From f7dc02ded5ebe2fb0bfeb02795b1daaf1c071485 Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Mon, 9 Dec 2024 17:29:04 +0000 Subject: [PATCH] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- data/tabular/ld50_catmos/meta.yaml | 271 +++++++++--------- .../example_processing_and_templates.ipynb | 3 +- .../orbnet_denali/develop_transform.ipynb | 5 - experiments/ablations/continued_pretrain.py | 25 +- experiments/configs/data_configs/hf_data.yml | 2 +- 5 files changed, 157 insertions(+), 149 deletions(-) diff --git a/data/tabular/ld50_catmos/meta.yaml b/data/tabular/ld50_catmos/meta.yaml index 00b0d5373..e4a74438e 100644 --- a/data/tabular/ld50_catmos/meta.yaml +++ b/data/tabular/ld50_catmos/meta.yaml @@ -1,145 +1,144 @@ ---- name: ld50_catmos description: |- - Acute toxicity LD50 measures - the most conservative dose that can lead to lethal adverse effects. - The higher the dose, the more lethal of a drug. - We aggregated the data from multiple SMILES by computing the mean. + Acute toxicity LD50 measures + the most conservative dose that can lead to lethal adverse effects. + The higher the dose, the more lethal of a drug. + We aggregated the data from multiple SMILES by computing the mean. targets: - - id: CATMoS_LD50_mgkg - description: Acute Toxicity LD50. - units: mg/kg - type: continuous - names: - - noun: acute oral toxicity rat LD50 - - noun: acute oral toxicity (LD50 in rats) - uris: - - http://www.bioassayontology.org/bao#BAO_0002117 - significant_digits: 1 - - id: log10_LD50 - description: Acute Toxicity LD50. - units: log10(mg/kg) - type: continuous - names: - - noun: log10 acute oral toxicity rat LD50 - - noun: log10 acute oral toxicity (LD50 in rats) - - noun: log10 LD50 in rats (oral exposure) - - noun: log10 rat LD50 (oral exposure) - significant_digits: 2 - - id: num_ghose_violations - description: Ghose filter violations - type: ordinal - significant_digits: 0 - names: - - noun: Ghose filter violations - - noun: violations of the Ghose filter - - id: num_lead_likeness_violations - description: Lead likeness filter violations - type: ordinal - significant_digits: 0 - names: - - noun: lead likeness filter violations - - noun: violations of the lead likeness filter - - id: num_lipinski_violations - description: Lipinski filter violations - type: ordinal - significant_digits: 0 - names: - - noun: Lipinski rule violations - - noun: violations of the Lipinski rules - - id: molecular_mass - description: Molecular mass - type: continuous - units: g/mol - names: - - noun: molecular mass - - noun: molecular weight - - id: num_carbon_atoms - description: Number of carbon atoms - type: ordinal - significant_digits: 0 - names: - - noun: carbon atoms - - id: num_oxygen_atoms - description: Number of oxygen atoms - type: ordinal - significant_digits: 0 - names: - - noun: oxygen atoms + - id: CATMoS_LD50_mgkg + description: Acute Toxicity LD50. + units: mg/kg + type: continuous + names: + - noun: acute oral toxicity rat LD50 + - noun: acute oral toxicity (LD50 in rats) + uris: + - http://www.bioassayontology.org/bao#BAO_0002117 + significant_digits: 1 + - id: log10_LD50 + description: Acute Toxicity LD50. + units: log10(mg/kg) + type: continuous + names: + - noun: log10 acute oral toxicity rat LD50 + - noun: log10 acute oral toxicity (LD50 in rats) + - noun: log10 LD50 in rats (oral exposure) + - noun: log10 rat LD50 (oral exposure) + significant_digits: 2 + - id: num_ghose_violations + description: Ghose filter violations + type: ordinal + significant_digits: 0 + names: + - noun: Ghose filter violations + - noun: violations of the Ghose filter + - id: num_lead_likeness_violations + description: Lead likeness filter violations + type: ordinal + significant_digits: 0 + names: + - noun: lead likeness filter violations + - noun: violations of the lead likeness filter + - id: num_lipinski_violations + description: Lipinski filter violations + type: ordinal + significant_digits: 0 + names: + - noun: Lipinski rule violations + - noun: violations of the Lipinski rules + - id: molecular_mass + description: Molecular mass + type: continuous + units: g/mol + names: + - noun: molecular mass + - noun: molecular weight + - id: num_carbon_atoms + description: Number of carbon atoms + type: ordinal + significant_digits: 0 + names: + - noun: carbon atoms + - id: num_oxygen_atoms + description: Number of oxygen atoms + type: ordinal + significant_digits: 0 + names: + - noun: oxygen atoms identifiers: - - id: SMILES - type: SMILES - description: SMILES + - id: SMILES + type: SMILES + description: SMILES license: CC BY 4.0 links: - - url: https://ehp.niehs.nih.gov/doi/full/10.1289/EHP8495#supplementary-materials - description: corresponding publication + - url: https://ehp.niehs.nih.gov/doi/full/10.1289/EHP8495#supplementary-materials + description: corresponding publication num_points: 9032 bibtex: - - |- - @article{Mansouri_2021, title={CATMoS: Collaborative Acute Toxicity Modeling Suite}, - volume={129}, - ISSN={1552-9924}, - url={http://dx.doi.org/10.1289/EHP8495}, - DOI={10.1289/ehp8495}, - number={4}, - journal={Environmental Health Perspectives}, - publisher={Environmental Health Perspectives}, - author={Mansouri, Kamel and Karmaus, Agnes L. and Fitzpatrick, Jeremy - and Patlewicz, Grace and Pradeep, Prachi and Alberga, Domenico and - Alepee, Nathalie and Allen, Timothy E.H. and Allen, Dave and Alves, Vinicius M. - and Andrade, Carolina H. and Auernhammer, Tyler R. and Ballabio, Davide and - Bell, Shannon and Benfenati, Emilio and Bhattacharya, Sudin and - Bastos, Joyce V. and Boyd, Stephen and Brown, J.B. and Capuzzi, Stephen J. and - Chushak, Yaroslav and Ciallella, Heather and Clark, Alex M. and - Consonni, Viviana and Daga, Pankaj R. and Ekins, Sean and Farag, Sherif and - Fedorov, Maxim and Fourches, Denis and Gadaleta, Domenico and Gao, Feng and - Gearhart, Jeffery M. and Goh, Garett and Goodman, Jonathan M. and - Grisoni, Francesca and Grulke, Christopher M. and Hartung, Thomas and - Hirn, Matthew and Karpov, Pavel and Korotcov, Alexandru and - Lavado, Giovanna J. and Lawless, Michael and Li, Xinhao and - Luechtefeld, Thomas and Lunghini, Filippo and Mangiatordi, Giuseppe F. and - Marcou, Gilles and Marsh, Dan and Martin, Todd and Mauri, Andrea and - Muratov, Eugene N. and Myatt, Glenn J. and Nguyen, Dac-Trung and - Nicolotti, Orazio and Note, Reine and Pande, Paritosh and - Parks, Amanda K. and Peryea, Tyler and Polash, Ahsan H. and - Rallo, Robert and Roncaglioni, Alessandra and Rowlands, Craig and - Ruiz, Patricia and Russo, Daniel P. and Sayed, Ahmed and Sayre, Risa and - Sheils, Timothy and Siegel, Charles and Silva, Arthur C. and Simeonov, Anton and - Sosnin, Sergey and Southall, Noel and Strickland, Judy and Tang, Yun and - Teppen, Brian and Tetko, Igor V. and Thomas, Dennis and Tkachenko, Valery and - Todeschini, Roberto and Toma, Cosimo and Tripodi, Ignacio and - Trisciuzzi, Daniela and Tropsha, Alexander and Varnek, Alexandre and - Vukovic, Kristijan and Wang, Zhongyu and Wang, Liguo and - Waters, Katrina M. and Wedlake, Andrew J. and Wijeyesakere, Sanjeeva J. and - Wilson, Dan and Xiao, Zijun and Yang, Hongbin and Zahoranszky-Kohalmi, Gergely and - Zakharov, Alexey V. and Zhang, Fagen F. and Zhang, Zhen and Zhao, Tongan and - Zhu, Hao and Zorn, Kimberley M. and Casey, Warren and Kleinstreuer, Nicole C.