-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathincd_2step_tinyimagenet.py
1239 lines (1020 loc) · 58.1 KB
/
incd_2step_tinyimagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import SGD, lr_scheduler
from sklearn.metrics.cluster import normalized_mutual_info_score as nmi_score
from sklearn.metrics import adjusted_rand_score as ari_score
from sklearn.cluster import KMeans
from utils.util import BCE, PairEnum, cluster_acc, Identity, AverageMeter, seed_torch, CentroidTracker
from utils import ramps
from utils.logging import Logger
from models.resnet import ResNet, BasicBlock, ResNetTri
from data.cifarloader import CIFAR10Loader, CIFAR10LoaderMix, CIFAR100Loader, CIFAR100LoaderMix
from data.tinyimagenetloader import TinyImageNetLoader
from data.svhnloader import SVHNLoader, SVHNLoaderMix
from tqdm import tqdm
import numpy as np
import os
import sys
import copy
import wandb
from collections.abc import Iterable
def train_IL_center(model, old_model, train_loader, labeled_eval_loader, unlabeled_eval_loader, all_eval_loader,
class_mean, class_sig, class_cov, args):
print("=" * 100)
print("\t\t\t\t\tCiao bella! I am 1st-step Training")
print("=" * 100)
optimizer = SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=args.gamma)
criterion1 = nn.CrossEntropyLoss() # CE loss for labeled data
criterion2 = BCE() # BCE loss for unlabeled data
for epoch in range(args.epochs):
# create loss statistics recorder for each loss
loss_record = AverageMeter() # Total loss recorder
loss_ce_add_record = AverageMeter() # CE loss recorder
loss_bce_record = AverageMeter() # BCE loss recorder
consistency_loss_record = AverageMeter() # MSE consistency loss recorder
loss_kd_record = AverageMeter() # KD loss recorder
model.train()
# update LR scheduler for the current epoch
exp_lr_scheduler.step()
# update ramp-up coefficient for the current epoch
w = args.rampup_coefficient * ramps.sigmoid_rampup(epoch, args.rampup_length)
for batch_idx, ((x, x_bar), label, idx) in enumerate(tqdm(train_loader)):
# send the vars to GPU
x, x_bar, label = x.to(device), x_bar.to(device), label.to(device)
# create a mask for labeled data
mask_lb = label < args.num_labeled_classes
# filter out the labeled entries for x, x_bar, label
x = x[~mask_lb]
x_bar = x_bar[~mask_lb]
label = label[~mask_lb]
# normalize the prototypes
if args.l2_classifier:
model.l2_classifier = True
with torch.no_grad():
w_head = model.head1.weight.data.clone()
w_head = F.normalize(w_head, dim=1, p=2)
model.head1.weight.copy_(w_head)
# if epoch == 5 and w_head_fix is None:
# w_head_fix = w_head[:args.num_labeled_classes, :]
else:
model.l2_classifier = False
output1, output2, feat = model(x)
output1_bar, output2_bar, feat_bar = model(x_bar)
# use softmax to get the probability distribution for each head
prob1, prob1_bar = F.softmax(output1, dim=1), F.softmax(output1_bar, dim=1)
prob2, prob2_bar = F.softmax(output2, dim=1), F.softmax(output2_bar, dim=1)
# calculate rank statistics
rank_feat = (feat).detach()
rank_idx = torch.argsort(rank_feat, dim=1, descending=True)
rank_idx1, rank_idx2 = PairEnum(rank_idx)
rank_idx1, rank_idx2 = rank_idx1[:, :args.topk], rank_idx2[:, :args.topk]
rank_idx1, _ = torch.sort(rank_idx1, dim=1)
rank_idx2, _ = torch.sort(rank_idx2, dim=1)
rank_diff = rank_idx1 - rank_idx2
rank_diff = torch.sum(torch.abs(rank_diff), dim=1)
target_ulb = torch.ones_like(rank_diff).float().to(device)
target_ulb[rank_diff > 0] = -1
# get the probability distribution of the prediction for head-2
prob1_ulb, _ = PairEnum(prob2)
_, prob2_ulb = PairEnum(prob2_bar)
# get the pseudo label from head-2
label = (output2).detach().max(1)[1] + args.num_labeled_classes
loss_ce_add = w * criterion1(output1, label) / args.rampup_coefficient * args.increment_coefficient
loss_bce = criterion2(prob1_ulb, prob2_ulb, target_ulb)
consistency_loss = F.mse_loss(prob2, prob2_bar) # + F.mse_loss(prob1, prob1_bar)
# record the losses
loss_ce_add_record.update(loss_ce_add.item(), output1.size(0))
loss_bce_record.update(loss_bce.item(), prob1_ulb.size(0))
consistency_loss_record.update(consistency_loss.item(), prob2.size(0))
if args.labeled_center > 0:
labeled_feats, labeled_labels = sample_labeled_features(class_mean, class_sig, args)
labeled_output1 = model.forward_feat(labeled_feats)
loss_ce_la = args.lambda_proto * criterion1(labeled_output1, labeled_labels)
else:
loss_ce_la = 0
if args.w_kd > 0:
_, _, old_feat = old_model(x)
size_1, size_2 = old_feat.size()
loss_kd = torch.dist(F.normalize(old_feat.view(size_1 * size_2, 1), dim=0),
F.normalize(feat.view(size_1 * size_2, 1), dim=0)) * args.w_kd
else:
loss_kd = torch.tensor(0.0)
# record losses
loss_kd_record.update(loss_kd.item(), x.size(0))
loss = loss_bce + loss_ce_add + w * consistency_loss + loss_ce_la + loss_kd
