-
Notifications
You must be signed in to change notification settings - Fork 45
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add train-test split for tabular data (#418)
* feat: add scaffold split * feat: add file rewriting and merge on common smiles * feat: removed the logic for the other representations * fix: reference * fix: typo * feat: fix minor details and add docstring * fix: docstrings * feat: add simple test script * a bit of polish for the train/test split * add docstring * only work on files with SMILES col * change rename behavior * remove lint * lint * do not track dev notebook * pin pydantic yaml --------- Co-authored-by: Kevin Maik Jablonka <kevin.jablonka@epfl.ch>
- Loading branch information
Showing
7 changed files
with
377 additions
and
154 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,234 @@ | ||
"""Perform scaffold split on all datasets and rewrite data_clean.csv files. | ||
Scaffold split is a method of splitting data that ensures that the same scaffold | ||
is not present in both the train and test sets. This is important for evaluating | ||
the generalizability of a model. | ||
For more information, see: | ||
- Wu, Z.; Ramsundar, B.; Feinberg, E. N.; Gomes, J.; Geniesse, C.; Pappu, A. S.; | ||
Leswing, K.; Pande, V. MoleculeNet: A Benchmark for Molecular Machine Learning. | ||
Chemical Science 2018, 9 (2), 513–530. https://doi.org/10.1039/c7sc02664a. | ||
- Jablonka, K. M.; Rosen, A. S.; Krishnapriyan, A. S.; Smit, B. | ||
An Ecosystem for Digital Reticular Chemistry. ACS Central Science 2023, 9 (4), 563–581. | ||
https://doi.org/10.1021/acscentsci.2c01177. | ||
""" | ||
import os | ||
import sys | ||
from collections import defaultdict | ||
from glob import glob | ||
from random import Random | ||
from typing import Dict, List | ||
|
||
import fire | ||
import pandas as pd | ||
from rdkit import Chem, RDLogger | ||
from rdkit.Chem.Scaffolds import MurckoScaffold | ||
from tqdm import tqdm | ||
|
||
RDLogger.DisableLog("rdApp.*") | ||
|
||
|
||
def print_sys(s): | ||
"""system print | ||
Args: | ||
s (str): the string to print | ||
""" | ||
print(s, flush=True, file=sys.stderr) | ||
|
||
|
||
def create_scaffold_split( | ||
df: pd.DataFrame, seed: int, frac: List[float], entity: str = "SMILES" | ||
) -> Dict[str, pd.DataFrame]: | ||
"""create scaffold split. it first generates molecular scaffold for each molecule | ||
and then split based on scaffolds | ||
adapted from: https://github.com/mims-harvard/TDC/tdc/utils/split.py | ||
Args: | ||
df (pd.DataFrame): dataset dataframe | ||
fold_seed (int): the random seed | ||
frac (list): a list of train/valid/test fractions | ||
entity (str): the column name for where molecule stores | ||
Returns: | ||
dict: a dictionary of splitted dataframes, where keys are train/valid/test | ||
and values correspond to each dataframe | ||
""" | ||
random = Random(seed) | ||
|
||
s = df[entity].values | ||
scaffolds = defaultdict(set) | ||
|
||
error_smiles = 0 | ||
for i, smiles in tqdm(enumerate(s), total=len(s)): | ||
try: | ||
scaffold = MurckoScaffold.MurckoScaffoldSmiles( | ||
mol=Chem.MolFromSmiles(smiles), includeChirality=False | ||
) | ||
scaffolds[scaffold].add(i) | ||
except Exception: | ||
print_sys(smiles + " returns RDKit error and is thus omitted...") | ||
error_smiles += 1 | ||
|
||
train, val, test = [], [], [] | ||
train_size = int((len(df) - error_smiles) * frac[0]) | ||
val_size = int((len(df) - error_smiles) * frac[1]) | ||
test_size = (len(df) - error_smiles) - train_size - val_size | ||
train_scaffold_count, val_scaffold_count, test_scaffold_count = 0, 0, 0 | ||
|
||
# index_sets = sorted(list(scaffolds.values()), key=lambda i: len(i), reverse=True) | ||
index_sets = list(scaffolds.values()) | ||
big_index_sets = [] | ||
small_index_sets = [] | ||
for index_set in index_sets: | ||
if len(index_set) > val_size / 2 or len(index_set) > test_size / 2: | ||
big_index_sets.append(index_set) | ||
else: | ||
small_index_sets.append(index_set) | ||
random.seed(seed) | ||
random.shuffle(big_index_sets) | ||
random.shuffle(small_index_sets) | ||
index_sets = big_index_sets + small_index_sets | ||
|
||
if frac[2] == 0: | ||
for index_set in index_sets: | ||
if len(train) + len(index_set) <= train_size: | ||
train += index_set | ||
train_scaffold_count += 1 | ||
else: | ||
val += index_set | ||
val_scaffold_count += 1 | ||
else: | ||
