filament measurements
if((extruder==FILAMENT_SENSOR_EXTRUDER_NUM) && (delay_index2 > -1)) //only for extruder with filament sensor and if ring buffer is initialized
{
delay_dist = delay_dist + delta_mm[E_AXIS]; //increment counter with next move in e axis
while (delay_dist >= (10*(MAX_MEASUREMENT_DELAY+1))) //check if counter is over max buffer size in mm
delay_dist = delay_dist - 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
while (delay_dist<0)
delay_dist = delay_dist + 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
delay_index1=delay_dist/10.0; //calculate index
//ensure the number is within range of the array after converting from floating point
if(delay_index1<0)
delay_index1=0;
else if (delay_index1>MAX_MEASUREMENT_DELAY)
delay_index1=MAX_MEASUREMENT_DELAY;
if(delay_index1 != delay_index2) //moved index
{
meas_sample=widthFil_to_size_ratio()-100; //subtract off 100 to reduce magnitude - to store in a signed char
}
while( delay_index1 != delay_index2)
{
delay_index2 = delay_index2 + 1;
if(delay_index2>MAX_MEASUREMENT_DELAY)
delay_index2=delay_index2-(MAX_MEASUREMENT_DELAY+1); //loop around buffer when incrementing
if(delay_index2<0)
delay_index2=0;
else if (delay_index2>MAX_MEASUREMENT_DELAY)
delay_index2=MAX_MEASUREMENT_DELAY;
measurement_delay[delay_index2]=meas_sample;
}
}
#endif
// Calculate and limit speed in mm/sec for each axis
float current_speed[4];
float speed_factor = 1.0; //factor <=1 do decrease speed
for(int i=0; i < 4; i++)
{
current_speed[i] = delta_mm[i] * inverse_second;
if(fabs(current_speed[i]) > max_feedrate[i])
speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
}
// Correct the speed
if( speed_factor < 1.0)
{
for(unsigned char i=0; i < 4; i++)
{
current_speed[i] *= speed_factor;
}
block->nominal_speed *= speed_factor;
block->nominal_rate *= speed_factor;
}
// Compute and limit the acceleration rate for the trapezoid generator.
// block->step_event_count ... event count of the fastest axis
// block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
float steps_per_mm = block->step_event_count/block->millimeters;
if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
{
block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
}
else
{
block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
// Limit acceleration per axis
//FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
}
// Acceleration of the segment, in mm/sec^2
block->acceleration = block->acceleration_st / steps_per_mm;
#if 1
// Oversample diagonal movements by a power of 2 up to 8x
// to achieve more accurate diagonal movements.
uint8_t bresenham_oversample = 1;
for (uint8_t i = 0; i < 3; ++ i) {
if (block->nominal_rate >= 5000) // 5kHz
break;
block->nominal_rate << 1;
bresenham_oversample << 1;
block->step_event_count << 1;
}
if (bresenham_oversample > 1)
// Lower the acceleration steps/sec^2 to account for the oversampling.
block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
#endif
block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
// Start with a safe speed.
// Safe speed is the speed, from which the machine may halt to stop immediately.