forked from cp3-llbb/WWGGSnowMassAnalysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRooWorkSpaceInputTrial.py
1007 lines (902 loc) · 54.6 KB
/
RooWorkSpaceInputTrial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import logging
from bamboo.analysisutils import loadPlotIt
import os.path
from bamboo.analysismodules import AnalysisModule, HistogramsModule
class CMSPhase2SimRTBModule(AnalysisModule):
""" Base module for processing Phase2 flat trees """
def __init__(self, args):
super(CMSPhase2SimRTBModule, self).__init__(args)
self._h_genwcount = {}
def prepareTree(self, tree, sample=None, sampleCfg=None):
from bamboo.treedecorators import decorateCMSPhase2SimTree
from bamboo.dataframebackend import DataframeBackend
t = decorateCMSPhase2SimTree(tree, isMC=True)
be, noSel = DataframeBackend.create(t)
from bamboo.root import gbl
self._h_genwcount[sample] = be.rootDF.Histo1D(
gbl.ROOT.RDF.TH1DModel("h_count_genweight",
"genweight sum", 1, 0., 1.),
"_zero_for_stats",
"genweight"
)
return t, noSel, be, tuple()
def mergeCounters(self, outF, infileNames, sample=None):
outF.cd()
self._h_genwcount[sample].Write("h_count_genweight")
def readCounters(self, resultsFile):
return {"sumgenweight": resultsFile.Get("h_count_genweight").GetBinContent(1)}
# BEGIN cutflow reports, adapted from bamboo.analysisutils
logger = logging.getLogger(__name__)
_yieldsTexPreface = "\n".join(f"{ln}" for ln in
r"""\documentclass{report}
\usepackage{graphicx}
\usepackage[a4paper,bindingoffset=0.5cm,left=0cm,right=1cm,top=2cm,bottom=2cm,footskip=0.25cm]{geometry}
\begin{document}
""".split("\n"))
def _makeYieldsTexTable(MCevents, report, samples, entryPlots, stretch=1.5, orientation="v", align="c", yieldPrecision=1, ratioPrecision=2):
if orientation not in ("v", "h"):
raise RuntimeError(
f"Unsupported table orientation: {orientation} (valid: 'h' and 'v')")
import plotit.plotit
from plotit.plotit import Stack
import numpy as np
from itertools import repeat, count
def getHist(smp, plot):
try:
h = smp.getHist(plot)
h.contents # check
return h
except KeyError:
return None
def colEntriesFromCFREntryHists(report, entryHists, precision=1, showUncert=True):
stacks_t = []
colEntries = []
for entries in report.titles.values():
s_entries = []
for eName in entries:
eh = entryHists[eName]
if eh is not None:
if (not isinstance(eh, Stack)) or eh.entries:
s_entries.append(eh)
st_t = Stack(entries=s_entries)
if s_entries:
uncert = " \pm {{:.{}f}}".format(precision).format(
np.sqrt(st_t.sumw2+st_t.syst2)[1]) if showUncert else ""
colEntries.append("${{0:.2e}}$".format(
precision).format(st_t.contents[1]))
stacks_t.append(st_t)
else:
colEntries.append("---")
stacks_t.append(None)
return stacks_t, colEntries
def colEntriesFromCFREntryHists_forEff(report, entryHists, precision=1, showUncert=True):
stacks_t = []
colEntries = []
for entries in report.titles.values(): # selection names
s_entries = []
for eName in entries:
eh = entryHists[eName]
if eh is not None:
if (not isinstance(eh, Stack)) or eh.entries:
s_entries.append(eh)
st_t = Stack(entries=s_entries)
if s_entries:
uncert = " \pm {{:.{}f}}".format(precision).format(
np.sqrt(st_t.sumw2+st_t.syst2)[1]) if showUncert else ""
colEntries.append("{{0}}".format(
precision).format(st_t.contents[1]))
stacks_t.append(st_t)
else:
colEntries.append("---")
stacks_t.append(None)
return stacks_t, colEntries
smp_signal = [smp for smp in samples if smp.cfg.type == "SIGNAL"]
smp_mc = [smp for smp in samples if smp.cfg.type == "MC"]
smp_data = [smp for smp in samples if smp.cfg.type == "DATA"]
sepStr = "|l|"
smpHdrs = []
titles = list(report.titles.keys()) # titles are selections
entries_smp = []
stTotSig, stTotMC, stTotData = None, None, None
if smp_signal:
sepStr += "|"
sel_list = []
for sigSmp in smp_signal:
_, colEntries = colEntriesFromCFREntryHists(report,
{eName: getHist(sigSmp, p) for eName, p in entryPlots.items()}, precision=yieldPrecision)
sepStr += f"{align}|"
smpHdrs.append(
f"${sigSmp.cfg.yields_group}$") # sigSmp.cfg.yields_group is the name in the legend
_, colEntries_forEff = colEntriesFromCFREntryHists_forEff(report, {eName: sigSmp.getHist(
p) for eName, p in entryPlots.items()}, precision=yieldPrecision)
colEntries_matrix = np.array(colEntries_forEff)
sel_eff = np.array([100])
for i in range(1, len(report.titles)):
sel_eff = np.append(sel_eff, [float(
colEntries_matrix[i]) / float(colEntries_matrix[0]) * 100]).tolist()
for i in range(len(report.titles)):
sel_eff[i] = str(f"({sel_eff[i]:.3f}\%)")
colEntries_withEff = []
for i, entry in enumerate(colEntries):
colEntries_withEff.append("{0} {1}".format(
entry, sel_eff[i]))
entries_smp.append(colEntries_withEff)
if len(smp_signal) > 1:
sepStr += f"|{align}|"
smpHdrs.append("\\textbf{Signal}")
stTotSig, colEntries = colEntriesFromCFREntryHists(report, {eName: Stack(entries=[h for h in (getHist(
smp, p) for smp in smp_signal) if h]) for eName, p in entryPlots.items()}, precision=yieldPrecision)
stTotSig, colEntries_forEff = colEntriesFromCFREntryHists_forEff(report, {eName: Stack(entries=[h for h in (getHist(
smp, p) for smp in smp_signal) if h]) for eName, p in entryPlots.items()}, precision=yieldPrecision)
colEntries_matrix = np.array(colEntries_forEff)
sel_eff = np.array([100])
for i in range(1, len(report.titles)):
sel_eff = np.append(sel_eff, [float(
colEntries_matrix[i]) / float(colEntries_matrix[0]) * 100]).tolist()
for i in range(len(report.titles)):
sel_eff[i] = str(f"({sel_eff[i]:.3f}\%)")
colEntries_withEff = []
for i, entry in enumerate(colEntries):
colEntries_withEff.append("{0} {1}".format(
entry, sel_eff[i]))
entries_smp.append(colEntries_withEff)
if smp_mc:
sepStr += "|"
for mcSmp in smp_mc:
stTotMC, colEntries = colEntriesFromCFREntryHists(report,
