-
Notifications
You must be signed in to change notification settings - Fork 13
/
models.py
669 lines (532 loc) · 20.4 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
import torch
from torch import nn
from torch.nn import functional as F
from torch import Tensor
import numpy as np
#import scipy.io as sio
from copy import deepcopy
class AEBase(nn.Module):
def __init__(self,
input_dim,
latent_dim=128,
h_dims=[512],
drop_out=0.3):
super(AEBase, self).__init__()
self.latent_dim = latent_dim
modules = []
hidden_dims = deepcopy(h_dims)
hidden_dims.insert(0,input_dim)
# Build Encoder
for i in range(1,len(hidden_dims)):
i_dim = hidden_dims[i-1]
o_dim = hidden_dims[i]
modules.append(
nn.Sequential(
nn.Linear(i_dim, o_dim),
nn.BatchNorm1d(o_dim),
#nn.ReLU(),
nn.Dropout(drop_out))
)
#in_channels = h_dim
self.encoder = nn.Sequential(*modules)
self.bottleneck = nn.Linear(hidden_dims[-1], latent_dim)
# Build Decoder
modules = []
self.decoder_input = nn.Linear(latent_dim, hidden_dims[-1])
hidden_dims.reverse()
for i in range(len(hidden_dims) - 2):
modules.append(
nn.Sequential(
nn.Linear(hidden_dims[i],
hidden_dims[i + 1]),
nn.BatchNorm1d(hidden_dims[i + 1]),
#nn.ReLU(),
nn.Dropout(drop_out))
)
self.decoder = nn.Sequential(*modules)
self.final_layer = nn.Sequential(
nn.Linear(hidden_dims[-2],
hidden_dims[-1])
,nn.Sigmoid()
)
# self.feature_extractor =nn.Sequential(
# self.encoder,
# self.bottleneck
# )
def encode(self, input: Tensor):
"""
Encodes the input by passing through the encoder network
and returns the latent codes.
"""
result = self.encoder(input)
embedding = self.bottleneck(result)
return embedding
def decode(self, z: Tensor):
"""
Maps the given latent codes
"""
result = self.decoder_input(z)
result = self.decoder(result)
result = self.final_layer(result)
return result
def forward(self, input: Tensor, **kwargs):
embedding = self.encode(input)
output = self.decode(embedding)
return output
# Model of Predictor
class Predictor(nn.Module):
def __init__(self,
input_dim,
output_dim=1,
h_dims=[512],
drop_out=0.3):
super(Predictor, self).__init__()
modules = []
hidden_dims = deepcopy(h_dims)
hidden_dims.insert(0,input_dim)
# Build Encoder
for i in range(1,len(hidden_dims)):
i_dim = hidden_dims[i-1]
o_dim = hidden_dims[i]
modules.append(
nn.Sequential(
nn.Linear(i_dim, o_dim),
nn.BatchNorm1d(o_dim),
nn.ReLU(),
nn.Dropout(drop_out))
)
#in_channels = h_dim
self.predictor = nn.Sequential(*modules)
#self.output = nn.Linear(hidden_dims[-1], output_dim)
self.output = nn.Sequential(
nn.Linear(hidden_dims[-1],
output_dim),
nn.Sigmoid()
)
def forward(self, input: Tensor, **kwargs):
embedding = self.predictor(input)
output = self.output(embedding)
return output
# Model of Pretrained P
class PretrainedPredictor(AEBase):
def __init__(self,
# Params from AE model
input_dim,
latent_dim=128,
h_dims=[512],
drop_out=0.3,
### Parameters from predictor models
pretrained_weights=None,
hidden_dims_predictor=[256],
drop_out_predictor=0.3,
output_dim = 1,
freezed = False):
# Construct an autoencoder model
AEBase.__init__(self,input_dim,latent_dim,h_dims,drop_out)
# Load pretrained weights
if pretrained_weights !=None:
self.load_state_dict((torch.load(pretrained_weights)))
## Free parameters until the bottleneck layer
if freezed == True:
bottlenect_reached = False
for p in self.parameters():
if ((bottlenect_reached == True)&(p.shape.numel()>self.latent_dim)):
break
p.requires_grad = False
print("Layer weight is freezed:",format(p.shape))
# Stop until the bottleneck layer
if p.shape.numel() == self.latent_dim:
bottlenect_reached = True
# Only extract encoder
del self.decoder
del self.decoder_input
del self.final_layer
self.predictor = Predictor(input_dim=self.latent_dim,
output_dim=output_dim,
h_dims=hidden_dims_predictor,
drop_out=drop_out_predictor)
def forward(self, input, **kwargs):
embedding = self.encode(input)
output = self.predictor(embedding)
return output
def predict(self, embedding, **kwargs):
output = self.predictor(embedding)
return output
def vae_loss(recon_x, x, mu, logvar,reconstruction_function,weight=1):
"""
recon_x: generating images
x: origin images
mu: latent mean
logvar: latent log variance
"""
BCE = reconstruction_function(recon_x, x) # mse loss
# loss = 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD_element = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar)
KLD = torch.sum(KLD_element).mul_(-0.5)
# KL divergence
return BCE + KLD * weight
class VAEBase(nn.Module):
def __init__(self,
input_dim,
latent_dim=128,
h_dims=[512],
drop_out=0.3):
super(VAEBase, self).__init__()
self.latent_dim = latent_dim
modules = []
hidden_dims = deepcopy(h_dims)
hidden_dims.insert(0,input_dim)
# Build Encoder
for i in range(1,len(hidden_dims)):
i_dim = hidden_dims[i-1]
o_dim = hidden_dims[i]
modules.append(
nn.Sequential(
nn.Linear(i_dim, o_dim),
nn.BatchNorm1d(o_dim),
nn.Dropout(drop_out),
nn.LeakyReLU()
)
)
#in_channels = h_dim
self.encoder = nn.Sequential(*modules)
self.fc_mu = nn.Linear(hidden_dims[-1], latent_dim)
self.fc_var = nn.Linear(hidden_dims[-1], latent_dim)
# Build Decoder
modules = []
self.decoder_input = nn.Linear(latent_dim, hidden_dims[-1])
hidden_dims.reverse()
for i in range(len(hidden_dims) - 2):
modules.append(
nn.Sequential(
nn.Linear(hidden_dims[i],
hidden_dims[i + 1]),
nn.BatchNorm1d(hidden_dims[i + 1]),
nn.Dropout(drop_out),
nn.LeakyReLU()
)
)
self.decoder = nn.Sequential(*modules)
self.final_layer = nn.Sequential(
nn.Linear(hidden_dims[-2],
hidden_dims[-1],
nn.Sigmoid())
)
# self.feature_extractor = nn.Sequential(
# self.encoder,
# self.fc_mu
# )
def encode_(self, input: Tensor):
"""
Encodes the input by passing through the encoder network
and returns the latent codes.
:param input: (Tensor) Input tensor to encoder [N x C x H x W]
:return: (Tensor) List of latent codes
"""
result = self.encoder(input)
#result = torch.flatten(result, start_dim=1)
# Split the result into mu and var components
# of the latent Gaussian distribution
mu = self.fc_mu(result)
log_var = self.fc_var(result)
return [mu, log_var]
def encode(self, input: Tensor,repram=False):
"""
Encodes the input by passing through the encoder network
and returns the latent codes.
:param input: (Tensor) Input tensor to encoder [N x C x H x W]
:return: (Tensor) List of latent codes
"""
mu, log_var = self.encode_(input)
if (repram==True):
z = self.reparameterize(mu, log_var)
return z
else:
return mu
def decode(self, z: Tensor):
"""
Maps the given latent codes
onto the image space.
:param z: (Tensor) [B x D]
:return: (Tensor) [B x C x H x W]
"""
result = self.decoder_input(z)
#result = result.view(-1, 512, 2, 2)
result = self.decoder(result)
result = self.final_layer(result)
return result
def reparameterize(self, mu: Tensor, logvar: Tensor):
"""
Reparameterization trick to sample from N(mu, var) from
N(0,1).
:param mu: (Tensor) Mean of the latent Gaussian [B x D]
:param logvar: (Tensor) Standard deviation of the latent Gaussian [B x D]
:return: (Tensor) [B x D]
"""
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return eps * std + mu
def forward(self, input: Tensor, **kwargs):
mu, log_var = self.encode_(input)
z = self.reparameterize(mu, log_var)
return [self.decode(z), input, mu, log_var]
def loss_function(self,
*args,
**kwargs) -> dict:
"""
Computes the VAE loss function.
KL(N(\mu, \sigma), N(0, 1)) = \log \frac{1}{\sigma} + \frac{\sigma^2 + \mu^2}{2} - \frac{1}{2}
:param args:
:param kwargs:
:return:
M_N = self.params['batch_size']/ self.num_train_imgs,
"""
recons = args[0]
input = args[1]
mu = args[2]
log_var = args[3]
kld_weight = kwargs['M_N']
# Account for the minibatch samples from the dataset
# M_N = self.params['batch_size']/ self.num_train_imgs,
recons_loss =F.mse_loss(recons, input)
kld_loss = torch.mean(-0.5 * torch.sum(1 + log_var - mu ** 2 - log_var.exp(), dim = 1), dim = 0)
loss = recons_loss + kld_weight * kld_loss
return {'loss': loss, 'Reconstruction_Loss':recons_loss, 'KLD':-kld_loss}
def sample(self,
num_samples:int,
current_device: int, **kwargs):
"""
Samples from the latent space and return the corresponding
image space map.
:param num_samples: (Int) Number of samples
:param current_device: (Int) Device to run the model
:return: (Tensor)
"""
z = torch.randn(num_samples,
self.latent_dim)
z = z.to(current_device)
samples = self.decode(z)
return samples
def generate(self, x: Tensor, **kwargs):
"""
Given an input image x, returns the reconstructed image
:param x: (Tensor) [B x C x H x W]
:return: (Tensor) [B x C x H x W]
"""
return self.forward(x)[0]
def idx2onehot(idx, n):
assert torch.max(idx).item() < n
if idx.dim() == 1:
idx = idx.unsqueeze(1)
onehot = torch.zeros(idx.size(0), n).to(idx.device)
onehot.scatter_(1, idx, 1)
return onehot
class CVAEBase(VAEBase):
def __init__(self,
input_dim,
n_conditions,
latent_dim=128,
h_dims=[512],
drop_out=0.3):
super(VAEBase, self).__init__()
self.input_dim = input_dim
self.latent_dim = latent_dim
self.n_condition = n_conditions
# There are conditions therefore input size is different
self.encoder_dim = input_dim + n_conditions
modules_e = []
hidden_dims = deepcopy(h_dims)
hidden_dims.insert(0,self.encoder_dim)
# Build Encoder
for i in range(1,len(hidden_dims)):
i_dim = hidden_dims[i-1]
o_dim = hidden_dims[i]
modules_e.append(
nn.Sequential(
nn.Linear(i_dim, o_dim),
nn.BatchNorm1d(o_dim),
nn.Dropout(drop_out),
nn.LeakyReLU()
)
)
#in_channels = h_dim
self.encoder = nn.Sequential(*modules_e)
self.fc_mu = nn.Linear(hidden_dims[-1], latent_dim)
self.fc_var = nn.Linear(hidden_dims[-1], latent_dim)
# Build Decoder
modules_d = []
# There are conditions therefore input size is different
self.decoder_input = nn.Linear(latent_dim+n_conditions, hidden_dims[-1])
# Replace the output shape
hidden_dims.reverse()
hidden_dims[-1]=self.input_dim
for i in range(len(hidden_dims) - 2):
modules_d.append(
nn.Sequential(
nn.Linear(hidden_dims[i],
hidden_dims[i + 1]),
nn.BatchNorm1d(hidden_dims[i + 1]),
nn.Dropout(drop_out),
nn.LeakyReLU()
)
)
self.decoder = nn.Sequential(*modules_d)
self.final_layer = nn.Sequential(
nn.Linear(hidden_dims[-2],
hidden_dims[-1],
nn.Sigmoid())
)
# self.feature_extractor = nn.Sequential(
# self.encoder,
# self.fc_mu
# )
def forward(self, input: Tensor,c: Tensor, **kwargs):
mu, log_var = self.encode_(input,c)
z = self.reparameterize(mu, log_var)
return [self.decode(z,c), input, mu, log_var]
def encode_(self, input: Tensor,c:Tensor):
"""
Encodes the input by passing through the encoder network
and returns the latent codes.
:param input: (Tensor) Input tensor to encoder [N x C x H x W]
:return: (Tensor) List of latent codes
"""
# One hot encoding of inputs
c = idx2onehot(c, n=self.n_condition)
input_c = torch.cat((input, c), dim=-1)
result = self.encoder(input_c)
#result = torch.flatten(result, start_dim=1)
# Split the result into mu and var components
# of the latent Gaussian distribution
mu = self.fc_mu(result)
log_var = self.fc_var(result)
return [mu, log_var]
def encode(self, input: Tensor,c:Tensor,repram=False):
"""
Encodes the input by passing through the encoder network
and returns the latent codes.