for index_set in index_sets: | ||
if len(train) + len(index_set) <= train_size: | ||
train += index_set | ||
train_scaffold_count += 1 | ||
elif len(val) + len(index_set) <= val_size: | ||
val += index_set | ||
val_scaffold_count += 1 | ||
else: | ||
test += index_set | ||
test_scaffold_count += 1 | ||
|
||
return { | ||
"train": df.iloc[train].reset_index(drop=True), | ||
"valid": df.iloc[val].reset_index(drop=True), | ||
"test": df.iloc[test].reset_index(drop=True), | ||
} | ||
|
||
|
||
def rewrite_data_with_splits( | ||
csv_paths: List[str], | ||
train_test_df: pd.DataFrame, | ||
override: bool = False, | ||
check: bool = True, | ||
repr_col: str = "SMILES", | ||
) -> None: | ||
"""Rewrite dataframes with the correct split column | ||
Args: | ||
csv_paths (List[str]): list of files to merge (data_clean.csv) | ||
train_test_df (pd.DataFrame): dataframe containing merged SMILES representations | ||
from all datasets uniquely split into train and test | ||
override (bool): whether to override the existing data_clean.csv files | ||
defaults to False | ||
check (bool): whether to check if the split was successful | ||
defaults to True. Can be turned off to save memory | ||
repr_col (str): the column name for where SMILES representation is stored | ||
defaults to "SMILES" | ||
""" | ||
if check: | ||
train_smiles = set(train_test_df.query("split == 'train'")["SMILES"].to_list()) | ||
|
||
for path in csv_paths: | ||
read_dataset = pd.read_csv(path) | ||
if repr_col in read_dataset.columns: | ||
try: | ||
read_dataset = read_dataset.drop("split", axis=1) | ||
message = f"Split column found in {path}." | ||
if override: | ||
message += " Overriding..." | ||
print(message) | ||
except KeyError: | ||
print(f"No split column in {path}") | ||
|
||
col_to_merge = "SMILES" | ||
merged_data = pd.merge( | ||
read_dataset, train_test_df, on=col_to_merge, how="left" | ||
) | ||
merged_data = merged_data.dropna() | ||
if override: | ||
merged_data.to_csv(path, index=False) | ||
else: | ||
# rename the old data_clean.csv file to data_clean_old.csv | ||
os.rename(path, path.replace(".csv", "_old.csv")) | ||
# write the new data_clean.csv file | ||
merged_data.to_csv(path, index=False) | ||
|
||
if len(merged_data.query("split == 'train'")) == 0: | ||
raise ValueError("Split failed, no train data") | ||
if len(merged_data.query("split == 'test'")) == 0: | ||
raise ValueError("Split failed, no test data") | ||
if check: | ||
test_split_smiles = set( | ||
merged_data.query("split == 'test'")["SMILES"].to_list() | ||
) | ||
if len(train_smiles.intersection(test_split_smiles)) > 0: | ||
raise ValueError("Split failed, train and test overlap") | ||
else: | ||
print(f"Skipping {path} as it does not contain {repr_col} column") | ||
|
||
|
||
def cli( | ||
seed: int = 42, | ||
train_size: float = 0.8, | ||
val_size: float = 0.0, | ||
test_size: float = 0.2, | ||
path: str = "*/data_clean.csv", | ||
override: bool = False, | ||
check: bool = True, | ||
repr_col: str = "SMILES", | ||
): | ||
paths_to_data = glob(path) | ||
filtered_paths = [] | ||
for path in paths_to_data: | ||
if "flashpoint" in path: | ||
filtered_paths.append(path) | ||
elif "freesolv" in path: | ||
filtered_paths.append(path) | ||
elif "peptide" in path: | ||
filtered_paths.append(path) | ||
paths_to_data = filtered_paths | ||
|
||
REPRESENTATION_LIST = [] | ||
|
||
for path in tqdm(paths_to_data): | ||
df = pd.read_csv(path) | ||
if repr_col in df.columns: | ||
REPRESENTATION_LIST.extend(df[repr_col].to_list()) | ||
|
||
REPR_DF = pd.DataFrame() | ||
REPR_DF["SMILES"] = list(set(REPRESENTATION_LIST)) | ||
|
||
scaffold_split = create_scaffold_split( | ||
REPR_DF, seed=seed, frac=[train_size, val_size, test_size] | ||
) | ||
|
||
# create train and test dataframes | ||
train_df = scaffold_split["train"] | ||
test_df = scaffold_split["test"] | ||
# add split columns to train and test dataframes | ||
train_df["split"] = len(train_df) * ["train"] | ||
test_df["split"] = len(test_df) * ["test"] | ||
|
||
# merge train and test across all datasets | ||
merge = pd.concat([train_df, test_df], axis=0) | ||
# rewrite data_clean.csv for each dataset | ||
rewrite_data_with_splits( | ||
paths_to_data, merge, override=override, check=check, repr_col=repr_col | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
fire.Fire(cli) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters