Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add option to use BBox tracking with SORT algorithm: #11

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -91,6 +91,11 @@ optional arguments:
This argument is expected in JSON notation. For a list
of possible options, refer to the ffmpeg-imageio docs.
Default: '{"codec": "libx264"}'.
--track-config SORT arguments for bounding-box detection tracking, or
None if tracking should not be used.
This argument is expected in JSON notation. For a list
of possible options, refer to the original SORT repository.
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

SORT is quite hard to discover through Google, so I'd rather link directly to its options or describe them, maybe based on the help texts provided here: https://github.com/abewley/sort/blob/master/sort.py#L261-L267

Default: None.
--backend {auto,onnxrt,opencv}
Backend for ONNX model execution. Default: "auto"
(prefer onnxrt if available).
Expand Down
19 changes: 17 additions & 2 deletions deface/deface.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@

from deface import __version__
from deface.centerface import CenterFace
from deface.sort import Sort


# TODO: Optionally preserve audio track?
Expand Down Expand Up @@ -101,7 +102,8 @@ def video_detect(
mask_scale: float,
ellipse: bool,
draw_scores: bool,
ffmpeg_config: Dict[str, str]
ffmpeg_config: Dict[str, str],
tracking_kwargs: Dict[str, float],
):
try:
reader: imageio.plugins.ffmpeg.FfmpegFormat.Reader = imageio.get_reader(ipath)
Expand Down Expand Up @@ -130,10 +132,17 @@ def video_detect(
opath, format='FFMPEG', mode='I', fps=meta['fps'], **ffmpeg_config
)

if tracking_kwargs is not None:
# use SORT BBox tracker from: https://github.com/abewley/sort
tracker = Sort(**tracking_kwargs)

for frame in read_iter:
# Perform network inference, get bb dets but discard landmark predictions
dets, _ = centerface(frame, threshold=threshold)

if tracking_kwargs is not None:
dets = tracker.update(dets)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

If you just replace dets with the tracker.update() result, the 5th entry of each detection array, which originally contains the detection score, is replaced with the (integer) object ID (https://github.com/ORB-HD/deface/pull/11/files#diff-3842ed04dbf395f7ad3f223e01881b86518e46e46fa6bd80e60467d970bdf5a4R205). The score should be kept so it can be visualized later with --draw-scores.


anonymize_frame(
dets, frame, mask_scale=mask_scale,
replacewith=replacewith, ellipse=ellipse, draw_scores=draw_scores
Expand Down Expand Up @@ -232,6 +241,10 @@ def parse_cli_args():
'--ffmpeg-config', default={"codec": "libx264"}, type=json.loads,
help='FFMPEG config arguments for encoding output videos. This argument is expected in JSON notation. For a list of possible options, refer to the ffmpeg-imageio docs. Default: \'{"codec": "libx264"}\'.'
) # See https://imageio.readthedocs.io/en/stable/format_ffmpeg.html#parameters-for-saving
parser.add_argument(
'--track-config', default=None, type=json.loads,
help='SORT arguments for bounding-box detection tracking, or None if tracking should not be used. This argument is expected in JSON notation. For a list of possible options, refer to the original SORT repository. Default: None.'
) # see https://github.com/abewley/sort/blob/master/sort.py#L199
parser.add_argument(
'--backend', default='auto', choices=['auto', 'onnxrt', 'opencv'],
help='Backend for ONNX model execution. Default: "auto" (prefer onnxrt if available).')
Expand Down Expand Up @@ -268,6 +281,7 @@ def main():
ffmpeg_config = args.ffmpeg_config
backend = args.backend
in_shape = args.scale
track_config = args.track_config
if in_shape is not None:
w, h = in_shape.split('x')
in_shape = int(w), int(h)
Expand Down Expand Up @@ -306,7 +320,8 @@ def main():
draw_scores=draw_scores,
enable_preview=enable_preview,
nested=multi_file,
ffmpeg_config=ffmpeg_config
ffmpeg_config=ffmpeg_config,
tracking_kwargs=track_config
)
elif filetype == 'image':
image_detect(
Expand Down
245 changes: 245 additions & 0 deletions deface/sort.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,245 @@
"""
SORT: A Simple, Online and Realtime Tracker
Copyright (C) 2016-2020 Alex Bewley alex@bewley.ai
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""