:param input: (Tensor) Input tensor to encoder [N x C x H x W]
:return: (Tensor) List of latent codes
"""
# One hot encoding of inputs
#c = idx2onehot(c, n=self.n_condition)
#input_c = torch.cat((input, c), dim=-1)
mu, log_var = self.encode_(input,c)
if (repram==True):
z = self.reparameterize(mu, log_var)
return z
else:
return mu
def decode(self, z: Tensor,c:Tensor):
"""
Maps the given latent codes
onto the image space.
:param z: (Tensor) [B x D]
:return: (Tensor) [B x C x H x W]
"""
# One hot encoding of inputs
c = idx2onehot(c, n=self.n_condition)
z_c = torch.cat((z, c), dim=-1)
result = self.decoder_input(z_c)
#result = result.view(-1, 512, 2, 2)
result = self.decoder(result)
result = self.final_layer(result)
return result
class PretrainedVAEPredictor(VAEBase):
def __init__(self,
# Params from AE model
input_dim,
latent_dim=128,
h_dims=[512],
drop_out=0.3,
### Parameters from predictor models
pretrained_weights=None,
hidden_dims_predictor=[256],
drop_out_predictor=0.3,
output_dim = 1,
freezed = False,
z_reparam=True):
self.z_reparam=z_reparam
# Construct an autoencoder model
VAEBase.__init__(self,input_dim,latent_dim,h_dims,drop_out)
# Load pretrained weights
if pretrained_weights !=None:
self.load_state_dict((torch.load(pretrained_weights)))
## Free parameters until the bottleneck layer
if freezed == True:
bottlenect_reached = False
for p in self.parameters():
if ((bottlenect_reached == True)&(p.shape[0]>self.latent_dim)):
break
p.requires_grad = False
print("Layer weight is freezed:",format(p.shape))
# Stop until the bottleneck layer
if p.shape[0] == self.latent_dim:
bottlenect_reached = True
# Only extract encoder
del self.decoder
del self.decoder_input
del self.final_layer
self.predictor = Predictor(input_dim=self.latent_dim,
output_dim=output_dim,
h_dims=hidden_dims_predictor,
drop_out=drop_out_predictor)
# self.feature_extractor = nn.Sequential(
# self.encoder,
# self.fc_mu
# )
def forward(self, input, **kwargs):
embedding = self.encode(input,repram=self.z_reparam)
output = self.predictor(embedding)
return output
def predict(self, embedding, **kwargs):
output = self.predictor(embedding)
return output
class DaNN(nn.Module):
def __init__(self, source_model,target_model,fix_source=False):
super(DaNN, self).__init__()
self.source_model = source_model
if fix_source == True:
for p in self.parameters():
p.requires_grad = False
print("Layer weight is freezed:",format(p.shape))
# Stop until the bottleneck layer
self.target_model = target_model
'''
def __init__(self, source_model,target_model):
super(DaNN, self).__init__()
self.source_model = source_model
self.target_model = target_model
'''
def forward(self, X_source, X_target,C_target=None):
x_src_mmd = self.source_model.encode(X_source)
if(type(C_target)==type(None)):
x_tar_mmd = self.target_model.encode(X_target)
else:
x_tar_mmd = self.target_model.encode(X_target,C_target)
y_src = self.source_model.predictor(x_src_mmd)
return y_src, x_src_mmd, x_tar_mmd
class TargetModel(nn.Module):
def __init__(self, source_predcitor,target_encoder):
super(TargetModel, self).__init__()
self.source_predcitor = source_predcitor
self.target_encoder = target_encoder
def forward(self, X_target,C_target=None):
if(type(C_target)==type(None)):
x_tar = self.target_encoder.encode(X_target)
else:
x_tar = self.target_encoder.encode(X_target,C_target)
y_src = self.source_predcitor.predictor(x_tar)
return y_src
def g_loss_function(preds, labels, mu, logvar, n_nodes, norm, pos_weight):
cost = norm * F.binary_cross_entropy_with_logits(preds, labels, pos_weight=labels * pos_weight)
# Check if the model is simple Graph Auto-encoder
if logvar is None:
return cost
# see Appendix B from VAE paper:
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
# https://arxiv.org/abs/1312.6114
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD = -0.5 / n_nodes * torch.mean(torch.sum(
1 + 2 * logvar - mu.pow(2) - logvar.exp().pow(2), 1))
return cost + KLD