if args.labeled_center > 0 and isinstance(loss_ce_la, torch.Tensor):
loss_record.update(loss_ce_la.item(), x.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
# wandb loss logging
wandb.log({"loss/pseudo-unlab": loss_ce_add_record.avg,
"loss/bce": loss_bce_record.avg,
"loss/consistency": consistency_loss_record.avg,
"loss/proto_lab": loss_record.avg,
"loss/kd": loss_kd_record.avg
}, step=epoch)
print('Train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg))
print('Head2: test on unlabeled classes')
args.head = 'head2'
acc_head2_ul, ind = fair_test1(model, unlabeled_eval_loader, args, return_ind=True)
print('Head1: test on labeled classes')
args.head = 'head1'
acc_head1_lb = fair_test1(model, labeled_eval_loader, args, cluster=False)
print('Head1: test on unlabeled classes')
acc_head1_ul = fair_test1(model, unlabeled_eval_loader, args, cluster=False, ind=ind)
print('Head1: test on all classes w/o clustering')
acc_head1_all_wo_cluster = fair_test1(model, all_eval_loader, args, cluster=False, ind=ind)
print('Head1: test on all classes w/ clustering')
acc_head1_all_w_cluster = fair_test1(model, all_eval_loader, args, cluster=True)
# wandb metrics logging
wandb.log({
"val_acc/head2_ul": acc_head2_ul,
"val_acc/head1_lb": acc_head1_lb,
"val_acc/head1_ul": acc_head1_ul,
"val_acc/head1_all_wo_clutering": acc_head1_all_wo_cluster,
"val_acc/head1_all_w_clustering": acc_head1_all_w_cluster
}, step=epoch)
def train_IL_center_second(model, old_model, train_loader, labeled_eval_loader, unlabeled_eval_loader, all_eval_loader,
class_mean, class_sig, p_unlabeled_eval_loader, args):
print("=" * 100)
print("\t\t\t\t\tCiao bella! I am 2nd-step Training")
print("=" * 100)
optimizer = SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=args.gamma)
criterion1 = nn.CrossEntropyLoss() # CE loss for labeled data
criterion2 = BCE() # BCE loss for unlabeled data
for epoch in range(args.epochs):
# create loss statistics recorder for each loss
loss_record = AverageMeter() # Total loss recorder
loss_ce_add_record = AverageMeter() # CE loss recorder
loss_bce_record = AverageMeter() # BCE loss recorder
consistency_loss_record = AverageMeter() # MSE consistency loss recorder
loss_kd_record = AverageMeter() # KD loss recorder
model.train()
# update LR scheduler for the current epoch
exp_lr_scheduler.step()
# update ramp-up coefficient for the current epoch
w = args.rampup_coefficient * ramps.sigmoid_rampup(epoch, args.rampup_length)
for batch_idx, ((x, x_bar), label, idx) in enumerate(tqdm(train_loader)):
# send the vars to GPU
x, x_bar, label = x.to(device), x_bar.to(device), label.to(device)
# create a mask for labeled data
mask_lb = label < args.num_labeled_classes
# filter out the labeled entries for x, x_bar, label
x = x[~mask_lb]
x_bar = x_bar[~mask_lb]
label = label[~mask_lb]
# normalize the prototypes
if args.l2_classifier:
model.l2_classifier = True
with torch.no_grad():
w_head = model.head1.weight.data.clone()
w_head = F.normalize(w_head, dim=1, p=2)
model.head1.weight.copy_(w_head)
# if epoch == 5 and w_head_fix is None:
# w_head_fix = w_head[:args.num_labeled_classes, :]
else:
model.l2_classifier = False
output1, output2, feat = model(x)
output1_bar, output2_bar, feat_bar = model(x_bar)
# use softmax to get the probability distribution for each head
prob1, prob1_bar = F.softmax(output1, dim=1), F.softmax(output1_bar, dim=1)
prob2, prob2_bar = F.softmax(output2, dim=1), F.softmax(output2_bar, dim=1)
# calculate rank statistics
rank_feat = (feat).detach()
rank_idx = torch.argsort(rank_feat, dim=1, descending=True)
rank_idx1, rank_idx2 = PairEnum(rank_idx)
rank_idx1, rank_idx2 = rank_idx1[:, :args.topk], rank_idx2[:, :args.topk]
rank_idx1, _ = torch.sort(rank_idx1, dim=1)
rank_idx2, _ = torch.sort(rank_idx2, dim=1)
rank_diff = rank_idx1 - rank_idx2
rank_diff = torch.sum(torch.abs(rank_diff), dim=1)
target_ulb = torch.ones_like(rank_diff).float().to(device)
target_ulb[rank_diff > 0] = -1
# get the probability distribution of the prediction for head-2
prob1_ulb, _ = PairEnum(prob2)
_, prob2_ulb = PairEnum(prob2_bar)
# get the pseudo label from head-2
label = (output2).detach().max(1)[1] + args.num_labeled_classes + args.num_unlabeled_classes1
loss_ce_add = w * criterion1(output1, label) / args.rampup_coefficient * args.increment_coefficient
loss_bce = criterion2(prob1_ulb, prob2_ulb, target_ulb)
consistency_loss = F.mse_loss(prob2, prob2_bar) # + F.mse_loss(prob1, prob1_bar)
# record the losses
loss_ce_add_record.update(loss_ce_add.item(), output1.size(0))
loss_bce_record.update(loss_bce.item(), prob1_ulb.size(0))
consistency_loss_record.update(consistency_loss.item(), prob2.size(0))
if args.labeled_center > 0:
labeled_feats, labeled_labels = sample_all_features(class_mean, class_sig, args)