import numpy as np
from filterpy.kalman import KalmanFilter


def linear_assignment(cost_matrix):
try:
import lap
_, x, y = lap.lapjv(cost_matrix, extend_cost=True)
return np.array([[y[i], i] for i in x if i >= 0]) #
except ImportError:
from scipy.optimize import linear_sum_assignment
x, y = linear_sum_assignment(cost_matrix)
return np.array(list(zip(x, y)))


def iou_batch(bb_test, bb_gt):
"""
From SORT: Computes IOU between two bboxes in the form [x1,y1,x2,y2]
"""
bb_gt = np.expand_dims(bb_gt, 0)
bb_test = np.expand_dims(bb_test, 1)

xx1 = np.maximum(bb_test[..., 0], bb_gt[..., 0])
yy1 = np.maximum(bb_test[..., 1], bb_gt[..., 1])
xx2 = np.minimum(bb_test[..., 2], bb_gt[..., 2])
yy2 = np.minimum(bb_test[..., 3], bb_gt[..., 3])
w = np.maximum(0., xx2 - xx1)
h = np.maximum(0., yy2 - yy1)
wh = w * h
o = wh / ((bb_test[..., 2] - bb_test[..., 0]) * (bb_test[..., 3] - bb_test[..., 1])
+ (bb_gt[..., 2] - bb_gt[..., 0]) * (bb_gt[..., 3] - bb_gt[..., 1]) - wh)
return (o)


def convert_bbox_to_z(bbox):
"""
Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form
[x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is
the aspect ratio
"""
w = bbox[2] - bbox[0]
h = bbox[3] - bbox[1]
x = bbox[0] + w / 2.
y = bbox[1] + h / 2.
s = w * h # scale is just area
r = w / float(h)
return np.array([x, y, s, r]).reshape((4, 1))


def convert_x_to_bbox(x, score=None):
"""
Takes a bounding box in the centre form [x,y,s,r] and returns it in the form
[x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right
"""
w = np.sqrt(x[2] * x[3])
h = x[2] / w
if (score == None):
return np.array([x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2.]).reshape(
(1, 4))
else:
return np.array(
[x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2., score]).reshape(
(1, 5))


class KalmanBoxTracker(object):
"""
This class represents the internal state of individual tracked objects observed as bbox.
"""
count = 0

def __init__(self, bbox):
"""
Initialises a tracker using initial bounding box.
"""
# define constant velocity model
self.kf = KalmanFilter(dim_x=7, dim_z=4)
self.kf.F = np.array([[1, 0, 0, 0, 1, 0, 0], [0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 0, 1],
[0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 1]])
self.kf.H = np.array([[1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0]])

self.kf.R[2:, 2:] *= 10.
self.kf.P[4:, 4:] *= 1000. # give high uncertainty to the unobservable initial velocities
self.kf.P *= 10.
self.kf.Q[-1, -1] *= 0.01
self.kf.Q[4:, 4:] *= 0.01

self.kf.x[:4] = convert_bbox_to_z(bbox)
self.time_since_update = 0
self.id = KalmanBoxTracker.count
KalmanBoxTracker.count += 1
self.history = []
self.hits = 0
self.hit_streak = 0
self.age = 0

def update(self, bbox):
"""
Updates the state vector with observed bbox.
"""
self.time_since_update = 0
self.history = []
self.hits += 1
self.hit_streak += 1
self.kf.update(convert_bbox_to_z(bbox))

def predict(self):
"""
Advances the state vector and returns the predicted bounding box estimate.
"""
if ((self.kf.x[6] + self.kf.x[2]) <= 0):
self.kf.x[6] *= 0.0
self.kf.predict()
self.age += 1
if (self.time_since_update > 0):
self.hit_streak = 0
self.time_since_update += 1
self.history.append(convert_x_to_bbox(self.kf.x))
return self.history[-1]