}, - year={2021}, month=apr } + - |- + @article{Mansouri_2021, title={CATMoS: Collaborative Acute Toxicity Modeling Suite}, + volume={129}, + ISSN={1552-9924}, + url={http://dx.doi.org/10.1289/EHP8495}, + DOI={10.1289/ehp8495}, + number={4}, + journal={Environmental Health Perspectives}, + publisher={Environmental Health Perspectives}, + author={Mansouri, Kamel and Karmaus, Agnes L. and Fitzpatrick, Jeremy + and Patlewicz, Grace and Pradeep, Prachi and Alberga, Domenico and + Alepee, Nathalie and Allen, Timothy E.H. and Allen, Dave and Alves, Vinicius M. + and Andrade, Carolina H. and Auernhammer, Tyler R. and Ballabio, Davide and + Bell, Shannon and Benfenati, Emilio and Bhattacharya, Sudin and + Bastos, Joyce V. and Boyd, Stephen and Brown, J.B. and Capuzzi, Stephen J. and + Chushak, Yaroslav and Ciallella, Heather and Clark, Alex M. and + Consonni, Viviana and Daga, Pankaj R. and Ekins, Sean and Farag, Sherif and + Fedorov, Maxim and Fourches, Denis and Gadaleta, Domenico and Gao, Feng and + Gearhart, Jeffery M. and Goh, Garett and Goodman, Jonathan M. and + Grisoni, Francesca and Grulke, Christopher M. and Hartung, Thomas and + Hirn, Matthew and Karpov, Pavel and Korotcov, Alexandru and + Lavado, Giovanna J. and Lawless, Michael and Li, Xinhao and + Luechtefeld, Thomas and Lunghini, Filippo and Mangiatordi, Giuseppe F. and + Marcou, Gilles and Marsh, Dan and Martin, Todd and Mauri, Andrea and + Muratov, Eugene N. and Myatt, Glenn J. and Nguyen, Dac-Trung and + Nicolotti, Orazio and Note, Reine and Pande, Paritosh and + Parks, Amanda K. and Peryea, Tyler and Polash, Ahsan H. and + Rallo, Robert and Roncaglioni, Alessandra and Rowlands, Craig and + Ruiz, Patricia and Russo, Daniel P. and Sayed, Ahmed and Sayre, Risa and + Sheils, Timothy and Siegel, Charles and Silva, Arthur C. and Simeonov, Anton and + Sosnin, Sergey and Southall, Noel and Strickland, Judy and Tang, Yun and + Teppen, Brian and Tetko, Igor V. and Thomas, Dennis and Tkachenko, Valery and + Todeschini, Roberto and Toma, Cosimo and Tripodi, Ignacio and + Trisciuzzi, Daniela and Tropsha, Alexander and Varnek, Alexandre and + Vukovic, Kristijan and Wang, Zhongyu and Wang, Liguo and + Waters, Katrina M. and Wedlake, Andrew J. and Wijeyesakere, Sanjeeva J. and + Wilson, Dan and Xiao, Zijun and Yang, Hongbin and Zahoranszky-Kohalmi, Gergely and + Zakharov, Alexey V. and Zhang, Fagen F. and Zhang, Zhen and Zhao, Tongan and + Zhu, Hao and Zorn, Kimberley M. and Casey, Warren and Kleinstreuer, Nicole C.}, + year={2021}, month=apr } templates: - - The {#molecule|chemical|compound!} with the {SMILES__description} {#representation of |!}{SMILES#} {#shows|exhibits|displays!} an {CATMoS_LD50_mgkg__names__noun} of {CATMoS_LD50_mgkg#} {CATMoS_LD50_mgkg__units}. - - The {#molecule|chemical|compound!} with the {SMILES__description} {#representation of |!}{SMILES#} {#shows|exhibits|displays!} a {log10_LD50__names__noun} of {log10_LD50#} {log10_LD50__units}. - - | - Task: Determine the acute oral toxicity and molecular properties of a {#molecule|chemical|compound!} given the {SMILES__description}. - Input: {SMILES#} - Desired Output: {CATMoS_LD50_mgkg__names__noun}, {log10_LD50__names__noun}, {num_ghose_violations__names__noun}, {num_lead_likeness_violations__names__noun}, {num_lipinski_violations__names__noun}, {molecular_mass__names__noun}, {num_carbon_atoms__names__noun}, {num_oxygen_atoms__names__noun} - Output: {CATMoS_LD50_mgkg#} {CATMoS_LD50_mgkg__units}, {log10_LD50#} {log10_LD50__units}, {num_ghose_violations#}, {num_lead_likeness_violations#}, {num_lipinski_violations#}, {molecular_mass#} {molecular_mass__units}, {num_carbon_atoms#}, {num_oxygen_atoms#} - - | - Context: You are {#an assistant|researcher|scientist!} in a pharmaceutical company. Your {#boss|superior|department head!} has asked you to {#design|create|synthesize!} a new drug. - User: The {#drug|compound|chemical!} should have a {CATMoS_LD50_mgkg__names__noun} of {CATMoS_LD50_mgkg#} {CATMoS_LD50_mgkg__units}, {num_ghose_violations#} {num_ghose_violations__names__noun}, {num_lead_likeness_violations#} {num_lead_likeness_violations__names__noun}, {num_lipinski_violations#} {num_lipinski_violations__names__noun}, {molecular_mass#} {molecular_mass__names__noun} {molecular_mass__units}, {num_carbon_atoms#} {num_carbon_atoms__names__noun}, and {num_oxygen_atoms#} {num_oxygen_atoms__names__noun}. - Assistant: {#Happy to help!|Sure!|Of course!} The {#molecule|chemical|compound!} with the {SMILES__description} {#representation of |!}{SMILES#} {#shows|exhibits|displays!} the desired properties. - - | - User: I need a {#drug|compound|chemical!} with a {log10_LD50__names__noun} of {log10_LD50#} {log10_LD50__units}. - Assistant: {#Happy to help!|Sure!|Of course!} Can you provide me with more {#constraints|details|information!}? - User: The {#drug|compound|chemical!} should have {num_ghose_violations#} {num_ghose_violations__names__noun}, {num_lead_likeness_violations#} {num_lead_likeness_violations__names__noun}, {num_lipinski_violations#} {num_lipinski_violations__names__noun}, {num_carbon_atoms#} {num_carbon_atoms__names__noun}, and {num_oxygen_atoms#} {num_oxygen_atoms__names__noun}. - Assistant: The {#molecule|chemical|compound!} with the {SMILES__description} {#representation of |!}{SMILES#} {#shows|exhibits|displays!} the desired properties. - - | - User: I need a {#drug|compound|chemical!} with a {CATMoS_LD50_mgkg__names__noun} of {CATMoS_LD50_mgkg#} {CATMoS_LD50_mgkg__units}. - Assistant: {#Happy to help!|Sure!|Of course!} Can you provide me with more {#constraints|details|information!}? - User: The {#drug|compound|chemical!} should have a {num_carbon_atoms#} {num_carbon_atoms__names__noun}, {num_oxygen_atoms#} {num_oxygen_atoms__names__noun}, and a {molecular_mass__names__noun} of {molecular_mass#} {molecular_mass__units}. Could you please only provide me with the {SMILES__description} and return no other information? - Assistant: {SMILES#} - - | - User: I am looking for a {#drug|compound|chemical!} with a {log10_LD50__names__noun} of {log10_LD50#} {log10_LD50__units}. - Assistant: {#That's interesting!|Interesting!|I see!} Can you provide me with more {#constraints|details|information!}? - User: The {#drug|compound|chemical!} should have {num_ghose_violations#} {num_ghose_violations__names__noun}, {num_lead_likeness_violations#} {num_lead_likeness_violations__names__noun}, {num_lipinski_violations#} {num_lipinski_violations__names__noun}, {num_carbon_atoms#} {num_carbon_atoms__names__noun}, and {num_oxygen_atoms#} {num_oxygen_atoms__names__noun}. Please return only the {SMILES__description} wrapped as follows [ANSWER][/ANSWER]. - Assistant: [ANSWER]{SMILES#}[/ANSWER] + - The {#molecule|chemical|compound!} with the {SMILES__description} {#representation of |!}{SMILES#} {#shows|exhibits|displays!} an {CATMoS_LD50_mgkg__names__noun} of {CATMoS_LD50_mgkg#} {CATMoS_LD50_mgkg__units}. + - The {#molecule|chemical|compound!} with the {SMILES__description} {#representation of |!}{SMILES#} {#shows|exhibits|displays!} a {log10_LD50__names__noun} of {log10_LD50#} {log10_LD50__units}. + - | + Task: Determine the acute oral toxicity and molecular properties of a {#molecule|chemical|compound!} given the {SMILES__description}. + Input: {SMILES#} + Desired Output: {CATMoS_LD50_mgkg__names__noun}, {log10_LD50__names__noun}, {num_ghose_violations__names__noun}, {num_lead_likeness_violations__names__noun}, {num_lipinski_violations__names__noun}, {molecular_mass__names__noun}, {num_carbon_atoms__names__noun}, {num_oxygen_atoms__names__noun} + Output: {CATMoS_LD50_mgkg#} {CATMoS_LD50_mgkg__units}, {log10_LD50#} {log10_LD50__units}, {num_ghose_violations#}, {num_lead_likeness_violations#}, {num_lipinski_violations#}, {molecular_mass#} {molecular_mass__units}, {num_carbon_atoms#}, {num_oxygen_atoms#} + - | + Context: You are {#an assistant|researcher|scientist!} in a pharmaceutical company. Your {#boss|superior|department head!} has asked you to {#design|create|synthesize!} a new drug. + User: The {#drug|compound|chemical!} should have a {CATMoS_LD50_mgkg__names__noun} of {CATMoS_LD50_mgkg#} {CATMoS_LD50_mgkg__units}, {num_ghose_violations#} {num_ghose_violations__names__noun}, {num_lead_likeness_violations#} {num_lead_likeness_violations__names__noun}, {num_lipinski_violations#} {num_lipinski_violations__names__noun}, {molecular_mass#} {molecular_mass__names__noun} {molecular_mass__units}, {num_carbon_atoms#} {num_carbon_atoms__names__noun}, and {num_oxygen_atoms#} {num_oxygen_atoms__names__noun}. + Assistant: {#Happy to help!|Sure!|Of course!} The {#molecule|chemical|compound!} with the {SMILES__description} {#representation of |!}{SMILES#} {#shows|exhibits|displays!} the desired properties. + - | + User: I need a {#drug|compound|chemical!} with a {log10_LD50__names__noun} of {log10_LD50#} {log10_LD50__units}. + Assistant: {#Happy to help!|Sure!|Of course!} Can you provide me with more {#constraints|details|information!}? + User: The {#drug|compound|chemical!} should have {num_ghose_violations#} {num_ghose_violations__names__noun}, {num_lead_likeness_violations#} {num_lead_likeness_violations__names__noun}, {num_lipinski_violations#} {num_lipinski_violations__names__noun}, {num_carbon_atoms#} {num_carbon_atoms__names__noun}, and {num_oxygen_atoms#} {num_oxygen_atoms__names__noun}. + Assistant: The {#molecule|chemical|compound!} with the {SMILES__description} {#representation of |!}{SMILES#} {#shows|exhibits|displays!} the desired properties. + - | + User: I need a {#drug|compound|chemical!} with a {CATMoS_LD50_mgkg__names__noun} of {CATMoS_LD50_mgkg#} {CATMoS_LD50_mgkg__units}. + Assistant: {#Happy to help!|Sure!|Of course!} Can you provide me with more {#constraints|details|information!}? + User: The {#drug|compound|chemical!} should have a {num_carbon_atoms#} {num_carbon_atoms__names__noun}, {num_oxygen_atoms#} {num_oxygen_atoms__names__noun}, and a {molecular_mass__names__noun} of {molecular_mass#} {molecular_mass__units}. Could you please only provide me with the {SMILES__description} and return no other information? + Assistant: {SMILES#} + - | + User: I am looking for a {#drug|compound|chemical!} with a {log10_LD50__names__noun} of {log10_LD50#} {log10_LD50__units}. + Assistant: {#That's interesting!|Interesting!|I see!} Can you provide me with more {#constraints|details|information!}? + User: The {#drug|compound|chemical!