labeled_output1 = model.forward_feat(labeled_feats)
loss_ce_la = args.lambda_proto * criterion1(labeled_output1, labeled_labels)
else:
loss_ce_la = 0
if args.w_kd > 0:
_, _, old_feat = old_model(x)
size_1, size_2 = old_feat.size()
loss_kd = torch.dist(F.normalize(old_feat.view(size_1 * size_2, 1), dim=0),
F.normalize(feat.view(size_1 * size_2, 1), dim=0)) * args.w_kd
else:
loss_kd = torch.tensor(0.0)
# record losses
loss_kd_record.update(loss_kd.item(), x.size(0))
loss = loss_bce + loss_ce_add + w * consistency_loss + loss_ce_la + loss_kd
if args.labeled_center > 0 and isinstance(loss_ce_la, torch.Tensor):
loss_record.update(loss_ce_la.item(), x.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
# complete the current epoch and record training statistics
wandb.log({"loss/pseudo-unlab": loss_ce_add_record.avg,
"loss/bce": loss_bce_record.avg,
"loss/consistency": consistency_loss_record.avg,
"loss/proto_lab": loss_record.avg,
"loss/kd": loss_kd_record.avg
}, step=epoch)
print('Train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg))
args.head = 'head2'
print('Head2: test on PRE-unlabeled classes')
args.test_new = 'new1'
acc_head2_ul, ind1 = fair_test2(old_model, p_unlabeled_eval_loader, args, return_ind=True)
args.head = 'head3'
args.test_new = 'new2'
print('Head3: test on unlabeled classes')
acc_head3_ul, ind2 = fair_test2(model, unlabeled_eval_loader, args, return_ind=True)
args.head = 'head1'
print('Head1: test on labeled classes')
acc_head1_lb = fair_test2(model, labeled_eval_loader, args, cluster=False)
print('Head1: test on PRE-unlabeled classes')
args.test_new = 'new1'
acc_head1_ul1 = fair_test2(model, p_unlabeled_eval_loader, args, cluster=False, ind=ind1)
print('Head1: test on CRT-unlabeled classes')
args.test_new = 'new2'
acc_head1_ul2 = fair_test2(model, unlabeled_eval_loader, args, cluster=False, ind=ind2)
print('Head1: test on all classes w/o clustering')
acc_head1_all_wo_cluster = (args.num_labeled_classes*acc_head1_lb + args.num_unlabeled_classes1*acc_head1_ul1 + args.num_unlabeled_classes2 * acc_head1_ul2) / (args.num_labeled_classes+args.num_unlabeled_classes1+args.num_unlabeled_classes2)
print('Head1: test on all classes w/ clustering')
acc_head1_all_w_cluster = fair_test2(model, all_eval_loader, args, cluster=True)
# wandb metrics logging
wandb.log({
"val_acc/head2_ul": acc_head2_ul,
"val_acc/head3_ul": acc_head3_ul,
"val_acc/head1_lb": acc_head1_lb,
"val_acc/head1_ul_1": acc_head1_ul1,
"val_acc/head1_ul_2": acc_head1_ul2,
"val_acc/head1_all_wo_clutering": acc_head1_all_wo_cluster,
"val_acc/head1_all_w_clutering": acc_head1_all_w_cluster,
}, step=epoch)
def Generate_Center(model, labeled_train_loader, args):
all_feat = []
all_labels = []
class_mean = torch.zeros(args.num_labeled_classes, 512).cuda()
class_sig = torch.zeros(args.num_labeled_classes, 512).cuda()
print('Extract Labeled Feature')
for epoch in range(1):
model.eval()
for batch_idx, (x, label, idx) in enumerate(tqdm(labeled_train_loader)):
x, label = x.to(device), label.to(device)
output1, output2, feat = model(x)
all_feat.append(feat.detach().clone().cuda())
all_labels.append(label.detach().clone().cuda())
all_feat = torch.cat(all_feat, dim=0).cuda()
all_labels = torch.cat(all_labels, dim=0).cuda()
print('Calculate Labeled Mean-Var')
for i in range(args.num_labeled_classes):
this_feat = all_feat[all_labels == i]
this_mean = this_feat.mean(dim=0)
this_var = this_feat.var(dim=0)
class_mean[i, :] = this_mean
class_sig[i, :] = (this_var + 1e-5).sqrt()
print('Finish')
class_mean, class_sig, class_cov = class_mean.cuda(), class_sig.cuda(), 0 # class_cov.cuda()
return class_mean, class_sig, class_cov
def Generate_Unlabel_Center(model, unlabeled_train_loader, args):
all_feat = []
all_labels = []
class_mean = torch.zeros(args.num_unlabeled_classes1, 512).cuda()
class_sig = torch.zeros(args.num_unlabeled_classes1, 512).cuda()
print('Extract Unlabeled Feature')
for epoch in range(1):
model.eval()
for batch_idx, (x, label, idx) in enumerate(tqdm(unlabeled_train_loader)):
x, _ = x.to(device), label.to(device)
output1, output2, feat = model(x)
label = (output2).detach().max(1)[1]
all_feat.append(feat.detach().clone().cuda())
all_labels.append(label.detach().clone().cuda())
all_feat = torch.cat(all_feat, dim=0).cuda()
all_labels = torch.cat(all_labels, dim=0).cuda()
print('Calculate UnLabeled Mean-Var')
for i in range(args.num_unlabeled_classes1):
this_feat = all_feat[all_labels == i]
this_mean = this_feat.mean(dim=0)
this_var = this_feat.var(dim=0)
class_mean[i, :] = this_mean
class_sig[i, :] = (this_var + 1e-5).sqrt()
print('Finish')
class_mean, class_sig, class_cov = class_mean.cuda(), class_sig.cuda(), 0 # class_cov.cuda()
return class_mean, class_sig, class_cov