{eName: getHist(mcSmp, p) for eName, p in entryPlots.items()}, precision=yieldPrecision)
sepStr += f"{align}|"
if isinstance(mcSmp, plotit.plotit.Group):
smpHdrs.append(f"${mcSmp.name}$")
else:
smpHdrs.append(f"${mcSmp.cfg.yields_group}$")
_, colEntries_forEff = colEntriesFromCFREntryHists_forEff(report, {eName: mcSmp.getHist(
p) for eName, p in entryPlots.items()}, precision=yieldPrecision)
colEntries_matrix = np.array(colEntries_forEff)
sel_eff = np.array([100])
for i in range(1, len(report.titles)):
sel_eff = np.append(sel_eff, [float(
colEntries_matrix[i]) / float(colEntries_matrix[0]) * 100]).tolist()
for i in range(len(report.titles)):
sel_eff[i] = str(f"({sel_eff[i]:.3f}\%)")
colEntries_withEff = []
for i, entry in enumerate(colEntries):
colEntries_withEff.append("{0} {1}".format(
entry, sel_eff[i]))
entries_smp.append(colEntries_withEff)
if len(smp_mc) > 1:
sepStr += f"|{align}|"
smpHdrs.append("\\textbf{Background}")
stTotMC, colEntries = colEntriesFromCFREntryHists(report, {eName: Stack(entries=[h for h in (getHist(
smp, p) for smp in smp_mc) if h]) for eName, p in entryPlots.items()}, precision=yieldPrecision)
stTotMC, colEntries_forEff = colEntriesFromCFREntryHists_forEff(report, {eName: Stack(entries=[h for h in (getHist(
smp, p) for smp in smp_mc) if h]) for eName, p in entryPlots.items()}, precision=yieldPrecision)
colEntries_matrix = np.array(colEntries_forEff)
sel_eff = np.array([100])
for i in range(1, len(report.titles)):
sel_eff = np.append(sel_eff, [float(
colEntries_matrix[i]) / float(colEntries_matrix[0]) * 100]).tolist()
for i in range(len(report.titles)):
sel_eff[i] = str(f"({sel_eff[i]:.3f}\%)")
colEntries_withEff = []
for i, entry in enumerate(colEntries):
colEntries_withEff.append("{0} {1}".format(
entry, sel_eff[i]))
entries_smp.append(colEntries_withEff)
if smp_data:
sepStr += f"|{align}|"
smpHdrs.append("Data")
stTotData, colEntries = colEntriesFromCFREntryHists(report, {eName: Stack(entries=[h for h in (getHist(
smp, p) for smp in smp_data) if h]) for eName, p in entryPlots.items()}, precision=0, showUncert=False)
entries_smp.append(colEntries)
if smp_data and smp_mc:
sepStr += f"|{align}|"
smpHdrs.append("Data/MC")
colEntries = []
import numpy.ma as ma
for stData, stMC in zip(stTotData, stTotMC):
if stData is not None and stMC is not None:
dtCont = stData.contents
mcCont = ma.array(stMC.contents)
ratio = dtCont/mcCont
ratioErr = np.sqrt(mcCont**2*stData.sumw2 +
dtCont**2*(stMC.sumw2+stMC.syst2))/mcCont**2
if mcCont[1] != 0.:
colEntries.append("${{0:.{0}f}}$".format(
ratioPrecision).format(ratio[1]))
else:
colEntries.append("---")
else:
colEntries.append("---")
entries_smp.append(colEntries)
if smp_signal and smp_mc:
sepStr += f"|{align}|"
smpHdrs.append("$S/\sqrt{B}$")
colEntries = []
import numpy.ma as ma
for stSig, stMC in zip(stTotSig, stTotMC):
if stSig is not None and stMC is not None:
dtCont = stSig.contents
mcCont = ma.array(stMC.contents)
ratio = dtCont/np.sqrt(mcCont)
ratioErr = np.sqrt(mcCont**2*stSig.sumw2 +
dtCont**2*(stMC.sumw2+stMC.syst2))/mcCont**2
if mcCont[1] != 0.:
colEntries.append("${0:.5f}$".format(ratio[1]))
else:
colEntries.append("---")
else:
colEntries.append("---")
entries_smp.append(colEntries)
c_bySmp = entries_smp
c_byHdr = [[smpEntries[i] for smpEntries in entries_smp]
for i in range(len(titles))]
if orientation == "v":
rowHdrs = titles # selections
colHdrs = ["Selections"]+smpHdrs # samples
c_byRow = c_byHdr
c_byCol = c_bySmp
else: # horizontal
sepStr = "|l|{0}|".format("|".join(repeat(align, len(titles))))
rowHdrs = smpHdrs # samples
colHdrs = ["Samples"]+titles # selections
c_byRow = c_bySmp
c_byCol = c_byHdr
if entries_smp:
colWidths = [max(len(rh) for rh in rowHdrs)+1]+[max(len(hdr), max(len(c)
for c in col))+1 for hdr, col in zip(colHdrs[1:], c_byCol)]
return "\n".join([
f"\\resizebox{{\\textwidth}}{{!}}{{",
f"\\begin{{tabular}}{{ {sepStr} }}",
" \\hline",
" {0} \\\\".format(" & ".join(h.ljust(cw)
for cw, h in zip(colWidths, colHdrs))),
" \\hline"]+[
" {0} \\\\".format(" & ".join(en.rjust(cw)
for cw, en in zip(colWidths, [rh]+rowEntries)))
for rh, rowEntries in zip(rowHdrs, c_byRow)
]+[
" \\hline",
"\\end{tabular}"
"}"
"\\end{document}"
])
def printCutFlowReports(config, reportList, workdir=".", resultsdir=".", suffix=None, readCounters=lambda f: -1., eras=("all", None), verbose=False):
"""
Print yields to the log file, and write a LaTeX yields table for each
Samples can be grouped (only for the LaTeX table) by specifying the
``yields-group`` key (overriding the regular ``groups`` used for plots).
The sample (or group) name to use in this table should be specified
through the ``yields-title`` sample key.
In addition, the following options in the ``plotIt`` section of
the YAML configuration file influence the layout of the LaTeX yields table:
- ``yields-table-stretch``: ``\\arraystretch`` value, 1.15 by default
- ``yields-table-align``: orientation, ``h`` (default), samples in rows, or ``v``, samples in columns
- ``yields-table-text-align``: alignment of text in table cells (default: ``c``)
- ``yields-table-numerical-precision-yields``: number of digits after the decimal point for yields (default: 1)
- ``yields-table-numerical-precision-ratio``: number of digits after the decimal point for ratios (default: 2)
"""
eraMode, eras = eras
if not eras: # from config if not specified
eras = list(config["eras"].keys())
# helper: print one bamboo.plots.CutFlowReport.Entry
def printEntry(entry, printFun=logger.info, recursive=True, genEvents=None):
if entry.nominal is not None:
effMsg = ""
if entry.parent:
sumPass = entry.nominal.GetBinContent(1)
sumTotal = (entry.parent.nominal.GetBinContent(
1) if entry.parent.nominal is not None else 0.)
if sumTotal != 0.:
effMsg = f", Eff={sumPass/sumTotal:.2%}"
if genEvents:
effMsg += f", TotalEff={sumPass/genEvents:.2%}"
printFun(
f"Selection {entry.name}: N={entry.nominal.GetEntries()}, SumW={entry.nominal.GetBinContent(1)}{effMsg}")
printFun(f"Selection {entry.name}: N={entry.nominal.GetEntries()}")
if recursive:
for c in entry.children:
printEntry(c, printFun=printFun,
recursive=recursive, genEvents=genEvents)
def unwMCevents(entry, smp, mcevents, genEvents=None):
if entry.nominal is not None:
mcevents.append(entry.nominal.GetEntries())
for c in entry.children:
unwMCevents(c, smp, mcevents, genEvents=genEvents)
return mcevents
# retrieve results files, get generated events for each sample
from bamboo.root import gbl
resultsFiles = dict()
generated_events = dict()
for smp, smpCfg in config["samples"].items():
if "era" not in smpCfg or smpCfg["era"] in eras:
resF = gbl.TFile.Open(os.path.join(resultsdir, f"{smp}.root"))
resultsFiles[smp] = resF
genEvts = None
if "generated-events" in smpCfg:
if isinstance(smpCfg["generated-events"], str):
genEvts = readCounters(resF)[smpCfg["generated-events"]]
else:
genEvts = smpCfg["generated-events"]
generated_events[smp] = genEvts
has_plotit = None
try:
import plotit.plotit
has_plotit = True
except ImportError:
has_plotit = False
from bamboo.plots import EquidistantBinning as EqB
class YieldPlot:
def __init__(self, name):
self.name = name
self.plotopts = dict()
self.axisTitles = ("Yield",)
self.binnings = [EqB(1, 0., 1.)]
for report in reportList:
smpReports = {smp: report.readFromResults(
resF) for smp, resF in resultsFiles.items()}
# debug print
MCevents = {}
for smp, smpRep in smpReports.items():
# if smpRep.printInLog:
logger.info(f"Cutflow report {report.name} for sample {smp}")
MCevents[smp] = []
for root in smpRep.rootEntries():
printEntry(root, genEvents=generated_events[smp])
mcevents = []
MCevents[smp].append(unwMCevents(
root, smp, mcevents, genEvents=generated_events[smp]))
# save yields.tex (if needed)
if any(len(cb) > 1 or tt != cb[0] for tt, cb in report.titles.items()):
if not has_plotit:
logger.error(
f"Could not load plotit python library, no TeX yields tables for {report.name}")
else:
yield_plots = [YieldPlot(f"{report.name}_{eName}")
for tEntries in report.titles.values() for eName in tEntries]
out_eras = []
if len(eras) > 1 and eraMode in ("all", "combined"):
nParts = [report.name]
if suffix:
nParts.append(suffix)
out_eras.append(("{0}.tex".format("_".join(nParts)), eras))
if len(eras) == 1 or eraMode in ("split", "all"):
for era in eras:
nParts = [report.name]
if suffix:
nParts.append(suffix)
nParts.append(era)
out_eras.append(
("{0}.tex".format("_".join(nParts)), [era]))
for outName, iEras in out_eras:
pConfig, samples, plots, _, _ = loadPlotIt(
config, yield_plots, eras=iEras, workdir=workdir, resultsdir=resultsdir, readCounters=readCounters)
tabBlock = _makeYieldsTexTable(MCevents, report, samples,
{p.name[len(
report.name)+1:]: p for p in plots},
stretch=pConfig.yields_table_stretch,
orientation=pConfig.yields_table_align,
align=pConfig.yields_table_text_align,
yieldPrecision=pConfig.yields_table_numerical_precision_yields,
ratioPrecision=pConfig.yields_table_numerical_precision_ratio)
if tabBlock:
with open(os.path.join(workdir, outName), "w") as ytf:
ytf.write("\n".join((_yieldsTexPreface, tabBlock)))
logger.info("Yields table for era(s) {0} was written to {1}".format(
",".join(iEras), os.path.join(workdir, outName)))
else:
logger.warning(
f"No samples for era(s) {','.join(iEras)}, so no yields.tex")
# END cutflow reports, adapted from bamboo.analysisutils
class CMSPhase2SimRTBHistoModule(CMSPhase2SimRTBModule, HistogramsModule):
""" Base module for producing plots from Phase2 flat trees """
def __init__(self, args):
super(CMSPhase2SimRTBHistoModule, self).__init__(args)
def postProcess(self, taskList, config=None, workdir=None, resultsdir=None):
super(CMSPhase2SimRTBHistoModule, self).postProcess(taskList, config=config, workdir=workdir, resultsdir=resultsdir)
""" Customised cutflow reports and plots """
if not self.plotList:
self.plotList = self.getPlotList(resultsdir=resultsdir)
from bamboo.plots import Plot, DerivedPlot, CutFlowReport
plotList_cutflowreport = [
ap for ap in self.plotList if isinstance(ap, CutFlowReport)]
plotList_plotIt = [ap for ap in self.plotList if (isinstance(
ap, Plot) or isinstance(ap, DerivedPlot)) and len(ap.binnings) == 1]
eraMode, eras = self.args.eras
if eras is None:
eras = list(config["eras"].keys())
if plotList_cutflowreport:
printCutFlowReports(config, plotList_cutflowreport, workdir=workdir, resultsdir=resultsdir,
readCounters=self.readCounters, eras=(eraMode, eras), verbose=self.args.verbose)
if plotList_plotIt:
from bamboo.analysisutils import writePlotIt, runPlotIt
import os.path
cfgName = os.path.join(workdir, "plots.yml")
writePlotIt(config, plotList_plotIt, cfgName, eras=eras, workdir=workdir, resultsdir=resultsdir,
readCounters=self.readCounters, vetoFileAttributes=self.__class__.CustomSampleAttributes, plotDefaults=self.plotDefaults)
runPlotIt(cfgName, workdir=workdir, plotIt=self.args.plotIt,
eras=(eraMode, eras), verbose=self.args.verbose)
#mvaSkim
#import os.path
from IPython import embed
from bamboo.plots import Skim
from bamboo.root import gbl
skims = [ap for ap in self.plotList if isinstance(ap, Skim)]
if (self.args.mvaSkim or self.args.mvaEval) and skims:
from bamboo.analysisutils import loadPlotIt
p_config, samples, _, systematics, legend = loadPlotIt(config, [], eras=self.args.eras[1], workdir=workdir, resultsdir=resultsdir, readCounters=self.readCounters, vetoFileAttributes=self.__class__.CustomSampleAttributes)
#try:
from bamboo.root import gbl
import pandas as pd
import os.path
#except ImportError as ex:
#logger.error("Could not import pandas, no dataframes will be saved")
if self.args.mvaSkim:
for skim in skims:
frames = []
for smp in samples:
for cb in (smp.files if hasattr(smp, "files") else [smp]): # could be a helper in plotit
# Take specific columns
tree = cb.tFile.Get(skim.treeName)
if not tree:
print( f"KEY TTree {skim.treeName} does not exist, we are gonna skip this {smp}\n")
else:
N = tree.GetEntries()
cols = gbl.ROOT.RDataFrame(tree).AsNumpy()
cols["weight"] *= cb.scale
cols["process"] = [smp.name]*len(cols["weight"])
frames.append(pd.DataFrame(cols))
if len(frames) == 0:
print (f'Could not find any sample with TTree {skim.treeName}, moving on to next Skim')
continue
df = pd.concat(frames)
df["process"] = pd.Categorical(df["process"], categories=pd.unique(df["process"]), ordered=False)
pqoutname = os.path.join(resultsdir, f"{skim.name}.parquet")
df.to_parquet(pqoutname)
logger.info(f"Dataframe for skim {skim.name} saved to {pqoutname}")
if self.args.mvaEval:
from array import array
# Make output directory #
outputDir = os.path.join(workdir,'skimsForFit')
if not os.path.exists(outputDir):
os.makedirs(outputDir)
# Loop over samples and skims #
treeDict = {}
for smp in samples:
sampleName = smp.name.replace('.root','')
treeDict[sampleName] = {}
for skim in skims:
# Get full TTree #
trees = []
scales = []
for cb in (smp.files if hasattr(smp, "files") else [smp]): # could be a helper in plotit
if cb.tFile.GetListOfKeys().FindObject(skim.treeName):
trees.append(cb.tFile.Get(skim.treeName))
scales.append(cb.scale)
else:
print (f'TTree {skim.treeName} not found in in {cb.path}, continuing')
if len(trees) == 0:
print (f'No TTree {skim.treeName} in {smp.name}, continuing')
continue
treeDict[sampleName][skim.treeName] = [trees,scales]
groups = {'signal':[],'singleH':[],'continuum':[]}
for sampleName,sampleCfg in config['samples'].items():
if sampleCfg['type']=='signal':
groups['signal'].append(sampleName)
else:
if any([sampleName.startswith(substr) for substr in ['GluGluH','VBFH','ttH','TH','VH']]):
groups['singleH'].append(sampleName)
else:
groups['continuum'].append(sampleName)
for group,sampleNames in groups.items():
outName = os.path.join(outputDir,f'{group}.root')
if os.path.exists(outName):
os.remove(outName)
outFile = gbl.TFile(outName,"RECREATE")
subdir = outFile.mkdir('tagsDumper')
subdir = subdir.mkdir('trees')
subdir.cd()
for sampleName in sampleNames:
for skimName in treeDict[sampleName].keys():
treeName = f'{sampleName}_125_13TeV_{skim.treeName}.root'
outTree = gbl.TTree(treeName,treeName)
trees,scales = treeDict[sampleName][skimName]
branchNames = []
branchArrs = []
branchObj = []
try:
trees[0].GetListOfBranches()
except:
embed()
for branch in trees[0].GetListOfBranches():
brName,brType = branch.GetTitle().split('/')
branchNames.append(brName)
branchArr = array(brType.lower(),[0.])
branchArrs.append(branchArr)
branchObj.append(outTree.Branch(brName,branchArr,f'{brName}/{brType}'))
for tree,scale in zip(trees,scales):
for idx,event in enumerate(tree):
tree.GetEntry(idx)
for brName,brArr,brObj in zip(branchNames,branchArrs,branchObj):
value = getattr(tree,brName)
if brName == "weight":
brArr[0] = value * scale
else:
brArr[0] = value
outTree.Fill()
outTree.Write("",gbl.TObject.kOverwrite)
print (f'TTree {skimName} for sample {sampleName} saved in {outFile.GetName()}')
outFile.Close()
#produce histograms "with datacard conventions"
if self.args.datacards:
datacardPlots = [ap for ap in self.plotList if ap.name == "Empty_histo" or ap.name =="Inv_mass_gg" or ap.name =="Inv_mass_bb" or ap.name =="Inv_mass_HH" or (self.args.mvaEval and ap.name =="dnn_score")]
p_config, samples, plots_dc, systematics, legend = loadPlotIt(
config, datacardPlots, eras=self.args.eras[1], workdir=workdir, resultsdir=resultsdir,
readCounters=self.readCounters, vetoFileAttributes=self.__class__.CustomSampleAttributes)
dcdir = os.path.join(workdir, "datacard_histograms")
import os
import numpy as np
os.makedirs(dcdir, exist_ok=True)
def _saveHist(obj, name, tdir=None):
if tdir:
tdir.cd()
obj.Write(name)
from functools import partial
import plotit.systematics
for era in (self.args.eras[1] or config["eras"].keys()):
f_dch = gbl.TFile.Open(os.path.join(dcdir, f"histo_for_combine_{era}.root"), "RECREATE")
saveHist = partial(_saveHist, tdir=f_dch)
smp = next(smp for smp in samples if smp.cfg.type == "SIGNAL")
plot = next(plot for plot in plots_dc if plot.name == "Empty_histo")
h = smp.getHist(plot, eras=era)
saveHist(h.obj, f"data_obs")
for plot in plots_dc:
if plot.name != "Empty_histo":
for smp in samples:
smpName = smp.name
if smpName.endswith(".root"):
smpName = smpName[:-5]
h = smp.getHist(plot, eras=era)
saveHist(h.obj, f"h_{plot.name}_{smpName}")
f_dch.Close()
################################
## An analysis module example ##
################################
class SnowmassExample(CMSPhase2SimRTBHistoModule):
def addArgs(self, parser):
super().addArgs(parser)
parser.add_argument("--mvaSkim", action="store_true", help="Produce MVA training skims")
parser.add_argument("--datacards", action="store_true", help="Produce histograms for datacards")
parser.add_argument("--mvaEval", action="store_true", help="Import MVA model and evaluate it on the dataframe")
def definePlots(self, t, noSel, sample=None, sampleCfg=None):
from bamboo.plots import Plot, CutFlowReport, SummedPlot
from bamboo.plots import EquidistantBinning as EqB
from bamboo import treefunctions as op
#count no of events here
noSel = noSel.refine("withgenweight", weight=t.genweight, cut=[op.AND(op.abs(t.genweight)<300, t.genweight>0)])
plots = []
#yields
yields = CutFlowReport("yields", recursive=True, printInLog=True)
plots.append(yields)
yields.add(noSel, title= 'noSel')
#selection of photons with eta in the detector acceptance
photons = op.select(t.gamma, lambda ph : op.AND(op.abs(ph.eta)<2.5, ph.pt >25.))
#sort photons by pT
sort_ph = op.sort(photons, lambda ph : -ph.pt)
#selection of photons with loose ID
isoPhotons = op.select(sort_ph, lambda ph : ph.isopass & (1<<0)) #switched to tight ID on 26/11
idPhotons = op.select(isoPhotons, lambda ph : ph.idpass & (1<<0))
electrons = op.select(t.elec, lambda el : op.AND(el.pt > 10., op.abs(el.eta) < 2.5))
jets = op.select(t.jetpuppi, lambda jet : op.AND(jet.pt > 30., op.abs(jet.eta) < 5))
clElectrons = op.select(electrons, lambda el : op.AND(
op.NOT(op.rng_any(idPhotons, lambda ph : op.deltaR(el.p4, ph.p4) < 0.4 )),
#op.NOT(op.rng_any(jets, lambda j : op.deltaR(el.p4, j.p4) < 0.4 ))
))
sort_el = op.sort(clElectrons, lambda el : -el.pt)
isoElectrons = op.select(sort_el, lambda el : el.isopass & (1<<0))
idElectrons = op.select(isoElectrons, lambda el : el.idpass & (1<<0))
#slElectrons = op.select(idElectrons, lambda el : op.NOT(op.in_range(86.187, op.rng_any(idPhotons,lambda ph:op.invariant_mass(el.p4, ph.p4)), 90.187000))) #apply the removal of rmZee peak
muons = op.select(t.muon, lambda mu : op.AND(mu.pt > 10., op.abs(mu.eta) < 2.5))
clMuons = op.select(muons, lambda mu : op.AND(op.NOT(op.rng_any(idPhotons, lambda ph : op.deltaR(mu.p4, ph.p4) < 0.4 )),
op.NOT(op.rng_any(jets, lambda j : op.deltaR(mu.p4, j.p4) < 0.4 ))))
sort_mu = op.sort(clMuons, lambda mu : -mu.pt)
idMuons = op.select(sort_mu, lambda mu : mu.idpass & (1<<2)) #apply tight ID
isoMuons = op.select(idMuons, lambda mu : mu.isopass & (1<<2)) #apply tight isolation
taus = op.sort(op.select(t.tau, lambda tau: op.AND(tau.pt > 20., op.abs(tau.eta) < 3)), lambda tau: -tau.pt)
cleanedTaus = op.select(taus, lambda tau: op.AND(op.NOT(op.rng_any(idPhotons, lambda ph: op.deltaR(tau.p4, ph.p4) < 0.2)),
op.NOT(op.rng_any(idElectrons, lambda el: op.deltaR(tau.p4, el.p4) < 0.2)),
op.NOT(op.rng_any(isoMuons,lambda mu: op.deltaR(tau.p4, mu.p4) < 0.2))
))
isolatedTaus = op.select(cleanedTaus, lambda tau: tau.isopass & (1 << 2)) # tight working point Oguz is using loose ISO
# All tau pairs
allTauPairs = op.combine(isolatedTaus, N=2, pred=lambda t1, t2: t1.charge != t2.charge)
# Best tau pair with invariant mass closest to Higgs mass
bestTauPair = op.rng_min_element_by(allTauPairs, lambda tt: op.abs(op.invariant_mass(tt[0].p4, tt[1].p4)-125))
clJets = op.select(jets, lambda j : op.AND(
op.NOT(op.rng_any(idPhotons, lambda ph : op.deltaR(ph.p4, j.p4) < 0.4) ),
op.NOT(op.rng_any(idElectrons, lambda el : op.deltaR(el.p4, j.p4) < 0.4) ),
op.NOT(op.rng_any(isoMuons, lambda mu : op.deltaR(mu.p4, j.p4) < 0.4) ),
op.NOT(op.rng_any(isolatedTaus, lambda tau: op.deltaR(j.p4, tau.p4) < 0.4))
))
sort_jets = op.sort(clJets, lambda jet : -jet.pt)
idJets = op.select(sort_jets, lambda j : j.idpass & (1<<2))
bJets = op.select(idJets, lambda j: j.btag & (1 << 1))
mGG = op.invariant_mass(idPhotons[0].p4, idPhotons[1].p4)
mTauTau = op.invariant_mass(isolatedTaus[0].p4, isolatedTaus[1].p4)
pTGG = (op.sum(idPhotons[0].p4, idPhotons[1].p4)).pt()
mJets = op.invariant_mass(idJets[0].p4, idJets[1].p4)
mJets_SL= op.invariant_mass(idJets[1].p4, idJets[2].p4)
#Fully leptonic FL invmasses
mE = op.invariant_mass(idElectrons[0].p4, idElectrons[1].p4)
mMu = op.invariant_mass(idMuons[0].p4, idMuons[1].p4)
mEMu = op.invariant_mass(idElectrons[0].p4, idMuons[0].p4)
#missing transverse energy
met = op.select(t.metpuppi)
metPt= met[0].pt
#define more variables for ease of use
nElec = op.rng_len(idElectrons)
nMuon = op.rng_len(isoMuons)
nJet = op.rng_len(idJets)
nPhoton = op.rng_len(idPhotons)
nTau = op.rng_len(isolatedTaus)
#defining more DNN variables
pT_mGGL = op.product(idPhotons[0].pt, op.pow(mGG, -1))
pT_mGGSL = op.product(idPhotons[1].pt, op.pow(mGG, -1))
E_mGGL = op.product(idPhotons[0].p4.energy(), op.pow(mGG, -1))
E_mGGSL = op.product(idPhotons[1].p4.energy(), op.pow(mGG, -1))
#selections for efficiency check
sel1_p = noSel.refine("2Photon", cut = op.AND((op.rng_len(sort_ph) >= 2), (sort_ph[0].pt > 35.)))
sel2_p = sel1_p.refine("idPhoton", cut = op.AND((op.rng_len(idPhotons) >= 2), (idPhotons[0].pt > 35.)))
#selections for the event inv mass of photons within the 100-180 window
hasInvM = sel2_p.refine("hasInvM", cut= op.AND(
(op.in_range(100, op.invariant_mass(idPhotons[0].p4, idPhotons[1].p4), 180))
))
sel2_p_80 = sel1_p.refine("LP80", cut = op.AND((op.rng_len(idPhotons) >= 2), (idPhotons[0].pt > 80.)))
hasInvM80 = sel2_p_80.refine("hasInvM80", cut= op.AND(
(op.in_range(115, op.invariant_mass(idPhotons[0].p4, idPhotons[1].p4), 135))
))
sel2_p_100 = sel1_p.refine("LP100", cut = op.AND((op.rng_len(idPhotons) >= 2), (idPhotons[0].pt > 100.)))
hasInvM100 = sel2_p_100.refine("hasInvM100", cut= op.AND(
(op.in_range(115, op.invariant_mass(idPhotons[0].p4, idPhotons[1].p4), 135))
))
sel1_e = noSel.refine("OneE", cut = op.rng_len(sort_el) >= 1)
sel2_e = sel1_e.refine("idElectron", cut = op.rng_len(idElectrons) >= 1)
sel3_e = sel2_e.refine("slElectron", cut = op.AND(op.rng_len(idElectrons) >= 1))
sel1_m = noSel.refine("OneM", cut = op.rng_len(sort_mu) >= 1)
sel2_m = sel1_m.refine("idMuon", cut = op.rng_len(idMuons) >= 1)
sel3_m = sel2_m.refine("isoMuon", cut = op.AND(op.rng_len(isoMuons) >= 1))
## Categories ##
#selections for semileptonic final state
hasOneL = hasInvM.refine("hasOneL", cut = op.OR(op.AND(nElec == 1, nMuon == 0), op.AND(nElec == 0, nMuon == 1)))
yields.add(hasOneL, title='hasOneL')
hasOneL80 = hasInvM80.refine("hasOneL80", cut = op.AND(op.OR(op.AND(nElec == 1, nMuon == 0), op.AND(nElec == 0, nMuon == 1)), met[0].pt > 80))
yields.add(hasOneL80, title='hasOneL80')
hasOneL100 = hasInvM100.refine("hasOneL100", cut = op.AND(op.OR(op.AND(nElec == 1, nMuon == 0), op.AND(nElec == 0, nMuon == 1)), met[0].pt > 100))
yields.add(hasOneL100, title='hasOneL100')
hasOneEl = hasInvM.refine("hasOneEl", cut = op.AND(nElec == 1, nMuon == 0))
hasOneMu = hasInvM.refine("hasOneMu", cut = op.AND(nElec == 0, nMuon == 1))
#adding jets on the semileptonic final state
hasOneJ = hasOneL.refine("hasOneJ", cut = nJet >= 1)
hasTwoJ = hasOneJ.refine("hasTwoJ", cut = nJet >= 2)
hasThreeJ = hasTwoJ.refine("hasThreeJ", cut = nJet >= 3)
hasTwoL = hasInvM.refine('hasTwoL', cut = op.AND(
op.OR(
op.AND(op.AND(nElec >= 2, nMuon == 0), idElectrons[0].charge != idElectrons[1].charge, op.NOT(op.deltaR(idElectrons[0].p4, idElectrons[1].p4) < 0.4), op.OR(mE < 80, mE >100)),
op.AND(op.AND(nElec >= 1, nMuon == 1), idElectrons[0].charge != idMuons[0].charge, op.NOT(op.deltaR(idElectrons[0].p4, idMuons[0].p4) < 0.4), op.OR(mEMu < 80, mEMu >100)),
op.AND(op.AND(nElec == 1, nMuon >= 1), idElectrons[0].charge != idMuons[0].charge, op.NOT(op.deltaR(idElectrons[0].p4, idMuons[0].p4) < 0.4), op.OR(mEMu < 80, mEMu >100)),
op.AND(op.AND(nMuon >= 2, nElec == 0), idMuons[0].charge != idMuons[1].charge, op.NOT(op.deltaR(idMuons[0].p4, idMuons[1].p4) < 0.4), op.OR(mMu < 80, mMu >100))),
pTGG > 91,
#op.AND(idElectrons[2].pt > 10, idMuons[2].pt > 10),
#bJets.pt < 20,
met[0].pt > 20
))
#yields.add(hasTwoL, title='hasTwoL')
#hasZeroL = hasInvM.refine('hasZeroL', cut = op.AND(nJet >= 4, nElec == 0, nMuon == 0, nTau == 0))
#yields.add(hasZeroL, title='hasZeroL')
c3 = hasInvM.refine("hasOneTauNoLept", cut=op.AND( nTau == 1, op.rng_len(idElectrons) == 0, op.rng_len(isoMuons) == 0 ))
#yields.add(c3, "One Tau No Lept")
c4 = hasInvM.refine("hasTwoTaus", cut=op.AND(nTau >= 2, op.rng_len(idElectrons) == 0, op.rng_len(isoMuons) == 0 ))
########## Z veto ##########
c4_Zveto = c4.refine( "hasTwoTaus_Zveto", cut=op.NOT(op.in_range(80, mTauTau, 100)))
#yields.add(c4_Zveto, "Two Taus")
## End of Categories ##
#plots
#hasOneL
plots.append(Plot.make1D("LeadingPhotonPtOneL", idPhotons[0].pt, hasOneL, EqB(30, 0., 300.), title="Leading Photon pT"))
plots.append(Plot.make1D("SubLeadingPhotonPtOneL", idPhotons[1].pt, hasOneL, EqB(30, 0., 300.), title="SubLeading Photon pT"))
plots.append(Plot.make1D("LeadingPhotonEtaOneL", idPhotons[0].eta, hasOneL, EqB(80, -4., 4.), title="Leading Photon eta"))
plots.append(Plot.make1D("SubLeadingPhotonEtaOneL", idPhotons[1].eta, hasOneL, EqB(80, -4., 4.), title="SubLeading Photon eta"))
plots.append(Plot.make1D("LeadingPhotonPhiOneL", idPhotons[0].phi, hasOneL, EqB(100, -3.5, 3.5), title="Leading Photon phi"))
plots.append(Plot.make1D("SubLeadingPhotonPhiOneL", idPhotons[1].phi, hasOneL, EqB(100, -3.5, 3.5), title="SubLeading Photon phi"))
plots.append(Plot.make1D("nElectronsOneL", nElec, hasOneL, EqB(10, 0., 10.), title="Number of electrons"))
plots.append(Plot.make1D("nMuonsOneL", nMuon, hasOneL, EqB(10, 0., 10.), title="Number of Muons"))
plots.append(Plot.make1D("nJetsOneL", nJet, hasOneL, EqB(10, 0., 10.), title="Number of Jets"))
plots.append(Plot.make1D("LeadingPhotonpT_mGGLhasOneL", pT_mGGL, hasOneL,EqB(100, 0., 5.) ,title = "Leading Photon p_{T}/m_{\gamma\gamma}"))
plots.append(Plot.make1D("SubLeadingPhotonpT_mGGLhasOneL", pT_mGGSL, hasOneL,EqB(100, 0., 5.) ,title = "SubLeading Photon p_{T}/m_{\gamma\gamma}"))
plots.append(Plot.make1D("LeadingPhotonE_mGGLhasOneL", E_mGGL, hasOneL,EqB(100, 0., 5.) ,title = "Leading Photon E/m_{\gamma\gamma}"))
plots.append(Plot.make1D("SubLeadingPhotonE_mGGLhasOneL", E_mGGSL, hasOneL,EqB(100, 0., 5.) ,title = "SubLeading Photon E/m_{\gamma\gamma}"))
plots.append(Plot.make1D("MET", metPt, hasOneL,EqB(80, 0., 800.) ,title="MET"))
plots.append(Plot.make1D("Inv_mass_gghasOneL",mGG , hasOneL, EqB(80, 100.,180.), title = "m_{\gamma\gamma}"))
plots.append(Plot.make1D("Inv_mass_gghasOneL_135",mGG , hasOneL, EqB(20, 115.,135.), title = "m_{\gamma\gamma}"))
plots.append(Plot.make1D("Inv_mass_gghasOneL80",mGG , hasOneL80, EqB(20, 115.,135.), title = "m_{\gamma\gamma}"))
plots.append(Plot.make1D("Inv_mass_gghasOneL100",mGG , hasOneL100, EqB(20, 115.,135.), title = "m_{\gamma\gamma}"))
#Leading electron Plots
ElectronpT = Plot.make1D("ElectronpT", idElectrons[0].pt, hasOneEl, EqB(30, 0., 300.), title = 'Leading Electron pT')
ElectronE = Plot.make1D("ElectronE", idElectrons[0].p4.E(), hasOneEl, EqB(50, 0., 500.), title = 'Leading Electron E')
ElectronEta = Plot.make1D("ElectronEta", idElectrons[0].eta, hasOneEl, EqB(80, -4., 4.), title = 'Leading Electron eta')
ElectronPhi = Plot.make1D("ElectronPhi", idElectrons[0].phi, hasOneEl, EqB(100, -3.5, 3.5), title = 'Leading Electron phi')
#Leading muon Plots
MuonpT = Plot.make1D("MuonpT", idMuons[0].pt, hasOneMu, EqB(30, 0., 100.), title = 'Leading Muon pT')
MuonE = Plot.make1D("MuonE", idMuons[0].p4.E(), hasOneMu, EqB(50, 0., 500.), title = 'Leading Muon E')
MuonEta = Plot.make1D("MuonEta", idMuons[0].eta, hasOneMu, EqB(80, -4., 4.), title = 'Leading Muon eta')
MuonPhi = Plot.make1D("MuonPhi", idMuons[0].phi, hasOneMu, EqB(100, -3.5, 3.5), title = 'Leading Muon phi')
#Lepton Plots
LeptonpT = SummedPlot('LeptonpT', [ElectronpT,MuonpT], xTitle = 'Leading Lepton pT')
plots.append(ElectronpT)
plots.append(MuonpT)
plots.append(LeptonpT)
LeptonE = SummedPlot('LeptonE', [ElectronE,MuonE], xTitle = 'Leading Lepton E')
plots.append(ElectronE)
plots.append(MuonE)
plots.append(LeptonE)
LeptonEta = SummedPlot('LeptonEta', [ElectronEta,MuonEta], xTitle = 'Leading Lepton Eta')
plots.append(ElectronEta)
plots.append(MuonEta)
plots.append(LeptonEta)
LeptonPhi = SummedPlot('LeptonPhi', [ElectronPhi,MuonPhi], xTitle = 'Leading Lepton Phi')
plots.append(ElectronPhi)
plots.append(MuonPhi)
plots.append(LeptonPhi)
#hasTwoL
plots.append(Plot.make1D("Inv_mass_gghasTwoL",mGG , hasTwoL, EqB(80, 100.,180.), title = "m_{\gamma\gamma}"))
plots.append(Plot.make1D("Inv_mass_gghasTwoL_135",mGG , hasTwoL, EqB(20, 115.,135.), title = "m_{\gamma\gamma}"))
#hasZeroL
#plots.append(Plot.make1D("Inv_mass_gghasZeroL",mGG , hasZeroL, EqB(80, 100.,180.), title = "m_{\gamma\gamma}"))
# tau category plots
plots.append(Plot.make1D("mGG_c3", mGG, c3, EqB(80, 100, 180), title="M_{\gamma\gamma}", plotopts={"log-y": True}))
plots.append(Plot.make1D("mGG_c3_135", mGG, c3, EqB(20, 115, 135), title="M_{\gamma\gamma}", plotopts={"log-y": True}))
plots.append(Plot.make1D("mGG_c4_Zveto", mGG, c4_Zveto, EqB(80, 100, 180), title="M_{\gamma\gamma}", plotopts={"log-y": True}))
plots.append(Plot.make1D("mGG_c4_Zveto_135", mGG, c4_Zveto, EqB(20, 115, 135), title="M_{\gamma\gamma}", plotopts={"log-y": True}))
#hasOneJ
plots.append(Plot.make1D("LeadingJetPtOneJ", idJets[0].pt, hasOneJ, EqB(30, 0., 300.), title = 'Leading Jet pT'))
plots.append(Plot.make1D("LeadingJetEtaOneJ", idJets[0].eta, hasOneJ, EqB(80, -4., 4.), title="Leading Jet eta"))
plots.append(Plot.make1D("LeadingJetPhiOneJ", idJets[0].phi, hasOneJ, EqB(100, -3.5, 3.5), title="Leading Jet phi"))
plots.append(Plot.make1D("LeadingJetEOnej", idJets[0].p4.energy(), hasOneJ, EqB(50, 0.,500.), title = 'Leading Jet E'))
#hasTwoJ
plots.append(Plot.make1D("SubLeadingJetPtTwoJ", idJets[1].pt, hasTwoJ, EqB(30, 0., 300.), title = 'SubLeading Jet pT'))
plots.append(Plot.make1D("SubLeadingJetEtaTwoJ", idJets[1].eta, hasTwoJ, EqB(80, -4., 4.), title="SubLeading Jet eta"))
plots.append(Plot.make1D("SubLeadingJetPhiTwoJ", idJets[1].phi, hasTwoJ, EqB(100, -3.5, 3.5), title="SubLeading Jet phi"))
plots.append(Plot.make1D("SubLeadingJetETwoJ", idJets[1].p4.energy(), hasTwoJ, EqB(50, 0.,500.), title = 'SubLeading Jet E'))
plots.append(Plot.make1D("Inv_mass_jjTwoJ", mJets, hasTwoJ, EqB(80, 20.,220.), title = "m_{jets}"))
#hasThreeJ
plots.append(Plot.make1D("Inv_mass_jjThreeJ", mJets_SL, hasThreeJ, EqB(80, 100.,180.), title = "m_{jets}"))
mvaVariables = {
"weight": noSel.weight,
"Eta_ph1": idPhotons[0].eta,
"Phi_ph1": idPhotons[0].phi,
"E_mGG_ph1": E_mGGL,
"pT_mGG_ph1": pT_mGGL,
"Eta_ph2": idPhotons[1].eta,
"Phi_ph2": idPhotons[1].phi,
"E_mGG_ph2": E_mGGSL,
"pT_mGG_ph2": pT_mGGSL,
"Electron_E": op.switch(op.rng_len(idElectrons)==0,op.c_float(0.),idElectrons[0].p4.E()),
"Electron_pT": op.switch(op.rng_len(idElectrons)==0,op.c_float(0.),idElectrons[0].pt),
"Electron_Eta": op.switch(op.rng_len(idElectrons)==0,op.c_float(0.),idElectrons[0].eta),
"Electron_Phi": op.switch(op.rng_len(idElectrons)==0,op.c_float(0.),idElectrons[0].phi),
"Muon_E": op.switch(op.rng_len(idMuons)==0,op.c_float(0.),idMuons[0].p4.E()),
"Muon_pT": op.switch(op.rng_len(idMuons)==0,op.c_float(0.),idMuons[0].pt),
"Muon_Eta": op.switch(op.rng_len(idMuons)==0,op.c_float(0.),idMuons[0].eta),
"Muon_Phi": op.switch(op.rng_len(idMuons)==0,op.c_float(0.),idMuons[0].phi),
"nJets": nJet,
"E_jet1": op.switch(op.rng_len(idJets)==0,op.c_float(0.),idJets[0].p4.E()),
"pT_jet1": op.switch(op.rng_len(idJets)==0,op.c_float(0.),idJets[0].pt),
"Eta_jet1": op.switch(op.rng_len(idJets)==0,op.c_float(0.),idJets[0].eta),
"Phi_jet1": op.switch(op.rng_len(idJets)==0,op.c_float(0.),idJets[0].phi),
"E_jet2": op.switch(op.rng_len(idJets)<2,op.c_float(0.),idJets[1].p4.E()),
"pT_jet2": op.switch(op.rng_len(idJets)<2,op.c_float(0.),idJets[1].pt),
"Eta_jet2": op.switch(op.rng_len(idJets)<2,op.c_float(0.),idJets[1].eta),
"Phi_jet2": op.switch(op.rng_len(idJets)<2,op.c_float(0.),idJets[1].phi),
"InvM_jet": op.switch(op.rng_len(idJets)<2,op.c_float(0.),mJets),
"InvM_jet2": op.switch(op.rng_len(idJets)<3,op.c_float(0.),mJets_SL),
"met":metPt
}
mvaVariables_c3 = {
"weight": noSel.weight,
# Event level variables
"nJets": nJet,
"nBJets": op.rng_len(bJets),
"metPt": metPt,
# Photon and di-Photon variables
"L_pt_mGG": pT_mGGL,
"L_photon_eta": idPhotons[0].eta,
"L_photon_phi": idPhotons[0].phi,
"E_mGG_ph1": E_mGGL,
"E_mGG_ph2": E_mGGSL,
"SL_pt_mGG": pT_mGGSL,
"SL_photon_eta": idPhotons[1].eta,
"SL_photon_phi": idPhotons[1].phi,
"LTauE": isolatedTaus[0].p4.E(),
"LtauPt": isolatedTaus[0].pt,
"LtauEta": isolatedTaus[0].eta,
"LtauPhi": isolatedTaus[0].phi,
"Ljet_Pt": op.switch(nJet == 0, op.c_float(0.), idJets[0].pt),
"Ljet_Eta": op.switch(nJet == 0, op.c_float(0.), idJets[0].eta),
"SLjet_Pt": op.switch(nJet < 2, op.c_float(0.), idJets[1].pt),
"SLjet_Eta": op.switch(nJet < 2, op.c_float(0.), idJets[1].eta),
}
# save mvaVariables to be retrieved later in the postprocessor and save in a parquet file
#if self.args.mvaSkim or self.args.mvaEval:
if self.args.mvaSkim:
from bamboo.plots import Skim
plots.append(Skim("Skim", mvaVariables,hasOneL))
plots.append(Skim("c3", mvaVariables_c3, c3))
# evaluate dnn model on data
if self.args.mvaEval:
#from IPython import embed
WW_DNNmodel_path_even = "/home/ucl/cp3/sjain/bamboodev/DNN/DNN_HHWWGG/even_model_test2.onnx"
WW_DNNmodel_path_odd = "/home/ucl/cp3/sjain/bamboodev/DNN/DNN_HHWWGG/odd_model_test2.onnx"
tt_DNNmodel_path_even = "/home/ucl/cp3/sjain/bamboodev/DNN/DNN_HHWWGG/even_model_test2_tau.onnx"
tt_DNNmodel_path_odd = "/home/ucl/cp3/sjain/bamboodev/DNN/DNN_HHWWGG/odd_model_test2_tau.onnx"
mvaVariables.pop("weight", None)
mvaVariables_c3.pop("weight", None)
from bamboo.root import loadHeader
loadHeader("/home/ucl/cp3/sdonerta/bamboodev/WWGG/header_split.h")
split_evaluator = op.extMethod('split::Ph1_phi')
split = split_evaluator(idPhotons[0].phi)
if split == 0:
tt_model = tt_DNNmodel_path_even
WW_model = WW_DNNmodel_path_even
else:
tt_model = tt_DNNmodel_path_odd
WW_model = WW_DNNmodel_path_odd
dnn_ww = op.mvaEvaluator(WW_model, mvaType = "ONNXRuntime", otherArgs = "predictions")
inputs_ww = op.array('float',*[op.static_cast('float',val) for val in mvaVariables.values()])
output_ww = dnn_ww(inputs_ww)
dnn_tt = op.mvaEvaluator(tt_model, mvaType = "ONNXRuntime", otherArgs = "predictions")
inputs_tt = op.array('float',*[op.static_cast('float',val) for val in mvaVariables_c3.values()])
output_tt = dnn_tt(inputs_tt)
#hasDNNscore = hasOneL.refine("hasDNNscore", cut = output[0] < 0.6)
hasDNNscore = hasOneL.refine("hasDNNscore", cut = op.in_range(0.1, output_ww[0], 0.6))
yields.add(hasDNNscore, title='hasDNNscore')
hasDNNscore2 = hasOneL.refine("hasDNNscore2", cut = op.in_range(0.6 ,output_ww[0], 0.8))
yields.add(hasDNNscore2, title='hasDNNscore2')
hasDNNscore3 = hasOneL.refine("hasDNNscore3", cut = op.in_range(0.8 ,output_ww[0], 0.92))
yields.add(hasDNNscore3, title='hasDNNscore3')
hasDNNscore4 = hasOneL.refine("hasDNNscore4", cut = output_ww[0] > 0.92)
yields.add(hasDNNscore4, title='hasDNNscore4')
hasDNNscore_tt = c3.refine("hasDNNscore_tt", cut=op.in_range(0.1, output_tt[0], 0.75))
yields.add(hasDNNscore_tt, title='hasDNNscore_{tt}')
hasDNNscore2_tt = c3.refine("hasDNNscore2_tt", cut=output_tt[0] > 0.75)
yields.add(hasDNNscore2_tt, title='hasDNNscore2_{tt}')
plots.append(Plot.make1D("dnn_score_ww", output_ww[0],hasOneL, EqB(50, 0, 1.)))
plots.append(Plot.make1D("dnn_score_tt", output_tt[0],c3, EqB(50, 0, 1.)))
plots.append(Plot.make1D("Inv_mass_gghasOneL_DNN" ,mGG, hasDNNscore, EqB(80, 100.,180.), title = "m_{\gamma\gamma}"))
plots.append(Plot.make1D("Inv_mass_gghasOneL_DNN_2",mGG, hasDNNscore2, EqB(80, 100.,180.), title = "m_{\gamma\gamma}"))
plots.append(Plot.make1D("Inv_mass_gghasOneL_DNN_3",mGG, hasDNNscore3, EqB(80, 100.,180.), title = "m_{\gamma\gamma}"))
plots.append(Plot.make1D("Inv_mass_gghasOneL_DNN_4",mGG, hasDNNscore4, EqB(80, 100.,180.), title = "m_{\gamma\gamma}"))
plots.append(Plot.make1D("Inv_mass_gghasOneL_DNN_135" ,mGG, hasDNNscore, EqB(20, 115.,135.), title = "m_{\gamma\gamma}"))
plots.append(Plot.make1D("Inv_mass_gghasOneL_DNN_2_135",mGG, hasDNNscore2, EqB(20, 115.,135.), title = "m_{\gamma\gamma}"))
plots.append(Plot.make1D("Inv_mass_gghasOneL_DNN_3_135",mGG, hasDNNscore3, EqB(20, 115.,135.), title = "m_{\gamma\gamma}"))
plots.append(Plot.make1D("Inv_mass_gghasOneL_DNN_4_135",mGG, hasDNNscore4, EqB(20, 115.,135.), title = "m_{\gamma\gamma}"))
plots.append(Plot.make1D("mGG_c3_hasDNNscore", mGG, hasDNNscore_tt, EqB(80, 100., 180.), title="m_{\gamma\gamma}"))
plots.append(Plot.make1D("mGG_c3_hasDNNscore2", mGG, hasDNNscore2_tt, EqB(80, 100., 180.), title="m_{\gamma\gamma}"))
plots.append(Plot.make1D("mGG_c3_hasDNNscore_135", mGG, hasDNNscore_tt, EqB(20, 115., 135.), title="m_{\gamma\gamma}"))
plots.append(Plot.make1D("mGG_c3_hasDNNscore2_135", mGG, hasDNNscore2_tt, EqB(20, 115., 135.), title="m_{\gamma\gamma}"))
final_variables = {
"weight": noSel.weight,
"CMS_hgg_mass": mGG,
}
from bamboo.plots import Skim
plots.append(Skim("oneL_C1", final_variables,hasDNNscore))
plots.append(Skim("oneL_C2", final_variables,hasDNNscore2))
plots.append(Skim("oneL_C3", final_variables,hasDNNscore3))
plots.append(Skim("oneL_C4", final_variables,hasDNNscore4))
plots.append(Skim("twoL", final_variables,hasTwoL))
plots.append(Skim("oneT_C1", final_variables,hasDNNscore_tt))
plots.append(Skim("oneT_C2", final_variables,hasDNNscore2_tt))
plots.append(Skim("twoT", final_variables,c4_Zveto))
yields.add(c3, "One Tau No Lept")