def get_state(self):
"""
Returns the current bounding box estimate.
"""
return convert_x_to_bbox(self.kf.x)


def associate_detections_to_trackers(detections, trackers, iou_threshold=0.3):
"""
Assigns detections to tracked object (both represented as bounding boxes)
Returns 3 lists of matches, unmatched_detections and unmatched_trackers
"""
if (len(trackers) == 0):
return np.empty((0, 2), dtype=int), np.arange(len(detections)), np.empty((0, 5), dtype=int)

iou_matrix = iou_batch(detections, trackers)

if min(iou_matrix.shape) > 0:
a = (iou_matrix > iou_threshold).astype(np.int32)
if a.sum(1).max() == 1 and a.sum(0).max() == 1:
matched_indices = np.stack(np.where(a), axis=1)
else:
matched_indices = linear_assignment(-iou_matrix)
else:
matched_indices = np.empty(shape=(0, 2))

unmatched_detections = []
for d, det in enumerate(detections):
if (d not in matched_indices[:, 0]):
unmatched_detections.append(d)
unmatched_trackers = []
for t, trk in enumerate(trackers):
if (t not in matched_indices[:, 1]):
unmatched_trackers.append(t)

# filter out matched with low IOU
matches = []
for m in matched_indices:
if (iou_matrix[m[0], m[1]] < iou_threshold):
unmatched_detections.append(m[0])
unmatched_trackers.append(m[1])
else:
matches.append(m.reshape(1, 2))
if (len(matches) == 0):
matches = np.empty((0, 2), dtype=int)
else:
matches = np.concatenate(matches, axis=0)

return matches, np.array(unmatched_detections), np.array(unmatched_trackers)


class Sort(object):
def __init__(self, max_age=1, min_hits=3, iou_threshold=0.3):
"""
Sets key parameters for SORT
"""
self.max_age = max_age
self.min_hits = min_hits
self.iou_threshold = iou_threshold
self.trackers = []
self.frame_count = 0

def update(self, dets=np.empty((0, 5))):
"""
Params:
dets - a numpy array of detections in the format [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...]
Requires: this method must be called once for each frame even with empty detections (use np.empty((0, 5)) for frames without detections).
Returns the a similar array, where the last column is the object ID.
NOTE: The number of objects returned may differ from the number of detections provided.
"""
self.frame_count += 1
# get predicted locations from existing trackers.
trks = np.zeros((len(self.trackers), 5))
to_del = []
ret = []
for t, trk in enumerate(trks):
pos = self.trackers[t].predict()[0]
trk[:] = [pos[0], pos[1], pos[2], pos[3], 0]
if np.any(np.isnan(pos)):
to_del.append(t)
trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
for t in reversed(to_del):
self.trackers.pop(t)
matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets, trks,
self.iou_threshold)

# update matched trackers with assigned detections
for m in matched:
self.trackers[m[1]].update(dets[m[0], :])

# create and initialise new trackers for unmatched detections
for i in unmatched_dets:
trk = KalmanBoxTracker(dets[i, :])
self.trackers.append(trk)
i = len(self.trackers)
for trk in reversed(self.trackers):
d = trk.get_state()[0]
if (trk.time_since_update < 1) and (
trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits):
ret.append(np.concatenate((d, [trk.id + 1])).reshape(1,
-1)) # +1 as MOT benchmark requires positive
i -= 1
# remove dead tracklet
if (trk.time_since_update > self.max_age):
self.trackers.pop(i)
if (len(ret) > 0):
return np.concatenate(ret)
return np.empty((0, 5))
3 changes: 2 additions & 1 deletion requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -3,4 +3,5 @@ imageio-ffmpeg
numpy
tqdm
scikit-image
opencv-python
opencv-python
filterpy
1 change: 1 addition & 0 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@
'tqdm',
'scikit-image',
'opencv-python',
'filterpy',
],
extras_require={
'gpu': ['onnxruntime-gpu'],
Expand Down