def sample_labeled_features(class_mean, class_sig, args):
feats = []
labels = []
if args.dataset_name == 'cifar10':
num_per_class = 20
elif args.dataset_name == 'cifar100':
num_per_class = 2
else:
num_per_class = 3
for i in range(args.num_labeled_classes):
dist = torch.distributions.Normal(class_mean[i], class_sig.mean(dim=0))
this_feat = dist.sample((num_per_class,)).cuda() # new API
this_label = torch.ones(this_feat.size(0)).cuda() * i
feats.append(this_feat)
labels.append(this_label)
feats = torch.cat(feats, dim=0)
labels = torch.cat(labels, dim=0).long()
return feats, labels
def sample_all_features(class_mean, class_sig, args):
feats = []
labels = []
if args.dataset_name == 'cifar10':
num_per_class = 20
elif args.dataset_name == 'cifar100':
num_per_class = 2
else:
num_per_class = 3
for i in range(args.num_labeled_classes+args.num_unlabeled_classes1):
dist = torch.distributions.Normal(class_mean[i], class_sig.mean(dim=0))
this_feat = dist.sample((num_per_class,)).cuda() # new API
this_label = torch.ones(this_feat.size(0)).cuda() * i
feats.append(this_feat)
labels.append(this_label)
feats = torch.cat(feats, dim=0)
labels = torch.cat(labels, dim=0).long()
return feats, labels
def isda_aug(fc, features, y, labels, cv_matrix, ratio=1):
N = features.size(0)
C = y.size(1)
A = features.size(1)
weight_m = list(fc.parameters())[0]
NxW_ij = weight_m.expand(N, C, A)
NxW_kj = torch.gather(NxW_ij, 1, labels.view(N, 1, 1).expand(N, C, A))
CV_temp = cv_matrix[labels]
sigma2 = ratio * torch.bmm(torch.bmm(NxW_ij - NxW_kj, CV_temp), (NxW_ij - NxW_kj).permute(0, 2, 1))
sigma2 = sigma2.mul(torch.eye(C).cuda().expand(N, C, C)).sum(2).view(N, C)
aug_result = y + 0.5 * sigma2
return aug_result
def wandb_logits_norm(args, this_epoch, head, dloader_type, logits_mean):
panel_prefix = head + '_' + dloader_type
if head == 'head1':
old_part = np.linalg.norm(logits_mean[:args.num_labeled_classes])
ncd_part = np.linalg.norm(logits_mean[args.num_labeled_classes:])
print("HEAD1: old_norm = {}, ncd_norm = {}".format(old_part, ncd_part))
wandb.log({
"logits_norm/" + panel_prefix + '_old_part': old_part,
"logits_norm/" + panel_prefix + '_ncd_part': ncd_part,
}, step=this_epoch)
elif head == 'head2':
ncd_part = np.linalg.norm(logits_mean)
print("HEAD2: ncd_norm = {}".format(ncd_part))
wandb.log({
"logits_norm/" + panel_prefix + '_ncd_part': ncd_part,
}, step=this_epoch)
def test(model, test_loader, args, cluster=True, ind=None, return_ind=False):
model.eval()
preds = np.array([])
targets = np.array([])
for batch_idx, (x, label, _) in enumerate(tqdm(test_loader)):
x, label = x.to(device), label.to(device)
output1, output2, _ = model(x)
if args.head == 'head1':
if args.IL_version == 'SplitHead12' or 'AutoNovel':
output = torch.cat((output1, output2), dim=1)
else:
output = output1
else:
if args.IL_version == 'JointHead1' or args.IL_version == 'JointHead1woPseudo':
output = output1[:, -args.num_unlabeled_classes:]
else:
output = output2
_, pred = output.max(1)
targets = np.append(targets, label.cpu().numpy())
preds = np.append(preds, pred.cpu().numpy())
if cluster:
if return_ind:
acc, ind = cluster_acc(targets.astype(int), preds.astype(int), return_ind)
else:
acc = cluster_acc(targets.astype(int), preds.astype(int), return_ind)
nmi, ari = nmi_score(targets, preds), ari_score(targets, preds)
print('Test acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
else:
if ind is not None:
ind = ind[:args.num_unlabeled_classes, :]
idx = np.argsort(ind[:, 1])
id_map = ind[idx, 0]
id_map += args.num_labeled_classes
# targets_new = targets <-- this is not deep copy anymore due to NumPy version change
targets_new = np.copy(targets)
for i in range(args.num_unlabeled_classes):
targets_new[targets == i + args.num_labeled_classes] = id_map[i]
targets = targets_new
preds = torch.from_numpy(preds)
targets = torch.from_numpy(targets)
correct = preds.eq(targets).float().sum(0)
acc = float(correct / targets.size(0))
print('Test acc {:.4f}'.format(acc))
if return_ind:
return acc, ind
else:
return acc
def fair_test1(model, test_loader, args, cluster=True, ind=None, return_ind=False):
model.eval()
preds = np.array([])
targets = np.array([])
for batch_idx, (x, label, _) in enumerate(tqdm(test_loader)):
x, label = x.to(args.device), label.to(args.device)
if args.step == 'first' or args.test_new == 'new1':
output1, output2, _ = model(x)
if args.head == 'head1':
output = output1
else:
output = output2
else:
output1, output2, output3, _ = model(x, output='test')
if args.head == 'head1':
output = output1
elif args.head == 'head2':
output = output2
elif args.head == 'head3':
output = output3
_, pred = output.max(1)
targets = np.append(targets, label.cpu().numpy())
preds = np.append(preds, pred.cpu().numpy())
if cluster:
if return_ind:
acc, ind = cluster_acc(targets.astype(int), preds.astype(int), return_ind)
else:
acc = cluster_acc(targets.astype(int), preds.astype(int), return_ind)
nmi, ari = nmi_score(targets, preds), ari_score(targets, preds)
print('Test acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
else:
if ind is not None:
if args.step == 'first':
ind = ind[:args.num_unlabeled_classes1, :]
idx = np.argsort(ind[:, 1])
id_map = ind[idx, 0]
id_map += args.num_labeled_classes
# targets_new = targets <-- this is not deep copy anymore due to NumPy version change
targets_new = np.copy(targets)
for i in range(args.num_unlabeled_classes1):
targets_new[targets == i + args.num_labeled_classes] = id_map[i]
targets = targets_new
else:
ind = ind[:args.num_unlabeled_classes2, :]
idx = np.argsort(ind[:, 1])
id_map = ind[idx, 0]
id_map += args.num_labeled_classes
# targets_new = targets <-- this is not deep copy anymore due to NumPy version change
targets_new = np.copy(targets)
for i in range(args.num_unlabeled_classes2):
targets_new[targets == i + args.num_labeled_classes] = id_map[i]
targets = targets_new
preds = torch.from_numpy(preds)
targets = torch.from_numpy(targets)
correct = preds.eq(targets).float().sum(0)
acc = float(correct / targets.size(0))
print('Test acc {:.4f}'.format(acc))
if return_ind:
return acc, ind
else:
return acc
def fair_test2(model, test_loader, args, cluster=True, ind=None, return_ind=False):
model.eval()
preds = np.array([])
targets = np.array([])
for batch_idx, (x, label, _) in enumerate(tqdm(test_loader)):
x, label = x.to(args.device), label.to(args.device)
if args.step == 'first' or args.test_new == 'new1':
output1, output2, _ = model(x)
if args.head == 'head1':
output = output1
else:
output = output2
else:
output1, output2, output3, _ = model(x, output='test')
if args.head == 'head1':
output = output1
elif args.head == 'head2':
output = output2
elif args.head == 'head3':
output = output3
_, pred = output.max(1)
targets = np.append(targets, label.cpu().numpy())
preds = np.append(preds, pred.cpu().numpy())
if cluster:
if return_ind:
acc, ind = cluster_acc(targets.astype(int), preds.astype(int), return_ind)
else:
acc = cluster_acc(targets.astype(int), preds.astype(int), return_ind)
nmi, ari = nmi_score(targets, preds), ari_score(targets, preds)
print('Test acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
else:
if ind is not None:
if args.step == 'first' or args.test_new == 'new1':
ind = ind[:args.num_unlabeled_classes1, :]
idx = np.argsort(ind[:, 1])
id_map = ind[idx, 0]
id_map += args.num_labeled_classes
# targets_new = targets <-- this is not deep copy anymore due to NumPy version change
targets_new = np.copy(targets)
for i in range(args.num_unlabeled_classes1):
targets_new[targets == i + args.num_labeled_classes] = id_map[i]
targets = targets_new
else:
ind = ind[:args.num_unlabeled_classes2, :]
idx = np.argsort(ind[:, 1])
id_map = ind[idx, 0]
id_map += args.num_labeled_classes+args.num_unlabeled_classes1
# targets_new = targets <-- this is not deep copy anymore due to NumPy version change
targets_new = np.copy(targets)
for i in range(args.num_unlabeled_classes2):
targets_new[targets == i + args.num_labeled_classes+args.num_unlabeled_classes1] = id_map[i]
targets = targets_new
preds = torch.from_numpy(preds)
targets = torch.from_numpy(targets)
correct = preds.eq(targets).float().sum(0)
acc = float(correct / targets.size(0))
print('Test acc {:.4f}'.format(acc))
if return_ind:
return acc, ind
else:
return acc
def freeze_layers(model, layer_names, freeze=True):
if not isinstance(layer_names, Iterable):
layer_names = [layer_names]
for name, child in model.named_children():
if name not in layer_names:
continue
for param in child.parameters():
param.requires_grad = not freeze
def unfreeze_layers(model, layer_names):
freeze_layers(model, layer_names, False)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='cluster', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--gamma', type=float, default=0.1)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight_decay', type=float, default=1e-4)
parser.add_argument('--w_kd', type=float, default=10.0)
parser.add_argument('--epochs', default=200, type=int)
parser.add_argument('--rampup_length', default=150, type=int)
parser.add_argument('--rampup_coefficient', type=float, default=50)
parser.add_argument('--increment_coefficient', type=float, default=0.05)
parser.add_argument('--step_size', default=170, type=int)
parser.add_argument('--batch_size', default=128, type=int)
parser.add_argument('--num_unlabeled_classes1', default=10, type=int)
parser.add_argument('--num_unlabeled_classes2', default=10, type=int)
parser.add_argument('--num_labeled_classes', default=80, type=int)
parser.add_argument('--dataset_root', type=str, default='./data/datasets/CIFAR/')
