-
Notifications
You must be signed in to change notification settings - Fork 13
/
bulkmodel.py
411 lines (345 loc) · 19.1 KB
/
bulkmodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import argparse
import logging
import sys
import time
import warnings
import os
import numpy as np
import pandas as pd
import torch
from scipy.stats import pearsonr
from sklearn import preprocessing
from sklearn.dummy import DummyClassifier
from sklearn.metrics import (average_precision_score,
classification_report, mean_squared_error, r2_score, roc_auc_score)
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from torch import nn, optim
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader, TensorDataset
from sklearn.decomposition import PCA
import sampling as sam
import utils as ut
import trainers as t
from models import (AEBase,PretrainedPredictor, PretrainedVAEPredictor, VAEBase)
import matplotlib
import random
seed=42
torch.manual_seed(seed)
#np.random.seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
#from transformers import *
random.seed(seed)
np.random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
#torch.manual_seed(seed)
#torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark=False
def run_main(args):
#args.checkpoint = "save/bulk_pre/integrate_data_GSE112274_drug_GEFITINIB_bottle_256_edim_512,256_pdim_256,128_model_DAE_dropout_0.1_gene_F_lr_0.5_mod_new_sam_no"
if(args.checkpoint not in ["False","True"]):
selected_model = args.checkpoint
split_name = selected_model.split("/")[-1].split("_")
para_names = (split_name[1::2])
paras = (split_name[0::2])
args.encoder_hdims = paras[4]
args.predictor_h_dims = paras[5]
args.bottleneck = int(paras[3])
args.drug = paras[2]
args.dropout = float(paras[7])
args.dimreduce = paras[6]
# Extract parameters
epochs = args.epochs
dim_au_out = args.bottleneck #8, 16, 32, 64, 128, 256,512
select_drug = args.drug.upper()
na = args.missing_value
data_path = args.data
label_path = args.label
test_size = args.test_size
valid_size = args.valid_size
g_disperson = args.var_genes_disp
log_path = args.log
batch_size = args.batch_size
encoder_hdims = args.encoder_h_dims.split(",")
preditor_hdims = args.predictor_h_dims.split(",")
reduce_model = args.dimreduce
sampling = args.sampling
PCA_dim = args.PCA_dim
encoder_hdims = list(map(int, encoder_hdims) )
preditor_hdims = list(map(int, preditor_hdims) )
load_model = bool(args.load_source_model)
para = str(args.bulk)+"_data_"+str(args.data_name)+"_drug_"+str(args.drug)+"_bottle_"+str(args.bottleneck)+"_edim_"+str(args.encoder_h_dims)+"_pdim_"+str(args.predictor_h_dims)+"_model_"+reduce_model+"_dropout_"+str(args.dropout)+"_gene_"+str(args.printgene)+"_lr_"+str(args.lr)+"_mod_"+str(args.mod)+"_sam_"+str(args.sampling) #(para)
now=time.strftime("%Y-%m-%d-%H-%M-%S")
for path in [args.log,args.bulk_model,args.bulk_encoder,'save/ori_result','save/figures']:
if not os.path.exists(path):
# Create a new directory because it does not exist
os.makedirs(path)
print("The new directory is created!")
#print(preditor_path )
#model_path = args.bulk_model + para
# Load model from checkpoint
if(args.checkpoint not in ["False","True"]):
para = os.path.basename(selected_model).split("_DaNN.pkl")[0]
args.checkpoint = 'True'
preditor_path = args.bulk_model + para
bulk_encoder = args.bulk_encoder+para
# Read data
data_r=pd.read_csv(data_path,index_col=0)
label_r=pd.read_csv(label_path,index_col=0)
if args.bulk == 'old':
data_r=data_r[0:805]
label_r=label_r[0:805]
elif args.bulk == 'new':
data_r=data_r[805:data_r.shape[0]]
label_r=label_r[805:label_r.shape[0]]
else:
print("two databases combine")
label_r=label_r.fillna(na)
ut.save_arguments(args,now)
# Initialize logging and std out
out_path = log_path+now+"bulk.err"
log_path = log_path+now+"bulk.log"
out=open(out_path,"w")
sys.stderr=out
logging.basicConfig(level=logging.INFO,
filename=log_path,
filemode='a',
format=
'%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s'
)
logging.getLogger('matplotlib.font_manager').disabled = True
logging.info(args)
# Filter out na values
selected_idx = label_r.loc[:,select_drug]!=na
if(g_disperson!=None):
hvg,adata = ut.highly_variable_genes(data_r,min_disp=g_disperson)
# Rename columns if duplication exist
data_r.columns = adata.var_names
# Extract hvgs
data = data_r.loc[selected_idx,hvg]
else:
data = data_r.loc[selected_idx,:]
# Do PCA if PCA_dim!=0
if PCA_dim !=0 :
data = PCA(n_components = PCA_dim).fit_transform(data)
else:
data = data
# Extract labels
label = label_r.loc[selected_idx,select_drug]
data_r = data_r.loc[selected_idx,:]
# Scaling data
mmscaler = preprocessing.MinMaxScaler()
data = mmscaler.fit_transform(data)
label = label.values.reshape(-1,1)
le = LabelEncoder()
label = le.fit_transform(label)
dim_model_out = 2
#label = label.values.reshape(-1,1)
logging.info(np.std(data))
logging.info(np.mean(data))
# Split traning valid test set
X_train_all, X_test, Y_train_all, Y_test = train_test_split(data, label, test_size=test_size, random_state=42)
X_train, X_valid, Y_train, Y_valid = train_test_split(X_train_all, Y_train_all, test_size=valid_size, random_state=42)
# sampling method
if sampling == "no":
X_train,Y_train=sam.nosampling(X_train,Y_train)
logging.info("nosampling")
elif sampling =="upsampling":
X_train,Y_train=sam.upsampling(X_train,Y_train)
logging.info("upsampling")
elif sampling =="downsampling":
X_train,Y_train=sam.downsampling(X_train,Y_train)
logging.info("downsampling")
elif sampling=="SMOTE":
X_train,Y_train=sam.SMOTEsampling(X_train,Y_train)
logging.info("SMOTE")
else:
logging.info("not a legal sampling method")
# Select the Training device
if(args.device == "gpu"):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch.cuda.set_device(device)
else:
device = 'cpu'
#print(device)
# Assuming that we are on a CUDA machine, this should print a CUDA device:
#logging.info(device)
print(device)
# Construct datasets and data loaders
X_trainTensor = torch.FloatTensor(X_train).to(device)
X_validTensor = torch.FloatTensor(X_valid).to(device)
X_testTensor = torch.FloatTensor(X_test).to(device)
Y_trainTensor = torch.LongTensor(Y_train).to(device)
Y_validTensor = torch.LongTensor(Y_valid).to(device)
# Preprocess data to tensor
train_dataset = TensorDataset(X_trainTensor, X_trainTensor)
valid_dataset = TensorDataset(X_validTensor, X_validTensor)
X_trainDataLoader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
X_validDataLoader = DataLoader(dataset=valid_dataset, batch_size=batch_size, shuffle=True)
# construct TensorDataset
trainreducedDataset = TensorDataset(X_trainTensor, Y_trainTensor)
validreducedDataset = TensorDataset(X_validTensor, Y_validTensor)
trainDataLoader_p = DataLoader(dataset=trainreducedDataset, batch_size=batch_size, shuffle=True)
validDataLoader_p = DataLoader(dataset=validreducedDataset, batch_size=batch_size, shuffle=True)
bulk_X_allTensor = torch.FloatTensor(data).to(device)
bulk_Y_allTensor = torch.LongTensor(label).to(device)
dataloaders_train = {'train':trainDataLoader_p,'val':validDataLoader_p}
print("bulk_X_allRensor",bulk_X_allTensor.shape)
if(str(args.pretrain)!="False"):
dataloaders_pretrain = {'train':X_trainDataLoader,'val':X_validDataLoader}
if reduce_model == "VAE":
encoder = VAEBase(input_dim=data.shape[1],latent_dim=dim_au_out,h_dims=encoder_hdims,drop_out=args.dropout)
if reduce_model == 'AE':
encoder = AEBase(input_dim=data.shape[1],latent_dim=dim_au_out,h_dims=encoder_hdims,drop_out=args.dropout)
if reduce_model =='DAE':
encoder = AEBase(input_dim=data.shape[1],latent_dim=dim_au_out,h_dims=encoder_hdims,drop_out=args.dropout)
#if torch.cuda.is_available():
# encoder.cuda()
#logging.info(encoder)
encoder.to(device)
#print(encoder)
optimizer_e = optim.Adam(encoder.parameters(), lr=1e-2)
loss_function_e = nn.MSELoss()
exp_lr_scheduler_e = lr_scheduler.ReduceLROnPlateau(optimizer_e)
# Load from checkpoint if checkpoint path is provided
if(args.checkpoint != "False"):
load = bulk_encoder
else:
load = False
if reduce_model == "AE":
encoder,loss_report_en = t.train_AE_model(net=encoder,data_loaders=dataloaders_pretrain,
optimizer=optimizer_e,loss_function=loss_function_e,load=load,
n_epochs=epochs,scheduler=exp_lr_scheduler_e,save_path=bulk_encoder)
elif reduce_model == "VAE":
encoder,loss_report_en = t.train_VAE_model(net=encoder,data_loaders=dataloaders_pretrain,
optimizer=optimizer_e,load=False,
n_epochs=epochs,scheduler=exp_lr_scheduler_e,save_path=bulk_encoder)
if reduce_model == "DAE":
encoder,loss_report_en = t.train_DAE_model(net=encoder,data_loaders=dataloaders_pretrain,
optimizer=optimizer_e,loss_function=loss_function_e,load=load,
n_epochs=epochs,scheduler=exp_lr_scheduler_e,save_path=bulk_encoder)
#logging.info("Pretrained finished")
# Defined the model of predictor
if reduce_model == "AE":
model = PretrainedPredictor(input_dim=X_train.shape[1],latent_dim=dim_au_out,h_dims=encoder_hdims,
hidden_dims_predictor=preditor_hdims,output_dim=dim_model_out,
pretrained_weights=bulk_encoder,freezed=bool(args.freeze_pretrain),drop_out=args.dropout,drop_out_predictor=args.dropout)
if reduce_model == "DAE":
model = PretrainedPredictor(input_dim=X_train.shape[1],latent_dim=dim_au_out,h_dims=encoder_hdims,
hidden_dims_predictor=preditor_hdims,output_dim=dim_model_out,
pretrained_weights=bulk_encoder,freezed=bool(args.freeze_pretrain),drop_out=args.dropout,drop_out_predictor=args.dropout)
elif reduce_model == "VAE":
model = PretrainedVAEPredictor(input_dim=X_train.shape[1],latent_dim=dim_au_out,h_dims=encoder_hdims,
hidden_dims_predictor=preditor_hdims,output_dim=dim_model_out,
pretrained_weights=bulk_encoder,freezed=bool(args.freeze_pretrain),z_reparam=bool(args.VAErepram),drop_out=args.dropout,drop_out_predictor=args.dropout)
#print("@@@@@@@@@@@")
logging.info("Current model is:")
logging.info(model)
#if torch.cuda.is_available():
# model.cuda()
model.to(device)
# Define optimizer
optimizer = optim.Adam(model.parameters(), lr=1e-2)
loss_function = nn.CrossEntropyLoss()
exp_lr_scheduler = lr_scheduler.ReduceLROnPlateau(optimizer)
# Train prediction model if load is not false
#print("1111")
if(args.checkpoint != "False"):
load = True
else:
load = False
model,report = t.train_predictor_model(model,dataloaders_train,
optimizer,loss_function,epochs,exp_lr_scheduler,load=load,save_path=preditor_path)
if (args.printgene=='T'):
import scanpypip.preprocessing as pp
bulk_adata = pp.read_sc_file(data_path)
#print('pp')
## bulk test predict critical gene
import scanpy as sc
#import scanpypip.utils as uti
from captum.attr import IntegratedGradients
#bulk_adata = bulk_adata
#print(bulk_adata)
bulk_pre = model(bulk_X_allTensor).detach().cpu().numpy()
bulk_pre = bulk_pre.argmax(axis=1)
#print(model)
#print(bulk_pre.shape)
# Caculate integrated gradient
ig = IntegratedGradients(model)
df_results_p = {}
target=1
attr, delta = ig.attribute(bulk_X_allTensor,target=1, return_convergence_delta=True,internal_batch_size=batch_size)
#attr, delta = ig.attribute(bulk_X_allTensor,target=1, return_convergence_delta=True,internal_batch_size=batch_size)
attr = attr.detach().cpu().numpy()
np.savetxt("save/"+args.data_name+"bulk_gradient.txt",attr,delimiter = " ")
from pandas.core.frame import DataFrame
DataFrame(bulk_pre).to_csv("save/"+args.data_name+"bulk_lab.csv")
dl_result = model(X_testTensor).detach().cpu().numpy()
lb_results = np.argmax(dl_result,axis=1)
#pb_results = np.max(dl_result,axis=1)
pb_results = dl_result[:,1]
report_dict = classification_report(Y_test, lb_results, output_dict=True)
report_df = pd.DataFrame(report_dict).T
ap_score = average_precision_score(Y_test, pb_results)
auroc_score = roc_auc_score(Y_test, pb_results)
report_df['auroc_score'] = auroc_score
report_df['ap_score'] = ap_score
report_df.to_csv("save/logs/" + reduce_model + select_drug+now + '_report.csv')
#logging.info(classification_report(Y_test, lb_results))
#logging.info(average_precision_score(Y_test, pb_results))
#logging.info(roc_auc_score(Y_test, pb_results))
model = DummyClassifier(strategy='stratified')
model.fit(X_train, Y_train)
yhat = model.predict_proba(X_test)
naive_probs = yhat[:, 1]
# ut.plot_roc_curve(Y_test, naive_probs, pb_results, title=str(roc_auc_score(Y_test, pb_results)),
# path="save/figures/" + reduce_model + select_drug+now + '_roc.pdf')
# ut.plot_pr_curve(Y_test,pb_results, title=average_precision_score(Y_test, pb_results),
# path="save/figures/" + reduce_model + select_drug+now + '_prc.pdf')
print("bulk_model finished")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# data
parser.add_argument('--data', type=str, default='data/ALL_expression.csv',help='Path of the bulk RNA-Seq expression profile')
parser.add_argument('--label', type=str, default='data/ALL_label_binary_wf.csv',help='Path of the processed bulk RNA-Seq drug screening annotation')
parser.add_argument('--result', type=str, default='save/results/result_',help='Path of the training result report files')
parser.add_argument('--drug', type=str, default='I-BET-762',help='Name of the selected drug, should be a column name in the input file of --label')
parser.add_argument('--missing_value', type=int, default=1,help='The value filled in the missing entry in the drug screening annotation, default: 1')
parser.add_argument('--test_size', type=float, default=0.2,help='Size of the test set for the bulk model traning, default: 0.2')
parser.add_argument('--valid_size', type=float, default=0.2,help='Size of the validation set for the bulk model traning, default: 0.2')
parser.add_argument('--var_genes_disp', type=float, default=None,help='Dispersion of highly variable genes selection when pre-processing the data. \
If None, all genes will be selected .default: None')
parser.add_argument('--sampling', type=str, default='no',help='Samping method of training data for the bulk model traning. \
Can be upsampling, downsampling, or SMOTE. default: no')
parser.add_argument('--PCA_dim', type=int, default=0,help='Number of components of PCA reduction before training. If 0, no PCA will be performed. Default: 0')
# trainv
parser.add_argument('--device', type=str, default="cpu",help='Device to train the model. Can be cpu or gpu. Deafult: cpu')
parser.add_argument('--bulk_encoder','-e', type=str, default='save/bulk_encoder/',help='Path of the pre-trained encoder in the bulk level')
parser.add_argument('--pretrain', type=str, default="True",help='Whether to perform pre-training of the encoder,str. False: do not pretraing, True: pretrain. Default: True')
parser.add_argument('--lr', type=float, default=1e-2,help='Learning rate of model training. Default: 1e-2')
parser.add_argument('--epochs', type=int, default=500,help='Number of epoches training. Default: 500')
parser.add_argument('--batch_size', type=int, default=200,help='Number of batch size when training. Default: 200')
parser.add_argument('--bottleneck', type=int, default=32,help='Size of the bottleneck layer of the model. Default: 32')
parser.add_argument('--dimreduce', type=str, default="AE",help='Encoder model type. Can be AE or VAE. Default: AE')
parser.add_argument('--freeze_pretrain', type=int, default=0,help='Fix the prarmeters in the pretrained model. 0: do not freeze, 1: freeze. Default: 0')
parser.add_argument('--encoder_h_dims', type=str, default="512,256",help='Shape of the encoder. Each number represent the number of neuron in a layer. \
Layers are seperated by a comma. Default: 512,256')
parser.add_argument('--predictor_h_dims', type=str, default="16,8",help='Shape of the predictor. Each number represent the number of neuron in a layer. \
Layers are seperated by a comma. Default: 16,8')
parser.add_argument('--VAErepram', type=int, default=1)
parser.add_argument('--data_name', type=str, default="GSE110894",help='Accession id for testing data, only support pre-built data.')
parser.add_argument('--checkpoint', type=str, default='True',help='Load weight from checkpoint files, can be True,False, or file path. Checkpoint files can be paraName1_para1_paraName2_para2... Default: True')
# misc
parser.add_argument('--bulk_model', '-p', type=str, default='save/bulk_pre/',help='Path of the trained prediction model in the bulk level')
parser.add_argument('--log', '-l', type=str, default='save/logs/',help='Path of training log')
parser.add_argument('--load_source_model', type=int, default=0,help='Load a trained bulk level or not. 0: do not load, 1: load. Default: 0')
parser.add_argument('--mod', type=str, default='new',help='Embed the cell type label to regularized the training: new: add cell type info, ori: do not add cell type info. Default: new')
parser.add_argument('--printgene', type=str, default='F',help='Print the cirtical gene list: T: print. Default: T')
parser.add_argument('--dropout', type=float, default=0.3,help='Dropout of neural network. Default: 0.3')
parser.add_argument('--bulk', type=str, default='integrate',help='Selection of the bulk database.integrate:both dataset. old: GDSC. new: CCLE. Default: integrate')
warnings.filterwarnings("ignore")
args, unknown = parser.parse_known_args()
matplotlib.use('Agg')
run_main(args)