} should have {num_ghose_violations#} {num_ghose_violations__names__noun}, {num_lead_likeness_violations#} {num_lead_likeness_violations__names__noun}, {num_lipinski_violations#} {num_lipinski_violations__names__noun}, {num_carbon_atoms#} {num_carbon_atoms__names__noun}, and {num_oxygen_atoms#} {num_oxygen_atoms__names__noun}. Please return only the {SMILES__description} wrapped as follows [ANSWER][/ANSWER]. + Assistant: [ANSWER]{SMILES#}[/ANSWER] diff --git a/data/tabular/mona/example_processing_and_templates.ipynb b/data/tabular/mona/example_processing_and_templates.ipynb index 5f12a6f7f..786a90365 100644 --- a/data/tabular/mona/example_processing_and_templates.ipynb +++ b/data/tabular/mona/example_processing_and_templates.ipynb @@ -20,7 +20,6 @@ "from tqdm import tqdm\n", "\n", "# import datasets\n", - "import rdkit\n", "import rdkit.Chem as Chem\n", "import rdkit.RDLogger as RDLogger" ] @@ -1444,7 +1443,7 @@ " k = md[\"name\"]\n", " v = md.get(\"value\", np.nan)\n", " df_row[\"md_\" + transform_key(k)] = v\n", - " if not (v is np.nan):\n", + " if v is not np.nan:\n", " md_keys.append(k)\n", " md_key_counter.update(md_keys)\n", " compounds = entry.get(\"compound\", [])\n", diff --git a/data/tabular/orbnet_denali/develop_transform.ipynb b/data/tabular/orbnet_denali/develop_transform.ipynb index 039c60f89..5e7f1dab6 100644 --- a/data/tabular/orbnet_denali/develop_transform.ipynb +++ b/data/tabular/orbnet_denali/develop_transform.ipynb @@ -25,11 +25,7 @@ "metadata": {}, "outputs": [], "source": [ - "from pathlib import Path\n", "from rdkit import Chem\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import os\n", "import pandas as pd\n", "from glob import glob" ] @@ -474,7 +470,6 @@ "metadata": {}, "outputs": [], "source": [ - "from rdkit.Chem import rdDetermineBonds\n", "from chemnlp.utils import xyz_to_mol" ] }, diff --git a/experiments/ablations/continued_pretrain.py b/experiments/ablations/continued_pretrain.py index 730453b95..0d5fd0577 100644 --- a/experiments/ablations/continued_pretrain.py +++ b/experiments/ablations/continued_pretrain.py @@ -57,7 +57,13 @@ def load_model( def train( - model, tokenizer, dataset, run_name: str, batch_size: int = 64, max_seq_length=2048, eval_dataset=None + model, + tokenizer, + dataset, + run_name: str, + batch_size: int = 64, + max_seq_length=2048, + eval_dataset=None, ): wandb.init(project="chemnlp-ablations", name=run_name) trainer = UnslothTrainer( @@ -83,8 +89,8 @@ def train( lr_scheduler_type="linear", seed=3407, output_dir=f"outputs_{run_name}", - eval_strategy = 'steps' if eval_dataset is not None else 'no', - eval_steps = 10_000 if eval_dataset is not None else None + eval_strategy="steps" if eval_dataset is not None else "no", + eval_steps=10_000 if eval_dataset is not None else None, ), ) @@ -138,9 +144,18 @@ def run( ) dataset = create_dataset(tokenizer, data_files) - eval_dataset = create_dataset(tokenizer, eval_data_files) if eval_data_files else None + eval_dataset = ( + create_dataset(tokenizer, eval_data_files) if eval_data_files else None + ) - train(model, tokenizer, dataset, run_name, batch_size=batch_size, eval_dataset=eval_dataset) + train( + model, + tokenizer, + dataset, + run_name, + batch_size=batch_size, + eval_dataset=eval_dataset, + ) if __name__ == "__main__": diff --git a/experiments/configs/data_configs/hf_data.yml b/experiments/configs/data_configs/hf_data.yml index c3fec721e..64d71ab4e 100644 --- a/experiments/configs/data_configs/hf_data.yml +++ b/experiments/configs/data_configs/hf_data.yml @@ -1,7 +1,7 @@ model_name: "EleutherAI/pythia-1b" context_length: 2048 dataset_name: "EleutherAI/pile" -dataset_args: {"name": "pubmed", "split": "train"} +dataset_args: { "name": "pubmed", "split": "train" } batch_size: 1 string_key: "text" save_path: "/fsx/proj-chemnlp/data/example_tokenised"