parser.add_argument('--exp_root', type=str, default='./data/experiments/')
parser.add_argument('--warmup_model_dir', type=str,
default='./data/experiments/pretrain/auto_novel/resnet_rotnet_cifar10.pth')
parser.add_argument('--finetune_model_dir', type=str,
default='./data/experiments/pretrain/auto_novel/resnet_rotnet_cifar10.pth')
parser.add_argument('--topk', default=5, type=int)
# parser.add_argument('--IL', action='store_true', default=False, help='w/ incremental learning')
parser.add_argument('--IL_version', type=str, default='OG', choices=['OG', 'LwF', 'LwFProto', 'JointHead1',
'JointHead1woPseudo', 'SplitHead12',
'OGwoKD', 'OGwoProto', 'OGwoPseudo',
'AutoNovel', 'OGwoKDwoProto', 'OGwoKDwoPseudo',
'OGwoProtowoPseudo', 'OGwoKDwoProtowoPseudo'])
parser.add_argument('--detach_B', action='store_true', default=False, help='Detach the feature of the backbone')
parser.add_argument('--l2_classifier', action='store_true', default=False, help='L2 normalize classifier')
parser.add_argument('--labeled_center', type=float, default=10.0)
parser.add_argument('--model_name', type=str, default='resnet')
parser.add_argument('--dataset_name', type=str, default='cifar10', help='options: cifar10, cifar100, svhn')
parser.add_argument('--seed', default=1, type=int)
parser.add_argument('--mode', type=str, default='train')
parser.add_argument('--wandb_mode', type=str, default='online', choices=['online', 'offline', 'disabled'])
parser.add_argument('--wandb_entity', type=str, default='unitn-mhug')
parser.add_argument('--lambda_proto', type=float, default=1.0, help='weight for the source prototypes loss')
parser.add_argument('--step', type=str, default='first', choices=['first', 'second'])
parser.add_argument('--first_step_dir', type=str,
default='./data/experiments/incd_2step_tinyimagenet_tinyimagenet/first_FRoST_1st_OG_kd10_p1_tinyimagenet.pth')
args = parser.parse_args()
args.cuda = torch.cuda.is_available()
device = torch.device("cuda" if args.cuda else "cpu")
args.device = torch.device("cuda" if args.cuda else "cpu")
seed_torch(args.seed)
runner_name = os.path.basename(__file__).split(".")[0]
model_dir = os.path.join(args.exp_root, runner_name + '_' + args.dataset_name)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
args.model_dir = model_dir + '/' + args.step + '_' + '{}.pth'.format(args.model_name)
args.log_dir = model_dir + '/' + args.model_name + '_fixl1_s_' + str(args.seed) + '_log.txt'
sys.stdout = Logger(args.log_dir)
print('log_dir=', args.log_dir)
print(args)
# WandB setting
# use wandb logging
if args.mode == 'train':
wandb_run_name = args.model_name + '_fixl1_s_' + str(args.seed)
wandb.init(project='incd_dev_miu',
entity=args.wandb_entity,
name=wandb_run_name,
mode=args.wandb_mode)
if args.mode == 'train' and args.step == 'first':
num_classes = args.num_labeled_classes + args.num_unlabeled_classes1
mix_train_loader = TinyImageNetLoader(batch_size=args.batch_size, num_workers=8, path=args.dataset_root,
aug='twice', shuffle=True,
class_list=range(args.num_labeled_classes, num_classes), subfolder='train')
unlabeled_val_loader = TinyImageNetLoader(batch_size=args.batch_size, num_workers=8, path=args.dataset_root,
aug=None, shuffle=False,
class_list=range(args.num_labeled_classes, num_classes),
subfolder='train')
unlabeled_test_loader = TinyImageNetLoader(batch_size=args.batch_size, num_workers=8, path=args.dataset_root,
aug=None, shuffle=False,
class_list=range(args.num_labeled_classes, num_classes),
subfolder='val')
labeled_train_loader = TinyImageNetLoader(batch_size=args.batch_size, num_workers=8, path=args.dataset_root,
aug=None, shuffle=True, class_list = range(args.num_labeled_classes),
subfolder='train')
labeled_test_loader = TinyImageNetLoader(batch_size=args.batch_size, num_workers=8, path=args.dataset_root,
aug=None, shuffle=False, class_list=range(args.num_labeled_classes),
subfolder='val')
all_test_loader = TinyImageNetLoader(batch_size=args.batch_size, num_workers=8, path=args.dataset_root,
aug=None,
shuffle=False, class_list=range(num_classes), subfolder='val')
# Model Creation
model = ResNet(BasicBlock, [2, 2, 2, 2], args.num_labeled_classes,
args.num_unlabeled_classes1+args.num_unlabeled_classes2).to(device)
state_dict = torch.load(args.warmup_model_dir)
model.load_state_dict(state_dict, strict=False)
model.head2 = nn.Linear(512, args.num_unlabeled_classes1).to(device)
for name, param in model.named_parameters():
if 'head' not in name and 'layer4' not in name and 'layer3' not in name and 'layer2' not in name:
param.requires_grad = False
if args.w_kd > 0:
old_model = copy.deepcopy(model)
old_model = old_model.to(device)
old_model.eval()
else:
old_model = None
save_weight = model.head1.weight.data.clone() # save the weights of head-1
save_bias = model.head1.bias.data.clone() # save the bias of head-1
model.head1 = nn.Linear(512, num_classes).to(device) # replace the labeled-class only head-1
model.head1.weight.data[:args.num_labeled_classes] = save_weight # put the old weights into the old part
model.head1.bias.data[:] = torch.min(save_bias) - 1. # put the bias
model.head1.bias.data[:args.num_labeled_classes] = save_bias
if args.labeled_center > 0:
class_mean, class_sig, class_cov = Generate_Center(old_model, labeled_train_loader, args)
else:
class_mean, class_sig, class_cov = None, None, None
train_IL_center(model, old_model, mix_train_loader, labeled_test_loader, unlabeled_val_loader,
all_test_loader, class_mean, class_sig, class_cov, args)
torch.save(model.state_dict(), args.model_dir)
print("model saved to {}.".format(args.model_dir))
acc_list = []
print('Head2: test on unlabeled classes')
args.head = 'head2'
_, ind = fair_test1(model, unlabeled_val_loader, args, return_ind=True)
print('Evaluating on Head1')
args.head = 'head1'
print('test on labeled classes (test split)')
acc = fair_test1(model, labeled_test_loader, args, cluster=False)
acc_list.append(acc)
print('test on unlabeled NEW-1 (test split)')
acc = fair_test1(model, unlabeled_test_loader, args, cluster=False, ind=ind)
acc_list.append(acc)
print('test on unlabeled NEW1 (test split) w/ clustering')
acc = fair_test1(model, unlabeled_test_loader, args, cluster=True)
acc_list.append(acc)
print('test on all classes w/o clustering (test split)')
acc = fair_test1(model, all_test_loader, args, cluster=False, ind=ind)
acc_list.append(acc)
print('test on all classes w/ clustering (test split)')
acc = fair_test1(model, all_test_loader, args, cluster=True)
acc_list.append(acc)
print('Evaluating on Head2')
args.head = 'head2'
print('test on unlabeled classes (train split)')
acc = fair_test1(model, unlabeled_val_loader, args)
acc_list.append(acc)
print('test on unlabeled classes (test split)')
acc = fair_test1(model, unlabeled_test_loader, args)
acc_list.append(acc)
print('Acc List: Head1->Old, New-1_wo_cluster, New-1_w_cluster, All_wo_cluster, All_w_cluster, Head2->Train, Test')
print(acc_list)
elif args.mode == 'train' and args.step == 'second':
num_classes = args.num_labeled_classes + args.num_unlabeled_classes1 + args.num_unlabeled_classes2
mix_train_loader = TinyImageNetLoader(batch_size=args.batch_size, num_workers=8, path=args.dataset_root,
aug='twice', shuffle=True,
class_list=range(args.num_labeled_classes + args.num_unlabeled_classes1,
num_classes), subfolder='train')
unlabeled_val_loader = TinyImageNetLoader(batch_size=args.batch_size, num_workers=8, path=args.dataset_root,
aug=None, shuffle=False,
class_list=range(
args.num_labeled_classes + args.num_unlabeled_classes1,
num_classes),
subfolder='train')
unlabeled_test_loader = TinyImageNetLoader(batch_size=args.batch_size, num_workers=8, path=args.dataset_root,
aug=None, shuffle=False,
class_list=range(
args.num_labeled_classes + args.num_unlabeled_classes1,
num_classes),
subfolder='val')
labeled_train_loader = TinyImageNetLoader(batch_size=args.batch_size, num_workers=8, path=args.dataset_root,
aug=None, shuffle=True, class_list = range(args.num_labeled_classes),
subfolder='train')
labeled_test_loader = TinyImageNetLoader(batch_size=args.batch_size, num_workers=8, path=args.dataset_root,
aug=None, shuffle=False, class_list=range(args.num_labeled_classes),
subfolder='val')
all_test_loader = TinyImageNetLoader(batch_size=args.batch_size, num_workers=8, path=args.dataset_root,
aug=None,
shuffle=False, class_list=range(num_classes), subfolder='val')
# Previous step Novel classes dataloader
p_unlabeled_val_loader = TinyImageNetLoader(batch_size=args.batch_size, num_workers=8, path=args.dataset_root,
aug=None, shuffle=False,
class_list=range(args.num_labeled_classes,
args.num_labeled_classes + args.num_unlabeled_classes1),
subfolder='train')
p_unlabeled_test_loader = TinyImageNetLoader(batch_size=args.batch_size, num_workers=8, path=args.dataset_root,
aug=None, shuffle=False,
class_list=range(args.num_labeled_classes,
args.num_labeled_classes + args.num_unlabeled_classes1),
subfolder='val')
# create model_new2
model_new2 = ResNetTri(BasicBlock, [2, 2, 2, 2], args.num_labeled_classes+args.num_unlabeled_classes1,
args.num_unlabeled_classes1, args.num_unlabeled_classes2).to(device)
state_dict = torch.load(args.first_step_dir)
model_new2.load_state_dict(state_dict, strict=False)
save_weight = model_new2.head1.weight.data.clone()
save_bias = model_new2.head1.bias.data.clone()
model_new2.head1 = nn.Linear(512, num_classes).to(device)
model_new2.head1.weight.data[:args.num_labeled_classes+args.num_unlabeled_classes1] = save_weight
model_new2.head1.bias.data[:] = torch.min(save_bias) - 1.
model_new2.head1.bias.data[:args.num_labeled_classes+args.num_unlabeled_classes1] = save_bias
for name, param in model_new2.named_parameters():
if 'head' not in name and 'layer4' not in name and 'layer3' not in name and 'layer2' not in name:
param.requires_grad = False
# Create the model
model_new1 = ResNet(BasicBlock, [2, 2, 2, 2], args.num_labeled_classes,
args.num_unlabeled_classes1 + args.num_unlabeled_classes2).to(device)
model_new1.head1 = nn.Linear(512, args.num_labeled_classes+args.num_unlabeled_classes1).to(device)
model_new1.head2 = nn.Linear(512, args.num_unlabeled_classes1).to(device)
state_dict = torch.load(args.first_step_dir)
model_new1.load_state_dict(state_dict, strict=False)
model_new1.eval()
# OLD
old_model = ResNet(BasicBlock, [2, 2, 2, 2], args.num_labeled_classes,
args.num_unlabeled_classes1 + args.num_unlabeled_classes2).to(device)
old_model.load_state_dict(torch.load(args.warmup_model_dir), strict=False)
old_model = old_model.to(device)
if args.w_kd > 0:
old_model.eval()
else:
old_model = None
if args.labeled_center > 0:
class_mean_old, class_sig_old, class_cov_old = Generate_Center(old_model, labeled_train_loader, args)
class_mean_new1, class_sig_new1, class_cov_new1 = Generate_Unlabel_Center(model_new1, p_unlabeled_val_loader, args)
class_mean = torch.cat((class_mean_old, class_mean_new1), dim=0)
class_sig = torch.cat((class_sig_old, class_sig_new1), dim=0)
else:
class_mean, class_sig, class_cov = None, None, None
train_IL_center_second(model_new2, model_new1, mix_train_loader, labeled_test_loader, unlabeled_val_loader,
all_test_loader, class_mean, class_sig, p_unlabeled_val_loader, args)
torch.save(model_new2.state_dict(), args.model_dir)
print("model saved to {}.".format(args.model_dir))
acc_list = []
args.head = 'head2'
args.test_new = 'new1'
print('Head2: test on unlabeled classes')
_, ind1 = fair_test2(model_new1, p_unlabeled_val_loader, args, return_ind=True)
args.head = 'head3'
args.test_new = 'new2'
print('Head3: test on unlabeled classes')
_, ind2 = fair_test2(model_new2, unlabeled_val_loader, args, return_ind=True)
args.head = 'head1'
print('Evaluating on Head1')
acc_all = 0.
print('test on labeled classes w/o cluster')
acc = fair_test2(model_new2, labeled_test_loader, args, cluster=False)
acc_list.append(acc)
acc_all = acc_all + acc * args.num_labeled_classes
args.test_new = 'new1'
print('test on unlabeled classes New-1 (test split)')
acc = fair_test2(model_new2, p_unlabeled_test_loader, args, cluster=False, ind=ind1)
acc_list.append(acc)
acc_all = acc_all + acc * args.num_unlabeled_classes1
print('test on unlabeled New-1 (test split) w/ clustering')
acc = fair_test2(model_new2, p_unlabeled_test_loader, args, cluster=True)
acc_list.append(acc)
args.test_new = 'new2'
print('test on unlabeled classes New-2 (test split)')
acc = fair_test2(model_new2, unlabeled_test_loader, args, cluster=False, ind=ind2)
acc_list.append(acc)
acc_all = acc_all + acc * args.num_unlabeled_classes2
print('test on unlabeled New-2 (test split) w/ clustering')
acc = fair_test2(model_new2, unlabeled_test_loader, args, cluster=True)
acc_list.append(acc)
print('test on all classes w/o clustering (test split)')
acc = acc_all / num_classes
acc_list.append(acc)
print('test on all classes w/ clustering (test split)')