From 8394f7c52c56dd08dfe5166ce3f54451c7be2083 Mon Sep 17 00:00:00 2001 From: Ifeoluwa Ale <84350850+ifeoluwaale@users.noreply.github.com> Date: Fri, 3 Nov 2023 11:41:04 -0700 Subject: [PATCH] Dev ife (#51) * xdate works for overall series correlation * Added code for creating bins and dividing series into segments * Cleaning up and commenting related to xdate * series_corr works but is inefficient * WIP changes * Added comments, updated working jupyter notebook * Changes since start of fall semester * variance stabiliization produces accurate values * Unit tests for readers, summary, stats and tbrm * Added unit tests for detrend and chron * Added tests for chron_stabilized, series_corr and writers --------- Co-authored-by: Ifeoluwa Ale Co-authored-by: cosimichele --- .gitignore | 7 + dev-instructions.md | 106 + environment.yml | 3 +- src/__init__.py | 4 +- src/autoreg.py | 29 +- src/chron.py | 5 +- src/chron_stabilized.py | 90 + src/detrend.py | 19 +- src/dplpy.py | 19 + src/new.ipynb | 2217 ++++------- src/pytest.ini | 2 + src/rbar.py | 68 +- src/readers.py | 28 +- src/series_corr.py | 35 +- src/stats.py | 2 +- src/summary.py | 23 +- src/unittests/__init__.py | 0 src/unittests/test_autoreg.py | 85 + src/unittests/test_chron.py | 81 + src/unittests/test_chron_stabilized.py | 132 + src/unittests/test_detrend.py | 240 ++ src/unittests/test_readers.py | 144 + src/unittests/test_series_corr.py | 35 + src/unittests/test_stats.py | 72 + src/unittests/test_summary.py | 63 + src/unittests/test_tbrm.py | 8 + src/unittests/test_writers.py | 81 + src/writers.py | 33 +- src/xdate.py | 30 + tests/data/.DS_Store | Bin 6148 -> 6148 bytes tests/data/rwl/ca533.rwl | 4724 ++++++++++++------------ tests/data/rwl/min.rwl | 2 + update.txt | 0 33 files changed, 4551 insertions(+), 3836 deletions(-) create mode 100644 dev-instructions.md create mode 100644 src/chron_stabilized.py create mode 100644 src/pytest.ini create mode 100644 src/unittests/__init__.py create mode 100644 src/unittests/test_autoreg.py create mode 100644 src/unittests/test_chron.py create mode 100644 src/unittests/test_chron_stabilized.py create mode 100644 src/unittests/test_detrend.py create mode 100644 src/unittests/test_readers.py create mode 100644 src/unittests/test_series_corr.py create mode 100644 src/unittests/test_stats.py create mode 100644 src/unittests/test_summary.py create mode 100644 src/unittests/test_tbrm.py create mode 100644 src/unittests/test_writers.py create mode 100644 tests/data/rwl/min.rwl create mode 100644 update.txt diff --git a/.gitignore b/.gitignore index 12b902b..96458ad 100644 --- a/.gitignore +++ b/.gitignore @@ -1,5 +1,12 @@ # Scripts for testing src/test_*.py +src/*.txt +src/misc.py + +# IDE stuff +.DS_Store +.vscode/ +tests/data/.DS_Store # Byte-compiled / optimized / DLL files __pycache__/ diff --git a/dev-instructions.md b/dev-instructions.md new file mode 100644 index 0000000..445f39b --- /dev/null +++ b/dev-instructions.md @@ -0,0 +1,106 @@ +# dplPy Developer Instructions (in progress) + +Welcome to the dplPy developer manual. + +## Environment setup +To contribute to dplpy, you will need to set up some tools + +### 1. GitHub setup + +#### 1.1 Create dplPy fork in github + +You will need your own copy of dplpy to work on the code. Go to the dplPy github page and click the fork button. Make sure the option to copy only the main branch is unchecked. + + +#### 1.2 Create local repository +In your local terminal, clone the fork to your computer using the commands shown below. Replace {your-user} with your github username. +``` +$ git clone https://github.com/{your-user}/OpenDendro/dplPy.git dplpy-{your-user} +$ cd dplpy-{your-user} +git remote add upstream https://github.com/OpenDendro/dplPy.git +git fetch upstream +``` + +This creates a github repository in dplPy-{your-user} on your computer and connects the repository to your fork, which is now connected to the main dplPy repository. + +#### 1.3 Create feature branch + +TBC + + +### 2. Conda environment + +The packages required to run dplPy are all specified in environment.yml. + +#### 2.1\. Create your environment with the required packages installed. + +If you're using conda, run + +``` +$ conda env create -f environment.yml +``` + +If you're using mamba, run + +``` +$ mamba env create -f environment.yml +``` + +If prompted for permission to install requred packages, select y. + +#### 2.2\. Activate your environment. +You will need to have the conda environment activated anytime you want to test code from the package. + +``` +conda activate dplpy +``` + +After running this command, you should see (dplpy) on the left of each new line in the terminal. + +#### 2.3\. Run unit and integration tests to ensure that installation was successful. +TBA: Instructions for running tests + +### 3. IDE setup + +We recommend using VSCode for development. The following instructions show how to set up VSCode to recognize the conda environment and debug tests. + +#### 3.1\. Open the dplpy folder in VScode +In VSCode, open the folder containing your local dplpy repository. If you followed the instructions above, this should be a folder named `dplpy-{your-github-username}`. Then, open the file `src/dplpy.py`. + +#### 3.2\. Change the python interpreter to use the conda environment's interpreter +In the bottom corner of your IDE display, select the language interpreter. + +Choose the interpreter `Python 3.x ('dplpy')`, with a path that ends with `/envs/dplpy/python`. + +Now you should be able to run any python files within the currently open folder with the run button in VSCode, instead of running them through the terminal. + +Note: If the terminal is opened after the interpreter has been set to use the conda environment, conda activate dplpy will automatically be run and does not need to be run again. + +#### 3.3\. Set up unit testing tools + +Go to the testing tab (on the left side of the VSCode display). With your environment set. If the tests are not automatically discovered, open `.vscode/settings.json` and add the following lines inside the curly braces, so that your file looks like this: + +``` +{ + // any pre-existing configurations (DO NOT ADD THIS, THIS REPRESENTS ANYTHING ALREADY IN THE FILE) + + "python.testing.pytestArgs": [ + "./src/unittests" + ], + "python.testing.unittestEnabled": false, + "python.testing.pytestEnabled": true +} +``` + +If `.vscode/settings.json` has not been created, create it and add the lines shown above. + +Go back to the testing tab and verify that the dplpy unit tests are showing. They should look like this: + +TBA: Image + + +Run the tests by clicking the play button on src. + + +## Overview of dplPy functions + diff --git a/environment.yml b/environment.yml index bf5ab46..8a0aee1 100644 --- a/environment.yml +++ b/environment.yml @@ -15,4 +15,5 @@ dependencies: - pip: - csaps - jupyterlab - - notebook \ No newline at end of file + - notebook + - pytest \ No newline at end of file diff --git a/src/__init__.py b/src/__init__.py index 5df7c0f..cf43fc0 100644 --- a/src/__init__.py +++ b/src/__init__.py @@ -2,4 +2,6 @@ __author__ = "Tyson Lee Swetnam" __email__ = "tswetnam@arizona.edu" -__version__ = "0.1" \ No newline at end of file +__version__ = "0.1" + +from src import dplpy \ No newline at end of file diff --git a/src/autoreg.py b/src/autoreg.py index 4524772..8806f5d 100644 --- a/src/autoreg.py +++ b/src/autoreg.py @@ -44,15 +44,17 @@ def ar_func(data, max_lag=5): if isinstance(data, pd.DataFrame): - res = {} + start_df = pd.DataFrame(index=pd.Index(data.index)) + to_concat = [start_df] for column in data.columns: - res[column] = ar_func_series(data[column], max_lag).tolist() + to_concat.append(ar_func_series(data[column], max_lag)) + res = pd.concat(to_concat, axis=1) return res elif isinstance(data, pd.Series): res = ar_func_series(data, max_lag) return res else: - return TypeError("argument should be either pandas dataframe or pandas series.") + raise TypeError("Data argument should be either pandas dataframe or pandas series.") # This function returns residuals plus mean of the best fit AR # model of the data @@ -60,7 +62,7 @@ def ar_func_series(data, max_lag): nullremoved_data = data.dropna() pars = autoreg(nullremoved_data, max_lag) - y = nullremoved_data.to_numpy() + y = nullremoved_data yi = fitted_values(y, pars) @@ -70,13 +72,18 @@ def ar_func_series(data, max_lag): # Add mean to the residuals for i in range(len(res)): - res[i] += mean + res.iloc[i] += mean return res # This method selects the best AR model with a specified maximum order # The best model is selected based on AIC value -def autoreg(data, max_lag=5): +def autoreg(data: pd.Series, max_lag=5): + # validate data? + if not isinstance(data, pd.Series): + raise TypeError("Data argument should be pandas series. Received " + str(type(data)) + " instead.") + + # Need to change this to only ignore specific warnings instead of all with warnings.catch_warnings(): warnings.filterwarnings("ignore") ar_data = ar_select_order(data.dropna(), max_lag, ic='aic', old_names=False) @@ -86,13 +93,13 @@ def autoreg(data, max_lag=5): # This function calculates the in-sample predicted values of a series, # given an array containing the original data and the parameters for # the AR model -def fitted_values(data_array, params): - mean = np.mean(data_array) +def fitted_values(data_series, params): + mean = np.mean(data_series) results = [] - for i in range((len(params)-1), len(data_array)): - pred = params[0] + for i in range((len(params)-1), len(data_series)): + pred = params.iloc[0] for j in range(1, len(params)): - pred += (params[j] * data_array[i-j]) + pred += (params.iloc[j] * data_series.iloc[i-j]) results.append(pred) return np.asarray(results) \ No newline at end of file diff --git a/src/chron.py b/src/chron.py index 49ae033..5cf6fd5 100644 --- a/src/chron.py +++ b/src/chron.py @@ -47,7 +47,10 @@ # Main function for creating chronology of series. Formats input, prewhitens if necessary # and produces output mean value chronology in a dataframe. -def chron(rwi_data, biweight=True, prewhiten=False, plot=True): +def chron(rwi_data: pd.DataFrame, biweight=True, prewhiten=False, plot=True): + if not isinstance(rwi_data, pd.DataFrame): + raise TypeError("Expected pandas dataframe as input, got " + str(type(rwi_data)) + " instead") + chron_data = {} for series in rwi_data: series_data = rwi_data[series].dropna() diff --git a/src/chron_stabilized.py b/src/chron_stabilized.py new file mode 100644 index 0000000..5ce78c9 --- /dev/null +++ b/src/chron_stabilized.py @@ -0,0 +1,90 @@ +from rbar import get_running_rbar, mean_series_intercorrelation +from chron import chron +import numpy as np +import pandas as pd +import warnings + + +def chron_stabilized(rwi_data: pd.DataFrame, win_length=50, min_seg_ratio=0.33, biweight=True, running_rbar=False): + if not isinstance(rwi_data, pd.DataFrame): + raise TypeError("Expected data input to be a pandas dataframe, not " + str(type(rwi_data)) + ".") + + + num_years = rwi_data.shape[0] + + if win_length > num_years: + raise ValueError("Window length should not be greater than the number of rows in the dataset") + + if min_seg_ratio <= 0 or min_seg_ratio > 1: + raise ValueError("min_seg_ratio cannot be <= 0 or > 1") + + if win_length < 0.3*num_years or win_length >= 0.5*num_years: + warnings.warn("We recommend using a window length greater than 30%% but less than 50%% of the chronology length\n") + + print("Generating variance stabilized chronology...\n") + + # give rbar function a range of years (window length) to calculate rbar for + # calculate rbar for that window, using either osborn's or frank's or 67spline + # get rbar for each relevant segment of the dataframe + + + mean_val = rwi_data.mean().mean() + + zero_mean_data = rwi_data - mean_val + + rbar_array = np.zeros(zero_mean_data.shape[0]) + + if win_length % 2 == 0: + target = (win_length)/2 + else: + target = (win_length-1)/2 + + for i in range(num_years-win_length + 1): + data_segment = zero_mean_data[i:i + win_length] + if data_segment.shape[0] < win_length: + continue + target_index = int(i + target) + rbar_array[target_index] = get_running_rbar(data_segment, min_seg_ratio) + + rbar_array = pad_rbar_array(rbar_array) + + reg_chron = chron(zero_mean_data, biweight=biweight, plot=False) + + mean_rwis = reg_chron["Mean RWI"].to_numpy() + samp_deps = reg_chron["Sample depth"].to_numpy() + denom = np.multiply(samp_deps-1, rbar_array) + 1 + + n_eff = np.minimum(np.divide(samp_deps, denom), samp_deps) + rbar_const = mean_series_intercorrelation(zero_mean_data, "pearson", min_seg_ratio) + stabilized_means = np.multiply(mean_rwis, np.sqrt(n_eff * rbar_const)) + + if running_rbar: + stabilized_chron = pd.DataFrame(data={"Adjusted CRN": stabilized_means + mean_val, "Running rbar": rbar_array, "Sample depth": samp_deps}, index=reg_chron.index) + else: + stabilized_chron = pd.DataFrame(data={"Adjusted CRN": stabilized_means + mean_val, "Sample depth": samp_deps}, index=reg_chron.index) + + print("SUCCESS!\n") + return stabilized_chron + +def pad_rbar_array(rbar_array): + # double check that rbar cannot be 0 + first = 0 + first_valid = 0 + for val in rbar_array: + if val != 0 and not np.isnan(val): + first = val + break + first_valid += 1 + + last = 0 + last_valid = len(rbar_array) - 1 + for val in np.flip(rbar_array): + if val != 0 and not np.isnan(val): + last = val + break + last_valid -= 1 + + rbar_array[:first_valid] = np.full(first_valid, first) #should be np.full(first_valid, 1) + rbar_array[last_valid:] = np.full(len(rbar_array) - last_valid, last) #should be np.full(len(rbar_array) - last_valid, last) + + return rbar_array \ No newline at end of file diff --git a/src/detrend.py b/src/detrend.py index d763710..cb24f4c 100644 --- a/src/detrend.py +++ b/src/detrend.py @@ -40,17 +40,26 @@ from autoreg import ar_func import curvefit -def detrend(data, fit="spline", method="residual", plot=True, period=None): +def detrend(data: pd.DataFrame | pd.Series, fit="spline", method="residual", plot=True, period=None): if isinstance(data, pd.DataFrame): +<<<<<<< HEAD + res = pd.DataFrame(index=pd.Index(data.index)) + to_add = [res] + for column in data.columns: + to_add.append(detrend_series(data[column], column, fit, method, plot, period=None)) + output_df = pd.concat(to_add, axis=1) + return output_df.rename_axis(data.index.name) +======= res = pd.DataFrame(index=data.index) to_add = [res] for column in data.columns: to_add.append(detrend_series(data[column], column, fit, method, plot, period=None)) return pd.concat(to_add, axis=1) +>>>>>>> main elif isinstance(data, pd.Series): return detrend_series(data, data.name, fit, method, plot) else: - return TypeError("argument should be either pandas dataframe or pandas series.") + raise TypeError("argument should be either pandas dataframe or pandas series.") # Takes a series as input and by default fits it to a spline, then # detrends it by calculating residuals @@ -74,8 +83,7 @@ def detrend_series(data, series_name, fit, method, plot, period=None): yi = curvefit.horizontal(x, y) else: # give error message for unsupported curve fit - print() - return ValueError("unsupported keyword for curve-fit type. See documentation for more info.") + raise ValueError("unsupported keyword for curve-fit type. See documentation for more info.") if method == "residual": detrended_data = residual(y, yi) @@ -83,8 +91,7 @@ def detrend_series(data, series_name, fit, method, plot, period=None): detrended_data = difference(y, yi) else: # give error message for unsupported detrending method - print() - return ValueError("unsupported keyword for detrending method. See documentation for more info.") + raise ValueError("unsupported keyword for detrending method. See documentation for more info.") if plot: fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(7,3)) diff --git a/src/dplpy.py b/src/dplpy.py index a641fe6..9666cfa 100644 --- a/src/dplpy.py +++ b/src/dplpy.py @@ -185,6 +185,18 @@ def autoreg_from_parser(args): def xdate_from_parser(args): xdate(input=args.input) +<<<<<<< HEAD + +def series_corr_from_parser(args): + series_corr(input=args.input) + +def chron_stabilized_from_parser(args): + chron_stabilized(input=args.input) + +def write_from_parser(args): + write(input=args.input) +======= +>>>>>>> main def series_corr_from_parser(args): series_corr(input=args.input) @@ -209,9 +221,16 @@ def rbar_from_parser(args): from detrend import detrend from autoreg import ar_func, autoreg from chron import chron +<<<<<<< HEAD +from chron_stabilized import chron_stabilized +from xdate import xdate, xdate_plot +from series_corr import series_corr +from writers import write +======= from xdate import xdate, xdate_plot from series_corr import series_corr from rbar import rbar, common_interval +>>>>>>> main def main(args=None): parser = argparse.ArgumentParser(description="dplPy v0.1") # update version as we update packages diff --git a/src/new.ipynb b/src/new.ipynb index 1b40fa0..f56c14e 100644 --- a/src/new.ipynb +++ b/src/new.ipynb @@ -257,7 +257,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -288,481 +288,634 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - " CAM011 CAM021 CAM031 CAM032 CAM041 CAM042 CAM051 \\\n", - "626 NaN NaN NaN NaN NaN NaN NaN \n", - "627 NaN NaN NaN NaN NaN NaN NaN \n", - "628 NaN NaN NaN NaN NaN NaN NaN \n", - "629 NaN NaN NaN NaN NaN NaN NaN \n", - "630 NaN NaN NaN NaN NaN NaN NaN \n", - "... ... ... ... ... ... ... ... \n", - "1979 0.995480 1.035034 0.478701 1.041036 1.214757 1.190700 1.426840 \n", - "1980 1.118069 1.451645 1.115436 1.138915 1.759442 1.543335 2.057217 \n", - "1981 1.190643 1.400192 0.998177 0.931251 1.222604 1.325723 1.830926 \n", - "1982 1.163922 1.226275 1.097936 1.197448 1.635310 1.392638 1.432203 \n", - "1983 1.681208 1.395723 0.764619 0.974378 1.853490 1.388557 1.261920 \n", - "\n", - " CAM061 CAM062 CAM071 ... CAM151 CAM152 CAM161 CAM162 \\\n", - "626 NaN NaN NaN ... NaN NaN NaN NaN \n", - "627 NaN NaN NaN ... NaN NaN NaN NaN \n", - "628 NaN NaN NaN ... NaN NaN NaN NaN \n", - "629 NaN NaN NaN ... NaN NaN NaN NaN \n", - "630 NaN NaN NaN ... NaN NaN NaN NaN \n", - "... ... ... ... ... ... ... ... ... \n", - "1979 0.897468 1.399924 0.504710 ... NaN NaN NaN NaN \n", - "1980 1.474113 1.713195 0.642137 ... NaN NaN NaN NaN \n", - "1981 1.367015 1.230242 1.237981 ... NaN NaN NaN NaN \n", - "1982 1.430803 1.374571 1.375062 ... NaN NaN NaN NaN \n", - "1983 1.494565 0.892002 1.466229 ... NaN NaN NaN NaN \n", - "\n", - " CAM171 CAM172 CAM181 CAM191 CAM201 CAM211 \n", - "626 NaN NaN NaN NaN NaN 0.371605 \n", - "627 NaN NaN NaN NaN NaN 0.284398 \n", - "628 NaN NaN NaN NaN NaN 0.306523 \n", - "629 NaN NaN NaN NaN NaN 0.416333 \n", - "630 NaN NaN NaN NaN NaN 0.482462 \n", - "... ... ... ... ... ... ... \n", - "1979 NaN NaN NaN NaN NaN NaN \n", - "1980 NaN NaN NaN NaN NaN NaN \n", - "1981 NaN NaN NaN NaN NaN NaN \n", - "1982 NaN NaN NaN NaN NaN NaN \n", - "1983 NaN NaN NaN NaN NaN NaN \n", - "\n", - "[1358 rows x 34 columns]\n" - ] - } - ], - "source": [ - "ca533_rwi = dpl.detrend(ca533, fit=\"spline\", method=\"residual\", plot=False)\n", - "print(ca533_rwi)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfcAAADQCAYAAAAaqygdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABhBklEQVR4nO2dd5gURfrHP+8uSxZQQECiSjpUkoioHIIRMKAYTkRFfyjHGU7M6RDPfJ53HqinIgbMOUdMoB4YQJIokkRJigFBMrtbvz+6e6jp6ThhZ3apz/PMs7Pd1d013V31rfetqrdEKYXBYDAYDIaqQ1G+M2AwGAwGgyG7GHE3GAwGg6GKYcTdYDAYDIYqhhF3g8FgMBiqGEbcDQaDwWCoYhhxNxgMBoOhimHE3VDhiEgTEflQRH4XkX+JyNUiMiHf+QpDRB4WkRvt738UkW/ynSdD1UNElIi0zXc+vBCR60TksWwfKyJ9RWR5ZrnLLiLSSkTWi0ixz/6074XHubL+zI24a4jIqSIy3X6gq0TkTRHp7Upzpv0gTnZt72tvf8G1vYu9fbK2rY2IfCAiG0Vkvogcpu1rJiKviMhK+7g2rvOdLCJT7WMnUzkZAfwM1FNKXaKUulkpdTYk7o0SkWp+B2ezUKWLUuojpVSHfOZhR8SU0ZTfU1CCWJVQSn2vlKqrlCrLd17SwYi7jYhcDPwHuBloArQC/gsMciUdBvxq/3XzE3CgiDR0pV/gSvckMBNoCFwDPCcije195cBbwAk+Wf3VzuetYb8pWwQJbZq0Br5SJoKSIQamjMYnB2W30uFneVd5lFI7/AeoD6wHTgpJ1xqrYJ8AlAJNtH19geXAvcB59rZie9u1wGR7W3tgC7CTduxHwEjXtaoBCmjjk5eznXOG5HkQMAtYBywG+tvblwKHaemuAx6zv7exrz0c+B74EKsyO9917tnAYPt7R+AdrIrtG+Bkn/w8DGwDttr3/DDXtb+3r73e/hzgOr6/few2e/9se/tuwCv29RcB5wTck4HAV8DvwArgUtczvBrLs7AUGOrK+416Wm3fUuBSYA6wFngaqKntP9p+Dr8BU4HO+X7vK9OHql1GLwNWASuB/7PP2dbeVwO43S4XP9p5rwXUATbZv9UpK7vZZek54DGsMn+2fe8esK+xArgRKLbPfybwsX2NNcC3wAAtb7sDU+yy8g5wF3ZZtff3st/n37Dqg75Rj3XdA+fZpJQ9YD/7t1fT0p8AzPI518PAPcAbwAasOmY34Hmsxt23wF+19D2B6fb9+hH4t729jf0sqoX9Hlz1gb1tKXYda19jmn2fVtnHVtfSJp55tj7Gcrc4AKgJvBiS7gxgulLqeeBrYKhHmkfsdABHAvOwCq3DXsASpdTv2rbZ9vasIiI97fxcBjQA+mC9cFE5GPgD1u94AhiinbsTVkX6uojUwXrZnwB2tdP9V0RSfpNS6kzgceA2Zbm83nUl6WP/bWDvn+Y6/i0sy+1pe38Xe9eTWJXDbsCJwM0icqjP73oA+LNSaidgb+B9bV9ToBHQHMuiGy8iUd3vJ2M1PnYHOmNVnIhId+BB4M9YluB9wCsiUiPieQ1Vt4z2x2oUHg60wxIinX9gNTa6Am2x3strlVIbgAHASrsc1FVKOb9hEJbAN8AqaxOxGjptgW7AEVii77A/VoO8EXAb8ICIiL3vCWCGve8GNG+IiDQHXsdqLOxi/47nNQ+H77E+eJY9pdTnwC/2PXI4DXg04FynAjcBO2E1Pl7FeobNgUOBUSJypJ12LDBWKVUP2BN4xueccX+PThlwkX3sAXYezo1xfGyMuFs0BH5WSpWGpDsD6wFj/015uEqpqcAutiCcgVWR6NTFsux01mK9hNlmOPCgUuodpVS5UmqFUmp+jOOvU0ptUEptwqpUu4pIa3vfUOAFpdQWLKt0qVLqIaVUqVLqC6xW8onZ/DF+iEhLoDdwhVJqs1JqFjABON3nkG1AJxGpp5RaY+dXZ7RSaotSagpW5XVy6ik8GaeUWqmU+hWrMulqbz8HuE8p9alSqkwpNRHLMuwV9TcaqmwZPRl4SCn1pS3Y1zk7bIE9B7hIKfWr3di4GTgl5JzTlFIvKaXKgXpYjYBRdlleDdzhOsd3Sqn7ldW3PBFoBjQRkVZYVrNTHj7Eeq8dTgPeUEq9Ydcv72BZwAMjHOuHX9mbaF8PEdmF7QaHHy8rpf5n34N9gMZKqeuVUluVUkuA+7V7sA1oKyKNlFLrlVKfuE+Wwe8BQCk1Qyn1iV0/LsVq4B8c9fh0MOJu8QvQKGQQ10FYFtlT9qYngH1EpKtH8keB84F+pFoa67EKnE49LFdPtmmJ5YpPl2XOF7tieZ3tBeIULKsALAt+fxH5zflgiX/TDK4dh90Ap/Jz+A6rle7FCViu+e9EZIqIHKDtW2NXsvp5douYjx+07xuxRAKs+3OJ6/60jHFeQ9Uto7uhlTOs982hMVAbmKG9N2/Z24PQz9caKAFWaee4D8vD5pB4b5VSG+2vde28eZUH/dwnud7r3liNg7BjvQgqe48Bx4hIXSzB/0gptSrgXO57sJsrn1djjdsAywhqD8wXkc9F5GiP86XzexKISHsReU1EfhCRdViNtEZRj0+HHX6whc00YDNwHJY7y4thgACztnusAKvlP8uV9lGsft9HlFIbXennAXuIyE6aGHUhuBWaLsuw3ExebMCqOBy8hNg94O1JYIyIfIjV7/eBdp0pSqnDyZwog+zcaVZiWWL6PW2F1b+YerDl5hskIiVYFfwzWGILsLOI1NEKcSvgyzg/wINlwE1KqZsyPM+OTFUto6vY/u6B9b45/IzVr76XUsrrXfYrK/r2ZVheokYRvB5eefMqD875lwGPKqXOcR9oe/iCjvXCt+wppVaIyDTgeCyP3D0heXffg2+VUu08Eyq1EBgiIkXAYKzBkw1dycLuRVJ9ag/i0xth92AN0ByilPpdREaRY8+msdwBpdRarAE1d4vIcSJSW0RKRGSAiNwmIjWxWosjsFytzucCYKjbmlBKfYvlcrnG41oLsCqaMSJSU0SOx+qffd5JY1/P6Y+tYf/v7Cu2/68GFNnnKPH5aQ8AZ4nIoSJSJCLNRaSjvW8WcIr9O3sQ7UV7A6sVfD1Wn3e5vf01oL2InG6fr0RE9hORP0Q4p5ufsAYJ7RGQ5kegjV0YUUotw+pXu8W+H52xWuOPuw8UkeoiMlRE6iultmENonFPdfm7ne6PWF0Oz6bxO3TuB0aKyP5iUUdEjhKRXLh5qyRVuIw+A5wpIp1EpDYwRstHOda7c4eI7Gqfu7ls7yv+EWgoIvUD7tsqYBLwLxGpZ9cDe4pIqEtYKfUdlpvdKQ+9gWO0JI41faTzm8WantciwrF+BJW9R4DLsdzsYWMvdD4D1onIFSJSy87r3iKyH4CInCYije37/Zt9TFKdEOH3LABq2uW6BPgb298PsLp01gHr7Tr4LzHynxZG3G2UUv8GLsZ6KD9htfbOB17CshY2YbXyf3A+WOJZjDWIyn2+j7UBLm5OAXpgjU69FThRKfWTtn8TlmsQYL79v8Pp9v/3AH+0v9/v85s+A87C6mNbizXS0+kzH41l1a8B/k4Eq8TuX38Ba9DPE9r237EG6ZyCZUX/gDUQKPaAMdsteBPwP7FcaF790k6B/0VEnP7yIVijW1diFfwxdh+gF6cDS2332EjsvjybH7DuyUqsxsHImOMUUlBKTcfqO73LPvci7MF2huhU0TL6Jta0ufex3ov3XUmusLd/Yr+v7wId7GPnY3nTlthlxa+b5wygOtYMkTVYno9mPmndnIo14O5XrIZHYnyC3agehOXidp7HZWzXFd9jfQgrey9i1V8vutzjgdhjCY7Baux9i+URmYA1iwCsd2OeiKzHGlx3ilJqs8epgu7FWqwBchOwPIYbsAb4OlxqH/871rvwdNT8p4soFcULajBUfUSkL9bUlhZ5zorBYPBARBZjzXRxz7IxuDCWu8FgMBgKHhE5AauP2+3dMHhgBtQZDAaDoaARK4xvJ+B0bayPIQDjljcYDAaDoYph3PIGg8FgMFQxqpRbvlGjRqpNmzb5zobBUCHMmDHjZ6VUWECTSo8p14YdiWyV6yol7m3atGH69On5zobBUCGISOQIWZUZU64NOxLZKtfGLW8wGAwGQxXDiLvBYDAYDFUMI+4Gg8FgMFQxjLgbDAaDwVDF2CHFfcaMGey7775MnTo131kxGAwGQwhff/01Y8eOzXc2KhVVarR8VAYOHMjq1avp06cPpaVxV0E0GAwGQ0XSq1cv1q1bxwUXXEBR0Q5pk8Zmh7xLv/9uLdFcVuZe6dNgMBgMhYZTZ2/bti3POak87JDiLiL5zoLBYDAYIuJY68bTGh0j7gaDwVAJmDNnDj/++GO+s5EXHHE3lnt0dsg+dyPuBoOhstGlSxd23nlnfv3113xnpcIpLi5m27ZtRtxjYCx3g8FgqCSsWbMm31nIC8YtHx8j7gaDwZBn+vbty2OPPZbvbBQsjrh/8sknec5J5WGHFHeDwWAoJKZMmcLpp5+e72wULMXFxQAMHjw4zzmpPORM3EXkQRFZLSJf+uwfKiJz7M9UEemi7VsqInNFZJaIZH05KDNP0mAwFCJLly41rmcPTJ0dn1zesYeB/gH7vwUOVkp1Bm4Axrv291NKdVVK9ch2xoxb3mAwFApKqcT33XffnYsvvjiPuSlMjLjHJ2d3TCn1IeA7rFMpNVUp5YwO+QRokau8GAwGQ6HiDqb11ltv5Skn4cyaNYtddtmlwqfkGXGPT6HcseHAm9r/CpgkIjNEZETQgSIyQkSmi8j0n376KdLFzItiMBiywbp167jxxhszinbpPra8vDwljW7d55Pbb7+dNWvWMGnSpAq9rtPnbohO3lVORPphifsV2uaDlFLdgQHAeSLSx+94pdR4pVQPpVSPxo0bR71mJlk2GAwGAC699FJGjx7NSy+9lPY53H3sXuLu1XgYOHAgxxxzTNrXTQenkZGtOnTdunWMGTOGb7/9NjCdMcjik9cgNiLSGZgADFBK/eJsV0qttP+uFpEXgZ7Ah1m8brZOZTAYdmCcmOdbt25N+xxu4fay0r0G2b355psp2yqKbNWh77//Ptdffz0zZ87klVde8U1nxD0+ebtjItIKeAE4XSm1QNteR0R2cr4DRwCeI+4zuHY2T2cwGAxp4xZ3Lyu9UBa5ynb3gPO71q1bF5iuKrjl161bR/369bn77rsr5Hq5nAr3JDAN6CAiy0VkuIiMFJGRdpJrgYbAf11T3poAH4vIbOAz4HWlVOGOMDEYDIYMiNLnXiji7pAtA8n5rb/99huvvvqqb7psWu6LFi1i06ZNoem2bduW1fteWlrKunXrKmyqY87c8kqpISH7zwbO9ti+BOiSekT2MC4eg8FQKETpcy+Uue9xLPfly5cD0KKF/0QoRzxnz57Nsccey7JlyzzTZ8tjUFZWRrt27Tj66KMDGxMA1atXZ6+99uLLL7PjOHaea0V5IczCMQaDwZBHKpPlHmdAXcuWLZOO8cL9Wzdv3uyZLpMxDTpOIynqdMN58+Zl5bqw/RlWlHFpTFiDwVBl+O6775g+PetBLXNKFHEvFMvdIdtu+TCy9fude50PA8+5trHcc8S6desSI1yjoJRixYoVga4lg8FQGLRp0waouHnh2bhOulPh8kHU33vNNddESuf+rX6im62lXp17HSbuBxxwQFaup1PRbvkdznKvX78+69evj5z+lltuoWXLltx55505zJXBYNhRqYyj5cPE8dZbb018D8p7VHFv3bp1Sh7SIaq452L1OeOWLzCcFuill16KUorFixcXTLQog8FQ+amKbvlatWolvv/222++6aK65XfbbbfE90zuRT4bSRXtlt+hxD0dUa5evTpgDegYPXo0bdu25R//+Ee2s2YwGPLIN998w6effpr28ZMnT05bOKqiW75mzZqJ77/+mrzESGlpacLNHtVy19Nl4qKPYrnnynhzfoOx3HNA1FaiToMGDRLfb7rpJgBuuOGGbGXJYDAUAB07dqRXr15pHz9+/HjuuOMOz30//fRTYHjVymS56275oBHsuri7xzjtvvvu1KhRA4heJ1eUuM+ePTtnDSljueeQdB5a/fr1U7ZVhWhJBkO2EZEHRWS1iHhODBaRviKy1g5aNUtErq3oPOpMmTKFF198MWvnW7p0qef2li1bsscee/gel+2pcEopfvjhh8jp0+Hmm2+mRo0arF271nO/Lu777rtv0r7ly5cnGglRxV3//ZmIu3OeTZs28fXXXyfte+utt+jatSvjx7tXH/dn48aNkcMAmwF1OSRTy93BiLvB4MnDQP+QNB8ppbran+srIE++9O3bl8GDB2ftfHo/s86WLVsCj3Nb5ZkOqBs/fjzNmjVjzpw5kY+JiiPKs2bNAiyvhBclJSWRzpeOWz4TL4Z+bKdOnZL2ffPNNwDMmDEj8vnOO+88Bg4cyNy5c0PTmgF1OSQdcW/atGnKNiPuBkMqSqkPgV9DE1ZR/MQ9DLdwewlclAaAw0cffQRYLuZs4+6P9qtTo84jr2jLPahh4OQ5zvkXLlwI4OvB0DFu+RySjrjvtNNOKduMuBsMaXOAiMwWkTdFZK98ZwbCLeuo6K7oOLiF2m3Z9e/fn1NOOSXxv4gEut3r1q0LwIYNG9LKjx/r1q1L6cZIp07VidKwmT17dtLCMnHEd/bs2dx1112J/6NY/XHO7zR2TjrpJP71r38FpjVu+RySzovo1UI24m4wpMUXQGulVBfgTuAlv4QiMkJEpovIdD/Xb7ZYvXp1Vs6TruXuFhy3uL/99tssXrw4adtxxx3nez5H3OPE84iC133KdGS5u052n6+0tJSuXbsmugG8jgmia9euXHDBBYn/gzwecS3377//nqlTpwLwww8/cOmllwamN275HJKOuHu19Iy4GwzxUUqtU0qtt7+/AZSISCOftOOVUj2UUj0aN26c03ytWLEiK+fJpVveTVCI3Tp16gDZF3evfPnVqXvvvXekdGHi7nVcJt6CKJZ71D79uHHnjVs+R7zwwgtMmDAh9nHZEvdp06ZlrRIxGCojItJUbIUQkZ5Y9c8vubhWFIuyYcOGACxYsCAr18yVWz4uuXLLe4m7nyXcsGFDGjduzJVXXgn4d32kI+6ZTFWL0uceVdzjNjLMqnA5YtSoUSxbtiz2cdkQ93nz5nHggQcCFRfz2mCoaETkSaAv0EhElgNjgBIApdS9wInAX0SkFNgEnKJyVCDKysqoVi24emvVqhW//PIL8+fPz8o133rrLbZt28Y555wT67h0LPcgsuWWnzNnDl26dOGDDz6gb9++nvnyc2ErpSgqKmLXXXcFrCBgXp6NMHH3EvJMLPdsuuXjvrpVxi0fYc6riMg4EVkkInNEpLu2r7+IfGPvuzIb+fnxxx9D02zdupVXX301KehCNsRd7y8yGKoqSqkhSqlmSqkSpVQLpdQDSql7bWFHKXWXUmovpVQXpVQvpdTUXOUlinXnVOb6YC0/NmzYwOOPPx6Y5umnn2bEiBHRMqgR1uceFydATKbiPmXKFACee+4533z5CWF5eTlFRUWJCJ/ZtNxz7ZafNGlSpHPFzUdVcss/TPCc1wFAO/szArgHQESKgbvt/Z2AISLSye8kUYmyHvCYMWM49thjOfXUUxPbvF6Gimp5GQyG9IjTtxqlkr7gggs47bTTmDZtWsZ5c5Ntt7wjkJmuge50MzhrrEeZogfwr3/9i/vvv5+ioqJEQyPf4u6cN4pbPipxuweqzGj5CHNeBwGPKItPgAYi0gzoCSxSSi1RSm0FnrLT5pxnnnkGgNdeey2xzetlCHP3uTGueIOhYolS8TplW0+rlOLMM89MjIJ2+O6774Ds9WPPmjUrYfVm2y3v1DeZ1juOuG/atCkpqpyOl+XujBrPtrg79W46fe7OebIZxjddy73Su+Uj0BzQO8GX29v8tuccrwExZrS8wVD5iCPueiW9fv16Jk6cyJFHHpmU1hGddevWxbLevRoDCxcupFu3blxxxRVJ+XCIazy4cX5PtsT9iSeeoGXLlsycOTMlTVD/tC7ufl6EOH3uTtS7dCx35xj3ezF69OjEvriNqnT73Cu95R4BrzupArZ7nySL82G9xN2rkigqKmLu3Lm89dZbkc6baUvcYDDEIxPL3Qtn+wknnMCBBx7Ipk2bIuXDGdym44z/cVahc4t7ppV/3LjtfrjrQ3csdogu7lEt90WLFvnudxo9mYi7+17feOONfPjhh7HPN2/ePN5///208lBRlns+R8svB1pq/7cAVgLVfbZ7opQaD4wH6NGjR0ZN1aiWe7Vq1ejcuTMAixcvDlwUwmAwVAy6MKRruftZcW7R9xv9HQV9ZTXnXEHXSvf86Zznq6++4vvvv6d///4pHgQvIQ8Sd6VU7AF1Rx99NJMnT+bggw9O2Z8Ny92rPnfelThGmHsefxR2JMv9FeAMe9R8L2CtUmoV8DnQTkR2F5HqwCl22pyTjls+yvQ60+duMOSWr7/+mnbt2iX+jyLujjBNnDgxsc1vSVCvyGlx8asH3OKeqcXtdssvW7Ys8liBvfbaiwEDBiQd7+Al5EH3YcuWLaFuea/npE9N9BL3TPrcvY6tqPq5ysxzjzDn9Q1gILAI2AicZe8rFZHzgbeBYuBBpVS8UEBpko64G5e7wZB/Vq5Mdu7FsdyjHJcNcS8vL6e4uDjUctcFLR3hcbvlW7VqRZ8+fRJT26LivhdxLffNmzcnAgX5xcL3asjo9Wu2+9yzOVo+LhU9oC5n4q6UGhKyXwHn+ex7A0v8KxSnlaljxN1gKHwc969DuuLuZbn/+uuvbNy4MSmdI2pxxNcRdzducdfznomVqpRKjA1Ip1/ZLaLpiHu7du0QkcRyqmHXgOT6Vd9fu3Ztz2PKysqYNWtWyrrxXteJK+7777+/b/q47Ehu+YLD60WLM1peKcWECRNSllrUX5p33303w1waDAY3YeK+fv36lPDPQeKu07Bhw5Q1vtOZQ+7kyW25uwUy07XLdcvdGWTsZbhEzW9QXsLEvXbt2jRv3jxl4RuHOOLerFkzz2PuueceevToETjAzTnmySefTNkXd4xCuuFvq8w898qI10OLY7m//fbbnHPOOXTt2jUpvf7SHH744VnIqcFg0HFctg7usty7d29atGiRtC2TwVVRQpRGCaUKwW75MHH3mjani5Uj7o57PA5RLPeg/Dn5qFmzZmAkOze629pL3J37OHfuXESEp556Cti+jr3fdaZOncobb3g7hBctWsRXX33l+xt0rr32Wt/rBLEjzXMvGLZs2cLtt9/u+XC9Xl69ItErgWzFqDYYDPFwi7FbSB1vml5ZR3XLexFF3N3ndw90i9LnHnad6tWrs2HDBubOnet5HWeZ1nTE3X0PvbwVUe5DcXFx5FXhnPReeXBb7u+99x5Awqsyfvx43zyUl5fz22+/+e5v164d48aNS9p22GGHeYr7O++843ueIIxbPg/cfvvtXHbZZSxZsiRln1cF0KjR9lUq9Uog01GuBoMhPdxC5GclO6FUId6AOjdR3PLuufC5sNxLSko46qij6Ny5c4rbv7y8PBFfPp1pe5n2uTsUFRWlLe76/t122y1pm1P3Or/XPagy7DpBdO/enZKSEk9xD+riePrpp0PzYMS9AnGCSXjh9fL6teozWYrQYDCkj9cgKy/WrFmTSO9VcWfTcvcTd7c4uc+l5z3sOkqpxCh4t7grpTJyBWc6Wt6hqKiIH374wXPxrjhu+X322ScpX046vzn0YdcJ2ldeXo6IeL4j7i4gnaB+f+OWzxHDhg3z3ef1cjgP3Guf3pr2CoABcP311/Pll9aCeGZEvcGQW6Ja7o5r1s8ijiru6VjufnOt07XcGzRokJTW3XjQxd25zkMPPRR54Fg2LfcPP/yQpk2bhl4D/L2hjsc0nXCxQeLudY+VUr7i7h68qeM0QNwsXLgw8e5V+nnuhcZ9++3HXhMnciWgP2allKeAv//++3z22WdJbjwHvTA6hWf69OmMGTMmsX3MmDGMGTMGpZQJYmMw5Bh35e0nimHi7hZev7IbRdTcdYdzbvegvXTFvVq1akn58HLL642V6667jltuuYX69eszePDg0PxHuadRRvMHiZmX6OrPwAl5O27cuITF6xfGVf//xBNPpHnz7UuS+HlqILvi7vdb27dvH5om2+wY4r56NTUuu4zLsNeQBZwV28vLyz0FPGhUu1eB2m+//bKXX4PBEImtW7cyevTopAFlkCrS1atXZ+vWraxduxbwFyWnbPu5zN3p/JgzZw4ffPCBZ57c1053QF1JSUlS5Lkgy11EEivbuefs+5GuW94tikFu6LDpxyeffDJgBeIJE3ddNJ9//vmkfZ999plnkDK/3xDklg8S9yhds5U+iE1Bseuu8Prr/HLIIRwFfAIcCyzGehhR+mx0vCz3imDSpElMmzaNa6+91rj6DQYsIbnttttStvtZ4I5wRBHtc845h1133dUzXZBbvqysjC5duqRsd7vl/RoQjrdPRAItY/eALy/LXb8PjhHjJ3LLly/3zK9DLsTdq/70W6zLOc+GDRtYvHhxSh0YVCeeeOKJ3H333Z77wiz3Bx54gH333TcxxTmuuLsbCGZAXbbp14+ewDws6/1ToB/pibuX5R6HUaNGBY7s9OPII4/kuuuu4+233459rMFQFfFbHtWvD9756+Wtg+1l++eff2bChAncfPPNgem8OOGEEwLzFGa5w3ZBCKpfSkpKPPvc9QF1+rXCxN09BzybA+r8CHPL6+dwRPH000+nbdu2vlMN/XAGU7rxEvezzjorIe5nn3023bp1S+wLEvcov8cMqMsBS4ADgFeBhsAkoOjee30Luh+ZivvYsWMZMiQ5Ou/333/P+eefz9KlS0OPz3RpW4OhqhB15orbag4T9zCCLPeXX345ME9Bfe6jR49OShM0XsfPcnd+65QpUxLz3EUk8Zv9pnK53fXpBrFxP5O4fe5e59Qtd4eogygd4vS5X3zxxVlzy7vj6vs1rrLNDiXuYPW1HwfcitUnUePiixmzenWs/olsuOXnzJmT9P9xxx3H3XffzTHHHBN6bEW1/AyGyopfuXQqcj9vXdSwslEbATp+8c31azrz0Z20QdZomOUOcN111wHJ4u5Vf8ybNy8h7o44p2O5z5w5M5alGtVyLy4uTjmPW3iVUixevDhl/IUXesAyvwZKOlPhvPLesuX2FcyHDx9OnTp1QvOXDSJpmog0Bs4B2ujHKKX+LzfZyi3lwFXAl8CjNWowbMMGWgInAb9GOF4vjP/5z3947rnnYufB/dLMmjULIDF9LoiHHnqIJUuWJFr5BoMhGaeSnTZtWtKSrmVlZYgIffr08Twuqmhv27aNDRs2MH369Nh58rLcd955Z8aPH5+Iwb5+/Xpq1qzJOeec43u+atWqBVrubhxx1wXo119/ZfDgwUyZMiUxjctv9bUo4n7uueempPET9xUrVmTVcgdo27at57Uguc7VBdZvXIOfuPt1BUF410BFDryOarC+DHwEvAtUmUgtjwN3v/IKmwcM4JDycj4DjgG+DjlOf6HdI2LTJc50uffee4/33nuPYcOG0apVq6xc32CoSjgVf9++fZMa405F7rdKWlTLfevWrQwdOtQzqmVYntxism3bNrp168aJJ57IP//5T4BEwJf777/f93xRLHcH3XJ30r3zzjtccMEFiRXbHIvXr7/f7bZv3bp1irh7ueD9xN2J9d++fXsWLFiQ8jvc53CfO67XVL9XQeL++uuvA/7i7qxO50VYntIJA5wuUf27tZVSVyilnlFKPe98cpqzCmJL164cufPOzAD2xBpJf1TIMem45NxkY7S7Pg3GYDBsx6lk3WIdVmbiWO7Tpk2LlSe/0fJbt25N9OO6p3sF4bdYjp+4O10RTrojjjjCcylWvy4Bp/9ev777fnlZtbooe0UDjWKRe1nuceOH6HnVxx24xX3gwIGAv7iXl5f79pt/+umnPPHEE755qFevXqw8Z0JUcX9NRAbmNCd5ory8nFXFxfwReBqoB7wCXBZwTDrLPeYCE+7WUJGIiP9IogLDr2w489z9iDOgLu7Yl19/tTr9vPrc0xF3v2Vu/Y516q2wesNP3J38O1SrVi3lt3iJu36fevXqFbgf/FfijNIICEJ/trpxFeSW95uq5/fsX3vtNYYOHeqbh4rqb4cQcReR30VkHXAhlsBvEpF12vZARKS/iHwjIotE5EqP/ZeJyCz786WIlInILva+pSIy194XvWMrJqeddhqrV69mE3AK8Desm3IbMBHwGlcaV9xzFaEunbWeDYYoiMhkEWmj/d8T+Dx/OYqHX8W/bl1wtRUWNEZPF1fc+/btm5S3IMs9Stl2C2mY5e43oM9NlGl4EN1yD7tP6VrucReD0ett/VzLli3zzKOI+Aa4SXeuesGIu1JqJ6VUPftvkVKqlvZ/oH9BRIqBu4EB2IHhRKST6/z/VEp1VUp1xRrjNkUppTcP+9n7e6Tz46LgLBvocBNwPLAeOAOYDLgjIsd1y3sVtmwIvtd0nueff54hQ4bEnt5nMLi4BXhLRM4VkZuAe4Gz8pynyORC3HVXbDriDqlzz51zOeLuiEaU2Btx3PLl5eW+se398hkmnl7iHqfP3W9/1D73uPWwn+U+btw43xj37mdVWlrKHXfcwe+//56SPgoFI+4OIvJelG0uegKLlFJLlFJbgaeAQQHphwBPRslPpjRu3DhwruJLwEHA8qIiegGzSkroru2P+1KFFZLJkyeHnsOrwLoXpgArEtNTTz3FhAkTIufPYHCjlHobGAmMBf4PGKiU+iK/uYpOum75IK+c3k+7devWtMbN6FHjdMvdEeo4K535DTDzm17mHq0fhHvRGS9yZblHHS0f14PqJ+46TZo0SUrjzsujjz4a6Vp+xlvBiLuI1BSRhkAjEdlZRHaxP22A3ULO3RxYpv2/3N7mdZ3aQH9AH6SngEkiMkNERgTkcYSITBeR6VGDu9SqVStpUQEv5gCf3Hkn9O5Nk23b+AhrqhzEf6nCVj7q16+f53YdrwaFl7g7hFkoBkMQIjIauBPoA1wHTBaRwLGmIvKgiKwWEc/5nGIxzu6mmyMi3b3SZYNc9Llnw3IvKyuL1OcepY5xC+nnn39Ov379EjHkdfRGRZTomLql70dJSUnKb/Gy3MO8lO7R51Hnuceth/3c8g79+vXjk08+SfzvFvcXX3yR//u/7bO/n3nmmUjX0ikYcQf+DEwHOgJfADPsz8tYLvcgvFTK7ykfA/zP5ZI/SCnVHcutf56IeE5MVUqNV0r1UEr1aNy4cUiWEsdEKpgnnnsuvPsuLzdsSG3gGeDvQGmMl8qvkGQy0tMhSNxNoBtDhjQCeiqlpiml7gOOBEaFHPMwViPdjwFAO/szArgn82ziOYApTNz9ApFUhLhH6XNPx3IfMWIEkydP5sknUx2gZWVliXro0ksvDT13FMu9WrVqrF+/PjGKfvHixaxfv97z2kFEEXcvt/y//vWvwPO6efjhhxPfvYyoli1b0qZNm6Q0urh/9NFHSelPOukk/PCrmwtG3JVSY5VSuwOXKqV21z5dlFJ3hZx7OdBS+78F4NdkPAWXS14ptdL+uxp4EcvNnxWUUtEHRNSowfWtWjEKa4L/tcBjW7cS9RFt27YtlpBny3I3C8sYMkEpdSGAiHSw//9OKeW/VKKV5kOC40ANAh5RFp8ADUSkWaZ5vf3221O2+Q0ac+a3T548mWeffTZlfxy3fDriXlpamsjb22+/zbp165L63OOIe1AwFTd6oyIKUS33zz77LOHKbtu2Le+8847nuYJwC15Ut3wmiEjK83ef3z2gzokeGAW/MU9xnlmmRL1bK0RksOtzqIh4L5lk8TnQTkR2t6fQnII1yywJEakPHIzlDXC21RGRnZzvwBFYAeWyQixxtzLBWGAg8BtwAvA/IEr4mK1bt8Ye1emFsdwNFYmIHAPMAt6y/+8qIinlNyZxuuoid7d5VZhhQuYEjXETJO7Llm3P+rZt29JqQN95553Mnz8/8f+cOXOSLPc4A+riCIV7hbhspA8Kw6qTLcs9m3VaUVFRyvP3Ene9oZENca9Iot6t4cAEYKj9uR+4GPifiJzudYBSqhQ4H3gbK+jbM0qpeSIyUkRGakmPByYppfToEk2Aj0VkNvAZ8LpS6q0YvyuQqG55PT1YC83sDywAumC1Xg4MOTauuOsVxsUXX5zo4zHibqhgrsPylv0GoJSaBeye4Tkjd9XF6W5LR9z9Kuogt7wesnbr1q1pzXi55pprkoKcNGjQIO0BdXEtd70eCst71NHyUa8dhNty90ovIlm33N3kWtz9lpzNFVHfjnLgD0qpHwFEpAlWf9n+wIeA5xBCpdQbwBuubfe6/n8Yq69O37YESz9zwg8//ECjRo0C0/hZ9guwfvTTWO6ED7CGFD/kc57ly5d7xlv2Q3/p7rjjjsRfL4siqAIw4m7IkFKl1FpXJZjp/M04XXWR8Sqr6QZ4ChL3U045hddeew2w1nfIBo6Iut3yw4cPDz02jvfR7ZYPm+sexS0f9fpxLffNmzcjIuyxxx6JbbG9rWkQJu6XXRYU2iwZL3HXB+NVBFEVoI0j7Dargfb2ALjMY7FWEO+//z41a9bkP//5T+iLovevuVu5v2G56P8DVAceBP4FeJ1xzJgxnudfu3atZyhMpzLVr6mU8qx0ggqN6XOvvHTu3JnmzZsn4ovniS9F5FSgWETaicidwNQMz/kKcIY9ar4XsFYptSrTjPpZ7u5Y6A5vvvmm77mC3PJB02fTxREBt7hHIZM+97CR5lEG1EXNa9w+d6de1OP2l5eX59xg8RJ3nTieGl3cGzVqxLnnnlthS706RL1bH4nIayIyTESGYfWPf2j3h/+Ws9xlmX79+rFu3TouuOCC0BdFb016DdgpAy4Czga2YvVRvAbUd6Vzh2zUGT58eGIlJjfuNePTFfdXX32Vbt26JS3MYChsVq5cycqVK/PtfbkA2AvYgjXYdR0ho+VF5ElgGtBBRJaLyHBXN9wbwBJgEVbXXnSXVgBeDfW7777bd2TyTjvt5HuuIMs9F+K+cOHCpHPHmd4Vx5J1W+Jh14liuevvZ5DwxbXc/aLCpVMe4hwTJu5x2Lx5Mw899BBDhw6ltLS0QgfSOUS94nlY48gOwuo3ewR4XllPtF/QgYWG008UVjB23nnnxPdDDz3UN90DWK7657HmAH0CHAsstPcHVRZPP/10yjZ9eoxDaWlpbHF3XtRjjz0WsJZifPfdd33TGwoHxxWYjwrBQSm1EbjG/kQ9ZkjIfoVVl2QVr/u0aNEi3/RBq3oFlVfdm5ct/vznPwPb1xeP462Ja7nrAhzFctenjnnhJ+61a9dO8prE7XP3ylshWO5x2LRpU8INX7du3byU5Uh3y5668pxS6iKl1Cj7e24CplcQYS+KLu5hfATshxX4piPWCEBnlZ10V5DT+9NLS0s9+9fd/Wb6I3G/mNlYyc5QMTjPKuqApWwiIq+KyCt+nwrPUASiVPr6Ot+6uDui6pALcX/hhRe4+OKLPfftueeeABx55JEArFoV3Euhe+DCBENfO9wtsFEs97BAWPp9DxqsF9a/7162OpuWexyBzrbl7lBaWprz8QJeRA0/O1hEForIWomxcEwhE3azGzRoEOt832G5NV4AGgCvYpk8cQLegLflvm3bNs+R8XqBfeyxx9h99+2Dmd0utVy4FA25IZ/iDtyONYTkW2ATlvv8fqzlFrI2HTVX+HWD6RW3bin+4Q9/SEqXiz73448/nu7dvYPxNW1qrVxxwgknANuXG/WjXbt2ie9h4q7XcXHFPcrCNfo91c9fXl7O1KlTE33mYe79Dh06hObNOYdfvZ2N+s3dKIkyY8EPXdw3b95c0G7524BjlFJf5zIzFYnXS9K6detE6MY4lrvDeuBE4ErgRvtz8NKlDLb3xcHtlvcSd70Ann568oxEd+vXiHvlIZ9ueaXUFAARuUEppUeFfFVEPqzwDMXE7z3XhShbbvlu3boxc+bMSPnyEyUnGI7TqD/yyCNp1qxZqAUfdE6v/W6hChP3KH3/+j3VQ7EqpTjggAMS//u55Y8//njq1KkTqYHVo4e1dlhxcbHn+UpKSjyPi2N9uxs0UcOZe+EeLV+wbnngx6ok7ODtypszZw533HEHjRs35uabb07rvAprOa2jsUYaHv7773wKtI94vF+fe5jl7saIe8WRzR4qp29URPLiytNoLCKJuUgisjsQLb5zHvGrRP0sdzdxxD1Ohe33LLdt25ayL6r72SvUq9953PVHmFXq7L/lllsinf+MM85IfHdb6n711P7778+jjz6a8vvdeRs/fnziXvvd82zUb+58xvGcPfHEE3Ts2DHxf2US9+ki8rSIDNGj1OU0ZznGq7CVlJQwatQofvzxx6Q5lgD3339/rPO/CfQAvi4uphNWP/zRMY6P65Z3c9VVV3HTTTcl/s/FYKBCpKKHgtx77720bNmSxYsXZ+V8eXbJ61yEtVjMZBGZjBXSYVRecxSB4uLi0GVHg8pCHLd8nGfkV7lv3bo1Jb9RG3VhlqV+Hnf94fc7nQF+jsAGBW7xa4S4y6BfPeVnVbvzpt+7uOIeJ96BO22cxvWQIUOS8laZxL0esBErbssx9ieOVhUcXq1352F6vXRnn302s2fPjnWNxUDPsjKew5oi9ypWbPogR1Ecyz2sX+xvf/tb4vuOYLnPnz+fpk2bMn78+Aq75l/+8hdWrFjBtddeG5guaqPDeab5Fnc7ImQ74EL708FeBrag8VpgxNnux5VXXkmvXr2AeFPhgp5Ry5Ytk/4PcstXhLhH7XPv1q1b0v6g3xhV3P363P2OD1ojPm6fe5zGfqZhwvW8VRpxV0qd5fGp2HA7WaZhw4Yp2+L0YUVlPdZSsVdihfn7O9YqOP4zbS3co+W9Ih7FaZXuCOJ+xRVXsHr16oT1kSlhhV1fXSuoEvzpp59o0qQJV155Zeg5nYotn9PgNPbFmuveBfiTiJwRkj7vpCPut9xySyL6WLbc8i+99FLS/351x7fffpu2uGdSX/mJuzv8bTbEPa7l7nbL6/fd755nozHsLptxvYBBnpKCFXcRaS8i7znrNItIZxH5W9hxhYxX+Nmwvq5M5ln+A2t63BqspbE+w6o1/a6RaZ+7mx1B3LPZR3366afTunVr3yhnkLzkZJCr94EHHuCnn37iH//4Bw0aNOD777/3TVsobnkReRRr5HxvrJme+2H1NBU8ccVd3x91VTiwntGsWbM807qjkfm9m2vXrk0Rlaj1zLhx4wL3B4mTXyOmEMTd/Qz0tQXiuuU7dOiQMtjYD3c+41ry+v1wG2P5iBgaVa3uB67CDjWrlJqDtcpbpcVL3MMeQKYP6G2s2lGfD+9+7TZs2MC4ceMi9blHma7isCOIu/4bP/nkk4zO9dhjj7F8+fKUNZzBuu/uCizo/l511VWJ77///jv//ve/fdMWirhjvaoHKaXOVUpdYH/+mu9M+fHxxx8nQj17Celhhx3GTTfd5BsT3inb27Zt8+1n9nLLd+nivQRGVHGH1IFxURupu+66K+ecc47v/t9//x3wfjf9BtQ59yETcXeji6Yzr999vN7l6W547Lrr9sVHnXvjdKM4+OWzpKSERx55JHEvouYTMrPc9fesVq1adO7cOda5skFUca+tlPrMtS26shQgYQvHeJGNCElLgAOAiUBtrFB/9wN6VXDhhRdWiOWe7spWhYr+G88///ysnNP9zEtLS2nTpg29e/f2vbaOV+s/yDoshOh0Nl8CTfOdiagcdNBBXHfddUCqOF566aXcfPPNXH311Zx55pmexzvPedu2bb5T5fzc8vpSsA5xxN1N1LRFRUWB74lTP3g1VqK65YMarXHFffHixdx77/Z1w/TjdcPJ3fDQxd35vfoKfUH5dOq3unXrRs6n+9io6M/t559/BqxVADdu3BgY5TRXRFWrn0VkT+xVoUTkRCDjBR/ySTrz2LMV/nAjcCbwf1hRQs7GClvbTkuTjQF1Ou6W7Zo1a2jYsCEnn3xy9IwXOPpvzJbl664Ely1bxooVK5g6NXkNFb/KxctCChL3ArLcGwFficjbhR6hzo1b8Nq3bx8qmLqo+Vnu7vM6z6hFixYpacP657NhERcVFQWexxEnPS/uAXNu3AN6s2m5V69ePamc6IKuf3fnTR8f5dxH97XjNK7D8ukQV9y97kc+p7PGiS0/HugoIiuwolcNzVmuKoB69erFPibb1tRDwAzgWawRS9OB4cBzZD4VLiztO++8w/r163nuuefSyHlhohfwbHVDHH300SxYsCARGcyva6YKivt1+c5AuqQzQM0p21u2bElZWGbChAkceOCBKZV30DMKs9yrV6/u2+8dx3IPSuuIk/5unnbaacycOTPWgLozzzwzEWe+Zs2aif7kuOJeUlISSdz1+3LkkUd6jpaP+iziCHTUPvcpU6Z4jrHxehb5FPeoo+WXKKUOwwpi0VEp1Rs4Pqc5yzFBK0P5kYu54nOwOjefwZpv+CxwJ1CmLQfrttyd0eCZiLvu6sqFa37Dhg0ZTy3RWb9+fWisa72AZyLu7vuhuxL98Hs3fvnll5RtQSOyC8Utr5Sa4vXJa6Yi4q5Qo9xL5/lt2LAhRZjr1auXEkUt7Lzu989L3P3IllveKX/673GMmjDLXRf3hx56iDvuuAOAgw8+OCVtGH7i7ueW1/M2eHByOJVCsNz79OnD/vvvD1gL/ThTEgvNco/lZ1ZKbVBKOSMTvFdC0BCR/iLyjYgsEpErPfb3tePVz7I/10Y9NlPSsdxzFQjmd+BPwPlYy8eeDxxxzTXsbe/Xxf3JJ5/k8MMPT2yPivsl1wv82rVr0867Fz///DN169alb9++WTnf2rVradGiBU2bNmXRokW+hS4Ty11vOLjFV793fvfc63pPPfVU0oIlDoVsuTvrRnh8Ks16Em63elxxd6dPZ/qVu6LPhbgXFxcH/jYvt7xj1DjvoHvlN7/R8o74igj33HMPX3zxRez13EtKSpLWvwiz3A888EDOOuuspHM59ybq/Ywj7ulMhdt1110T47ecPJ144okp+c0HmXQiBzbbRKQYuBsYAHQChohIJ4+kHymlutqf62MemzaFJO4Od2MNtvsGaLhqFZ9jLaq9ZfPmhLjXqlUrUaDLysrYunVrJHF2t0r1/6PEsY7De++9B+A50jwdvvvuO9auXcumTZto164dQ4Z4ryyqVzZxCtWbb75J/fr1E6Pa3a70KOtge1UuZ599tmfaQhZ3pdROSql6Hp+dlFLxC00eaNKkSdL/Ud4Fp2yXlZWlCKbf8V6Wq2PZhol7UPjXOH3uUcRdfzfdlrv7vfUbUOdsFxFGjhxJt27dYrvli4uL2XnnnRkxYkTiXA5e9/Jvf/tbSjlwrhnVcs+FW94P5xm3bNmSI444ImlbPshE3MPuWk9gke3S3wo8hTXFOwqZHBuJXIj7IYccwquvvppulgD4AujO9hH044CdTzuNGr/9Blji7rwwpaWltGvXLtIKdkHivkHrAsgGcQqFUip0DWu3Jf3000+HpotTqP7+978DcOuttwKpc1R/+umnxP3yc6l7VbJ+efCbllNaWsrq1auBguhzr7S4xT2K5a57sqJa7l7C8eabb7Jq1aoUsXK/C7/Z5dmLOG75YcOGhVqt+m9zRo074u7+bX4D6ryE3E/c3e+uU76c+tO5b35ueYegeAVR+9zD6qJhw4YlvmdrQF2UiHoVQaC4B7nogN1Czt0c0OeILLe3uTlARGaLyJsi4sR1iXosIjJCRKaLyPQ4q/gELR7hR7Vq1QJbq++99x5HH50alfeiiy6KdZ2NwAhgMPALlvvi/k8+4ShSLfeggCg6ZWVlrFq1KvGy6y9yttd6jyPuF198MU2bNk2J6KUTNX96ujgNFnchdov7k08+ySGHHAL4W93uc8yfP993jMCUKVM871G/fv049thjgfz3uVdmnGVUHeK45SG9AXkOtWrVSrl+1Dw4+NUxbgEUEfbcc0/fd915x/Tf5oigMxakVq1a/PGPf0y5thOxz8stH5ZPfVlagMsvvxylVOI+OvkKs9y9zu+ky5bl/vDDD/POO+8A0cTd8Tp44dVlULDiHuKiC3tbvdz27rv1BdBaKdUFaxzZSzGOdfI4XinVQynVQ49kFIaIJAUXiUo6g8T0wuPHqFGjuPDCC5O2vQh0Bt4Fdi4t5TXgD//4BzXsqGlxBtS9+eab7Lbbblx++eVANFdzukRt8b7//vv85z//AeDcc89NOceKFSuAaOK+efNmVq5cmfg/E3H3cpl++OGHgXlxvxcvvPBC4DW9Zj98/PHHie/Z6tLYEdEHi0I8tzxYQvzQQw8lDIBsVNBxzuE3UM1L3IPO7e5zr169eiLt7bffDli/1Xm3va7httyjiPvVV1/tud2drzBxD7Pc77777sT2TPrcnetEccu762iv8xQXF4c+m4ogOxO3vVkO6KsntABW6gmUUuuUUuvt728AJSLSKMqx2eDmm2/2nKOabapXr87EiRMD0xQVFTF0aOrswpVYq/XctuuubAIavf46B44YwdHEG1C3dOlSYHvIVLflvnnz5oSYZopeKJYvX+4riPfdd1/i+6pVq5JE9sorr6RFixbcf//9kcS9Y8eOvPjii4n/w5a09MsvpFruDkopFi5cGOkcYZ4h929yNzCqUnChisYdwyKu5V5UVMSZZ56ZtIa4F7vsskvkPOWykvdrDLjFvUaNGqHjCfzc3VHF/YUXXvCsx7zylalb/txzz02Mcdhnn308r5WJuDv5vPji7WPHg96lSuWWz5DPgXYisruIVMcKV5sUBENEmor9VEWkp52fX6Icmy3iWL9ujjnmmEjpSkpKktY79kJEfF+cWrVrc/Uvv9AV2Ny9OzV++YVXgcu//JL4oXgs3OLes2dPWrRo4RltKy56f2LLli0ZMGCAZzp3lEBnug3AbbfdBsCNN94YSdy/++67pP/jdDW4hdRvgOFll13mG+HMXYmERcRy509fwQ/gv//9b+DxBn8yFXdHaPSBYF64PQRBxHHLR7Xcw/AS9zAxd//vzDyI6paPImZOWQkT9yhueecZ6Q2tSZMm8cYbbyRdK4gwcQ/qsvHKW5UXd6VUKdasrreBr4FnlFLzRGSkiIy0k50IfCkis7HGjp2iLDyPzUU+41i/boYMGZIkSH5EmZYlIr6DQjZu3EhZWRkLgDUvv8y3F1zARmDAzz/zFXBCjDx7vchbtmxh7ty5AMyYMSPG2SxWrlzJmjVrEv+7XVfO6Hk37pX5LrnkkpQ0IpLWM8pE3J2Rrm70hWIc+vfvD1jdAI53BOJb7jfffHPS/0Exww3BuMU9yvgaL3G/9tprqVOnTlL8+HfffTcRJzxON2A2ZtrEFXd3n3vNmjVT8uEWH/c1nHsX1XKPI+6ZuuUhOfqdQ6NGjRLPLNviHmV2QrVq1aq8Wx6l1BtKqfZKqT2VUjfZ2+5VSt1rf79LKbWXUqqLUqqXUmpq0LG5wJmHnE6s+Vq1akWy/KOMfA6y3HXq1KvHj6eeShfgI6zg388BbwB7hB69/QXU871gwYLE97hheTdu3Ejz5s1juSgd3Md4XVtE0hrw53XMsmXLPEeq6+Ie1x3uVH6jR49m9913Z968aG3Q2bNnB747ZkBd+rhnj0SZGeMVOe3www9n/fr11K9fP7Hv0EMP5dFHH6Vdu3YcddRRkfOUjYiJ2bDc3Q2dMEveibMfVdyjTI+L2ucedH63uOt1bFFREU2aNOGwww7jiSeeCM2P00jr3r170navAYlRymWVt9wrC48//jinnnoqkydPjn1srVq1IolaFHEPm7PqUK9ePapVq8Yi4GDgL8BvWCPqvwT+BkSpRnRhcRY5gGgWb3l5eUKcdIv966+/jhwQp7y8PGW5TCfqkxuvPAVNJXIf8/333/Pll1/SunVr6tWrl+IJ0Fv3cbtp3AFT3n77bd886wwcODCpL8+QPdzlLUo0yjCh0encuTMLFixI8TwFoQvEk08+mXAbh+UlynY/3OJUo0aNlO4it4C6r+FMo4vqlo8j7un0ubvd8s5vdEe+Ky4u5p133qFfv36h+dlzzz359NNPE4N73fmM6pb3SmPEPY/svvvuPP744+y1l9fq6sHUqlWL0047jREjRgTOb8/ULe/g9Ns7L7gC7gU6YK0uVwu4AZiLJfZB6IKmDxLbunUr33zzDb/++qvvsTfccANdu3blyiuvTDpPp06dkpZ0DOKWW25JDDI84IADADynjvlZ7mEDIZ0ZABs2bKB169bss88+icJ6yy23ANbAuZkzZyZZ60GNE6/GlzsfYfPhdcLW4zakR+fOnRNTFyF+TIu4IhoFvQ445ZRTEu98LnGLe/Xq1WNb7m4xDRP3KANZM3HLu93dXm75dBb46tmzZ0qXhVcQoChu+R1htHyVp1atWpSUlHDfffd5zm93aNasWei5orjlHfF3W56rgWFYlvxXQHssN/0krKl0Ol5ueX2O+cKFC+nYsWNSmEg3ztKat99+e8o0Oq9Y6l7oa5o7bjHdC+DgJ+5hU92cY5ygMDrOlLlBgwbRvXv3xHgDSHXN6bgbX9dcc01KReLc10WLFgXmL4nycvYEjgNGY60zQNeukMFgzx2ZmjVrJo3ziLLcp062Vn8cMGAAd955JxAeaz4Kmbrlq1WrlvIOu/Pld42oVnqUKahRLfc4A+rcbvlsYNzyOxi668ZvacgpU6YkWbDuUbVt2rRhxIgRzJ49O7Etirg7+/fbbz/P/R8CXbGC/q8BDgdmAhMAd/PCz/3sVIphi7SAVWmmGwBH71937s+qVatSGi5R+ty9+smdY7wKl7Nv0qRJKfuCggK5K8arrroqpSJxuiwc74CbxsAhwIVYz4WePWGnnViEFdfgeuAkgNmzYfFi37wYohN1/IIzbzpblvsbb7zB+eef73nOfIi71zX9ws/6XTvMct9ox+AIItcD6rIl7s7908t9lFX4jLhXUpwIYuAv7n369ElaScz94u66667cd999iVG3EK3PXZ9zeuihh3qm2QbcAbQF/gOUYS0juwj4J9BIKd566y2+/fZbz+N/+OGHwDzoNGjQIHIAHHc6faxCy5YtadeuHb/99hvTpk1LShdF3PWGiB4+83//+5+nm339+vVMmRK+wJnbdap3QYwYMYI6deqkVCTLli2ja9eu1Ab2A65p2pR/A+8AP2B5Wd7DejbDAT7/HDZuZDnwJnAbsPymm+CLLyDAe1KoSAaLReWbioh54RAkQM477ESJS4f3338/xa3sdc2o4h7VLR9lQGq2gthA8qI0QflKh7hueYdCEXczJDcmuovGT9zBijN/5ZVX0qdPn5R9fu6msD53/cUKS/srcBHWYjS3Yk2XuxRrAN7dAwYw1ue4sDjvOvXr148s7uvXr08SdN1yr169Oh07dmThwoU8//zzSaIaRdz1eAMLFy6kbdu2bNq0id69e3vOgnj66ad949OH/QaHRDQqpegA7GN/Dn3+eS7BmrlQBOBqLK3DGhPhfMa+/z5T165l1PXXM3PmTK644gpahET4KlRk+4JPh2MFovpcRF5RSn3lSvqRUsq/HytLzJ07N2l6Yhhe7uJcEaXS91pRMCr9+vVLCJ9Tb0Sx3MPc8n7ifthhh3HggQeGxvMAq9H87LPPJnk3Mx0tnwvL3WuwXtSpcA5G3CsR+iIMQeJeVFTk65r1epHjuOXd39107do1MRJ9EVYwgW7AdcCxwOXAecBELAtSj7nmFvfVq1czf/58wBI3Pe8NGzaMLO4bNmxIEne9wJSUlCQaK2PHjk2KzR00z10phYgkhWp1jxXQZwJkSjMsAT9wp5246IcfoHt3rp47lyTT017fYBswD9iwxx68vGRJQszdTv+mH3/MtdduP4N7/epKRmLBJwARcRZ8cot7hbD33nuz9957hye08bIoc0UUAQqbgx6G263sdU33IDI9zciRI93Jfa3tOnXqJBaICWPUqFEcddRRtG/f3vNcDl7C6F7PXe9zFxGUUjm13KO65f1i4FckRtxjElXcg0hX3HVrPSjtyJEjufjii5P6v2Zi1bL7Yon80cC59uc1LFf++6SOdu3QoYPvtLO2bdvGstx19JfePdDn0UcfTUrrZ7lv2bIl6Xk45y0uLs4o8mBdYG9g0I8/cmb16rTfupV9gMTEp99/BzvUbTXgO5Kt8blYy/ZuA4b98Y9MXLLE91p6CF7I/bLCOcZrwSev+Y0H2IGrVgKX5ipAVVwKRdz9hCHdqXBuQVy9enVinIsjXEcccQT9+vVLusY999yT+O51b9IVLhFJEnb3eYPO7yfuTtz80tLSnPa5p9MoyxdG3GOiV77pVsTpirt+XFDa4uJi376vGcAxwF5Yg7pOxxL6o4HFwMNY0+q+x5pLHjSfvKysLPKAOvcoWn00c0lJiWcQEbAC7OgDD3U2b96cIu7O+aKIezWsmQX7uD4J298lymuwhHuPQYNo0b8/7LMP/540iUuuv973GmH3xx1Bq5KLe5zFotaLyECsxaLauQ8SkRFYiyPSqlWrLGfTmz59+tC4cePQhU+yQRShztRy32OPPVi1alXCCHGESY+s55Q7Jz6D31iUMHHPtEHkdbxXdLl8iHvcAERG3CspxcXFPProoxQVFaX9Qvv1uYe9lLpgB4l7lEEf87BqzquBPwMjgT2x5snfAHwAPNitGy1JNsV0SktL07LcJ0+enCT25eXlSa1j99K9Tz75pOc5/RZ4KSkpSdpXDWuAYSesRo3ztwPeAX+2YMU8/qFRI/pfdhmDx4zhs82bcZbV+fCSS2hhr/S3TVvJzYuw0LnuiHmVXNwjLRalfX9DRP4rIo2UUj+70o0HxgP06NGjQlbRadiwoefUyVzx7rvvcthhh/mKQaaW+0svvcRHH33kuRSpQ9QBdRUl7o0aNUp0pXk1jN3irnsnnN+X7T73KEHIwNstn88FoIy4p8Fpp52W0fF+lnsYeks26IULstzd/AzcBNwCHAqcCRwP9AP6LV3KxVgu/deBKcBUrPXmwWo1x+lzd/j888+T9pWWliZVMlErWLe47wLw6acMKS+nGZaId8Kyzv3a3ktIdakvBEqBA9q1o//ll/PODTegdyrEcdO5xb1OnTpJ98LdXVHJxT2x4BOwAmvBp1P1BCLSFPhRKaUkebGoHY5DDz2UhQsXpkTQy1Z/baNGjTj++ON5/fXXgWjiHmZ15lrcRYROnTrx1VdfeTaM3YaLvrhPtsXda4BcFIzlvgPjVRDatUvxTKagi3uYWz4u5VjTtd4B6mO56Y8D+mMNxuuGFdp2GzAd+AwoWbiQOl9/TU3A24beji5i7rEKpaWlkVrH9bFMweb237r/+Af89hufYVnmOwP06sV9Hsd+izWqa572dz6w3iOtG/fz0u99HHHv1asXbdq04amnnvJNHzfgSiGhlCoVEWfBp2LgQWexKHv/vVjjO/8iIqXAJuzFovKW6TzjNSLeL7qZs71Pnz5Ja7CHETQLIOr8+2z2uYdx5513MnLkSM9745Q9R9S9xD1b4mrc8obY6IXiiy++YMqUKZx88smhx8URd72+7NevHx988EHk/K0FHrc/NbCCrhwK9AG6AwfYH2bMgBkzWI9lpi3FGly2DMsU+xWrn/o34ON//pMjGjRgc2kpi154gS5ATfvTct48Gv7yC8OwrO+Grk9z+5Mie3YsASekz+/ATl278to33/Dlpk18hSXkX7Pd25AO2RJ38Pe47LLLLowdOzZ2qNRCQyn1BlaARH3bvdr3u4C7KjpfhcDrr78eqeJ3Bru5A8I47+HkyZNjuXudeiNuXHSvc+RK3PXfc8ghhyQtZqXjlD2nXO2xxx789NNPScvZ+nkRTj311EgLyThkwy2fT4y45wH9wXfr1o1u3bqlpOnQoQMjR47koosuSmyLKu7ufZdffnkscdfZghVc5U37/52AA7Ei4Q3cbTf2UYp6q1bRCggc9jRjBtjLo/7Hve/hhwE4KyQv67E6dZdjNSa+w5rq53x+AtTMmVy4554sCRihHpdsirvfc/v0008zmtdsKHwGDhwYKZ0zgHDZsuTRLrrrOo54eK2f7kdYmly55aPOVHCL+6uvvsr//vc/GjRo4Lt0q8PEiRNjiXtct7xXhLp8YsQ9D0QpCB06dGDUqFFJ4q63buP0uXuNKE+X37F8rm8Dc7p0oW3bttx75520BFoDbbBc5jtjWeE7Aw2AEqyXzfmUY/lkNwPN99yT0uJiPl+wIGHx/8J2638llqCHB8S1iNrSThe9sIc9y/3335/58+fz/fffc9BBB3kuOQu5z7Oh8uCsjuheujYKV1xxRco0M0fsMpnGFeaWP/zww2PnNez8XrjX12jcuDHHHXcc4L8uu0PcvvN0gxrp6avsgDoR6Q+Mxep/m6CUutW1fyhwhf3veuAvSqnZ9r6lWFpSBpQqpXrkMq8VSRRx9xpMkm6fe64GaZWVlSUWxlhif9Lh6j/9ierVqycWpMmUbDVmvOJpQ3Rxv+uuuxg+fDgjRozg5Zdf5qyzzuLyyy/3TGvE3eAwaNAg3n33Xfr27cuFF16Y2B6l3rj11ltTtun90mGkI+5169ZlxIgRoeeOQlTL3Wsk/bnnnsvo0aPTahR5EcfjAclCXghu+ZyFz9FCUQ7AGrQ8REQ6uZJ9CxyslOqMNQNrvGt/P6VU16ok7BDtZfFqfUadCue23HMVMztsmldU9tlnn9BR91EGmk2fPh1IT9yvuuoqnn322aRtfq1u/d57zcUFqF27Nueddx41a9akRYsWnHfeedSuXTtJxAcNGpT4HnfQjqFqc+ihh2bNvRtHpMLEXUefN58tt3wYbre8zjXXXENZWVnKsraZ5inubysEYYfcLhyTCEWplNoKOKEoEyilpiqlnHU+P8Hy6FZ5cm25uwtxy5Ytefnll2PkMBqlpaWhBSnIIj3ppJN4+OGHOfnkkwPFfezYscybFx7ErGvXrkB64n7sscdy4okn0qmTu/2ZShRx14VbR78f+r0zlrshjHRFw8tyf+mllxg7NnWFiXyNlncat+4uBTdB4h4lVkgc4op7VOOrosiluHuFomwekH4428dtgRXZapKIzLCjVXkiIiNEZLqITHcHPylUorwsXm6nqPPcnRjLOvpqdlFp06aN53ZnYZco89xr167tu2+vvfZi2LBhFBUVpYS91Rk+fDitWrVKWmzGC6diSkfcg1bOcsd71wuuX/+eviqgjv7cdG+EsdwNucJrtPygQYP461//mpI2HXHPRr9yo0aNePXVV3nRDuvsh7vPPZek2+cuIvz3v//l/PPPZ8CAAbnIWiRyKe5RQlFaCUX6YYn7Fdrmg5RS3bHc+ueJSOryaliRrJRSPZRSPfSwioVMlJclE8s9U7eQM6DHHWDFfe2NGzeybdu2wLwEibs+FiBI3J10M2fO9E3TsWPHxPd0Yv474qpXbs59HDduHOPHb+8xCrPc999/f98pbbq468FLjOVuCCOoXP/www+sXLnSc182RstXxDz3o48+OmlxKS+CLPds4zX9LypNmzblzjvvzGu5zqW4h4aiBBCRzsAEYJBSKhGpSim10v67GngRy81fJQh6Wbp37w5Af3vamLMiG8BBBx2U+J5LcW/Z0npsfiuqOdd24s7XrVuXfv36eaYNctvrFrYu7u7WuyO4zZv7O370mNiZDKjzGulap04dzj777MR2/f56We5BAxj1wq43Qgpl+oyhcAkq102aNKFZs2ae+/5oh0oeNmxY6DXyZblHpSLFPV23/I7Q554IRSki1bFCUb6iJxCRVsALwOlKqQXa9joispPzHTgC+DKHea1Qgh7+pEmTeOaZZ7jiCsuJ0aFDB1asWMHzzz/P0KFDE+l0cXcX6kxb1O6FOtzucOfa3377LWCJ+wsvvMBZZ6XOVNfXZnfjZ7k7U1sc/CJ2OcybNy8R+AOSxT1qd4RTWfjdO/2Z6ef3styjiruerlAqBENhoY/8HjNmTFrn2GOPPVBKccghh4SmLXRx/+tf/8rpp5/OJZdckvNrBS2V68UOI+5KqVLACUX5NfCME4rSCUcJXIsVhOy/IjJLRKbb25sAH9vLQn4GvK6UeitXea1ogh5+w4YNOemkk5L6YHfbbTcGDx6cskyqg9v149XnHge3uBcXF/PNN994XtuhQYMGnHrq9jDi48eP580336Rv376+16lfv37i+2GHHQZsD8N7ww03pKT3um9169ZNGQSni++///3vhDfEzfPPP5/47qwhHxSYY9asWUydOjXJG+FluQf1n+vPyvSzG8KYM2cOkyZNQinFBRdckPPrxYktnw8Rq1evHo888kjWprsF8cYbb3D11VcnPJmVjZwO6YsQivJs4GyP45YAXXKZt3ySjb4qXcDcYptpoWvSpEnS/z///HPSKFZ3Y8IZVKfno127dvTt2zdlbXYdfbDJmWeeSZMmTejVqxdApFHr4D0uQL83devWZdCgQXzxxRcA9O7dm4/tldwGDx7M/Pnz+fnnnz3F3d1A6tIl9ZX0styD7r9+j4y4G8Jo2bJlhYpLIcSWLxTat2/PTTfdFDl9oS2RkP/x+jsg2WjxdujQIfHda4GJKC9arVq1GDp0KBMmTEjaHjan3H09R7C8hMtvQMm8efOS3P3FxcUcffTRif8z6VNzN3z0Ef1ul3mHDh2S7mXcCstvKpwfxnKvmjz00ENUlgG9QcQR97CIcDsqheKWN+KeB7Lx8HVXs9e6z3/+85+55557kgaCuRk0aJCnmIXNXXd7ChzB8hJ3v4F/YZZ5JhWGLu4lJSVJ4h4mqHHFPZN8VnXLZ0fizDPPzHcWskLYaHmdipyWli2mTZu2wwxeNbVLHshGpV6/fn3mzp3LN9984ynud9xxB++++y533eW/AFdJSYnnPMw6der4jn4Hf3HXC41jIac7FSSTCkMfhV5SUpI0WC9M3L2mwgUR13IvNNedwaDjJ3xOzIu99torsc0pS5XJcu/Vqxf77bdfeMI0aN26NZA8liifGHGvQHr0sKLoHn/88Vk5395770379u09xb1GjRoceuihgSO3q1WrxqBBg/joo4/4/PPPE9vr1KnjGdHOGWjnbhD85S9/SZzPIcgtHyV6k3Ov0mkI6XPM3W75OJZ7FCGOW7EVWvxpg0HHT9z79+/P1KlTkwb1VUbLPZeMHTuWZ599NhEnJN8Yt3wF8sEHHzB37tzEoLFs4SXuUTj++OMREXr37s13332X2F6nTp2kACsOs2fPZsGCBYkWKljudWdxiyjiPmXKlMSI+CD+8Ic/8MUXX6QVF1/Pe1ifu5uhQ4cyefLkyNeKa7nrGHE3FBpBLmv3tNYdSdyfeeYZ38BUDrVr1+bEE0+soByFYyz3CqRu3boccMABWa/U3QUyzNpt3bo1n3/+edIANt2i9etzb9CgAT179kwSyEMOOSRx/Sh97vvtt59vsA033bp18x2kNHKkNZvSq+9ej4onIglPSc+ePUMt9+HDhycdG0Ymlnvv3r2B9Jb2NBhyQZz+aEfcK5NbPl1OOukkjjzyyHxnIxZG3KsA7uUW/SxjJwjOJZdcQo8ePZLEy29BE0gVOV0g9e9RLPdsLT971llnMWvWLD755JOUfe7ws0cddRRffPEF77//Pn/6058AS+i9iNvwyqTPvVOnTnz55ZcsWZLuYrkGQ3aJ0w22I1nulREj7lWAkSNHMnPmTFatWsWiRYt8rd2HHnqImTNncv7556fs01vsjjheffXVAIwePToprS7QunhHEfdsjRAXEbp06eLZfeAWdxGhW7du1KlThyOOOII5c+bwwQcfZCUfmQ6o22uvvUIXxDEYKgoj7lUHI+5VABGha9euNG3alD333NM3XUlJCV27dvWN9KafD6wocbNnz04Je6k3BPTvYW752267LepPCqVt27a++4IWqwFr/fiwNFE54YQTACKPozCj5Q1VBUfczTtdmJgBdQbAKqgrV65MsrSLioro3Llz4HF6wdaF3styD1r4JSpr1qxh/fr1gdauE02vItZU7tu3LwsWLKBVq1aRFqwxFaGhqmBWMixsjOVuSNCsWTMaNWoU6xjdLe0VvUqvALIRPKJBgwahI+jr16/PypUr+eWXXwLT+eGsnuXVfeFFu3btIo8lcAblRA2vazAUKkbcCxsj7oaM0C3RsBXSKjIyVLNmzUKnrvjx4IMP8u233zJkyJBYxzkL5zgj+b3o2LEjy5cvT8S6NxgqK0bcCxsj7oaM0MXdsfr1QTl6X35lCftYVFSUiMgVh0cffZTvv/+eo446KjBd8+bNszZrwGDIF0bcCxvT527ICF3ca9SowZo1a5IKvS7uFdEHnk+Kiooq7fKQBkNcjLgXNlW7tjXkHPcAMXdAFve0NIPBUDUwqxoWNsYtb8iIsNHf+iC7TZs25To7BoOhgqgs3Ww7KjkVdxHpLyLfiMgiEbnSY7+IyDh7/xwR6R71WENhEGdq1+bNm3OYE0MhkEmZNxgM2SNn4i4ixcDdwACgEzBERNzzfwYA7ezPCOCeGMcaCoA4EdqM5V61yaTMGwyG7JJLy70nsEgptUQptRV4ChjkSjMIeERZfAI0EJFmEY81FABxLPeNGzfmMCeGAiCTMm8wGLJILsW9ObBM+3+5vS1KmijHAiAiI0RkuohM/+mnnzLOtCEazrrO5557bmja008/HSCxaIuhypJJmU/ClOv8MXz4cO6+++5Iaf/0pz8xceLEHOfIkA65FHev5bXcZp5fmijHWhuVGq+U6qGU6uG3YIoh+4wbN47NmzfToUOH0LQTJ05k8+bN7LbbbhWQM0MeyaTMJ28w5TpvTJgwIVKjHeCpp57ijDPOyHGODOmQy6lwywF90m8LYGXENNUjHGvIM1EDsYiICdqyY5BJmTcYDFkkl5b750A7EdldRKoDpwCvuNK8Apxhj6DtBaxVSq2KeKzBYCgsMinzBoMhi+TMcldKlYrI+cDbQDHwoFJqnoiMtPffC7wBDAQWARuBs4KOzVVeDQZD5mRS5g0GQ3aRqrQEZY8ePdT06dPznQ2DoUIQkRlKqR75zkeuMeXasCORrXJtItQZDAaDwVDFqFKWu4j8BHyX73zYNAJ+zncmXBRinsDkKy5Ovlorpar8UHJTriNh8hWdQswTZLlcVylxLyREZHqhuUwLMU9g8hWXQs3XjkCh3nuTr+gUYp4g+/kybnmDwWAwGKoYRtwNBoPBYKhiGHHPHePznQEPCjFPYPIVl0LN145Aod57k6/oFGKeIMv5Mn3uBoPBYDBUMYzlbjAYDAZDFcOIu8FgMBgMVQwj7hERkQdFZLWIfOnafoGIfCMi80TkNm37VSKyyN53pLZ9XxGZa+8bJyJeq2RllC8ReVpEZtmfpSIyqyLz5ZOnriLyiZ2n6SLSsyLzFJCvLiIyzb7OqyJSLw/5aikiH4jI1/Z7dKG9fRcReUdEFtp/d67ovO0IFGLZLsRyHZAvU7a985Tfcq2UMp8IH6AP0B34UtvWD3gXqGH/v6v9txMwG6gB7A4sBortfZ8BB2AtffkmMCDb+XLt/xdwbUXmy+deTXLOiRVbfHIh3CusxU4Otr//H3BDHvLVDOhuf98JWGBf/zbgSnv7lcA/KjpvO8KnEMt2IZbrgHtlyrZ3nvJaro3lHhGl1IfAr67NfwFuVUptsdOstrcPAp5SSm1RSn2LtUhGTxFpBtRTSk1T1hN7BDguB/kCwG7dnQw8WZH58smTApyWc322L/OZ73vVAfjQ/v4OcEIe8rVKKfWF/f134GuguZ2HiXayidp1KixvOwKFWLYLsVwH5MuUbe885bVcG3HPjPbAH0XkUxGZIiL72dubA8u0dMvtbc3t7+7tueKPwI9KqYUFkK9RwD9FZBlwO3BVAeQJ4EvgWPv7SWxfazwv+RKRNkA34FOgibKXQ7X/7prPvO1gFHLZLqRyDaZsh5KPcm3EPTOqATsDvYDLgGfsVrVXf4gK2J4rhrC9dU/A9SsiX38BLlJKtQQuAh4ogDyB5a47T0RmYLnOtuYrXyJSF3geGKWUWheUtKLztgNSyGW7kMo1mLIdSL7KtRH3zFgOvKAsPgPKsYL/L2d7KxGgBZararn93b0964hINWAw8LQrv/nK1zDgBfv7s4Az6Cav90opNV8pdYRSal+sCnNxPvIlIiVYFcDjSinnPv1ou+Sw/zqu4by/XzsABVm2C7BcgynbvuSzXBtxz4yXgEMARKQ9UB1rVZ9XgFNEpIaI7A60Az6zXTC/i0gv2wo4A3g5R3k7DJivlNLdOfnM10rgYPv7IYDjUszrvRKRXe2/RcDfgHsrOl/2eR4AvlZK/Vvb9QpWxYn992Vte77fr6rOSxRm2S60cg2mbPtdP7/lOmzEnfkkRj4+CawCtmG1pIZjFfjHsPp2vgAO0dJfg9VS/AZtZCPQw06/GLgLO0pgNvNlb38YGOmRPuf58rlXvYEZWKNBPwX2LYR7BVyINYp1AXCrfo0KzFdvLDfbHGCW/RkINATew6os3wN2qei87QifQizbhViuA+6VKdveecpruTbhZw0Gg8FgqGIYt7zBYDAYDFUMI+4Gg8FgMFQxjLgbDAaDwVDFMOJuMBgMBkMVw4i7wWAwGAxVDCPuBk/E4mMRGaBtO1lE3spnvgwGQ2aYsr1jYKbCGXwRkb2xIk51A4qx5mn2V0otDjrO51zFSqmy7ObQYDCkgynbVR8j7oZAxFrHegNQx/7bGtgHK/b2dUqpl+1FER610wCcr5SaKiJ9gTFYwSW6KqU6VWzuDQaDH6ZsV22MuBsCEZE6WBG6tgKvAfOUUo+JSAOsNYa7YUVhKldKbRaRdsCTSqkedgXwOrC3spYwNBgMBYIp21WbavnOgKGwUUptEJGngfVYa0gfIyKX2rtrAq2wYkvfJSJdgTKs5TIdPjOF32AoPEzZrtoYcTdEodz+CHCCUuobfaeIXAf8CHTBGqS5Wdu9oYLyaDAY4mPKdhXFjJY3xOFt4AJ7ZSJEpJu9vT6wSilVDpyONUDHYDBUHkzZrmIYcTfE4QagBJgjIl/a/wP8FxgmIp9gue1Mi95gqFyYsl3FMAPqDAaDwWCoYhjL3WAwGAyGKoYRd4PBYDAYqhhG3A0Gg8FgqGIYcTcYDAaDoYphxN1gMBgMhiqGEXeDwWAwGKoYRtwNBoPBYKhi/D+qj6E+F9XBygAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2kAAAHhCAYAAAD09PY6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd5wU5f3HP7O71w84RA4EEcVYYgMLtkSJGEtsGIzxFxV7iy1qYsFesCt2ExWNJXaigB1FAxYQbKBUpdej3XF173Z35vfH7DPzzDPPM2Vv927v7vvOy3A75Zln5nnmmef7fJtmGIYBgiAIgiAIgiAIIi+ItHcFCIIgCIIgCIIgCBsS0giCIAiCIAiCIPIIEtIIgiAIgiAIgiDyCBLSCIIgCIIgCIIg8ggS0giCIAiCIAiCIPIIEtIIgiAIgiAIgiDyiFhbXWjt2rW45pprsHHjRkQiEfz5z3/GmWee6TjGMAzceeedmDp1KoqLi3HPPfdg9913BwBMmzYNd955J3Rdx8knn4wLLrjAdY0NG+pyUvfy8iLU1zfnpGwiO1Ab5TfUPvkPtVH+Q22U31D75D/URvlPW7VR797dcn6N1tJmQlo0GsV1112H3XffHfX19TjppJPwm9/8Br/61a+sY6ZNm4Zly5Zh8uTJmD17Nm699Va8+eabSKVSuP322/Hvf/8bffr0wZ/+9CcMHz7ccW4uicWibXIdInOojfIbap/8h9oo/6E2ym+offIfaqP8h9rIps3MHSsrKy2tWHl5OQYNGoSqqirHMVOmTMGJJ54ITdMwZMgQ1NbWYv369ZgzZw4GDhyIAQMGoLCwEMceeyymTJnSVlUnCIIgCIIgCIJoM9rFJ23VqlWYP38+Bg8e7NheVVWFvn37Wr/79u2Lqqoq1/Y+ffq4BDyCIAiCIAiCIIjOQJuZOzIaGhpw+eWX4/rrr0d5ebljn2EYruM1TVNuFykvL8qJmjQajaCiojTr5RLZg9oov6H2yX+ojfIfaqP8hton/6E2yn+ojWzaVEhLJBK4/PLLcfzxx+PII4907e/bty/WrVtn/V63bh0qKyuRSCQc26uqqlBZWek6P1eOhhUVpaipacxJ2UR2oDbKb6h98h9qo/yH2ii/ofbJf6iN8p+2aqOOEDikzcwdDcPADTfcgEGDBuHss8+WHjN8+HBMmDABhmHghx9+QLdu3VBZWYk999wTy5Ytw8qVK9HS0oL33nsPw4cPb6uqEwRBEARBEARBtBltpkn79ttvMXHiROy8884YMWIEAOCqq67CmjVrAAB/+ctfMGzYMEydOhVHHHEESkpKcNddd5mVjMVw880347zzzkMqlcJJJ52EnXbaqa2qThAEQRAEQRAE0WZohszhq4OSqzxppB7Pf6iN8htqn/yH2ij/oTbKb6h98h9qo/yHzB1t2iW6I0EQBEEQBEEQBCGHhDSCIAiCIAiCIIg8goQ0giAIgiAIgiCIPIKENIIgCIIgCIIgiDyChDSCIAiCIAiCIIg8goQ0giAIgiAIgiCIPIKENIIgCIIgCIIgiDyizZJZEwRBEARBEARB5CPNzc047bTT0NLSglQqhaOOOgqXX345ampqcOWVV2L16tXo378/Hn74YfTo0SPn9SFNGkEQBEEQBEEQXZrCwkK88MILmDRpEiZMmIDPP/8cP/zwA55++mkcdNBBmDx5Mg466CA8/fTTbVIfEtIIgiAIgiAIgujSaJqGsrIyAEAymUQymYSmaZgyZQpOPPFEAMCJJ56ITz75pE3qQ0JaJ2DixLewZMkv7V0NgiAIgiAIguiwpFIpjBgxAgcffDAOPvhgDB48GJs2bUJlZSUAoLKyEps3b26TunQqn7Ty8iLEYtGslxuNRlBRUZr1crPFkCG7A0jldR1zTb63UVeH2if/oTbKf6iN8htqH5N40sDMNc3Q9fauiZtIbTN0nfQTucAwgIqSCPbuW9iqctr7PYpGo5g4cSJqa2txySWXYNGiRe1Wl04lpNXXN+ek3IqKUtTUNOak7GwwdOhQAMD69bXtXJP2I9/bqKtD7ZP/UBvlP9RG+Q21j0lts4El6xPoWaS1d1VclJYVobEhN3PFrk7KANbVGNihONmqctrqPerdu5vn/u7du+OAAw7A559/jl69emH9+vWorKzE+vXrsdVWW+W8fkAnE9IIgiAIgiCI9kOHgcKIhqJY/glpxTENqTysV2fAMAzEUx372W7evBmxWAzdu3dHPB7HV199hfPPPx/Dhw/HhAkTcMEFF2DChAk4/PDD26Q+JKQRBEEQBEEQWUE3AMAA0LEn7EQ4NE2DAQO6YSCidcy2X79+Pa677jqkUikYhoGjjz4ahx12GIYMGYIrrrgC48ePxzbbbINHHnmkTepDQlonwjAMaB30xSAIgiAIouOTMkwRjeh6aDCgG0Ckg05Fd911V0yYMMG1vWfPnnjhhRfavD7kPdmJqK3d0t5VIAiCIAiiC6OThNZlMUDtn01ISOtE6PkYSokgCIIgiC4DTdK7NtT+2YOEtE6EYdCbQRAEQRBE+6GTuWOXJkWNnzVISOtEkIxGEARBEER7ktQNChnShSFNWvYgIY0gCIIgCILICkm94waOIFoPCWnZg4S0TgSZOxIEQRAE0Z4kdYo03XXRkKK5aNYgIY0gCIIgCILICkmdJpddF4M0aVmE3qNOBGnSCIIgCIJoT5IGQIq0LopB5o7ZhJJZEwRBEARBdCFaUgaWbEnlZEK9oVFHhKS0LokBYE29jspS0gFlAxLSOhGkSSMIgiAIwo/GJDB3k45uBbkQpjSUF+SgWCLv6VagYU2DjiHtXZFOAglpnQgS0giCIAiC8EM3DBTHNHQvIo0XkT0KooCWpD6VLUgfSRAEQRAE0YUwzRxpYZfILiSeZRcS0joVNOASBEEQBOGNbgBkfEMQ+Q0JaQRBEARBEF0IisBH5ArqWtmDhLROBPmkEQRBEAThh26QaRqRG2gqmj1ISOtEkJBGEARBEIQfKVKlETmD+la2ICGNIAiCIAiiC0EJp4lcoFGnyiokpHUiSJNGEARBEIQfSYMmgASR79A72sEhwYwgCIIgiDAkUwZpPYicQXPT7EBCWieCXgqCIAiCIPxI6kCEZDQiJ1DHyhYkpHVwSDAjCIIgCCIMSYruSOQQmplmh1h7V4DIHiSwEQRBEF0RwzBQ1WjkLP9XYRTYusRe125JGdjY5LxYfSSJ2nrdsS0aAfqUtu16eF2LgboW7wexpdkgTRpB5DkkpHVweMGMhDSCIAiiK9KcAmasTSKWA3koZQBFUeDo7QutbdXNBj5fnUBZgS3plNa1oLEp6TjXMIBjdihAtA0loiVbUlhUraPEY4anAagoIimNIPIZEtIIgiAIgujQpAygIAr0Ks6+lKYbBmqbhevpQHmBhl6cdq2sLIoGwYtkU5OOlAFEs14rNUkd2KpYcwiQBEF0PMgnrYNDmjSCIAiiq5PL3MwagJRhOL6xuhHc76at80andPI3I9oPA+STli1ISOvgkGBGEARBdHVSuRTSNA0GNPDeZknDCCwItbWQljTI34wgOgMkpHUiSGAjCIIguiK6YSCX+iMNzqAkqRAh7NtDk0ZCGtGu0HQ0K5CQ1sEhc0eCIAiiq2MKQrn9BvLCVlI3EAmYDLrtNWkA5akm2guNJLSsQUIaQRAEQRAdGr0NHGGcQlowQUiDBr2NJ60pnSZ3RPtCYlp2oPe4g0OaNIIgCKKrk2ttlSZcI2kEnUAZSOn+R2WToAIkQRD5DQlpBEEQBEF0aMJEW2zNNRhBBSED7eCTFiKoCUFkHep8WaPN8qSNHj0a//vf/9CrVy+8++67rv3jxo3DO++8AwBIpVJYvHgxpk+fjoqKCgwfPhxlZWWIRCKIRqN466232qraeQ9p0giCIIiuTirHkpABzRFBMpmngUNShgEDGjRSpRHtCM1Gs0ObCWkjR47E6aefjmuvvVa6/7zzzsN5550HAPj000/x/PPPo6Kiwtr/wgsvYKuttmqLqhIEQRAE0YFIGjmOaKg5I0iGCcGfy/QAIrrBAjeQkEa0D6QvyB5tZu44dOhQ9OjRI9Cx7733Ho477rgc16hz4NSe0ZtBEARBdD2C+4hlSmYh+Nva3LGtTSsJQoSWB7JHm2nSgtLU1ITPP/8cN910k2P7ueeeC03TcMopp+CUU05pp9rlN2TuSBAEQXQFdMNAbYv9u7bZyLmJX02zgVjE/M42JQ2UFvhfTwNQ06yjvLBtpq7xpEGCGtHu0HQ0O+SdkPbZZ59hn332cZg6vvrqq+jTpw82bdqEs88+G4MGDcLQoUNd55aXFyEWi2a9TtFoBBUVpVkvNxsUFtp/d+tWkrf1zDX53EYEtU9HgNoo/6E2stnUmMKM1XEUxUzhJ2XEsFX3CIpjuRGGUjEdK+IGVsbN35HCQnQvizhypUUjGsrKipwnFuqoajGwoTon1XJhQEO38kKUlWR/LtQZkLYRkVWaNB0VFcUojGb2LtI4Z5N3Qtp7772HY4891rGtT58+AIBevXrhiCOOwJw5c6RCWn19c07qVFFRipqaxpyU3VoaG+161dY25W09c00+txFB7dMRoDbKf6iNbDY36Ui1JFEStY0cU81AQ26mAYgCcEwbNaBJaIqysiI0SCpQBrStN4IBNDQk2/CCHQdVGxHZo7FJR02NnrGQ1lbjXO/e3XJ+jdaSVyH46+rqMGvWLBx++OHWtsbGRtTX11t/f/nll9hpp53aq4p5B5k4EgRBEF0NMukjiDyFnNKyRptp0q666irMnDkT1dXVOPTQQ3HZZZchmTRXev7yl78AAD7++GP85je/QWmpvV61adMmXHLJJQDM0PzHHXccDj300LaqdoeCBDaCIAiiK0BCGkEQnZ02E9LGjh3re8zIkSMxcuRIx7YBAwZg0qRJuapWh4cEM4IgCKKr0RbJqwmCyAx6N7NDXpk7Eq2DBDaCIAiiK5DUg+cpIwii7aCpaPYgIa3DY78NJKQRBEEQXYFkwDxlBEG0LfRaZg8S0giCIAiC6FAk9dznRSMIIjwGSJuWLUhI6+Dw2jPSpBEEQRBdgaROExiCyEdo6SR70BhHEARBEESHImmQuSNBEJ0bEtI6OKRJIwiCILoaSR0ga0eCyEPovcwaJKR1IkhIIwiCILoCKQocQhBEJ6fN8qQRuYEEM4IgCKKrkNQN6AbQnKIQ/ASRr9DMNDuQkNaJIIGNIAiC6MxMW5VEQ9JAIgVUlpKYRhB5B01FswYJaR0cEswIgiCIrkJzCti6WKPw+wSRx9DUNDuQT1oHhwKHEARBEF0BwzBNHUlAIwiiK0BCGkEQBEEQeY9uAGRLRRBEV4GEtA4OadIIgiCIrkCKPnEE0SGgVzU7kJDWqaDXgiAIguic6PSJI4j8h6yRswYJaR0cUp4RBEEQXQES0giC6EqQkNaJIHNHgiAIorNCQhpBEF0JEtI6OCSY5TdLly7Bhg0b2rsaBEEQHR4S0ggi/9HoPc0alCetE0ECW/5xwAFDEI1GsXZtdXtXhSAIokOjw4BGDi8Ekfd01Ono2rVrcc0112Djxo2IRCL485//jDPPPBOPPfYY3njjDWy11VYAgKuuugrDhg3LeX1ISOvgUHTH/CeVSrV3FQiCIDo8dgh+EtQIIl/pyDPRaDSK6667Drvvvjvq6+tx0kkn4Te/+Q0A4KyzzsK5557bpvUhIY0gCIIgiLwnpXfsCSBBEPlNZWUlKisrAQDl5eUYNGgQqqqq2q0+5JPWwSFNGkEQBNEVIJ80gugYdIZXddWqVZg/fz4GDx4MAHj55Zdx/PHHY/To0diyZUub1EEzOtHMvqmpBbFYNOvlRqMRpFJ61svNBslkAnPn/gQA2GmnXVBaWtrONWof8rWNZs/+HgAwePDeAIAtW7age/fu0LSuZa6Tr+1D2FAb5T/51kbxpIH/LWtGqo2mEUkd0A0DW5dm/zufDaIRDSmSJPMaaqPcs7FRx+E7FKF7UWZ6oLYa5woK1ONIQ0MDRo0ahYsuughHHnkkNm7ciJ49e0LTNDzyyCNYv3497r777pzXsVOZO9bXN+ek3IqKUtTUNOak7NZSVVWFoUOHAgA+/PBT7LPPfu1co/YhX9uItc369bX4+OMPcdppf8Y//nEdrrnm+nauWduSr+1D2FAb5T/51kZ1LQY21CawVVHbLDrFAEQ0oKEh2SbXC0tZWREaGnIzDyGyA7VR7mmM69iyRYdemNm40FbjXO/e3aTbE4kELr/8chx//PE48sgjAQBbb721tf/kk0/GRRddlPP6AWTu2GWZNetr7LBDP2zatKm9q9Jl2LhxIwBg1aqV7VwTgiCI1pMyTKEpGtHa7L+uZoVAEB2NjvyGGoaBG264AYMGDcLZZ59tbV+/fr319yeffIKddtqpTerTqTRpXZPMfNJWrFiOhoZ6bNq0Eb169cpFxQiCIIhOjG5QpEUiNzQ1NSKVSqG8XK7tIPKYDmxN+u2332LixInYeeedMWLECABmuP13330XCxYsAAD0798ft99+e5vUh4S0TkQm7oW6nj/+DQRBEETHgULiE7ni0ksvREtLC1566fX2rgqRAR012sV+++2HhQsXura3RU40GWTu2MHJNO4LO4+ENIIgCCITdKPjTsaI/KalpaW9q0BkCA0J2YOEtE5EGIGNHduJgnsSBEEQbQgFySMIgsgdJKR1cEiTRhAEQbQHukGGjgRBuKH1m+xAQloHobm5GXfddTsaG9VhScPIa7YmjYQ0giAIIjyUb4ogCBe0cpM1SEjrIDz//Dg8/PADeOyxhxzbeU0amTvmN/SsCYLoTCQNgCLiEwQhQrOd7EBCWgchHo8DyL4zLZk7tj2U54cgiM5A0qBJBEEQTjRSpWUNGl87CEwLI07wM9WkMUhIIwiCIDIhmTJo0YkgCAdkNJQ9SEjrIKiEtNaWR0IaQRAEkQlJHYiQjEYQhAuS1LIBJbPuIATRpIV5KWyftFZXjQgJ+aYRBJFvxJMG5m5KAQB26xVFScz5rZm/KYn6hDMmwKa4jhhJaQRBcNCIkD1ISOsg2EKafHum5ZEmjSAIgmhKGlheq0ODgR16RFxC2pJaHcVRp7dJQURDCc0iCIIQoLXo7EDmjh2EIOaOmUV3JCGtrSDfDYIg8pWUARTFgMKohpTwKdENAzA0lBVoKBX+a+9xrTkex+LFv7RrHQiCsCH5LHuQkNZBsAUwChxCEARBZBfdgDW7EtOfmb/zc+r1z389jltvvQH19XXtXRWCIACyd8wiJKR1EHIVOIT8owiCIAheMJMLafnJkrQWLZFItHNNCIJg5PGQ0aEga/IOQrZD8JNPGkEQBMHQDXti1ZGENIIgiM4KCWkdBArBTxAEQeSKlG5YVkpJQSoTfdQIgiCI3ENCWofB/EpGIk4LVdKkdRzItJQgiHwlaZjRgzWY+c94SJNGEATR9pCQlufU1dXimWf+hWTSzF+T7eiOZDnc9rR3NDSCIAiRpGE6qWua5tKkdQQhLV8WwWpqalBUWICS0rL2rgpBtAtanryLnQES0vKcW265Af/5zwvYeeddpPtb+2EiTRpBEASR1A1omgZNk2nSDGgUsi0Ql112Ibp164YnnxzX3lUhiHaD5LTsQNEd85za2loAQEtLC4Dsa9JISCMIgiBSOhDRzElBUhI4xCCri8DU1VE6AKLrQiNF9iAhLc8RBS+v6I6ZlEurHQRBEERSN/3R5Jq0dqkSQRAdEVK6Zw0yd8xz/IQ0r2N9SgZAmjSCIAjCjOAY0UwhLUVCGkEQrYCGjOzQZkLa6NGj8b///Q+9evXCu+++69r/9ddf4+KLL8a2224LADjiiCNw6aWXAgCmTZuGO++8E7qu4+STT8YFF1zQVtVud5gQxYQzt5DWOk0aCWkEQRBdh2+/nYXNRhkG/crp51wd1xGNmJ5nNS06FtekuH15bOyY/ibmS+AQgiCIbNFmQtrIkSNx+umn49prr1Ues99+++Gpp55ybEulUrj99tvx73//G3369MGf/vQnDB8+HL/61a9yXeW8QBSiNE1toZrJR4qENIIgiK7DH449ElsfcjoevO9Bx3YNQGmB+W88CSyqTjn2dy8kGyaCIIi2pM2EtKFDh2LVqlWhz5szZw4GDhyIAQMGAACOPfZYTJkypcsIaUxTptKktTZPGimlCYIgug5aJAroKfQsVi/4VRR3PIGMFhwJIn+gmWV2yCuftB9++AEnnHACKisrce2112KnnXZCVVUV+vbtax3Tp08fzJkzR3p+eXkRYrFo1usVjUZQUVGa9XKDEIlo6TqY91VSUuCoS7duJdbf5eVFgetZXFxg/dte95ZN2rONglBRUYrS0kIAQGFhLK/rmgvyvX0IaqOOQFbaSDO/JWVlRVmoUfvDvpElJYXtfk/RiC3ctnddOgvZfo7RiEZtk2MatRR6dC9CRVlm83H6FtnkjZC2++6749NPP0VZWRmmTp2KSy65BJMnT5Zqh1TBM+rrm3NSt4qKUtTUNOakbD8SiSQAe5UwHk866lJb22T9XVcXD1zPxkbzWdXXN7XZvS1Z8gvmz5+PY489Putlt2cbBaGmphGNjWYahZaWZF7XNRfke/sQ1EYdgWy0kRYxNWgNDbn5XrY1ejqqSUNDvN3viZ/8t3ddOgvZfo5lZUXUNjmmqUnHli06ChOZBZBvq29R797dcn6N1pI3IfjLy8tRVlYGABg2bBiSySQ2b96Mvn37Yt26ddZxVVVVqKysbK9qtjn+gUMyoz0Chxx44D44++zT2ux6BEEQhBMtEu2cqVc65U0RBNGVyRshbcOGDZbgMGfOHOi6jp49e2LPPffEsmXLsHLlSrS0tOC9997D8OHD27m2bYefkObUNIbxSZOdTxAEQXRqIlFkaa0vr8jj+JMEQRAZ0WbmjldddRVmzpyJ6upqHHroobjsssuQTJqmfH/5y1/w0Ucf4dVXX0U0GkVxcTHGjh0LTdMQi8Vw880347zzzkMqlcJJJ52EnXbaqa2q3e7YSafNfyORbOVJMyFna4IgiK6DFomiM7r103ojQeQHBjrjCNM+tJmQNnbsWM/9p59+Ok4//XTpvmHDhmHYsGG5qFbeowtZRL01acGhPGkEQRBdDy0ShYHOp0ojqxCCyA86o6a+vcgbc0dCDvvwBPFJyyQEP33YCIIguhCRaCcU0ehbRhBE54OEtDzHMExNVyQib6rWatLow5Y76NkSBJFvaJFI59Sk6TTeEkQ+YBhk7pgtSEjLc7wCh9TUVCOVSlm/M9Gkkblj7iAhjSCIvEOLQuuEUygKHEIQ+UHnWwJqP0hIyxOqqtbhxx/dSbrFiT4T0pqbm7Hffnvhv/99I6PrkZCWe0hIIwgi3zADh3SeaRT7Jhr0LSOI/IGmP1mBhLQ8Yd9998Dhh/8Wzz77FHbZZaC13S2kmU3W0tKM2totWLdurfLYIJAgkTvo2RIEkW/Eum+NzjiD6nx3lBk//7wQNdWb27saBEFkARLS8oSWlhYAwOjRV6O6utraLmq6rFVDiSYsnExAmrRcQ0Ia0ZExDAN33nkb5sz5ob2rQmSJlpSBkn67ItVU195VyTrMf7urc/vtN+O60f9o72oQXRya/WQHEtLyHDHAh1tIS8lPDFguCWm5g4Q0oiOTTCbxyCMP4g9/OLy9q0JkCd0AYOjQWxrbuypZh4Zbm4aGhvauAtGFoVcxe5CQlucwIUqc8LPfqZTu2uZHTU01Xn75xfQ5JKTlChLSiI4MRYDtfHTmAIj0LSOI/KDzeLy2PySk5Sn2BMkppImaND66Y1Auu+wiLFu21FEOkX3o2RIdGeq/nQ/d6Lwap856X10eatgOCbVadiAhLU8RV7HFUPwyIS3opKqqap31N5k7th006SU6EtRfOx+6AWiddJmbNGmdE0qtQHRlSEjLU0QhjQljLKm1rrt90jKZVOmd2f6lnVG1h9ZZZ0lEp4IWcDofKcNAZ13jpkWFzgklKSe6MiSk5Sm2Bs35r3t/6yZSNBHLHTRpIDoy1H87H7oBGJ3UY4S6a+eENGkdE3ofswMJaXkKE55sIcqpWWuNuSN/GE3Ecgc9W6IjQ+ZjnQ/d6LxO/TTedk6oWTse1GTZg4S0PEXUlIlRHmXRHcOWzZdLZB+aNBAdGeq/nY/OrUmj/toZMWiOQnRhSEjLU1SBQ+wPUXZ80mi1PJfQpIHouNACTucjZQBapx2XOut9dW2oVYmuDAlp7cCCBfMxdOhe2LRpk/IYURgThbbWhOAnTVrboBKaacWX6AjQ2ND5MF2bO5cmjcVhoiBYnRP6XuaOO++8DdePvjrr5XauEaZ9ISGtHXj00bFYvnwZpkyZrDxGZe4o7s/MJ82Q/t1WdJVBV7xPiupIdCS6ynvalUh24uiO5LzUgTE8EvhRu+aMBQvmYeWqFTkpm1otO8TauwKEnOA+abwmLbyQ1h6r5YZhdAmBhSa5REeGNBOZEU8aSOZoWI0266hvybxd6luMTmvirnfS++oKTP74Q7z00vN48slx6Natm2MfRXfseBgAGhKGNVZ9+tnH+OzTT3HHHXejMAoURjv//C9bkJCWp7jNG+VCGu+TlgntJaR1BbrKfRKdE+q/mTFzXRLVzQZiOZiHlG7W0NiYyPh83QD0lqYs1qjtaWpsQHNzMyp6buXcQd213YjH4/j73y/DXy+6DHvsuVfo86dO/QwAsHnzRreQRuNQh6MoqmFRdQo/V5vz02ufmgAAOHRFAtuWRzC0L4keQaEnlbcE06Txq92ZBQ6hATBXiM+WnjXRkSCftMxI6ECvYg2xSPaltLLSKBqM1nkp6PH6LNWmfbj6mquwZUsNXnrpdcf2n39eiCeefAQPPPAIysrK26l27Uw7fWNWr16F2tpavDn+tYyENLvakneGvpsdjm6FGrpxbZmsrQIAVBRpIAONcJBPWjviNWkXhTIxXxr73drAIe1h+tJVhBUS0oiODfXXTEh14lxk+cCWLTXS7W9P+C/q6+vx88+L2rZCecJHH72Pqqp17XJtNo+IZOrGkD5f5gah03eT6MKQkNYOsIHo3/9+RilkuUPvO7dnK3BIe/iddBVhRbxNdt9dwR+P6PjkmyYtlUph/fr17V0NX1I6kAMlWpdh6tTPcOEFZ4dfQBS+kV2JlpYW/Oc/L+D2O25pl+sbbB6hZTalZIJYRHJ+V2xPgmCQkNaOfPfdt/jPf16Q7lOF3M+OT1rrA4cYhoF//etxbN6sTiPgdW5XoCto0u677y689dab7V0NIgfkm5B2xx23YI89foWNGze2d1WU6IYB3aCFmNbwwgvPorGpEclEMtR5FGACqK3d0i7XtYWszPq99W2UnU7NSnRhSEhrZ+rq6qTb/fKhtUaTJisnLN98MxM333w9rrji0ja7ZkejKwhpDzxwDy666Nz2rgaRA/Ktv3700fsAgOrqze1cEzWmQiG/nltHo9WLA234+L/+ejqeeuqJtrugAqOdF1QsK5FMVcgeViZk7kh0ZUhIy1OCRndsvbljZoN7PB4HANTXy4XMoNfvzHQFIY3ovOSbJo1N4PL5PSKn+CxgOP5x8O2337RpVfx4/PGH8cUX09q7Gu2uRTQsn7LMppSs9lINdB6/7wSRa0hIy1PYuKSK7siGtVQq/EQqG0IaOy+TQTmfJ1nZhIQ0Igxvvz0e9913V3tXwyLb/fXSSy/EvvvukfH5HcGEkIS01qMb4rfO5uGH75eckf/9Ite097eF+aRFMtSkedWfXimiK0Mh+POUoMmseZ+0ttSksfMyHZS7BiSkEcG58MJzAADXXHN9O9fEJNuatDfeeDUr5eTze5TK36p1HLpwAJBMae9nZScSz3Dd38Pcsb3vjSDaE9Kk5QGyyZA7uiMTzuD4t/UTqcwGQCvkboQ0aUHpqvdNdEzyrb+SuWPXwDbdy/Db1AV1L+1tmszeyQymA+b56X+lgUfaIU0QkSPyeOxmrF27FqNGjcIf/vAHHHvssXjhBTO4X01NDc4++2wceeSROPvss7FlS9sE6SEhLQ9IJt1RrIJGd2ytT9r8+fNRWdkdCxcuCFVnW5NGQpoK9312jfvuyKxZsxqJRKK9q5EXtEcORS/I3LFr0ZG+E1999QUuv+yidhOW2vtR2ellMvRJ83huHacXtD16KoWaPA6kJNIRgsBEo1Fcd911+OCDD/D666/jlVdewS+//IKnn34aBx10ECZPnoyDDjoITz/9dJvUh4S0PEAupDk1aOrojknXtjBMm/YZAGDixLdCnUdCmj+d0SftueeewapVK9u7Gjmhvr4eQ4b8GldffUV7VyUvaI8cil50DE2aAfKRyg753M4i/37uGVTXVKO5ubldrt/ez6q1yayt2pO5YyjeeONVXHb5X9tMqxOWeDzu/J52gLasrKzE7rvvDgAoLy/HoEGDUFVVhSlTpuDEE08EAJx44on45JNP2qQ+JKS1A/yK8C+/LML333/rOsYvqqPoqxaGbAx6uuUonEkXyv8XFQBmzfq6VVqVziakbdiwAddd93f85S8ntXdVQhGPx7FmzWrf4xobGwEAkyd/mOsqdQjyrb+ycbO9Tbu8oBD82SPT/tce3daOTtj21wba/11l84GMQ/AzJPfR3veWz/z40xwAQHV1+Hy1bcGSJYuxbt1a63dH0KTxrFq1CvPnz8fgwYOxadMmVFZWAjAFuc2b20aDqRmd6A1oampBLBbNernRaCSjKIoqVqxY7pvrZ7fd9kBBQQHmzv3RoWnbZpt+qKzsg3i8CQsXLkA0GrW0bNttNxA9e27le/0FC+a5Vvz69OmLvn23CXwPW7bUYNmypejevQd22GFQoHNmz/4eALDnnnshEsluO2W7jZqb41iwYD623ro3+vffNqMyEokWzJs3FwAwePDe2LhxPVavXo2ttuqFAQO2y1pd2wp2PwUFBdhtNzNKH2vTwYP39jw32+0ThqVLF6O2tta3jslkAnPn/oRYLIbdd9+zjWpnE/RZ5gqxjeLxOBYunA9N07DXXkNaXX5r72/hwgWIx5uwyy67ori4pNX1yQVV9Sl8uaoZvUuz/x0CgGhEQ6qVGs5lS5cAALYPOG63Nax+2w0c6PpOsH2AXf9Vq1Y4El9X9umD0tKyNqipXR8tosHQDewwaAcsXbLUUb/WYUDXDd/FUD2VxIoVKxzb2rJ9mxobUFVVhZLSEvTpE3wewWBtuO22AxArKABgP9ttB2yHWCx7Me6y8Q7lC2vXrkZzvBnb9NsGRUUlaGxsgAagJGD/z/VYEI83Yd1aW0ir3HYgygqj+O2AIs/z2mq+UFCgHqcbGhowatQoXHTRRTjyyCOx33774Ztv7BQgQ4cOxaxZs3Jex04lpG3YED5nVxAqKkpRU9OYtfIuvfRC30hnP/wwH/369cfOO2+Hmpoaa/tNN92Oyy67AvPmzcXvfncQysu7WbnKnnjiaZx88v/5Xv+gg/bB4sW/OLZdddU1uO66GwPfw7vvTsI555yOY445Hs8//3KgcyoruwMAFi9ehW7duge+VhCy3UbffDMTxxzze+y773744INPMypj1aqV2GcfU22+fn0tnnrqCdx002iceuooPPxw+ydADcvKlSuw7757YNttB+C770zhk7Xp+vW1nudmu33CwOq4bl2N52SnqqoKe+65E7beujfmzVvcVtWzCPosc4XYRvPnz8OwYQciFothzZrWrxq29v6GDTsI8+fPxaeffok99mh7IToIVQ06vqlKoldJboxUysqK0NDQOpO6UaNOAQC89NLr2ahS1mH1e/LJcejWrZt0H2DX/4orLsGmTRut7VdccTX23Xe/NqipXZ/CwkK0tLTg5ZdfxWmn/cVRv9bw9NNP4vPPp+LFF1/19Peqrt6Myy//q2Ob1/UTiQQaGupRUdHT2vb9d9+ipLQEu+66W+h6fvvNLDz8yAPYZ5/9cOWVV4c+n7Xh/fc/hL59+wGwn+3YsY+hd+/K0GWqyMY7lC/cc88YzJ37I6655nrsuefg0O92rseCeXN/wt333GH9fvypF1FRWoQDtvEWuttqvtC7dzfp9kQigYsuugi//e1vcfbZZwMAjjrqKLz00kuorKzE+vXrMWrUKHz00Uc5ryOZO+Yptlmj3GQuWyH4M69f5/ZJKywsBAA0N7dY24466nd45pl/Bi6js5k7Mo1ttrWgbYXo16miIwSoaAu8zArbw+SwI/ikpQwydswWXsEk8g3RPUFFdfVm6AHHIQD4/POp0u011ZuxebNt4hb2nXj88Ydx2WUXObaNfeg+3HnnbaHKsa4PdQj9QOcL0auFwgkFRUWmRqqFm6fkM0YH0GAahoEbbrgBgwYNsgQ0ABg+fDgmTJgAAJgwYQIOP/zwNqkPCWl5iiiMcXsc24NOPGVly8oNiipwiK7rWLz45wyun18UFJhCWiJhD37ff/8dbrjh2sBldIT7DAMLUhONdsxhQxagh1Cj6r8zZnyFvn0rMHPm121an44gPOd0DmIYeOXl/wTyr2xPZs36GtOm/a/V5WT8KNtx3PW6dDzehMsv/yuef+G5Vpd72eV/xd/+djG3P9w9f/fdN/KCM4RNvlsrpMnQ8yzKbD5hLSa3dAzNYEeYEX377beYOHEiZsyYgREjRmDEiBGYOnUqLrjgAnz55Zc48sgj8eWXX+KCCy5ok/pQMus8RS2kOfdnEoLfq7ygiMmsk8kkampq8Pzz43DffXfhiy9mYeedd8nKtTJl3333wC677IpXXhkf+tzCQtMuvqUl8xUqtyYt46LygmTS7GvZ9A9oS/hIqIQ/Kq3Ap5+aUa2+/HIa9t//gLasUpr8fZGShoHWxk5QsaW2FuP/Ox6ffvYZHnnkydxcJAs8+uhYAMChh/6uVeXkUwqInxctxO133IzHHv0nKjz8vr3qnEj7zc2aNQPnnHN+uAr4fDwy1WzrhpFxREYeAyy6o/8C3ooVy1FTvRl7cb6pnvOdjv7hzCFMk9ZeUUXDkk/vtIr99tsPCxculO5jOdPako65JN4FEKM4itvZRKW1edIyRdSkXXfdP7DbboPw2WdTAMBztbethLSVK1fgk08mt6qM7App5u9Zs77G66+/0qp6tQesr0WjHcvcka3u+mvSaDLAo5r4secYjbatsN4RzB2Teu4C8LNyk8ks5fHL4+cIIOP65SKZ9eSPPwAAzF8wX35NJmR4qFKZBUIiEX6xyO+eMn0nsmW2HCa64w03XIP7H7jHsS2f3uk77rgFr70WzM/eiy8+n4q7777D/8BWUFSYNnfMU02a2G/zqZ07CiSk5Sls8BRXHlRJrcMgOydsMax+zJn57bdNbRVvHhjm+vkGq2IuhLSff17k8gfoCNjmjh1Lk8YWEpgmUIXdp/PfrK4tsBPUOp+HLaS1rbCerXaprt6MysruePPN17JSHk9Sz45mQkqWUxDkezjsoLVri/eVPSrVpaxFVY9nyo4J8o0MS9hvqobs9iXVWBGiAEc5PLphwDB03HHHLZg9+7uM6xiURYsW4L33JrW6nKeefhLz5v2UhRqpKWQ+aa2Yp7QlHWHul2+QkJan+GnSst3ZMzd3ZBNgc3W3o2lZVLDnIRv8fvxxdqgyVL9zwYwZ0/Hss0/npGymSeto5o6sj/qZO9q5B1OoqanOeb3yHXuhyNlv2buei3QnQWjte/Tzz6bP7HPPPZON6jhI6rnLlRVE+Fu1cmXwFbc8nzBlKkBke5ydM+cHfP319PQvlZTmf22mZcsst2lrD3DCxsSsCWmtXOCy7IMUedLiTU1YtGgBnnjisUyr2CnpcOaOHSBwSL5BQlo7EGQgUwlj+SKksePZYM+SPgcpJ8/nBgB4Ic09+B1++CG+wVHSpUjLzCUnnHAURo/+R07KtjUoHWvYsBcSgglpGzduxM47D8ybD9+MGV9hKZcfKht89NEH2HPPnT3vUdVf2XOMxQqsbRMm/Benn/7nrNZRJFvmjkyTUVBQ4HNkeFJGDj+q6c+GGPGXMW/uTxh9/T8wJe0z6Ee+a9JE2iuJ+bvvTrT+9vt2e/nctOZp+/X5sG3JzBINPXzgMa/rB/FJk2M4/iGCwcawljz5VvmRC1Pkzk7HWhLvUngLabIPVnCftFZWDTJNWjJwHdpa5f3ZZ1Pwu98ND7XKJ2rSxDq3tPj7hXS+EPxmm3dUc0e2kKDC3cbN1kple3LCCUcDyG7+tBtvvBZVVeuwZs1qZTJ61aRYplG94IKzpcdmk2yZtbF+wCK4ZpNcatIYqnFk7do1AMzADIHKyfMQ92L/a6/orIEWVdn32kNT8L//TclanVzXDyukpe8plTVzx7QmLWTUnOXLl2LWrJn24rNkEt/Rv5u5hLmb5MuCoi/UlqHpWEviXQgvYYzf77dNUXorzjVRheDPRyHtlFP+GDpQB7s/NiEV26GoyH+C577Njj1A2T5pHcuklX3Igpo7Mrr65EB1+7YmrX2E9Wxp0lgE12yS0BE6uuOUTyY7kjEr8TGps3NVBbtu3vduA3jwwXvw8cdmwtj2i85qf+NUJqcqn7S6ujoAphnqG2+8mnkVshzdkeW6VGllw2L77IXr/LfeeiMmTnwLKQ9/4Q5vItfK8Wrp0sVYunSxZ9n5EoJ/0aKFGDXqFOV41tG09/kACWl5CuvL4uB77713YsiQX2c93H72hLTMrp9rVq1aGep4sY5iPrpMhNGOPulnGoh88Un74IP3cOCBe/uusIcNHMLo6O3VWvyjO2YmrGf6XNn8r7XtwrTgOTF31I1Q0R3r6+vw/AvP4p57xvge6+W3Y243/9UC1iDfNWmNTQ344Yfv8eKLZl4xv/fXIsuvrfMT5+2Txr8zc+f+iIsvPg8//PAdEsnWBXbwvaWQ96xlOQgN06SJ8wE/mHDGJu/SuUn+Lyd40tr633zz9bj55us9j2nP9DJV69YiHo8DAD6d8jEAYP68uQBk7dmx27I9ICEtT/HyPVuzZnVWBK2wXHDBWbjmmisBuKM7hqlDe0x+M/W5Y7gn8OHL6OiTfvYhYKuw7c1VV12KJUsWo7raO8hHUJ80VSTVzoxnoAOFf40dOMQtrAd5ZuK7dNJJx+Phhx/wPS9bPmms/jkxdzRCatLSt1JX52/Kan8TVNYV4UzO8r13L1q0CADQvXt3AEBKTD3QRu+nQ+hVymjM8sUWJJcsMbUfixYuyPlYEjbhc8R6l7Icgj/jZNY6+0Oyr2OLabn0pbT7Xfs9oX9cfQXuv+8usx4+wnpX+KZmm/xYEidc+HXm1vT1TAW8JUuWoFevXgDcyawzKS+f8dOkBRl4O5uQxvL7tFdUPxE7b5v3WhPro/7mjt6CeWciTPAidwj+FAoqtsHS6ABMXWVOnCv2PR5aJIqfNyewcy+58BPrtjXKd/kNpq5sQZQT8H5s7I4fP/oee//J7TO4ZvVq9OnTB9FYDNqOv0VFpD/m1JejflXmucIWJHqhYt/j0bLtUKv+2aKm2UCv4vATValJl2Fg4aIF2GXnXU01ok/QKLu9gq295ntiWWYyVVnZFwCQEBZZDBgKrWGWx9kwvsyOdkxrqwyj1fKk/3wg3AUi0exGd1Qt2k6f/iWefPJRPPjgo6is7ON7vuwuDMPo0N9OXTfAGx1UV2/GQw/dj7///Tr06NGjVWWzx5KV52MYeHP86zj0kGHo03ebUKcu+nlhugi2UCQfgzrzNzVXkCYtT8lkUG5NMusg5yYSCVf+tkx80tpjDbe1mrRsaFk68ocGaL/8WCpYIBM/E5uw0R3t3x27vYKhvkcvc8doSTe0aIXQkJ6KGjoiBUXY0Kg2SYsUlaGg+9YwdN06j50Lw7lNA1BbU41bbhmNV175j3Cs4To2zH+pZBIwdESj0VaVI/tvq2INsRCqNBa4QXzWjY0NuOTSCzBmzK3439TPAAQxdwzpk5YH49GWLVtw6aUXYuXKFYBh4L//fcPa514oE4S0LL6fhqFj8uQP0Jw22+Lhn6ff4gbvc8MWhwzDaL3Wz3c+EG7ya5k7prItpDmfz/TpXwIA/v73yz39Lu1FUKmY1qH90sR3++PJH2Lp0iWYNu2znF0jNIaBTZs3YdKkt3Hf/XdnXo+U2U5hzV4JNW32JEePHo2DDjoIxx13nHT/pEmTcPzxx+P444/H//3f/2HBggXWvuHDh+P444/HiBEjMHLkyLaqcrvi99K1h09aKpV0+cqJL2OQhMDtOTlIJBI4/vij8NVXX/gcSZo0ETsXXn4o4Fmb+D3XTH3SxDbvTITRpImkUklosUJEkUJhVENhVIORbIHe0oSEx6RPi0RhJFsQi8A6j51rJFsc2wqjGuKN9TCSLVi8aC4KoxqQSsJItiAC3XVsmP+QYtdDq8qR/VcQMmoIC4EuGnS9/fZ41NaaJpCrV690tIdywqrQfCqvnQfj0ezZ32PLlhp88P67qNmyBRMm/NfaZ72P6XomE4JfcBYX+7777ju89NLzeP0Nd4ApXjvk5+/HjyHsvLbw/QvblKxuepZC8FuLtq6+Z1fshx++V56vysnItrW6pQ0jtF96tnDNA9L/vv32eOmiQCZlt1ZI0zltZWv823RlP0jvJ01aaNpMSBs5ciTGjRun3L/tttviP//5D9555x389a9/xU033eTY/8ILL2DixIl46623cl3VnHLCCUcHijTo/wHNrk9akHOTyaQ1GHek6I78NVetWomvv56Oyy+/ONDxjEyCSnQ+IS2/NGl2X/R7rkHNHcU27tofFC9NmhYtkGiXdbQk1W2hRWOAoQd+rpZmyL0n0PkqrH6cB76VKk0any7C/jstpCnun70GwQOHtP94xCdVdn9L2DNJC2kpp2lqNjXdTU2NAICGhgbXPsd8M0SeNCavG+n/tQbf2UBYnzT23LP0TdLZgpbweMJbsJj/8sKLYbRe0H3//XcxevQ/sHjxL60qJxNUbZNIJDBhYnbms60VfgxD53x+7e1Lly7BlVdeioaG+lD1sMwdxeZv/yGnw9FmQtrQoUM97W/32Wcfa/+QIUOwbt26tqpamzJjxleBjsuluWMm1wOYkOZ0VO1ogUPYx8nvo+bWqpCQxiaL+SKkqdIjiGRq7tiZNWlBUPXXRCIJLRZzL9/rOpIeK/NatACGrgefcFnlp2d+WQocYuV5K2h/jbBKG8z3Ravfcqvmo0adYk+MwXZ7+4PAMFBTU21fIw/GIzaWpPSUy7+ZPYPFixdj1KhTsH59lfPkLNbfenYSATdMMAxecNQsATQbPlU+84GQAmu2ozuy+848mbWTCy608y4aht7quf0vi38GAGzatKGVJYXH6xk3N7dOk2Yt3LRyQZHvt3xfnTDhv9i4cQMWzJ8frDbiPEtouXwYczoaeWk4On78eBx66KGObeeeey5GjhyJ119/vZ1q1bZk21HY/1x1eb/88jM2bNiAZDJpDTgqTVqQpZL2FFbYpCCsOanbX6nrmTsGDdTRVmRbSBP7rle5S5YsbrfkutnEq0+qTJBSqSS0SAFeeH4c1qxZzZWloyXhIaTFCgBDD/yhto5KTyjZXLm1GhRm9poPZrtMYBUn2fwCAVscEe+6sbHRWZalSZPz8SeTcdllF7lPyAaGYeUEC4Ol0Unprhtkz4RN9ObMme3cn/5XFKIy0VpZz05qrmpv85PXnOaOXATFHA/9oaM7RrIrpKUsDYrQFmKbcvVcsXyZpK3c5numS5/9Ox5vCm2Spwps0haI7zY/nmZrTtBarbhhGPZ7xPtVaramW3Gi46fo7uK6vw4+B2oP2v8rJTBjxgyMHz8er7ximwS++uqr6NOnDzZt2oSzzz4bgwYNwtChQ13nlpcX5STyXDQaQUVFadbL9aK8vMjzmqWl7hw/JSUFgeop+9AUFcWU5x588L4oKytDt27dEI1qqKgoRVFRNH3NQul5XvXv3r0EFRWleOWVV7Drrrtgn332RU1NDSoqKnzrrsKvjdj91dWxYwzP48vLi6y/KypK0dRU5Nrv96zFMoqKnK9bLvtULsouKDA7TklJsat8v+vl4h1iE9lu3bzbgo0JRUXedSgrc0YlVLXxihUrcOCBe+Oqq/6Oe+65N5Oqe6KqYzaen2EY2HXXnbF06VIAQFmZfY9iG/HPw3lt3dKKTZnyES666K/QoMEwdMSK5OMBkNakGQZKSgpRVlbk2i9uKy4usOpVVlaEaHpCX1QUlZ4flGjEnCiUFMvr0ZYUFtmLRnxdnGO0gbKyIsTjwpivpRznFBaaz6egMCa9r8W/LBSuHcH48a/gj38cie7d1VYuQfjss0/x2GOP4oEHxlrbgjzb0tL0MZqBEuGbFok6P1Tit720tABFRUWu71lRUUHodi0oMJ9dYaH7XP66xcV+ZRvcseb7E4tGUFLivLew9SstKURJqfqdKSl2zwe8rsEWK2XvUibvREHMbIRCoe/FYrZQVFQUQ2Gh/SxvuPFaVzmy51tSEkNJifksNQDnn38W9t57b9x00y2B68f6SCyq4fnnn8P//d9fUFxc4nlOtsaG4hLnPRUU2M8gFnM+/5qaGvz044/47SGHBKoPK0uLOPeH7l+lBTB09i7a5xcWmf0qVhCRlskLz2VlRVZOwdLSIpSVFTnaGwCKS2IoKy9CRYV3/dpjzp0L3n//fUyfPh2bNm1yCbr/+te/ApWRV0LaggULcOONN+KZZ55Bz549re19+pihW3v16oUjjjgCc+bMkQpp9fW5ybpeUVGKmppG/wOzSF1dk+c16+rcavLGxpZA9ZStRMfjCc9zGxoaUFRUhJaWJGpqGtHYaD7rREJ3nMcmzvX1zY7tc+b8YP29ZUsjunVrxFlnnQEAeOGFV3HmmX/BO+9MxgEHHOhbfxl+bRSPm8+mpqYhXU/d8/ja2ibr75qaRlRXO22y/dpHVkZTkzOhaS77VLbL/vbbWaiuNgMZpFKGq3y/6+XyHaqpaUBpqVfZ5hd6y5ZGzzps2eLcV11dj5493ccvWrQEADB16tSc3JOqTK9rPf/8s/jNbw7BTjvt7Fm2ruuWgAY4n4nYRnV1Zv/VNM2xvbm5BZFYCWDoSCRSaGhohhbRYOg66hriqK5ukJqIaVFTk1Zf14RIxB2mv6HBOX43NZm/Dd1AQ0OzNW41NbW4jg1DY7pc3dBaVU42qK83x3EDhqMuLOE2AMTjzWhoaHbVddOmapSXV1i/m5tN7UIqqUvvKxpzTuS/+OIrTJw4EVVVG3DJJX9r1X18960ZFOLnRbbPj9+zra+vw333mYsciUQSDcL3m6X8YCSTzklOfX0zkknNtTgfjydCt2s8PTanUobrXP572dKS8izboQFtMf9ubkmiscnpTxe2fg0NceiGewGaldPQ6E6W7XkNwz5GPC6TdyLebN5fMul8fnywl+bmJLZs8fZtamx0v9sNDc0oKWnmq43vv/8+VD2Z1cM7776Dn39ehMLCEowY4R2ELltjQ319HLFYsfU70WL365ZmZ1+9447bsXTpEuy0869RXt7Ntz4t6bKSSWe/nDTxHVStr8Kpp44KXEf2Dui63Yb2mOvuJ+Z++51saGi23tnm5iQaGppdc56GhhY01DejpsbblaCt5ty9e3fzPyhD7r33Xrz44os44IADUFlZmXEOwbwR0tasWYPLLrsM9913H3bYYQdre2NjI3RdR3l5ORobG/Hll1/i4ou9gz50BvIxBH8ymXJFEwoSOGTBgvn4/e8PdRzT1GQLMF999TkA4LvvvslYSPODVSuoiVw2zB35VdX2MHU88cRjcMYZZ2PkyJNbVc7cuT/hD3843EpeLEti3J4Ej+6YncAhzPwsFnOvXrcX11xzJUpLS7Fs2Tr8/e+XY5dddsUFF7jHyTD9WB04JAVEC6zIhID5jHVdh5HSoQOQ2TMw7Vtgc0fbns3xb7Z80izfSsNAIpFAQWH2k1v7oXrG/HY+iAhPQ4NzEuNy2hcoFO6PvQ/ZCMOeSSCKTz/9xPpbT6Vc54rPRpzjZDOwT0vCnEzKQodrIcwdHX2T669h+ix7Fvw46x84JNw7wQdsyQbsnfI0PTUMl+DtQnYfRhaiF6bPZ/OOtjR19uqn4t1u3rwZgH8kYhHxHX7+hWcBILCQZui6tHOz4Eqi/6t1niF+T8x/mZlkZ3P5CMPEiRPx4IMP4uijj25VOW3WU6+66irMnDkT1dXVOPTQQ3HZZZdZH4m//OUveOKJJ1BTU4PbbrsNgPkBfeutt7Bp0yZccsklAMyB4LjjjnP5q3VG2lpIC4LcJ020QXeXXVW1znUM7wT+1FNPAmibQA0s5HBYIU2sW9jAIebfbTdAGYaBr776Al999UWrhTTWVux9jeRBVDwevi03b94Ew4CVdB2wJw5hozuKwWIYbNJcUJAfQhrrZ8xH6aWXngeAQEKa1zsn6+K6rmP27O9Rse/xgKGD9WnrGRsGdAOISiazkZgZ3RGBJ9esbDj+be2HnvVjVs7bb4/HW2+PxzPPPO9rApVt+BDoo0adgt///kj8/vdHSYU08b6bXD5pzufFs359lSRZu48TWwgySY7MT+hTesrVL/zK+uqrLzF06AGu7Zn0j5aWFled7IoGL8fpk8bqY78nQbjjjlvwy+Kf8dJLbv/7TZs24pln3GZSofOkWUJadkPwu7dzf8NAIuHW+DmOl0WtblXNTFi7tDSb2qDi4rYzc/bqx+Jzi4Rsl2yG4Lcai/dJS7/XKUX57lfN6Zvo9pXrOkKaruv49a9/3epy2kxIGzt2rOf+O++8E3feeadr+4ABAzBp0qRcVStvycc8aclkwjUoBInuKFtNqaqqch3XmvwcfohRKf0+au7Ada2L7ui3mvqvfz2OvfYagoMP/q1vuUHI5YpVLvw+WwPfNrvuamrh16+vtbYF16QFCxzC8sXli0Yx1Cp9iDQDsvt/9dX/AAC0SAxGspmL5hUFkIChp6D0YU+bO/If/G+//UZ5fTsEv0uFojwnCGycYeV/8cU0AGZi5TYX0oSFgE8+mYxPPpmMbbbpZ21LKoS0xiZnuHh7v1uq+PvfL3dfW7HQlglhJ5eA89uh6+4IfuL9igLU88+Pw1dffu4qN5Oxrzk9eZf1Lf66fukNZJFLw9aHRSKUlfH22//F3Lk/SvaHugQX3TE73wnWj/3ulY2dKuTzBz0LmjSz3Jb0u1RcVOx1eFbxeibivqCBzURaHYJft8VjvkZWfZSaNPnCj61ZDz9v6iyccsopmDRpEi677LJWlZMfswzCRX6aO9p50pTmDQGFF1c4ZbSNJi2ouaPbLKx1yaxNIU197M03Xw/AKVy0hmwmjVR9SPKFbEV3FAUWVX9k5eSDJm38+NcxbNjwwMeHScoue5fXrl0DwIzUqCea7Kh4nGmXat6npU0k+XIffvh+j+uzE9k/6YllqzVpzrD3TNhuj2idqhXqjRvtUOEJKwS/8xhXTi9LkyaOySqTStYXWi+kaX5R4KTn2H+nUin3AoKrI7nrubl6c0bfIBEmpCUkQoSjfB97R75vWv1V15VjfyqVxIIF81FSUoJbbrkBt99+t/Q4ezFEfv2wmrSoRyqac845HTfeeCsGDfpV4PLExONcxRw/VdYJXmTDCIXdJ9OkFXFC2s8/L8SAAQNRXJwbwc3Vrx31ct4Y+1YFngulzzcgf651dXUoLy9DXV09li1djL0G7y2vo2IRmVnNZBrdUdzf2YW0MWPGWH/ruo533nkHX375JXbZZRfXfOHGG28MVCYJaXmKYRgYP16dbqA9Oruu2yta7AOvsjn2Wz3asGG9a3suJ0msPqq8RJIzHL/EFcewmrSFCxdg0aKFHkdnl1wKvJk6wDLWrFmNaDSKPn36ZqU+fhOUoB++oP5azK+irX3S4vE4IpGI5Vu0bNlSXHzx+aG0r24fgvA+aUA6MTW3P6LZ5i1KIY1p34Ku3otCh6YyoQmHtZrPhLT0x7M9hDSV5on3Q7M0f8KYJJo76gohLc75/zqvLUyoWkHYkO5z5vyA11572VUXR/2Evhq0lpn4qrHJu8wcL1yeNJUmTd5n33zzdbz33iT8+te7AXAG2JKh0uSFfieYUC0RmhKJBF5//TWMHh1sEglw6Tp8jvP9bkp3G6FTDIiw+sXTecmiaWuQhoZ63H77zdh7731w1VXuaJPZwCsvpEpIC9qH2dkqjejFF5+HE088CbN/+B5Lly3Bs8++5PJNZfWw68KZO6bf65RinHJrv50aVXFBrbMLaQsXOud4u+66KwBgyZIlGZdJQlqeYhgGLr74fK8jpOcELD3jc9lh9oqYSkjzHmRaWrwjBWUbUUjzM/Pw80nzO5/33wOAww47OHBds0F2J5zZHWiHDDHttINoDWtrt+CWW27AHXfc7Yp2xfBri2wHDmGT/LCatPr6OpSWlkmDEwRhu+0qMXDg9pg1aw4A249m1aqVgcvwEkRXrFiBzZvrsP32psmorJ3Z4oqmRWH2i7RgkP6YJ3QdP21MoVjyZYmWdEOitim4v4XgkyZuzxQ2MWUTCEuTpgjQkUuCBO1Q+aTFm51jqKEQ0upFjRu7dlaFtHBmWt9//61QF4kmTXz/ZBFDJdsyGZ6YJo2PqulxWSWOe+AWFVRjJtNMV6cDRij9fdOnq8aO0HnSfJJZL1sWblJpX1/4VjiCZwWwEJJt4/2lMkT0pWfFxeOm0Pb999+hpqYaFRU9pee36tpedRd2RbgE6KGu4XH8t9/MxPoNG9LH+QcA4dvIz/zStUgvPF/xHc5msJ985KWXXsp6mfmRlZZwkYm5Yy6vx2Avq0ojJdOkzZs313WMzOwhl0KafY1gmjS/6I5+5/frt5WPkJ1bsuUQDqjbuC144olH8PLLL+LZZ59WHuNXHzaRCyukqTRvdnTH4Gtc8Xgcgwb1xx133BL4HBnLly+z/g56XzziPV51lR3A6Ve/GoT99x9s7ZN9UNevX4+tK/uAzS5EwaBES6K2xcD6Rvd/enM9oKcCC1m2T1okfY309lZq0nRhtZdpRBPtYu7o/56Kmj+Ge4VeLqSJSa8Z2RXS3JNLzwmZ0ITJpK70b/FCg2x8Cv8daW5hmjSZoM49H7/vhiSZtW6ozR0ZzOy1QOHv+9eLz8O4cU8pkm2rKqO+qMpnyN4frk+oEt+7rR/Dz2tMf6n0eJPhHEE8T9T4AGj12Ky8tsf3U3z+0ZDmjkECh6RSKasHs+NramrwyCMPOsqRmjt6aFz58qxrCWavbgskZTU7HaNHj0Z9vTvlRGNjI0aPHh24HBLS8hRfqwDpAeEmP/7lqc+1hTRxv/kvGzS++uoL3HrrDa56ygahtjB3FFfU/I5nf7PjzzmHCV7+z2vp0sxV3K2lLZ5lWxAkFLFfWzJ/Gb/ANH6COSOT6I5MuPrgg3cDn+OHHbUyuEAu3tP8+fPw3XffBjoWMDVplX36ubazSV+BlkK3Qk36X6qpLl2u/8QC4MaW9H3yk97WYD8vpybtscfGZrV9ghBk0qkKW+42NTL/FYUul+9amtwIafb9nHHGXzDlk8mBztdTKd/3T1pNTcvKeMTGBpmQxj8fvwUGmdZEWj9hGxuvox4LP1OnfqrUpMkEU6+6aj7mqUVF4aIfihoqu17ib1+DSMkW258703ffZXYnGYPWr6/KiRThpS13mzuaQnrYIGpeCxMpLrw+u95bb72Jb76ZaddR161nwtcpktakqXxnlZZU1iJe19Kk8UyYMMEOSMQRj8cxceLEwOWQkJan+A1matv3zHj++WelHUp1XbVGyrmCIrOxb25ucWgEGK31o5oxYzquuOISTyHUFi6DC2mmL555HpvQtYXWrzWEzbPiRXtq0mxNjXqossIrt8jDO7OJjV+OnkxC8E+e/IE0Uul11/0df/ubHQJ/+fKlAIDtthvoWYcgnHzyCFRVrbMmrV7vzcKFC/Djj7Ot3zLtRDSqmvi5j62rq0X3HhWuY/ggCX6I76LfcfYcmanSfC/hiTihLEi/07W1tXjlleybq3gRJJCCyifNNUFSCF0NDfIEwrkQ0sRxleVrEhHvRTd0t6ZQ+C3zxzLrHl4DJ8LOSfr4pPkNfcrvsnhvQp1dufsA3H33GIiI42BzczOuuuoyzJ79g/u6Hs/Bz9yxKGT0Q+uZZyCEOfZK5Vlby5Ppt8cdvCM9Bojm37kQ0sS5hrAAzGP5Twf9fgfQpOm6bi9wWVE43ZZBMqHeL2qramHFai9Rk5bf06asUFNTg+rqahiGgS1btqCmpsb6b/Pmzfjf//7nSBHkB/mk5Sn+ZgHZL3vs2HsxevTNnsf6BeAQB9NNmza5rvO3v/0VP/zwvWt7a030Ro48FslkEvfd95DLOdaudzBNGr+fD5jCVrry3QE2m+aOIl73vnz5Mmy33cCsTPyAYBNJdoxqMmoHDgkX3VEdgj+ZrlMEp59+Cn71q53w1VdObdRzzz0DAHjkETMH4LJlppA2cOAOnnUIwtSpn+GJJx7FWWedm66nuq0POWR/ALb/n+yeZEKm6ljDMBArKATYo0x3BetjHkDoEE2m1TgFQCakqSKZBUWcSMTaMUpnEHNHO3Kmc7srZYTCJ01p7qiI0JsJdvt7389jjz6EPfbY03UvqZTbDDaIwK9BJpSFH5ut6H9+mjQ/X2bJftkE2DCcQUrY2MQnWZ43zx1qX2yr6upN2LBhPT7++CPXsbphKFfhNZ9k1mGTPduBQ3wWEjLRpHFCWqaLo25f3PR8IERKkkxhdY/HmzBjxnTv6I7pBJPJoOaOfDmKZ6vrKS7lgnz+w/tNOjRpfuaXCg0lrH+8Fyc6IwceeCA0TYOmaTj22GNd+zVNCxWWn4S0NiTcxN5PSAtoVhGiHps3V7u2uZM4B/NJY4PA5s1uIU0moMmuFZYgA3kmPmm6rlt1Y5o0v+iV7U02ozv6+Rkwvv56Bo4//kiMHfsYTj/9zKxe2yvYBmtv1WSUaYrC+qSpI++ZkyuWL+6XX9x5jUTWrl0LAOjZ098x3TCMQBNn2ycteFvLJiFnnXUqPv30S2k9ZNsi0RgM5iZlBQ7xTnrqKEPQxqvrmv7DMndE+rzWvV+iP0pBQft9BjP1sTFPNhS/nX2nqVFh7miwBZDWG9SIk0AVM2fNwMxZM3DYYb931iWVkvivBHw2rtX8DIS09DnZNHfkk6+L79J///sGJk1624rqyDQnfulNxHHQS5jy6luszZXHhPyG+VnWsL8z+Tbyzy/T75p4n5vTi8dBv22tgb0TL77wb3z+xVTssP0g7nqCtlhjgTpS+OGH79CjR4/A11BpAVMp3R47DbmQxmuy+WJY/VRBlfgrmnVwCuuudzpLefnymRdffBGGYeDMM8/EY4895mjDgoIC9OvXD3369AlcHpk7tiFhVoHaOpm1arsqYEaKS14p+m/x58k0aSqC+FHNnPk1Kiu7Y7Ek4SfDayD//vvvHPVTwd8Tn8MniLljPphCZsMnbdmypais7C4N/CJj0aIFAIDvvlMnKOaZNu1/gTWaXkILm8zxvjeGY7KUWeAQVd2am5mQFnxyHzz1Q/B3OxOfNNWxv/yyyLVNdf+RWIHLPyjoJB2wP+D+pn5MMyTfniliW4TVGsj45ZdFGc3wgmjSGC7TItFkKf0vC/pQV1eHxb/8rAyIYr9bgaugJBpCSJeR0t2BQ1wTOoVPmmtymkE7sDKkQhp34TDmjuxYWXTHadP+BwBobDAXllKWOb2PkOYOdaqui2FgxYrlGDXqFFStWystJ6ivkR92njShFGFukEngEK/tgesnnP/qa//BZ59+ItEo5UKTZpZZXbMZgDMXn3hfbEExlUzhwQfvtfKnqsu251te+RD9NGmCZMadax6n+nby5SQSCS66o1srB7R25O4Y7L///jjggAMwZcoUHH744dh///2t//bee+9QAhrQCiFt+fLlgXyYCJswk/eMoiAFGMiWLl2CmpqawGWqkt/yK2cyIY39K9OkqQjin/HGG68CAKZNm+raZwuQ7gHFMAwsXvyzFcQkjJBmatLM49lKp9ezznW+paeeegIzZkz3PCYbmrSPPnofAPDyyy86tqsGYHvSF2xY+dOfTsA///m4z1Fsou4lpJnH8OaOfBtYpi0+5o7iqp/qGbL0Ecpw2dI6BjOzNY8N9ykL42TuZ8LpVw+mSWPtImo6g9yfbe4YLJBLVVUVpk791KVJW7hwfka5B+0JJdOktc7c8fvvv8Vtt92EKVM+Dn1uq95TcULM3r+0UHHLLdfj1ttuVK6Ch31fvbB90oL2XffYETRwD4+maW5NWobaGkDh16o5DvQphxPS2LfSkAmg6eOEBSS/9BwRwX/US7NnGAa+/PJzAMCsb2ZJy1E947DP0JoXpM+r3bIFX345zV0n39Q37m1NTU24/vqrQ9VHVT+eb76dKdEoZV+MsOdM5m+Hb6VwOcu8UA83hzBdMlSatJTjOP5faztnkitqxwB5knfx4FQq6SpXFVWzK9C/f39s3LgRjzzyCC6//HJcfvnlePjhh5XuBSoCjc5jx47F22+/DcB88c8++2wcddRR+O1vf4vZs2f7nE0w8kFIO/PMvwSuA6AW0vx90szjtmzZEvhaQfyoxAAeMmQTH8MwsGnTZq6cMEJayrqfIJq0XCaSBoCbbhqNE044yvOYbNShsNCM8CUuxsjCFwP2MwmTB4z5aqmwywzik2Zr0vg62x8mH1OlgJo0VYASL1h7BGmXoBPd4L5d7nNEVO+MbFskGoMhBPFgrRPsHQ5musQuX1NTbYYfZz5p6f43ZsytuOOOm1Wn+16fTcj8TMz8YLnjVq9ZlUFdgn0TEokEbrvtJue5ilVqFrmP1Uvl38KeQza8RyM++ZRExL6VkkV3DPAemGFDWq9JY31KpknjxzNfc0ed/27w1iai1tOpJba/m341dbaWp9m957voLaSFXSiy7i993kMP3Yd//esJx/d//Pg30BSXJ1bnCnJtCrPQq0J2n1u21HprlLKELZimF0W4b5moDWcLf8lkuPdIFh3VuoZu+PukGYb01v2+MfwpiUTSfmcN5xjL+Oqrz9U308n48ssvccQRR+D9999HcXExiouL8eGHH+LII4/EF198EbicQLOpd955BzvsYDq8T5s2DfPnz8cbb7yBESNG4IEHHsjsDroguRbSgiDPA6NGnHTJAofINGnnnXcmqqs3hwpgEWSyaYUqlkysRFNMcR+vjAnjwBzWJy1s+NxckA1tHgvDLCYe99Okhcmx43csu0aQwCF83+brHFSYcX+45O8rS4Aapm8rzUwkhNVGtCZPGkP2bFSBQ7RozDFVTCaTVmLlYPcXULhUmj75XsITK7gF68ei8J7hBTIZk4N+E1atWolG0bfMtUDGNGlO/EyVQuXeUsC0cUHNwGWPSrXgZ5/vPkmLRDIS7tzXNv9NSKI78k/UTxPkCDjFLVi6grwIWk/Z+TJcC2Ae96obhis/FiMacS54iKj6cm1tLd5/7x239jLl1MKsWWMm6ebH7aamRrwiWGW4risNHOJ5SiDkQlqNUnjOJqwfsKBKDs21cDlm7qiHnEPouo65c92BZsx9trmjoZu+Z02C/7ZMk822A+p5I39OMpmw5waKEPzTp3/VZbRpY8aMwcknn4wPP/wQ9913H+677z58+OGHOPnkk3HnnXcGLieQkLZx40b07dsXADB16lT84Q9/wF577YVRo0Zh/vz5md1BFyQfNGli1EOhBNcWlXbBT0gDgI8++iDUxCWIkMaO8dLWZENIcvqk2dEdbf8VLyEtt5q0IGSjDkxIi8eDCWls8A2jSfM7Nkx0R37w57VdQYU08ePhZ+6YiQYryAcquCZN3g5B6iES1NwRACLRAkuTZsDA3XffgdraLelzAtyflaPI+fxGjTrFzFXEjlO8Y17XmDr1M9RUb1buN6+bbgv2Wygv7EKW1TcVzbB+fRX++c/HpOUGiYZpHifRdKYvWF9Xh6amRnsyK7wraiEtHd0xC7q0IOauKY/FhCBJqWX9UZPmSctck5ZMJl3XdT7O4EKaZXEg8UmzFp8EAdnPJyrM2GrohtLh0C9Pmurdf+aZJ/Hqa//B4sW/OLbb5ZjnNSsWbVauWuldZ+m8pvWTelm5W2pqlD732cQydWem4ZqXJi0d5Crk91s3dIwde590n/mdsn0QP/9iKn78aY5QR3l0RzZGKBcCeSEtYQtpXt+mTCxROiKrV6/Gaaed5pq7nHbaadYiRhACvfEVFRVYvXo1AFOFd+CBBwJgA1r2O3VnJcxgE0bTE4aCAi8hzY2olRLNGb2EtAT30ga7lnwgePLJx1BZ2R319XXSfDLucuQDXJhQ044VUZ0X0vzNeoJG21MJO9kgG4Kqbe4Yd2z390kLo0lzD0GzZn2NI48chng8bl3D65nKkiPzH4Kg/mCqMM0irGy+TvX1dT5lO+s4cuRxuP/+u6XHqt4n8ZhMhDPVGCT7CKs0aZFoFBrnk8YCxgD2irpnXawJsbtN+QTwotYiZX345eXWbtmCceP+hQceuNf7+sKzEO/zyX8+hkSIiYS1Sg3DFKaECj7//LP46qsvMH/+XNe5QQOHyAI8fD1jOkaNOgV/vfg8XHHFpS6TM0ZbaNIiHpN+SwByjEnqyXi3bt2kZQXV+mQynvJ9TcynGCa6I19H3k/LnS9KZZrmPUaJY6tXfZwaRedxluZTsUigeoZNTaa5ohiMRufmA4Ddr0MvFkou29pormYZkn4Jw1W2SkicOPEt3zFefW3nnMnrfbOTWQd9bu5vn0gqleLM0XX8+OMc1zEGr0lzCGne1hr800okOZ80qyj38wy7CNZR2WOPPbBokTsg16JFi/DrX/86cDmBhLSjjjoK//jHP3D22WejpqYGhxxyCABgwYIFGDhwYOCLdXXCSM9+L+lbb413bQvybQobbtodgl+coKsni8mk25HU+1ryY8eN+xcAoLq62tMnTTTFFPaGEh7E1SRdiL7lbe4YTkjLRTTITM0d6+vrrFXQoqJCaVlq2/fsaNKuv/4a/PDD91iwYJ71kfAa2A1Dx4MP3os333zN2sYLaaw9/EO+C0KBoh1ZXfjyTjjhDz5lOwWCL76Y1iohjS8rCH37VqTPUbVdOJ80lSdTGHNOmXaI1/S7ksDCOREUYRPDLbXefrD2hFJe52++mYnpM77yLIOHaaI2b96MM886FZ9+9oljPwtMkmiRaNICtqGsfRqbbJOlxsYGztQIzhVuhdO/yuQuE7yS3rJxnU/QK+9b5r/Dh5vh+UVBRvasNLi/exmZnToWF0UBXR7dUSY0yt5dw9CVkTjFe/SbwIbSpBmGOxqkUE5YTZrKrNUOJAZheza+bbkR0mTbZcfNmfMDxo9/3RVAK/i108+G+YA63C4ETZrmk5dMeQ31MzIMW6Oq67plIeM4BoYtWDnO1d0bZfvhDBxieAiPslyEnZFTTz0Vd999N55++ml8/fXX+Prrr/H000/jnnvuwemnn465c+da/3kRaMZ+3XXXoV+/flizZg2uvvpqlJaWAgA2bNiAv/wlXCCKrsxvfzs08LF+E8r33puUUR3CatJUPmn2oot6JSqsNkclWLDtsVjMWn0Pq0kL7wht/+3UpPn7pAX1VTIMA/X1dYEj1H3xxTTsttvugY7N1Nxx0KD+GDx4b3z88VRlX1Fr0tLmHCGiHsoiy/HO9HYIYPXArus67r3XaeMtCxwS1ifNbwLDl/fTT+7VSVlZYX3SPAMDZDAZVT0DT01aJIrV9ToMA9AqtoVe2guAPHF4sOiObLXdfWxRITeBUIwtXtpFwD8Qhp0+RN0mocLSpw9mYc6/+uoLDB9+hLW7sNAU0lok/k5+yZ/N4rVAZpHs/hsaGhxmZaqJf2580txtY73D3PfAy6xNLQjInoHb3DEjywRusik+L4cmzRG9UX2v/N+6DldfFqMhMmR9xFkXIbqjx60ahm71TfGZWIEkVNY9KlNnK4qnqm2CLXSpkPuk5VBIE+snuVRTk2lJEtoMGhoMbhHbYIFDON2IrpvfuH/+81Ecd9wIK+pm0LmTaqHJVRerH+iWhQyPrhuIRMzCmpvj+OyzKTjssMNtLaBaSrP+dIbgZ7slmrSWrhEV/h//+AcAM/Ciah9gto2X21ggIS0Wi+Gcc85xbT/rrLOCnE5kQJgEtYwgg5lXuGkvx1HxtzNyFT+ptI8Paw7r5y+jaRrnk+YlpMn9a8LUxSlspqyJnR3dUV1WUC2WYRg499wz8NlnU3yPTSQSGDnyOAwevHegslvjkzZ79vdW/WRk09xRdqzGTSy8oq6J9eHhV8NVAtLGjRsBAFtvvbV0v0rYziSqoh3dMTtCmqZpGa1Sq98x9cJGtLgc09ckURwDYgP3QaJ0ayQbZ0vrp5z0OerAnoX7PSkotMcnV/RCNmHwW/336X/82MX/5gkTlt7HJc1a7JD14UDJvw0jkFkku/2JE9/CxIlvWdt9zR2551W1bi1mzPgKI0aMDCWpqibv5nV8/FqE+ltlQdA+ycbctE9aNBK1nlGYcT6RSKCgoMCpSWsRhTTn8ePHv47jjz9RHrzKIaSxMt2JhlWmqS0SbSuPqBkLuogjHhfxCfSiKpX1lbffHo/1VVU4LK31FN8pRtgxKlNfe/9y5fWIC6b8sqAzLIVFmLyYAFjoUTsVgy4ZnwwDVVXrMGPGdCxbtgzbb28G6JN9W1579T847vgRKC/v5trntzDMmzsWSeISGEKaiOeeexrDDv0ddJ93it+aTKbs8Z/NESTvrF8f7yxMmeI/rwtC4C/RwoULcfvtt+O8887D+vVmaN9PPvkE8+bNy0pFCCeZmKu1VkiT4Wfu6CX8JBJhhTTVKj8zL9M9zR3tOgefiKpwmju6fdKyZe743XffBjqWlamK4CTS2uiOpj+h92TYS0i75547sHq1f0hymfkOHy6YTWy97kc2EWAJp/n9Yr/YbbdB2G23QcpydF1HVdU6DB26l5XU+5prrsT48a+ny3O2s5dDdKaBQ7LlkybWQ0QmMPGatJKYhq1LItDrNiDWvAVGgq2Ghp+U2ZpIybGCBttRtrUi7X3frP9MnfoZliz5xbVfNOGR1TlMWH4m0IlWBgwmpIlRUlXXltGa1A3yiIVyc8d77r0T4//7BmprawPVi7t4ukx3HawFCv4dFg4zYLeLbYrnvwCgpe0dd9jBfo9lj2HVypWYOvVTx7ZZM7/GOeecjlWrVjomky2JFmzatNF6J/jn8/nnUzFx4luYMOG/0rbTHe+uPTlXBUERhYKknyYthNZT13UuqI0gpGVo7siExIULF+C5fz8DABg//jX89NOP0vPCRMBV4TfOTZ78AaZ8MtnzGNV91tU5+7mXD1XYuZOtrVS/G+JYFmU+aZLv3Xvvv4M333xdWl9fTTurS0pHoczcUTfclgswfMcn/nnxgUMsc0fJ8/TTFncW+vfvH/g/LwIJaV988QX+9Kc/oaqqCjNmzLBMiVasWIHHH/dLRksA4VeDsjG4yfCK7iiroypPmkpI41/qVCqckKaaiDNH7lQqxYXg94ru6M4ZkkgkcN11fw9cF7cmzWlm6S2kBdekeUfbtAmrvWmtkLZmzWrfD7jbzMg8fu7cHzF27P246KJzlecyZJNhftLLJrbi/cgSdPLwE2JbYyJ/dp988pHUfzKVSuGmm67D8uXLAAAzZ87A888/y13XWZ6XY3m+mDuqhES5iTATuqPgYnkL5l/Oc/hnUrtlC5rEsPHghTRJ2H/+3l1O/bp0u3WuFeLa/D1u3L9wyy03uI6zfBQ9NGle44uIaiLMYO+4bAU5iLkjEEwDq9J/tLR4a9L4lX2ZIBkE2wdF7ZPGR6wTJ6e6nrLaVSmkKbU+hjOXmaSPj77+Hxg37inHtlnffA0AWLF8maPfNTU14oorLsFTTz1pbuDkIk0zx6uammqpRtcR3ZFbmFEGqBDq6uev4woc4jM+qJSh/tEd5dtlQuLEiW9zJzr3Beu3jgu7NvmNmS+99Dyef+FZz2NUli/iYoTseTIz3Vg0pCaNlSkEDoHKZNYwuOiOiufPPf7x41/HO+9MAOD/jPjAPjJzRwOG6500DLWG1D6G00AnE9YYzPtjiiS7SHRHwIyGf+GFF+KYY47B2rWmOfybb76J6dOnBy4j0JfokUcewXXXXYcnnnjCsZqw//77Y84cb18MwiTspPm8884MfY1gmrTs+KSpzB35wSKsuaNKAGFCDy+keTlQyybcH3/8EebN+ylwXUQTznDJrIN9mGRCmup5+Q2W7uNbJ+SffPIIXHHFpdJ9fpo09q9sBV98bl6aNMOwJ7aiTxpvOiZrC/7aduAQebuceurJePjhB6T3w9dPbCtRM5tIJHDffXfhlVdecmw/99wzLO2brA733DMG99xzB7clqJDmLsuvf/iZFEvLikSsOhnwDjTBl3/JpRdI+5DVTzwEQ8CtObFC9yvfEVZeMHNHeAhp4fwq08Up9luBQyTvQxBzRyDY+6yaiKq0M+z5RxxCd2amZew0qXZJYu4o82dlW1SmkzLhXNPMPGlOIS1Yna1AR9EoYBhWO8XTPkjTp3+Zvob9fEpLSgAAjY2NUs2eLLqjIdOk6fb7xOMXnlwcLz3HB+55iUeJyY1d5yqK9Qtc4hK+s+CTpur7jz46Fs8/P86x7ZtvZuL1119xl6u4z1oxyJCkTdkicUFBAZLJJBoa5P64Imyc5PsBICxEwSlIM5801T3zAta770x0lONZF2beauiWjyyPNE2ErnP91v+lSib5ZNbpf2SatC4ipE2aNAlXXHEFBg4ciFWrVlnjXyqVwrhx43zOtgm0NPDLL79g2LBhru09evRwZJQn1ORL2NGwPmmiwOGnSeOLMIW04HVTCTd2ND09kLCi625NWhg/KXYtvl6qZNbLli3F/vsPxhtvTMDvfjccQDifNHHin0gkpNq1sEJXazVpy5YtVe7zE9LYdnGi+8ILz7lU+7Jk1rxPGlvZF98f54TPe0U7iBZy+fJl2Gabfq4yYjH7fRHbRWbu+MAD97jKZqudYr0YYn4b1aIHjzw/VOZCmpe5oyYKLB5J4cXy+QiE1jlW4BDZNZ0ry47z4D1hYAKP10TyzTdfQ1XVOkcpsv4TJooeeyC2dsRZPzZmSPOkpU3SMm03HpX2Q/XtsTRbsrEx5HgJS5PmrgN7T/xMlkVzR3FirQrwYhiGNbkF1M9BVa9oJArdMFBUVIREIoFmYRLJ+ycyn8nGhgZpm/H919LUGu4Q/LplCumsq9+47fKV9Og25jXkgUN8zR2V446PkCZcJ2iKCft89zYxJQJj1qyvXdseeeRBAMCBBx6Mvn36oqi4GICZ9FyGS5MmOYYtEMYKCvDYYw/hu+++wUsvvS45UiD9ClnRZNlCF99HuMdswG4XVU5BPjJjmGfLvql333UH+qRzHvPohuG2ijAMO0m5YWD06H8gHo/joYds6zn3orxzjJb1o+Y8mQvnmnHjxmHMmDE49thj8eabb1rbhwwZgkcffTRwOYG+RN27d0dVVZVr+7x586wk14Q3XtHpskWQVdCg5nUMcRB3vYQukzenmWC4a6k0abYmxE8rwo5XfZSC45wof/XVFwD46I7m9WfOnAEAjtW7MD5pYjhcv0hsQckk8Exwggppzmd+9dVX4NRTTxbK8hLSdGvVTfxQ8++TfPU+nJAWiUSkPmm8OabYVmJ/Vfn+qOqlIqhPmqyszDVp6sAhWiSqngyKH/YAWmQ2eZUtyjg1aW7zG75eIkHeu0mTbNMsy2dIWg/foiyshQYfLXhLczPmzZuLefPskMt6KhXI/601Pmmqb09KoknLFC/zJvZ8k14+aYZuPT5LgBDHF5lPmhXdMeD4Lvk+mZo02wwskXCafPKPh7VlQ2OjtN84zB05k0a3KZlcoPcTMF2BQzykNK+yfDVpPucxli5d7D4xwCJTGJIZTOpvvPFaPPnPx6zfqh7e0OA0x+br29jYgKamRusbFIlE8N133wSuA/8d48v2yl9nmYIH0KRlQkpPYc2a1a7t5nVdLyX3TQdWrVqJjRs34JJLzueOsf9MJhP28R4+aX5+l52F5cuXY8iQIa7tpaWlqK8Ppo0FAo5sxx13HO6//36sW7cOmqYhmUxi5syZuPfeezFixIjAF+vKtEVEm7YMHMK/vKpJpSlwBJ/t+K0i8uaO4q2uW7eOK6f1mjRR2GS+SKJPmqzcMCH4RfNT2YRK13VHSPkgtCa6ox9vvTUe3347C2Lbih/kIJNPb3NHg0scLWrSvHMuOVa0AwTt0DQNTz31hFCG7ghQI7aVW5Pm/46HnWyH9UnzmhSpBDtAFYKfzZrtdjT9XPzNHa+++gqPeqiFZuckV2HuqLgH9t5p5snK69vlu68plhUG1RVZ+fHmOO6++3bcffft1r6UYFKrIpDZmKICombIujbTnmbB3JEhS2ZuR/P08knjNWlRaxuP9P1Na9KinEbe6x3gJ43smUajEeicVQMfdAhwjvEs11tjY4N0AipbHNINd9Jk656E377jQ4jvmJdW2ldIU2wX++rNN1/vPA+Gw/cwyKKN43zJMxUTZwdl0aIF9g/FcxMtCPjrX3jhObjggrPRnI4AGdZ0037GzkVNRxoH7m8+559qkZXlLg2LX68RozsCZluK0RoBp/aRf4+TiaRjXmj+627PrmLuWFlZiWXLlrm2z5o1C9ttt13gcgIJaVdccQX69++Pww47DI2NjTj22GNx5plnYt9998VFF10U+GJdmbbQpKlYsWI5vvhiGvbddw+8/fZ/Q50bJHAI/6lxRPtJJqQvqWqS5/eB4gN4iB+XQw75DVfH7App/LXEZNa8QMFojbmjbKJ/9tmnY889dw5Yc5OwOerC8oc/HO74bZq9OvtGNoU0t7kjr0lz9zHHhNASCtQThsWLf3Hlq0sJWg4/c0evwCGMurpazOASJfvl9PM26/VeyRdJJBLKZ+CVzFoThTQ+ua842U4/63XpnGEy2ATQ797d0f3k2gf7eM5EWbgfPZWSRIBjq9bhhF0/VH458Xjcdazp9+j9nui6ofTDcxwX0tzRTmei1mYHRVy8c1xH13HffXdhVtrqIBqJSrXwYuCQtWvXOI+R9F1N0wBDCGjh8az4PseH7Dd03crR5wieYhjgp7jsnIaGBoUm261Jk/n7WMdIghV54mG54j7UXlBRHaW6nur4SABzR95Uz89XSqS+vg4vvfhvx7ZM5078t0XVnUVhSPY8WZ40PxN7FaKvtsNXULfNDA3u/1XtkrEmzed95uthbTMM67ugakcxcIjoCiF7R1SLRp2NP//5zxgzZgy+/daM4L127Vq8/fbbuP/++0Pllw7kk1ZQUIAHH3wQf/vb3zBv3jzouo7ddtsN22+/fUaV74q0jU+a/EU68MC9AwkO/As3Z84PePfdSTj22OOlx6h90pzCikpIk2sBvD9Qpk+aXEhbvny59XcqlXLtb42Qxg/ITLOybNlSrF27xmXSYF4/2AAuN3d0D2AffPBu8IqnyVUKB9XxBrdarPJJk+EXgt8OOmC/Pxs3bsSsWTOt3yqNjGEYuO++u6x8aF4TIJVWitekif1TLG/z5k3K8hkff/wRPv74I+u3y3HdVZfsadK80ip4JrOOFji/8SF80rgD7WPYB9wncIg7bLn5+/0P3kPvSreZvdUemuaafE359GO8KEz+7AUnWURCe1tzPI7zzj8TZ515Lg7//ZHue/OB+cqpnrGfuaFhGDkxd7Trkz1zR5mgmEgk8OOPs8GSh0QkkTN13TYJVGkWvfo27yslCrSvvvofe18qBaStSXgzaN0wUFCQ9h3kFsoamxqdmrT04lci0QJZkAmZBl9PC4HSewr6/qRxTZa9hDRdrfVm7aU2JZSXGyQFQFg/NJ7XXnvFNSZm6l/NLyapF4bVmjRGc3NT+lhOwE/piMXsPrdq1UqMHv0P3HPPg2hpacamTfa3wI5K6zQFZH9Lta+KfrBy5QroqZRpohsCv/mPbuiS8dZp7ijFMd/j512G8K9NVzF3PP/881FfX49zzjkHzc3NOOOMM1BYWIhzzjkHp512WuByQsUU3W677Rxqug8//BCPP/443n03/CSyq9GegUMyGeQ++OA9PPzwAzjyyKMd23WXyZGXkOYWlgC5/08QdD1lTb68BAqZcNhac0cG80m7667bcdddt+Nf/3KH/g2qxXrppectXzdGtkwBMjF3DHuOqG0UtawsjPluuw3CNddcKy2Dd2Dfe+/dcP31N9thiJNJq7/xPml/+MNwKyy+WW9ZZEIdS5cuxoMP3uuoowqZGbCoSRP96dxC2mZl+Sqqq93nBNekhRPSeJ8B9z61wBSJFnAmF+Ik0f/6a9asxrXXXuU45rXXXpYL15y5nCsEf/p3dfVmPPzw/a5zU1YIfg260CekPgBe5o7pum3YsN76+73335EKaV5mk3xZqjQHWkQzfatUq9W6HsjUStVXxOTMjNYGF/rwg3ex2257YLuB21sPQbbQJob1lwlhpjbLR0iTLvghHYJfrUl7//13uDLsNmJ9ngWb2Gkn01qBj7hZV1vrEKL5BThZZE6HuS5nZq3UhArb/cZgl7bD41hdotUTSSQSmD9/LrbaqpfzXI+ARd7105FUBPoIgqxPZjx30vyFNPF6MmE6mXAHvkmlUo4FPGYdMXPmDLz1lhkkglleiJE8+XfZMLj9hmEdpFpMmzz5AxQWFuKUU06V7lfhN/v5/vvvEJVEDhUj4Yo4zB25xSB7TJSZO3aNwCEAcOWVV+Kiiy7CL7/8AsMwsOOOO6KsrCxUGb5C2htvvIEvvvgCBQUFOOOMMzB48GDMnDkTd911F5YuXUo+aQFpCyGttf4EzrLSzu6C0CDTpAlnWn8lkwnpR0f1EfarP2/u6GVuIAscIvcdU/uDyFa3AHUS7UwCptxyy/WubR1VSHOuutnmjjU11di4cSOuueZqaRns+cfjcaxduwZ///vl2H//A9P1SXKR4ez3hxfQAPkzM/34WoRt6vuTtath6JZQLkN8XkxjF4bq6mrJdfm/w2nSvI5PJNypKRhyQTddVjTmSIsQxCeNZ86cHxy/a2qq8d57k+Tn831KdKr3MZ2yfNI0DQlR6JRpHRUR9lg9li9fhhtvvBZHHnG0a7+zaKf5pnippERIe+65p7Fs6VLs+Ktfmc9Tg3LGbcAIpJ3wmojLsLUo7vOWLl2M/v23Ra9eWyuv93I61cRLL71uT0Alz1IUEiORqHT8Zu0nM78E5PfHAod4adJ4HPkVhffXzs/ICWn1dY7JvjWGGP7vnxXVTxKC3zpe+O2/eKn+3srqonF/y05rSbTgrrtuR1B8Q/AbrdOkyZ5pxuaOgYS0AKkt2Put88KV/yKzrV12LmA47CQM3fFd8hqTGKJZfiAk9x+NRK17mjz5A9d+Q+esY5TmjvbfDnNQYS7QlSkpKcGee+6Z8fmeQtqzzz6Lhx56CDvvvDOWLFmCKVOm4JJLLsGzzz6L008/Haeeeiq22mqrjC/elciXEPxeyPxBRD8K/xD8TnNH2cQ/rFaLv7bK3JE3oQzqk+YlpPlp0rzKbU3QjrABQlRkskoe9hyVJu3rr81EjdFoFCtWmGaoxcXFUp8cNjFiq+28HwWvifV6f1ShzcXwyn7RHWVlqIRyWXlBzB1FxOhiQHBNmjxPmpe5Y4vy4/+f/7zg2maF4I8WwA5gKCSz9gkeI6Ouzivpt/lMm5oa8fTT/3TsU/r1GDo0LWK1h0yTJj8x/Y/MjyqVwvp0ROOFCxe49jvqnPKeWFljFtdfPvtsCgBg0I47QtM0zzD8ekBNmlIAV0yamfAoW+2+//67ASBQqHHTjFZdh2aXJk2TLsyz+qjHZFngkAhgOH2lgmqfxeciC0sv9lUWOEQ3dJem1zyXm3Bz5m2qKskiynrhCu7gNz74fGvV0YQV5o4+5dXWbsGCBfM9j/FCGjgkQ82cM+x+MHNHLwFf1KT5wZ6tHd0xPWdyBEcSxlBrTPJaaAg/l5S1W6wghlSz+j70AOaOjvke15fsdAPu/nzYYYe7tnUWRo0aFXh+++KLLwY6znNZZPz48bj11lvx1ltv4amnnkI8HseXX36JyZMn49JLLyUBLQT5EoI/6PlW2GiFJo33P1ILaQmp9iJ8OHwTPl+Z+DHjzdXM6I7O/TIBJKiPklNIc9ad1zDYx2du7sEiSbWWIB8RXddx3XV/x88/L0r/zlyTdv75Z7p8CSKRqKX12npr+Yo86wtMODXrrVl/s3b0+lCrNGm1tTWubSpkkxXT70Bt+y8+402bwmvS/MLoh9Wk+d2jrpsTt1j33sr/Nsd1bI7riEeKzW3lPYUpjjoaYBAhrcEr/HC6vKVLlgS+t5QgJGmAI8IcINc3sImE1GyNP18SHKi2thbjx7/uMGXzSyEiE5ZMzWTEM0E47+/pRVgTcuubFLC/CZWyr5tKWb9l9RT9bFXjvx3IRP7Oye6PmTs6faW8hDR15EGZkFZfX+e4Vz63n6y9HUJg0v5WqRdPwpk7us72aC6+LadMmezUdKSvqzKFVRXsFzhk/vx5ePLJ4Dmg3JfNniaNnyyr3i5V9Gqeurra9LG8kBYicAg7VtCsmdt0R38Tc6rJYOaXYZDdv5eViFmJAD5pfL2SzufzzjsTpIvO3bv38C+sg7Lzzjtjp512wk477YRBgwZh7ty5qKqqQt++fdG3b1+sX78ec+fOxY477hi4TM9WWrNmDQ4++GAAwAEHHIBYLIYrr7wS3bt3b92ddEE6mrkjezlFoUGM4OclpDU2NrlMzoDWaNL4EPzOey0oKLAm6zJzR79w3yIqIU3UrMiiO7ZGkyYTOGKxmFLLdf75Z6F79+548EHnhzGIoPjzz4vw3HPP4PPPp+LLL79plbnjhx++79pvatJWAAB69doaq1atch3DmzsCTLvJhDTbPM/rQy0LtpJKpUJp0hob3RqtjRs3WMEEZIiTtJqaGuWx6jIyF9KCRHccNGhHLFmyGID5DO+88zZES3ui534jYCTkCwLT1yQBTUNV8faoGHwUorECFLF5s0soE6IoBtGkeUTBZBMYWXAJVfAF5h/CBw5RJYN1lOchWKT0lGtmw7fFv597Bt98OxO77vprLgCF239j5szpWLVqpVVPWR0sc0dVPXW3uWOvXlu7FgXCjv/Md8jrrCeffBTnnnuhK8CRGPzAEngl406L8A2IaBFpXVM+mjSpkJZ+cA7trscNeUUAZeOOQ5NWW+d4PnYbyyfSju8AZ3Wi1pKGW+QI08Y6Fzikvr4e7747ESeeeJKjnJaE3HJDpVEKEjikdWTR3JGP7qjoUy6fNMl9s0VM3jSStVNdXR0+/PA9x/ElJaVoamq0j7XGGbcJoBk4hKnP3Ivk0jpnsggs06R5WIkATk2aCv5eElw7/e9/U6zn1pW46aabrL/vuusu/PGPf8QNN9zgGJ/uvPPOUO+x57JIc3OzY3AuKCgg7VmGdARzRx5bSHMO4nbn8hfSPvzwPTQ0yFbN5QP9999/Z5kByTB90uSmRWIUPvElaI0mjT83iE9aaxJJy1aeioqKpcd+++0sTJz4Fl566Xn8+c8nYq+9duHqEHwgZwNImNVBwH91LRqN+oalZxMj/r5tc0fbXLaxsdF9chqZI7JhGNiyxanZ87q/pqYm17bHHnsIGzaotWNieZloQWUr7Bs3buD8m8Jp0mTmUCz4ydq1azFnzg/QIhEYiTgSW6qk/21VDPQq1lCUrDe31axFQdQO5S1L7qv6na6E42edIDzLztckK/aqJ2GbQLsnyHYV1M9KGjY+lcK0aZ+l6+KuQSPXX2xzJrcf3GOPPYylS02tYEoRnIWZO6pI6SlXOPry8m6u40Jr0tKTPdH8imf69C8xc+Z017kOZYBhm/PJvnNiyG0tEpE2JtNeqrQ1XiZgvB+bSpgHxAh9Acwd6+uEBThb0+EXuCfFPV9VndyLiWGFNB9zRw5m6ZBMJq3xVDkvUWnSMrSCCYqsD2eiOQKCxSx1Bw7xMjN0a1Gff34cJk16Gz/+ONvaV15e7ixT0I6JbiW6xNctrNWHH7Ly/IQ0cyVCt/+WHcHdC/8Nj8ez47bRkZk4cSJOO+0019h+6qmnYtIkuU+2DN/AIa+++qoVjSSVSmH8+PGoqKhwHHP22WcHvmBXpSNo0oKYO4ohYufPn4dXXrFDHAepg9dAf8opf8T69fJJnJdPmtPc0R3dUSa0ePnv8Oe//vor1t8qn7RcatJKSoqlwi6fq+x///vUsY//2NfX10kndUG0jV74tXU0GrH6vVxYt1EJaaydN2xYrzxXpknTdd0yU7Hra5a1adMmV3RAlRC4ZUuN8rpin5L53Pkhe4a/+91BuOSSv+Ef/7gOP/zwvbW9oKDAMY7INWnulfmiomI0NjZY52qRqK+2gSX4ldWX/+iIdVi0aCEefvgBdeEAauvUQhqbzMrC0ntp0gBukh+JBFykYJMmd7mffPwR1qf7HNPWOAUT2zSPD+XOIy64qM0dvYU0APj886nW36OvuwmvvfayY78GLbSQZvnM+BwnM8UU84FZmhnJ+JVocU/YZFoo9nzU0R1lPmlMk+aMP7p8+TIMHLg9EuL3ixfShD6i8kkrLSmxz3FM1N31eeedSdyxzH/NgGru7zYX9hmDw/ik6Yaj5dg34YEH7sHcuWZCBPH5WOdK2uf9997B0qVLvevXSqQ+aZm6igRI0u4Kwe9lZph0C/jsHefH3dKSUsd54pypnvNzXLp0ie2XrNm+mt5RepPB7A/5Oki+7TGfMP6GYXCLXf5CmmOhM4tWXR0VwzCwaNEi7LDDDo7tixaF0zB6Cmn9+vXDW2+9Zf3eeuut8c477ziO0TSNhLQAtGcy66A4NWJyTZqosp89+3vMnv09d57/yxnG3FEUftjka/XqVais7I7Jk/+HIUP2cQhpMnNH2ccvqFAyfrztPC8maJYLaZn7pInhqgG1Js0Lvg6DBvXHTz/9gsrKSumxdl6yzIVLGZFI1Jq0qYJFPPzwA/i//zvNoYWyNXt24JCNGze4BASGTPuo67pEk2be3y23XI833njVsU8lpHktrojPKx53a+P8UH2MP/rofSxe/LPDjDQWizmc0YP4pBmGgaKiQjQ2NthjUCTmGU9A1w1Eo06TZiea41ieefN+UhecRhSeHddm5o6yQC4qk7H05JNN8jUEy3+k6wZWLF/maPuioiI0NzdbApqqDPaczSAYzNSP9Qfzd72wMKEMwR/W/FvTpGZnYRLsmsen2zekcGeeK5ZjbpC9i6ImTXU9NgnOJE8ar32bPv0LvPvuRFx+2VXYaeddHMfxfaixyfnOM184p5BWixKHkOY2eXPegzu4hJdPmus75ReC33W++lhdCBzCxismoAFAi2J8k70vr772H8mR2UXqkxZigZtP7+NY6FE8KFcya08trERAZ+MVu5ZhICr4MYtm1XHB4sLK48ctdvgJaWGThMv8bn3NHXUdYu5TBgvWxG93fv9ISDvppJNw4403Yvny5Rg8eDAAYPbs2Rg3bhxGjhwZuBzPVvr000+9dhMhyDRCURhaq0mTmYKozB3VkdZap0kT4YNR6Lodgv+TTyYDAF544TkMGbKPlZOE1V2cPMpMEL0GQtU+UUgDsqtJk2ljRH+QIIiahNWrV7qENFbnjRs34LPPpmBnYULjhxiYQyQajVpCp+gfxti0aROuvfYqjBplL/Sw/sG3Y0tLC7ZsqUFFRU9XGWGjO8oWTGTmjoDbV23XXX9tRS8T27mpKbwmTRUQIhqN4ttvv3Fs4wMqyBK2A+6JumEYKCgodNRP5Z/BaG6O4+abR1vaV8M5I3ccG2YCxWACezQalTjupydYioTHMtzRE7VAmrRUKoUbbnTm7zvqqGMwadLbAc5lQpqtSRPHPlEYVfkfBtGk8WiaPGhfpnnPHLWWjd8+Wk3eRKxFIqSJmm4DCqGZaUKjihD8HqZovNDKEgmvWbMK2wur2Ky/1VRvduXOi0hC8NfX1TnGTUceNJ9vnRUwhsv3KCK+r/4+QH4b+F3+lhKqRahs+reHQa5JC96vo1H7feTHOdXduDVpamQ+aZawxHVZcY6gGh8YfBsEEtISidC5xlzpJqD5Bw4BX3ehDskUCgoijh1x7vtHIhpw9dVXY6uttsKLL76IsWPHAgB69+6N888/H+ecc07gckIlsyYyR2aS1V6owj3LwgeLmh1RdS8SZHAXIyR6sXbtWse1Re0Fux6vSTNXLv3NHX/3u4Mxe/YC6QRJdh+HH36Ey9482yH4ZeZCmWnSnHXwGtQ3bdqEU075I2bNmhPqGuecc4bn/mg0an2AVEIQYAbckGnSTLNV3QqcsmHDBqmQJntmqVTKJWDZfdbdZrLAIeZ2+Wo7uwZPJj5pqvcoEom6Vjr53zJtMSAzn9ItIZ85s2uRKLw8NlauXGEFuxDLNIQzWwKMa6oRwctcM8x7xVaJLXNCTQvkXylbEJEuINnJpqxNtrmjppyAi9pjucl1JkKa5jZB1NQLIX6E1cABEPLZ2X1EqklzBY8ypJ3C0oQqfNK8Jq7SMVxyDnufFy9e7C4jLejxiy2iTxrfhn4CFRMAzPsKtqjpm2NM1Gh4RrIUTJMl74QqL2e7CWmSdymoFdKcOT84BB5nj1Bo0hKixt1j4VaiSWOPiflEGjDzjznKVGijGGxc598jzyBXTY047zzvb6+I2K+0iIaIj7mjQwMs0/gWFDieahOnSQtret0ZiUQiOP/883H++edbC0Li/DFQOdmuGCEnn3zS3Nogk1RKx9q1a8DnvMqFJi3MhIR3mOdD8Iv1iMW8fdJkJojr1q2Vtsv69etx5ZWXurYfeODByrpnS5Mmm+SUlLTO3BGQLxKIzyhsH120yDt/lKlJ85/EJ5Mph6OxGDikb99tAKj90mQfcV3XJTn+2CRQnjNPhiik8e+OeE62fNLYdUQhjV/c0BUJcsWVfsMwLC2zJShHosG86p0VZX84NCutGdf4e//tbw91bJM9FtUESkzLoWmy991dYLPEPDUSiajfce5vPWWPPy7tZfpIUUiTmbIZ1kQ6TINoZn4wfoumoaamOkQZXB18hmzp43AIrLaZlmjKBcjTuEh90vyiO3pMoGXnyNrmjjtuBgxDGmGUlTF1qmlB1L17d9TV1TqeDz+2+wm3bKGAz/coqyOPTJByHM89t0hEHiWTrx/fl/n0AYy806RJ+kVQKySW24/h0KSp5ivC9bzuOyHxSWOdQ+Om0qLwY0f5lLctP3cJoknLBHFOomma/2K5YY9Z4nOyhT6FuSP5pDkoLy/PSEADSEhrM/JJSFN9BJcvX4bBg3fFgw/ea60Oy4QGr5DCuRXS5CGsAbh80mbN+tpxnMoUSKb9+PLLadJjZZOp7AcOyY5PmmjeKROWxLYKK2QMHjzEc7+mRQJpkFOppFSTpuvm5KZHjwoA9qRX7D/ye9MRjzc5TEXZpClM/2ty+a3wgpJZ3sMPPwEguz5p0WjU9Z7yWjxZBFOxPLbYUlhY5KifFo15+l5IBSTuY8w/PlXggbCwNmaCtJ8A6tyeQtW6tdaquAYt0DvYJE2urrkWsWTPOcVFlHT7AZr/ipFNpYFDkNak+daWr6NbcNJ13WW+FxRHEJCg58AppHlNysQxTXyevXub5oS8Can0mrIQ/Br7V24NIc/blpCOs+L71r17DzTUNziEa96Sw6+PWeaOCq034NYc+U3O+fsxn7v6WLHsVErHo4+OdWyTzUu8Equ3B9nIkxb0fryO0yXRHS2Nssc35Y03XgEMdTh7Ps2LpUnL0HRZhRhZNhKJKN8zhs7lcBMfixXllNvR1Mhp0vKo/3R0SEhrIzL1F8gFKiFtzRozj9Wnn35ifbhlHzPDY8AJgsqcRQavPTE/dnYdAPujJgppZ511qqMc1fMPFypWcz07+0PgNonh/eSCIhOKi4uzYe7oL6TJ2tqLfv229dwfjUakefJEksmkEN0xkt5uCmnFxaaQwSYUYhuoklnH43H077+tY5tZfvApsdvc0T6XtXMkEkEsFstQk6YS0iK+5o5+edKY2S/rh6x+WrQA8NICeAh/mWhfg3yvWZtapkGy3GUKLcPKlSvxj6uvwNsT/mtu0IL5pMnaS4O7f4ljTjwedwZwUYyFYt+X1d8KhhMyeEiYMdQ83jtZtue50uiOgibN43y/sefII48GYGs/MwkcIk3ZYBhSzVQiKffpEUP/FxcVwYDh8Ini29BfSEta/ypD8Ivn+AZvMqR/yhA1j7quuxYvZWN+NBrNMyEts7lTuKUPEy+/x4TE1FUmo8nG9Hhzs4e5o1uT5t8PwuEyd9Q0/yGHn+cpLJNU0R3zqf90dEhIayOCmH21ltZq0mxTI3sFRSbEmPsyfwnDTJKdTrVuXzNbk8ZPYIMP6mH8iGS+I16aNBawIQwyIY0XQIMiftiCCGCya3vhJ6ibPmmZCGnOEPxME8RWVIMKaU1NTRgwYDs8+OCj2GuvIVa7tE5Is6/NT9IKCwszEtK8fNJEjQ7/m1+w4Pngg3cdZZvPz2nu6CekyczKrMTHhuGY/GQcHluAPdfaulrcdddtePc9dx4Z1bOqrt4MwE6XoGn2yrEsfD5D+u5rmnuF2ZbSAADnn3+mpeHXU7pHTjZ/k2smpF1w/l+l9yYnwARLQGXizuog+9u+nI/PriLSKMPt1+w8lgUw0H3NHdXXiEijXRrSvtzSkpCmBXAtwLGFA4MXzOw29FugYH0wlUop6y4Kb37RHR3n+sX4Mwzwlh+y/icTNKPRmLs9O+Ckmw8mE3Ru5GVSK8+xlzZ35FNAcP2bjT/xpkbl+BVzRINki8/Zfd5uc8eIrxBrwLD6rcvcUZLHkz+mqmpdq+rbnowePRoHHXQQjjvuOGvbY489hkMOOQQjRozAiBEjMHXqVI8SsktoIa22thY1NTWO/wh/8ikEv59jNq8pk03uf/nlZ2zcqE7y60eY6I7q5KOiTxovpAXX8skmaqoBXdM012RAagqVYpq08MKVTODwM0uQIQZYyYW5o99KclCfNNHckV+B1vWUZbLIJkXihFMe3dFAPB5HSUkJRo06CwMGbOfpk6ZCDCjCvzu80FdQUJiRdtnLJ02MvsX/5v1GeW66abSjfoZhcIFD0kJarMA77DpXpW7dzAiPjmfMPb6wCdBVRNNjwsqVKzB//jx8881M1zGqFBEFMed7pkGz/G+8xhpZMBuZr4Z3cAb1gpXYPl6atKH7H4Cjjz5GeR2xjmE1aV6R3Px90nw0aT6FuBb6BHN59rztPGn+fr9cUco6mvvdz3zz5o1obGp0aarFiKKidhdwjnl80AmvQDee7gEuXx+/6I7m8UcecbTjtwxRMAz6rh544MHsYsqyOgLJZBJV68zAY14aMgceh8nTLzgXcJz7gNIyM2daY1OTsg7z5s3lzk1r0lqRxkeGOBYF+Qbyptxuc8eUY3tQrWXodCPtwMiRIzFu3DjX9rPOOgsTJ07ExIkTMWzYsDarT6CRfvXq1TjvvPOw55574oADDsBBBx2Egw46CAceeCAOOuigXNexU5BPIfjV5iT2Ko6XkHbooQdg+fJlmVXS4/oynKuYvNO2U0gTzR29ePDBR62/w4RNl2nSZGZg2dakea2CqxCfQTwex5dffi4c5ewvYTVpfo7zfJ40L8TAIZMnfwjANuljQgZvXsijiu4YjzdZpqJ8aOYglJaWOa7JcAYO4YW0zALlevmkuTVpvD+c2s+FL9sw3NEdIz6aNH7i2L17DwDAXy8+z+ofzmTWAVb+A4xLrE29NNuqoAqucP2a7ZPJVtPliynuukt90pgJpqxOhq6sV5AQ6Ja5I0JMdBDaOtISgmVkYprETzh1XffU6LiSyot1Sz9v2yctuLmjnRNLdo7cLP+WW27Ahx++j0JhfHb7gKaTWyu+QfzYILt+UvK9ctVQDBwSUEgrtnK3qZ+8IUR39BPSCgoKcOyxJ6DXVlulS+Y1rB0vWt+aNavxj6uvQHM8Htjux0sYlQlpttsFt48rg31HmpqaguU2Y+aOWVr8UhEJaGKtNnd0Bk6JBfz+yd/T/GLo0KHo0aNHVsqaOnUqLrzwQhxzzDFWpPI333wT06dPD1xGoCc7evRo1NXV4a677kJlZWWHkIbzhZaWFmy77dbo169/zq8VPLqjvybNzpOWfTPNMP1H9AFwf9RSuO22m7BmzVruOG+BuLS01Po7bNh0se6yjxerc2Y+aQHDgvsgBg558MF7sXr1Ktx44624/PKrALgnBGGfhd+EQtO0jDRpjGQ6vxAzd2RliVoEmZbaDBwSR0mJ2daRiIYw5o4DB26P+fPnurY7zR1tH7dMtJ1AOCFN1Bb7BxkwzawKy3ogUliC+ngSkcISRIrKPCdd/DvGB15pamoMJHiIBPGvYBHRWjzGG1U5YhjtsG3tRKalkpsvAgpTNra4LpqyyQKHGIbVpwK/51r4+xIT7Aq14CvkvpzkUuJRXt8ePtelfax9vJUXUbEIw5DnmXMK487j5T5pjILCQoALDCS2u6ZFufq64U19tYgGCJcKEmREHB99zR0NZl6nXnywyjIMR9v5LaiI/pGGYbd9ts3v2pKmeDzEQoSX1tx+fvF4PO1+kd7HLxpzY6slpAlm88prWOVk5pNWUdEzUJTXSDTiK6M5rTUU5o7p7QWxgkD+ybL3tKPw8ssvY8KECdhjjz1w3XXX+QpykyZNwi233IKTTz4Z06dPtxZ1UqkUxo0bF1jBpRkBeu/ee++N119/HTvvvHOgQtuLpqYWwb43O0SjkYxXNpqbm7Fgwbws10hOnz59rXDlPLNnf+/4zfJOiUQiEei6jpKSEhQVFaOmphrdu3fPOP+OisLCQs/J++DBe1t/r127BuvXVwEABgzYDqtXr4Ku6ygtLUVjYyOKiopcGqC+fbfBunVroWLgwO0tTeCvfrUTysqcoVGrqzdjxYrlrvP69euPrbbqhZ9+svOJsbK6d++OHXbYEYAZmr6pqUlaNz+22qoXBgzYzrFt2bKllr9NmHI2b94k3bf99jugR48KNDY24OefF1nbt9tuoPS+VXTr1t21Ss7Tu3cl6uvrXRESRYqKitCjR4XVzow+ffpgw4YN6NGjB6qrq9G//7bo2bMn5s2b5/hglpd3c0XS22abbdJ51SrQv/8ALF++DI2Njfj1r3fDypXLsXmz6cdUXFyC0tJS17Ni/QtwRjsrLy+3ouix92W77QZi7do10o/U4MF7u94/HtUz79atWzrXm/3siouLLZPUHj0q0LNnTyxbtlRZ9h577Imp3y/Ewnh3JOONKCkpRVNTIxK6hoqCFAoUMkGfvn1Rtc70KSguKbaSlG43cCBWrVqJ8rLyUGNCRc+eqKn2njj03GorVG/ejMKiImlCZC969eplJTAGzP5U3q0bNm3cCC2iYeDAHVBdvRlbApjm99xqK9TWbnFEQysoLECiJYFINILtttsey5YusfZV9umDeDyO2i22IFJYVIR+/fqjpnqzrztAaVkpEokE+vcfELiO2/Trh+rqasQ9cg+KRKJRpQBQ3q0btt66N5KJFqxatcq1v3dlpWuM1FMpq99uO2A71NfVSu9Vi0RcwqoW0VBcXGxFg+vduzc2bNhgfWv69d8Wa1a76xGNRV1R6lh/6d6jh6MNAKBHRQVKS0uxds0ayIgVxBwCvvitKykpQVNTE8rKy9EgiZy5de/e2LhhQ/qm4JrfFxTYE9fuPbqjdov/OxOJRqCndGfZHOxdqqioQE1NDfpusw3WrV2L0rL0eMXVobJPHyQSCVSnx7qi4iI0ewXK0sxxRdM01FRXpxOBs0m1jmVLl/nWPx/ZdsAArF69KpDJIz/eibC2YZR364ZEIoHmeNzqhxUVFWhqarK++6y8yj59sL6qSlouI1YQQ0GsAE1NTSgsKvRcsFLB9zkvItEICgoK0ezh4rBNv35Yt24tDN1wzWX69d8WhYWFaG6OY+2aNa5no6LZiGDXHbfHbwcUeR7Xmjl3GAoK5PLCqlWrcNFFF+Hdd00f740bN6Jnz57QNA2PPPII1q9fj7vvvlt6LuOEE07AhRdeiGOPPRZ77703Jk2ahAEDBmDBggU455xz8NVXXwWqYyBN2rbbbtsmgS9aS319uI97UCoqSlFTE2wlROSrr77AiScG8zVoLVdddTWuu+4m1/ahQ4c6fm+9dW9s3Oj+ALCJ6e6774mdd94Zb7/9XxxyyO/w+ef/y2o9+/ffFqslH2HGmjWbEY1Gce+9Y/DTTz9a5m8PPfQ4brppNOrr67D33vvg+++/w0477WwJGnvuORg//jgbV1892pUzhWfcuBdw3nlnAgBee+0tDB/+e0yf/iUqKnri17/eDW+9NQl//et5rvNuu+0unH76GY7n+fTT/8YFF5yNww8/Aq++akaX22OPPbDvvkPR3NzsEOiCcNJJf8Y//+m0h77yyr/jPUkgBS9OOeVUvP76K9J9N954G4YM2RuFhUU44YSjrO0PPvgo/v73ywNf43e/G47//e9T5f4LL7wE06Z9hvnzM1ukuPTSK/Dcc8/gj388CS+//CIuvPASPPXUE67jDjroN5g+/UvHtuuuuxGPPjoWZ555Lm677U5cf/2N+PrrGfjmmzm46aZb8corLwEARo++CWvWrMELLzyrLJMX2A45ZBg+/9x0GmaTuH/+cxzuvPM2RwJoxvr1ta73j+fRR/+Jyy93B40YPvz3qKurc0Rj2223PTBv3k8AgGOOOR4jR/7J6scyFixYitPOPBsHnnguvvhogvI4kb///Vo8+OC9AGC9ZwDw5JPjcP3o6/HbQ4Zh8uQPApd34oknYQKLvKjg1FNH4ZVXXkK/bfphzVr5pFrFKaechtdff9n6veOOO+Lggw/BSy89j+LiEjzzzPOY8PZEvPPuRADAyJEn44cfvsOSJe6Exv/3f6dhypSPHVFl2XjVrVs3PPnkOFz196usfZdffhUWLVqIDz98z9q2w/aDcPsdd2PipHcxceJbnnXfd9+hWL9+Pe666z5MmDAJ77wzwfd+b71lDN4c/zrmzv3R91iG16LNsGGH4bzzLsL5558lTSNxySV/s/2U0mzZssV6DmMffAxTp30mvdfevStd+Q2Lioqx666/thYvLr30Cjz++MM4/PAjMGXKx7j7rgcw+vp/uMrq3r2HSys3cOAOWL58KY455ni8//47jn3HHzcCg4fsgzFjbpHet/gdOvKIozH54w+t34P3GoLZc37AgQcejBkz3BOqs846D88/b47VsoVH/t6HH/Z7fPrZJ9J68LBFoFtvvRN33HGzSwM3cuTJeOutNzHyj3/CW2+Px3XX3Yh77hmD0aNvRq+ttsI/rr7COvbyy67Eho0b8eqr5li34447SpN4M6LRKI75w3EoKi7G+PGv49//ftnS3jc3Nzv6fUfirrvux2233eSy1mCLbEEpLip25QHceeddsWjRAmux7dhjjse3387CunTgjP323R/ffDsT55//VzzzzD89y996697o27cvfvrpRwzYdjusXLUicN0Y/fr1x5o1q32P6969B/pt0w8LFs73XTQHgB12GISl3OLU7bffhR122BGLFi3CHXfc7FooU1HSvSeeeeJfqKnx1hS2Zs4dht69uwU6buutt7b+Pvnkk3HRRRf5nrN8+XIMGTLEtb20tDRUupRA9hXXX389xo4di+XLg6+yEyZrQ0442gKVqQx7UU01t7nqlEnuJz/8BsZEIoFnn30KY8febwlogNwnjTcBi8Wi0DTN19yRN01jq0MjRvwBw4Yd6HmeJjEzcudIMus1fPjvM/IlCxLgIwheZmjffPM1/vSnE3DvvWMc28ObO3rX6/vvv81YQAOYT5odOETlB/nLLz9Lz21qarISgZsfZLcJnJmPzP0+8GZ+fIhkVeAQVVv7tV24ZNb+edJ4Uikd0GIo8AgaIWPGdHtCyufoYxqRsBaEQUwiLZ+0kGkgzPKd77ueMixz33i8CTfddB0aOI3k9tvv4PCNuPXWO9Gzp+mHo0nSbPD+r67E1Yba7DTIe2twJmnBzR0106ckBF5jkR3JVz7WywOH8LnVnOaLPOWCBs46l3s2lrkji+6oNMeXmYuq02oYQj1FXD5pYuCQKIvuqAr48JP1tyyQC9/vg+ZJtU2oIX+kzNxRCGqiSRwVRXPHVEr3jhRsIB3d1H3fHSmk+tChB2C/ffe3fpv92l3/sG4Eorl19+49rPZgY+N7779jCWgAFzhECEClgg0lmYbg9/I95eHNWr2CCtn1cj4/ZonF+kWQMtJXDnhcfrF+vb3Q9Mknn2CnnXbyPaeyshLLli1zbZ81axa222479wkKAj3Ziy++GIlEAkcffTQKCwtdA/53330X+IJdjTUKU4tcwF6YV1/9DwoKCvCnP50iPU4lpNkvnj3xkEVAay1+QtqiRQtw/fXXSM8TPxb84BCJRGAYBsaOvd+zfH5wDhvdUfwYux2I7UmDyvfPC1VeurB4CaqNaTOjr792Oq+Gyxnn7+Mwc+aMUOWJphpmdEc7BL9qwsWv1LPV0eZ0XpriYtPBPhqNSv2UNC0incDyuen4oCC8QBdESPP3G1P7pLnzpNnX2LBhPc4//yzPsidNegtNzS3KaHkqvvzKDjDjENLgGfxMSZCw4mzhJKx5sKz85SuWYdly2wx02bKljpVLTdMs34hYLIYdd/wVysu7maH8NbeQporcxn67BDc4J25emEJaxKpXEGQTcj88J28+jSq9FD+B13WohqjycreQZgYasU+wA4dkEN3RChyiCMHv55PG4fZJswUhmRkZP77JaswnJE4kg1ki8d8PWTh49gQsnzRHknlvf+lUykzH4SUwqhJAhw0c8puDD3GMI22JoRsoLrHHrea4PEdZaCFNGGd69Kiwnr8q4Ajzfw8+j0qXFyIVQyZEuDxpQeYpYn1EX7WgaYJ6VvQMXMf24qqrrsLMmTNRXV2NQw89FJdddhlmzpyJBQsWAAD69++P22+/3becP//5zxgzZgzGjDEXw9euXYtvvvkG999/Py677LLA9QkkpN18882BCySc8EEq2oq//e1iAFAKaX6DEx+CPxeaND+hY4vgW8DgA4ewlR3+XoKEpX7ooccdE+owYee9ojsyWP0ikUhGwSRk9ZF9IH/720PxxRfTlOWIgUN4WGqATHKp8bQmobmMHj16OFI7sDxpTKvFX2/YsMNw8cWX45RT/ugogyVibWgwJ+Wy6I5uTZrdbw444CB8/fV0h3DCa9LEXGWsvGwLaZFI1PWe8gsSc+bM9iwXAEaPvhplg/ZDpBU5DVkicQBgeQrDBq3wCysO8NEdwwtpixf/4vgte6YJTkMd0TQrkqK4Aqxpbq2TFTZEMunXPQK4BAlbbhh6aE2aloEmLeKlSfOZgMuiTor3phrTyyRCmqEbDqHOiqJoaZG8ow9fcsnf8MQTjwCw+5YmeXaqPGmMwsIC3HjjrRgz5lZHPVz1MnSUlpRiS0L+XWLwvqtm3XhNmn90Zw2aQ9svTzkgDxwi/zYZjpbT9ZRjLHOVLeT8qq3dgq237u24ThB23XU3XPTXS9tNSEumEohG7X4Xb5YHDgk7jonveY8e3a2FTfViW8zMFxrQXYh964OMmdLzAx6nRSLW/QeZp4iaPeYbyh6rV79i9NumH6640m3GnG+MHTvWte3kk08OXc7555+P+vp6nHPOOWhubsYZZ5yBwsJCnHPOOTjttNMClxPoq/DHP/7R878gyBLE8RiGgTFjxuCII47A8ccfj7lz7chq06ZNw1FHHYUjjjgCTz/9dKDr5QvnnntBRtH5MiHoOOo3OPFRfXKpSTv++BOl+0XhwfpYcgOFqG5nx/3rX07fIpEhQ/ZxrNTKJoXeedKCadIiEbmGxo+g5o6DBv3KsxwvEzNVxM5s50kLSzQaw9VX23m+nnvuGSSTSUSjEYcmDAAGDdoRBx/8W1cZ7LkzHzKmSdO0iCJxq1OYZtorvu34xJyyd7mtzB0rK/tYfwcVkLVYQWjzRB5eWIVhpAeZkEJagJw/7LkGNQvjmT3nB99jEvyYwpn6uJLTw93GhvWOKzRpCrNfvzYyNf92HYILXsHCZ/NEvSZiGcjwfL+9/oZrlO2m0qRJzR2tPGne0R358Vu28MLX0asNCguLsMsuv7bqqBLSDMOQCoEiYnhxPvBBIuE/SY9EI1JtP8+iRYsc++0FPLeQZhi6o5+kUinPPsZMb9khV155qbUvzIJcW813VCSTSYfmWPVdC5ryQkWP7hVWP1Z9C5nwHDi2JIsWmaG5Y1Bh2mFNEuB4UZNmC20suqO/vue3hwxDRQfQpGWTK6+8EjNmzMCbb76JN954A9OnT8cVV1wRqozQb9OGDRuwZs0ax39BUCWIY0ybNg3Lli3D5MmTcccdd+DWW28FYHb+22+/HePGjcN7772Hd999F7/88ouynHwkqCq4tYgv6Jgxt+Kqq9xqVT8hjfe98IvMlwmGYUbE69u3r3S/KKiw5+fMUZNwbYtEIq7IiCKi8OTnh7XHHns5fqueHfuI8ZOGG2+8zbNsETP5czChscTKkyPHa2KsuuewQlq2NWnRaBRDhuzt2q5pkXQkKfvZxGIx6WTA1GBGrH5ra9J4n7SI63i7DjFruwy1kCb/SGVu7ujsp2effR722mtw4HKtukULWjUV4c0+mfYkbHlBonTJNAHZhE/TENEi1mTV1Z6a5hJorLfPMFyTJ12irWGvK//eit+AX/1q57RGSbeEDi9tl1DF0IJ3azRpshbn762lpQVVVfJourJJmZH+HyOWfndsc0f5u2f5n3HTFn5RTHKCt09a2qJAlQLBIaQFeOBieHF+DA6y+ODQ9ivesnnznMFidM4nzSWkCYsHeirl2XGM9AKMTJMZxuI+rHl1tmDC9mGHHe7wL2xWhOAPInh7UVRcDDY6eLtIaIFMnzdu3GBFSw4b2ZCNWeFy5Wqskr7H8352APDhh+/hyScftfpfLNAct2P6o7WWkpIS7Lnnnthrr71QVlYW+vxA5o51dXUYM2YMPvjgA+lgM3/+fN8yhg4dKg3vy5gyZQpOPPFEaJqGIUOGoLa2FuvXr8fq1asxcOBADBgwAABw7LHHYsqUKfjVr7w1CflEW64s8ZO3Rx91q22BYJo09sHMnSZNPSljpmqMggJzgm4OCOagwPvPMaLRKHr16uV5bdGvLB6PS9MRMN5++13stNN23LnBzB01LYIDDjgQb7wxAX/+84medWIUF5dItVyygbe01FtI87onlUlZ+MAh2dWkxWIxqdlEJBJBLFbgWDCIxQqUAlMkEkFLizlOMUFHZe4YiTjzkTG/L1XflE1gWqNJ8zJ35AW//fc/ECtX2tG+Aq+YRgsQVbzu22+/g2cIf8AZQMUwAqVjdfHppx/7HqNppvCUyjA/kB+JFu67xfl0iRPKSCSCiPDAnCZsop9PyiNwiL29oMD2BTriiKNQVlaOX35ZZCYcDjl5kfnG+hGLZfcbJPY/VX/cKp0YWYR/ZBHBJ83PdJgXhgyPhQMDZhAZFQWxwvS5coHdFtL0YEKacAyfLsDR/xQ4NHG+13OaO0o1aRCSWeupdDqTzd4lSy4dRMhgBDbbhRYswXNAysvNVBL773+QI7VMtswdRczxkFnQyMetSCScJo1FGw37bY3Goki1+AeTYmjc/2cCM7f/3bDhABAo9VVXyK8cJOoj41//+leg4wK9Tffeey8WLFiAJ554AkVFRXjwwQdxzTXXoG/fvnjooYcCV8qLqqoqh2alb9++qKqqcm3v06cPqnzyTeQbmSa6DQvvi+NFW5k77r+/PFqirjOzCnn3E8PfsxVPpyYtZdWVEYlE0KvX1vBC1KTF43GX351oQsnwNnd0/mbHhRmYSkqK8dNPc1wTZ9nAy8z4VHibO8qFsbBpNrKtSdM0Tap1jkajKCiIoYnLX6PSpGmaqRljmhPW1pGIPO+KqEljJoaRSAQ9elRIj5fU3DdBvArVSr+YzFrW94KgefgKBCnPETiEJSHO0cc2l4lO+clgRIvY2ivJM4hGhLVLFsEN7ihnUnNHK+KbvZ1PbB+NxixNXkrXgfQ4GDwsc3ito9c3yDcohGzSLgppCpPPrbaSL5rxk1BmmmZp0oTvwpFHHI2tturFRTJ0a9LkPmm6p19ghBsbzHLdAjtg+sppWnjzOKdPWpDcVXYbic9AxDJ3tJ6J209R7KuplC41P1WV7SgrhCot6DhVVh5eq+CFnkpxArfgdy6pfms1fo5k1spIx5rSv9CLsK4EkZCaNNMnLdQlpLD5YRBrsSBm7x2dnj17Bv4vKIE0adOmTcPYsWOx3377IRKJYPfdd8cxxxyD3r174/XXX8fRRx+d8U0xVCsdYVZAysuLcpbMuqIi8wAgmUT5y4SiohgMw3+i7Vcf03m+9W/wcccdK43wZxg6YrEoSkqCmYGy1fzCwojVHwzJinthYQzbbbeNMlk3AHTvXoLGRlvAMYwkiors51FRUYqSEntC1bOn/VErLS1Cz57OD0thoXluLKahoqIU0WgqfWwhKipK0b27tzDFw4LM7L//YLS0JDFnzhzsueee0lXwnj27e5alaerBWhUgRNfDDaJBJ4ojR56Et97yzpMFmP2Sf96M0tKidFQyu95lZcWutmBlmPM2c/LWrVspKipKUVpaBF1PoaKiFMXFdr/r1q0EpaW2togFyigqKsCGDRtRWOgcIouLnRHhAKC8vNhaSBDp0cO7/fm6iNfh+3hZWbGjXwZFixagqFA+JgYZK7t3t9ujpKQQhmGgUFFeaygqkmtGc0FJaaE1BkYiEZSVFVkTtqKiAhQWCW1idXMDJcXO/lBQEIFL/tGAsrIiRLn3tpjTSBYVxVCUvsa8eT9h1112RVlZEerqvANTMEpLCkN/51T9EzCFpLIydXLZ4uIC135x7I5ETTNRMcBA//7bSMvkx6eycrYQYL6z5d2c78xFf70IF1/8g2WW6by2WU6x2GYw+zcbn2UUFcbMtk/3BfHdtswho+kFEg3SyT5gLjBohno8TAaYoPJtWlLq/a4XFZn9sLDIPKe0pAClQhsVFkah687ItH6CCd83AVjt3twc3GWjoMDdX2SwnHDZwoCBaNTsy3x/SCVbpBq71o430Sgn6CiEo6KiGDRoKCgId62wC6B+FiAi0UgEMWsMzHyuF282UwvwFhcqEok4SksLUVYYQUWFfzLr1sy52wu/BNeZENjcsV+/fgCAbt26oaamBgMHDsSQIUNw4403ZqUiffv2xbp1tt3runXrUFlZiUQi4dheVVWFyspKaRn5mMwaUGuMsk08nsCKFXLfAB7D42MCmCtuzc3hHfhFWlrkq0G6bkDXDbS0BBuImNlXY6MdSpeZszlDthvYsqUJ3bt3x+bNcpOOhoZmNDXZH8zq6i2oqrKPralpRGOj3Y9qa23tTVNTAlu2OLVudXWN6XqkUFPTiLo6c9Bqbk6lywr+HFmoeQB4990PMXLkcbjnngelbeG30BaPq4V1FoJfhNU9KEEilnXv3gP77DPUJaTdffcDGD3aGekpldIRj7tvrKUlhWg0hvp6u37JpCF9J7W0lqSx0Wy3eDyJmppGJBJmEIGamka0tNj1bm5OIZHgcj6l341k0jx25szZWLdunZX0W7Zi2tjYApVRQnW19ySkocGsp5hYNR5vcZiENTW1oLk5vCmgFokhmVCc5zMOmNj3xeqaTGRXgwqYbdxW42Rzc8p6fzRoaGhottq1pSXl8HkC7DY3DKCu3vnuxOMtjv4EmKvgDQ3N1hgFAFHOsT6R0JGI2W2iG+a4xJLBFhUVe5oeN8UTnmZ8MgxD/WwTCbO+KuLxhGt/o/A7mUghVhBDSuijxcVyzU2C65PsO8HGk6Ym59jV0NAMGODGfvtcph1PJGURPZNoanLfF0u8m9INNDQ0W/0uKZTB2j2RSFoBXlSaCj8FRhArBV5TF497fzcS6WcQTz+rpnjC8V1j+5q5PmgY/mN2S0vK0Tas3flvoh+GDs/+xCgqKsGFF16Cp556InDZXiQTSaR03XyfubFtc3WN1W5HHHEUPv74o/Se1i1Et7QkrP6nymvGxkrVXEiFZforWfiQYQdXCz42W6bbIS1Oe/SoQN++fbFw4QKsX29GYw4ydm/ZUmd+K1u0DpfMujXE43GsWGG6Kmy33XYOP+8gBPoqDhgwACtXrgRgZq1/7733YBgGPv74Y/To0SNkleUMHz4cEyZMgGEY+OGHH9CtWzdUVlZizz33xLJly7By5Uq0tLTgvffew/Dhw7NyzbairTRphmGgttZ/NVa22PLYY7Z9rBkVq/W24qrOqOt6KPMtZoLG+38w1bkYOATwXk0S/Tk2bdqEqVM/Ux4vmjuKZYtmLGIEMv74bt28tV+8CSMzeZwz5wfpxKCgwHul1ctcYt06uSAf1ictiEmGyl/rd787THq8zGxC0yKIxWIO01uVeQVbLWbt4jR3dEdOc5s7Olckt99+B/TuvbXj+KD3CABLly6Rbmew/lJS4lw1TKVS2TF3jMaUZi1ByuPN9MyAQuHGBTEvjtrXr+18Fsxnaf4tJjDWNNO/g8e6Z0m0QD2VcpkLskhovAlg9+72u2/maePHFfPfXluZ/YxF8Tz66GNw/vl/ldY/rGmo1zfI1y8ovTsej+Paa6/C4l9+dp1j/nbXqbi4GA8//AT23HOw83hOSxyxhCRm7uguh39e/H7PwCFwT1qj0ShK0+8a6292KHLRJy2aLqP1gW2CCGkR4X33hJk78nnShEPEKJpmAAvvtlbdp9/kf+B222OnnXYGYD/H4cOP8DwHMFPJhOXaa2+QmvundNt3kI+MW1dXCxjAiBEjccYZ51jbs+GTxvBMw6F5qGAVsG9VEA0VYAv48rmC5JsaiWQc3XK//Ybi9NPPBADUptMliZGIZbCIy12FlpYW3Hnnndh///0xYsQInHDCCdh///0xZsyYUKlmAn31R44ciYULFwIwY/+//vrr2GOPPXDffffh/PPPD3Shq666Cv/3f/+HpUuX4tBDD8Wbb76JV199Fa+++ioAYNiwYRgwYACOOOII3HTTTbjlllsAmI1/880347zzzsMxxxyDP/zhD4GyfXdVMvVJ2333Pa2/ZQlagWAvIs8ZZ5yDCy+8xLWdOWIHHST56I5sMGQrgjL/MW8hLeKYsEyc+JYj1LBYpitEt0tIM+vR0FCPPn164N13JzmO4z/8p546Csccc7zj/F//endLmOUHZCssdUruDFxY6Cekhbf/DpvMOkiCU1Nocgsw8pDZ8nwr0WgUhYWFjsAhqmiKTOhiIa+Z0KVKZi36KMo+/mLya9l+lZD2+997T0LYYogYrVPXU8J1/U2VZGjRAqhOEwUUGY77Yv1Q0/DA/Q9LI3GKHHX0MY7fXkJeW5k7apqdJ81OJJ3eB1mkTt4nza1tkfmpmcfb2/fcczB69zYtQCLC2MfqcMaZ5+CGG25Bnz6mkFZcXCKN4qpBCz3B8hTSfBfkzP3Lli3BmjWr8epr/3Hds2Go9RK9em3tmijy/qGWMJQes2T+ZY7xgvvbjvgoGU/gzmsXiUSs8tl11UIaK9MZcMgznYGCIHmyxEUZL9hunfNJE1djdEmgHz/fMlVACb/FmQMP+o1lCcIC75xwwome52RKz55bSQV5c8w0/+YXMetq6+TmjiGENFmb61wSd1XS9ERLS0Y+aay8vQYPCXYCE9ol1ykvM7XZhxwyDMPSgT4iXH/ZbruBoeoGmBYyAFCzpQaA99yQvZuNjeEsdTo6t9xyCz766COMGTMGkydPxscff4wxY8bgk08+saLXByHQrPuss86y/j7ooIPwwQcf4KeffsLAgQOxyy67BLqQLEEcj6ZplmAmMmzYMAwbNizQdfKRsC9oa64TRAMm+wCUlDgDBMhWhgoLCz2jBooUFxfjjjvudpkzME1aYPvpdMJhXeeFtIRVV4b9kfXWpAVJ5s0fL/ubwQJULFu2FIZh4J57xjjqIk7qve6Z/0jz5guy7iNOesQ8Yl7JrFW0pSZN1UayVb9IREMsVuBYjVZ9FFi/YsIzr0kLksya+QU6V76dQp3smpkKGKyviUnvdd1w9cOg70txv11RPmhfGIaBWGl35WQkiIlKJBLFX/7vdLz62n/MwOnpcOR9+m6Dfv22xQ8/fO95ftD0IxoyE0IzQdNgTVBcz0Zzh+C3zd5asHHDBse+lO5OZm2n47DbLxaLoXv3btiwYX3aaZ9PA2HWobi4GLvuuhsmT/4wXRVNHkBCQ2hLLdWiBuCvSWMTe9YfZQF4DEtjIMcrKi5bLLDLdZcTcWjSZIFDJIKFbriEkj33HGyZlVrBY3w1aUY6IGhaSyMx65TdI0+zwg/YcT1+8chPSEv/a0e3dAcO4QNb8NvC1CNt5+kryEcidloL1rdzteii0iSnUrolEBQUcJq0+jrrPEc5Ieona3M+VZFKk9bc0my6MoacArJ3ct99h2Kbbfrh7bfHex7v1V/KystRXVOdXsBkq1H2vffuXYnzz/8rnnnmn4HrxxaWWdA1r7Yu71aOurq6LqdJ+/DDD/H444/jN7/5jbVtwIAB6NWrFy677LLA/msZvUX9+vXDkUceGVhAI9qOIAKh7GPCf8R1ycQD8DexCwoT0oLaT7Mw6amUXa/WmDt6JZk2DMNRpr+QZtbDnSfNXRf5RNsOk8xfN8qFpZZr0pxmEKLQkkmiaVVAERVB2k/1vGXPUtNUQlrEtV0VOEHTzAkwE57ZRMtMHGwLGXzZvKaPmR3yyWfF44PeYxDYMxRNg93tHlwQjJZ2h6EnkazfiHjVEuX7EMQMOxLR0DMdRt1atWc1CiA0qrQOLo1lK83JwsDnSWMTNfaoI5rmCsHPduq6jrvvuUPYpbveT1uocaYH0TSmuRHlGZUQ7daOsO1hBVov7U+QhOtr167BXXfdnv6dkkQr9M4lpkoQbu4zz0t6JHJWaQ5Zn5S9G+aign0dDRouueRvSmHCKwQ/3w6ZaNKCjMdB8+QBsDUn7DlqmqsbGVbyeW6b35gt9LmX/vMCzjzzL7659CL8wkcGkY1ViGbgZvkqk8wU2EPgLTJY7jG3VUzwesgWBXkhOC4scLLvVXNzs3mhDBfqIxENpT45UQF4atLs3Fy2Bt7U5lubQ2kVzXqxBQyzX3gtAvXpYwYP2nvvfUNdo6NTWlpqWUXw9OnTJ5RfWmAh7eWXX8axxx6LwYMHW/5pTz/9NN5///3AFyNyi0oDJiIb4PhBiM+TxsOvTrUGJqQFFSSYCRuvxWN/OwUq/4+D6IMkkkwmQwppTKOH9L+G41h+MiUT0kyhgflk2PfHJv3mh8ff3LFbN6cDbCbmjmHspM1rZK5JU5k7qoU0Z9/r00eeCN02d3TnSWN15j9koiaNmZfxQR/8hbTwpsAMw4pYJ2rSnAslYbR1kWgBjFQy3SnNyfOYMfe4jvP6sNrHRB3379BcBxHShOdy2qmjcMYZZ7uiDWqaf9jxbKFFNNeEkq+IqGH0ml69+eZr+PbbWY5tlrkjp32IRvh+5ryG2k/Pa3vISZWXuWMAIW358mXW75bmFtx447WOY5i2SYV4LylH32ZWAx5CGjeO8gKiTDtu19u5kLRNv34oLCy0yrI0aFF5ZDxLSNMNx/sn+ixmC4e5o8+7zupqJZjX5IKww2dNC2DuqDk1cpMnf+DybZMRiUatSb9lvRDwff7jH/+EK6642rX9hBP+iN8c/Ft3HRULVikuWXcBN+6w75rYQ8IEKpKNlbruFoIZbBLe3NxsymgZ5oMzc8kFOM4S0tzzv7K0uWMkYmsgtQhv8p2Bj2vE6UfqtUjZo0cPPP3Ucxgx4o+hrtHROf300/H444+bKSDSxONxPPnkkzj99NMDlxOolz7//PP45z//iT//+c+OAb2yshIvv/xyiGp3TdrK3BEIpt2QDXCikCYrJ8ikLghMmxFUk8ZyRjGBCLAFBDFPGuCvSfManFtaWkIJaW7fOOfKrl+eNb5cmZDGaw95RCFt6617O36HMUtlhBXSgrWf9z2LyHzSzMAhzu3bbjvA8Zt/3tFoVJrMmtVZ7DO8RokJS7xWUTSPlN1LprkQ7cAhbp80hxbAp986iBY4zo1EIhg4cAf3YQHqHIlE7AmhrpvdW9BCeVZFEA5+vdvuOOKIoyFOmTRoocyPWoOpbWV/i6vrMrO5cNEsrbGJbwNuMcA0DeOvqagnoJwEhtVSeGvS/HL5GY7FpvoGiW9J2ixONVlT5ZcE7Mm8zGeUIcuNZv6dcu3n6yTzFRLNG6OWb5pck6YbTAA1/79nz63c1+L2Zwo/hvj5HIqTctPP0olMhvD3P4S0Q/LCXUlJKY488g+u+ohJwYMuKo0ceTJ2+pU7zkBlZaVUeBDNhRn8dzsmM7MO8K6r4Pv1OWefj/79twWfzFqEWQq0tDQjE580rpI47LDf49BDf+dzmHkv+w9156ZlmjReuBW19GEEVtNv1+lHGvMQ0iKRCEpKy0JdozMwe/ZsTJs2DYceeihGjRqFUaNGYdiwYZg6dSrmzJmDiy66yPrPi0BP7bXXXsOYMWNw5plnOjrr7rvvjl9++aV1d9KFGDr0gJyWHzT6mp+5IwQzEa/zMsE2dwymSYtGTZM0meCxYcN67jj/XCFioAiRlpZm1wSXIRfSnL5xGzdudJwnCnleJmb887D9P9zmjpFIxKW5EQXoTMwdlyxZHOp4LyFNFJpEVG3Ea8yYVo0FDuHZdtvtHL9Z0BXme7ZixbL0uTHHvy0tLYKQFk6TFjZwiB+sbd1Cmu7waQrjkxaJxsw42ApYwvcggUMikai9sm6YK8KsHoHMHYV+aQVrEA9sQ3NHc37CJuhC4JAsaPTY+CFqbHnB0BndUXE9TZOamYXpCwxvTZr3uYahO9ISyLT0umF4apRdPmm8mXrUKaTJTDl57c6A7bbDX/7vdAwevLf1jGVaXQOC5sgKfJNu83QbxAqY5keuSUPa3JGNz337yHO/yQjTTo6JbsDT7NtzL3K4TXG1QIFDZM+f//aWlpbghBOcWpGIFrG108yMNExUa4VgLhNWVf3fSPdBACiQLvZlR0iLFcQQ0czvjK74zrLvlalJy1xIi2gRFBcXS6O88rB76bvNNjjnnAsc+yxzR26hz2HhE9IfOBqzv5kJFpHVR0jrivTs2RNHHXUUDj/8cGy77bbYdtttMXz4cBx55JGhElsHUo2sWbNGGlExFos5VHmEHPZ+nnjiSOy88y54+eUXc3QduXAlIjd3tF8ylSYtzMt21lnn+tZBJkiceuoovPLKS8J1zUGhQbaC6zjOf/LoZzYWVpNmmzs6B2Hb3FHUpLkHM3YM/yFkwt/7779jRYVjxGIxl1AgXj+TwCFh8RLSotGoJYyHE9Lsj2txcQkSiYRUKO3d26k5LCwsQlNTEyKRCFavXsXVw3y2zBy0oaHeIfwwLS2DBfBoa580WQh+lbkjy/OkJFrg0P6IQsDAgdtj06aNgepsXpOZVrFVe36fN+I1rN+SCVPbRXe0tYNwCUjueoSdXqm0/Lw5tnNckZcTiUSkFzeFzHBCmpc57uzZ33t+kwxDNDeUCGnsXVdo7FyaNEnAJ0srBs0dyIDXPELDMccejzVrV3tqhgzD+zvGnmE0Yj4bUcjhTQo1zU7r0Xeb4EJaLBaDntID5briF/AikQguu+wKPPXUk9Lw/XLzNkEQ1k1zZ8bmTZuwebPHuGEW7CoHcAdSEttTi2iuccGvj/K7VT7KMk0ar913nSMJHGLvE8oJ8Q5FhEUV5uOcUnwDmZBma9ICX8pJwDpaC2cSgauoyDS9TKVSlpm5hoij6KBjb3FRMU4aebK1qGZp0ryiO7bR4lu+ka3E1oFaZsCAAZg3b55r+9SpU7HjjjtmpSKdGWu1LxLNeYfNhk+aKkpk0Ino+vW1uO++h/xqIa2r6FsFmANIbe0WvP76K54lBvk4+GnSmpubpdHLVDBhSLwXtSbNLVyxY/hgCrzAxmsLAbOtRGFPFNL8fNIOOOAgz/1B8OprrD+FFdJ4s0b2oRUDh1x66RWujwr7KIrlsmuzflVbW+vQWJpO6HZZsuiOTiFNvrKrCmTih9rcUe2TJksT4KhPtMChSRMfNZvYBROyIvZEyXBHnPQ/XxDSFO+oprXdiisvJLkmm5rMPyPcDIuNH6ImjU0T3UKa1327r60hA02az7P98MP31DUwdEcdebNz+5i0b4riPRC1kylufLN9ctNCWkRDr169nOcr3jvrHZFqVpxCjAHnoaKPmWvssAKHONugstK5aMbOVbVIgU+6FEZE0Drvv/9BuFLiq5W+Yrpu7Pqy91EIGoJgljayZ82bfzuiBFrboq53KoxGWvbsNMF309rutaCTroPMbN61MBRivHFEXk6PEYahS98FAChKB/ZqaW4BoGUeOCSokMb+lfjc29YhduJ2jQ++omkOTflll12hvM6fTzkVJaWmZo6PKO01p+qqmrRsEejpnXPOObj99tsxadIkAMD333+Pxx9/HA8//DDOO++8nFawM+G1ApQNsmXuaOb+kZnZZO9lMzVpskm+Xbdddtk1XbdgE2BZ4JBrrrkeBx54sKN8L9V+ItGiFD68NGmiUCQLwe8npLHgDnvtNUQSPc0mGo1JzCZFIc175TZoaHQvvM0d7YlP0DxpYr34yIy8YHLllf9wncfMHVVCGksmfP/9d7miaPJtYn/QgmvSzD4VXEhj/nRFRUVKIU30ReQn9qq2sxz2YzHHpEB8b9kCTJD3ijc5Mkx7R7B3NFDgEOEaarMYby8cPo9ja4lw9ySOBbwpJCOo7yyDjQWOwCFRe+Va/A6oxyO1eVqQ78iwYYfZ18/QZ5LBt7VsbNJTRnqxQpFkXhivUo6FErcmTewN/CQS1twyYvkEqR6HyhyNv66dpkNu7mgYzqAoTDPhrJ8cTdN8c1oy+IUea5xRFMzul2nMZSaAZvqWcMKBql+Jed5kixvWuBAN55NmFiCtjHRzxENIY9WX+aRly9wxEo2kFwgMNDU2SY+v6FkBABg8ZB8zBH/gKzkJGtBDs+YbwIEHHIz+/be19tn+cS1CZFNuocgR4EzdbilOKI1Go1ZEVq/xpasKaVu2bMGYMWNw/PHH4ze/+Q0OOuggx39BCWTueNJJJyGVSuGhhx5CU1MTrrnmGvTp0wc33HADjjnmGP8CCADO1dRcETSYg0iQwCHZzGNkmgDI6zp9+rdYu3YtbrjBjCAWjUax//4HYubMGZ5lyrRXe++9DzZv3oQZM76yjvGaUDc3tygFHC+fNNFfTmXu6BV8pVevrXHEEUdh/fr1PkKaWxvoNndUn2+W0foIZV6CIO8fKDOFUH0g+XrxOc74PGKyZ8gmQqpcR926mck3J0x4C7/9rZ1gmpmuMNoiBP+RRx4NTdPw3/++YQnpfCJzgPmTOLVhtiZNHr43EomYbRItgGE0Os4FgGOPOR6fTJlsCXBB6hyNRq0PuOgoHyhwiHCM1S+E4/jVcZkPxzbbbIO5c3/0vV4QzOiO5t+WibQjF57/OLfzzrtixYrlVp4gHhaswhE4JBLlBAlRQ6Aw3ZI8h/QO3wnmc8++hNVrVmHq1M/M67fifdd1w52WQCCVTr6uEkjE+jpTp5j7UsxE25SUnecLUXIBOJ69fDpvQGYNaWufmNYlJi2DPTNDd+aAU5p2SU323O+2iqgjcIg3rK62EC+PHBwWUyPovnozv2gFt5aMD4tva2tCaNIkz87UWEnK0CK+z0dq7ihcI4zw4DZ3NLW4TU1yIa20tBxPPjkOZWVl+PzzqYHcUKTXDatJ0yIoKCzEuedegNtvvxkAUJL+XrS0tNiJ3B2afKdgJrZtNBK1FlWSQhJ6S5PmYUnSVc0dr732Wvz88/+3d+ZxUhTn//90z+y9yy7X7oLciCCnKCCIgqLiAQgCoqiogMGDeOEVRE0knph4xBs1iZKEmBivBKMxeH4TjfqLCSYeMVHEiwVR7j1n+vfHTPVZ1V090zPds/u8Xy9lp7u6qrqrurqeeo76CCeeeCK6du2a8XOQDtc3b948zJs3D9988w00TXOYIxBiNNOkKLcdVi4Ev1d0R5FvW5ArIhZTFdvxgQMHYeDAQaZJegwrVnwfM2ce50jPq5/dxFAmwiKjpaVZGNDEXZOW4KZ1mjs6yzb70rGJtpuQxTPZdApp7uaO9onGtGknYN26Z1yvseP24WGrwvboiQyhTwFnMmQX0syaJGZyYQ4cYq1HKg+mSQOc+9H506TxtYJ+hDSWlpljqarqWJ1380mz75Fn1I2tYMdtIc5T9T9l/uk4Zf7pWLXqRkt6IOVrYN/rh6Vhk7adO3ZY8stEs64/P465ox7IIR53LFJkGj2Th6IYm0SzvcsMjYwzWAFvsnvSSafgjjtu5eafSCZw770/sZo7qjFYfdJc6qebRfLL5mlN7KRW+432yW5Rxnuyn9LoKCgW7KXpNHc0vYPpdt/baCwsODWczr7WaErPN3d0/x6y/h+PFXHz0LcGsO2t6G+7DUXaasEiSHttJ6OwhZO0Jo2TNplMOhZJZOBpbyyaNM431Pzbb3RHcUX4/VwovMF4d0QaXV5aGcwCtJo2D2xsbHQNrc9M7IWLLTa6deuOr7/eaqukZB0VxfyP5X0rTX/TWltajMXjmE2bb/7b9r1WY6oupNldBeTMHXOzZUXU+dvf/oZf/OIXGDZsWFb5+H6LunTpQgJahuRaSMvG3NE8oIr2SQtaSPMyyTOboVRWVnrmKTJFs6wSqe4T6tbWVl+REXlO9Oa6WAVEcQh3VjdVTQXcEOVr5O8upPGczc04N4f2t72CrrXxqJ9fc0czTGOmqqq+14u9ruw4E1zsfcBu7ghYJ3fOfdKYJs3PPmn+hLTGxkZ9kSKZ1NLmnFbBi+eTJjJ37Nevv1HPlLQD88TaucKe3oDU1C6HH3Ekt66qamjSbv3RzbZz/scyUQRWc3hoXmQ2v5PN4uJinHrqAu651HNK/W1fqU49PvvzcuYR4/h+mHn99b9YhbR4zDSBsmvSnL5Dqbqoeh5Wk23v90exaRuyEdKSSQ3JhPt3JZFMQgFQVMyfHNufqdncUeFO4mxaD9tiFwChFoOhJa2LjXp7aMbzBcw+adbrDXPHZMZCmgLndikiLPuksUm3UMuKdN0MpzTLM0r7fLu1mtBk0EOTltrw3W7uqJq+Y05tjRf8OYnCzUNxcxvRx0heG4m1s4wuXbpi2rQTHMctC41pIXXvXpdAZmZzc4C7FYSd+fNPc9ZY8hmqtv5ivjfd3LG1xdTmtoVrk6bcYf1gej+PPvoY43gsppt2u1kIdVRzxz59+vg2lefhOtp4xe9n3H///VlXpD1jBA5RHR+CoBF1ihkzZqG0tBS//e2vJV58/gpkpi/bpZdeiR//+BbLMRkhjWljYrEYKiudAUVE9bNPqv1o0tra2nz6pPGFKVFgAjefNCNqlNghGUivkHpo0ryirtoHVb+TuFT0RvEUwDtwiFzQCsCpSTO3Q2VlJXbu3GHRuvHyMAekMU/u7P3DS5MmErL9PL9XXnkJxx8/Q1/pT5lEOTVp9iAdrB52c8ennnoWX375BWbPng4oMdgn/U4hLfWvjAkcb8zKRpPG2sP5KhkTsnhRHLDNv/2a63Xr2s3SZyx5mZ6lw7dG0mxMVVXPwAj2rTzMEygZAVdRYBIorBNwT02aTduQ1UTJQyMFpH2/FBdNmq18q7kjb+HD9pvzvPaa/IF4z0ODZvVJ42xlAgDx9FhojxTJ2siukRJpabht4vJM7MRNY7KsuaNm7h/mPqIqgEegEFVVOe3K11KZzb/hWGSw9m/Dn86HkCY6yhPSFBcBM52cv9+mc2HITiwWM0LWmzAHdWELV27Rpi1PXeFvpeEoI8PFTFYGYLwn5uvYAmCLWZOm2sYUxSqEWuqVHnsnTjzMEoVYVWNoSe+t6hY4q6OaO65YsQK33XYbrrzySgwaNCjjhTJXIe3ll19Gz549cfDBud3fq72TL3NHN01aIpHgCjE8ggjBb+bKK1dwhTSvfdLYoOVXSDMP+Txzx0w1aW7mjqK6OE0vxUIaExgSiYSrT1oyqXkKaV6TKuc+a/4GkHg8LuWTBviL7ggAK1feiNGjx+CSS5YCYEKa88MJAP37D8CXX34B+ybiDPa8zf2nsbHJcp4npFkmJRZ/pcw1ab169UZTUxMuv3w53n//Pd2x3x4YBXCGDzebB9tX5rt06YqePfdJCXLcD721zvp4JPE+26NfAsbTyMRF1ej/9lk4wEy8eBMsv2NPaiFD7Duk2CY15nN24YsrpMXcNWmpOtiiOyrGBMr8TEVjtgLD58jyvijWCWZ5WbnFVJDdh9figixJTfMcq9lig8i0zy0Yi8gCwu16ANi7d7fpvDMHT3PH9DVMk2YPk28OHGKuj59IroqioLhEUpNmylfxEnQUQ4AE0ppo27cmmdQQU92FNJesLTQ3N5vOOzVc5kWHjOYJXGGMv5jhGoKfLfRwhTTbb17EUPA1tJbtEdLvr5smzepPzHftsCP6tsigzzdMEWQZbAGwpblZoN20jhWihU57XWImM0j3wCEdU0jr27cvmpqacOKJJ3LPv//++1L5uAppixYtwjPPPIO33noLs2fPxuzZs1FfX++/tgQA98ElKEQf/GQymbWQFmx0R29BwuyTJmPuaM7b+NsqpKXawE2T1upLRS0SpgxzR/OzFk3mjYE1FkutbtqFvwMOGI399x+GtWt/AU1zCml+1ep2Ic38u0ePnvj2229ctXGqGnP1STPM2txNPHmce+53LXUSrW4CwIMPPoJ1657BG2/8Ff/v/70N++SOlW2ugznggN2/r1R3snY3d4zH47oWlSekVQ05FGqxVfCqGzgI3//BDwEAr3/5S1QMPQLbKgeg04ijsLWiH6pHHq2nTfQagObySlSPTJX3UUtnfAstlabPGP04ALzZoKG4uBWVw45ESSIJpciqabM/aj0Ev9m8Cny4/ZUtKnhM/Hv23AdDbVEZxSH4jfc0zsnXt5CmaS4CgznIAQtkYprcOB8Ytz5ehuXOTdPNQpo4e10AUxRDk2ZbeGIZzJ+/AGPGjMWll17IvU9GVj5pLvtBMZLpCIiicPNu7SczObUvdgHAnj1mwZQnpYEbHZOZk6r62JAaZ+x7S+pCWjIJxI38/UTGVSD2IbUT47yPYhktfcJ8f7ZxKhXox6VugvD2vOMttsAh9oqZI21mIqSJfM947coTEk1nAYj2SRP3Kf2YqnKDAZkXV5km3G0h1VqOdxCXkpJSge+23LPU+4s+vpp80tg3Lb3nqHGN850CnP6juuuC3QRZjenfQPfNrDumT9qyZcuwe/duXH311bkLHHLFFVfg0ksvxcsvv4zf/e53uP/++zFu3DjMnTsXRx55ZCBhvDsS+dCkiSbrLEABIB74GamgBfyJSVCwlT7ecYY5up8oop0Zptlxaq/kNWktLWIhLRNzR3sIfrcJiVmTZhYSgJRT8bhx47F27S/SAre1Ln786AB3n7S///3f+POf/4QFC04WXh+LxdDSIvabM/vkZeuTpiiq0HStW7duOPPMRfjb3163lMsw39ddd92PCy4417JS2qNHD3z11Rf6b33VscW6cmzcV+rv4uJii5BmuUc1jpK6gUjs3a4fqqiowDkXXIbG9CNLxoqhFJWiDTGoxRVQi8uglhj3qMVKkIwV68falBhakirUknKopeWWtC0akGgD1JIKKC1NaN3+leUZ2OcHzKxL5n1WFbFZn1cbnnvuUqHGluuTpps7Zu+TpmmalFmaPduUKZW1brzplarGLBuGm4V2hnmLkdQEzCSkSQQtUBTF8E+zRTdkz6q0tEQoBFjG0iwmSklNcw1lD6QFUkXRN8t1q4sdrt+R4p3GEt2Rcz61L5hYuDS0LmlNmmAblVTgEOO4sF/xC7GYMbphEdI8tA+sPvon1KEQVqB5hOAXmZnymsoipHGuU03+k5nNE7w1PEYdxYFDGG77pN1++x3YuXMPHn30p9y8PTVpqgp4hHOwPnZvTdpDDz2Cd9/9p+O4tBZKsc7tzFcZe7Y1W5+bKa35+2X3N9THbM4WFXKBQzqmJu1f//oXfvvb32K//fbLKh/PtykWi+HII4/Evffei/Xr1+Pggw/GHXfcgUmTJrna5BIGUdjMOjWxN4QeN1L+MEY+bEKf78AhZnNHmedmnjSby7HbXrvvk+bP3NFsBmKtO9/c0T1wSEqg4WnSzKZEKRM5az5+hTT75NkySKv8iIxmmMbPK3+mHbTDb0/rhMIagp+vSbPn5+YDOGhQarA0Bw7ZZ59elntnUSLNgUask/pU2iKTn4miWLcZUNQYkEwg2bxX/2/ShAmo71qDsriCsriCuNaGRPMeqMkWaK2NKC+KWdInW/ZCaWvUf5coGmKJFv1vc9ryuIqyuAK0pH5rbfagMfzAFJa+KHi/1FiMOwG0PxfutbzJnJtGJcYmzc5JbSbmjvzgAVZ/Mme+PE0Cf8EqaRkjnRqkpGnSb7aiUBTVOuHR+O2jKIoRLp5nHopUG/I0j+x6hj1Etr/vkLdPWiKRSI9RxnPgRfwTVJRzyCbEc0Lw19bWudda0ywBGzT9eLpOLHCIQJNmRGHVLM9f9Lwt1+qBk+C5fYH9mtR1Xu+Ykq5bkptOUVQkPQKJib6DCmdaKFq00usejxn73GVgccMV0USBQ7jvqDUnngKBZdW3bz8MGLAv9z5VRcGQIUMdx+1BXbyGI7s/qoylC38hRa7v6MIZZ/sD9k1rbmnW207T+IuPqTysZYoW1ix+mi4LEUFaYBUSAwcOxO7du70TeuDr6TU2NmLXrl3Yu3cvysvLcy5wtB+MSVGQgs5Pf/oLaykug7Ifc0eWnsEmyGZTr2yREdLY5N5LYGDwhLSU4OMtKBl5+BPSrL5L5rTOSSDPxt4aOCSlafv666/xwAP3AjA+NlYhzRk4JFshzexnwfOds8NC37udZ3nxBVPvOpoDh4jMHY38+EKa+T6YxsGs8bAHDonFYvjxj3+CP/zhBUfe5vzNkwD7PfJXmp2mNux9VRUFo0YdYDmvJTWrplkxfGbsmiavVXf7mKD52Mw6xgmQYZhiub+XXG0R6+uc44YAzBHSfJrrJZNJd01augK6SZtuquWcGIoCh5iP8+ps7mfWfYhsPmkCozRFUTBmzFgMGrQfZs6abTlu7u9xkTDKWVww118WTcLcMRUB0SqsmscYv989p2ma2UwrxTXXXGc6z6uTXAh+9h6INGmaZtsnTcKCSDX58chOUi0+aZy/zLD2Z2OEeYyqqemsjy9ucLVUULhFOswdbRQXlxjjSlA+aYIgJoqqCs0dFdN7PXTocJx8shEx0X4F1ydNVTF50uHo2XMfW77eFjFm/PqIA/wxTnaOrQdt4Qj3RUVFGDduPC677Ht8c0fF3SeN5+sP2PY0dfHT7KjRHS+++GLcfPPN+Otf/4qvv/4a27dvt/wni+fTa2pqwpNPPonTTjsNM2bMwBdffIFbbrkF69evF5ogEXxiMf8+aTNnzhae69atu+W320cpFThEn155lmuegLN2ZtcHY+Yq3syaYfZJM/8WITJ3tIbgV7kTbcY55yzCjh3b+TXmatJEQppTaEgdEwtpLP2ePcbqi1kjxSZAPJ+07IU067PwChvNNH5u5wFv7aHtqOUXW+GOxcTmjs5y7Xk4VxQZgwcPSaex1m/BgrMwYMBAU13N+afyMz8fh7aQZ95p+1DpQlpSg6IqqKioxIoV39fPJx2bWSu6yVmRre0sPkwcHBMGk2bfCzUVBsx2M9YJgQhXkySH0GqeNPNWwf2bO9qfE0NVzPuk2QVQ58RQJKSZ4Y0l5ndSUUy+HrZJkdAnDQrKyytw7bU/RF2d4QtuHtMURRWbMpo1aQITJhk0WXNHWM0d45aIeD4XdG39g3d9TU1nz2zMPmm13WutRdgWHe3mquwZMwGUIdyDy/K8jXHbKwqo/Rpz3UQYRVk7z+WXL8cPV94IVZH4vvL6jcI3MbRs6cK5n+LiIv17IFo0cBTlMQ9RVH6KlLmju5AGAMuXX4MJEw7hnwR/TFEVBVAUdKrqZD1u1gor7n7tACzNokBuY3GecCu9mbVtbmcZnxQFF1xwCYYPHymst3WOZO0Xhh+xrW6mdK7mjh1UmbNkyRJs2LABixYtwmGHHYYJEyZgwoQJGD9+PCZMmCCdj+vbdM011+DZZ59F3759MXfuXNx3330WMyBCDnN0R1n1NePBB3+Op59+Qjq92NxR86VJM5s3MC2GMYnKlyYt5vjX7RqRuaNdUNL3x4nFuM6/a9f+wnHMni+jmbMBMCA2d3TzSeMJX+aPPZsI8kLw86Kvua2meoXg93J2j8fjrh8esyZN3idNbO5YVeU+7siYO5oFq9GjD8Szz65PX+MxWeCsMlqFWOs9KmrMOfEWaNKSlj2YTBP3ZNISEjy171Hqt2Ml3+N9drRTevIWl9FQc7S/DLvvguO8y0ST55PG2qqEs0Aguxo7YvhIvPuvDdCSSfFkkaNJMwtG9rqJhDSz1ohn7mjVpJnKFEyEedXkHjedU1UVMYEwyvPvNervQ0gTBJIyk0yw6I7Gc7BohnwK2c51AVV8EqIJf8onrbS0DOeesxRD9t/fctZuGSL0SUtazR25lh0OEzFj/Jftu9Y2YhoR92v06I7phCNHHpD6rSrp8SOT6I48c0fzliTOa4qLS9Ca7u+8fQ69EGn1uFYJAjNIdo0Z3t5zej68Mll5jva0+myZx8Q5c+bhd7/7jSW9RTuuSEZ35C1mSi5u8PZH45ZhPq2v7VkDGTkXOtm33KZhM70HrvukSVpCtTceffTRQPJxnW3/9re/Rc+ePVFbW4tXX30Vr776Kjcd7ZMmh3nDx2Dy400m+IOy2UROpg7myH6GuWPqej8hiEUogoGL5/9j/pi6bdLMPrLW+3NGdzR/2EaMGMV12BXV2U5LSwuqqjph166dluPmwBnm672ENGfgCyNkuVlIk/FJq6ioxO7du7j34rWZdYlH2Gjeytm5534X999/t6Xe9uiJDJk+aGgRVey332Bcd92N2GeffbhpeYJOqp7GfZmDz8RicW7kR/e8xZo0y/NTYpxJJl9Ia9i8WT9nTpJMJi1aAEVVjHDHHj5IY8cejLfe+ptxQqRJc5nAeNU99a+1r+6zTy988cXncnlyDrD8SjhBgmRMnu+550Fs27YV7/5rA5Kam7mj2T/M3lByWp+UkGbkzxXSLJN+c9h/m1+sKAS/SLCxLTSJJ9smwSIbc0c4w9PbSXBC8JvfPb+r6Q4Np21M51zgOKRpKeFRVVUcNGas9YTpEvY+CaM7apqlSBlzPvMWJLITbbvJObueh3OfNNt5RUlr48XlcU0JFWtehx06Ga/93yv4+9/fdpRtpsQUSElWk2Ypl1s/UeAQFTxtHg+LdtI+jvHMHW0BOBiihV4AGD58hFNIs+1xKdJqXn75cmzdujVdV057yPqkscixuiZN0G/0Pm0ax+H0STdjRHe0Yn4P3MbnjuqTNm7cuEDycX16s2bNwsEHH4zOnTu7/kfIEXR0R7uWBhBr0lKO3cbq3rvvfoQnn1wnzNsc4YiZmh1//AwAwJFHTs2u4hALaWbsk2iv1V9ZTRqbYC9efA7Wr3/Nf+VNNDc3Cz4kSNfZr5BmvUc20VRVVa93SuNmzcccSY7h5sfl5pMGeGvSePexcuWN+t/ePmne74HFZEhVcd5538UJJ5zITetXk2ZtFy/TIufCgf35ZOKTBgDv/msDdu1igrSRJqlpusaLpU96RNJiV/fs2dNy3B5E1fAdkV1sEQlp1lSqomDNmseM326TU87zYH2aF8lVRqjo1KkTiuKpNnYLHGKeZNnzVRQFxxwzDSOGj9SP8TRpMdP7CPAXriyaNJhWuxXFErRA7JPGPWzKCa6mdJZ+69CkyX+HUv6RHpq0tBA3dOhw/VgmPmljx6b2ZHXKzv6/m6zeQk1wuk6dO3cBAHTqVG05zyahWjJpHa9EWhyLIGdMbGXvXeUEDhHCvhmmfdKsealIJr03s3Zkayp76NAROPOsxcKyzRSXlOjBrngLFp4IvqEik0Sh0G877r7Jsrx5ofk9sy+2c8djm7mj6P0ZOfIAHHlkausVrsWJrCaNacVU9h3k37f1u2c+bpoz2fsSm2vYNZGmMtziFHRUc0dGQ0MD/vGPf+Ctt96y/CeL65LHzTffnHUFidxtZm39biiuPmnmwCGqqqKurg5btjR41hkwJvsHHzweW7bsxAMP3ONYOfJfd4UrWJjhmTu6ISukxeNxbN683XdbiDRpog03veoCWH3SUkKa/SNjCCpMYOOZO/I0aZWVlWgQNLEzNLpdk+YupHm1hdUnTSyYupfBzI28/e3khLQS7vHMNGnWwCEOc0e7YMMRBtzKSe1xZJ5gKXrwBq9Jn+MDLaFJc81POCn1EG7Tz2Dfgfviv//7r+1au5Bm3Bev78n69TDBTEuKQ/CrJvMe+/umQEFVVRWWXXolFi5MBx3gzHNVNWYx6+KNARafNNWI6Gg2fXRDJJikfHL4QqY9HSMrc0dYoyTySCaTUJDy87z88uW49dabPBcueEydelwqvYvWw21RzMwXX36OLVuLOPfKtE+pOh068TDE43GMG3sw1q5d46izBs32rfW+F/3dsmldXK9x+C+Lx0l2WCyCKdi06VPsP2R/cQph3mws5b/7vGPFxcVIBG3uqKj6fVZX16CkpCQ1Z1HkfNIAd00a7yU03lGxaZ95rAL475LT3JFbXVtdeYuZcn2HLfqwMaO0hL9lEbfNFXvgEH4kWMcG5uZvqOtm1h1Tk9bQ0IDLLrsMb731lj4/Nz9n2c2sO+bTyzO5E9KsHy5Nc9/M2m7uKBulkZk7BhmKP6VJk4vuKGtmyRNUUi+G1dyR/RuMkNbMfR6GkGafnDuFtK5duwFI9Q/7QG0W0phgwPNd45lTVFSINwC3mzva8/MS0rz6jnHej0+aFSPqWjBCmvmepMOD2+pqBM8xmzvanp8ag2KbPolMBi3HTH+nNpQ3m8wYq7HC+qbztJtjOTQ1Fh9ZCQRNJRLe7Jrv7//gBs8sFVM/KeFMMGQFSuaf5Rrd0WRGpb+P+lK0U0uY5LxbdnNH3rBr1qQVFxVZijALnUJlh2gSDeP5uW5p4NLH/UTgSyY1T3NHtk8aAJSVpjZxt/oD+RVUxO8L76nwBNovvvgcGzd+Ihxr9LIUBePHH8LRNrJFoqQlfy/hBoBl03ZZrSXPf8p85fjxRhAMVh/RouzOnTvw3//+B99u/1ZYHrfvmLRUIp8wXgMUF5fo/t1Fgr3y3BArxgzz8ut/eBOuv/5my3Fn1fiLnOysGd6tGWOaWGtk30qJJ6A4zR29v2H8xUzPyywJmZBZWlYmSMbK0ABLnzaNFSLTRVtdLIFD3DRpPiPzthduvPFGqKqKdevWobS0FL/85S9x5513YuDAgXjooYek8yEhLY/kcp80w9xRPgS/7CSNmTuyVamghLSjjz7WNY3hk+auwmfwNpa2+3ll8/x51zY1NQmeh1NoEJk7rlnza9x884/Te3bxhQy7v4eMT1plpVhIs2vO7EKXl7mjV9/xMneUUSUYUdcyF9LMv+PxuEmAMNvT+9ekWfZFs2kL+c7u3po08yNJOjailTB3ZNohR1AZUXRHU525Oabzc0yI0s/a9jFnpTBzRVdTHYc9m8J9tgzZsYpdq0FzN3dk9+BYREn/a34inCE1qWmImwR1Nlk21zORaMO+++6Hc89dirr6HmDPzb5PmkhIE45VKTuwdHkumjTT3/Z9jPxNnLzNHS2rxOl/rOaOkoKKHsjFiuf1LuO6w3rBtN2CGxafNAkhzQybtCqS6VP5ckzRTJeeeOJcOBNott9WRPt4AgJzR6vKULDRuPNYUTyOtvT4ZF4cOemkU4TlW/LkjECqoloCXZSVV6Bv3/7CurM6W/IQmPelfvMEUH6+5r6iqlbB2yswhgJYgkAJ03HKltaksbE//UexIAL39rTQ3jm9TUPqWrsmzb5AAj2dmZglcAj5pNl56623cNlll2HgwIFQFAVdunTB1KlTcdlll+HOO++UzqdjPr08Y2jSsgsc8pvfPIXrrjP8fuyatGQyiU8//YR7bTKZ4Ahpcs3PhDRjz65ghLTzzvsuPvjgE8dxht3M0Ut7w9ekJQMT0nhTWbumjuEnumN9fQ8sWvSddBrj/KxZs237pJkip3HMHe3HeL49DKcmzfpsS0u9fNLkzB2zCRzC6pSNJs1eDtOm+dGkmdtdFBDG8CsDoHgLpVLmjknramznLinfmS5duvJrKXgGDilDcwoUvEne3Xev5p5zaKFs8DRhMrgFNpL1a2DCSDKZFG6wqpiEHP1Z6QEYrBo1gO8zVlJSguJiI/9EeiHB/I62tSVQVVWFiRMnWfJOFW++H/E+aaLjurbDre8q4kmUr8AhEiH4AaOH8yw1pP2yWFREx3usmn84y/YhpHHz5J5P/esWqXXp0ou4VdLfLcV7z0njGvOYwvumOAVF3j5pAHD22eem6u4iHIiemLGZOn+hhfuoFcXQpJkWR446Kgv/dcUozF4k2z5Fqm56djYBzmWccZ6yPntz+/C00pYFNkUuumOm38lUOr5FgJ2hQ4dBURScOHuu5bibj7buS8vxe9TrrpJPmp2mpiY9ZkdNTQ22bdsGILXJ9YcffiidDwlpeSQTEzszhx8+BccfP13/bV/hX7PmZ/jZz/hq1CFDhuqDvDGZk/t4sPDnQZs7plYX+BNOwL9Pmj2EMsD388oUGTMXhjGZN5/zDu/N7nH27LlYvfrntn3S4o50jLa2Nofg5bbXmd101D6Jy1aTZl594wnX/swdne3KKdH2Lx/2TLx8Ciw5W94zI2qb+fymTZ8CSO1dqKgxoWAj+p3K0TjmiO6I1ITn4osvx6ETD3OtL8/v0fI7/a/XIg0zrxWtrIo+vkwQdovEynsePAGYITvmsO0JkomkcD9Hs6+LfRVcEU7SUhx77PFYs+YxlJSUcDduNgfSSiTaHIs0vL99C2mmCrqaO5r7re199TMimjezPuSQQ8UJ0+UxX2O38OcijEhy3u+LLKJn5OXnaDEpFLSdyGzUvEgnHzjEqfWx9hnneT26o+156ZGA3fZKU5zfI+Y2wcrjabgUwbSRjdPm90661bgCk7Gnqf38rFlz8AOOGbWfMngCqNFubtlY53E8rbTd3DEptGk28BLS3N4BkbbLzv77D8Ojj/7auu8ibN9DkSmpIDQ/AI/NrDumkDZgwAB8/PHHAIAhQ4bg17/+Nb744gv86le/Ql1dnXQ+JKTlgSB90kRaIdGk+f33P8EzzzyHm276kSWYg9s1dmbMmIlVq25H//4DHOVmip9JuqGV8TJ3TK32mgdIu7Mmj1NOOQ2rVt3uWR8RbmYjTnNHu5DGz8vYyJmZmFo1abwy7T44wk1X4dScOc0dvULwuw8d1klKppq0VB7+NGkKnn76j8J0zL/Ssu+Nj33SjD5pHEtAQVPlPijvewD2nTANpfWDLJEZAadAwze1MWvSktY8lNQ1Bx00xn0GAed77djMWvdtc59EG3UUlCeox6xZcwAAnWtqhHV0TA49zMlk99ph/TipJYUmfSnzVGPxw3rOWR8zZv8T82R01AGjcdppZ2DBgrP0Y21tbdaocOk8taRm6Q8iP2JhMytmE3A3TZrL98HHGM4CUsXUGA45ZKIw3ebNXwEw3ldLCH6JQCeA6fnaquc1WXW7HaGQ5iU8pTNNfUNM15l/CAo2tML+BVSAr72w5sP6UtL805HWa0Nr3jPQkoYmjXt/gvtpbWVCWrFnWqksOUIkQ1VV7nYsMoKM8Zvz3Vadz51Xtl+fZhmfNK/v5N13r8ZtP75LUAYzE5Z/r0XvlHOsVRxpUvWVewYd1SftjDPOwNdffw0AWLp0Kf7yl7/gqKOOwq9+9Stccskl0vmQkJZHgvBJE2tzxLbU48cfgrKyMqG/kxc1NZ1x1lmLAxHOGOa87r33QUyY4Pz4O/dJy94njcdPfnIfzuKFGnaps7We2Zk7mmFtwiaATHumKIowhDzD7oNTVBTHE0/8AWeffQ4nrbu5o1dby2qf7P5axvXOY2wjVnud/Jo78voSY+DAfR3lZ+KTZr6+VYvhsJO/i4WX/hD9xxyBeGUN2nZbHfbtq5Becx+HJk3i3ROaO9o1aWzRyKsN0//yIiCmjvOvP+SQQ7FmzWMoKze2gCgttTqyO+5Gcam/4BiPeLotWVhrHqpi+HeqNjMhfZIjmnybFjPM/jaqouDYY6c5tr2wtDvTfkDzJSTZST0n9zZgddL/FkRsk4EJaWpMdd20lsE0KnHOZtaeUWFjznETgE3Y5aHgO985D506OTe9L7aFhNc1RZIr/JpmCxxi9kcSfHdjJo17Jpo0Xv/gTaqTdjNd2+UiH3VumWk0W/RLZz34ebEQ/LIBySx58nzSVKOfi66SO8Yvw3VhylXYswqPvD5t0aRBQTIhoUnzGPc6deqE7rW1gjql//WhtTKPdSqnbzkytz0/3ubrZsyuGh2RE044AbNnzwYADBs2DC+++CIef/xxvPTSSzjuuOOk8yEhLQ9YNWnZ5SVc/ZBYLTRHqwLkB1MvrUpmGHWfO/dk7t5rbHLv19zR/FzMAVOyJRMhzalJ8/LlSpVh16QBiqtmzJo2RVFRMQ49dBKqq2scab2iO3rh1XfMZiMytvZlZWW46677uWXICWnWckUMSYek5r07MuashqbTuCdNUdGlqgLHTJ6IkmQT2nZ/Ay3RKswj9VusfQVSq9mayY/BzwqpXfiyTw/MPrJuGH5B/I+2H1+Du+66D/ff/7A5E1uWpmAe3PdJNhKlgp/97Jc444yFrmn0MU04IeFjrlu3bt0xc+Zsy3l7XxeO127RHT20eeZJovtedOZ6uftqusF80mJqTGhCaoYtlvE1aR4BhwTvotfkU1EUTJp0OAYPdoacF0UblI3qmtrM2tSOHB9Ve51VXZPmsqeXDe4YLPjG64fFoUHTp700ac7+qgn83Iyc+cfZOG2eL7j2M4tikC9wGT5iHIGKd4VredZzPA22l7kzwNOkuQtpUGR90ty/CW5kFCfAvH4koRVz06Tx6sn2H5TdPqW9U1RUhH79+qFL2rdcFnp6eSBIc8dshDT2EWD18fpgzpkzD1df/QPU1/cQ1iFTZCbEhnDGNGmZBA7hB/bIBNFKv5u5o9WPwHtVlaVnq9C8EPwi7BMo9nv37l2OtKJQ/7LIap9kA4cceOAYhxbiu9+9GH379vOMAmovz4399x8GAPjss8/0Y+w9KC/nb/7tLdApxsRaUpDnJzMOJmyaNJnVHf0Z2KMuCjRpfrSh1uPpf32s2paWllm3hLDnaXmGmWvSgFRfdnvnU6bDbM9B7wUAS96ifq/3P34Y91QSNnGGdYZpnyx6aHoUmPu7my+IuWyrf5FfIS2RXuwSBWMxw4Q0S+AQyfdTEQlplsAhnOtc3j/74pYm0D458jT5pFlfd75WzVqmSUiTNNXlf0fMfzsFRUPrxdcSuUYV5FqZKMLN1fUUtns++eTTLL+tzzvzuYKiKCbzQ149/H3XZfq8efsBYRrVrknjaCMtVhCQ8knjmzt6XsZSpsqViCLpLMMW3dH0rlVX16BXr156OjOe0YE5UYQ7Aq+//jqeffZZy7HVq1dj9OjRGDt2LBYvXoydO3dK59exnl7IpCarEgOFS6cWCWmiVXHrHmEsEEPC9RpG//4DcOGFy4QfgFzj5ZP24YcbLb955o650KQ59x/jrPIpzskGX0jjBw5hExzeZtYi7IIWm4haIg/ayhH99sJ7M+vsfdL2228w3nprA7p16+aZVl5IGwoA+M9/PnDU1S4k8urKE1w0RQEEkyVeHqJ05kNtra2OD703/GfgENKYT5o5sAMnN3ugIcd5iZVpYU3tWZq1Q5zyzPe0cuWNjvN+UBRjjzP7mOHVL2OivdfS18lo0jQtKbW6LJwoKsYZNobfeee9uOsn9wnLToUNd1/5FpEyd0xAjal6YBY3EpytIlTdKkLO3NtePV5kQx68c5n7pKX+0TRN2BYiTY81b7lnLavZM+cpMmdkSb2EA54mVl/EkdyLbPr0Eyy/Mwocwsk3FQ3bZS7kI2+AN4ZyNGnseaQT8zaFVmCL7sj5Fs6de7Ilvd1HmQfPd0vWgoLdm1nA7t6dbxppXMNf5Df/fffdDxhbqtiu94oOzGriV5gudFavXo2Ghgb994YNG3Dbbbdh5syZuPzyy/Hhhx/ivvvuc8nBSsd6eiEjG93R70eI5e11PG7a6BWQn2jnApk5wscf/w8A0LNnykHYXt+ams6W3yJNWtBCmn3/Md6HjufYryjeE2i7psaqSXM3O/UjpNnr4WbG9MYbf/eYhDgx0vP3SbPn52eC71ae1/vFzKHMk3NWP7bVhChvwLhvc32TmnmF271+ot/2Y4lkwmIiIzVu2OrIyDS6I2+hwVyOj2VeZ94Oc0fjGP99Muras2cv6XKGDBmKGTNmWfNSjCA89jHD6zmL9l5j2P1KVMUpGGmaVRsh1Fy4CPxs4sPy79KlK2o6d3GkM/2yaHTsfeSwQyfz65CuYTKRhKrGpDTu7D2qrTUimLG+JG3uaO8fHpNVPdAGJ5nIJNRNAJg371SrNkrUL0SLpun7TAVcyUaTJhBOdQEy6TwHgEVg9Bs4JLXexFS5gov8vCNZjBEWyyNePh5jqH5MvxHvb44x5qV+9+QFJ1FVWPdNs/bpE044EfvsYxqjFEWPjuqGl7mrG6o+thj3dOONtxrbqHAwvzNWU12ndpVXF9norR1Nk/af//wHY8eO1X//8Y9/xOjRo3H99ddj4cKFWLFiBV588UXp/DrW0wsJzaT2lemw7kIafzVUHDjEvOJj9UnLVEjLpbmjGSakTZ58BADDhOTyy5fjqaeeteQxfPgIPPTQI5xcghTSUv/aNS7u5o7Wj6znSr2+kmw18RSZDZqxT6CY5u3AA8c40voJIjNgwL6OPLwma+YJfjb7v8jCMy/lwQTsffcdpB9raUlt+OrUkFrzBgRO4opqWjaUmxDy7996zBrCXuJ5CbQ5YnNH92cl9AeR1Fq6whNa2VzAw4Hej9Z3xYrvY968+Y6ymemwX02aU5vtxzTMmEgpMj5pwrooJoFc/CysvlPWsceeM9s2gUcyqSGppYQNGSFt5IhRuPCCSzBnzjyjfNY3Pc0dBRE5PTVpbu+/LX36ebv13+HDh+t5adBEr7Uwj5hpQVT2PeH3a/433m7O6HxHkS7fQ5PG2RNL3+xbYmNnHmafWF/jvC2peVHba1HLyIInzPHT89YF7YukhlbfGsTJzYqJZx4uswjpZUHgiq5KM8opLS1FdXW1yzXGn2YzZtGinL1+XB9JDh1tn7SdO3eia1dja6l33nkHhx1mbJszYsQIbNmyRTo/EtLyiKxPmqy5IywfYW+ByvBJY0Ka+wfXHpEtSJzPwTmI3Xvvg7j00ivRp09fAMaEZNKkIxz79TzyyKM44IADHXkEqUljODVp4kmljP+a23VmTRp7ZpZVOhP2CSTTvJ133nfx5pv/tJyzT2a8+oK9vWR90vItpMm09bvvfoTnn39J/71nzx4A/swdzWhS76H9N0ewt/02C2l+HpczaiM/BL+nsCOYIBkTmMzfK+f9KJY2vPPOe3HTTT/Sz1q3TMj+fWaaY4cmzUMYtmucvZUOVkGJXeTanvo+VQKBH4Yg6+bvZBV2FVt7WfMuKi6GcN8pTUMikTZ3lPFdVRSMHTfekpYJWV7huHUhzkXzzH0qLs9T1gTZnqFFcSWyYPFYHNU0Tdrcy3vfNkvtAJiiO9rT6poVnyH4FWOfNPEzTZ24+eYf87euyXBsd1prxFwFQu7kn3dIH8f81EFfMXKWq6qWtnJqI+1CjhE4ZPTog3DVVdeKCueWJYOuSfNYNBIUbNF+Or5NAm2mrDDux3e5PdC9e3ds2rQJQOob/t5772H06NH6+T179vgKxkdCWh7wGzhE1tzRa4UfsNsaWwOH2K/ZsOFDPPnkOv13z549PesqS9++/Sy/ZT6co0cfhCuvXKH/ZvXlOfuL8suFuaNd4+LmB+GM7uhVF6uwYd/P6ckn1+G5517iXml/8c1auH79+nPrZ08rrBXnA+qG+f5lVkGDMneUaeu6ujp9g3YA+iLA/Pmnu+Zt/5uRlNBybd261ZYntyDLT6bhE5XrvDw9GbE9A/tqusYT0iTHHMvxLD6+3E1yTcJfly5d0atXb/2cZRwLQMAviqfNHe1+rJ6aNMF7olgnzQyeb1LSHsxIuE+aoC6mBRs3zZRlUm8fezir4mVl/EW5pGaYO/r1XTXyj3nWFzCETrvA4inAuCwcOHwnmabIpf8qinhBlFdfexrjW5UUavd/dOsdtrzcA0conPbTx02OYAB4B5LgCfnegVWMxcIePdznCH7eVKdPmrvPLO9dldauCVBNFiCp3/xvu0Wza8vfcY1ijLkTJkzUg1fxeOCBn+Kcc5ZaypKCjT8+AoeYn5V5gVe0KOeYA8Ssc5sLL1yG66+/xVGOdGTedsKkSZNw66234vXXX8ett96KsrIyHHTQQfr5Dz/8EH369JHOz/+GFoRv/App8po072t4PmmJBH8lvb6+hx42FQB69HDaY7vVwY0XX/w/bNq0CUcccYhrHm6TdVZfnu+ZaCKd+kjK1XfDhg8xcuRg4XmxT5q8uaOnv5DGNhpOpbPvNTJx4mEQMXbsOIwdOw7/+Mc7ePvtN139zJzmjs57OP30MyHyS/KjScsn7L6mTDkK//d/r0pds88+vfDFF9uEz4vXtyx9DCqMb7b1fidOPAydqjphypSjbHm6+58A9n4uIaSl/3Vo0kQ+aarc8O/ciJs9g2zMHW0/FeMgT/izTL6DENLS5o6tbXafNI/rBJECGRW2CKFcDZCmWW7f7+p3Kk++QG5JZ18gskyqbIndFkk0DTt37kBMVVFT0xlXXrkCt9wi0LoJEFkWONPxN7O2qbXEGfA0KQJhzNVUVFFtmSm4++7V0lsZmBcUhcKgQ1B2Fzp4j8DQlHFfKH3RoL6uHpsbNluSaHA+A0UxC2lS1da56cYf4fMvNrkmrq2tw5YtDeBiyzemmgKHcAUy86UpM01Xc0eH2atL4BBeIfoha+AQh4DM0ayJ9rOzU15eYQ28IjnWGVp6qeSOvOMmTZpjvBfUxbr5OjB27MGW87Jm9e2NCy+8EBdccAEWLlyI8vJy3HLLLZYF9N/97nc45JBDpPMjIS2PyG5m7RrRSCCMiD44PF8OpnrnvTxm34R9OE6z9nJlqarqhB49jFD+meThtrmxaCCIx+PSg4R9qwE7rM4HHjgGzz//R0vZ77zzHkaPHuqoj18hzd42ho+a9/OKxeL44Q9vwrx5swAAXbuKoyLaJxs8c8fbbrvLUncz8vuk5UdIMzRpqX9//esnfF3vJtB6atI08b5VxcXFOPW0Mzh5cspxEcREZ/ZNb85txt62du2OEd3R6ePih2za1nmtYV7G3djWY1HgmmtW+ipfD8Gf8OmT5hE4pFN1NS684BL85K7b0/lxtB82sUzkkyZCgbm/u30rzH/bozum38/05DbhIkx8svFjvPfev/Xfw4ePdK8gBz0Ev4+osNbj7g9FDzrDXfzw71uVesbmPMD17xFuZm3a7ka4gOowOZf3EWf3+/LL/AAEet21JKqqqnDscdPx858/xElnn5ArJiFNVG/+c+vVuzd69e5tOWbPf9Wq2/D+e+/hllVOId9RF1V11ZrbNxgXaQ31fB2aILEZvt1E0hpp18NXzpGnOMALD4sppfRCmFUo93ONl9ApksoVjzRff52yHhEF5GqvdOnSBb/85S+xa9culJeXO97rO++809cz6VgibsikQsrKCGkuA5PCTyeOYGVOk2puJgh41aWurt6zrn7wmux6wSafiYQz1D4vv5qaGhx++JGBCQosn4suuhTr1r2AkSMPSB9XHX5i8iH4rRirT6nrzD5psvVjTqkiITuVf3bmjl6RAb3Ct9vJ1tzR+ODkdkjjRndUVH0gtQsYvXv35ebDrafboxI8x++b/Yj0ibv1o2D31WQigmzUOd7KcKoca52yCcGfmiiIH4DXe2M35/WCOcqzwCFG0e791a5JA2eFvN5kAmYZf5mQptmeld++rxib/Lo9F7uptXWftNS/TOhsa2sTLhJ88803/urHgfUhp7+kFTau8IQH/W/uCocu4QtPcc6IK2LSVrrlIdLSGQuimrhf2w7zJ+QK5y/ntaLnlTKt5W+oLRIgvfzY/Giy7Uljsbhwc3GetYarPx9vPuFSNfszmHfSfIwebR0b9e+Wy/fEHACOK6TZx0soSKatl2RMtRVL5EjJMdqQJqXSu2Ef10UCqcJZ9DEza9Yc7Lvvfhg+fETWdSpEqqqquAsvNTU1vnzSSJOWR4IIwS/a60bmZbYHDhHx3HMv4q9//YuU+ZcfshXSmCDB2w+Nl9+yZVdIR9S0s3bt47rzp6kUAKlnPXbswbqzrVfoZPP1XnWxC9D2aI9uGEJayqxFZK7Kq7Os+aJxvfxm1iLKy8uxd+9e13xkyZ95pTP/pKYgxg6ny+/dqze+s+R89BcID9yPu+vijPx9mZ/5mjWPOc7rCwGS/kXiPaIyF4idIdaN//PM/zy3fPAo75prVuKHPzQc9plw4gzB756PfZ+wfdIbvZp9cyxBTiyraql/UuOvRZdmLcRjnqUoilAgv/76m7Fn9550OrE/rDG+xNHa2opEIuGYXJ555iI88shPfW90z69z2twx04jCHN8+a/7i6+1jp8w81r5oIHwHLNot83HDakU2SjJ/nyzT34Jvvz1dKq2ilw8oQmHHLXCIcJ+0rIdYuQxS5o6sTPdrVFVN9WG3cdV2rlfv3li27EosWGDa00w3r2T58vuaMPIt75iimrZTkZn/mdpZ0u+XlenHdFr0bPljs3uf49Vyzpx5lgivRGaQkJZHwvBJs5cPwLL/Eo8DDxzDDdueLTJCmtvzMXzSnPV3GywzEdKOPHKqZxlsryVe2SLBTV5Is/pw+BHuv/76awDumjRndEd/Qpp3eu96//OfH+DPf/4TzjvvbNe8ZMimrc20JTVsa3R+6oq7psx4dqEMxV17I1HeTT+2OxlDV/ZRN2lk+vcf4FlfM26aKBnnd/0ZeLSNKHCQMF/HREHhH8/A1Mb8kx1xC40tzM3j/H77WX1NYzZNmhF/wT2fIpvAMvGQw7DPPr3Qr5/R1paNlwWh47Nd8BYJJX37ihcFrPukpTJg25q0tbY5+uRRRx2D3/7m13qU0YmHiP1hvWDlye7N5xUxz3GdMZXk5Cn61rjnZ9VcifLgm4nFTQui0kIaL51AUHRUxz6BZgsCSc1humnGrk1XFMVYxBVc4ycQh1uAIM9r1ZjUd8Sat9s5ibmXozy+Jk1x+S47t1sBkszcUULoUjPRpLEFrgwDh1iO2y0kBOl5gWyI4CFzxzySWl0Td+Z//ON9APIr6ua/ZSZc9s2s8022mrROnVI+AbwPfdBCmgzMrpjlf8YZi/RzIiHNuarr7pPGVmT9CGnHHTcdAFBdXSNM69waIGghTTxpYlRX1+gb3uYzuqMbO1s0vPZFG/5fg/W/TkMno9PQydikdUWnoZPRUjdMP7YnEUMJexyS/Zq3Quv6DCSyddMmmGERwGT3uXF8nPUV2CyetSNPQzvEk2A8hTSfw4kRRMnmk+Z1nd26QFEsAhpgc6g3r4qziZQjkIvtfj0qoShG/YvicoK2qigYONDYG5DVhZkftiXahEJCa2srAOD4aTOkyuKWz0LwS0Z6sz8Cs0bS7fF4Bd8AIKlKsxYk6l8iNwPVtCDK+sCQwftjwYKzhPXy3kPO2ZdEeVlC9HO+O7w8GWPHjscBB4zGSSedIrjGx8vmwzqA9zxkI7kafdetPO987PcW0832babDLpo0Z+ANk5+fxEBuWeSRHGONevv/jjqX4OQW0C1GAiSk5QwS0vKIlyZN5OvBS2P/W2ZyajbByIZgXkj/edx44ypceeUKHHXUMY5zIjPQ1O9gurk938rKqvS/qWiPP/rRHcK07Jjf6I6Gj4Z8/Vav/hnef/8T13ZyCmkeK9U+hTS7BvCyyy7H9dff7EiXaUhvUf2yFdKSGlBWBHQtUy3/te5oQOuOBlQpLWjd0YBY03b9WOfiBOJ2H7wM3hFXTZpUfmziLen3KDsBEEwAs3nWDosgU+AQnsmOrAZGFtbvHD5pHo/ZLcAMw7rtiWm8Vs1CmnGPvl3SoGD8+IlYuvQilJXz9/bjccEFl2Dc2PF6LoCx6XJbm1OTxurf2prSpGVj9sjax6sdTRdYf3qt2iuOP0zJ5Sad9nMy5o6G7xJf4DKbO9Z07ox99zUEZbfNgXl1VKwnbPVwXJj6V0um74VbfY7GMrUJ8qWXfk8YeMrP99+1qTzyTfUVxfUaI0+ZOZP8Qif795BDDsWUI47CPJPAqirubiu8CJHMJ01GwDWPZbw+MX36TOc1GQUOEVaAf9jlCIlouYOEtDziJaTJTHrEQpr3ZFfW3DFXuGnSZDQp1dU1uPTSKz0/ZvZ9XoLeJ43BNj+uqqpypM3c3NGq5XCL7njSSaegc+fOjvqVlJRYdrzn4ducKENNGrvsxhtvwjHHHC9MFxVNmqe1CGcF1TOoATcbnsO+OEyzH02qrLmjl5+PV9mBrp4qhoEZryt4CWF+905j7+7gwfvbynHPR0ZQse7v5Owbmqa572ck0Qerqqowfrx8GGeHxiRdF7OwKrr31taUIOsImuIDVbGOZ964a1kcqV00G0ceebTlt4zfjqI4DB65qIINfZnwqyU1k6BuCyJiH1M5WlFrBEOXd0BQ1aTGzB2Na6ccYWwH4hwv5ReDZHALie91QlVjJqHGo/1dzQ/FfcOOfXExXlSEhYu+g0rTN17x8HO3l6Io5k3HJepg09rZOfnkUx3HRo46AADQs6fYxUGIx3Phfy/g2peJ4CAhLY94a9JkhDT+Cyznk2as7oVBtj5psnnbj+VKSGMaNKZRs6blXy/rkyYjpN1zz2pceOGlwvrZMftI2SdLsptsy6YXbebtyDWgwT2otk5YlRwOjAh9PjcgdqRzHmNa1OLiEudJH/iNIOqF457Ysw4ycIgCUxfzb+7od5JQWVmFW265DQsXfce1XnZkNGlWx3/jbzZOlJVZwy/7XaDI5JXR78t2LdP4JBIiTZpqaNI8th9ww5j8Zqi99fh2iBTY046fkdGWAY7MRN8r4R5sqfvUYI+gqAj+NnycRagS30/7eS2ZBBQjuuOYMeMwdNjwVCJNy+odzhTht9/2OxVoLbP+wsvZjzWKAWcvNYUfLVM/z4nuqPnwSTOnkY3AO3nS4bjvvofQu7f8Jsl+9V/2Z2N+BrLfEsI/JKTlARYe2m5CYcfPajmDTbaDDBzitw4+rhTmMW/efPTvPwBnnLEwsDrlT0ir5KQVadIkV610B3r39mUTKF797Pztb/8Q1s/b58efkMZbveTXL1ghLdv8vDVp3MIdCbxeETdNWjEnRLWfscErzPm55y5Fnz59UVJS6plnOmdbOel/BQ7mclmKJ+E8oSUos1gzPXvu4xS6PDVp3kKaRZNmym/atBNw5pmLMGnS4VZ1oe990vz3HdI4NQAAXYBJREFUcb2t9Mh96b6imzsmBBNiRf9eyNy7V/my5o5uE0L+KMLXlmQ69ttNBEXdQpQ/T5tq79b2iT53AcAytJifgfj9Mf9mIfitkSHF9Q/ct4j3XRZGJHHObYxh3b1eblu+GF8GmTHUqknjrZ/ETIFD+Hk4F7WMgGCeVbAt8ki2h6JwF4vlLs2wzV36IxEcFN0xD/z+989jw4Z/eAppogH//vsf1jfStE96Y7FYOvSsdz1YRLMoatJ69OhpESKyydt0FEBwqzxOc8eUcMYzgRK15ZAhQy2/p9mc8f1uZm1effVzn6K9UEQ4vzteH02n+YnbNVExd0z4iI5lLzv1d+pfv9EyAbOQ5lxRtyfv2rUbtm37mpu36jERHjNmHMaMGSc9DvAc4YFsfZQcRzzGxuCFNB5e42iRhDZJFJ0tHo/r/rRmkzs/YbOlKsm9hH8N62vFxUWemu64ZJASHjzNuhsOoSPD69zfBbcFU7mxS6RRYd9awKRV0zTbeo712mKOkGaxlrFIjeJ05t/Gop/5Un7/5FRJQEChST0wb1nkveiVTsc1r5RfwLMvLvK+S4rqtdjufKb2qM1uZBI4JKfoz8BlzhC0cE/okJCWB+rq6nH00ccCcO/LonOzZ59kSmOdENbX98CmTZ9KrYYY+6QF4FyaAaIV5iBw81PzM3F/993/SJuyuYXgFx3r3bsP/vKXtzFx4hh06dIFP/yhNZiGXyHt7LPPwXXXXe2ahofz4yynGTv11AX41a/WBKZJc/sY+sFo6+z6VVvS//fG6nfE2s3f5uCAET6ZZ/Zkn3zccsttaGtr5eYtayIjjeCByGviOFlytHOi6IdA7iK0OuqVQ02aGfM95mM41uthq87Agfti7NiDMWnSEVyBwyqkZaFJM2koFEXxfN/tNfGcEOrjjd1CwClYygV3VGy18Nb+mFOYteFmQdFtPHREDnUry7FwYkvK3qVkMi1wmhfN0ufgvaDDI1fzB54GSt4kO30f3K7B7/s8HOXxhDQY0TK5YxVHYPbzzPItmPEey/jxh2D8wSmfV2EIfs7iJBE8ERDTOxbu2gR/1yuKgqeeehZ33HGPw8+BR9jmjmZzjqCFNDcBwM+gV1dXj/r6HlJp3QI9uAmN7N8uXbo6NC5GdMdUGiO6o2iiXGIK6+xfSOvffwA2bdoiLXRdccVV2LJlp2dZvP1tAjelsZSX+jf7fdIyGBQ580cvsy7e5COp+6RxfFNsz66kpETX5HKqIYVsczgm7+nfpaWZC2n2wpXUTBKASEjL1yzAQ0iTMLsU+Q2HidAPSFEwY8YsVFdXc02rgtOkGWMx7x0tt3+/bFXx8m01zomvY/Tr2y9VZrnLN1OxmzsKNGmC8cb6rUun0QBYFnRs13CEYLH/Fv+dtP/Ww1UI5M1IaGrS8O40CJ80RSINw+6jx9VyK4ZvOXdfMkc5hrmjjA+g3yBImeJWytKlF+GgMWOt6R1dzLxAEY1xrj2SV03aq6++ihtuuAHJZBInnXQSlixZYjn/0EMP4fe//z0AIJFI4H//+x9ef/111NTUYMqUKaioqICqqojFYnjiiSfyWfXAyHYSaR9oevXqjVNPXYDHH39MouxghbQ+ffrhggsuxuWXXyx1HQucomla4JMXN2EgqLLs+dj9x8y4CWluwp1onzS3IdXvhp/m/IuLi1FaWup5rV0rKSvUWcORez+TTAnK3LEtg77J+1h5atI47ckeAc+MUKpOfustG5VS8HEuKXEPdOBatqM400SS55OWJ02aJz4sFux/m7EsBOVBlcbTUqSKNsp206Slxu4sAsXYwoonEgnL+R/9+CfYu2e3uL6ei0IiTZqzzmctPBtHHHEkunevdc1PalIv6JfFJm24Rdjj1JkhE5SGmyknL/YztU+bOK3DosLlOQ8dOgLvvfeufB394ipoubeFqrc/V5UmlQcAfaHCzSctVZ53XUy5cv/0qkPeyHB+ROaO+SFvX75EIoGVK1fioYcewrp16/CHP/wB//3vfy1pzj77bDz99NN4+umnsWzZMowdOxY1NTX6+UceeQRPP/10wQpogL9VQB6iSFEyH1C2EppMJjxSyjFmzFiceeYiX9ewD1HQ77SbJi1XgUMMO3P3FWj7MT9CmjHJ895DKxMhzSswibMMd4Hw+edfwtq1j3MdufnPRLrKHgQkpCXdP8Dcks33yNrNRzTCW265DYDxbtTUdHYm9+FPIe3jJPnwRX4r2U3abRNHmOvPSZ8nnzQ3Jh5ymFQ6r4UJAOjWrTuuuWZlIPWSw/o+lpWVAYBVG+syZmVj6ghYfVR5z6Sqqgp1JsHVuYeYWAMFGO+HY3rM6aPFxcUYtN9g1/oqUKQWMSz3YtY6cgQu+3vpuMesguPwBTH7gqh9HNGFG4nxhVkH5GpNgfeIdc2T1yIi61+c+9AvlRjv9O8by0fk+mCK3ik6xzD/lNKkRWVBKo14AbV9CmbLly/HhAkTMH36dP3Y9u3bsXDhQkydOhULFy7Ejh078lafvPWGDRs2oG/fvujduzeKi4sxbdo0rF+/Xph+3bp1lofUXvAzke6bNssQXW9dEZNf4Q1zM2v2sc+nuWOuhLTjj58GILVfmZ1sNWn2urtvdMyvnzuZaca8oomOHn0Qjjxyqum8Ze3YR/38Ydx7dmUkktnlwKrhNeEyt1WXLl0AAP379ceihd/BOeecn0UNgke2X/nThvI0O+LV66y0Dr4Q38OJJ86RysEamlr8XpWUlKRLzL0mzS4QHHLIoViw4CzMPOFE/ZgoIi0gFzDFtXzToo2UaZRDiJd8K23XZRwVVLHmJdzMWvBumE0XLdf61D6I8k/aNJGcrx+AdAh+xxlT/2Rm2RKCjG7Cna2U5mP7ElmtkpvfmbHA6D8f0bvpvtju0nd9CIr5QnZ8dwj47TTs/uzZs/HQQw9Zjq1evRoTJkzAn/70J0yYMAGrV6/OW33y1hsaGhpQX1+v/66rq0NDQwM3bWNjI1577TVMnTrVcnzx4sWYPXs2HnvM27Qvush17Jde+iuef/4l59VCIc27KcPezBowa9KCfcGDChzijrXOAwcOwpYtOzFihHMfHrk975zPoFu37gCAzp1TE3eZYC+ZaNKYNtW/+aJcWX6jO2YbMSw4c8fsNGmsj3hHd+RoxBUFR0w5CuXlFY70zF/NNc/0v0GsdD/00KNGvj5Nz+RwrvzrR3jO+rY6MAEnKDIRHGTSuW2H4NVegQZosE1UVVXB1KnHoajYbJYnXujyMt/1Lt4UOETiHXVMdM2aNO5MPPWPmwbODw5zR2E2AiGNI9Q6tFpSE3b+8USyzeO61IXJZBIKbH3MUof0+K+3jzjPXEdY5UZShLXfiuB9b0R5ucHGFW/zf5fAIfY+53MxPW/CT5YLX+3VD23s2LF6NHXG+vXrMWvWLADArFmz8Oc//zlv9cmbTxr3BRS8CC+99BIOPPBAi6nj2rVrUVdXh23btmHhwoUYMGAAxo61OjZWVpZk5dwsIhZTUVPjHZhDhooK8eSiujpVhqIomDhxHDeN+Tl26lSm16u4mN+U5npXV1dwj/N+u1FenrqHoqIY9zq3vFjUq+LiosCeKZAy5WT5sQG7oqIENTXl6NSpTKpuXnTqVCp9fU1NuSNtRUXq+srKEr2e9jTf//41GDx4XyxYcAYURUFFRSo4g+hZA0BpaWqiVVZWLF2/8nJrO3g9Izbp6Ny5EjU15Sgrc/ojma9jfaS4OI6amnLHO8T+ZuX6eceSmoZdzdbxJFZRhVhFZ8QrOkHJIqCFVtyCyiKgrIg/NpWWpp6bOYBERXmJ/l6z51JSUuz6rpeVGh/EysoST6GjrMw9P8Do9+a28bqGYR8/unTppP8dj1ufdWlpETdfVVGkyyuKWyfq5eXFqOqUMr2rqCxz5MPeGSB1TyUlJdi9e7flmCzcusdS7e32nM3tLEupS36snVTFWif2DSsp4T9nv3UAgMrKUlRUlOiLByXFzryLi619vqKiRDfbLSn27n9udWPH4/GYI6gO75pYLGk5X1pivC8VlaWOxRjWbkW2fizz3nDrW14CRTG0VfF4zLUtUmacxvOrrDLGspL0+ByLqSgvN97NykrrOGXO3z6e2M/Hbe9PRWWpZQwxl6PGVJSkn1+8KKaPPYpivPeKqgBJcZ8DjG+3GpN/z+1UVJSgLP3ticVUSz72OWIqbTE3rR3WT4uK4o50rK+UlhWl+7S4/lVVFal+lP7e8Z5HRUWJ0S6as//arzG3lb0/8upRXl7qep5HJu1RVJQaC4qLU8/svnvvx9avt3LGhXS6EuuzLTF9w2THKaU1iYpiFTU17vUNcs4dBNu2bUNtbcqHtba2Ft98803eyla0PMVjf+edd3D33Xfj4YcfBgA88MADAIBzzjnHkXbp0qU49thjMWPGDMc5ALjrrrtQXl6OxYsXW443NrbkTEhLJILRPm3b9jU+//wz7rlhw0bg3/9+F7FYDMOHO7UzjH/+8x0AwP77D0Vxcaqzf/LJ/7Bz505H2lGjRut/NzU14sMPP4CqxnTtD8vLnM6Lb7/9Bps2fYqams7o27efngevTDvvvfcvtLa2onPnzujTp590mSJY2SNHjtJXtz788H00NTWhd+8+6NKlK/bs2Y3//vcjz7p5lbHvvvuhosKp5eClHTZshB4Agh3r06cvOnfuordDaWkpBg/e3zW/rVu34Msvv0C3bt2wzz69uWm++OJzfP31VtTX90BdXT03jb1+gwbth48++g/Ky8sxaNBgNDc344MP3gPAf0affPIxdu7cgeHDRyIWi2Hz5i8dmnDzdV9++QW2bt2C6uoa9OvXH7GYiubmFvz73+9a0u7du8dSDxm+3pvAnz9pQolpsrdr1w7s2LEDVVVVqK7uLJUPj7akhm7lKuK21cyNn3wMwLAAKCsvQ+PeRgBA7z59dE3D7t278PXWraiorHQNTNC4d4/+/Pr26+fQvLLyGL169fYM0f3F55+htbUVvXr1wueffw4A6Nd/gOs1rJyamhps375dP26+TtOS+HTjRv13t+7d9Y1TzfUsKirCPr34fdROw+av0NjYqP/ep1cvxONx7NixI704p1jy79e/HzZ+slGvG7tXXn297pWX9ssvv0BLczN67rOPPqY62qB3b2nfLHZt165dUdWpmpumtbUFX3z+OYqKiyzv9tatDdizew+619ZafMbc6u9Vjz59+0JVY8K8U2jY+Mkn+q9+/Qfg8883oa21DfGiOHr16uPI146obm2tLfj8889RUVmBxsZGJE3fU9415j7Xr/8A7Nq5A9u2bUv/7g97/6jv0QOlpWX49ttvsMPUj7t264aqqk6QheXXu08fJJNJfJF+j8orKlBbW+dI16dPX2za9CnUmApFUZFoS2m4evTsia++/BIAUFtXhy0NDSivKEfnzl30PPv262d5r/r1H+Bo47bWVn2+YD7P8mTYx5Dm5iZ89eWXUGMqYmoMNZ07Y+uWLaiorEBlRSUaGhoQLypCSUkx9uzek3qcGtC9e3dU2DZFZmVWVlVi967dKCktRY8ePX0/U3YPrG4lJSXo0XMf/dynn260mGem0jbiqy+/QnFJCXqa0trzLioqQmtrKyqrqnRrFMamTRuRTCRRV1eHsvIKxFTFsh+muX7sff366y3YvWs3d6zr138Adu3aiW1ff63/Nudhf4bmsa5Hzx4oKSlzfZfZuCA6b6+zWzo3tm37Grt27kTnLl1QXV0jTPfNN9uwc8cOdOnaFZ1MY9nOnTvwjf5OGuW73dvetJB2aG9vIS2oObcbTFC18/nnn+Pcc8/FH/7wBwDAmDFj8Pbbb+vnx44di7feeivn9QPyKKS1tbXhmGOOwc9//nPU1dVh7ty5+PGPf4xBgwZZ0u3atQtHHnkkXn75ZT1E7t69e5FMJlFZWYm9e/di0aJFOP/88zFp0iTLtVu37spJ3WtqyrF9+95A8vr5zx/GFVdcwj33/vufYP/9+6Nz58748MNPhXnU1qY+Om+//S769OkLADj99Hn405+ec6RNhUtP8dFH/8HEiWNQXl6BjRu/AgD06VOLmprO2LDhQ+l7eOKJ3+LccxfjxBPn4IEHfqbXh1emnYMOGo7PPtuEuXNPxr33PihdpghW9pdfbkY8nuovkyePx/vvv4fbb78bp512Bt5882+YPv1oz7p5lfGHP7yAceMOlkr7wQefoEuXrpZj99yzGieddAree+/fOPzwCdh//2F45ZXXXfN74IF7cM01y3HmmYtx6623c9NcddXleOihB7B8+TW45JLLper3+9//CTNmTMWYMePw7LN/xsaNn2DcuFEA+M/ojDNOwXPPPYuPP/4ClZVVuPnmH+K22261pDFft3Lltbj77jswY8YsPPzwo6ipKcfHH3+GIUP6W9K+/fabOP74o3DggQfhueec5r08tu5N4s3NbehaZkxKnnzycTzxxG8xY8YszJs3XyofPyxYcDIAYNmyK3DbbaswatRoXeC966779WAfr732Mlavvg8TJx6Gc8/9rjC/f/7z7/jRj24BAPz04TUWszNzeYxVq273nBhdccUl+OqrL3HLLbfhyiuXAQDWrHE3DWflnHjiXDz55OP6cfN1rS0tWLR4gf57yZLzcNhhhzvqWV/fA7feeodrefr93HID3v3XBv33TTf+CL16OwU8lv/Pf/5LnHXWaXrdrrrqCnz2mTFGet2nOS9e2muvWY5PNn6MlStvRP/+Ay3pGbfddper4M0r68wzF+kbWNvZu3cPzjlnEc4662wceeTR+vG77rodb775BpYuvQjjxx8iVX+vejzwwE9RXl6Be+65E2+88Vecf/6FmDBhoiVtMpHAmWedqv9es+YxyzMwl2t/Nrw0ZjZv/hKXX34Jxo+fgPfeew87d+5A3779MXPmiRg71jmmtrS0YHG6z61Z8xheeOE5PProzwAAjz66VhdIWD2WL78WQ4cOw29+sxa///1Tej6LFn4HR0w5iv9wOLD87rzzXjQ2NuJ737sUADBu3HhccMEljnT33L0aS7+7BJ06dUJRUZEuSK5ceSOuvfYqAMCFFy7DT35yGw46aCxOOukUPc+HH16j3yO7T3sbN2z+Cpeloyebz59//oW4996f6Nfax5CPPvoQK1dei4qKClRVVmHuSafg7rvvwLhx43HooZNw222rUNu9FgMG7os33vgriouL0dLSgvPOuwCHHHIo95kce+zxeO65Z9GvX3/H/p4yz5Tdw//++xF+cN3VGDhwIH7wgxv1c9/5zlloamq0pP3ww/dx/fU/QP/+A7By5U3CvOvr6rG5YTMmT56Cs8+2LvwvXboEO3fuwGWXXYlRow5ERUUJ9uxp5tbvnCXn49DDJuPBB+/Dq6++jLPPPgeTJ0+xpFuz5jG8/PKLePjhB/Tf5jzOPvtcTJ58hP77Rz+6Wf9WXHPNSuy332DXd/mLLz7X+4jofbK/f37GBMbPfvYQXnzxBcybNx8zZswSpvvVLx/FH59bh/nzF+D44404Ec8//yx+8YtHHOW73Vtjm4byuIKDe7gb8QU553aje/cq7nG7kHbMMcdgzZo1qK2txZYtW7BgwQI8//zzOa8fkEdzx3g8jmuvvRZnn302EokE5syZg0GDBmHt2rUAgPnzUxOrF154ARMnTrTsYbJt2zYsXboUQCpK5PTp0x0CWqGQbXRHUV5yPmnMjtpYofj44y/9FWqCJ99fffUPXK9h2qXc+qTlxsHVT5VlIj7KPAMZP8JM/LGYT5rXZtmmUtLpeAFBnPDylY2C6QV/axqrz1yu4NfXOMbaiRdG33qFP2dymbW0iRMPw+OPP4ZOneQ1B1IE/K5mkqfd/6GEt5dcjsmkr7r5pJWXV3AnMkGPjYC5h7r4tubw3THaz/D1Ovjg8VwBLZXK9lsiiAfgfP+TGa5B233SstqWQ3BtNu3s2Mhe8G3RkhqgWDdT5s0bZHyo2V6sTU1NGdXZE65LjNz2Mnp0R7G7opxPWtpUnlfe4MFD8OGHH3jWp63N6i8o5dpoIv/RHTP32+woTJkyBU899RSWLFmCp556CkceeWTeys7rPmmTJ0/G5MmTLceYcMaYPXs2Zs+ebTnWu3dvPPPMMzmvXz7IVceWGWR5+6R5TSb5ZfHv4eWXX8fQocNcr81V4BB3p/eY5d8gyxDhNtD6UV6zNtNkAkdI1G/UqNFoaWnR+4BXtEajHir3X3F6JtS5T1aY3+nQocM9685IaM6ppsL5Kxd4+da2tbGALB59LYsJoIiZJ5yI44+b7tDKyeBWA/vE1zzZYeZevsvze8uKgrlz5mHI/qnxpTjgwCFyVfDfTqrHpuY8cmHcIhWsI4fvDnsfzCH4Xb9ZDqHDK7CR/pfleCLhHmBDmJ97dXRELcVrwkwCh4gKtpuCiSIKJvUyORGFLW3hHK/tsG0bmpubhWmygbv1hmSXdK2/HrFRQkjTx5W0kGuq1JVXXo2WltS928fE0aMPxDvv/B2As89Zt2hJ/X3CCSfqprF28raZtWQxwgD87VRIW7ZsGd588018++23mDRpEi644AIsWbIEF198MR5//HH06NEDd955Z97qk1chjXDv2MXpyZWs35TfAT/X0R1l6hBGCP4RI0bhe9+7GtOnzwy8DBGZhuC34ye6o4yA8sILrwBIrfYtWLAQF120TFhfXhmymjdjUsarp8HAgYPwzDPP4YADDvSsO4OnSYPEJCNIRKujuoZS8nkCch9lqXdWUTIS0DyzdelX1113Iz75+H9Y+cNrfYWV9CsQKAowc5YRAp8FMYg62ayKB9uXJcYIl/LMZpcZlW5atDEWcNyqYj2pWgcSYXr7dW2tmQlpsEd39Oyvii2NSXMlDN8vUw2BkOairQGM561pSbHAqWnGopvi3SbMuqk5Q03affc95HqetxAp+w7wt3zxlwcAlJQwTRqrk9GORUVFxiKzrZxly67EL3/5KJ57bp2+UGeqgemv1N+8bXtMFZaubxBIh+B3JONfd9llV+p+vYXIbbfdxj3+yCOP5LkmKUhIyzPshRg8eAh69eqN9etf0M9VVlbh2Wf/jCFD3INJ2PMC8huCn4WH79mzl7A+ItjkKhdCmn2OyMqIx+NYtuyKQMrIJm02QpqMuaOf+sXjcfz4x8ZqkHfI4dR5WU0aT2spKsPvBLBN0xxh8vX6hbG6ZyqTTZ5iHgGM7CvanuTac9ilDg4zOFPaeDyeWTj8LM0dw5gEZKRJy0JIC1KjZq+737zPPXdpVuVbN7NOL+C4mS3aNUOez5E/BiaS9gmzLIrnApMboudrXVjNXLvZf4B7oAhWTnNzs2XoUBRrnnq7SJi6ljNzx+bMhLTKSr7/D0NmL1DheZe+pC9PSLRhaaktBL+gTrz3mlklyWjS3IjaZtYiRN/aUaPkF1wJbwqjN7QjzBN13qAxZsw4z8HMnhcgK6SlBpFshbTJk4/Aww8/iuXLrxHWR0R+NGm5mdH6E9LEmjQ/+ckJ1tlrkeT3SZPzETA24XbmkS28Dad1QTXkD1xCNyP18EmzTNbE6UpLUyZGlVX2SHz5wz4BctQ3g3bNxNzRTEmOhDQ5jbU8mewtlROftCw1zfb+fOKJc31dr5rK1yfNbhNWn2OlYdFm16S1clJ7oyqSm27LYPnmOw5bmDBhIgYMGOiZ5YAB+1oCZDjravz+6iub37lFi28fz8X3zHzScmWJ4/ruebSFrqnlnmTnvNvTbu4o8mnkfWfYt9qtz8m8f/kW0jIebtqpuWPUICEtz2TjjOyGTMAEGdM5GRRFwYwZsxwr6DL3E8Zm1mHgVh/mh3XAAaM982HXBK1Jc+YhJ6TZhTURPOFSZuVYhrakJlzFy1ebi4TPRELW3NE47zZ5OHX+6bj99rv16JGhYJ8wczaizjfFJQGbdUrcQiZ3ad8TLCxk20hWYzZ79km+IsopJu2ZvtDjlt52UjeR9Jqs24W0RIaaNMnnxdq3tnutpWyZTyzvXs4//0Jcd92N5kRCmGYrlc5jIYWDBueim6tPWnlu963KZl6ij6cuFiwyL7Bu7uhZnjNFEdOk2bS3fud8eTPZlx7RBNpEEtLyApk75pkghTT/mrTwJwz50aTlZvAIytyxd+8+eOGFVzBkyFDpfGRW+LP7yHlPfth/Mul5QWqCavO2JO9bLCc8Zgu3XU1/M3NH1SNIjWVRxeW5xIvijn1/ckEnH3tJ2clE45BtX5g1ay62b9+O//f/AtqrRubVyUhjGJHAIfa6C8oYNdJ74Sib8hVVMbQQbia29oUA9lt4CX9cEgVn8EJRFEv9RP21srIKF198OfbbbzCuvXa5ccISTVE/6Duqq9t7YtbS2pM5zVv55/xEdyzOdURVQbCVFB7fG/275Dwn0rLy0O/R09zRmZea1jbb/SD9zvnyLfzIjt/OTy4Jafkg/Fl7ByNXQpqMYJJtdEMv5DRpuQnB7yYU5bIMEV6avVGjRkv58hhmg7kV0rzNHa1pvD7qvHoHJqRpzoErTK2p+dVLSIbgl11ICEr76MURU47ChRdcJJfYMSPMpMTs2qumpgYXX3xZVnnwcO9H/uucibljLpCe+OXoNVItgUMk/FrtmiEPSxFh4JAsojtavtUuD+agg8agqkrsopCrqJnmyKFu5o6AVdix+KTF7Jo0l/ICWgDTBCsi3ON6tT3a31XTKqeFnXLEUagor7AUJ6qrwpk6F6X9kF01aRJ9QYnImOFFrre7IVKQJi0kRD5pfsjUJy1XhGnumMpP4xwLugw5gjK/NIQdb3PH7IQ070mQWcj3uhdjT74cCGkcTZqxWppbocYrBL9u7uixICL7LPLln6CqKg4/4gj85K47PdNm4lvplUchkEmdM7FeCPLZjDloHN7+f29Kr3rnql3M0fcy0RR47Zel6OmM83369MUxU4/3XRbL0Kr1kqmjkUiDhjvuuAeKouDTjRtTxzTNt/bBrT0sY4zDJNktU/NltuiObgE4FAWnnroA/fr1d8vdEz1wll2Q5IbtlUPvU1xNmv5xcM3jlPmn6WnYpvXV1TX88jjjcr/+qWAu/ftZg7oEqT3NCR7liecVhTeGFyIkpOUZJqS0trYiyE7uJ7pjrpAZW5i5Y9AveNSENH7azIU0GZ+0bAKmyAQOMaeR3VctV0KaI+AgM3fMlz2/5bvrFNJkA7F4EcXVSpFpVa4DUGbLDTes8tw3yz14gX+CFLJvuGEVGhq+9E5o4vylF2Lnzh2Oegg1BJx+GcQ9GNozxbTxsJ9FL4+0iuMP3HDDKj9VtGanKDZhxl/ra5qGrl27AQA+/XRjxvm44dYuogBK9vKN6I4y+6wqOO646T5q6A9FVRyCmqQiDXBZnJPREprTAcBxx03HPvv0wgGC7ZB4mt0hQ4bi9tvvdpqnm5KqMvvZ5ktI81uMo+9E79vUHiEhLc8wx9SWlpYABmy/mrT2a+6Yun/3DT6zJzxNWtJllTEfPmmAVUhj6Xv23AdffvmFI7URpCYYn7SEpunuAS1JTWgfLxPiOGjMJer7pHlq0uTyLpRwzH6R2Zw9aPr06Ss+maNuE2T79enTF/vvvx/27JHfTLioqEgXFgDvd9B+9v77H3a9h4svvhy99tkHl11+sUe+ivGXh1bMrWZe5mJBTRzN/rcy5Trg+ldlWSkbbmOMl0aMYfikGVdmkmdmiDXy+++f8tcWad3smKOHCkuT+Mbp+amq696dorx4/sOWtBKPUM1z7IACNGroUJCQlmfKypiQ1pxTc8djjjkO27dvtxzLtZAmMwKFsZl1LsuQSauqKpLJZJZCmowmLXNkND9mU0I2Gerbtx9XSOMFDslmwvryZ61oSpv6N7YC9RX2D7xRz3xgmXCZNWltwZo75ssnzR/iyZUsbosOkSWj9zea/iViCybrPVZUuG/9cNBBY6TKM0d0lI3UaL1ebM4GmLQlAQkSCvxPrs2YH++AAfsCAKZOPdZ3/WQDhzgvdDvFE9JYMBeX63K8YKSqKhKJBM5Zcj4OPWyyr2vdfNIUzl/cPHyU52cxwNyEMt/AQjEFj+a3qf1BTznPsH2PmpqCFdLsea1Z8xh+//vnLceisCpv+KQFm28+hLRMYfecGal7kNmbJpAQxsLzVk3ajh07AEC48XqQ5o5JTUNTm4KupSq6lqroVaUibvtIsl+hRHc0HRs6dDgAY2ImzkeunjLmMfnG6ZOWQSY5iGCYa/LlkxYmuRozdRNHVTEJXD4muh5TFTY5D0yTbtekZWDuyKiursaaNY9h5MgDfAt77j5p3iZ+pgqZT+p/yu57KZsmG/xsrG3HLQS/bmXhqUjzI3j5ea/9CuZ51qR5nBcN1RGZXrV7CusL0g5gEf2am5tyqkkLA5n7yYcmLWcTDYl8mZmGGaZVyS5wSPgh+M19jG2Qeuyx07jp+fukZSqkAVA87k3C3CV3GGWOHXcwVj/wUwwc6C6kya7ERuG9tuPwSctAeyHaJDYsTjrpFJSXlaNnz17CNJn0rCgK2YDbBCs374+hSVOgKKmxwY/vjaJ6vN+6Ji0YHOaOMkKMZL5B4WruaCtnn16pfj106HC97TVNc+xZ5665y/ECmL6Ngrmc9Djh8dyM6KGcfPWD3t84Wfy819Z5mncZ+Rrz/fZF5+JcNMe29gaZO+YZpklrbW0NdMCOwgsTpk9aVMwdn3xyHT7++H+WYyyqZrSjO8po0oz6f+97V2PEiJE4/PAp3PS8jdOzEtI8kP0Q5wJ7iWXpMM7+ruKjxtrpcmXEhLQRI0bhgdU/c0+UQVNkMuGaeMhh+NvfXkf//gO8E2eIcHU8R+WZo+8Zf/vXXAijOyr2P7LFuVObP+QDs7jXQowfU9q+ffvjrrseQE11NT748H1THtbAIbK+bLmA1cH8zmhyMhrcnpSMAOqeAydthhpbqRD8eTPZl3y4gsEiKpZK7R0S0vJMaWmp/newmjS5vFatuh3jxo3PqlyZ+ojIbQh+//XJtgw7Xbp0RZcuXS3H4vHMNWnsGneftNS/uRbSzCu39fU9sHjxOa7p7XXKh5CW741A04X7vkT2fY3C4osd0UTDT/+LmiZNhowWWTLwAx594EFYs+Yx39fJ4DlJzNX7o6T251IV1ZeJHUP2vQ5KC6EAlmfh57EMGrQf9t13UCD1cCvY7V5540tNTQ3L1JS9fFvkemxldc4k+IsRwdHF3NE7Ex/lZaZJkykj31ETvdqeRYJ1atJISMsHJKTlmWCFNONv2Y/TWWctzqpMN6Ji7uinPtmWIUN2mjRvLVm+zB39fJgMc8fshbSEj9vKdXRHr33S5JGcdEZQSBPW3Uf/k+2rU6cehz/96Y/S+eaSbDThkSOE1XFFVVLCmpfpouhat/NBj/WqCnM/l9JapetwzpLzc7Yn6cSJh6G+vgeAzKM7mokx7ZWMdjPHY5FhemmU06VLFwDAsGEj3K+VsaTwXJ/wsWjgJ3CIRSguXHPHoK8n5CAhLc+wEPxA9ouW+fDDCpri4twIaTyiI6QxTZr/a2WiO7KvT+7NHf0LaUGEWvcTCDAMzVNGIlqeNQOynHPOUnzzzTb3RIG8Vvb9kPiNvGDBWViw4KwgCsyaTG47FrXojl4T1RwWraoqFAW6T1ommjTxNex8cJo0c1nxgCIj+/+GWNOfe+539b9jGY4N1sXd9HNzhOJ3EpQmjX0bitP++Ua9nIFDamvrcMcd9+jCmggjuiPnnKS/sp/by3SBQc63MVqaNBGhWK10QEhIyzMsBD8QrBARhRVbmfthQmpbm/umssEQDSEtHs9ckyZn7ph7Ia2srAxlZWW+88umTgwZTZpu7phjTZqbOU3W+XDI9545hx46yf9FGdx/hwnBX2DRHXNm7ggmpKlgQ42voiQn2MG5pFmnykFtX5NtsAYz7iH43coxaQh9BLUKKgT/gP4DMWfOPIc/s2M7gDTmff6EdXOJ7mjo2Dz6kJ8tIfyYO/rUpOXyHQyWQqlnYVNgX5DCx6pJC07dXChCGguc0tLSkuvqREa7mI25I/v4hG3ueMklV+DnP/+VdH68wCGZkvJf8np2wa6k+yEb4TsXeTPKy8ozvtbO0Ucfo/8dxHsVxmbW2ZLJfWeq7cg1Is1lNm1bX1fver68vALlZWUZfatUz8AhAWvSUio//Xcs7r2eXVxc7J2v33q4nHNbAHBrR/P3YtCgwTjwwDGoqKhIl+d2nXtdpVEUzJo1BzU1nbn1ykRDo7qZ0MpK8AGa31oTm4uIxpzED6JveK5dC4gUpEnLM9Y9s4IT0qIQYEBOk5YycWhqagq1HvnMN5vAIYa5Y7hCWl1dHerq6oTn+/btZ8svOE1a6tbdBbXAV9J9kI0Zq2e6DN/r1at/Fqg/2xlnLMJrr76CpuamQMxxWLcYP/4Q/Oc/H6LOY4IfDTIQxiMmpAVp8mXmwQcf8RRIr776B6iursbdd9+ZLsuHNkKfEOam/rx8zM9KRpN2ySWX4/XXX3PvywEOUJn6pJnP9O8/AJdccjluumml86SNXC8E64FDMoho69aXDAHeK49gyhOVb/87bLLdWD3fZpkdFRLSQqQjatKYyVwuNWlMMIieT1rmQppMCP6w+Pzzrx114O2TlilS0R2ZJi2UEPy5NRHLhLIAtWgMJSM7NT6sP48cOQpLl16UdX75IJO7jsK47IdM+7I5IJYIJryoEv5Pjnp5TooD1qTBv7ljbW0dTj31NOzZ0xxIHVIVydTc0S1Pvxew8nItpLHvpL9yUma0bPx3Iu2T5sfc0U/gEPM8LUJCGiPThVTSpOWHwvqCtDOCnFyHPVGXxbyZd64JXkjL7Lq4biqTjSZNRtgJx8+nuLjYpiEGYrGANWle2bAPcY4/HPsOHARVVTF9+gmOsv0gHYI/Qh9Cr5r4aWktLXkXlBCTibljQL5MeSOPAZ0ymRSLrtD1bIGq0oyfcQlzR8mMfVZDnD7mYu7o9l4ZeZrfWG9BJtcLYJm04X33PYT773/YuMbFJ83z2fsxd/TnUJlRGZFBuKdiAd5LAUKatBDpiJo05pPW3BzgaqOAqGjS2LYDmSAjpAVh7hg0QQYOkdsnjf2b2/egsqoKjzyyllu2H2Q/cFF4r3UEZkOZvBcakulrs7u/ww6bjN27d2WVhyzZ+JQWCvmYQ9o3UJbB89lLakvky7OZOwYUpTPIb1KmCwCZ+p3l2nQ3k/3zKiurUte6+izKmTv6wZ+5o/G3fTEzU/YbNBj/+ejDQPKSx2buGKEFxPYMCWkh0jGFNKZJKzwhLTODp3xsZs2EtAwqlyOY6Qqr90fbWvHO563oPPZEAMCLm1ql82pJat7+BOm2yfdGoOay/V0kKaRFaJKvC8IBrKAmA9KkLVlyftZ1kSWTuy40TVo+VseNCbX8NW7R+1KHAxbSoFiFtHhAQlqA6d3MHeWeg9lXSiJ1jiV4JgRmMua5heAPWoAH/I1b5nKLiryDy8hw+RXL8f777+G221ZlnknW88+sLickic4MoAPx3HMv4o03/h7AoGEW0oy/c7lhtRv+NGmFaO6YWX6GrX3mQlquozsGjX2ftG+bkkhqgNbWDK2tGcUxSP9XWaSgc4nsSnoIQ1oW7eqF1Ca6ecIwKQogs3RXDUOozidRuz9PISwf5o6SQUAAI0KprClckBEIzVkF9h76raBLcjdzR9fnxDV3ZMWJr8vX9iaZaGjco1lmXKWMyuOk1v8qDkiTVlpahp49egaSV8Y+aRFaQGzPkCYtBA48cAyAYIUI9sIcc8xxWLXq9sDy9VkLzxRGdMfcadKi5p+X3T5p7cPcMQmgSAW0REqDFg/4gy8bwSsqSIfgj9AkP8j3KqkH9ymgD30WgX8IA/ZMvCb9119/C6qrawB4vwc5CRxkam/7ZtZjxozD//733wyy5Nfv3nsf8p2Xq9+Zax0yO5nrd9XoFxlo0lx90oL/PvrSpKX/LSoqCtrmMri8XBBt10HkBxLSQiRIc8eg94nJBH/7pOXD3DHo/DI1d8xcSGMTmULVpDHhUksGo4ARYSh5CmNSLB2CP0KT/CBNypiGNUqaQi8ye3+jeX9hDhWygUPM23qw75rwCvb+B7ioYTV3tE6VLrro0sDKAYCqqirPOjjPuYwNrtdxBBmJx5bryIR6G2cwh3H1ScuBO4CvsSCdVmYfvZzVIZDyrL+jZIrfnqGnHCK58EmLmhbJDgvVXIg+aZmH4E994DMJR9+7dx8AwPTpMz3rFSUhzdCkpX4nkOuFv8xNZaJMtEI2B6etZP0iWvfnTiZVjZKQDSC3KyWSGM9EvjK61s3LJy3AGzTn5WZa6C9Pn+kzfD/cBR2n0CL13HL8rmayNQND90kTy2gQhSmcN+9U3wE9/IxbLG1Q/mhBEaC3DZFDSJMWIh0zcEhHFNJSbZNItPm+tr6+Bz7++EtUVFS41QxA9kLaz3/+KwwZMiSrPBhMg6CbO2a/XZorUdAk+0H2fc3HZsj9+w2QShfoRJhp0jLYuDYsMrnvQgsckg8y8T3y9kVjeQb4vpg1abGApkp56u4ZmzuGCBNmMgocYngtCs+Jvo8zZszEjBniRVBueX76WbpKfv3Rxo492CPbgBrSY94gOq1rL0layykkpIVIWNGGcgWF4OfDzB0TiURG11dWVrqeD0qTdvzx07O63gwTTHVzR03Li7ljoWhmZGuZ6/f6pz/9BWKyAqNIi5FBy3YYn7SI9scwte56ICUf/UaRjAgZrMuPWUjLTQj+WbPmoFev3uL0mRfkWQfZPlBdXYMdO7ZnWhNpslmwcRX406fCMndkaYvT/vgyrFnzmETG0tkFguN9jejY1t4gIS1E2pu5o58Q/PnxSYuGkMZWYdvaMhPSvIi2uaMROCQfPbNgzB0lhZNcC2l+zHz0JxuIT1o6BH8BCWl+bnvZsivw0kt/jtxEJgrm8F6mizzk/SGDNHc0iAekSbPXf86ceV4XBFKOxAXCU9dddwM+/XRjRvXwVQV4B8kSXusyjujPIrTAIczcMZjIjnq+Ib/LUYtc214hIS1UghPSwn5hU3XwTsM0aU1NuQ/BHxWjabYKm4m5owxRaHs79sAhCS2381U9ulv0HgUX+RD8ERJiBHUuK0+90yOGj5TOShfSonR/HvjR/IwefRBGjz4oh7XJlvAWdNiE2p9fj3s/Ye9ToBNHS+CQwjJb9TAOTf1f8vl37doNXbt2y7pOXrAFtmQGwpSqiu9Jl9EC7PNRCBwSPgXysS1wSEgrYKxCWuojFnUfiHg8juHDR2Lp0gtzVkauhJZszR3b2nIjpDGipUlj/TBVp5xXLQSftIqKCuzZsyeja6VD8EdI0ySaCFVWVuH22+9G586dpfPSkswnLTr350mhrAC4EIUFHV048zPP9QrBr2cZoCYtF+aOWdQhqILYKe73IsRvCBvrMvuOuQhpuQjB70sLnPo3apo06esFzy0KY0lHgIS0EMmFuWNZWVlWeWaD7P28+OL/5bgmKaJi7phrIa0gzB01LbeaNN2CKn8fjuuvvwWbNn2a0bWyH/loaZrEde7WrbuvnFhPpQ99fonCGJGJab5n4BA9Bn+QQprxd2CLn77rl9n9uI4bedI2+YXVOSNzR9u/3LNB+qT52FpD90krlvdJyyfSj8XWb2jszg8kpIVILgKHlJWVB5anX6L20kZNSMs0cIgXRr3Cn4Ax7OaOSS23xhGKTxOeIOjWrbtv4URHsppRsvsPMrqjrkmLkKaQyA9u4dJFuJmzWfIOUkgzh+APaL87v/XL9G7crnPTNoWJsbCXgZCWgZ9jNvhrRyakRUuTln357I9Qq9HuoS9kiGT7jplfUqalKS8nIY0RFSGNCSy506Sl/o3CKjmDPat8CWmMQpn0S29mHaF3Su//AVRJ16RFSAjtCERhjFYz2LRYdhEmUPPgnPik5en5u0V3dAl3GIVNzjPTpLnZd6YtTTKqFR9f5o7pf6O2T5osoucWhbGkI1AYM5p2SpDmjo2NewEUhrljvoiOkNbxzB3tdUrmyyetQCb9srX0Y1aTa/SF0yCjO0bKnJPIB5nsZeZ5DQsckjNzx5CMjnIR3ZF3KgLfbl2Tlsmmmi7m7rlYxPT1nUlXIGghLftx2KdWV7H/prE7H9BTDpFghbRGAEB5udumxx0DTd+DKegPT6bmjiy6Y8cJwe8U0nLtk5Z/c8dskJ2oRkqICfDZMpOmSN1fByLMoSI7nzSB1xET0gLcHN1i7lhogUNMJa1adXtAeeaWxYuXYNKkwzF02Ajf1xqm2JxzRqiUzCtnw1/gkByZOwaUj/dYIAocElAFCFfoCxkiQQ6WTJNWXk6aNEZU6sNCcQ8cuG9O8o+ikMZ8SFidtFz7pLmspEYTuXpGSYgJ0ictmSzAzazbBeG/H5ksqOiCnShP3RwyN+aO8aDMHfPlM2X6u0ePntLXhfkN6dq1G77znfN0H24/uAaO0b+P2dTOlqWfwCHpf0PTxgaEfdw3NpgPf0xpzxR2rylwcqFJo8AhuatHpvmefPKpOPDAMdhvv8EB1yhFFIU0NoDrPmnIdf/IwSQth0jvkxaRdwowTfzI3LHgCXOsyESTJp13jt7/mJqbzaw902dekK86RDD2lD9cBP+y0lIAwY41meyTlonwKZNvrhGNFRH6NLVrSEgLkSCFtL17mSYtPCEtCqu0ZqLik6YoSs4ENJY/EDUhzahTUtMALbd9w1idz03+Xbt2C3Qz0kIMwa/ok+vs89KjO0bo/joCUZhYZaKR1fuJ6AaYIiVHPqlBBQ7xXbsMG8zv4k5UFlgzxS3655Il5+PFl/6M/QbtF1x5Pp4X+y4XBS2kZTnfyrYvFsqCaKFDTzlE2IBy9dU/wGefbc0qr717U5vqhumTFsZAX1/fQ3guKkJarmFmFFHayNwspGlAzuV31jS5Wkm/4457HL4dWeHRl2bOPFEqXT4Jsia0T1o4dOpUDcB7MW/8+Ak5q4OuSfMhUHmZSOo+aTkS+tWgAvjkq79LaNJ4S3ph7pOWHeL77VRdjVmz5gT67P0Ev0kkUgHDYvGIhuDPcHGXRu78QJq0EGEvWTxehJKS7DY6NMwdw/NJC4O//OUt7Nmzh3uuowhpp5xyGj744D1ceeWKsKuiY97MOh8KPt0npUCiO3rtfzZ37imYO/eUPNVGkgCDs7DAITHSpOWVWbPmoLa2DgePGy9M8+ija3O6b5aaQT/yWrU3hLjc9KeSgIM+yJKN9Yb4HPdoRuVEhXzX3o8mjUV1DsyvMc9MmXIUXn75RYwcOcpyXLesKPC+E3XoCxkqwU16zj13KQBgxIiRWeeVKWEIMVVVnYTatOCFtECzC4zS0lLcfPOPUV1dE3ZVdMx73uRnbbbAfNIK+sMWnE9aJuHYicwpKirC5MlHeGha1JwOdqqu8c9Ak+aVd476U2lAi5++fdIybAb3CPyFPPYI8Ij+GXhxPhYDWVTnoqA1aYHmJqZ//4FYs+YxdO3azVZ+O+xHEYQ0aSESpBAxdepx2LJlZ2D5ZUL0NE0dQ5MWRfKtSXML7hVFCkXjZ0YN0ictZ9tkENHH/+KkrrnwMHfMVXcKavEnb9aOEt8+ng9zLsbqH/7wJpSV5sfCJ1/jiZ/+kGhLCWnxoogFDsk2JkIBfsMKERLSQiTXH5Z8E7UJV9Tq05Fgq27Ll18DDblf9StNR/AqKSnNcUnBUIirkIH6pCUpumNHJZbJPmmSE8LAfMdyhG6WLfk2ZTxOuKrSnOdy+a3s129AzvJmRPlb38Z80gIOwR/2PYddfkeBhLQQaW+dPCr3E7UQ/B2RkpISXbPb1KblPLTzsGEjsGLFD3ztCRQqBdmXgjMpYt2BhLSOBxO4/PQiLz82I3BIxN8rv+99nqI76kQoQrAfohjhmKFr0gKP7hgu+rsY8Veu0KEvZIhksqlnlInafXSUwCFRJx/RHVVVxZAh++e2kI5OkIFD0iH4C8WHkAiOjKI7egjzLKeCEfpz/SnxuU8ao1CjOxr3FL36M01a0EJa2LMRmg7lh7yOaK+++iqOOeYYHH300Vi9erXj/N/+9jccdNBBmDlzJmbOnIm7775b+tpCpL0JaVEj6MdK7ZQZyeh9N4kM0LUZAeTFJoNRnlRfdtmVOGfJ+WFXo92RyT5pupmg6JIM8uQx9ehjUZ3epiAXsHdo5szZUulz8cnhPaNC/7bpIloUNWnpwCGBb5ETUJNlKpgXosl+IZI3/WsikcDKlSvxs5/9DHV1dZg7dy6mTJmCfffd15JuzJgxeOCBBzK6ttAo9IHRTtTuhzRp4fDV7gSaEsYEY2+rhqTWvkw9OiQB9n82mcrYLCsPjBp1IADggdX3hlyT9oXnxtQcDE2aUEqzpcuMBWcsxIIzFmaVhyuKgjVrHpNP7jERHnPQOPzr3+/6rEP63wgKNBkTZXNH3SctWv6SWc9nIjx2tyfyNnPasGED+vbti969ewMApk2bhvXr10sJWtlcG2XamyYtavdBQlo4/GNrAgkNMFsz1VQqQFt4dSKyJ8go17qQFouuJo3IDczE1Y//mOzYG2XNbEZ43PdFF1+aQZYu5o4RFHJk0O8pgvVnmrR4OwscopKpel7Im5DW0NCA+vp6/XddXR02bNjgSPePf/wDJ5xwAmpra3HllVdi0KBB0tdWVpbkZMPAWExFTU154PmWlqb2zSgrK84o/1zUKRs6d64IbbXI3Eax9MSvU6eyQJ9RTU0FKiuj9cyjSFkZ0LlMtWhJYqqCRNIY1Csqstu8vT0RlWcRUxXXurD3qry8JOs6J9M+aZWVZSgri8b9exGFdvJqo0KgLP3dKy8rlr6XRCL1XYmpKveaiopUn6woL7EcC4KePXpK55XL9sk0X/t1jXtTvxVTXdm8qbS0qCD7V3FxaipbVBTzrH/QbeSVl6axsa404GdrrHpmkm9RUWo8Ly6OZ3T9ngr/75rSmkRFsYqaGo82ytGcuxDJm5DGW6GxrwQMGzYML774IioqKvDKK69g6dKl+NOf/iR1LQDs3t0cXIVN1NSUY/v2vYHn29KSWmFpamrNKP9c1CkbduxoDG0l09xGybQT1K5dTYE+o+3b96KtjVaP3EhqGvbsbUOpZn0/KypKsGeP8X6a/+7oROVZ2NvIDhuGmxpbs69zOq/GvS1IJgvjnYpCO3m1USHQ2paatDY2yfcjJtRr4LdD494WFBU1o7nZmLgG8ZxWrbod1dXV0nnlsn0yzdd+3d7GFgCpbTDYuUS6TZp8tEmUaG1NzaWam73rH3QbeeXV2toKAGhpTQZabuPe7L6nra2pNm9ubsvo+qam1H0piiJ9fWObBrQo2L494ZouV3NuO927V+W8jGzJ29exvr4emzdv1n83NDSgtrbWkqayshIVFRUAgMmTJ6OtrQ3ffPON1LWFCFnP5YZcbZQbtnlBIZCSj6NnckJkj25RFED7JtOry+3OPI3whJk7ZrSZtThT678B0aNHT5SXVwSaZySJbnBEKfQQ/Hkut0+fvp5p2tICcND7pGULzWYKg7x9IUeMGIGNGzfis88+Q0tLC9atW4cpU6ZY0mzdulWfYG/YsAHJZBKdO3eWurYQIZ+03EJCWv6hSI7tFxbEIAi/FfJJ67gYUUJ9jKceY6+xTxr1Jy9437Eoh7CXIYx90u76yX245pqVnukSOQrBH/YqP71r+SFvon08Hse1116Ls88+G4lEAnPmzMGgQYOwdu1aAMD8+fPx/PPPY+3atYjFYigtLcVtt90GRVGE1xY+7WvSHzUhhoS0/JPU4NqtL7/seygrJ1vzwkRXpQWXIzmfdzj0/dF8jqeKhFhHE0dvwtI65ZIwQvDXdO4ila6tLTfRHcOej9BsKD/kVf86efJkTJ482XJs/vz5+t+nn346Tj/9dOlrCx3jJSvs7t61a1ds27Yt7Go4ICEt/yQ8vpEjR43OT0WIwGGT6yCnQVEOwU/kBlVNTVb9jqdum18X3GbWIeL21At1M+uwtUpu5GyftIDmjRkLthmYLRP+iZaRbAejvXTuP/7xRfztb6+HXY2c017aK5eQuWP7xTB3TGad17XXrMQbb/w10pMrxhFHHIVXX3kp7Gq0G1iUUL8ClaIo4v6imNIQ7vDMHQt8oViNsLmmHoI/aHPHbMnyXaF3LT9ErNd0LNqLT1q/fv3Rr1//sKvhoFD3fClkSEhrx+h+H9lnNWi/wRi03+DsM8oDixZ9B4sWfSfsarQbRowYhVNOOQ09e/b0dZ2qqsJvpe6TRuazEkRXoMmYdPsnI/gBOu64afjlLx9FVVWnQPMNe9ZY6PPWQoGEtBChTp4bcvVcqb28SWoeTmlEwWJ0/+hNhIjCoaysHNOmneD7OrfxV1/wJHNHT7jPMbp7QRc8xx47DcceOy34jMP2SWvH86EpU6agoqICqqoiFovhiSeeCK0uJKSFSHvRpHUUqJ28MULw07Nqb7AgH6ShJsJAUVSJwCE07njBe0JhREcMEv3bXKD1D5fMnll7nw498sgj6NJFLjhMLqFlpxChSX9hQe3lTVIDKVraKfo8KIImRUT7x1WTlv63vQai6d9vQNhViDTtMWKlF9nOR8K+npCDNGkhQpq0woLayWBPq4a9bc5P4tdNHekz2bEwJkLUxkT+UV0DhzBzx6Aj6IXPLbfchs6dO+eptEJ9twtbE5gJYc9G2uuCCGPx4sVQFAUnn3wyTj755NDqoWjtqFc3NrYgHg9+kI7FVCQS2Uc0s7Nly2Z89dVX6NWrN7p27SZ93T//+Q4AYBSFM9cxt9F//vMhGhv3Yr/9BqOsLPs9uYznfQDCHxqjwRufN+OT7W0ojTufR2lcQWWxVUkfUxUkSANjYeMnHwMA+vWPxiq5Vxtt3vwVmhobUVffA2VlZXmsGcHoyO/Rpk0bEVNj2KdXb/0Ye4f69usHRVGhaUl8unEjgHDeqyi1j2h8SSYS2LTpU6gxFX369AMAbN3agD2796B7bS0qKirzXdWs2bFjO7795ht0qq5Gly5dXdNGqY2yI4mNn2wEkFlf//bbb7Bj+3Z07tIF1dU1vq/X3zUF6Cep6d3bmkRFsYpDe5e4psvVnNtOURFfXmhoaEBdXR22bduGhQsX4pprrsHYsWNzXh8e7UpI27p1V07yrakpx/btewPP9847f4wbbrgOt956B848c5H0dbW1qShBW7bsDLxOhYq5jY46ahI2bPgHXnjhlUAEWfa8Gxp2kDYtzRtftaGxTUMZR0jjUVFRgj17mnNcq8JiwYLU6tyaNY+FXJMUXm10883X49//fhdXXrECw0eMzGPNCEZHfo/OO28xqqo6YdWq2/Vj7B168MFHUFpaitbWVixalNprNYz3KkrtIxpfdu7ciaVLv4Oqqirce+9DAIB77rkDb7zxOpYuvRDjx0/Me12zZd26Z/DrX/8Sxx03HaeeusA1bZTaKBuy7euPPfYr/OEPT2PevPmYMWOW7+ubmprwne+cieLiYjz88BqpaxrbNJTHFRzcw92IL1dzbjvdu1d5prnrrrtQXl6OxYsX57w+PMgnLURowp9b2tH6Q+RIJDUaPDoYbLhKBrBPGkH4RVWdgUPs+3tR4JDsKNRPptIBw1OGPX9sr2/a3r17sXv3bv3vv/zlLxg0aFBo9SGftFAhn7RcQCH4c0+b1v6jOxFWCn3DW6KwUSD2SdMDh1AIfmnMi5hz556C7dt3YPToA0OsURZ0yMAhWV4fdgUiyrZt27B06VIAqY3Ip0+fjkmTJoVWHxLSQoQm/USh0pYEStqfjz7hBoW5JkLEdQ80FjiEFhIyoq6uHitWfD/samRMR9zDMfS+3k6/A71798YzzzwTdjV0aNkpRCi6Y2EwfvwhYVchciS09mvuQPDRZbQONBEiooOiKMJvpX6cvqXStKd5R6Hv81bItKd+FEVIkxYi1LkLg1/96nF88cXnYVcjUiSSALl/dCwUPcx1yBUhOiRcIU0BQAtGGdGeBBpdSGsXURslCWj+mGk/KCkpwbTjZ2DCIYUXaKaQICEtREiTlhuC/vhUVlZi8OAhgeZZyCQ1DUmN+m2Hg1ariRDhjTeKolB/9El7HLc74h6OWTdj1k5tCk6Zf3qWlSC8IHPHEGmPgyXR/knNiTrOx5BIoQ9X1PRECPCiO+rQt5QALSAR7Q8S0kLEMKOnD0yQ0PPMLQn6DnZIFCX1uehIq9VEdFBM/3ecozG/Q6MYDrMdhtADhxB5gcwdQ4Q+LEQh0pHM/nNNjx49w66CNCeffCp27dyBoUOHhV0VogPiFt2RPqXytM9H1fHMHcP2SSPyAwlpIUI+aUQhQkJaMPz04TVQY4VjzLDPPr3w/R/cEHY1iA6Kooj3SSN8kH6ERfGicOsRILQ7iH9o3lkYkJAWIvSSEIVES0JDaxLY09qh1itzRlFxcdhVIIiCQeUFDmmneqFcUllZhblz5mHcwRPCrkpg6P2ApDSinUFCWoiQJo0oJN74qg3bmzUoChCjLksQRB5RVNWhSBt38Hi8/vpfdH9JQo6Zs+aEXYVg0aM7EkT7goS0ECHhjCgkWhNAl1IFcdogjSCIPKMqikNztmTJ+TjttDOhuvirEe0fYypFYppvSPsYaWhkCxXSpOUScogNljaNNrAmCCIkONqyeDyO6urqECpDRAkmvNM3Xx6adhYGJKSFCAlnuYEea25oS7bXyGAEQUQdlQKHEAJY5E+S0eShZ1UYkJAWIpkKaWedtbigQncThU8yPaLTwgJBEGGgqArJaAQXI7pjMtyKEETAkJAWIplOeFetuh3//OcHAdeGIMQkNQAKLb0RBBEOtEBEiCFzR7/Q61QYkJAWIhTdkSgUaG80giDCRFWdgUMId7p27RZ2FfKCPoei75Rv6JFFG4ruGCIknOWG+voeAN5BSUlp2FVpN5CQRhBEmChQASURdjUKhtUP/BRqrGNM8QwZjT5URPuiY7zBEYU0abnhrrvuxx//uA5Dhw4LuyrthgR9+wiCCBFFVQByOZKmrLwi7CrkDYruSLRXyNwxREg4yw3V1TU45ZTTwq5GuyKpUWRHgiDCQ4FC30yCj0JCmn/oXSoESEgLEdKkEYVCSpNG/ZQgiHBQaJNGQoAR3ZGENL/QM4s2JKSFCAlnRKGQpIGcIIgQURSVItIRXHr36gMAGD58ZMg1IYhgIZ+0ECFNGlEopAKHaCBtGkEQYUDRHQkRffr2w733PoSqqqqwq0IQgUJCWohESTjbsjeJtxraCjYea1k50Li3JexqtG+i010JguhwkOEPIYYENKI9QkJaBIiCsNaSADQN6FZWmB/CivIY9miFWXeCIAjCnZKSIiST3iH47757NVSVvgUEIQW5MkQaEtJCJArCGaNN00B+2QRBEEQUmT9/ARIJbyGturo6D7UhiGjQUTYs76iQkBYiUfJJa0uSNRtBEAQRTXr06Bl2FQgiUqxceRMJae0cEtJCJArCGaMtqUGNUH0IgiAIgiAIPv37D8j42ijNPwkxZLgdIpHTpIVfDYIgCIIgCCIPkEdatCEhjQCQEtKoMxAEQRAEQbRvoqAcILyheXmIREmTltBIk0YQBEEQBNHe0SiqY0FAQlqIREE4Y7QmQdEdCYIgCIIgCCICkJAWIpHSpCU16gwEQRAEQRDtnCjMOwlvaF4eIlF6SdrI3JEgCIIgCKLDQGaP0YaEtBCJliaNzB0JgiAIgiAIIgqQkBYiURDOGG0abWZNEARBEARBEFGANrMOkXxq0va0anhnSwKiXTH2tGqoKiIxjSAIgiAIoj1TX98j/W99yDUh3MirkPbqq6/ihhtuQDKZxEknnYQlS5ZYzj/zzDN48MEHAQAVFRX4wQ9+gCFDhgAApkyZgoqKCqiqilgshieeeCKfVc8Riu3f3NHUpuHrxiQ6l/DL6laqREqzRxAEQRAEQQTPIRMmonv37hi0735hV4VwIW9CWiKRwMqVK/Gzn/0MdXV1mDt3LqZMmYJ9991XT9OrVy/84he/QHV1NV555RVcc801+O1vf6uff+SRR9ClS5d8VTnn5FMoSmpAkQqUxEkQIwiCIAiC6LAoCgYNGhx2LQgP8uaTtmHDBvTt2xe9e/dGcXExpk2bhvXr11vSHHjggaiurgYAHHDAAdi8eXO+qhcK+TR3TFIAH4IgCIIgCIIoCPImpDU0NFhsX+vq6tDQ0CBM//jjj2PSpEmWY4sXL8bs2bPx2GOP5aye+SSfmrSEJvJGIwiCIAiCIAgiSuTN3JG3F4NISHnjjTfw+OOP41e/+pV+bO3atairq8O2bduwcOFCDBgwAGPHjrVcV1lZgng8FmzFAcRiKmpqygPPt7KyVP83F/mb2Y5WlO1SUVER/POJAjFVQUVFSdjVIARQ+0QfaqPoQ20Ubah9og+1UXgorUlUFKuoqXF//rmacxcieRPS6uvrLeaLDQ0NqK2tdaT74IMPcPXVV+PBBx9E586d9eN1dXUAgK5du+Loo4/Ghg0bHELa7t3NOal7TU05tm/fG3i+e/e2AAD27GnOSf5mvt2RQHNTAnva6a4LFRUl2LMnN+1PZA+1T/ShNoo+1EbRhton+lAbhUdjmwa0KNi+PeGaLldzbjvdu1flvIxsyduMfcSIEdi4cSM+++wztLS0YN26dZgyZYolzZdffokLLrgAq1atQv/+/fXje/fuxe7du/W///KXv2DQoEH5qnrOyKdPGu2DRhAEQRAEQRCFQd40afF4HNdeey3OPvtsJBIJzJkzB4MGDcLatWsBAPPnz8c999yD7du347rrrgMAPdT+tm3bsHTpUgCpKJHTp093+KsVIvmMeN+W1KBSiH2CIAiCIAiCiDx53Sdt8uTJmDx5suXY/Pnz9b9vuOEG3HDDDY7revfujWeeeSbn9cs3+dSkJZL5FQoJgiAIgiAIgsiM9umgVCDkM7pjW5IamyAIgiAIgiAKAZq3h0heNWkaadIIgiAIgiAIohAgIS1E8qlJa00CKglpBEEQBEEQBBF58uqT1pHY06ph4w73MKOft1WhYsAYfJXshH9/3ZbT+mxvSqIsTlIaQRAEQRAEQUQdEtJyxO4WDf/+JoGaErGycnuyDCV1A/Btsgxf7HFu9h0kMVVBcfvcx5ogCIIgCIIg2hUkpOWQiriCTsVi7VW5mkBiz7coU9tc0xEEQRAEQRAE0XEgn7QwIbmMIAiCIAiCIAgbJKSFSD6jOxIEQRAEQRAEURiQkBYiCqnSCIIgCIIgCIKwQUJamOiatJDrQRAEQRAEQRBEZCAhLURIOCMIgiAIgiAIwg4JaSGi+6SR2SNBEARBEARBEGlISAsVEs4IgiAIgiAIgrBCQlqI6OaOZPdIEARBEARBEKHx6quv4phjjsHRRx+N1atXh10dEtLChYQzgiAIgiAIggiTRCKBlStX4qGHHsK6devwhz/8Af/9739DrRMJaSFC+6MRBEEQBEEQRLhs2LABffv2Re/evVFcXIxp06Zh/fr1odYpHmrp7ZxdrRoUJSk831ZchaLqWiRLqvFNkzgd4U2jkkAjPcPIQu0TfaiNog+1UbSh9ok+1Ebh0dgGlFZGVznR0NCA+vp6/XddXR02bNgQYo3amZBWWVmCeDwWeL6xmIqamnJf1xRXJDG1POGeqN9AHP+re1BcXJJF7QgAUGMqkomisKtBCKD2iT7URtGH2ijaUPtEH2qjcKksVlBT4S56ZDLnDgJN0xzHwrZ4a1dC2u7dzTnJt6amHNu37/V9XReZti1RAbT6zpuwUtOpHNu356b9ieyh9ok+1EbRh9oo2lD7RB9qo5BpBbZvb3FNkumc2y/du1dZftfX12Pz5s3674aGBtTW1ua8Hm6QTxpBEARBEARBEB2WESNGYOPGjfjss8/Q0tKCdevWYcqUKaHWqV1p0giCIAiCIAiCIPwQj8dx7bXX4uyzz0YikcCcOXMwaNCgcOsUaukEQRAEQRAEQRAhM3nyZEyePDnsauiQuSNBEARBEARBEESEICGNIAiCIAiCIAgiQpCQRhAEQRAEQRAEESFISCMIgiAIgiAIgogQJKQRBEEQBEEQBEFECBLSCIIgCIIgCIIgIgQJaQRBEARBEARBEBGChDSCIAiCIAiCIIgIQUIaQRAEQRAEQRBEhCAhjSAIgiAIgiAIIkKQkEYQBEEQBEEQBBEhSEgjCIIgCIIgCIKIECSkEQRBEARBEARBRAgS0giCIAiCIAiCICKEommaFnYlCIIgCIIgCIIgiBSkSSMIgiAIgiAIgogQJKQRBEEQBEEQBEFECBLSCIIgCIIgCIIgIgQJaQB27tyJCy+8EMceeyyOO+44vPPOO9i+fTsWLlyIqVOnYuHChdixY4ee/oEHHsDRRx+NY445Bq+99lqINe84/PznP8e0adMwffp0LFu2DM3NzdRGIbN8+XJMmDAB06dP149l0ib/+te/MGPGDBx99NG4/vrrQW6ywcBrn1tuuQXHHnssZsyYgaVLl2Lnzp36OWqf/MNrI8bDDz+MwYMH45tvvtGPURvlH1EbrVmzBscccwymTZuGVatW6cepjfILr33ef/99zJs3DzNnzsTs2bOxYcMG/Ry1T/756quvsGDBAhx33HGYNm0aHnnkEQA0X5BCI7QrrrhC+81vfqNpmqY1NzdrO3bs0G655RbtgQce0DRN0x544AFt1apVmqZp2kcffaTNmDFDa25u1jZt2qQdeeSRWltbW2h17whs3rxZO+KII7TGxkZN0zTtwgsv1H73u99RG4XMm2++qf3rX//Spk2bph/LpE3mzJmj/f3vf9eSyaS2ePFi7eWXX87/zbRDeO3z2muvaa2trZqmadqqVauofUKG10aapmlffvmltmjRIu3www/Xtm3bpmkatVFY8Nro9ddf184880ytublZ0zRN+/rrrzVNozYKA177LFy4UH++L7/8snb66adrmkbtExYNDQ3av/71L03TNG3Xrl3a1KlTtY8++ojmCxJ0eE3a7t278dZbb2Hu3LkAgOLiYnTq1Anr16/HrFmzAACzZs3Cn//8ZwDA+vXrMW3aNBQXF6N3797o27evZZWGyA2JRAJNTU1oa2tDU1MTamtrqY1CZuzYsaiurrYc89smW7Zswe7duzF69GgoioJZs2Zh/fr1+b6VdgmvfQ499FDE43EAwAEHHIDNmzcDoPYJC14bAcBNN92Eyy+/HIqi6MeojcKB10Zr167FkiVLUFxcDADo2rUrAGqjMOC1j6Io2LNnDwBg165dqK2tBUDtExa1tbUYNmwYAKCyshIDBgxAQ0MDzRck6PBC2meffYYuXbpg+fLlmDVrFlasWIG9e/di27Zt+otdW1urm5w0NDSgvr5ev76urg4NDQ2h1L2jUFdXh0WLFuGII47AoYceisrKShx66KHURhHEb5vYj9fX11Nb5Ynf/e53mDRpEgBqnyixfv161NbWYsiQIZbj1EbRYePGjXj77bdx0kkn4fTTT9cXAamNosFVV12FVatWYfLkybjllluwbNkyANQ+UeDzzz/H+++/j1GjRtF8QYIOL6S1tbXhvffew/z58/HUU0+hrKwMq1evFqbXOPav5tVOInh27NiB9evXY/369XjttdfQ2NiIp59+Wpie2ih6iNqE2ioc7rvvPsRiMZxwwgkAqH2iQmNjI+6//35cdNFFjnPURtEhkUhg586d+M1vfoMrrrgCF198MTRNozaKCGvXrsXy5cvxyiuvYPny5VixYgUAeofCZs+ePbjwwgtx1VVXobKyUpiO2smgwwtp9fX1qK+vx6hRowAAxx57LN577z107doVW7ZsAQBs2bIFXbp00dMzEyEgJfGzlQAiN/z1r39Fr1690KVLFxQVFWHq1Kl45513qI0iiN82sR/fvHkztVWOefLJJ/Hyyy/jRz/6kf6Bo/aJBps2bcLnn3+OmTNnYsqUKdi8eTNmz56NrVu3UhtFiLq6Ohx99NFQFAUjR46Eqqr49ttvqY0iwpNPPompU6cCAI477jhd00ntEx6tra248MILMWPGDL1taL7gTYcX0rp37476+np8/PHHAIDXX38dAwcOxJQpU/DUU08BAJ566ikceeSRAIApU6Zg3bp1aGlpwWeffYaNGzdi5MiRYVW/Q9CzZ0/885//RGNjIzRNozaKMH7bpLa2FhUVFfjHP/4BTdMs1xDB8+qrr+LBBx/Efffdh7KyMv04tU80GDx4MF5//XW8+OKLePHFF1FfX48nnngC3bt3pzaKEEcddRTeeOMNAMAnn3yC1tZWdO7cmdooItTW1uLNN98EALzxxhvo168fABrnwkLTNKxYsQIDBgzAwoUL9eM0X/BG0Xj6ww7G+++/jxUrVqC1tRW9e/fGTTfdhGQyiYsvvhhfffUVevTogTvvvBM1NTUAUqZCv/vd7xCLxXDVVVdh8uTJ4d5AB+AnP/kJnn32WcTjcey///644YYbsGfPHmqjEFm2bBnefPNNfPvtt+jatSsuuOACHHXUUb7b5N1338Xy5cvR1NSESZMm4Zprrmn3Jgz5gNc+q1evRktLi94mo0aNwsqVKwFQ+4QBr41OOukk/fyUKVPw+OOP6yvM1Eb5h9dGM2fOxFVXXYUPPvgARUVFuOKKKzBhwgQA1Eb5htc+/fv3x4033oi2tjaUlJTg+9//PoYPHw6A2icM3n77bZx22mnYb7/9oKop3dCyZcswcuRImi94QEIaQRAEQRAEQRBEhOjw5o4EQRAEQRAEQRBRgoQ0giAIgiAIgiCICEFCGkEQBEEQBEEQRIQgIY0gCIIgCIIgCCJCkJBGEARBEARBEAQRIUhIIwiCIAiCIAiCiBAkpBEEQRCR57LLLsPMmTPR0tJiOf76669j2LBh+Pvf/x5SzQiCIAgieEhIIwiCICLPtddei+3bt+Oee+7Rj+3evRtXXXUVFi9ejAMPPDDQ8uzCIEEQBEHkExLSCIIgiMjTqVMn3HTTTXjooYewYcMGAMCNN96ITp064eSTT8Yll1yCsWPHYuzYsViyZAk2btyoX7tp0yacd955mDhxIg444ACceOKJeOmllyz5T5kyBXfddReWL1+OMWPG4LLLLsvn7REEQRCEBUXTNC3sShAEQRCEDNdffz3+7//+DxdffDEuv/xy/Pa3v8VFF12E0aNH46yzzkJRURF++tOf4q9//SueffZZlJWV4YMPPsA777yDAw88EKWlpXj22Wdxzz334Omnn8bAgQMBpIS07du347zzzsPUqVOhaRr69esX7s0SBEEQHRYS0giCIIiCoampCbNmzcKnn36KSy+9FDU1NVi9ejWef/55KIoCAEgkEjjkkEPw/e9/H8cffzw3n3nz5uHwww/H+eefDyAlpO233364//7783YvBEEQBCEiHnYFCIIgCEKW0tJSLF68GNdffz0WLVqEH/7wh/j8888dPmmNjY347LPPAAB79+7F3XffjZdffhlbt25FW1sbmpubMXjwYMs1w4cPz9t9EARBEIQbJKQRBEEQBUUsFoOqqlBVFclkEkOGDMHtt9/uSFddXQ0AuOWWW/Daa6/hyiuvRN++fVFWVoYrr7wSra2tlvRlZWV5qT9BEARBeEFCGkEQBFGwDBs2DOvWrUPnzp3RqVMnbpq///3vmDVrFo455hgAQHNzMzZt2kQ+ZwRBEERkoeiOBEEQRMEyY8YMdO3aFeeffz7efPNNfPbZZ3jrrbdw88036xEe+/XrhxdeeAH//ve/8eGHH+Lyyy9Hc3NzuBUnCIIgCBdIk0YQBEEULGVlZfjlL3+JH//4x7jooouwa9cu1NbW4uCDD9Y1a9/73vewYsUKnHbaaejUqRPOPPNMEtIIgiCISEPRHQmCIAiCIAiCICIEmTsSBEEQBEEQBEFECBLSCIIgCIIgCIIgIgQJaQRBEARBEARBEBGChDSCIAiCIAiCIIgIQUIaQRAEQRAEQRBEhCAhjSAIgiAIgiAIIkKQkEYQBEEQBEEQBBEhSEgjCIIgCIIgCIKIECSkEQRBEARBEARBRIj/D4MIuHjdXjFrAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABf7ElEQVR4nO2dd5wURfbAv293SQKSlSRBwQAqSlBABT0TYFYUzPE4TIfp/HlGMIfTM2FCBSOiJyqngoIBUUHFxIkKkqOCElXibv3+6O6hpqe7p3umZ2d2t76fz3x2tru6urqnql69V69eiVIKg8FgMBgMFYuifBfAYDAYDAZDdIwANxgMBoOhAmIEuMFgMBgMFRAjwA0Gg8FgqIAYAW4wGAwGQwXECHCDwWAwGCogRoAbcoaI7CgiH4nIehG5V0SuFZEn812udIjIKBG51f5+kIjMyneZDJUPEVEi0i7f5fBCRIaKyPNxXysiB4vIkuxKFy8i0kpEfheRYp/zGb8Lj7xi/c2rpAAXkdNEZLr9oy0XkfEicqArzTn2yz7Fdfxg+/hY1/FO9vEPtWNtROQDEflTRH4UkcO0c0eJyMciskZEfhaRESJSVzt/ioh8al/7IRWTQcCvwPZKqSuVUrcrpS6AxLtRIlLid3GcDSdTlFJTlFK75bMMVRHTRlOep6CEXmVCKbVIKVVHKVWa77JEpcoJcBG5ArgfuB3YEWgFPAIc50p6NrDK/utmJdBTRBq50s92pRsNfA00Aq4D/iMiTexz9YBbgebAHkBL4B7t2lV2Oe8M/XBZEiRMM6Q18L0y0YIMETBtNDo5aLsVDj8NulKjlKoyH6wG+Ttwcpp0rYEy4CRgK7Cjdu5gYAnwGHCxfazYPnYj8KF9bFdgE1BXu3YKMNjnnicC//M4foGTZ5oyHwd8A6wD5gJ97OMLgMO0dEOB5+3vbQAFnA8sAj4CJgCXuPL+FjjR/r47MBGr85oFnOJTnlHAFmCz/c4Pc917kX3v3+1PD9f1fexrt9jnv7WPNwfG2fefA/w14J30A74H1gNLgatcv+G1WBaCBcDprrLfqqfVzi0ArgJmAGuBMUBN7fzR9u+wBvgU2Dvf9b4ifajcbfQfwHJgGXCeXf/b2edqAP+y28UvdtlrAbWBDfazOm2lud2W/gM8j9XmL7Df3VP2PZZiDT6K7fzPAT6277EamA/01crWFphst5WJwMPYbdU+392uz2uw+oODw17rege+bQ/oZj97iZb+JOAbn7xGAY8CbwN/YPUxzYFXsQZw84G/a+n3A6bb7+sX4D77eBv7tyhJ9zy4+gP72ALsPta+x1T7PS23r62upU385nF8qpoG3gOoCbyWJt1ZwHSl1KvAD8DpHmmetdMBHAnMxGqYDh2BeUqp9dqxb+3jXvSy84iMiOxnl+cfQH07rwURsuiNpWEcCbwInKrl3QGrs3xLRGpjVegXgR3sdI+ISMozKaXOAV4A7laWeWqSK0kv+299+/xU1/UTsDSwMfb5Tvap0VgdQHOgP3C7iBzq81xPAX9TStUF9gTe1841BRoDLbA0sydEJKyp/BSsAUZbYG+szhER6Qw8DfwNS6N7HBgnIjVC5muovG20D9bA73CgPZaw0bkLa0CxD9AOq17eqJT6A+gLLLPbQR2llPMMx2EJ8fpYbe0ZrMFMO2Bf4Agswe6wP9aguzFwN/CUiIh97kXgS/vcLWhWDRFpAbyFNSBoaD/Hq5qlwvdaHzzbnlLqC+A3+x05nAE8F5DXacBtQF2sAcZ/sX7DFsChwGUicqSd9gHgAaXU9sAuwMs+eUZ9Hp1S4HL72h52GS6KcH0kqpoAbwT8qpTamibdWVg/IvbflB9QKfUp0NDu9M/C6ix06mBpaDprsSpaEiJyuH2PG9M9gA/nA08rpSYqpcqUUkuVUj9GuH6oUuoPpdQGrI5zHxFpbZ87HRirlNqEpV0uUEqNVEptVUp9hTXa7Z9huSMhIjsBBwL/p5TaqJT6BngSONPnki1ABxHZXim12i6vzg1KqU1KqclYHdQpqVl48qBSaplSahVWh7GPffyvwONKqc+UUqVKqWewNLzuYZ/RUGnb6CnASKXUd7ZQHqrlLVh153Kl1Cp7QHE7MDBNnlOVUq8rpcqA7bEE/WV2W14B/NuVx0Kl1AhlzfU+AzQDdhSRVljar9MePsKq1w5nAG8rpd62+5eJWJpsvxDX+uHX9p6x74eINGSbUuHHG0qpT+x3sBfQRCl1s1Jqs1JqHjBCewdbgHYi0lgp9btSapo7syyeBwCl1JdKqWl2/7gAaxDfO+z1UalqAvw3oHEax6kDsDSrl+xDLwJ7icg+HsmfAy4BDiFVY/gdq1HpbI9lltHv192+R3+llHt+Liw7YZnNM2Wx88XuPN5iW6UfiDW6B0sT39926lkjImuwBHzTLO4dheaA08E5LMQabXtxEpYZfaGITBaRHtq51XZHqufTPGQ5fta+/4klCMB6P1e63s9OEfI1VN422hytnWHVN4cmwHbAl1q9mWAfD0LPrzVQDViu5fE4lqXMIVFvlVJ/2l/r2GXzag963ie76vWBWAOAdNd6EdT2ngeOEZE6WEJ9ilJqeUBe7nfQ3FXOa7H8KMBSdHYFfhSRL0TkaI/8MnmeBCKyq4i8aTs9rsMaiDUOe31Uqprjw1RgI3A8lunJi7MBAb7ZZl0CrBH8N660z2HNwz6rlPrTlX4msLOI1NUETie00aSI7Is1n3ueUuq9DJ7HYTGWSciLP7A6BwcvYet2MhsN3CQiH2HNw32g3WeyUupwsieMY5s7zTIsjUp/p62w5vtSL7ZMcseJSDWsTvxlLIEK0EBEamsNtRXwXZQH8GAxcJtS6rYs86nKVNY2upxtdQ+s+ubwK9Y8d0ellFdd9msr+vHFWNaexiGsF15l82oPTv6LgeeUUn91X2hb6oKu9cK37SmllorIVOAELMvao2nK7n4H85VS7T0TKvUTcKqIFGH5M/zH5eQI6d9FUn9qO87pA61HsZwiT1VKrReRy8ihhbJKaeBKqbVYJrDhInK8iGwnItVEpK+I3C0iNbFGfYOwzKLO51LgdLdWoJSaj2Ueuc7jXrOxOpObRKSmiJyANV/6KoCI7Ik1yr5UKZViohGRYrs8JUCRnUc1n0d7CjhXRA4VkSIRaSEiu9vnvgEG2s/ZlXCV6W2s0ezNWHPQZfbxN4FdReRMO79qItJNRPYIkaeblViOOTsHpPkFaGM3OJRSi7Hmue6w38feWKPqF9wXikh1ETldROoppbZgOa64l4kMs9MdhDU98EoGz6EzAhgsIvuLRW2xliKlmGQN3lTiNvoycI6IdBCR7YCbtHKUYdWdf4vIDnbeLWTb3O0vQCMRqRfw3pYD7wL3isj2dj+wi4ikNd8qpRZimcSd9nAgcIyWxNGKj3SeWaylbS1DXOtHUNt7FrgayySezhdC53NgnYj8n4jUssu6p4h0AxCRM0Skif2+19jXJPUJIZ5nNlDTbtfVgOuxHBAd6mL1Nb/bffCFEcofHVUAnqfl/cEy+07HGk39jGUy7ollLl4OVHOlr4k1Sj4aDy9ELV2SNyqWd+OHWKPrWSR7g48k2bP0d2Cmdv4crFGf/hkV8EwnYHlGr8fSOI60j+8MfGbn/xbwIKle6CUe+T1ln+vmOr6bnc9KLHPn+8A+PmUahe3Nbf8/lGTP1pvtfNYA3T2ub4TlObsa+Mo+1hJrILEKa9rAz2O4OlbnuxqrQX0BHGifOxjLEe46+3ddBJzpVW73702AV7/9fx/7XmvsuvQKmpez+VTpNnqN/SxeXug1scyt8+z6+gPJHtRP2+1tDdu80J935V8PSwNcgjWX/zUwUCvrx670+v13xvLA/x1vL/T9sTyzV2G12beAVmGudd3zYALanp1mO/sdPJOmjoxC61/sY82xLIg/Y7X9aWzzEH8eWOH8jsDxWh3QvdDTvYtzsOrgCiyHvgXaPXoBP9rXTsHq4z72eudxfMTO1GCoMojIwVgNsmWei2IwGDwQkblYK0jcq1cMGlXKhG4wGAyGwkZETsLSVN9Pl7aqU9Wc2AwGg8FQoIgVkrYDllm9LE3yKo8xoRsMBoPBUAExJnSDwWAwGCogFc6E3rhxY9WmTZt8F8NgKDe+/PLLX5VS6YJ6VHhM2zZUNbJt2xVOgLdp04bp06fnuxgGQ7khIqEjQVVkTNs2VDWybdvGhG4wGAwGQwXECHCDwWAwGCogRoAbDAaDwVABMQLcYDBEQkR2EpEPROQHEZkpIkM80oiIPCgic0Rkhlh7pRsMhhgxAjwiU6dOpUuXLnz++ef5LorBkC+2AlcqpfbA2uv8YhHp4ErTF2hvfwaRflcpQwXl5Zdf5r33stmozZApFc4LPd8ceuihbNiwgX79+vHrr7/muzgGQ7mjrJ2vltvf14vID1h7sn+vJTsOawtPBUwTkfoi0kwF7+1sqIAMGDAAABMUrPwxGnhENmzYAMC6devyXBKDIf+ISBtgX6wd73RaYO3P7LDEPua+fpCITBeR6StXrsxZOQ2GyogR4AaDISNEpA7W3tmXKaXcI1rxuCRFRVNKPaGU6qqU6tqkSaWPVWMwxIoR4Bki4tU/GQxVAxGphiW8X1BKjfVIsgTYSfu/JdY+2IZKhDGb5xcjwDOkqMi8OkPVRKzR61PAD0qp+3ySjQPOsr3RuwNrzfx35WPz5s35LkKVxkihDBERZs6cyd13320qsaGqcQBwJvAXEfnG/vQTkcEiMthO8zYwD5gDjAAuylNZQ3Pbbbdx2mmn5bsYFYrff/898b1Xr148/vjjeSxN1aPCbSfatWtXlc94yV6m83vvvZcrrrgiD6UxVAVE5EulVNd8lyPXFErbrmh9Yj5ZuHAh7g1ozPsLT7Zt22jgMTBr1qx8F8FgMBjKna1bt+a7CFUaI8BjoKTELKc3GAxVD6Nt5xcjwGPACHCDwVAVMQI8vxgBHgMlJSVMnTqVMWPG5LsoBoPBUG4YAZ5fcibAReRpEVkhIt/5nK80mx2UlJTQs2dPBg4cyJw5c/JdHIPBkCV16tShX79++S5GwWMEeH7JpQY+CugTcL7SbHagm9BNfHSDoWKzZs0a/vjjD8aPH5/vohQ8RoDnl5wJcKXUR8CqgCSJzQ6UUtOA+iLSLFflySW333574nuPHj149NEKOxYxGKo8e+21V76LUGEwAjy/5HMOPNRmB1DxNjy46KKCj1lhMBh8WLJkSb6LUGEwAjy/5FOAh9rsAMyGBwaDIT+UlpbSpk0bXnnllXwXpSAxAjy/5FOAm80ODAZDQbN69WoWLlzIhRdemO+iFCRGgOeXfArwCrnZwfbbb5/vIhgMhnLC2efgt99+Q0TMvgcujADPLzmLQCIio4GDgcYisgS4CagGoJR6DGuzg35Ymx38CZybq7LEycaNG/NdBIPBUE60aJHslvP777/TsGHDPJWm8KiMAvy3335j1apVtG/fPt9FSUvOBLhS6tQ05xVwca7unwvKysrMCNxgqMKUlZXluwgFhZcAV0oxcuRI+vfvX/AWSxHh3HPP5emnn04ca9++PatXr64QgxMTiS0kX331FdOmTct3MQwGQw4I21kbAW7RsWNH7rvvPs/39tlnn3H++eczePBgjysLj5EjRyb9v3r16jyVJDomiHcIysrK6NKlS76LYTAYcsSmTZtCpSstLc1xSSoG33//PVdeeSVfffVVyrn169cDsGLFivIuVpXDaOAhMFvmGQyVmw0bNoRKF5cGvnjxYpYtq/iLbrw0cOcdFRcXl3dxqhxGAw+BEeAGQ+UmrHNqXAK8VatWQMV3AvMqv2OlMAI89xgNPARGgBsMlZuwGnhFF7hxYwR4fjECPARbtmzJdxEMBkMOKW8NvCIyZ86clFU4QQK8qMiIl1xj3nAIjAZuMFROlFI8/vjjoXcRDCvAN23axL333ltp+o5ff/2V9u3bc8kllyQJbTMHnl+MAA9BZWmEBoMhmffee4/BgweHXvIU1gv9rrvu4qqrruLJJ5/MpngpLFq0iJ9++inWPMOwZs0aAN5///20ArzQNfDZs2dz5ZVXVorpEOPEFgIjwA2GyoljOp83b16o9GEF+Lp164BtS6p0shEcrVu3zjqPTHDuJyJJ76AiauDHHnsss2bNom/fvvkuStYU5hCpwDAC3GConJSUWDpM2HXgYU3oItZmi14CrpB9aiZNmoSIsGDBgqTjugDX30EmTmy33norvXv3Tjo2YcIERIQff/wxm+KHwnn/hx9+eM7vlWuMAA9BLgX4nDlz+O2333KWv8Fg8McR4GEJo4GvXbs2UID/8ccfke5Znjgmf3fUySgauNNf+gnwG264gY8++ijp2JgxYwCYOnVqhiUPT2VyRDQm9BDkSoD//PPPiYD5lWE+xmCoaMQtwOfPn8/OO+9M3bp1Ae92HVbbzwdOX+d+L/pzpNPAnfPp5sDLysryMk9emfpao4GHIFcCvDzMRQaDwR9HUw5LOgG+cuVKYNvcd0Uzoftpz1E08LDrwNeuXZtyrDyEq9HAqxi5EODDhg1jypQpsedrMBjCE7VtpxPgNWvWTPo/yMRciKTTwMPMgYd1Ylu1ahUNGjRI5OuwevVqfvjhB3r27JnBE6THaOBVjLgbXFlZGUOHDuW9994LTLd06VKeeOIJswe5oaAQkadFZIWIfOdz/mARWSsi39ifG8u7jGGJW4C7z1c0Ae6U3y3AP/nkEyCaBp7OPO546rvp168fBxxwQM42jjEaeBUj7gYXNr/u3buzZMkSli1bxtChQ2Mtg8GQBaOAh4FnA9JMUUodXT7FyRy/tli/fv3E2meddELFnV9FE+BeJvSysjIGDRoExOOFrufrxddffw1Y4W3r1KkTofTp2bhxY6XYRMYhpxq4iPQRkVkiMkdErvE4X09E/isi34rITBE5N5flyZR8CfAlS5YAqR6hBkM+UUp9BKwq7/uWlZXFrj3pbbF69eqJ740bN/YtQ9j8oOIKcF0Dd8/ZxzUH7jUYUkolfocNGzYwcOBA3n333ZClT8+qVeVebXNKzgS4iBQDw4G+QAfgVBHp4Ep2MfC9UqoTcDBwr4hUJwtef/11Wrdu7blPbabE7XQStQHXqlUr1vsbDOVAD3tgPl5EOvolEpFBIjJdRKY7DmB+7LbbbjRq1CjWQuptUZ+/9vNOryoauN+xMBr4P/7xDyC9Cd0ryA1sG0j9+eefjBkzhiOPPDJ9wUNSqNHhMiWXT7MfMEcpNU8ptRl4CTjOlUYBdcXyYKiDNarPqnafcMIJLFq0iFNOOSWbbAB47bXXuOKKK1IC+GdL1LkdI8ANFYyvgNb2wPwh4HW/hEqpJ5RSXZVSXZs0aRKY6Zw5czzN2tkQtwCvLHPg+nO4BXg6DdzpL9MJy8MOO4xFixYl8nVwBHgu1stXpvlvyO0ceAtgsfb/EmB/V5qHgXHAMqAuMEAplfKGRWQQMAi27aObjtWrV0cvsYsTTzwRIJQALykpCd0wjQZuqMwopdZp398WkUdEpLFSKtyOIeWI3hZ1k2+1atU808ehgVeEZWS6oIuqgYc55zBv3ryUPt0R4L///nu4QkegPN79xo0bmTRpEkcfnXsXkFxq4F4LLN2/6JHAN0BzYB/gYRHZPuWiCKN0Bz8Px0wIM2+iz5+lwwhwQ2VGRJraVjVEZD+sfqYgww3qbVHXGAvdhJ6rpVBO2bLRwKPgXoevz4E7GnjUtfpBlIf146abbuKYY45h8uTJOb9XLjXwJcBO2v8tsTRtnXOBO5VVC+aIyHxgd+DzTG9ao0YNNm3alNMf6q9//SvNmjVj0aJFjBo1CrAE+J9//plIU1pa6uvEEbVs7rWlBkM+EZHRWD4rjUVkCXATUA1AKfUY0B+4UES2AhuAgSpGiRNnBC+3cHLIVAMvLxP61q1bfcuYbb6QrIHrWmsUDTwM7uvzLcDjqKa//PILAHPnzk2J+R43udTAvwDai0hb2zFtIJa5XGcRcCiAiOwI7AaE2xbIh+23T1Hgs2b06NFJ/7ds2ZJhw4bRqVOnxDG3Bv7tt9/65he1AUcN92gw5BKl1KlKqWZKqWpKqZZKqaeUUo/Zwhul1MNKqY5KqU5Kqe5KqU/jvH+cplVdOIXRwAvFC10vd1lZGTfffDMLFy7MOt90c+Dffvstu+66K2C9ryCBF0XwOmnLyspSTOhxCnA/E/qPP/7IxRdfnKSEzZ07N6Owt46jZXl4vOdMgCultgKXAO8APwAvK6VmishgEXE2370F6Cki/wPeA/4v23my8jA3OxXKy/HC4fbbb/e9PmoDrmyekwZDNmzYsCHrPJYvX87GjRt9NXBHgHfs2DERLQyyN6Fv2bIlFq/q77//PvG9bdu23HTTTVx44YVZ5+sMUJznLCsr49VXX/VMKyKxm/J1y4IuTOPM34sTTjiBRx55hAcffDBxrF27dvztb3+LfA9HgN9+++05eQadnKp2Sqm3gbddxx7Tvi8DjojzntmM1ubOncvkyZPp1KkTXbp08U3nCFRdsNaoUSMpjV+lB+9KFGQWjHMEajBUdOLwJG7evDn9+vVL2lJSb3+OEGnVqhUNGjTg448/BrI3ocflWd2tW7dE3o4n93bbbZd1vk6ezjt+4oknuOqqqzzT5kqAO1OPTgTK8tDAHa699tqk/z/44IPI93CCz6xevZo///wzlt/Fj0pnm83mx27Xrl3ie5AXu5cAj/IjhRHgcc4zGQyViWxDbDrt6e233+aQQw5JHC8qKkoIJUcDLykpSWqX6cz3YTRw9/m4BJQ+pZcpbg188eLFvmnTmdDD9Fte78d53475ujzmwP2UpyjOyQ6671Mm10eh0tlmM/2x3RUpaKcw5x76j167du3Q9/KqRO5OSW/ouYoJbDBURLLVwPVloW4T+n/+8x8uv/xymjdvDlidsd4hp9uvOp0Ad8+pxmFN6Nq1KxC/Bj5mzBjef/9937RxauBOn6pr4IUqwLt3784JJ5wQ6n5uy2zcGAFu4zZtzZvn70uXCw3cCHCDIRxxCnB9oF5UVMSJJ57Ifffdl2jbbg18xIgRiVjdXrjbtrus7o2JorTtxx57LOn/Xr16sXDhwhSzdzboGvjAgQMDwzjHoYG72bp1a+J9l6cJPYoA/+yzz3j99dd976H/prlYKaBjBLiNO4yjsxQg6B76vaJ4v/uZ0HX0ilbIkZsMhvIm2wGtLsCfeeaZxHe9E3e+uzVwgBdeeCHjsmUjwN1OalOmTOHOO++MJMAXLFgQ2J84eYUpVzoNPMqAwslHF+CZeICnozxM6Pq7y7UDshHgNu457yBnBy8N3G/zAy/CaOB6GqOBGwzbiKppKqW47rrruOGGG1i7dq2vYND7Dl0Dd3fiQXEZoprQs23buhac7r2sWLGCtm3bcsUVV/imiTIYiEOAO9c7gyp9Drw8NfBvvvnG87j7t//555/T3qM8w7VWagEe5UW6f9gg9399dO4QVoArpTw7kCATutHADYZtRBV6v/zyC7fffju33norp5xyim9oZD8N3D2PmY0Az0YD96KoqCjRz6Xr7377zQqGN3HixJRzmzZtYsuWLSlObEH88ccfgQL8kUceSZuHg+NJn2sTetS+1C3A+/fvn/aa8lS4KrUA33fffUNf537pw4YNS3uP+vXrJ46F3SWpf//+SUtXHNyNr1+/fonvRoAbDNuIquHo1rWpU6dGEuAlJSWhBHhpaSlFRUUMHz486Xh5CPCweTnvzcusW7NmTfbcc8/I8+np5rnD5jNnzhwgf3PgflSvXp2JEyfy3XffAeGCsxgBngX6jz1jxozQFSiKkHQqmK51e2ngXvceO3asZ57uH12P5Ba1QnzxxRccffTRiUZhMFQmOnbsyJtvvhk6/YoVKxLf169fH8mEHlYD37hxI0opZs2alXTc3Qe4792oUaNAp7h0RDGhO+f9BOLs2bMTacL2h+kEeLq+y7ne2VrUaw48WwGulzETDfyII45gr732Cn1NwZnQRaSJiFwrIk+IyNPOJ9eFi8rixYtTGpB7xOvHyJEjQ9/HqWD16tVLHPNyYovyQwZV9KiVrmfPnrz11lsMHDgw0nUGQ6Hi1pyefPLJ0Ne6HVTDaOCO0KhRo0ZoDdyLdBo4WMFSMqWoqCgpaloQQRq4g1PeMBHEDjrooKwFuNv8v3TpUt5+24r9FYcA79atG23atEn8H7UvdZc/TFnKUwMPG8jlDWAKMAkoWI8qL8/xMJFw/ve//yU2JQmD8yM6a0XBe71faWkpJSUlLF++HBGhadOmvnkGNb6oFcKppEuWLIl0XS7ZuHEjc+fOpWPHjvkuiqEC8vLLLyf9H2aLXwe30AyjgTvf69atmxK61aut+wmGdIFcILsOf/78+cycOROIV4CHiRjXoEGDrE3oznknHz2CZRwm9OnTpyf9n2lf6kWDBg08A34Vogl9O6XU/ymlXlZKvep8clqyDPCqmGHiJi9YsCCj+zRu3JhJkyYxffp0z0ZdVlaGUormzZvTrFmzwDz1H91d6TOdAy+kufOjjjqKPffcM5Lp02BwcLftKALc3Q7CaODONXXr1k1p2179TFgB7iXQsjG5vvbaa6HzCSPAnTRhBLhSKrIG7u6Pg6wHcS4jcwYDUdemd+/ePel/fTCxZs0az2tuvvnmaIXLgrAC/E0R6Zc+WX7JVIBH6Qwg+Uc89NBD6dKli+fuRWVlZUkN++mn/Wcd9Ars1hgqgwB3IjrpHY6hMLF3Dywo3G07SufuFiJ6+FS/ezjtuaioKEWA62116dKlKKXyJsCj5BO3Bp6JAD/00EM9y+RV9jid2NatWwdEF+BRfpuvv/6ae+65J1L+2RIowEVkvYisA4ZgCfENIrJOO15QZCrAo3omet3Ha+/v0tLSpAp8/vnn++app/MbpUalENePN2zYMN9FiIX58+dz2mmnJbxTKyoi8qGItNH+3w9rK+CCIhsNPKyw1wWFs6vhhg0bfAX4zJkzadmyJdddd13sArxHjx48+OCDiEjKdsZ+6MJQRPj3v//tWZYwGniYJWCZCHB3KNowGngcAtwZaEUV4LfcckvS/+6y6Pl17tyZq6++OvF/UBz5uAgU4Eqpukqp7e2/RUqpWtr/8W+8nSVeQrS8BLjXMbcGHkSQAM9Uky5EAb5ixQrGjBmT72JkTf/+/Rk9ejR/+ctf8l2UbLkDmCAiF4nIbcBjwLl5LlMKmQrwCRMmcPHFF0e+R5AAd9rV3LlzAbjjjjtiF+DTpk1jyJAhANxwww2hyl9aWsqsWbMSmqt7Z60oGngYMhHgbuLSwGfPnh1oNejcuTMjR46MfWOoIA29ZcuWsd7Li7Be6O+FOZZvMtXAw3qqO3hVKK/BQ1lZWWghqleEuAR4IZnQHZ599lkGDhwYuElCobF582aWLVuWdGz27NlAqodzRUMp9Q4wGHgAOA/op5T6Kr+lSiVTAR40ZeOe9tLvcfDBByf++mngXnPmbtzt36vDT9dHhN3//L777mP33XdnxIgRKeXT7x0kEOMW4OlM0M6ze+Xj/MZhBPhuu+3Gsccem3TMeQ8OEydOzFqAu8uS7z42nQm9pog0AhqLSAMRaWh/2gDNg67NB5kK8Kh79IbVwEtLSzPSwOMK9pDvyhVE0G5vhcb+++9PixYt+P777xPHCvndRkFEbgAeAnoBQ4EPReSovBbKA/cAOawAD7KuuTea0Dvnnj17sm7dOvr27ZuSzkuA62vNddwhOjOZA1+2bBnvvPNOYBqdzz77DEh9Z1Gc2NLheKDfcccdgemy0cDDCnBHKLuVAj3OvXMPXYDHsVNYvvuBdBr434DpwO7AV8CX9ucNYHjAdQCISB8RmSUic0TkGp80B4vINyIyU0QmRyt+MlG8Q3WcIALZ3CdbDVxP5y7zpEmTAufP/SjkfcRzHeQ/TpxO2FmfCtGnXQqYxsB+SqmpSqnHgSOBy/JbpFQy1cCD0rkFs/sedevWBVLbttNWdcFy0EEHed7DCRHq4AgqfTvKMH1Enz590qZx38NtYYhTgLdp0walVFLAKS/SPVtpaalvPxVWgPuV2b2WXRfgX375ZcoUQzp++eWXlPpU0AJcKfWAUqotcJVSqq326aSUejjoWhEpxhLyfYEOwKki0sGVpj7wCHCsUqojcHIWz+IrRNMRVYB7Vahs58Adk6xznZsgD3Y3Xh7x+cSrgVYkAe6g/y6F6F+QCUqpIQAispv9/0KlVGqs3zzjri9h33+QAHc8k/3u4Xc8jCB08JsD79u3b8oxv/+j4rybTDTwsO+1WrVqoRSEMBq43/OGHSRHEeBO2mbNmqX04+l2lGzatGlKoLCCFuAaS0XkRNfnUBHZIeCa/YA5Sql5SqnNwEvAca40pwFjlVKLAJRS3naokPgJ0XT8/vvvWd/Hzwv9q6/CTSc6wRic67LBqyz5xKuhxxnfuLzweo5CGyxFRUSOAb4BJtj/7yMi4/JaKA/cbS5s/YliKfHL008Qhmln7v7HqUN6vXGnybb9ewnqTz/9lOeffz7luJuwAindXuAOYTRwvz7aTwNXSiX5nvj5D7mnRnUNPK7+p6II8POBJ4HT7c8I4ArgExE50+eaFoDuR7/EPqazK9DAXsrypYicFbrkHvjNQ6cjlxr4McccEypPvSL4VeiwJvFCEyqVUQN3yOZdr1mzphA0+aFYg+01AEqpb4C2+SuON5nWlyjLzfzu4SfAwwgBPw1cN9/HrYF7DTAOOOAAnnrqKSAeAZ5uK1GHdPV7y5Ytvmun/QT4Aw88wA477JDY60Evx8cff5z4HmRCF5HAJWFhOf/88+nWrVtkJTAuwraKMmAPpdRJSqmTsEzim4D9gf/zucardrvfUAnQBTgKa+7tBhHZNSUjkUEiMl1Epgd5/WaqgedyDjwsQZHYHMJ2RnpZJkyYELoMucLreSqiAPdq4O551LAsX76cBg0aFMIytK1KqbWuYwXnPFEeAtxPIGdqvgd/4azXGye/1atX07x5c84+++zQ+XvhZ0J3CBp4BD3bBx98kJRHGIGXrg8cPXo01113nec5x3rilPe1117jyy+/TGyH6jjC6vdYtGiRbzS5dBp4JgOnt956i+nTpyf8JcqbsK2ijVJKDzS+AthVKbUK8LNRLQF20v5vCSzzSDNBKfWHUupX4COgkzsjpdQTSqmuSqmuTZo08S2knxk7HX4CvBGwB3AQcDxwkv3Zafp0+PBDmDkT7Hm0TLV/r7TZCPDPP/88aW7v7rvvDl2GuHnggQfo1auXp5d/oZvQV61aRY8ePfjnP/+ZOOb1u2QqwCdPtvw1P/roo8wKGB/fichpQLGItBeRh4BP810oN4WmgSulfAWPO63X//o+086xhg0bsnz58qzjJKQT4Jm+S2dpHcSngU+bNs33nGMNcPqKE088ka5duyY2k7nyyiuB5Hd8wQUXcNtttwGpAXzSaeDluYtYXIT9JaeIyJsicraInI3lhf6RiNTGNr158AXQXkTa2qEZBwLuubU3gINEpEREtsPS6H+I/BQ2mWrgRb//zqHAtcBzwGfAauBX4HusUcVrwH/sz4H33QeHHAJ77gn16kHLlux0/vncBBwC1Ipwb4e4BLg7VKFT2efNm0fr1q258cYbQ5cpWy677DKmTJnCCy+8kHKuqKiI559/PtKuUuXJvffey7Rp07jzzjsTx+KcA9c3tnFHeypnLgU6YlnURgPrKEAvdLcwCjsADNNmevfuDURzYlu0aFFiuVYQep0ZP358Yimi/jxxT6Okc1ZzH/cTxKeffrrvPeIS4GGW8P7yyy9J/ZbTpzmOv+7+cvz48Z75lJWVcemllwLxaeD5JmzvczGW8nkAlmn8WeBVZf2CnoGFlVJbReQS4B2gGHhaKTVTRAbb5x9TSv0gIhOAGVhm+ieVUhnHpgylBZeVwY8/wrRp1mfqVN757jvPkcxaYDmWIF8FOF1B965daVmzJqxcCQsWwNKlbLd0KUPt8xuBd4E6r75KffxHOH7ldL7Xr18/KWB+mJCQ7rmY2bNnM3v2bM477zwWLVrELbfcwhVXXEH9+vVDlMqfqVOn0qpVK1q0SHZrmDt3LuvWrWPfffdNHPNyJCoqKuLMMy33iTPPPDOWNZlx4jWnFeccuN6BvPjii6GjbcWNUupP4Dr7U7DkUgP/8ssvAXj33Xc9z3stIwvrKKrXmX79tm0nkUsLlK6Br1mzhlNOOSXpfFgBHmRdikuAh0Uf5DpR8hzc7XL27NkMH566ylkvi5cGHufmKeVFqN7HFtSOAhoapdTbwNuuY4+5/r8HiCUCvGeAlbVrYcKEhLDms89gbfKUX6kIXyjFZ1juuLOBWViC26FFixYsXboUgBcuv5zTTjvNvrgUFixgxaRJvDB4ML2BfYBjAf75T5YDrwJPYGnyfng5sdWtWzdJgLs7I6UUmzZt8tyf2GHu3LnstttuSQI76uYtbr7//nt69uyZKINOu3btAPjtt98Sx7w6K68BSyERNuBGpib0fD+ziPyXgLlupdSxfufyQaYCPEyURWew5ieQvDTwTOI76Oj3ylV4z+LiYp5//vnEnLFD2Dl93czvRkT48MMP05altLSUpUuX8sADD6QN+hIWvb+bOXMme+65Z9L53377jUsuuSTlOl2RKPQpvLCEDaV6ooj8JCJrC3kzk2JgL2AQ8DSW+fvMIUOgb18YNgzefdcS3i1bQv/+cO+98MknHLLvvnTH2rFlJPAJycIbSKp8SRW+uBh22YXNRx3FFVgeeS2Ai4D1XbtSHcttf7JdnvMBr2bhZUJ3NyC34D3++OOpVauW5z7obvRReLbCI8zSOD0ylVfnqz9LvoWZF17COk4ntnwvPwH+BdwLzAc2YK0sGQH8DgRawUTkaRFZISKe6cTiQTuA0wwR6ZxtYTMV4HF4B3vNgWcrwOPEXQd1DdxLqywqKqKsrCwxuMlUgIehrKyMc845h3vuuSdwvjsKutUryu6GbgFeGYR42FZxN1awlXqFvJlJ9Q8+YAbwONZuDHtgmbM54AC48kp45RVYvNj6vPIKXHEFf3/pJT4JIZAaNGiQ+J7Oq/pn4FHgh+HD2Rm4Bct7bw+stXjzgSuBOtr1TiN67rnnOOKII4DUhulujOPGWS4FXbp04bzzzgscycep8YZZW5uuceh5FKIA99qNKU4NPN8CXCk1WSk1GdhXKTVAKfVf+3MacGCay0cBQaHB+gLt7c8grOaQFZkK8LBxxKPcO9MQybkiaJ26lwWiqKiI8847j1q1aqGUyqkALy0tTTjVxrXypFGjRpHLAclKg4hw5JFHxlIeL8orUmPYN/qLUipj57LyoqxbN+YBLwJ/B7oB2wN8/DH861+W1q3tELNlyxYeeuihUHnrlc+rwnvNid13330sBG4EWmNFrZmBFUT+X8BcLA+i6lqeZ521bSl8Og3cYenSpYwcOTKxO5IXcWq8YTqvdI210DVwL7wGSD/88INnlLyffvqJO++8M2UtqkO+BbhGExHZ2flHRNoC/ks9AKXUR1huIX4cBzyrLKYB9UWkWTaFdNenxYsXh3Iii8MxSW/bIpLxJkU6cZrQ/UK9BglwJ074ihUrci7AnboeV3wK59577LFHxgK8qKiIzp07c8EFF8RSJjflFYsjrACfLiJjRORUPRpbTkuWAcU77MAuWCbrh7CCuAeNg9wV15nX9cw7jdeol8DSl4NsxXLx7YSlnnwK7AA8iDXf3n3WLGs+XSOsAHcIWs+uayLZCg+/63VTvt4peTWydAK8tLSUadOmpTzzzJkz+fVX9wRH+VBWVsZXX32VEoLz/PPPZ8GCBUnH9thjD/75z38mlrS40Z85zzHrL8fawORDEfkQ+IDsvdDDBHECwsd48Bogv/zyy2kLkk7Q6jHJ/dDbtmN+9srXK7Z2ecyBu4VFOhN6tWrVcJbjzpkzx3eQEZcAd7TRuLYR1vufKAJcfxeVwXwO4QX49sCfwBHAMfbn6FwVKlP8tD6/RuQWRHvvvXeovL0qfJTwpROw3PmPwZpsbAP89ZNPoHNnemnp/EzofvGDgwS4PheYKw1cXxql38Prd9Ebk1d57rzzTnr06MHf//73xLF58+ax5557suOOO2ZU7myZNGkSXbp0oV69einn3MthnGeaMWOGZ16FooErpSZgmbqH2J/d7C1GsyFMECfn/qFiPGQaZyGdBh6m3eppioqKKC0t9by313SK35abnTtn7RbgWT5IXkbmpYHXrVs3UaatW7f6vseglSFhBeC1116bEOD33ntv4rjX7xl2Ouo//7F8qZVSkczyuhLjVf5u3bqFzqtQCPX0SqlzPT7n5bpwUfH7Mf00V3fF/dvf/uabdyYauB/vvfceRx55JG9iaeRnASu32w5mzGAyVtD4nUgdAW/dupXhw4dTXFzs2fE461m90COylccceDoBpQtwr7RPPPEEAI8//nji2Ndffw3kfr2mn0Y0ffp032v0pS2LF29TPv06ukIR4DZdsNaCdwIGZBvSmHBBnCIRNcbD1q1bufrqq1OsJV75+i0f87p3cXGxrwYuIlxwwQXsvvvuSce94n3vtNO215NLE7pX/atRo0aiTwyaDki3jCwMU6dO9azrXtaKsEtJnX0jSktLI2nS+nSWc53z9/HHH+fzzz8PnVehENYLfVcRec/xOhWRvUXk+twWLTrZCvCaNWty0UUXpc07Ww18//3359FHLb+eMqzgMZf16QPDhvEnMAD4EThvyRL0BWJbtmzxXB4RlfKYA0+3ZEPXDLzK07x58HbzK1eu5KSTTuK9995LW5aoZOKAov/+Dz74YOK7X50cMWJE9ILlABF5Dssl40Ast5FuQNcssx0HnGV7o3cH1iqllmeTYVQN/O233/aNsa1TXFwcaHlz0ujluPvuuz0DEBUVFTFixAjuv//+lHK6y6q3ibgFuO7E5jUXq5QKJcDjMKGDd3/hpWwE3c+LqAJcn6Kpaib0EcA/saeUlVIzsCKrFRR+naXfAn13xXLmt7yIUwOvUaNGSsPaCHDjjewOjAG2A86aO5cfAGeWLi6tLZ0A/+ijjxg7dqzv+TDlSDdPpQs5r/I0bNgw5Ziez9ChQxk7diyHHXYYX3zxhWe0t0zJJKDDrFmzeOyxx1I6lTfeeCMRPwAsLWD48OFJcaX1cK15oCtwgFLqIqXUpfbn70EXiMhoYCqwm4gsEZHzRWSwE6QJK/bDPGAOVt/hPSqOQFQB7g6v6TXt4eSbzuHIPQcOJAbgsE1TdX53t0B2e61nE1vdiyANvBAEuPt5DznkkJSIkenu50VpaWnGnu1xbGRSCIR9+u2UUm77QkHZAMG/Uvlp4O75oaAt8jLxQvejpKTEt9EtxhoZ9Qbm16tHG2AsVji7mi5HqUxJ12H07t2bk046yXd9uZcAX7JkSdL/TnQrP6IsI/NaCqQHuNlvv/0444wzEib2bMlEgB955JFceOGFjBw5MqUeHnTQQYnvN954Y5IVpVatWllvXpEl3wFN06bSUEqdqpRqppSqppRqqZR6yo6s+Jh9XimlLlZK7aKU2ksp5T/3EJKoAlxP37hxY1pqq090/IScO42Dl3Xm3HPPTbqne+WBnwC/6qqrgOwH5u7y6xq4V3+m+9AE7cd97LH+sXzcdXzw4ME+KVPLV79+fc912FGXZEbVwHVyqYGX53bOYQX4ryKyC7Yjioj0x4oyWiHwE+Ann3xy0v9hNfBMdtdya4h+AtzhI+Cfhx/OhVjrdY4ADr38cu4Gst33JuyI388pzt2JrVq1KmlOD/CdighbHv0de5k4a9eunXJMn3vOhmxCKs6YMSOlc5g/f37iu3vzktatW2d8r5hoDHwvIu+IyDjnk+9CuYm6UZHb7H3FFVf4pksnOPS27RcYBbYJBS8B7jhe6envuecejjjiiJxq4OkCEgVp4O4wyTruOj5s2DDPdK1atUoR4H4CLhMN3JkPj0ouBXh5buccVoBfjBUfZXcRWYq1zMR/yFVg+HXIbqeF4uJi38qczoQeNOraeeedUxqDe9TtaZavVo3HsDZNfxyQsjL+gbXszH+bgfTst99+DBw4kEsuuYROnTr5DnD8nklP/+ijjyYFVvAindOZ17PrnYzXvr/ueMgQX6CIbAR4SUlJ1vOD5cxQrM32bseKzOZ8CopsNHAncInXYCmMCT2dRuXePMRrRcJ5523z+dXLVlJSknUdcL8bJz8/Aa4fi7KmXcddx73q/K677kqPHj1SBkiLFi0CUs3WUfdDKCsr84zBEIZcCvBMgztlQlgv9HlKqcOwAjzsrpQ6kG1TswXP5s2beeihh7j55psD0wVp4Omc2IKER0lJSUplbdYsOa7F1q1bef/995OOFRcXc9BBB/Eb1mjpzZtuYirQDHgemILH3qshGTNmDMOHD2fGjBlMmTLFM42745oyZQrnnntuUpjUMJp2ug7CqwPzese6YPXqVONqlNkI8HSdvbse5FuAOxHZ3J+8FsqDqF7obs9x8B94R5kD92K77bYDttU/99rySZMm+V5bXFzM1q1bs1pZ4S6fYyHzM6HrIU1zKcCdDU/cbcLP2zsTDTxTqpoGDoC9b7djV/W2SRUgL730En//+9+56aabAuOGpzOh77rrrgCJUKc6QRWiuLiYDh06ANt+3KKiIurU2RZMdcuWLSmOHUVFRUn5rmjZkgOAs4FfsNyGvwQeBhqQOXqFC2oUvXr1YtSoUYwaNSpS/umEVDoN3EEXrJ4b11QADdz9XOUVctGNs5+Bx6cg9znIdB04bGubfgPvdPUmaFD2ySefpJjQd9hhh6Q07gGy/puXlJT4risPi7u+ORYyv/5MNzvHJcB1fvrpJ3766aeET1FYgRZVgIfZihSsqYBBgwYlHYurr/CiYAW4iwrjh6/v6bx69WrfdOmc2L7++mtmz55Nly5dIt2/uLiYHXbYgQULFiRFEdN31fHa2aeoqIgDDjgg8f/WrVtRWHu57grch+WUcDHWDmp/JbMfVK9weucSl2dmug4i3Ry4gy5Yvcz+mY6qlVJJ8+fZ7NZWWlrqGSlu6dKllJWV8eOPPyYdz5cG7uxn4PEpyH0OomrgffpsC9Xu1ONMl38Gdfa6mdovnV+QH9hmQs+mHrjv69RfPxO6TpATmx977713SlvT82jXrh3t2rVLhJ11l++5557zzDeq6TlKnHv3lJtTfmcnszZt2kS6dxAFZ0L3oaD97nXtVicoDGdRUZHn8iWwGsN2221H+/btI5fFaZytW7dOWs7Stm3bwOuKioqS9onWhes6rA1ROgHvYXkiPQF8BnSPWD4/AR5XjPJMBHg6Ddxrl6lMR9X33HMPrVq14tlnnwWyCxRzzz33eK7xbtmyJcXFxYGducEfPw1cKcWjjz4a2K6DBHiYOhMk5IuLixkwYAAAffv29UwTpCnGIcDdwtRpJ44ADSKqBl5aWsrXX38dKMD1cimlks5t3ryZM844wzPvXGnFu+yyS2KaQy8bwKWXXsrUqVNj3dikYDTwIDMb1p4cBYtfxU0Xb/nGG2/k+OOPZ/z48YwfPz5xLpvK5bel4UsvveQ7YHDuWatWrUQ4Ua9G/j1wGHAysAhrUe9ULC29Tcjy+QnwuCKepeucvNZwp9PAvd5pphr4//3f/wEklnPlOtKbTr7nwCsKzm+rh+tdv349N9xwAxdddBGnnXZa2jwy1cDTCfDu3bujlEpMk4E1z+zsreC3oY1zfZTdzbzw08DLysrSWtGiCnBnyiGMAC8qKmLs2LFJc95xRHeLwvHHH8/YsWPZY489PO8lInTvvk3l+eijjwKXz+n4CeqC0cDTmNnKb5iRAX4VNyi0oqOBv/baa/Tp0ydpc5Ns1vZ5xSMGyzv9rbfe8r3OuadTIYLmS/+DtV3prcAm4Ewsb/UHsDZNCcKpzIsXL05az1leAnz48OEpx7zuPWvWrMT3OAW4vkLgqaeeKlcBnq858IqGV5CUd955J7FZzLx589LmkQsTul8nvv/++yfaUq418CABnq4un3LKKZGWfDq421ocTqW5EuCNGjXy1frdHHTQQQlfp3T4CeqC0cCzRUT6iMgsEZkjItcEpOsmIqX2+vJY8Ku4TofpJeDdDcFrrXHcBP3YTnmcNOka+Z/ADcBuwDNACda2qnOBYdhbq3rgjMAHDBjAK6+8knI8WzLJx0uwfffdd4nvunXEIdMOQI+UdsEFF5SbABfglpNPhpgC0FRm0v22upB0D5jDmtC9ooNBeg083Tk/CxxsE+Bh/C785mn9ooq5zdd+hNmWNeieDRo08NxgKGp7DGvlPOWUUzxjqQflKSKxC1Y/AV4wGng2iEgxMBxr98wOwKki0sEn3V1YwcZiw6/i6qNTN+4KpDdOPy06DEFmrDAC3KkQYUfpC4FzgL2BN4A6WHuSz7P/uj3WS0tL2bBhQ9LyEohPA89EgHvNaWarrZaWlqZ0pu7AKvp92rRpE2rLyijsirUkcAywsqiIy0eNgqFDY71HZcavLekC3M/K5lWfnTXJf/zxh+egENI7sfnhtNsgq19xcTHLli3jpZde8k3joDvmhSlfJg5qYdGF88CB3lG1o047hhX4XpEs/fAKgxsXlV0D3w+YY68h34y1ydZxHukuBV4FVnicy5h0QUi8hEHQD5yNiStIgPvFaNbL41SIqAJsJlaEjp5Ykd0aYWniC4G72RY/c+PGjdSvX98zhnMcRH1348aNSwRviVKedOcPOOAA6tatmzQ48PL+d4RBmzZtMnJa1GmFNZh6FmuLrlnAo8ApQKOyMmjZEvIfja3gSde56xqsexmgU68dJzPdD2bVqlWAtZbbr0POVAN32nbQ0lWnbTthVYNwt6MTTzwR8H83q1evTln1EBf6Pf36zWxM4kEOvpkK8LhN9AU/B54lLbBCezsssY8lEJEWWAFhHgvKSEQGich0EZke5IQGcOuttzJgwAD22Wcfz/NOQ/cSKl4V8bbbbuPkk0/2zc+Lo48+ml69eqVPiPemHe7yhDWh+zEVK7Z6L6y9yOsC/wAWAKOA399/39OEF9foPWie34vrrrvO83i2AtwxFepatx5T3cER4JmM2JsCp2Lt4DEXa7A0EssnoQXW+v2XgEHADQMHwqJFoG3sYgjGbzCsd6buduJc88wzzzB//nwaN27MfffdB4Rb85+pBt6ggWXrWrt2rW+asNqa17acjqDwW8s+bdo0Pvnkk1D5R0UXhn6CMZs58KAIa88++2xGAjxsfIewy2f9fjt9eXCuyaUA9/r13G/mfuD/lFKBPa9S6gmlVFelVNcmTZoE3vS6664LNEc988wzgLcw9KoU1157LS+//HKkznyXXXZh8uRtwayCKvL222/vWxkzNaH7MQVrPqMLltNbNaygMEffcgufY2mK+mKLuAR41HjFfu86WwHuoAfW8BLg48ZZocC9Nlxw0xA4ESuYzkysDQJeBC4AdgZWA69hmZk6kizg1+2wA1SSbQ1zjVMn/NqKftyvndSoUSMxj+xsMBMmGEimGrgjwIOIEuTE/VzOvUUkp4FJvPAS4EuWLOHbb79NHM/UhF6jRg3S9fOZCPCwBAnwe+/dFmXYrwxeYZ5zRS5/9SWAvsNFS2CZK01X4CURWQD0Bx4RkePjuLnfj/D999/7LtuIqxG4Td1BQkBEfBu6U0GcRv7OO/G4CXyFteysPXAP8EfNmnTD0hRXYIVp7QuUbtzIlClTsgpskgmZCnD3gGPatGlJYV8d7r//fn744QcgdRc1IDEAnDZtWspvVxfoh7WB9lfASqz5n4uxHD1+x9pL8yqsgVJjtgn47133iRp5qirTuHFjrrnmGt/939PtGObGWRcctMTLIcgkmq0AjyKInD7t+uuv5+qrr06snggTTS5bunXrlvS/3i6ccrVo0SJwb/Xbb7898B56nn5xPMByLg77vHq6d999N9Q1Qfztb39L/K5+/bp7zXkuyeVs+xdAexFpCyzF2iUzabGmUiox0SEio4A3lVKvx3Hzjh07+npXrlq1Kus9vYNwC7y0WlzDhp5OW24T+owZM2Ipn8M84Grgp/792fz88wzCmi8/3f6sP/RQXtm4kWn7788/Qlb+OnXqBHrdhsHrd9i8eXPagYTzm27ZsoUZM2bQo0cPqlev7mk669ChA7/++mvgtqd//PEH9YqLORw4GPgL1ohTbzQbgU+B9+3PF4TfZ7c8R+oVHRHhjjvu8D0fpIF7DeajCHB9kw0nOIlDkAZdv379tHmH1cCLi4v517/+Re3atbn++uupUaNGYqqpqKgo51tY6vvXg7cAd6Mfb9KkSdp975083WGm3UybNo0JEyakLbOTl8Phhx8e6pogqlWrlngud78+YMAAxowZUzk0cKXUVuASLO/yH4CXlVIzRWSwiOR8J7N7772XTp28t/pYuXJlZCe2KLjzTpdvut28cu0UsW7LFp4BDsAy+16HpS3W3biR84B/fPYZNG7MJOCfwEGA375BRx99dOT7u9ddeg14WrVqxcKFCwPzKS0t5bLLLqN69eqMGTMGsAS/3zxg48aNE05MDnWxrA93YvkOtN5nH94FrsWKcKeAT4BbgEOA+sChwG12+iiTHEaAx4fe4YcR4HXr1k25zg/dUjJ37twkYZZOO99+++CotFEEeNOmTXn88ccTAwrn2vIwobuX1EYV4FGm49IJ8FatWiUNWJytjJ2AV+68ouJ+Hme/d0j+vd39lDNAKM92nVN/d6XU21gWRf2Yp8OaUuqcOO9dv359hg8fzoEHHphy7t133+Xhhx9OOR6Xl2IUEzr4O7I5GmeulyXo5Z2Pta/k7UC/nXZir8WLOQo4qLSUQ7GEFVjBYr7AElpfA99geVhnUlZ3J+jV6II8eR30/d2ff/75xPfrrruOnXfe2fOalljLJXpiOfrtCyTpMkqxun17nvzpJ94H1u21F5/+739pyxIGI8DjY8GCBUyaNInDDjsslABv1KgRjzzyCP369Uubt14/27Ztm+QhnW5w3aBBg7TLyMLglc5pa0qpvM6BxyXA9TXbQdNLtWvXTnIUc9J27tyZ66+/nltvvTUlz2zQo//pFhh33k5s9kojwPON3yju8ssvz+l9o84Z51uA+5X3qy1beBtrkb5auZIBjRrRC2sXtL3sv/rw6E/g5wkT6IW1uYrzmQcEvZEtW7aglOLhhx/mgAMOiMUcqGsMv/76K5MnT2YnrHnqzlhCe3+srVmTyoIVT34yMLVaNcb99htTPviAq4+zVkCqGTNiG+gZAZ4Z5513nqeX8v333+8pwP248MILQ6UL+r3TCfB086Fh27aXIHLaideGIbkmjAB37zuejpNPPpkJEyZ4hmrVKS4uTuoznXdYVlaWIvjjeC9+ZXHn3bhxYyDVophLKrUA94oOVB5E1cD95sqcOd0oJvRjjjmG//73v6HTg7/TT5KHbsOGvAw4YU3qY2mtXbG01n2wYq/v/OuvuHXdUqzlVAuwPBv1z1Kg1oYNvDl6dMIEtt9++0Uqv0MtLC/vVkDn1aupDbQFeixeTAu8I9GtAj63Px9hWRScWdHta9UC29SaC4wAz4wnn3ySTp06MWTIkKTjznx2ecaXT9c20wnoKCZ0v2sLVYDrhFkh0rlzZyBY6J566qkAngJcKZXye8Qx2NYjNQblPWDAAGrXrs1RRx2V9T3DUqkFuG768CNoD/BMiToHrjvJ6Dgjuiga+LnnnhubAF+/fr3ncYA1WHMj+vxIfeCmY4/lp3HjaI8VdWxXLCG6s/3xZPFiOP10NmMJ1D+//ZbfsMz0m7W/YC19cz7VgXpYS7ka4JqX/+23bd9tE+YKrKVe/8PSsj8HUsPFbCPXvgdGgGeGiCTmsHUcAe6uz3Fti+tFOmtReQjw0tLSghTgUUzou+++e+J5gp7lkksuAZIFuP5u4hDg7ufx27bUnbeIcMwxx0S+XzZUagEehlyEGnRXgHSVyE9QNG/ePPC8F5lET4trmdgaYF7r1jziOl4NS4jvhDXn7Px1Pg2BHYqLqVFayo4AmzYRvNGqNxuxhPRCrJ3ZFtnfdzz4YB758EP8N5z0RncSygVGgGeO1z4FGzZs4PXXX+epp57KQ4nC0bt3b84555zE/7rwqVevnm/QFy+hVugaeFgT+tSpU+nUqVPCSTWovTkmcn2JnvPsSqkUE3omg7d01/jNgeeDKi/A4+SFF17gxhtv5N///nfS8XQCwGsUvtdee3HmmWf6nvcjk3jhYa7xq9TNmjVj+fLlif+9Bhtb2DYf7ktpKTWwNOmGWAFlamBp2dXZpl1vcX3WYmntq7EEuBdH16kTWXhD7gS3gxHgmbPDDt577J1wwgkpx3KpgafDfe8PPvggqV45bXv//fdPbEE6derUlHzSmdBffvll7rzzzthiRaQjjJ9KWA28SZMm1KpVKymynB+OtVK3Wg4bNowHHniA/v37M3r06KT0cShoIsLUqVNTwtKWZ8xzP/I/hChHnDmWXHHaaacxZ84cdtttt6zyOeOMM5gxY0bCTBilouhboIYljAbup9mLSJKHd6aVum7dumwCfsZawjYda7nW4nbteAcYZ3/GA5OwnMw+ZVv0s6CtZvToUFFwOqCuXbsCJKJDHXLIIRnl56Y8drurrPTu3TvlmLvjHzBgAJBfAe7Qs2dPdtxxx5RBobu9+Akcr8GkbkI/+OCDk9ZG+218Ehd6ubM1oTt5hTGhOxq2PoBo27Yt7733HvXq1UvRwOPYz8HZM9yxnDjPleu192GoUgK8PCPk6EQxtcyfPz8R7tUhigm9devWLF26lA0bNrBw4UJGjBiR9pqvQ2xn6ZdGKeWpUfjhNXcJeIZOHDlyZCzz0IsXL06fCLj44os9jzdr1oxly5YlTHzvvvtuYKzmsIQJ9GHwxkuguduZU3fyKcCdcl5xxRX8/PPPKefdQiATAe51TSbxuIcNG+ZpwfBCb5fZOrE5z+G8izACXO9n9PTu/iITAR52CtRo4OVMvgR4OlOsfr5NmzYpFVivKEcccUTa+zVv3pyaNWvSqlWr2ALrh/UMT1ep/Zb2eUVLq1+/frk2ErdWpzfkZs2aJUzeJSUltGrVKuv7GQEeL0HtJt+E3XoyymBDX0bmxs8xNojzzjuPsWPHJh178MEH6dGjR0raqBr4I4+4PWNS83JHOBs+fHhKWi8BHuTEFteOijpOOQuhfuW/BOWIlwAfMmQI1atXT0TzyQXpBHi6RqtXlEGDBrHffvslBSsIojzibevPV61aNd5//31GjBjBdtttl+JQpDeoAQMGMH/+fD7//HPP/daXL19ebo3koosuon///qHTxzE/bgR4PIgIe+21V4ovR5x1p06dOr7z7mHIVoBH1cAzEeBemu+ll17KpZde6ntv8BeSTrmeeuopzjvvvJTztWrVYsOGDYn7Oumd/y+66CJ++eUXbr755sQ1XiZ0vdzu/i6OOXC/PApBgFd5Dfzkk0/m7rvv9qyk2fLyyy/TqFEjXnjhhazy0Rt/SUlJJJN8ee5NC1b5DjnkEF588UXPADV6Y3/ppZcSGzL8pi/7sjnmmGPKrfwPPPAAIpLYYzkd6QT4GWec4XlcFwLlue1gZaZmzZq0a9cuZdmj05nHYUJfs2YNP/30U8bX+3X2cc2Bu3EL8FtuuSVtGaPM6erl9nOCTeet/eqrr7L//vsnPMqbNWvGTjvtlBQl012m8jChu/H7TcwceDnj5fWbS0/gk08+mZUrV3qaoKKgV9Zq1aoVtADX7+dVTndj8GoEu+22G2VlZbRs2bLcRrlOOVavXh1Lfn5CI2j/94qCiPQRkVkiMkdErvE4f7CIrBWRb+zPjbksT1FRETVq1EgR4HHWneLi4qyWDfm1Q6feOfXFS1hccMEFnj4iUTTwyy67LOl/L+tPFKuS/m79nGDTOXv17duXadOmJfKqXr06ixYt4jg76iGk9iHuOPDuNO7fPI45cKOBFwitW7dOOZZrE3OYRhFlmVlJSUkkjaI8BLifE5v7uSZOnJjSoPxCRDrXZtNIooQ0dO635557Jo4FvedMtbratWszb948z21OKwIiUgwMx9rzpQNwqoh08Eg6RSm1j/252eN8bBQVFVGzZs2UmOOOYCkEL/RsTOgjRozIWgN3tzOvbT+jmJujCPBsBj5u4e92eHPn734XuRDg7jnwk046KbEFcXlT6QW4vuC/Y8eOKedzEcglKuk6GLcJPUqZ9QFKul3P4qBevXqJ7+6GW7t27UR4W8cbPSjGM2TX+fbq1SvyNcOGDYvl3n6UlZXRtm1bT42qgrAfMEcpNU8ptRl4CTguzTU5RUSoWbNmiiPkDTfcQNu2bbnooovyVLJtZCrAgwb3UTRwtyD0andRlJk4NPAwONf26dOH119/3XOpmf7dHUY3jv7dbxDglO3YY49NLFksbyq9AP/ggw/o06cP3333XUqlPvvss9lrr73yVLLwuDXwKJVS7ziuv/76jLb7jMJpp23b8t3dSRQXF/P666/Tp08fJk+enDjmRj+WzRxWJhHm9AFfEGGjNbkphAFjlrQA9HV5S+xjbnqIyLciMl5EUkfONiIySESmi8j0lStXZlQgx4Su07NnT5o3b868efPYZZddMso3iE8//ZT3338/dHo/LdRd/8NYqNzXZuLE5s737rvvjjS9o/cr5aGBN23aNMm07pUGUgX4HnvskfG9HdJp4Pls05VegHfq1Inx48fTsWPHFKehUaNG5TzaVhiihFoNEuDXXJMyHZl0baNGjfjvf//raT7LFPc6cH0U7264RUVFdOjQgfHjx7Pvvvt6pgF46KGHEt+DBPiTTz4ZWDavYB9x4SWgnQh8I0eODLW0poLiVVndD/UV0Fop1Ql4CHjdLzOl1BNKqa5Kqa6ZWiWKi4tT2nbSRjw5oEePHqEC+jhtw6+NO+V24m1HEeBRNPBq1apRo0aNhJOmuzy6n84bb7zBqFGjfO+r3xvK14TuhZcGPnDgQBYvXpyR/5G7jabTwI0ALycqqtevHvzEb/OVsWPHcscdd6Qc9xKoccfw9euc3Me9GqO7LBMnTkzawz1IgKeLZObl8wDJe4VnipcgPvroo9m8eXNSrGs3lUADX4IVzt6hJbBMT6CUWqeU+t3+/jZQTUQa56pAzzzzTLkL8LhwLIC//moF+82VAC8qKmLjxo2JQX779u198z322GM5++yzA8tdXiZ0Pc55ujSwLRLlX//6V1q2bJnxfXWqrAYewlv1dBGZYX8+FZFOuSxPoQpwPRSpF/rSo6KiolBOKw66Bh4m0lGceGngbvyWiTgECfCgwDwNGzb0XdvvFw3OTVRtuaioKG30r0ogwL8A2otIWxGpDgzEinKbQESaij16E5H9sPqZ1HWCWdKtWzcAjjrqqJS2XSiWjnTlaNKkCXfddRfjxlmv0KnvTzzxBBBOgHu1Eb85927dujFu3LiU/RqiUt4aeFC70fNv1aoVSin+8pe/ZHxPN+m80PPZpnPmB695qx6ONWr/QkTGKaW+15LNB3orpVaLSF/gCWD/XJVJb+T9+vXL1W0ic8YZZ7BkyRIOP/xw3zQffvgh06ZNo1u3bikB+8G/kaRb1pVLvObA06VJ50W62267MWvWLCBYA//8888Ta8zdhF06mIkAT4fu5FcRUUptFZFLgHeAYuBppdRMERlsn38M6A9cKCJbgQ3AQJUDiTpt2rTEd30A26VLF5599tm4b5czrr766sR3RxjsueeeDBw4kMGDB/teFyRAgrReZ8vLDh068P333/umCyKMAHfKFYcTW1gNPBf4CehCUAhzuZAt4a0KICKOt2qixiilPtXST8Myx+UM/YXn2pkrCsXFxVx33XWBaXr37p2Y03U7ajh5eOElwLMNbtCjRw/PHZPcuD1svRpaFAHeq1cvXnvttYQ3fZAgdjsutWjRgn322YfevXvHsvbfq0NJ11H17Nkzlhjq+cY2i7/tOvaY9v1h4GH3dXGj1x29bQ8dOpQOHbxWtpU/xx13HF9//TXNmjULld6p79WqVfMcqOsEaeB+IYt1Zs6cyQEHHMCnn36aNq3fvcHfez1ODTxIgMcdUCXsHPgtt9xCrVq1OOuss2K9fxRyOXQJ663qcD7WZlMpxOGpCsmNvDxCjOYKXYB36dIF8I9V7jUH7lch3cEe/HA3+LvuugtIjfaUbimL1zH34EQv6+TJk5M8ZaP8hiLCm2++yT/+8Y+cBe/ROyqvDueTTz7Jeqc6gzd62/bbUzsf3HDDDaxYsYLmzZuHSu/U/zDxG4I08KiWnqjOvHr5XnvtNc80cc6BZ5smCmHXgTdo0IDhw4fnVRPPpQYexlvVSihyCJYAP9DrvFLqCSzzOl27ds3YFKd33JnECi4UdKH22WefsWnTJt/54CgaeKaa+XHHHcf69etTRv3pgkl4HXNrzkGNv7i4mMGDB/PYY4/5pnHQG2EcJnSvc+kEuCF36HWtkLZpLSoqirTm32mDYQIYBc0PhxXgTpuNKmSd8p166qm0adPGM00cGniQlcEhXyb0QljBlMsnT+utCiAiewNPAscppWJ3dNHZfvvtE98LIQxepuhaanFxcaAzl5cA9zLBQ3bOGF4muzAauN74Jk6cmOIdGzTVUa9ePf79739z6qmnpi2f3gHky4RuyB26FuS3Xrgi4LTBMP1TkAau93VBPPPMM9x8883sv38016MwgjUOAe70IX7x1rPNPwzu9+tMdxaCFTeXTx7GW7UVMBY4Uyk1O4dlAcI5XlQE/ASwF3olcwRMkAb+2muvJe3+48Y99x0kDKOa0L08R4cOHcrll1/Oxx9/nDg2evRo7rrrLnbeeWdq1qwZagOSTAR4Nk5sRgMvXxwBXr169YLQjDIligYeJMDDrrRo2rQpN9xwQ+R3FsY7vKIKcHfbdSsI119/PUqpghiw50wNDemteiPQCHjErkBblVJdc1UmHSdwQkUkiqnbSwN3b/qg53v88cdz/PHHM2fOHDZt2sSYMWOS0nTv3h2ASZMmMWTIkEBv3zAm9HTna9asyX333Zd0bODAgUn/u+cLX3zxxZR89I5G19a6d+8eao/1MPg9X69evTIK62oIj1PXKvrAKZM5cL0/OPzww5k4cSK77LILDzzwAEOGDMlJOVu1agUQGMxGd8jLFEcByacGfvHFF+c0/2zIqR05hLfqBcAFuSyDH3/++Wc+bhsLUTRwvfE4o2y/Z9eF3DPPPAPAggUL+Oyzz1LSHnrooXz33XeB9w6jgcexhlJ/xmnTpnmaA/VOztFOiouLA73p45oDd8LGGnKHY1WJ0jYKkWxN6G+++SYbN24E4O9//ztDhgyhadOmsZeze/fubNiwIdCBK8pgxA9HgAdZTHOtCReyRadKRWLT8drYpKIQpZPyEip+JmQvzf7jjz/miiuuiFhCC7cA9yp33ALcrzHr9ykuLmbt2rVZeSt7CXD9mKNx60F4DLnDmfOt6Bp4JiZ0nerVqyfNf69Zs4Y5c+bEV0CNdN7XTnvPZq7YadteGnifPn1o2rRpuce3KCQqridXhsydO5evvvoqMGhKoZOpluEIsW7dujF+/Hh22GGHpG0tvYRpSUlJxmtq3Q3cayRbXgLcPTgJ6+QTBb0jufDCC2nSpElO47EbtlHRA+Q4ZCvA3eTzvcSpgXsJ8LfffpuysrLYNeSKNAisckOXnXfemf79+xe0WSQdmS73cq578sknOfvss5k4cSKPP/544rxfxT3rrLMYPHgwb731VqT76Rr4SSed5BnaNF8CPAxRTeh6Z1lSUsLAgQNDB/AwZEf9+vXzXYRYiCL0CsGJKog45sCda71M6CJS8O8g11Q5DbwykKkG7jSo5s2bJ3YbcnYmu/322329z6tVq8ajjz4a+X66AL/ttts808QhwHVN308ryeQ+UQR4u3btIudviI9CWvsdB3Fp4PmkvObA48Zp2/vuuy/nnntuud03E6qcBl4ZyFSA+103aNAgFixY4BuQIVOc3YBEhB133NEzTbZhXSF5yUyYOfBcUNU1gXzjWNQqiym9MgjwODXwIC/0uGnc2No476qrruLSSy8tt/tmghHgFRBny7yo3qVxCMsoNGnShAULFrBw4UJfE+emTZuyvk+QAHd8HQ477LCs7xPEoYcemtP8Den59NNP066MqChUBgHukCsntlxx44038sgjj6QsVy1EKkYNMCRx7bXX0rx588gbspS3AAf/Pbkd4hDgehQ4twAfMWIEo0ePDhWtLQq6yfaRRx7J64YGBosePXrkuwhZIyIopUL56FQUAZ6NBu6EoT322GNjKcuXX37J6tWrA9PUqFGDCy+8MJb75ZqKUQMMSdSsWTNwm0E/8iHA0xHH3JYuTN0dX+vWrbnmmpSt6EMRNAfeu3dvLrjgArp3787555+fUf4Gg5tvvvmG9957L1TairJ8KhsBXr9+fVasWJG0iVE2dO7cOZZ8CgUjwKsQhSjA49DA9Y7MCWKRDf/5z3847bTTeOWVVwLvOWLEiKzvZTDo7L333gnH0spCNgIciLQZTFXDCPAqQN26dVm/fn3kDQvKgzgEuE4cUadOOukkNmzYUGE0HIOhkMlWgBv8MQK8CrBo0SKWLl2acUCWXBLX8pCff/6ZdevWxbYe2AhvQ0VgyJAhHHXUUfkuRiBmhUbuMAK8ClC/fv2CDXQRlwa+4447+i5VMxgqK/fff3++i2DII0bNMOSVuE3oBoPBUFUwAtyQV5ytQu+99948l8RgMMTJ888/z0knnZTvYlRqjAndkFcOO+wwNm7cmLJzmcFgqNicfvrpnH766fkuRqXGaOCGvGOEt8FgMEQnpwJcRPqIyCwRmSMiKdE0xOJB+/wMEalcq+wNBoPBYMgRORPgIlIMDAf6Ah2AU0XEvY6pL9De/gwCom95ZTAYDAZDFSSXGvh+wByl1Dyl1GbgJeA4V5rjgGeVxTSgvoiYDZQNBoPBYEhDLgV4C2Cx9v8S+1jUNIjIIBGZLiLTV65cGXtBDQaDwWCoaOTSC91rOx337hBh0qCUegJ4AkBEVorIwuyLV6FoDPya70Lkiar67PpzB2/pVkn48ssvfzVtu8pQVZ8bYmzbuRTgS4CdtP9bAssySJOEUqrKRbYXkelKqa75Lkc+qKrPXhWf27TtqkNVfW6I99lzaUL/AmgvIm1FpDowEBjnSjMOOMv2Ru8OrFVKLc9hmQwGg8FgqBTkTANXSm0VkUuAd4Bi4Gml1EwRGWyffwx4G+gHzAH+BM7NVXkMBoPBYKhM5DQSm1LqbSwhrR97TPuugItzWYZKwhP5LkAeqarPXlWfu6pRVX/nqvrcEOOziyVDDQaDwWAwVCRMKFWDwWAwGCogRoAbDAaDwVABMQI8D4jI0yKyQkS+cx2/1I4dP1NE7taO/9OOFz9LRI7UjncRkf/Z5x4UEa919QWF17OLyD4iMk1EvrED9uynnasUzy4iO4nIByLyg/37DrGPNxSRiSLyk/23gXZNpXj2qoRp26Ztl2vbVkqZTzl/gF5AZ+A77dghwCSghv3/DvbfDsC3QA2gLTAXKLbPfQ70wAqIMx7om+9ny/DZ33XKjrUq4cPK9uxAM6Cz/b0uMNt+vruBa+zj1wB3VbZnr0of07ZN2y7Ptm008DyglPoIWOU6fCFwp1Jqk51mhX38OOAlpdQmpdR8rCV3+4kVM357pdRUZf3yzwLHl8sDZIHPsytge/t7PbYF86k0z66UWq6U+sr+vh74ASts8HHAM3ayZ9j2HJXm2asSpm2btk05tm0jwAuHXYGDROQzEZksIt3s437x4lvY393HKyKXAfeIyGLgX8A/7eOV8tlFpA2wL/AZsKOygxfZf3ewk1XKZ6+imLZt2nZO2rYR4IVDCdAA6A78A3jZnv/wixcfKo58BeFC4HKl1E7A5cBT9vFK9+wiUgd4FbhMKbUuKKnHsQr97FUY07ZN205K6nEso2c3ArxwWAKMVRafA2VYQe/94sUvsb+7j1dEzgbG2t9fwdqKFirZs4tINawG/oJSynneX2zTGfZfx7xaqZ69imPatoVp2xaxPbsR4IXD68BfAERkV6A61o4144CBIlJDRNoC7YHPbZPMehHpbo/mzwLeyEvJs2cZ0Nv+/hfgJ/t7pXl2u5xPAT8ope7TTo3D6uSw/76hHa8Uz24wbdv+btr2tuPxPHu+Pfiq4gcYDSwHtmCNus7HatTPA98BXwF/0dJfh+WpOAvNKxHoaqefCzyMHVmvkD8+z34g8CWWZ+ZnQJfK9uz2MypgBvCN/ekHNALew+rY3gMaVrZnr0of07ZN2y7Ptm1CqRoMBoPBUAExJnSDwWAwGCogRoAbDAaDwVABMQLcYDAYDIYKiBHgBoPBYDBUQIwANxgMBoOhAmIEeBVHLD4Wkb7asVNEZEI+y2UwGLLDtO3Kj1lGZkBE9sSKkrQvUIy1jrGPUmpuBnkVK6VK4y2hwWDIBNO2KzdGgBsAEGuP4j+A2vbf1sBeWHGchyql3rAD9T9npwG4RCn1qYgcDNyEFcRhH6VUh/ItvcFg8MO07cqLEeAGAESkNlaUqM3Am8BMpdTzIlIfa4/afbGiDZUppTaKSHtgtFKqq93I3wL2VNb2eAaDoUAwbbvyUpLvAhgKA6XUHyIyBvgdOAU4RkSusk/XBFphxTV+WET2AUqxtkl0+Nw0cIOh8DBtu/JiBLhBp8z+CHCSUmqWflJEhgK/AJ2wHCA3aqf/KKcyGgyG6Ji2XQkxXugGL94BLrV3xEFE9rWP1wOWK6XKgDOxnGIMBkPFwbTtSoQR4AYvbgGqATNE5Dv7f4BHgLNFZBqWic2MzA2GioVp25UI48RmMBgMBkMFxGjgBoPBYDBUQIwANxgMBoOhAmIEuMFgMBgMFRAjwA0Gg8FgqIAYAW4wGAwGQwXECHCDwWAwGCogRoAbDAaDwVAB+X/oMKOhN9wIRwAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" }, { - "name": "stdout", - "output_type": "stream", - "text": [ - " Mean RWI Mean Res Sample depth\n", - "Year \n", - "626 0.371605 NaN 1\n", - "627 0.284398 NaN 1\n", - "628 0.306523 NaN 1\n", - "629 0.416333 NaN 1\n", - "630 0.482462 NaN 1\n", - "... ... ... ...\n", - "1979 1.053427 0.975424 21\n", - "1980 1.455353 1.394603 21\n", - "1981 1.252526 1.023029 21\n", - "1982 1.362244 1.178407 21\n", - "1983 1.314827 1.108811 21\n", - "\n", - "[1358 rows x 3 columns]\n" - ] - } - ], - "source": [ - "ca533_crn = dpl.chron(ca533_rwi, biweight=True, prewhiten=True, plot=True)\n", - "print(ca533_crn)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABd8UlEQVR4nO2dd5wURfbAv2+XBSSLIEpOkiSpCBgx4IlZECNi+BkOUU6MYDjPM6F3J2bFeAbOjIoneGZExbSooAhKEAQEA5JBwu77/dHdQ09vd09P3Jmlvp/PfGamu7q6OlS9eq9evRJVxWAwGAwGQ2FRVNkFMBgMBoPBkDxGgBsMBoPBUIAYAW4wGAwGQwFiBLjBYDAYDAWIEeAGg8FgMBQgRoAbDAaDwVCAGAFuyCoi0kREporIWhG5XUSuFpFHKrtciRCRx0XkJvv3ASLyXWWXyVD1EBEVkfaVXQ4/ROR6ERmf6WNF5CARWZJe6TKLiLQUkXUiUhywP+V74ZNXxp75divAReQ0ESm1H9oyEXldRPb3pDnLvtknebYfZG9/ybO9h719imtbaxF5T0Q2iMgcEenv2newiHwtIqtEZIWIvCwizVz7TxKRafaxUyhMzgd+A+qp6mWqeouqnguxe6MiUi3o4ExWnFRR1Q9UtWNllmF7xNTRCteTV0KvKqGqP6pqHVUtq+yyJMN2KcBF5FLgTuAWoAnQErgfOM6T9Ezgd/vby6/AviKykyf99550zwBfAjsB1wAvikhje9+3wOGq2gBoCswFHnAd+7tdzlsjX1yahAnTFGkFfKsmYpAhCUwdTZ4s1N2CI0iDrrKo6nb1AeoD64ATE6RrBZQDJwBbgSaufQcBS4BxwIX2tmJ723XAFHtbB2ATUNd17AfAMJ/z1QDGYAk7775znTwTlPk44CtgDTAfGGBvXwj0d6W7Hhhv/24NKHAO8CMwFfgfcJEn7xnAIPt3J+AtrMbrO+CkgPI8DmwBNtv3vL/n3D/a515nf/bxHD/APnaLvX+Gvb0p8Kp9/nnAeSH35EisRngtsBS43PMMr8ayECwEhnjKfpM7rWvfQuByYCawGngOqOnaf7T9HFYB04Dulf3eF9KHql1HrwCWAT8B/2e//+1d+f/Lrhc/22XfAagNbLSv1akrTe269CIwHqvOn2vfu0ftcywFbgKK7fzPAj60z7ES+AE4wlW2NsD7dl15C7gXu67a+/va7/MqrPbgoKjHeu6B82wq1D1gb/vaq7nSnwB8FZDX41gdqsnAeqw2pikwAasD9wPwF1f63kCpfb9+Bsba21vbz6JaouvB0x7Y2xZit7H2OT6279My+9jqrrSxZ57uZ3vUwPcBagIvJ0h3BlCqqhOA2cAQnzRP2ukADgdmYVVMh92BBaq61rVthr0diI29rMKqoJcD/4h8JS5EpLddniuABsCBWC9VVPoBnbGu42ngVFfeXbAay0kiUhvrhX4a2NlOd7+I7O7NUFXPAv4D/EMt89TbniQH2t8N7P0fe47/H5YG9py9v4e96xmsBqApMBi4RUQODbiuR4E/q2pdoCvwrmvfLkAjoBmWZvaQiEQ1lZ+E1cFoA3THahwRkT2Bx4A/Y2l0DwKvikiNiPkaqm4dHWAffxiwG5awcXMbVoeiJ9Ae6728TlXXA0cAP9n1oI6qOtdwHJYQb4BV157A6sy0B/YA/oQl2B36YHW6G9nX8aiIiL3vaWC6ve9GXFYNe9hgElaHoKF9HRNclorAYwPwrXuq+jmwwr5HDqcDT4XkdRpwM1AXq4PxX6xn2Aw4FBgpIofbae8C7lLVekA74PmAPJO9HjdlwCX2sfvYZRiexPGR2R4F+E7Ab6q6NUG6M7AeIvZ3hQeoqtOAhnajfwZWY+GmDpaG5mY11ovm5PGjWua5RsC1wJxol1GBc4DHVPUtVS1X1aWqmkxe16vqelXdiNVw9hSRVva+IcBLqroJS7tcqKr/VtWtqvoFVm93cIrlTgoRaQHsD4xS1T9U9SvgEWBowCFbgC4iUk9VV9rldfNXVd2kqu9jNVAnVczCl7tV9SdV/R2rwehpbz8PeFBVP1XVMlV9AkvD6xv1Gg1Vto6eBPxbVb+xhfL1zg5biJ4HXKKqv9sdiluAUxLk+bGqvqKq5UA9LEE/0q7LvwB3ePJYpKoPqzXW+wSwK9BERFpiab9OfZiK9V47nA5MVtXJdvvyFpYme2SEY4MIqntP2OdDRBqyTakIYqKqfmTfg25AY1W9QVU3q+oC4GHXPdgCtBeRRqq6TlU/8WaWxvUAoKrTVfUTu31ciNWJ7xf1+GTYHgX4CqBRAsep/bA0q2ftTU8D3USkp0/yp4CLgIOpqDGsw6pUbuphmWXisAXBE8DEFMeyWmCZzVNlsassa7EqlPPSn4LVuwdLE+9jO/WssjWTIVg96lzQFHAaOIdFWL1tP07AMqMvEpH3RWQf176VdkPqzqdpxHIsd/3egCUIwLo/l3nuT4sk8jVU3TraFFc9w3rfHBoDtYDprvfmf/b2MNz5tQJKgGWuPB7EspQ5xN5bVd1g/6xjl82vPrjzPtHzXu+P1QFIdKwfYXVvPHCMiNTBEuofqOqykLy896Cpp5xXY/lRgKXodADmiMjnInK0T36pXE8MEekgIq+JyHIRWYPVEWsU9fhk2B4F+MfAH8DxIWnOBAT4SkSWA5/a28/wSfsUlnlksqtCOMwC2opIXde2HvZ2P6phVTZvgxKFxVgmIT/WYzUODn7C1utk9gxwqi3wdgDec53nfVVt4PrUUdULUihzFMc2b5qfsDQq9z1tiTXeV/Fg1c9V9Tis+/oK8SazHe0hAXc+bvNqKiwGbvbcn1qq+kya+W5PVNU6ugyrM+fQ0vX7NywT/e6u96a+qjodw6C64t6+GMva08iVRz1VrTC8FVA2v/rgzvspz3tdW1VvjXCsH4F1T1WXYr0DA7Esa2Hmc6h4D37wlLOuqh5p5z1XVU/Feoa3YTks1vbkl+h64tpT23HO3dF6AMtKs5ttqr8a613NONudAFfV1VhOLPeJyPEiUktESkTkCBH5h4jUxOr1nY9lFnU+I4Ah3p63qv6AZR65xudc32M5M/1NRGqKyECs8dIJACIySEQ6ikiRPZY0FvjS7ukjIsV2eaoBRXYeJQGX9ihwtogcaufXTEQ62fu+Ak6xr7MX0czdk7F6szdgjUGX29tfAzqIyFA7vxIR2VtEOkfI08uvWI45bUPS/Ay0FpEiAFVdjDXONca+H92xetX/8R4oItVFZIiI1FfVLViOK95pIn+30x2ANTzwQgrX4eZhYJiI9BGL2iJylEdAGEKownX0eeAsEekiIrWAv7nKUY717twhIjvbeTeTbWO3PwM7iUj9kPu2DHgTuF1E6tllbiciCc23qroIyyTu1If9gWNcSRyt+HDnmsWa2tY8wrFBhNW9J4ErsUziiXwh3HwGrBGRUSKyg13WriKyN4CInC4ije37vco+Jq5NiHA93wM17XpdgjWs4vZxqYvV1qyz2+BUlJtIbHcCHEBVxwKXYt34X7F6bRdhaWjHY/WEn1TV5c4HS0AWYzkuefP7ULc5lXg5BeiF5fV5KzBYVX+19zXDMpOtBb7GEmYDXccOtcvyAHCA/fvhgGv6DDgba8xrNZYHpTOG/Vcs7Xwl8HfCx5Oc/DYBL2E52jzt2r4WyzHmFKwe83KsnmzSTlq2NnQz8JFt7vIbJ3Yq9QoRccavT8XyGv0Jq3L/zR6T82MosNA2ZQ3DHluzWY51T37C6gAM0+T8BiqgqqVYY5n32nnPw3ZwM0SnitbR17GmnL2L9V6860kyyt7+if2+vg10tI+dg2UVW2DXlaAhmTOA6lgzL1ZiObjtGpDWy2lYTm6/Y3UuYv4Cdsf5OCxt0nkeV7BNhgQeG0CiuvcyVvv1sseUHYo9tn8MVofuByzLxiNY3vlgvRuzRGQdlkPbKar6h09WYfdiNZZF5xEsy996LKdah8vt49divQvPRS1/sohqFCumwVC1EJGDsKaFNK/kohgMBh9EZD7WDBLv7BWDzXapgRsMBoMhfxGRE7DGtr1WCoOL7T5yj8FgMBjyB7FC0nYBhrp8bww+GBO6wWAwGAwFiDGhGwwGg8FQgBScCb1Ro0baunXryi6GwZBTpk+f/puqJgrqUdCYum3YHkmnbhecAG/dujWlpaWVXQyDIaeISORIUIWKqduG7ZF06rYxoRsMBoPBUIAYAW4wGAwGQwFiBLjBYDAYDAWIEeAGg8FgMBQgRoAbDBlgy5Yt9O/fnzFjxlR2UQyGvGLr1q1ce+21rFq1qrKLUuUwAtxgyACTJ0/mnXfe4eqrr67sohgMecWLL77IzTffzBVXXFHZRalyZE2Ai8hjIvKLiHwTsF9E5G4RmSciM0Vkz2yVxWDINps3b67sIhi2M3r37s0ZZ/gtf55fbNmyBYA//vBb9MuQDtnUwB/HZ1k/F0cAu9mf87GW4zMYChITktiQaz7//HOeeuqpyi6GoRLJmgBX1alYa6kGcRzWer6qqp8ADUQk6rq1BkNeYQS4wRCOqSOZpzLHwJthLQrvsMTeVgEROV9ESkWk9Ndff81J4QyGZDCNk8FgyDWVKcDFZ5tvK6iqD6lqL1Xt1bhxlQ4HbShQticBLiItROQ9EZktIrNE5GKfNAXh47Jy5crt6tlVBiJ+Tb0hE1SmAF8CtHD9bw78VEllMRjSYjsTAluBy1S1M9AXuFBEunjS5L2Py7x582jYsCH3339/ZRfFYEiJyhTgrwJn2D31vsBqVV1WieUxGFJmexLgqrpMVb+wf68FZlNx+CvvfVzmzp0LwGuvvVbJJTEYUiNrq5GJyDPAQUAjEVkC/A0oAVDVccBk4EhgHrABODtbZTEYss32JMDdiEhrYA/gU8+uIB+XuE66iJyPpaHTsmXLrJXTj+31mRmqDlkT4Kp6aoL9ClyYrfMbDLkkSBgsXryYt956i6FDh1JSUpLjUmUXEakDTABGquoa726fQyrcJFV9CHgIoFevXpUiUc0YraFQKbj1wA2GfCRIgPfo0YOVK1fy+++/c/nll+e4VNlDREqwhPd/VPUlnyTGx8VgyDImlKrBkAGCBPjKlSsBmDZtWi6Lk1XEUlkfBWar6tiAZMbHxRCHGbLIPEYDNxgyQKLGqYo1XvsBQ4GvReQre9vVQEsoHB+XKvZM8hYzRJE9jAA3GDLA9iTAVfVD/Me43WkKxsclHQHz9NNPM2TIEH788UdatGiR+ACDIYMYE7rBEMCsWbNYv349M2fODF2IYfXq1Xz33Xc5LJkhk6TTuXriiScA610xGHKN0cANBh8+/PBDDjjggNj/gw8+mHfffdc3batWrVi9enVoflVJAzdsw5iHDZWJ0cANBh/+97//xf1/7733AtMmEt5gBHg+Y4SwoVAxAtxg8KFGjRppHf/NN98wfPjwDJXGkAzjxo1j0KBBCdM5narNmzczevRo1q5dm+2iGQwZxZjQDQYfatasmdbx3bp1i/tvNPDcccEFFySV/u233+btt9+mrKyMf/7znymd0zzfxJh7lHmMBm4w+BBVA9+yZUukdKbxyn82b96c9DHG/J4Y7z2aNWsWy5cvr6TSVC2MBm4w+BBVgEc1uxoBnv8YYZwbunbtSklJSUodJkM8RgM3GHyIKsB//vnnpPKdMWMGAwcOjK2EZag8KqNT9d5777F+/fqcnzffiGq5MoRjBLjB4EPUMfClS5dGSucIiwMPPJBXXnmFE044IeWyGaJRXl6e0fzWrl3LTTfdRFlZGQsXLuSXX36J7YvSGfjxxx855JBDOPvsvAtKZyhQjAA35A3r1q1j48aNlV0MgMgrh0Udy3Ma+DVrrEW7ogp+Q+okq+UlMqFfddVV/PWvf+X555+nTZs2NGnSJCmz+7p16wBrhkImMcMz2y9GgBvygq1bt1K3bl1q165d2UUBojeKfnPAt27dmvA4M96afdxjrKWlpSxblt5aKo4ADovKF4VMC9xMWxoMhYMR4Ia8wHEGyxdtImqj6GjUbjZt2lRhm/e6iopM1cs2bgG+995706VLl0oszbZOWybecXce3vw2b97MNddck3dj7flSt6sSphUxGGymTp3K/fffDwQL8F9++YWbb7455rzm54UeRYAXFxenW1xDArwm9FWrVsX99z6TRFaRMAGca+EUJsAfffRRbrnlFm688caclikIY23KHlkV4CIyQES+E5F5IjLaZ399EfmviMwQkVkiYrw7DJVGv379uPDCC/n4448DG+ShQ4dy7bXXxpzQ/DRwPxNrssLCkD6ZnqbkJ8CTeY6ZfObuDqafBg6wYcOGCseVlpYmbXKfPn06K1asSKGU/uUzZI6sCXARKQbuA44AugCniojXhnUh8K2q9gAOAm4XkerZKpMhf8kngTZ//vzARu79998H4KOPPgL8NfAoY6TGhJ59HEEWVYCko4EnQyYEWpgADyrntGnT2HvvvbntttuSOlevXr3Yb7/9UiypIZtksxXpDcxT1QWquhl4FjjOk0aBumK9cXWA34HEHkAGQxbZsGFDoAD3mr79tLyysrIK24wGnnucZ+P3PFIhXRN6JsfA3e+n9111Oofe8yxatAiAmTNnAlYI2TFjxkQ6XzrL5Zp3PXtkU4A3Axa7/i+xt7m5F+gM/AR8DVysqhVaThE5X0RKRaT0119/zVZ5DZVI2JhergkT4NWqxQcv9PM49zvWOLHlnmeffZbHHnss0JSe7HuWKRN6rjRw73vo/HfevcMOO4yrr7467bIEoap5My20qpLNVsTvzfa+uYcDXwFNgZ7AvSJSr8JBqg+pai9V7dW4ceNMl9OQB+STAF+7di1vvvlmhe0zZ86ME+DvvvtuXDAPhyhjjEaAZ4/mzZsDcOONN3LOOedUcGb77rvvePfddys8p2w7seVqDDyonM4xmSrHW2+9xfz58wP333333dSqVSsu5sFnn32WkXMbLLIZC30J0ML1vzmWpu3mbOBWtd60eSLyA9AJME95O8Pd2JSXl2dVwG3durWCJu3m9ttv953f3aNHD2rVqhX7f+ihh/oeH6WBd64vUVkMydO0aVOWLFkS++/VwDt16gTAiy++mFS+hTIG7jahL168GFWlZcuWsXTJ1K2wsv7pT38KTfPss88CVgQ6J12fPn0inztf2LJlC//9738ZOHBg3g0HZFMN+BzYTUTa2I5ppwCvetL8CBwKICJNgI7AgiyWyZCnhI3pZZLLL7+ckpKSUM3BT3g7+Hn2eok6Bv7CCy9QUlKStCAxhOPtEGXThJ7L492E1Re3Cb1ly5a0atUqLl0yAjyduuhcp1OeQo1/fsMNN3DCCScwefLkyi5KBbImwFV1K3AR8AYwG3heVWeJyDARGWYnuxHYV0S+Bt4BRqnqb9kqkyF/yZUJ/fbbbwfgnnvuydo5ogjwoqIiTjrpJABOPPHErJXFAGPHjvXdngkTehSNrHXr1gwePDh2XC41cL9jvAI8rDyZFODpRrCrLBYuXAjA77//XrkF8SGrA3GqOllVO6hqO1W92d42TlXH2b9/UtU/qWo3Ve2qquOzWR5D/uLVKBYuXMgzzzyTNWGeTS0/itdzUVFRnEe7N8iIIXNkU4A7hL2nixYtYsKECRl9l8M6vFGd2BzCNON0PPi9AjwfNdgoZNp3IJMYTxpDXuBtkNq0acNpp53G888/n9XzpROgIgi/Rs/rrV5UVBR5wZR8Q0QeE5FfRMR3VQ4ROUhEVovIV/bnuhyXL1K6ZDtxUU3g8+fP59JLLw0UoD/88AOvvfZaUuf2kkkntjABHuUelZeX8/XXX9O5c2dWrlxZoVz5Jvg2bdrEV199FTl9vl4HGAFuyBO8TmwOpaWlWTvfc889R6NGjbj66qt59VWve0bq+Alwb3jVAvdCfxwYkCDNB6ra0/7ckIMyJU22BPigQYO44447mDNnTtx293HHHHNMUuf24i57w4YNY4GFYNu75b2+ICe2dDXwG2+8kRtuuIE5c+bw9ttvVzhfIlQ1p+Pjf/nLX9hjjz3iHB3DSMX5L1fkX4kM2yVBTjnZNKFff/31AIwZM4abbropY3n7NXpNmjSJ+y8icekKaUUpVZ2KFXQpL0lGcLhJZwzcvc2JzlejRo2UyhUF7/ty3333xX4HCfBUTOhR3ssXXngh9NhE9/Xaa6+levXqGQ99G4SjFNxxxx20b98+4XMxJnSDIQFBY3rZEmy5HgP3bisqKorblqloYXnEPvYaB6+LyO5BibIRpCnqs82kBu7Oy3HWyqYA9wpdt1D2c2LbsmVL1gR40HUlut4pU6YAxBYQ+u23eP/lN954IytDaDvssANg+UbMnz8/YcfBmNANhgQECe1EjUBZWRmzZs1KunFU1biGLJMCPaoAz0VHpZL4Amhlr3FwD/BKUMJMBWl68803Y34GYfcyzOqRzti5e1tQ9LGoz/jzzz8PncoI4QLcz4ktVQEepWOpqikFt3G8uh2B6u3ADRgwgJNPPjnh+ZPFOZ9DIvO9MaEbDAkIEtqJGoERI0bQtWvX2PSwqKhqXIPtFxI1VaI6sbmvrSpp4Kq6RlXX2b8nAyUi0ihb53v33Xc5/PDDY8MgYffSrW2lqoG7n+V///tfIP49dQS4992N0slUVXr37s2AAeEuBl6h457R4GcpKCsrCzQFh2mgqd4j9/mDrttx4nQEqhPVcP369Tz++ONJnTcZatasGfc/kQZuTOgGQwJS1cAfeOABAO68886UzwcwY8aMpI4Pw0+AvPvuu3EOeU50KrBW/alKGriI7GIvUISI9MZqZzLv7m/jOCP9/e9/Z/LkyaH30i34Ug3kkij+veOwmIoAd96dTz75JDSdV+j4aeBeAZ6KE1s6JnTn2KA8jj32WC644ILYNTsdn5EjR3L22dlbWdqrgRsTusGQJkFObFEFm9MoffLJJ1x22WVMnjyZ0aNHB2pj5eXlWauQbociN2eddVbs9+rffmMIlq35U6BaAcWIFpFngI+BjiKyRETO8QRoGgx8IyIzgLuBUzSL0Xncz3jkyJGh70yYBh7Vic3vnYqygE0yAjyRuTbMhO5XprKyMi655BLftKmY0KNaE8LyABg3blwsuqHTMfrpJ2/E7WjMmDEjLu66m9LS0lishWQ08PHjx8dmE3jfjyuvvJI77rgjpbJmChOE2ZAXBJnNwxqKjz/+OPbbaZT22WcfYFvwjq5du3L66aeHni/TBM3xLS4upj7wZ2AE1uIAAD8Dsnx51sqTaVT11AT778VaaTAnuAWEiIQK8Keeeir2OxMmdG9eP/zwQ2xb0DzsMKKaa8MEuJNH0BBNJiKxea1kYWPgia7buZ+OBp5qx7pnz55x53WXY++992avvfaitLS0QvyFIAFeXl7O0KFDY/+99+2f//wnQKxjVBkYDdyQFwSZ0L1ahMMXX3zBvvvuG/sfpLEE9eazqYH70QK46tdfWQzchiW8ZwHnAK2AdYcfnrOyVDW8wilMYFx66aWx36kK8LBQue7OW9A87DCi+kKEjYEnK8CjOv0FHZPIhO54mQfh3NfTTz+dxYsXZ7xeOuWYPn06EH+vIFiAr1mzxrec+YQR4Ia8INE88Dlz5rDjjjty2223AZanrpsgAT5q1Cjf7dnUwN10A54E5gOnLFtGXeBtrCgoXYHHgE1UrTHwXLJu3TrWrVsX+59IgLt599134/5HNaGHaeA77bRTbFs6JvSwssyaNatCJDE/Ddx9H9xl9uYddr+iauDuPH/99VfOP//8yLHP3cd+9dVXgdfeuHFjjj/++Eh5uvE+r6gC3BulMR8FuDGhG/ICd+P25JNPVth+6623snbtWkaPHs2oUaMqVKZkp3h4G51McwhwJdaC9wBbgQ+aN+cvS5bwlU/6quSFnkvq1q0b97+oqChyVK8JEyYkda4oArxhw4axbWECPOjdiyLAu3btWmFbIhO6+54ko4EH7XM72Xmvc9SoUfz73/8OzNOL+1qXLl0aeM7ffvuNiRMnsmLFCmrXrl1hLDsIvxkgbqIKcDONzGAIwN0IXH311RW2165dOy69t4FLVhi//vrrWRHgxwGlWEvrHQ6sB+4C2gOPHHKIr/AGo4FnikRj4OnmDeFObG7tTlUDLUtBwsBJs2XLlqSsROlo4GHncV/r3LlzY78POuigwOOTnZLpLs8FF1zApEmTQtM3atSIQw45JHL+fjEY3AQJcPdMEXc5+/Xrl5X56algBLghL0hkqqtTp07o8UVFRXGmVG8e3tW+fvvtt0CP1WQ46qijEGAg8CVWxJK9sBzTrsEa+x4JLCL8GowAzwzeCHfJkI4J3c9hS1XjypKMBg7b5kVHIRkBnqoGHiZY3XHF05k7HhW3A6sfGzdu5Oeffwbir/2PP/5g2bJlcWkdAb5ly5a4IDzuDgtse55Tp07N2iJLyWIEuCEvSBSO0dtL9gtG4TWnOhx33HHsuOOOzJ49O267N3RjsggwpGZNvgReAnoCS7E8zFsDtwArXenDBLgxoWeOVGNqZ2IMPJMCPBmTrZ8Ad4LMePP1jgFHFeBB5VFVPv30U8C6rm++8V2kLqccfPDB7LLLLkD88xo8eHCFoRPnfdl///2pVatWbPtyz8wQVY1NecsXjAA35AVBjcijjz4KxIenfPjhhys0gGHatOMZ/Oyzz6ZbzBiHAJ8Bp06YQA9gCXAh0A5r/pSf+443gIQbo4FnhhkzZkReZSpZnHdu/fr1Ffb5CfDy8vJAAb5lyxZfYRBFYPqRKCywW4iVlJTErYYW1YQeJsDdJBsUKVHHae7cub5pvBqyG6dDAfHX7mdFcO7XZ55YDE6oVwdV9X32lYkR4IZKRVW55557+OKLLwLTPPDAA3FOOOeff35MsDtUr1490rnceDWRKHQHXsca4+4FrK5ThwuwBPf9WB7lUc/vxgjw/CeRAH/kkUcYMmRIbJtXA/c+Y68pFyrOaY/KP//5T7p37+57HoDrrrsu9rtatWqh093cpNqhSIZE1xlkuo8a8MXtU+PHCy+84Dv85hXg5eXleSfAI3mhi0hj4Dwsy2DsGFX9vwTHDcDy4SkGHlHVW33SHATcCZQAv6lqv0glN1QJXnrpJf7yl7+Ephk+fDjNmjWL2+YdA0tFGCdjtm6KZRIfitXrXY01n7v87LMZd889aZ/PmNCzS82aNX2nNY0fP9430I+XMWPGxKYu+gneCy64oMK2MBN6EKkKcICvv/4a8BfIQcGFgtL7lSeojqU7JTPRwi3VqvmLqah1/oknngjd//jjj8fC38K2GSp+AjzMhP7ZZ5+xatUq/vSnP0UqVyaIOo1sIvAB1hTWSC2NiBQD9wGHYVkYPxeRV1X1W1eaBliKywBV/VFEdk6i7IYqwPfffx8pXSKHsyhjU6k4y5QAFwPXAXWBzVgv7E1Ywb0vitB4HXTQQUyZMiWukfBiNPDsUr16dV8B3rlz59jvsPfDrcVNmzYt0jmTFeDe9KkSdX3rKOnTiYUelaDV2xyCBHgmZ5E888wzsd+bNm2iZs2aFeprIhN6nz59YulyRVQBXktV/SNiBNMbmKeqCwBE5FmsWTbfutKcBrykqj8CqGp0t0tDlSBTL3sUx6Vkz9Ufay3MTvb/l4ArgAWuNGFCGeCOO+5g/fr1TJkyJbSMRgPPLkHm3yhDL6mSrAAvKipizz339E3/zTff0K1bt7gFcYJIJHSjhnidNm1aXEyGKML8lVdeSZgmWYIEeBSTfirtyxNPPMHo0aNp1Ch+Ab18NKFHHdR4TUSOTDLvZsBi1/8l9jY3HYAdRWSKiEwXkTP8MhKR80WkVERKvWvGGgqbfNQ8mwIvAG9hCe/vseZ0n4AlvN3OaAsXLgzNa+TIkbGGplA0cBHJnlSrJIIa+xo1amTtnKoa50AVRXN3+4K4hc9zzz0HhE/lcsiUAN9vv/148MEHY/8fe+wxX0uYO7/x48cnLF+yhJnQJ02aVGF2iZt7Ig5vuRk2bBirVq2qMA+8vLw8cnS5XBEqwEVkrYiswbIiviYiG0VkjWt76OE+27zdoWpY02aPwmoj/yoiHSocpPqQqvZS1V6NGzdOcFpDIZEpweVMGUmH/ffdl/OwTESDgQ0ijMIKh/qmK92rr74aC+l43HHHJczXER5hlb+yBLjdeW7t+t8b+Dz4iMKiffv2QDQNPNOBfXr06MFLL70U++/2jI6CWzA6Ux7doVqDSPQuefdHffdKS0t9x3ezaTIuKSkJ1cCPPvpounTpEnj8yy+/nPK5vRYzb2CefCBUgKtqXVWtZ38XqeoOrv/1EuS9BCuOhUNzwOs2uAT4n6quV9XfgKlAj2QvwlC4ZKpCtG3bNq3j2wH3fPstDwH1sZw+zth7b/6BNe7t5emnn2bKlCkMGzbMZ288jmAIG+urRBP6GOB/IjJcRG4GxgHZW4w5xxxxxBFAsAD3rkzlRzrvqNtBM1lB507vhPX0mnX9SFYDT6Zc3rnR2aa8vDzwGQV1uD766KPY70x2LsrLywtLgDuIyDtRtnn4HNhNRNrYJrlTgFc9aSYCB4hINRGpBfQBgu0hhipHpipY1PjXXoqBy4GvgZ6rVvELcBJw/2GHsUOHCsYgwGo4dthhB/r16xfJE9YRHmECvLIaBlV9AxiGNVvk/4AjVTV4Tl+B4ZjIu3Tp4isI3M8vSCBk6tkkKzjd+9euXQtE87zOlgae6vnSoaysLFADDzrviSeeGPudaQGeb74qiUzoNUVkJ6CRiOwoIg3tT2usocJAVHUrcBHwBpZQfl5VZ4nIMBEZZqeZDfwPmIkVF+MRVa38MD6GnFGZArwz8DHwT2AH4L3mzemMNf59yaWXBo5vH3jggUmdxxHg7shYXirRhP5XLF+9A4HrgSkiclSlFCYLOAK8du3aLF68uMJ+t3BwwmN617dOp9F2a/7JvutHHnkk5513HrDt/XALpyAyNQbux++//84778Trbql2nqMSJWqdm3TueRgFZ0IH/oy1NkMn4Atguv2ZiDVFLBRVnayqHVS1narebG8bp6rjXGn+qapdVLWrqt6Z4nUYCpRMVYhkGhHBik/+BbA38CNwBHB/3744Mz+Li4sDzeNRzK5x54swtlqJPftGQG9V/VhVH8TyRRlZWYXJNI4AFxHf1avcGu2cOXMASwCcdNJJse3pvKPud8UrTBK9F9OnT+eRRx7xPTaMbJrQAfr37x/3P9E87igcfvjhgfuCFkcJWpM8UVS6VAnSwHM5bcxLojHwu1S1DXC5qrZxfXqo6r05KqOhCrF27drAFZrSIWr865ZYUdTuAGoCj2Kty/0/4j2Si4uLOe200/juu+/ijt9tt90C865Vq5bvKklRprtUogn9YgAR6Wj/X6Sqh1VKYbKA80yLiop8Pc6DzLMvvvhi7Hc6zyZT09SSKUM6JvTPPvsszvEuCommUkahZcuWgcuDBnXOg6LcZUsDDxoDD1qdLtlV2VIh6jSypSIyyPM51AReMSTDsmXLqFevHgcccEBsWy5N6I0nT2YmcDDWamHHAucCa+397sa2WrVqiAgdXOPgrVq14t133w3Mv7i4mI4dO1bYns8CXESOAb7C6sMgIj1FxOurkpe475k7VKibRAI8bEx51qxZQHrWkTANPBmSeT8SBUYJM6H36dOHE044AYDmzZsnUcL0CLu+dAR4LjRwP0G93377JW2pS4WoAvwc4BFgiP15GLgU+EhEhmapbIYqwOOPP87hhx/Ohg0bePNNazKWez5sLkzojbGCsIyYPp36wMtYWrd3RNotwP0q3yWXXJKwUfMT1nluQr8eK+jSKgBV/QpoU1mFSQb3Patfv75vGkerExFEhLvuuituf5AGDnDaaacB2TOhJ0MyZQhaVjcor6By7bHHHpHPmS7l5eWB5Qiq20GWPHdUxlyMgfuV75NPPgG2zd/PFlEFeDnQWVVPUNUTgC5Y6zb0AZKN0GbYjjj77LN58803eeihh3z3Z1sDPwbLw3wgVvzyM4FBgN9Col4NPBX8jstnDRzYqqreQczKG9RLArcA93a4XnzxRfr37x/b7jwDr1AK08CdY9LpXIXl717BLNE5MinAozqx5bJTGXZ9QcNjQRq4sw54onyTxWtCd+bkh5nKUwkkkwxRBXhrVf3Z9f8XoIOq/g5k1wXRUCVYsGBBhYZj8eLFCRubqPzyS3wU3ppYMctfBZoA72KtJPZkhSO3kUgDj4Jfg51IgN900005XQDBwzcichpQLCK7icg9QLRg35VMmAA/4YQTeOutt2L3PmgqX9izcSwn6QgB9zv/5Zdfxu1zhmdOPPHEhB3GZMqQKNznypUr4/4H5e1sv+aaayKfO1UyqYG7yWTktD//+c+4I4E61p0w61/QuH6miCrAPxCR10TkTBE5E8sLfaqI1MY2vRkMYdxzzz1xpq0lS5bQsmVLHnjggYyfqytWEIILsMxEl2LFNf8x7CAyo4H7mcsTmdA7dOhAnTp1UjpfBhgB7I51q54B1lAAXuhjx46NeY1D4gUvoszF95IJDdy9cllQEJQoTmOZ1MAffvjhSHmXlZXRt29fbrrppsjnTpUwAX7JJZf4bg9bqtXBWaEtU1x55ZWx305IZWemgB/5IsAvBB4HegJ7YCkyF9oR1A7OTtEMVQ23aSvZsJIObdqED88OxxLeXYE5QF8sj/MoNuFMaOBunIUnEmngmQ7hmQyqukFVr1HVve1wxdeoaqjaIiKPicgvIuIbs0Es7haReSIyU0T29EuXKmvXruWyyy6Lm48f9Lyce+/cYye0KsChhx4aep5MaOCZwhuXO4xkrVpBgrO8vDxh4JiWLVsmda4gGjZsmPRwmtt0negZ3X777SmVKwxHgIdZKLK1hnos/yiJ1OJFVb1EVUfavwtinMyQG9566y3+/ve/R16aMFWtJkjT2gl4BSs4QU0sL8u9sNyrHRI1Rm4vZb/zJBK0jqOUw1577QUkrsTZruR+iMh/ReTVoE+Cwx8HBoTsPwLYzf6cD2TUzOK8O26LjluAu397NfDdd9+df/3rX5HO4xxT2QJ8zZo1CZfTdXjuueeSDqwSZkJP9G726JGZyNd+66knwn2dYe3OLrvsws47Jz9hKtFzdy9q5Ob++++PnEe6RLITisgg4DZgZ6w4GIIl1xPFQzdsJzhjuH369GHAAP+23V3Jfv/9d980ifATwgcDT2EtdbcKOA94sUIqq0EO6zhkQgP3E/J+jWD9+vVjATAqSQN3pNggYBfAWUbqVGBh2IGqOtW9AIoPxwFP2p38T0SkgYjsqqrLQo6JjJ+ACvL2dn67n0HYgkjuBtd5Ltl05poxY0bCNMlo1KecckrSC/uEmdATCfDatWsndS4/9tlnHzp37py0Bu5+D8KWMS0pKYkUgtZLonoZJMAvvfTS2O9s67lRu/7/AI5V1fpJLGZi2A5xm8m9uF/mVHrcEN8QFwE3AG9jCe8PsVbC8RPekFgDz9UY+OjRo5k7d27oMdlGVd9X1feBPVT1ZFX9r/05Ddg/zeyjLCUMpLZUsJ9XcpAAd8ys7mcftrCJnwDPpha1atWqhGmSfT+S7XCkY0JPR4B36tQJ2PZs0hHgV1xxRWA6rwAfOHAgDRs2TOpcfrjHt4Puea9evdI+TxhRBfjPdtxygyGUsMYmEw2h0/jujLXE51+xxrevBw4i3FEtkVBOVwMPunavwDjuuOMirSqVIxqLSGwpNxFpgzV1Ph2iLCVsbUxhqeBkBLiT1j084h0XdygrK4triHOhgUfRDLMd0cuvXq5evTqrGviJJ54Yi+vunCMdAR5WzmrVqsXtf+qpp5I6TxDu5xIUjS4vxsCBUhF5TkROdUdjy2rJssyiRYsYMmQIM2fOrOyiVCnCBHjYYh5RKSoqYn/gS+BQrIhqhwF/BxI1s4kaS/f+TGrg3krcq1evuHSV7E5yCdYCJlNEZArwHul7oUdZSjhl/AS4+3m5BZLTsPoJcL/50N9++22FdNnUwKO8Z8mOaUe1ZDj4Xd9ZZ52VVQ3cPb6eqgXKfZ1heVSrVi12HT179syI2R+2rRAH8QI8UwvhRCFqK1UP2AC4J6sqVoCrguSss85iypQpTJw4MeEY06effkp5eTn77LNPjkpXNXFCU6aKAH9evZrzsV7c97EGbDMysEr4vGJIvaFxH3fnnXdWaLQrU4Cr6v9EZDesBYsA5qhqusGtXwUuEpFnsYI9rc7U+Df4C/AgIefMA/ZzUPS773vuuc1hPhcaeDYEeLL43YcFCxZQvXr1hBpk0DhwIpo3bx4Tqs59TrYejB49OvY7rJxlZWUVzuV2gHTYYYcd2LBhQ+R67hbgQfPNs209iSTAVfXsrJaiEli0aBGQOOgBQN++fYFoTh3bO9kaz20APAEcaz+3W4FrSax1u0lUmdwNdbY0cL/3p7K9nLEc9ltjtQc9RARVDYx5IyLPYI1YNBKRJcDfgBKwVhsEJgNHAvOwOv4ZbT/8BLh7vrUbRzNyj1c6jXmi+54LDTyKCT0dAX7WWWfx+OOPh6ZxIoy5w9E6YUMTlS8VAf7ggw9yxhlnZHRql7vedezYMW4Rok2bNsWepXM9r732GpMnT2bs2LGxdAMHDgQshS3KAi39+vVj9uzZsXM4uN/PvNDARaQD1lSQJqraVUS6Yzm1ZX+Gf5bwW9jAD+/UJyPAw3FXpBtuuCEjeXbHmiLWBlhbUsKpW7YwKYV8EnXWEmngUSg0AS4iTwHtsGbcOTdACQlap6qnhuVpe59fmKEiVsBPoB1//PGcf/75Fbb7mdCdzlmi+54LDTyK1pmOFhelI1peXs6WLVviLJGqGqm9SyVQyeDBg6lZs2ZG21J3vfPmu3nz5pjgdr4PPfRQ9tprrzgB/u9//xuA3r17Jzzfv/71Ly644AKWLVvGzJkzAzXwbAvwqHfwYeAq7LCpqjoTOCVbhcoFUQW4u/JU4oITBcnf/va3tPMYjBXXsw3wc8uWjDzggJSEdxSiOsUE4Z0H7t7u4KfRVLIG3gvYT1WHq+oI+/OXyixQIrwa+NSpUwOnhmVCgGfz+URpU9LRwKMKcL8lRqPMA08lgqBzXxNp988880zkPN3l9N4vtwB3p/PW1WSWfh05ciS1atWiQYMGlJWVVZoJPWorVUtVP/Nsy/5ip1kk6sNyP4BcrO9a6GTKhF4E3AS8ANTGihzy6uWX83OKY25RcMpeo0aNjA4F5LMGDnyDNQ+8YPAK8LDOuJ8AT9eEHhTaMxXyQYCrKgsWLKiwLYoJPZUAKd749EFEVbIgvt3x3i8/E7r3/MmOv7vzKy8vDzS554sG/puItMOeCiIig4ngOyQiA0TkOzuk4uiQdHuLSJmdb07wE+B//PFHbGzcwWjgyZEJwVcPK9j+NVi9xIuxB1GzHFe4a9eubNiwIXBubpRrS8WEXsle6I2Ab0XkjSQisVUqyQjws846C4Bjjz02ts3rxOasKuXFeZbOMrgObrNrukTpvO23335x/5NZ+CaKAJ84cSJdu3aN2xbFhN6sWbPIQ019+vSJ/fZGxwsimeAr7ry8itbmzZt9BXg6bZX7GsrLy32d4iB/BPiFwINAJxFZijXNZFjYASJSjBXZ8gis5UdPFZEuAeluA96IXuz08Ru7OfDAA2ndujXffLMtxLPRwJMjXQHeAfgUOBpYAdx+2GHcbe8rKirKirCbN29ebPnJHXbYIa0FCBKZ0PNQA78eOB64Bbjd9ck7nn32WT744IMKAtx5Xn7x9ffcc09UldatW8e2eU3ov/zyS1z4SwdV5YwzzuCqq66qsM/RwqOa4YNIJSKh02EZOnRowrRRhKC3gwIwZ84c1qxZE3q8qka2ZNatWzf2O6oJPRkB3q1bt9hvrzDdvHlz7DlFCejjx+rVq32HC4qKitiwYQNLlizxPS4vTOiqukBV+2MFeOikqvtjLbEcRm9gnn3sZuBZrBCLXkYAE7CWKM0Z7iD8bdu25ZNPPuHzzz8H4NVXtykg7gcwYMCAlCOIFSpffvklnTt35o03ovWvTj011L8plCOAz7DmM80E9gZan3NObH9xcXFWBHi7du044YQTMmI9KDQnNicim/dTaQUKYMWKFZx66qmceuqpgRq4ewpYGF4TelFRka8gKisrCwz6MXbsWFQ14TuTyMR8zDHHRClyHM45U7UIReWnn37yfV8ffPBBwBLgqXihRzWhJyNg161bx84770yHDh0qLJfqWBMgdQ28Xr167Ljjjr5lXLVqFWeccYbvcfmigQNgrz7mTH67NDRxhHCKItIMqyMwLiyjVMItJsL94v3www8cddRRsf9B0wBKS0sZNy60qHnHl19+yVVXXZXUMopuhgwZwpw5cwLjm0NFE3AqY3ajgdeA+lihUPcFfiDeBJgtAZ5t8lGAi8haEVnj81krImtyXqAEOENbS5cu5eSTT47b5wjwqBqbnxObn3aVyciBmSRXAhz876l7CCIVAZ4NE/qSJUsqRFxz4yfAk302fsMRicqYF9PIAkj0ZkQJp3gnMEpVy8JeNFV9CHgIoFevXim34N9//z3FxcW0a9eugpBxm7LcDgmFbjZ3tJKioiJuvvnmSMfMnTuX4uJi2rZtG2k+pLehKysrizw2Vgt4lG1TGq4F3KX0Vrh8F+CpmNAr45pUtW7iVPnD4sWLA/c5AjyqsPKLve0nwFNdcMfvXJkkGQGeLn7vayoC3F3WqCb0ZARsjRo14pzVAPbff38+/PBDYJsgDfNCT4SfAE9UxrwwoQeQqNWJEk6xF/CsiCzEmjF0v4gcn0aZAtm8eTMdO3akffv2qGrojXU08ETpCokvv/wyUrqtW7fSoUMH2rVrB0SbD+29R1HvWSvgIyzhvQY4lnjhPXv27LgKYjTw7ZeOHTsG7nP7LBQVFXHTTeHhKfy80P0EeLqRA53yZBq3AE8UnjhTGvhhhx0W25aMAH/iiSdiab1lyqQGvmnTpgoa+C233BL7nQkN3C99ojwq1YQeZmYDmibI+3NgNxFpIyLVsdrpOO9WVW2jqq1VtTWW5XS4qr6S8tWEsGLFitjvjh07Bs7bs8vF22+/Td26dXnhhReyUZyc4w77F4bX1J6KAG/durVvtCw3/YBSoCcwFyveprcp6tSpU0Fp4EHzwN0993zRwAuNTp06BfpXuL3Qy8rKuOaaa0Lz8pvf7XayyiTZFuDuob+wtKniLE3q7iQ5bYKqUqtWraTPH3UMPBkBvnHjxriY5xDfKfNzYkv23jjpDzzwwMhlrFQB7iwb6vOpq6qh5ndV3QpchOVdPht4XlVnicgwEQn1YM80U6dOjXMWmTt3Lt9//31g+k2bNjFo0CDWr1/PqFGjclHErLNmTbRhTffQgqqmJMBXrFgRWyrQj4uwlgBtBPwPy9txTkBarwaeCVL1Mk91zDGRADcaeDSCnluy74XfYiapBCRJ5lyZxC3As21Gb9u2bYVtUTXwoqKi0CGlTJrQN2zYUEEDd9e7TGjgDm6ZkCiPVJwUkyGdMfCEqOpkrLjI7m2+XmCqela2ytGvXz+/8wWmX79+fWijGsX71MukSZPo0qULbdq0Seq4TOHnxDZ16lTq169Pjx49Ytu8DnyJBPjGjRu5+uqrK2z/4YcfKmyrDtwPOH7l/8AK7xcmvtwVLlMm9Nq1a4daYLy0aNGCxYsXc/DBB6d0Pq8jnhcjwKORzvQ+N34BWjKVt5dsCNhcOrE58dH9BGN5eXnoHPxq1aqFCvAg4ffOO+/QqFGjSOtUODgauN9w1cknn0z37t0BK4yrtxxR8Su33zW0bNmSH3/8keLi4khT/dJhuw3snUiAh+1P1OBu2LAhLs0HH3zA0Ucf7dubzRXeF23lypX069ePnj17AsTiILud1qII8NGjR/vOofWyK9bqYedgrW5xKjCKcOENiZ3YwsZG3biFaLLLCc6ZM4f58+fTpUuFMAYVMCb07JFMZK4w/Ezo2XA2g8r3QndM4Knit+SnWwMXEV5//XXfY4O8whOZ0Fu0aEH37t1997sD8rjZuHEjJSUlFSx2ZWVlPPPMM3Ts2JHNmzdzyimpRwD3sxz4vTd33nknkJuO+XYrwMOmOiUS4GHjGitWrKB27dpxWv9XX32VUhkziZ8Adxg7dix169Zl0qRJFQR4opfw5ZdfTnjuPljj3X2BRcB+WEEBki23VwO/9dZbmThxYqR83PN83QL87rvv9kseR61atSJ1voJMmu5OkDGhp06mNXD3uxRFgL/77rssXLgwqXNlo2Nw+OGHA9uizPlRq1YtJk2axOmnn57WufzeV/cYOBA4xbR+/fqRTOjeNN6FR9wccMABgWWtWbNmhTFutxk/1QWKvOUO0sBFhGnTpsWUilx0zLdbAe6Otubl9ddfD503HSbA33/fioHx4YcfMnHiRAYMGFAhsEBlEFRJAC677DIARowYkbQAT6QFnI2leTe1v/fGWvYqKmEm9FGjRtG0aSJfSgt35XUL8F69eiVRmsSYMfDskU0TehRB26BBA1q1apXSuTKJM5Nm3333DUxTXFzMkUcembS1yUsiDTyMKVOmRDKhe/MJ09DD7meNGjXi9mfLgSxoHP2tt95in332SXkp4lTYbgV4OoS9GO4Hevzxx/PGG29Enn+dTbwvvl/lW7FiRWzeJFjXmagSBE0ZKwHuBh4DagD3Av2BZMPwJHI6iarhuM2v7kYtE5VtzJgxAPzjH//w3R8kwB1v1mw7ulQVvCb0G2+8MW5MMyrOM3C/21Heo1S06WyMgUfpFESdqpXKuaII8P79+9OhQ4fQ6w8qm1/ccgdvfv/3f/8X+12zZs24jnqmBbhfx8IpY58+fTj00EOBzLQpkcuUszNVIcJeDL+XLtGUqlzgrSx+Qwhr1qxh+PDhsf9bt25l3rx5ofn6jUE3x9K2RwCbsMa9R5Da8nWJ5oFHbaDq1asX++2e+pKJyjZ69GhWrFjBOeeck5QG/t5777Fy5cpKc2wsNLwa+LXXXpvSNE8nJKbbKTGKcE5FGGZDA8+lAPcbb4+qgbvP75c2yIQeJsC91+NeiKZGjRq+nueZIqoTWy4FeO7OVIWIqoHnE95yRQm2csUVVwSuzOWw11578d5778X+/wn4D9YUsR+Bk7AWJ0mVRE5sUbUitwDPtAYO0LBhw8B9QQK8qKiIBg0aZOT82wOZMqE3atSI77//Ps4cXtU08JNOOikj5/czoXvHwMNIRQP3W7s7KD+3xl2zZs24oc9cmtD97k8uyE9pk+ckK8CTrfgXXXQRRx99dEadIKJo4F4ef/xx3+2ffPIJXbt25cMPP4x1BIqAf9Wuzetsm9+9J9GE9+677x64L9E0sqj31h2ow5kaA5nvLafixGaIRqa80AF22223OMfGbGngzvswYcKEpI9Npxx33XVX5LRRzpVIAw9a4jTMYz6RCd153vvvv3/gMV4B7v7vRJPMFH4aeFis+FxgWpMUSFaAJ/tA77vvPiZNmsSCBQuSLlsQX3zxBf/5z39i/9MJEXvkkUcya9Ys+vXrx5YtW2gC/NCxI5fZ8zavBY7EWg40an5BJDKhiwh9+/aN07D9cO/PpgA/66yzKCoqYtiwbbGK3OfIZe+8qpGtudqQPQHu4LeSVapE0aqdzkmitIliG4QJcLcT4Pjx45Mua9A9d87Ztm1bnn76aR5++OHA/NzWNLcJffjw4Rm3bvlNIwu7P7mg6pnQVcG+mcuXL+e3337L+CmSFeAlJSWRFgVJ5jypcPrppzNkyBAgtRXDHJxrKS8vp/O8ecwEdv7uO36vVo2Ttm7lnSTzC2uYEzmxiQgfffQRW7ZsieVTrVq1Ch0Ut4nbLcwzXdmaNm0ai8vsd450vYK3Z7IpwN3PaMGCBb7TBvPFhB4lz6idDffwV1g+iTTwoDK5x8Dr16/P6tWrE5bRfU5v+FzveWrUqEFJSUms/jsd5GQ6yu61xMPwsyZUtgCvWhr4+vXQogWceSa88gptd9018sNJhmQFeNDL7dUmvf+zOb0oHQ28WrVq1AIeAC584w12BpZ27ky3AOHtLGgQhN9azA5RIrEVFRXFmVdr1arFjBkz4gLM7LHHHrHf2dTA/fI0AjwzZNKE7iXILOrWUNPRwHOxclg2zucnoPxWcws6n3v7V199xUsvvVQhHy9hHSW/2TROh9wR5hC9Xs+dOzdu5k2yGBN6Jpk6FZYuhSefhIED+Q2YAJwONIiYhXtaQhBhAtzvRfZbSOSnn36iadOm3HjjjQDccccdNGnSJM5snu4YeNjx6QjwXsB0YBiwpaiIy4C3Lr+8wlJzDonmzoYJ8FRXI+vevTsdOnTwLUOmvdATYQR4ZsimBu7G/c65FwtJdr1xN+kK1Lfeeiut45Oha9eutGzZEggfEmzRYttik0Htifu6W7duzcCBA2P/E2ngfpx++ukMHjyYE088MbbNqc916tSJlS2qBt6+ffuEw28OzrUkCgBkBHiqHHEEzJ4Nt9wCe+9NLWAQ8BTwC/AmcAFWWE+A2267jVatWnH22WfHsjjvvPMSniZMgEfVmseMGcPy5cu57rrrALj00kv59ddf+fvf/x5LM2LEiLS0cL9Yws7Ll5IJfcMGuOIK3lyzhk7ALOBvAwYwFihJEBM5DLdm5a28mVqNzD0e5q7cuahs7vMlWr2pEBCRASLynYjME5HRPvsPEpHVIvKV/bkuE+fNpgbuxv0OujuXUTVw9zNOJuxpGP3790/reD/OPPNM3+3u9s1PA69ZsybPP/88U6ZMiW3ztidOtLh0nNj8qFOnDi+88EJciFinDtepUydpDTwZ/AS4cz73PTMCPB06dYKrrkI//ZQWWCtfvQMIcBjWYho/AR8DR3/7LQvffJNzzz03dniNGjXYeeedQ08RtDTnggULAuMCOzgC+fnnn/fd737477zzDm+//bZvuu+//5533gkebV65cqWvF/mLL77I1q1bk9bADwLo3h3+9S8AxmJp4h9v2FCh3F4SNXxuL3Rv2lQ1cIhvNJyhlJo1awaOT2eLqqSBi0gxcB9wBNAFOFVE/ILEf6CqPe3PDZk4d64cAN2dxmQ91cFfWGXShJ6JvE455RQee+wx331upSEoGtqJJ55Is2bNYtt23XXX2EyP5s2bx6I7hs0DD7qOKPfZLUwd61qdOnVi58vGu+JXXuf9cAvwXA6XVD0BbrNx40aWYLU0/YEmwJnAK8BGrLjcXZ54Ajp2pOfpp3Mj1trU1UtK+Oyzz0LzHjlyJKrKBlt4ObRr146xY8eGHrt161ZWr17NL7/84rvf+/CdRUa8dOzYkf79+/Pdd9/57j/uuOMYMWJEhe0nnXQS48aNi6yB7wo8DrwHMH8+2rUrR+24I5cBf7BtlbNUBfiXX34Z15v2Vt5Ulv9zGgv3vdxpp51YuHAhS5curVQBHrb8YoHQG5inqgtUdTNWWPvjcnHiXAlw93sWZh1KhqiN+vz58wM9ujOJN+yoGz8N3Bvz20txcTGvvvoqYNU175QrP0tiUGc8mUA1bgHuJpvvirvcfgI8l1RZAe41H/8OPAkMxJqnPAhYctBB0KABtX74gWuBL4EORx5Js7vvJixC9tSpUznzzDOpXbu277KZYWzdujVQg4dwE7IfQVPNPvjgg8Bj3njjjYQaeA1gNPA9VsdnE1B2/fUcWr8+b7hiu2+IoIGramB52rZtG9cguB3MIL3lRL0NTatWrWjYsGHcWGouBHhxcTEvvPACL730Us6dmbJAM2Cx6/8Se5uXfURkhoi8LiLBE/2ToDIEuNsalwsNvG3btuy6666JE6ZJWHn8NHA/z2svrVu3Bogb53YsTl5lJ4xkBDhsm6K3atWq2PZM1evffvuNn376Ka5c7vvjCPDKWs+gygnwm2++mYMPPpjvv/++wr7rr78esJazfBmYPnIk/PIL8x54gAeA5UDJ4sVUGzuWz4GFwL+AO046Ce/r/tRTTwH+C96H0aVLl7iVyrxLVIYtOuKH0+tNhqKiokANvAhrqc9ZwBigDta96gxsGTWK9z76KC79119/DVgVJmiloPLycvbff/+4sIfusrgr7Lhx49hvv/2YPHlybL9DptYDd2vBuRqvGjx4cFzDVsD4tfzeh/IF0EpVewD3YBm+/DMTOV9ESkWk9NdfwyPl5+pZBQnwqBp4uib0bHXyrr766liEtrBr8dPA3YQJ8OXLlzN69Da3CKdD7qe0JJp6FgVV5bjjLANQ3759Y9sz1dnbaaedYh2qsCBNRgPPAJs3b+baa69lypQpFZzRunTpwt/+9re4bWVlZVBSwoZ992U4lhqx9Z13YMQINjduTCvgMmDk88/zI3AnsD8Vb9qyZcsil3HRokVxWrPXA9v78iYK5jJu3Li4/y+//HKcc4kfRUVFFSqUAIOBmcDTQDvgG6zhh0HAD8Cbb74ZmGe1atUCF68P6516l+Bs06YNH374IUcccQSQmhObk8ZZ69xrYnML8GytA12FWQK0cP1vDvETEFR1jaqus39PBkpEpJFfZqr6kKr2UtVejRs3Dj2xu1FO1vKVDO46mEoUPT9zcz4I8Jtvvjn27qejgYcd26RJk7hhB8fD228oMBMmdICDDjqIjRs3xkVsy2ZnL4oJffz48cycOTNrZXDIqgCP4K06RERm2p9pItIjnfO5b9js2bPj9s2fPx/YZuaBbS+qY24vB6odcgjcfTezXn+dfbGctTbtvDPNgYuBD4BlxcXci+XYVUx6073WrFkTNx7+xx9/xO2/+OKL4/5v3rw5ZtLxMn/+fAYNGhQputLSpUsBa9Ww07CGD14AdseyPJyD5RPgdpNzerp+1KxZM7DiOffHb9UtrwYeNoSQrAbeoEEDVq1axdy5c+O2p+JZbIjxObCbiLQRkerAKUCcGUhEdhG7hRWR3ljtTNTAfIG4ham7HmeaIAGejAn99ttvj1vuMxcCPMra335j2g7Out6pauB+OI5tYcOGXpK5fqc9cIbF/MKdZoqHH36Yo446ij333DO2LUiADxkyJCsxSLxkrfWK6K36A9BPVbsDNwIPpXPOZs2aVRhDdXCih33kMgE7N91PKNTYYQc+xtLAv5o4kd7AP4AFwM5lZVyI5dj1E9Bg1Ch4662UwtotWLCAJk2axP4HxR936N+/f5z3p5uPPObtIESEVQsWcCXW9fwH6IGlWg0DOmAtA5qMUahbt26BFc/pKN1zzz2+ZQlzkEnGhO5EW3PPT61fv34Fc5oJZ5o6qroVa3LHG8Bs4HlVnSUiw0TEiR87GPhGRGZgrSp7imZg7CNXJvQgL/RkhMKll14aVx8zKcCD9jvDemEErQAGxJxe/TRwt99IMvfB0cDdQi8TXHbZZRxwwAEVpsI5dTudSJNBdOvWjddeey3OwuC8H5XVpmRT/Ujoraqq01TV8Yj6BMsclzK77ror1157bWiapk2bxn47Arxv376ce+65cTF33S9sSfXqfA6MwjIt71ezJrdgOXjtDNQaPx7+9CeWA48AA7A022zg5wzWs2dPFi1aFBem0I8i4HDgxAkTGPPEE9yGdcNnYWnc7YEHgVRe/YYNGyYU4HXq1Kmwz2tCT2ce+JQpUxg4cCCvvPJKaFmNAE8PVZ2sqh1UtZ2q3mxvG6eq4+zf96rq7qraQ1X7quq0TJy3MpzYUtXAo2xL5njIjBAMW+nL2eengbvXuk9GgJeUlDB9+vS4CGxeotybk08+Oc5fqFmzZkydOpVGjeJHZpznlaslnJ3zVdbskmx2af28VfuEpD8H8J1ELSLnA+cDsQhBQbhXnQri5JNPZuLEibFx1qKiojjhDfHTR7w9/2l//ME04BqgK/DhxRdT/8032Wn2bM6xL2QVlvn5PfvzbcJSpc6MGTO44oor4pw4YmUHDgCOxxrLdnpI5Vgrht2BFeAmEwRV7LAx8OrVq8d1lsKc+BI1oN26dQttKByMAC9MKluAp+LEFkU4PfXUUzRo0CBjQV+8TJgwgc6dOwP+Y9oOfouUOOndi7EkW75EHY8oxplnn3020rkcjTgbGrgfTmenKgrwKN6qVkKRg7Hk3v5++1X1IWzzeq9evUKfdpSweM888wxbt24NbRC8U432339/35i53wAr/vIX6t1xB7sXFTEYy37YHTjB/gD8DEzBCiAzHWvMuWKcNH82b95McXExpaWlgWlWr17N4sVWf6kj0M/+DAAautLNw5rX/STxvatMkEgD9/Lxxx8jInELjYSZ0NOJxOYmF9N0DJmnMrzQ09XAowjlo48+Oi5SYFDaM888ky+++CJuiMhLaWkp334bry4MGjQo9juKBh4lkEu+4gjwXGngzvS4yoqwmM0akdBbFUBEumNZno9Q1bQdXYI0cHcvUEQS9ua9AnzSpEnceuutjBkzpkLasrIytmzZwmysgfwbgbbAwa5PU+Bk+wOWBjwHy3z9PTDX/vyEFfbVPWvyggsuoEOHDnHTM6rbebawz3Xk7Nk0ePNNrsIy67uZjTWPZyLR1udOlaCGx92p+vTTT+nTxzLEOHNE3b1XrxNfOk5sQey4446UlpZGjoFsyA8qWwOPqnkmq6F60wcdP2LECC688MLQjsRee+3FXnvtFbg/bAzc6SBl0oktCk5ZDj744ISroyUim2PgfjjTDPfbb7+cnM9LNgV4zFsVWIrlrXqaO4GItAReAoaqasWJ2yngbZR33313+vXrxxVXXJFUPl4Ter169Tj99NN9BfjUqVPjwrGC5Ry2AHjU/t8BSyPuZX+6YXn2+cWgBEs7X4kVQGXLY4+xBSsITW3708B7wOJt+vRy4H378w5WByEXeCv2hAkTmDFjBr17945t6927N7fccgsrV66MC6HqsGbNmrj/XgGeqcYjrJEz5Ce5EuBu4VZSUkLDhg35/fffsybAve900PEikva0xzAv9MrSwJ1O+eTJkyvU/2TJtQa+55578sUXX9CjR1oTqFImawJcVbeKiOOtWgw85nir2vvHAdcBOwH32y/tVlUNC4KWEK8G3r59e+67776k8/Ez1wV5f3uFtx/f2x9npL0G1vh5J2A3+9MeK+RrE7YJ6iC2YmnrS4AfgbWtWvHfRYuYCSxKWJrs4G14Bg0aFGe+c7jqqqsqbLv44ot5//332WeffeK2e03ojz32GMcccwz/smOyG7YfcmW69Qrwzz//nGnTovvhZUuAZ4JkNfCgsKnZoGbNmmmvODdgwABGjRoVOuU107iXKs41WR1UsoM4TPZsG+f6fS6QWPolgVcDz0Sv3Qk7mozJddddd+Waa67hoosu8t2/CWssfHrA8XWAHbG82UuwTOabsDTzdcBaLDN8jEWVJba3kU4De+edd/pu92rg3bt3Z1EeXKth+6CkpIS2bdsmFXExXQGeTdIZA2/YsGGFIa50cBzj2rdvn7E8u3fvnpFhtkIhd+ue5QivBp4JAe5Mf0qmYi5btozhw4dzwAEH0KJFC9q1a8dKVwzxRKyzP5mgSZMm/PzzzxnKLZhsaA7JevQaDJkklXfO75gwoeIVpsmG5WzatCmDBw+OlDaKF3rQGPjSpUszKhz33HNPXnvtNQ455JCM5bm9UeUEuNcbMB3P1cmTJ7N8+fK4ueNRKSkpQUTo3r07AJ07d07KDJdJPv7440AN4sQTT+T4449nyJAhSedbt27duAhLRsAaqgrNmjWLRStMlmQ7nekK8GTKmawG7i5/uuZtP4466qiM57k9UeUEuPclS0cDd+aJJ8vee+/NbbfdlvJ5M02bNm0C91155ZX06tUrJQEetnZ3JrnwwgtZv359wa+lbSgcpk+fXiEEb1T+/Oc/J5XeW28SrRSYDmFj4H4C3JDfVDkB7tW4vYua5IJE64nnkkQBBjp06JAwjwMPPJCpU6dW2O5tBNyLCWSSe++9Nyv5GgxBNGnSJC7EcVS2bt2adEfWW4+yKcDDyparefaGzJG/M/IzwIEHHugbnSxTOPOZ85XVq1ezYkX41PpEjnlPP/10YPQ7b2Owyy67JFdAg6GKUVxcnPY88Fxo4H5atlmZr/Co0gI8aGGTTOXtLJCSr9SrVy/tEH+NGzeOE9SdOnWK/fbrzXuXRzUYCoVkTd/JEOb85RXg2Vxb2hHSfuUxGnjhUaUFeDaj8ZSXl7Nx48as5V+ZNG++bU0Zb/Szk08+OfbbT4A7ARScCEUGQ6Ewbty4jE9BcoRzUL6PPPJIhW25MKH7lcdo4IVHlRbg2YzGo6pZEeDZ8PRMhttuu41LLrkk9r9atWq+C9iDvwC/7777KCoq4rnnnstuQQ2GAiCVpUEdAZ6NyHNGA69aGAGeIuXl5XFBDfr375+1c0Vl6NChKR/rCOO+fftWWMAhSID7NT7Dhw9n48aNHHTQQSmXxWDYXsi1APdq4O7zuzVwZ8EUs3JfflOlBXg2TehlZWVpa+DuFYiSoX379jz66KMVtkcZ727WrBmtW7cG4s3cS5Ys4Z133uHAAw+ME9JeAR5leUUzDm4wRMNPgA8cOJAhQ4YwduzYjJ8vTIC7NfCXX36Zp59+OqUYGIbcYQR4imzatClOgKcyB/qJJ55g2LBhnHTSSUkdt9NOO/kGQKhWrVrcwiF+HH744Xz00UcMGzYsbmrYrrvuGouIFCbAE2ngBoOhIkFj4H51qGbNmowfPz5w7YV0cM7neKG72y23Bt64cWNOPfXUjJ/fkFmqtADPhgndCasK8WFb77rrLlq0aMHjjz8eOa9mzZrxwAMP0KVL0Jpk8QwfPpzmzZvz0EMPBUZSmjRpEm3btvVdNQ0s7/mmTZvywAMP0LFjR980YQLcfV4T8MFgCCeVMfCox6aC16nOXZ/NGHjhUaWfWDY08Lp167JunRWlfMyYMQwbNozhw4fTqVMnfvzxx6TyCouK5Md9990XW1nt999/r7C/WrVqNGrUiPnz51fY161bN77++mtOOOGEhOdxm8m9Tmzu37lac9dg2B7JhQB3Y7zQC48qrYFnQ8AceuihgDUOff7551NaWsodd9yRUl7OajypVFS/yhbWg542bRpff/11pIXnwzRwN+3atYtQUoPBEERY3c9GaGIzjaxqUaU18GyY0O+991522203hg4dioiw1157pZTPww8/TKtWrYDMCfCwClinTh26du0aKe8wAe7+fe6553LMMceYBQkMhhSpbBN60PCYoTAwAjxJ6tevz3XXXZdWHs2aNePcc7ctgx6lor700ktx/8OWA0yXsGlk3p771VdfnZFzGgxR2HXXXVm2bFllFyNpknFii7IvVcIEuKHwqNICvCqN0Q4cODDuv1/Al0yZwKKa0LMZMcpg8GP+/PkF9d7lqxOb44BqBHhhk1WbiYgMEJHvRGSeiIz22S8icre9f6aI7JmJ8zrj1AMGDMhEdhnHWzFTNaGvXr2amTNnxrZlSgN3C3CvE5ubQmpIDZmjsuo1WLEO3LM/Cp1cC3DHupbv6zgYopE1DVxEioH7gMOAJcDnIvKqqn7rSnYEsJv96QM8YH+nxfPPP8+ECRPi4nbnM+6KmkyPuF69enGNWTYEeJgJvSpZOAzRqMx6XcjkiwndWSL1l19+yXjehtyTTQ28NzBPVReo6mbgWeA4T5rjgCfV4hOggYjsmu6JGzZsyHnnnZdwqczKIhMauIPbbJ4pE7oTqQ2ssgU1PkaAb5dUWr0uRNKp29kQ4M6Sv44fgTGhFzbZFODNgMWu/0vsbcmmQUTOF5FSESn99ddfM17QXOAOrOLM5XY4/fTTASuW+ZNPPgkQF1Ht2GOPDcx35513pkWLFhQVFdGzZ8+MlHWnnXaib9++tG7dmkaNGnHNNdfE9g0aNChWXhOpabskY/Uaqkbdfv755wG49NJLK+y766676NWrF3vuuSf33XcfZ599NqNHW6MOJSUlocN8nTp1Yo899uCqq67KWFm7devGwQcfzAMPPADAxIkTARg/fjwAp5xySlLBqAyVi2SrByYiJwKHq+q59v+hQG9VHeFKMwkYo6of2v/fAa5U1elB+fbq1UtLS0uzUuZs44w71ahRw3df9erVERE2bdpEjRo12LBhAyJCzZo1Q3vjmzdvZuPGjRld/1xV2bJlS8yc7i67qrJ582bf6zBkBxGZrqq98qAcWanXUNh122BIlXTqdja90JcALVz/mwM/pZCmyhAm8Nz7nN+1atWKlG/16tUzvoCIiMTl6S6fiBjhvf1i6rXBkCdk04T+ObCbiLQRkerAKcCrnjSvAmfYXqt9gdWqWniTPA2G7QdTrw2GPCFrGriqbhWRi4A3gGLgMVWdJSLD7P3jgMnAkcA8YANwdrbKYzAY0sfUa4Mhf8hqIBdVnYxVmd3bxrl+K3BhNstgMBgyi6nXBkN+YILfGgwGg8FQgGTNCz1biMivwKIMZ9sI+C3DeeYL5toKE++1tVLVxpVVmFxg6nbSmGsrTDJWtwtOgGcDESnNhyk62cBcW2FSla8tl1Tl+2iurTDJ5LUZE7rBYDAYDAWIEeAGg8FgMBQgRoBbPFTZBcgi5toKk6p8bbmkKt9Hc22FScauzYyBGwwGg8FQgBgN3GAwGAyGAsQIcIPBYDAYCpAqKcBF5DER+UVEvvHZd7mIqIg0cm27SkTmich3InK4a/teIvK1ve9uycYCvUkSdG0iMsIu/ywR+Ydre0Ffm4j0FJFPROQre9nJ3q59hXRtLUTkPRGZbT+ji+3tDUXkLRGZa3/v6DqmYK4vV5i6bep2Hl5b5dVtVa1yH+BAYE/gG8/2FlgxnBcBjextXYAZQA2gDTAfKLb3fQbsAwjwOnBEPl4bcDDwNlDD/r9zFbq2N52yYcXXnlKg17YrsKf9uy7wvX0N/wBG29tHA7cV4vVV5jtibzd1u/CuzdTtNK+vSmrgqjoV+N1n1x3AlYDbc+844FlV3aSqP2AtwNBbRHYF6qnqx2rd2SeB47Nb8sQEXNsFwK2quslO84u9vSpcmwL17N/12bYsZaFd2zJV/cL+vRaYDTTDuo4n7GRPsK2sBXV9ucLUbVO38/DaKq1uV0kB7oeIHAssVdUZnl3NgMWu/0vsbc3s397t+UgH4AAR+VRE3heRve3tVeHaRgL/FJHFwL+Aq+ztBXttItIa2AP4FGii9lKb9vfOdrKCvb5cY+o2UJjXNhJTtyGN69suBLiI1AKuAa7z2+2zTUO25yPVgB2BvsAVwPP22ElVuLYLgEtUtQVwCfCovb0gr01E6gATgJGquiYsqc+2vL++XGPqdhyFdm2mbm8jpevbLgQ40A5rrGGGiCwEmgNfiMguWL2cFq60zbFMOUvs397t+cgS4CW1+AwoxwqYXxWu7UzgJfv3C4Dj6FJw1yYiJVgV/D+q6lzTz7bpDPvbMZEW3PVVEqZuWxTitZm6bZHy9W0XAlxVv1bVnVW1taq2xrpRe6rqcuBV4BQRqSEibYDdgM9sk8daEelr93jPACZW1jUk4BXgEAAR6QBUx1rtpipc209AP/v3IcBc+3dBXZtdlkeB2ao61rXrVayGDPt7omt7wVxfZWHqdkFfm6nb6V5fJr3x8uUDPAMsA7ZgVehzPPsXYnuq2v+vwfIE/A6X1x/QC/jG3ncvduS6fLs2rEo93i7rF8AhVeja9gemY3ltfgrsVaDXtj+WOWwm8JX9ORLYCXgHq/F6B2hYiNdXme+IZ7+p24VzbaZup3l9JpSqwWAwGAwFyHZhQjcYDAaDoaphBLjBYDAYDAWIEeAGg8FgMBQgRoAbDAaDwVCAGAFuMBgMBkMBYgT4do5YfCgiR7i2nSQi/6vMchkMhvQwdbvqY6aRGRCRrliRkPYAirHmMQ5Q1fkp5FWsqmWZLaHBYEgFU7erNkaAGwAQa53h9UBt+7sV0A0rFvP1qjrRDtT/lJ0G4CJVnSYiBwF/wwrU0FNVu+S29AaDIQhTt6suRoAbABCR2liRnjYDrwGzVHW8iDTAWqN2D6xoQ+Wq+oeI7AY8o6q97Eo+Ceiq1vJ4BoMhTzB1u+pSrbILYMgPVHW9iDwHrANOAo4Rkcvt3TWBllixi+8VkZ5AGdZShw6fmQpuMOQfpm5XXYwAN7gptz8CnKCq37l3isj1wM9ADywHyD9cu9fnqIwGgyF5TN2ughgvdIMfbwAj7BVxEJE97O31gWWqWg4MxXKKMRgMhYOp21UII8ANftwIlAAzReQb+z/A/cCZIvIJlonN9MwNhsLC1O0qhHFiMxgMBoOhADEauMFgMBgMBYgR4AaDwWAwFCBGgBsMBoPBUIAYAW4wGAwGQwFiBLjBYDAYDAWIEeAGg8FgMBQgRoAbDAaDwVCA/D/M0euVlNzZMQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "Flags for CAM011\n", - "[B] Segment High -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10\n", - " 1900-1949 6 -0.03 -0.31 0.17 -0.17 0.03 -0.18 -0.15 0.09 -0.16 0.20 0.15 -0.08 -0.03 0.08 0.13 -0.06 0.30 0.20 -0.17 0.09 -0.04\n", - "\n", - "Flags for CAM051\n", - "[B] Segment High -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10\n", - " 1375-1424 9 -0.02 -0.21 0.29 0.10 -0.09 0.06 0.30 0.09 -0.01 -0.03 0.18 -0.03 -0.16 0.24 -0.05 -0.06 -0.03 0.03 -0.11 0.38 -0.11\n", - "\n", - "Flags for CAM131\n", - "[A] Segment High -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10\n", - " 1800-1849 0 -0.13 -0.13 -0.05 0.05 0.09 -0.03 -0.14 -0.16 -0.00 -0.25 0.13 -0.11 0.10 -0.15 0.01 -0.34 0.09 -0.01 0.09 -0.09 0.05\n", - "\n", - "Flags for CAM171\n", - "[B] Segment High -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10\n", - " 1275-1324 -4 -0.04 0.00 -0.11 0.01 -0.05 -0.05 0.46 0.27 -0.13 0.02 0.28 0.23 0.01 0.20 0.12 -0.04 0.03 -0.14 0.01 0.01 -0.13\n", - "\n", - "Flags for CAM181\n", - "[B] Segment High -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10\n", - " 1775-1824 8 -0.13 0.05 0.07 -0.06 -0.12 0.19 0.14 -0.36 -0.30 0.06 0.21 -0.02 -0.15 0.16 0.14 -0.05 -0.02 -0.01 0.31 0.05 -0.14\n", - "\n", - "Flags for CAM201\n", - "[A] Segment High -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10\n", - " 1350-1399 -7 -0.04 0.03 -0.05 0.25 -0.08 -0.09 -0.13 0.01 -0.08 0.22 0.19 0.17 -0.13 0.13 0.09 -0.14 -0.26 0.03 -0.15 -0.14 0.12\n", - "[B] Segment High -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10\n", - " 1125-1174 1 -0.02 -0.03 -0.12 -0.17 -0.08 0.08 0.18 0.00 0.19 -0.27 0.28 0.39 0.12 -0.24 0.01 -0.06 -0.15 -0.00 -0.10 -0.14 -0.18\n", - "\n", - "Flags for CAM211\n", - "[B] Segment High -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10\n", - " 1000-1049 -1 0.04 0.07 -0.16 -0.06 0.09 -0.07 -0.24 -0.12 -0.04 0.45 0.30 -0.33 -0.14 0.06 0.18 -0.06 -0.27 -0.25 0.09 0.12 0.16\n", - " 1025-1074 -1 0.02 -0.19 -0.08 -0.08 -0.20 -0.09 -0.18 -0.18 0.19 0.70 0.36 -0.15 -0.01 0.08 -0.13 -0.34 -0.27 -0.14 -0.04 0.11 0.15\n", - "\n", - "\n" - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABfn0lEQVR4nO2dd5gVRfa/3zMwgKBgBBQQkBUVA6CIiqgoRgyoqwi6JmT5iWkNuGbF9DWzq2vAgIC6imsE86IrKCogKEYMSJCMKBllUv3+qO5L356O9/YNM1Pv88wz93aoru7bVZ86VadOiVIKg8FgMBgMNYuSQmfAYDAYDAZDfIyAGwwGg8FQAzECbjAYDAZDDcQIuMFgMBgMNRAj4AaDwWAw1ECMgBsMBoPBUAMxAm7IGSLSQkQ+EJG1InKfiFwrIk8UOl9hiMhoEbnN+nyQiHxf6DwZah8iokTkT4XOhxciMkxEnkn6XBHpJSILs8tdsojIjiKyTkTq+ezP+Fl4pJXob14nBVxETheR6daPtkRE3hKRnq5jzrEedj/X9l7W9pdd2ztb2yc6trUTkfdFZIOIfCcihzv2HSoiX4nIKhH5VUReEZFWjv33isiPlvh9JyJnJf4gcs9gYAXQVCl1hVLq/5RSgyD1bJSI1Pc7OcmCkylKqQ+VUrsUMg91EVNGq91PUYlebUIp9bNSanOlVGWh8xKXOifgInI58E/g/4AWwI7Aw0Bf16FnA79Z/938AvQQkW1cx//gOu454HNgG+A64EUR2c7a9y1wlFJqS2AH4EfgEce564HjgWZW2veLSI+o95kJQWKaIW2Bb5WJFmSIgSmj8clB2a1x+FnQtRqlVJ35Qxe0dcCpIce1BaqAPwMVQAvHvl7AQmAEcKG1rZ617UZgorWtI7AR2MJx7ofA+R7XawjcgRY7vzyNB64I2N8XmAmsAX4Cjra2zwMOdxw3DHjG+twOUMB5wM/AB8DbwEWutL8ATrY+7wpMQFec3wP9fPIzGigHyqxnfrjr2j9b115n/R3gOv9o69xya/8X1vYdrGfxGzAb+GvAM+mDroTXAouAoa7f8Fp0D8E84AxX3m9zHuvYNw8YCnwJrAaeBxo59h9n/Q6rgI+BvQr93tekP2p3Gb0SWAIsBgZa7/+fHOnfa5WLZVbeNwOaAL9b92qXlR2ssvQi8Ay6zA+ynt1I6xqLgNuAelb65wCTrWusBOYCxzjy1h6YZJWVCcCDWGXV2r+/9T6vQtcHvaKe63oG9m9TrewB+1r3Xt9x/J+BmT5pjUY3qN5EN6YOt57NS+gG3FzgEsfx3YHp1vNaBgy3trezfov6YfeDqz6wts3DqmOta3xiPacl1rkNHMemfvNEykuhC2w+/9CiUOF8QXyOuwGYZn3+Crjc4wXsAUy1tvUB3rEKkV05nATMcqX7IPAvx/cdrR+6Ci1U5/jkZzPrZTjaZ393tJgcge5VaQXs6n65rO/DqC7gT6Eris2As4CPHMd3svLY0DpmAXAuUB/YG10Idw8oYLeFXNv3t3Ae79g2CW2NNQK6oAtqb5/zlwAHWZ+3AvZ2/IYVwHDrvg5BVwC7uPONt4BPQ1cUWwOzsCp863ksB/ZDC8bZ1vENC/3u15Q/am8ZPRotGntY5ehZ0gX8n+gGwNbAFsBrwB1e76CjbJQDJ6LL/GbAq8CjVvrNrff0/1nHn2Md/1fr3RyCbkiItf8TR3k4GC1edlltBfxqPcMSdD3zK7Bd2Lkez6EXwWXvW9IbFq/g0yhCl9PVwIFWvhoDM9CNtAbATsAcdC+Knc8zrc+bA/tbn9uRLuBBz8Lrt5jHJgHfB93YqW+lOwu41HFsogJe17rQtwFWKKUqQo47C13AsP6f7T5AKfUxsLWI7GId/5TrkM3RL5eT1ejCaafxs9Ldc9sC1wPf+eRnBLrV+47P/vOAJ5VSE5RSVUqpRUopv7S8GKaUWq+U+h1dYLqISFtr3xnAy0qpjWjrcp5SapRSqkIp9Rm6tXtKjGtljIi0AXoCVyml/lBKzQSeAM70OaUc6CQiTZVSK638OrlBKbVRKTUJeAPoVz0JTx5QSi1WSv2Grmi7WNv/CjyqlJqqlKpUSo1BW3j7R71HQ60to/2AUUqpr5VS69ECDICICPrduUwp9ZtSai16+KC/T1o2nyilXlVKVQFNgWPQYrFeKbUc+IcrjflKqceVHusdA2wPtBCRHdHWr10ePkC/1zZ/Ad5USr1p1S8T0JZsnwjn+uFX9sZY10NEtgaOYtPv7MU4pdRH1jPYE92ouEUpVaaUmgM87ngG5cCfRGRbpdQ6pdQUd2JZ3A8ASqkZSqkpVv04D92gOiTq+XGpawL+K7BtiOPUgegulLHWpmeBPUWki8fhTwMXAYeihc/JOnShctIU3ZpLwxKCMcA4d95E5B50q72fsppwHrRBd5tnygJHXtaiC5T90vcH/m19bgvsZzn1rBKRVWiBb5nFteOwA2BXcDbz0RaCF39GWw3zRWSSiBzg2LfSqkid6ewQMR9LHZ83oIUA9PO5wvV82sRI11B7y+gOOMoZ+n2z2Q7LenS8N29b24NwptcWKAWWONJ4FG2J26TeW6XUBuvj5lbevMqDM+1TXe91T3QDIOxcL4LK3jPA8SKyOVrUP1RKLQlIy/0MdnDl81q0HwVoQ6cj8J2IfCoix3mkl8n9pBCRjiLyuogsFZE16IbYtlHPj0tdE/BPgD/Q3U5+nA0IMFNElgJTre1eHqZPAxegW6cbXPu+AXYSkS0c2zpb272ojy5sqQpFRG5Gt6qPVEqtCcjzAqCDz7716MrBxkts3ZXOc8AAS/A2A953XGeSUmpLx9/mSqkhAXnzw6+iCzpmMdqicj7THdHjfdVPVupTpVRf9HN9FfiPY/dWItLElc7iCHkKYgFwu+v5NFZKPZdlunWJ2lpGl6AbczY7Oj6vQI9z7+54b5oppeyGoV9ZcW5fgO7t2daRRlOl1O4BeXLmzas8ONN+2vVeN1FK3RnhXC98y55SahH6HTgJ3bP2dEha7mcw15XPLZRSfay0f1RKDUD/hnehHRabuNILu5+0+tRynHM2tB5B99LsrJRqim5ASMg9ZEydEnCl1Gr0+MhDInKiiDQWkVIROUZE7haRRuhW32B0t6j9dzFwhrvlrZSai+4euc7jWj+gnZluEpFGInISsBe6yxkROVlEdhGREsvrdTjwudXSR0SuAU4HjlBK/RpyayOBc0Wkt5VeKxHZ1do3E+hv3Wc3onV3v4luzd4CPG91TwG8DnQUkTOt9EpFZF8R2S1Cmm5+QY8r7hRwzDKgnYiUACilFqAdae6wnule6Fb1v90nikgDETlDRJoppcrRjivuaSI3W8cdhB4eeCGD+3DyOHC+iOwnmiYicqxLIAwB1OIy+h/gHBHpJCKNgZsc+ahCvzv/EJHmVtqtROQo65BlwDYi0izguS0B/gvcJyJNrTx3EJHQ7lul1Hx0l7hdHnqivettbKv4KBGpZz2rXiLSOsK5fgSVvaeAv6O7xN29JkFMA9aIyFUispmV1z1EZF8AEfmLiGxnPe9V1jlpdUKE+/kBaGSV61L0sEpDx/4t0HXNOqsOzsS4iUydEnAApdRw4HL0g/8F3Wq7CG2hnYhuCT+llFpq/6EFsh7aEcWd3mSllJ/l1h/ohvb6vBM4RSn1i7WvFbqbbC3aCacK3eq0+T90y+9H0XNh14nItT73NA3tWPYP9BjeJLQAg3b26WDl4WaCx5Ps9DYCL6O9Op91bF8LHGnd12J0l9xdpL/AkbCsoduBj6zuLq9xYrtQ/yoi9vj1ALRzyGJ04b7JGpPz4kxgntWVdT7W2JrFUvQzWYxuAJyv4vkNVEMpNR09lvmglfZstPOQIQa1tIy+hXZU+x/6vfif65CrrO1TrPf1XWAX69zv0L1ic6yy4jckcxbaeetb635eRHdzR+F0tPPlb+jGRcpfwGo490Vbk/bvcSWb9MP3XB/Cyt4r6PrrFVdXdiBKj+0fj27QzUX3bDyB9s4H/W58IyLrgPuB/kqpPzySCnoWq9E9Ok+ge/7Wox0mbYZa569FN8qej5r/TLA9EA2GOoOI9EJ7lbYucFYMBoMHIvIT2oP+3ULnpZipcxa4wWAwGIoXEfkzemzb3UthcFHno/cYDAaDoTgQHea2E3q+dlXI4XUe04VuMBhiIXo+/lPoGQ1VwGNKqftdx/QCxqHHIkHHErglj9k0GGo9xgI3GAxxqUBHx/rM8rCfISITlFLfuo77UCnlNdfWYDAkQI0T8G233Va1a9eu0NkwGPLGjBkzViilwoJ65A1rytIS6/NaEZmF9th2C3gsTNk21DWyLds1TsDbtWvH9OnTC50NgyFviEjkSFD5RkTaAV3ZFEzFyQEi8gV6utBQpVS1ACkiMhg9p5sdd9zRlG1DnSLbsm280A0GQ0aIDnf5Ejr+tjsK2WdAW6VUZ+Bf6Dnc1VBKPaaU6qaU6rbddkXTyWAw1AiMgBsMhthYUaheAv6tlHrZvV8ptUYptc76/CZQKiI5iwltMNRFjIAbDIZYiIigI5/NsqKmeR3T0joOEemOrmvCwo0aDIYY1LgxcIPBUHAORIep/UpEZlrbrsVa9EEpNQIdc3+IiFSgQ5/2V2bOqsGQKEbADYaIKKUYMGAAzZs354EHHkhtHz16NCNGjOCNN95gm222KWAO84NSajIhKywppR5Ex4Q31HLGjx9PaWkpxxxzTKGzUueocYFcunXrpoynqqEQLF68mFat9NLjznJj9RRz5ZVXcvfddyd+XRGZoZTqlnjCRYYp2zUT+/2vaVpSDGRbts0YuMEQkY0bNwbu/+MPr4WNDAaDITcYATcYIlJWVlboLBgMBkMKI+AGQ0SMgBsMhmLCCLjBEJHy8vLA/WYM0GAw5JOcCriIHC0i34vIbBG52mN/MxF5TUS+EJFvROTcXObHYMgGY4EbDIZiImcCLiL1gIeAY9Druw4QkU6uwy4EvrXCLfYC7hORBrnKk8GQDWECbixwQ01g9erV5l2tJeTSAu8OzFZKzVFKlQFjgb6uYxSwhRWxaXPgN/RShQZD0WEscENN57vvvmPLLbdk5MiRhc6KIQFyKeCtgAWO7wutbU4eBHZDr1b0FfA3pVSVOyERGSwi00Vk+i+//JKr/BoMgTgF3MuCsbdVVlby4osvsnTp0rzlzWCIwqxZswB4/fXXE0974sSJVFVVq74NOSSXAu4Vqcld6x0FzAR2ALoAD4pI02onmRWLDEWAcx54UEX1xBNPcOqpp7L33nvnI1sGQ2TsoCu54NBDD2X4cM/Q+IYckUsBXwi0cXxvjba0nZwLvKw0s4G5wK45zJPBkDFOAQ+ywP/3v/8BsGTJkvxkzGCISa7GwH/44YecpGvwJpcC/imws4i0txzT+gPjXcf8DPQGEJEWwC7AnBzmyWDIGGcXepAFXlFh3DgMxUkuLXBD/smZgCulKoCLgHeAWcB/lFLfiMj5InK+dditQA8R+Qp4D7hKKbUiV3kyGLLBKdpBFrgRcEOxk4kFPmnSJLp06RIaUtiQP3K6GplS6k3gTde2EY7Pi4Ejc5kHgyEpnAJuLHBDTSSbhUcuuOACvv32W2bPns3uu+/ueYyZnpZfTCQ2gyEilZWVqc9eAq6UorKykrVr1+YzW4Y88OWXX7J69epCZyNrsulCN+JcfBgBNxgiEtaFDtCtWzc+/PDDfGXJkCc6d+7M4YcfXuhs+FJeXs7KlSsjH2/EuHZgBNxgiEhYF7pSipkzZ+YxR4Z8UsxrlZ911llsvfXWhc6GaRjkGSPgBkNEnF3opqIy+PHjjz+yYcOGxNOdN2+ebzTAsWPHAua9rGsYATcYIhLFAjfUPuL8rlVVVXTs2JFTTz010TysW7eO9u3bM2jQoNDrB5GNE5s7DUPhMQJuMEQkqhd6bUdE2ojI+yIyy1pF8G8ex4iIPGCtRPiliNTYsHRxfmt7itWECRMSzcPvv/8OwFtvvRV4XNgMiFyLr2nE5hcj4AZDREwXeooK4Aql1G7A/sCFHisNHgPsbP0NBh7JbxaTI85vbQt4gwbJLqoYNQ/OdzSJ9MKuZazxwmIE3GCIiJcF/uabb/odHsqkSZM48sgjmTdvXrZZyytKqSVKqc+sz2vRgZrcCxX1BZ6ywiRPAbYUke3znNVEyMQCDxLwZcuWsfvuuzN37tzYeQkTzCABf+ONNzjuuONiX9PGLfp//PFHxmkZksEIuMEQEa9pZMcee2y1bUEopfj++++prKykV69eTJgwgcGDByef2TwhIu2ArsBU164oqxHWiJUGkxbwZ599lm+//ZYHHnggcrph71ZJia7KgwTcOX6ejQVun2tf02ufk19++YXvv/8+9X3FihVMmzYt4+sbNmEE3GCISFgglyg8+uij7Lrrrlx44YWpbcUqXGGIyObAS8ClSqk17t0ep1Sr3WvCSoOZCHhpaWmiebCF0c8Ct7cHjYEntbytXQ6idp937NiRXXfdtEbVgQceyH777ZdIXuo6OQ2lajDUJpwV+SuvvMKyZcvS9kexau69915AC3mc84oNESlFi/e/lVIvexwSZTXCGkGuxsAz+d39RLOkpITKysq8jIHb5SBqGqtWrUr7blYsSw4j4AZDRJwC7rSgo7Bx40YaNGhAeXl50tnKO6JVZCQwSynltwD0eOAiERkL7AesVkrVyPVVk+5CzwW2sOdKwKdMmcJ3330HBAt4TWyM1mRMF7rBEJGwytGv8po3bx6NGjXiggsuqBUCDhwInAkcJiIzrb8+rpUG30QvDTwbeBy4IJsL/vzzzzz77LOp6VT5JFdd6El6cEcZA8+GAw44IPU5rgVuyB1GwA2GiGQz7g0wYsQIzzHKmlYRKqUmK6VEKbWXUqqL9femUmqEvdqg5X1+oVKqg1JqT6VUVnFIJ0+ezBlnnMH8+fOTuYkYFEMXelQntqgr4WXzztmNhGzf22J673///Xf++te/smJFzVrN2gi4wRCRMAH3q5CcY4BeFngxVWTFyg477ADA4sX5H0ZP2gLPxvIOc2LLlQXuJKku9HzkNSqjR4/miSee4Oabby50VmJhBNxgiEimFY5zGcraYIEXgu2311PIlyzJ/zB6nPXdczEG/sUXX6QaMH7E7ULPpxNbWDrFgD00k/TsgVxjBNxgiEimFrhTwI0FnhktW7YEkpsK5WbBggWev8OUKVNo0aJF5HTs4CZJCsEjj2wKYhfkhQ41S8CLyQK3f7eGDRsWOCfxMAJuMEQkTMD99odZ4IZwGjduDOQm+tcPP/zAjjvuyF133VVt33vvvRcrrVxY4PXq1Ut9zmYeeFIkJbzFZIHb71WjRo0KnJN41CoBnzlzJj169ODss88udFYMtZCwistvv12p+x1jLPBw6tevj4ikPcukWLBAB4x75513qu2L+9vkwonNK+KZ3zF+72CSsx+SGgM3Ap49tUrARYRPPvmEGTNmFDorhlpImAf0woULPbf7reFsYwQ8HBGhQYMGoc8yE+zu7ijDG59//nlgWn4CvnDhQs4///xYQjp79mxEhLfffjv02DAntiSfW210YrN/NyPgBaSQnqqG2s1nn33GK6+8EnjMpEmTPLeHVdpGwKPRsGHDjCzwzz77rFrUPCe2gEdxMFy3bl3gtfwE/Pzzz+fRRx+NtczolClTAC3kYYRNI3PfRzbv3H//+9+s04DitMDNGHgB2Wabbahfvz4rV640K+UYsmL69Olce+21qfdo3LhxGadlLPBkyNQC32effWjZsqWnEC5atCjVcxJFwJs0aRJ4rbBpZHFEy+u98BoD/+mnn1Lx9P2s2iTfsXvuuYcNGzbUyi50I+AORORoEfleRGaLyNU+x/SyIjl9IyLeJkxESkpKsBdEqKkLRBiKg3333Zc77riD4cOHo5Ri5513zjgtI+DJkKkFbuP1G7Zu3Zp+/foB0brQX3jhhcBr2PmrXz89SrVzjDrqPPCo78Xhhx+e+hxVwKOmfe6553rmt6KiolZ5odu/vdNhEPQ7d9JJJxUiS5HImYCLSD3gIeAYoBMwQEQ6uY7ZEngYOEEptTtwarbXtccwcuHsYqh7XHfddZx00klZVVa1JHxqwYlrgf/0009pi8aEEUXA77zzzsA0/OodW8BzYYE7ZzkkLeCjR4+Olb8g3PdeTBa4nRd3nsrKynj11VcLkKNo5NIC7w7MVkrNUUqVAWOBvq5jTgdeVkr9DKCUWp7tRe0uECPghqQYN25cVk5AQefWrLARhaVBgwaxynWPHj04//zzww+08BLwuCJj5899nm3Z5ULAnV3/UcfAs6Wqqip2F3oxC7id72LKUxRyKeCtgAWO7wutbU46AluJyEQRmSEiZ2V7USPghlyQCwHfDvgK+LNruUWDNw0bNoz1O/z666+x0k8iyI5d77jPy+ViI07RTtoC96OysjJrC7yYutCNgFfHa6DH/YvXB/YBjgWOAm4QkY7VEhIZLCLTRWR62Ni2LeC5mG5iqLtk0w3udW5D4FVgF+C01avBdLOHEtcC9yJINMrLyykvL09zgM1UwDO1wJVSiAi33HJL5Gs77ylbJ7Zffvklktd7JuJrLPDkyaWALwTaOL63BtzzuxYCbyul1iulVgAfAJ3dCSmlHlNKdVNKdbOd1PwopAW+fPlyZs6cmffrGnJP0hb4KKAHMB/4fy1bQg2LwVwI4lrgXt3N69ev9z2+vLycnj17stlmm6W2xRVwO39jxoxBRNiwYUNaXpwCEdQFfdNNN+VUwP3SbteuXSSHzcrKSg455JDQ6zgpZgG3KcY8BZFLAf8U2FlE2otIA6A/MN51zDjgIBGpLyKNgf2AWdlctJAC3qJFC7p27coPP/yQ92sbcks2Au6u1IYBA4A1wHHA8giRtgzxLXCvCGZhAj5t2rS0bdl2E9vzz6M6sdkCLCKRx8Cdou2X36gCbjc4wqisrOT777+PdKyN6UJPnpzVHEqpCuAi4B20KP9HKfWNiJwvIudbx8wC3ga+BKYBTyilvs7munYAhUKOgYdFazLUPK677rqMzvvkk0/Svv8FuAmoBE4DvgZ69uyZZe7qBklY4EGBWLwcwOJW6H6iFLUL3d7vJ+BhRBXwMFavXp3m3e7GdKEXB/XDD8kcpdSbwJuubSNc3+8B7knqmsXgxFbTXgJD7ujRo0fq80HASOvzxeiWK8DVV3uGSDC4aNCgAdOmTUNEKCsrC13xK24XulfjIG5Z9jveaYEHzQMP62IPI1sL3GbLLbcM3J/JWLsR8OSpdX13xeDEVtNeAkPu6QC8AjQA/gk84thnArlEwxklK0r5TkLA41qafsc7vdCD/GQy6UJ34lf3ZPuOuQPTZGKBu88xXejZU2sF3FjghmJhK+ANYBvgdeAK137zvkTDGV88SuUfV8C9SLoLfcqUKYwaNSr0epkKuJ9Qxx2vduOO7d6xY7XJQqEYCzx5jIA7SMoSqmkvgSGdJNdULgVeQk8Xm4l2XnO/HS1btkzsevlARJ4UkeUi4umvYoVHXm2FSJ4pIjcmcV2nBR7lN8qVgMfpJraxLfAwIU16DHyLLbbglFNO8fQYj0PYcIXf9Z24n015eTn16tVjxIgRPmfkDyPgRUKmTmzXXHMNLVu2ZMWKFVnnoaa9BIZ0kuy9GQEcip4/eTzgdqG68sorCZsaWYSMBo4OOeZDpVQX6++WJC7qtALzJeBeghQUEyCsC93p5b1mzRqWL08PPpn0GPi6det46aWXQo8LI4llNt314rp166iqquKKK9x9UrlFRDj00EPTtkUV8KVLl3o+z0JR6wTcbqU/9dRTkZYVraioYOzYsdx5550sX76cww47zNdTdcqUKXz00UehaRoBr9kkJeBXAQOB9Wjx9lot3OnkVlNQSn0A/Jbv6xaLBR40/h5mgTsFfMyYMbRo0SLtOK8xcOd9ZDoG7iaugJeWltKuXbtY57jxm0YWdXGXJJk4cWLa96gCfvjhh3PKKafw+++/5yprsai1Av7ZZ5+x9957hx7/0EMPMWDAgNT3r776ihtv9O7xO+CAA+jZs2do5WEEvGaTxFK0pwB3orvLzwA+8zmubdu2WV+rSDlARL4QkbdEZHe/g+JEWUzCAg9bz9tNtha4fb4t4GENCK8udPcKWXHzmwTl5eXstNNOWV2/qqqKZ555JvW9d+/eQGEE3I1TwIcNG8bMmTNZs2ZNtePsIZBicTyttQIOm4IoBDFpUvUVTN96663Ac8IstCgCftddd3HcccclOt5qSIZsLfDuwFPW57+joxW5eeGFFxg1ahRdu3bN6lpFymdAW6VUZ+Bf6KixnmQSZREyF/C45S1bC9z+botwWAPCqws9jsBFFZa4AlRRUZH1WtlVVVWceeaZ1bYXSsAnT56c+mw/j40bN3LzzTdzwAEH0KxZs9T+srIyRCT1/hSLB32tFvAoeL087m6t8vJyZsyYkfruVcH/9NNPqc9RBPzqq6/mjTfe4IMPPoiTXUMeCBLwW24JHs5tiw43uBnwGHCfz3EHHngg55xzTmYZLHKUUmuUUuusz28CpSKybbbpxrHAv/jiC89AJHF7x3788cdq24Iqb/c++3q2Bb527drA63l1K8cR21z1/lVUVFTzRI+LX94KJeAHHXRQaqlQ+xnbDSx3L5y7y7xYelkjCbiIbCci14rIY5YH6pMi8mSuM5cJSQi4+8cbPHgw3bp1S313V/CrVq3iT3/6U+p7nNaZV7hHQ2EJEvCTTz7Zd19T9DSxFsAE4MKAa9Tm311EWopVsESkO7qeibc0mAdxLPAuXbp4br/22muZM2dOpOt9/PHH/O9//6u2PejaYQIe1P1eUVGRs2lkmR7nzFuUujUoXb96MZ8C7s7DvHnzeOmll1K9rn49JO77qmkW+DigGfAuekqr/Vd0xG0ler087njA7kXt3RX8/Pnz077HaZ0l4d1ZE5gxYwYDBw4kbJyzkPzwww+cc845zJrlH47f2a3mpB7wPLAH8C1wKlABvh7mNVnAReQ54BNgFxFZKCLnOUMko10AvhaRL4AHgP4qgUHDuGPgfvTv3z/0mIEDBzJ9+nTPfX6V91tvvcXXX6fPrHN3ofvx5ZdfUlpayrhxmwZcik3A3cFc4lIMFriX89mtt96a+uwn4H4Ns0IT9RdprJS6Kqc5SYgkLPAwRxO3gMdtnTmPrysCbvdglJWVpTmyFBNHHHEEP//8M2PGjPE9pnHjxp7bH0DPq1oOXLHLLqy2nF06dOjg2WiJ45hUbCilBoTsfxB4MOnrxh0D9yPK0rCjRo1i2LBhnvv8rt2nT59q2+yKPkwwp06dCpDq0k06Fnq2bNy4MetGZzGInlvARYSdd96ZL774AvAX8GJdiCXqL/K6iFR/O4uQJAQ8bEUet4C7f9zLL7888HynE0xNtsQy4eeffy50FnyJkjcvK+QS4ALgD+BEYOlmm6XmivpVqMX8u1urBxYdzsZTNgIeVeRWrlzpud2uvDdu3MgLL7yAUso3TbtuiCpeuQql6iYToY/yzgal6ze7I59lwSsPTiOqplnggU9ORNaKyBrgb2gR/11E1ji2Fx35EHD3SxD3x3Ra+MXyIuSLYhauKLgF/DjgH9bnc9H9yiUlJbRp0wbQBd/rHSuW5yAiE0WkneN7d/RSwEVHvgV8woQJntvta19//fX069ePd99917fXrqqqivfeey/yuLtzDDyq9e4k6rHuZVOj4PfOhi18YuM346LQXejO3rCoAl4sFnhgF7pSaot8ZSQpCmGBx104xZl+sbwI+aIY5nxmg7OwdwGeQ7eCbwDGWttLSkpSx/kJTbEIOHAH8LaIPAC0Ao5Bt0WKjnwL+Lx58zy329desmQJoKer+lnrVVVVHH744ZHz5mzQ23VDLgQ8E/zKbrZlupACPmvWrLT6vFZZ4DYi8l6UbcVAXCc2r4o0rHJ49913ad26Ne+88w7g7bXsnHbmxingfi9CVVUVBx10EH/5y18C81LTmDhxYiQnomJiq622Sn22hXkH4DVgc+Bp4DbH8Q0bNkxZ6jNnzvSsVItFwJVS7wDnA/ejA8f1UUr5xZ0pKEkJeNTK1+84uzJ3rrsQJOBxcHahZyISuRQWv3fWub1YApz44e49ffTRRxk7dmzq+6JFizzPq5Fj4CLSSES2AbYVka1EZGvrrx26Dis6Nttss1jHZ9L6u+WWW1i0aBFHH63DQXsJ+Omnn+57fhQBnzt3LpMnT+bf//537PwVO88//3zoMeXl5bz66qu+FWM+OeWUU1Kf69WrRxO0eLcGPgAGuY5XSoU6qRWLE5uI3IAOtnIwMAyYKCLHFjRTPjjHKvNhgfuVTfvaznUX/EJrvvzyy7Hy4xRwL5FIygsdkhP7bBuj+bDAV65cyZIlS0JDoHrFDoDi7UIPe/L/D5gO7IqOrjTD+hsHPJTbrGWGn5ewH34vT5xoXF6OEUHd6lEEvK5z3333cdJJJ8XqfswVzl4dqari38DewI/ASYD7ly4rKwudclMsFjiwLdBdKfWJUupR4Cjg0sJmyRvnMyukgLst8LKyMt8pZ3fccUfodZxi4CXmcYgj4HHT9/PerwkCvsMOO7DDDjtkHMO8RnahK6XuV0q1B4Yqpdo7/jpbU0WKjjgCPnHiRN8pTWERk5x4iX3QVJUoAl7oseJLL70076sEOXnjDR1m4LPP8tObG7RGc1oFddVV9EWv5HEc3it62MskBlEsAq6U+huAiOxifZ+vlDqisLnyxkvAKyoqOP744/n0009RSvHxxx+Hili2c6XdFvhll13GRRddFCnNoPQg3QK3tzvzkZQXuvu6UYgi4C+++GLavo8//jg03XzUdbaRlek6B+6elJpigdssEpGTXX+9RaR5TnOXAU2aNIl8rHtJOSdxWmpeAl4oC3zVqlUsWLAgqzQqKiq4//77GT58eEbn//jjj7ELilKKb7/9Ns0LN58MHDjQc3urVq1SeRkMcN99VIhwMvCDT1plZWU1RsBF5Hj0UuVvW9+7iMj4gmbKB+e66bb4/Pjjj7z++uucddZZPPXUUxx44IH85z//CUwnqoD7VdJuCzxbnNdxvv92HRJHwONY4HEF3K9Oc+fJmYfbb789NN1Ce6FH4Zprrkn7XiMscAfnAU+gF1Y6A3gcuBz4SESqR6cvIHG70P2IUxDiWuC5nEa21VZbseOOO/Lrr5lHrnTee9z8ffLJJ3Ts2JH9998/1nl33XUXu+++O5dddhlQ+B4IgJ49ezJnzhxKSko4gk1jRiWPP06fu+7yPa+8vDy0C70Y7s9iGHr9lVUASqmZQPvCZcefNm3aMH68blt4la/vvvsOSF+XwItsHa3cFni2OIXUS8DjoJTivvvu49tvvw09NkpAmyjHuxujzvpw1apVoekWg4B37do1lvFnN7rmz5/P0KFDqaqqorKyMqPfLBuiCngVsJtS6s9KqT8DnYCNwH7oZY+LhqQE/O677458rFdLPZMu9KqqKq688srQ1dCiMHv27GrbVq1axYUXXhjaLe01lSUqdihIO7KRH+5K9J577gHggQceAIpD4Jo0aUKDBg1o+euvvIA15/Kaayg57zzfkKoQrQu9iKhQSrk9d4rWlbhjx46A97KdUVfvyvbdqqioYO3atSxfvjyrdGyc9+L8nIkYlJeXM3To0EgN6FxZ4E5HsCiNnHyWdb+ewdatW7P55ptHTseuI0844QTuu+8+fvjhB/r165dYr0xUogp4O6WUc23O5UBHpdRvQLxmXI6J64Xux0MPPcSKFSsiHRt3yUE/AX/11Ve59957PUMyxsWrUFx33XU8/PDD7LPPPoHnuhsV2eKVhlvAi0GwPVm2jL+OG0cz4AWA2/SEsaD8lpWVFf10Ggdfi8jpQD0R2VlE/gWED1wWCLth5F61K46Al5aWZpWHyspK9ttvPx58MBk3oCQtcNvCXLt2Lb/95uWh4X3dKJSVlXmuzua2wJ0Cnu2z9uKtt97irLPO8t3vLnvOmTx+FvhWW20Va1jLfv/sAD2NGzdOGyd/7bXXUr1FuSRqjj8UkddF5GwRORvthf6BiDTB6norFpK0fKJ6onsJVCYWeNQGQ6bMnTs30nHZWOBeHHzwwYHXgOqVbjEIeoPKSjjxRLZes4apwFkAViEPyl95eXnROLlE4GJgd3SP2nPAGorUCx2qC7iTqAJer149pkyZkvE7VlFREbjgTVy8xsB/++03z/rn+++/DyzHTgvziCOCfREzEXCvtRvcwrdmzaYgnVEEPK4/SJ8+fXj66adTdeykSZP46KOPAN0DWFJSkhpOAdJiaVx55ZWeaW611VapwDxRsH8nO/CLuxflhBNOoG/fvpHTy5SoT+5CYDQ6+FRX4CngQqXUeqWUryeYiBwtIt+LyGwRuTrguH1FpFJETvE7Jg5DhgwB0l+e999/PxWfOipRX/C4VqqzZf3ggw+mXja/xkcm1pxX5RS1cZONgHvl1S5cfteA/Av4mDFj+PRT/4ihAgz96iuYMoWVW2xBX3Ssc5ug36S8vJw2bdrQr1+/xPKbK5RSG5RS1yml9lVKdbM+Z+aqmwfsyr6qqopBgwalDTfZv0mYIJSUlKQF74hL0o0zLy90gA8++MDz+NNOOw3wfgedFmbYUJnzuitXrgwsD6DFyqsOcT9vZzSzKAKeaVm3exh69epFz549gU0xJoICaXnhDNbkhTuPQfPCs121LQ6RrmQtBfii9RcJEamH9vs5AlgIfCoi45VS33ocdxfwTtS0w/jXv/7FI488kvaCHnbYYQAsX77cd4lHN1E9FuMKuDNf48ePZ/z48Sil0n54Z+FUSsV+ybMR8GznokbBnW4+Le6pU6dyzjnnAP5C/H/AwcuWQdOmjPrzn1kWMM3MzYknnoiI8PzzzzN37tzQirEQiMhrBIx1K6VOyGN2IuO0wEeOHJm2L+oMhu+++86zKzgq2cxB98LLAgf/qayVlZVMmDCBI488spqvSZzZH8776N27N59//nng8X4C7n7eTgMlFwLepEkT1q9fz4oVK2jRokXaPvtZxu2JDYvnXlJS4vs7eX3PF1FDqZ4sIj+KyOoYi5l0B2YrpeYopcrQoaK9+hQuBl5Cj6sngt0i9FolaOXKlRx88MFccskloelEKQxTp05NeU5HxU8UnS9d3HHosrKyNMeVTBfQWLZsWZqDVq4EPMwCz+U0q7CFJQYBVwOVIvDiiyxvHm+2pHNs1H1f3bt3Ty0dWWDuBe4D5gK/o2eWPA6sA74OOK+gJNGF/vvvv/vGvI5CLi1wZ7nwG4ZTSjF69GhAh+p1EmealPO6YeINuRPwuM/TdjZzDzlOmDAhdU+2MRS1sdWoUaNqDUIncSzwfBK1lrwbOEEp1Uwp1VQptYVSqmnIOa0A54Tkhda2FCLSCh3MakRQQiIyWESmi8h0r7WVPY5PCYD7wU6fPp0PP/yQf/3rX6HpRCkMcadLQbQFLuII+BdffMHDDz8cKgxRWqXXX3992vc4Lcvff/89sgd9IbvQ3e+EsyI4EnjE+vyvTp3giCNi5yXIm7V379507949Vnq5QCk1SSk1CeiqlDpNKfWa9Xc60LPQ+fPDfoe9HLyidqFnSy4t8Khe6PZ4rXNuPGRugUdh7dq1keqQsrIyFi9ezCOPPBLpt1i0aBHLli0LPc7G9vTu1atX2vYjjzyymgUe5Md0ySWX0LZtW0ALfo8ePXyPDRPwQlngUTvrlyml4npteNV67i67fwJXKaUqgypJpdRjwGMA3bp1izQgXK9evdTcPGfXdJyWUqZRe8LwKzjOfEYV8LKyMrp06VJte6YW+FdffZX2Pc7zGjJkSLXz/QgT8Fzivqc99tgDgD0hNV3sDmBS69Zc6pO3qH4J+exZyJDtRGQnpdQcABFpD0QbYyoAdsXsLptxvNCzJWkBr6ioSOU5igUOYBsybkHN1AKPwvr16z0F3F0WysrKOO2005g8eTL77rtvpLR//vnnat3hmWBPY40i4Ntuu23qc/369QOngLnLrbv+mj9/fuy8JkHU2mS6iDwvIgOc0dhCzlkItHF8bw0sdh3TDRgrIvOAU4CHReTEiHkKxP4Bn3jiCQYMGJDaHteizAVJdqH7LX3qVYlFca5wepBCPAEfM2ZM5GPzbYFPmjSJ448/nkWLFlW7p2XLlrE98AbQFD3Wc51jfzaiWwME/DL0AiYTRWQi8D5F7IVuPz+vxnW2Ah71t8mXBR50HXufu7zmUsCfffbZSAI+YMAAJk+eDBA6lc2LQw89lO23357HHnuMzTbbLKPGfpiAP/TQQ1x11VWp3zxMwN307t077fuxxxZm/Z+oFnhTYAO6h9FGAUFL7XwK7Gy16BcB/YG0JbqsOOsAiMho4HWl1KsR8xSI/QO6YxTHEfB8W+DOwuEcKvDK84YNG1izZk2saFBRur/cFUAcAReRrMNUemHfq7u7MA52d9spp5ySVtiUUjQBXke3Nj8CzkG/3EGCkOk872ITcKXU2yKyM3rBIoDvlFLRV/LJM34WOER3YvNj8803ryaIXsSNYBbGxIkTU5/jLnV68snpdlTcLvQvvviCCy+8MNLxAwYM8BTEoLLgt7qXG+dvZj+PoUOH8scff7BmzZpQJzM3f/3rX1m8eDF3+URMvOCCC9KuW1paGijgXr9LMUwVjeqFfm7chJVSFSJyEdq7vB7wpFLqGxE539ofOO6dLX5iVQwWuJ+AO/PmjNPuled27drxyy+/8OWXX3qmlWkXutuij/OSNmzYMHIFEscC33777VmzZk2sGQR+TJkyhSlTpqS+/+u++3gRvbrYbLSXpbuKKoY56TlmH6Aduj7obDXEnvI7WESeRK/lslwptYfHfkGvL94H3fA/J6k1xnPZhR5VwOP0NEXhb3/7W+pz1PrJr1zGtcDfeOMNz2mefnjVq0F59hPwKI39Zs2asXbtWlauXBlbwG0fgfvvvz/wuKgWuFejLemGXCZE9ULvKCLvicjX1ve9ROT6sPOUUm8qpToqpToopW63to3wEm+l1DlKqcjT1MLwE/A4gpREC0spxbBhw3jnHT1L7qOPPmLECO+2SxRht7Et9KgezX/88UekiidbAXcSNBczjoDblerXX0d3jl61ahVXXHFF4DkCbPf3v3M0egrEMYAzgrydhzAL3O34F5avYkJEnkZ7pPcE9rX+uoWcNho4OmD/McDO1t9gNvkFZk2QBR7kxBZlDfqosbD9fsMtttgCSB9bjUvU8uYnmnGWQXaOvUclShe6E791AaIMmdmzYdzd8Ek2qO204nahQ7xnnSui9uc9DlyDFTZVKfUluku8aPET8DjjPlVVVVmPd7377rvcfPPNHH20ru/sgANe+BXeIG9Uv3PcL/l9990XllXPa0W1CCoqKqpFaerWzV8HMhkDj9P9fNNNNzF8+HD23HNP32P+AQxQirVoxakePT7adW+99VbfngH3fSQVPztBugEHKqUuUEpdbP0FzrFUSn2A90qqNn2Bp5RmCrCliGyfRGb9BHz27Nk8/PDDgPe7E0UYowp42DrhcRbFcJNt8Kg4PYxlZWWBYuj13mcynOQ1lSyKCPsJeNThqyhTBZ0CHjcASxQBT9pfwk3UGrGxUmqaa1tuc5YlSQj4unXr2HrrrbPKx8qVKyMf61fJtGjRwneJRL/7cb/kztCCQbgLW5SK74MPPqC0tDTWVJBMBDxOyzssbOw1wN/Q3eUnAkH9u1Fa5n4x+IPmyBYJXwOZOxd4EzqF1CbuFFFbVIIqT6/3JEq5j7qYRaEFXCnlmwf3vPAgfvnll8AyFdW/JgkB98qH/RzdAW2idl1HaSw7BTyuZR9FwHNd3qMK+AoR6YA1DcwKeRo9cGw+CYnEE2fc4uKLL/aNhhQVZ8Ue9qIHiaUdPtFNVAGP+iJlIuCXX3657z6/aWVB6S5atMhzPnkcC9w5ZuYWhkHoSGtVwF+A//mkYT/DIUOG0K1bt8DYAa+88gp77rkn//ufX2qw1157cccdd0TKfx7ZFvhWRN4RkfH2X5ZpRplCqjcq9ZgVwrVbFP8G+x0IGuvNVMCjrmTo1zi87LLLOOGEE9LGtOPirp+22WYbz+OSmHe8YMGCRAQ8DC/Ldq+99kr7HmTZu+uKqH42UYwn+32y672w8Mc33HBD6nMUAc91N3vUPoML0fOwdxWRRejoTWfkLFeZsmoV/OlPcNRR9Nm4kX+jQ0w5yXWXhhungPtN+bLJJG9+Qugu4FEF3F3Yogh4kLC6C6pNkAXuN3c0Tgu5adNNcYZOOumk1OezgEetzxcSLTZws2bNqoVDdTeQ9t57b1+HQpuwJVYLxLAcpBllCmlG2EGapk1zdwgGE6VsZRvDukWLFtxxxx28+uqrGafhLm+XXnppmmhAPCvbjwYNGrBw4ULat2/ve0zU8hZmmHhNJTv77LOZN29eal/Qtdx1hVPA3dfeY489Un4vUQTcaYGD9pUoKyvz/Q2dQZii1KlJLW/tRySTxgqHejg6wMOuSqme6AhqxcWkSfDrr/Dsszz+66/8AjwPnArYnVr59hx09gQEddH985//ZNCgQbHTj2qBR20Jus/zEvBp06ax55578uGHHwKZTY0KEnC/VYHiCLjzudtetgOAUeiX/ipCwv/VEeyIbO6/LJMdD5wlmv2B1UqpxHrs6tWrx6JFi3z3ezmZRRHwbKf42e9ckotZZNMdH0SbNm1YsGBB4DFRp4BlMqVy+fLlgT4yznSddYVSKk3AnfumTZvGf//739T3KA6jbgF3XteL3XffPbW6WVidutNOO+V8ffBYb6y1+pjdp+zfb1oo+vaFn36Cu+9mZsOGNAH6Af8BfsGatP7vfxMWAzYpKioqArtUnUSNpz5r1qy0LrykLfAoQfqPPfZYvv76aw4++GAmTZqUUQHOJDhDHAF356kf8DT6hb8eHRs4GzKNxFYs2OsZePyFrnMgIs8BnwC7iMhCETlPRM63p4gCbwJz0H6BjwMXJJn3MKG95pprqm2LIuDZLkWcCwHPlQXXunVrFixYkMi69c6y7JyiGcSSJUvSnlNQF7o7Ol1VVRUlJSWUlJSkGWSlpaVpaWZigYfRpEkTjjxSh0PxEvB99tkn9fm1116LlGY2ZNPkLM6aaaed4MorOa1tW9qiw0xNBjZDdxlc/913LEebCGcDwYvIZccdd9zBbbfdllh6GzZsoFOnTuy0006pbYWwwNevX5/63KtXr9jdmZCZgMexkJxjpKcC/0YHIxgG3B4xjWIV3ySw1zPw+Atd50ApNUAptb1SqlQp1VopNdI5PdTyPr/Qmj66p1JqepJ5z0Ro8yHgtghkm46TpC245tbCPG3btmXp0qWJjKU702jdunWkcy666KLQ5+Q1Bm5b340bN6aqqionAh7UqGncuHFqvNyrTrXjd9x222106tQp9PrZko2AZ990yyH16tXjZ3Sw9YPQLrAXARPRA//HoyezLkNHmrkQ2DHhPDzzzDOJpufVpeVngcdxYnvzzTcZMGAA06ZNq9bt5JV+EsKWyXKica5r+xsMQodGrY8W7puBp59+2vOcPn36pH0PKsg13QKvyeRKwIuxCz3JxgDA6NGj+fnnn2nWrBkbN25MRMCdzzZKg2PMmDF07do1NW/eD9sB1pnHe++9F9j0Wzl9Uxo0aJDmhHvVVVeF5sUr1oNdtr0WHXIKuD012IkdUOi6666rti8XBL6xQd1swA55yWGGuF/8xejFyQ9FZ/z/ARPQ3QhHAg8C84HPgVvQk2OzrXpz7cAAyXShH3vssYwdO5b99tsvUvpJiFKuu9B///13rkT335agY5vb4VbsMSw3b7zxRuT0DYWjWAXcPj9J0U1awEtLS2nTpg0NGjSgrKwskWBVcQXcfk7OWR1eDWJ7lUBnXXHnnXcCm4I7Ocuy2wKPgl2neF3fywu/pKQkJeBB4XzzReAbG9LNllwzMwcEvfjL0S71RwItgDPRq1CtBboAN6ADuS9EeywfCzTySiiEXDswQPCawU7cAp5NzPJCCXiMxOk/c2ZqnPtC9LQxQ+0g1wIe5JntxmmF2RV7MVvgNg0aNEiNJ2dLXAG378kZYyOoPqqsrOTzzz9nzz33rBaXw+nwmkkwFvs3dzvKQbS1zN0k4VMQh+JaWSFBor74vwHPoJ2ctgWOQlvqP6Mt9cHohS5+BV4BBgLNI+YhqXmUNl4i5zcn0l0wM12/Nl8Cnuk569ev58Ybb9wUMnXDBjjtNPrNnUsFeq7jw9llNStMF3ryZGIpxxFwv9/MK5iSs5LfcUc9CBcmIldccUVoXmxyJeClpaWUl5cnYoG7x6HDiBtPvaqqiquvvpqvv/46NYbvFXuipKTEM+3x48eneac7CbLA/X7HoOnARWWB12QyefHLgP+ix8rboq3xG4HpQGN0xK6R6Ag2H6Ojee0ekF4mLbi4+DmnuV9I9/e4qx45yYWAR6lgvTzk//nPf3LrrbfqkKmLFsHBB8OLL7KuXj2OBZ5FT5mJitOiCrrPfLe0DZvIpGyHTVlypuvXQDjmmGOqbXNanDvvvHOk/MVp2CdpzXvlIYlAI86yKyI88khw6Huv5xtUnqqqqtIWqmnUqJFn6OKSkhJEpFqgna5du3LEEUd4pm33tngF3PKrv51OvHHuIxcYAQ/gC+BW9OoOrdDj5m+ghf4AdLfs1+i5MvZqEM4HGnUKWVS8Xg6/AugWu0wFPB9ObNOnTw8NfQrp9/DCCy/QuHFjnnzySQAOBOjeHWbMgPbtOaN9e+w292677VYtrfnz53te44UXXvC8nqF4yKRsH3/88aHHhFngXsJjC+HRRx/N9tvrcO81pQsdkhFwd10SZrjEtcArKytT+ysrKyktLfX8Lezoi27nuCBfpCeffJKxY8ey++7VTTH37zhr1iyAams+ODECnhBJv/iL0ePmx6G72k8CnkTPL+8AXAF8CCxFW+nHk9m4eRBeL4dfd042YVudeAVVSULAnXGKJ0yYEOmc2bM3LTfSr18/Nm7cyNw5c7gKPbuAxYvhoINg6lS+cdy/V/fZjjvumKpwAQYPHgxEj4dtvNALRy67lYPS9xJm+5wDDzwwtc3v/EzyncS9nnzyyRxyyCFAdesykyWTnVEOvQhrwGRigdsCXlVVRf369aulUVVVlRJWt8AGCXjTpk2rhan2s8B33XVXQK+L/uijj+KF6UJPiFwVcoD1wKvAeehVIA5CW+Cz0aHqBqLnmf+KDh5zFpDdkigar5fDL1Z7Uhb466+/Xm1bEqJ0wgknpD4HtWidnH322WnfWwNvAXdixQT++9/hvfdgu+1Cw9ZCevfnwIEDI+XBUHhy4e0NMHToUAYNGuQby9zrel6i7ydgmcxKSeIet9tuu2piZFvgUeOKO1m9ejWnnnqq7/4wAc9kDNyuv2bNmsXKlSurCbizTnI70mXqTOxllYN+/+wGvxtjgSdELgXcSRU6UMyV6MWP90BPWfoUPW5+EjAG7fn+PnoFrHaZXsvjJX/zzTc9j01qDNxLXJMeA4/90ivFQPTwxVHohtKxAHfdBaWlLFmyxDccqxPnvcX1VzAWeOGwn/2wYcMS9TNp1qwZjz/+eGoZSzdBXejOfX4CZo/bRll1zSaJeixoipRfF3rLli0Dr+31Xr/yyitAeJ699peVlXnGTId0AbcJcmR0WuiXXnpp7DLonAc+b968WOcaCzwh8iXgbr5Bj413R1uIF6ADxVQBvdCBZeYCM9FBRfaOkXYcj1FndzNUL8TLli3j22+/DU3Hq4AnLUqxFnH56ivo3ZuRQDNgHLrR5GzGPPbYY76nX3zxxanPzpZ5rpyFDLmjtLQ0NBhIHOz32k8cvN57LwH3q3vsCIpxRCHXAu5lgf/lL39hyZIlgdf2ekZ2F3MmXehnnnkm22yzjWdenWPgQWk4scu2My+pmSohOB3m2rZtG+kcmzhTEJPACHgOWQQ8AhyN7lofgI4KtgbojPZwn4FeOPlhtDUZ5J8ap3U3ZMiQtPEtd8Ho2LEju+++u68zl41XAS+EgG+Hnt5Hly7w/vusAE5HzwxYah1jPx+/JRhbtWrFAw88kPpuBLxmYndF169fP3Q8Ng5hAu6F3QPgLF9+dc+hhx5Kt27duP32qMF8c/de2vkeN25ctX22oRBkMHjVAX4+BO+++27ad6/nYy+s4mUwOMfAg67vxEvA/brE/Yhbz7311lsMHTo01jnZYgTcQZT1iDNlNVq8BwDDLriAUf368TA6WExrYAjwNrACHVTmTMAtQ3HD8/32229cccUVjBo1yvcYe0UxPzKxwB9+ONrM6w0bNjBw4EDfYQDQPgb3AvOwVsQQgYsvpiPwnOvYsrIyhgwZUq3CsHEPBzi/GwGvOdgrdJWWlqat+54t9nsdp+6wRcs5F9qvfDRt2pRPP/3UM0SnH0kbInZDI8pc5o8//tj3GK9Gjl8gG/cwR9A9rVu3zjM/cbrQYZOAJxGMZfbs2UycODH0vKOPPjrvhmOtFXDnXMsePXpEOscvxGbS3Hj77ew/bBgXohdN3gfdnf45sAVwCvAUOk77RPSybx3Ra9XGYcKECQwfPpyBAwf6jtl6rdzkxC3gq1atChVwv/W83dx5552MGjUqtdynk73QvRdz0B7+jdGOgXz5JTzwAF7LFDz//POMGDEiZVVsu+22gdd3WuC5mrNvxsCTx54pUFpayosvRlnRPRpeFvhzz7mbienY740z0qFfWcskAE2uutCds0Dc2JZ3UEPDeS92j5f9u7jz7P4e9By85lhXVlbGFvAkouLZ70OHDh1SXvzFRq0VcGfL3B1+z498eRDWr18/TTA+Q6+StTd6QZUL0ePmlcAhwH3A9+hY7U8A/dFdymE4Vwnzu7eFCxcGpuHsQn/33XfZaqutAgs/RK+obr311rTvWwLnoJ0CvwDOR68i9xLQFegLELDCz9KlS9O+uy1u9zPIpgvdOLEVDqcF3qFDh8gNb79FbGzs99b5/h500EGB59hBgsJ679q1a8fJJ58cJZvApsAiSVl07vfQKzaCTRRfG2d6Y8eOZfLkyal6NkzA41rgK1eu5JNPPknbFlbH2NeoCeFQs6HWCvhWW21aKDTMEss3paWlvi+WPR5uj5v3Q4d6/QUt7uehu46Xoy32+4CT0V3Nbpyrl4WNdfvhtMDvueeeSOe4VzQLojl6uOA1dI/DKHRQltXAA8Bu6B6JmRHScseFDxNw04VeM7EF3P7Nok4T+stf/kKXLl1893t1oYe9F2eeeSYfffQRQ4YMSW2zxdwW/w4dOjB37lxatvQqpd7kaqqczYknnui7L4qvjVPAmzZtmjYP3v3M3I2HoEatlwU+fPjwatvCBNzen4QFXszkVMBF5GgR+V5EZovI1R77zxCRL62/j0Wkc1LXdgr4UUcdlVSyiRAk4E7WsGk8vAXaCr0SHe71d3So18vRFuoSdHfzM2gLvgdQLyDkX1RsAVdKRX6hd9jBf6G6lsAJwD1oUV6GHi44Dr1e97voJUBboafc/b9//CNyXt3OcGFBKvJhgRuSx+6qtX/vOKFJg8TJqws97L1o0KABPXr0SBPazTbbDKUU5513XuR8uYkj4L169eLZZ5/N+Fpuoljgzmfkrhe8uswPP/xw3+Od+E0lC7q+F/m0wC+44AJfv5tckzOzQ0TqoR2Hj0D7an0qIuOVUs65S3OBQ5RSK0XkGHSws+prWmaAU8BPOOEE9t1337S1YzOlUaNGvPPOO/z888+ceeaZkc6xl+6zcS5JFxWFFryZaKeuhmhL9SC0WO8PtLf+zrBPGjeOYcCX1t9s4Cfrb1nE6/7xxx+sWLGCrl27hna3g27Z77rrrmyBnhe/C3r8vjM6JG1r1/EbgA/Q08FeRvcsOIkzTchtgYfNhTde6DUT2wK3rbU4gTriCng2FnA2FpzTghw4cCAvvPBCWtCmsrKyVMNl8ODBDBgwgNNPPz3j6zmJImBB9+ZlgU+YMIHddtuN7777LlB8X3755Uh5jCrg+bDAjz32WHr37p3xdbIhl7VWd2C2UmoOgIiMRQ9jpgRcKeV0c5xC9fo9Y5wCXlpaykknnZSIgP/xxx8cfPDBfPbZZ5HP2WyzzVICfsEFF6TylA0bgf9Zf6C7UnZHi/p+aCew3YGdrL8TXeevR4+pL3P9rbL22X+brV3Lz888w04LF9IBvUZ6Q6Ap2uGuKXrsenv06m37zZgBLVqwxiffq9GLw0xFW9sfW/fixWGHHUb//v0ZNGhQ6POA6gLuLoDuiskZNtUEcqk5uAU8jgUeZWqUU7SzEfBs1hd3WuAjR45k5MiRae+S830Nu47zXY3y3jojxs2cOdNz2CGuBQ6bQrB6lYltt92WFStWRA7t6ry+1/xur2lkUYlrgWe7jnw25FLAW6GHdG0WEmxdn4eOjJkIzmhK9evXjxyus3379pEW1ohTsJs0aZIaj7bnCSbt9VwFfGX9jbC21Udbv3uhg510cPxtDXSy/gL57Te47DImRc2INZ/zD+BHtPPdD+hW26fWtqjF47///W+s5xx3zXOno6PxQq852A0v2+EpWwu8SZMmrF+/PiXuzgo5m8o5CQs8yvsf5Tpx8mI3kAA6d/Ye1XSm507bbwzcGSDFjV12ly1L7xts2LCh51RW5+/iXNPAxjlTIVOiPrPaKuBed+9Zo4rIoWgB7+mzfzB6ae7UmrthOLteRSRSIVdKMWnSJDp27BgaIziOsDhbtPZ5Sa8V7kUFWji94q1tiZ7C1hw9vm7/NQWaOP4aA3/q0IHZP/2EQv+AG4G16DH6tWiregl6wZdzr72WE4cMoXGbNpGF2o+4BcPtwRrWhe4k03jJdRERORq4H+228IRS6k7X/l7oURG7JfyyUuqWpK6///77A7D33jqOoddvt9NOOzFnzpxq270E/LHHHuPiiy9OVfpJCXhSFngur+NFlJjtQQLuZ4EHCbjde+Ze2Kh+/fqhsSiC7j+TSH3GAtcsRGuETWt0HZ+GiOyFnh11jFLqV6+ElFKPocfH6datW6Sn615VKmoF3aZNG4YOHcptt90WeFwcAXeuNRtnbKakpCSyR2jcl26V9ReFM3v04Omffop0bN8OHaB166zFG7wL+tdff51ad9nNV199lfbd/ezcXvSZrMRU14no2wLwoVLquFzkoXfv3syfPz/VmPdqDN9zzz38+c9/rrbdqzydfvrpaePHSXWh58sCt4996KGHuPDCCzO+pk0UAQ/qQs/GAg+6js2yZcvSnMa8npE9vNKqVSvPdIMIymfUPOaLXF75U2BnEWkvIg3Q05fHOw8QkR3RvktnKqV+SPLi7qljUbrQ7R8simg6X5qDDz44rdvJjZcFHuXlcAp/ELnq/rWZPn165GNz7Z295557+q6E5Jz37qZ79+7069cvbVuLFi0yzodfuNY6QMq3RSlVhg4w2DffmXD2xHm9/37lK0rZTroLPaisv/fee4wfP77adrueiHJ9+xjbv8ZN3DIZVJe5rwnRLXD72Xs9Dz/fBK/732677UJ/I/ues5lCHFXACzlMljMLXClVISIXoWOS1AOeVEp9IyLnW/tHoMOBbwM8bD2ECqVUtySu37ZtW4YNG5aaexm1Cx3iT6OwF1XwmsMI6QIex6kiqjDn4gU677zzWL9+PWPHjo21elLUymLw4MGBi44E8dprr8XOi9Op0WbIkCHMmjWL/v37x87DGWecwdSpU+nTp0/gcbVwDDyqb8sBIvIFutdtqFLqG6/EMhkec+NVpvzKcD4FPMq5hx12mOd2t9WayXVatmzJ0qVLYzuxXX755dW2uafEJT0G7ofXvYlI6EyBsWPH8uijj/r21gVhutAtlFJvkr5QlC3c9udB6Gm/OeGmm25KfU5qqomNO9hD0I9ur2hTWlparWs/iCZNmkQOihK1uz0qTzzxBKNHj2bs2LGsWePnU16dqC//Oeeck7GAZ5IXr0LeuHFjnnjiiYzSrl+/fqSY77VQwKP4tnwGtFVKrRORPsCr6FmF1U/MYHjMjZeA+y2QE7dsF9qJLW6Dw2bVqlW88MIL/PWvf42dF/cCMV5lOukxcD/8hhDCGlm77bYb//znPyNfx4u63oVeVMTpZs5EwIPYZZdd+Pzzz/nuu+8ideUvXLiQOXPmRM7zxo0bc/IS2V1pfuNTXkRtROTDic/pwFLIQlbLCPVtUUqtUUqtsz6/CZSKSM7CIcaxwOP2rmVDNun06tUL8O7OnjJlSuh1tthii5y+83G60N0WeJx8+R2b1Fx9L2qSBV5narU4Xddehbxz58707NkztbhBHEcXpRRdunRJrQdsc/3119O6dfrU9zvuuINWrVrFXlc2FyEXozizuLFf/qBFIMaPH58XAXeGYCzU8rJeHrQ1nCi+LS3FqrVFpDu6nvF0UE0CZ0PXDq506KGHeh6biUWb6QyFbCzwxx9/nK+++spzDLddu3ah18l1z8+f/vQn333uujYbCzyKgOdKQI0FXkRka4Fvv/32fPjhh6nxUreAZ+K8deutt6atpjRq1CiuvrpaxNlIJCFQ7rGvTATcfnb9+/f3De94/PHH59zxrl27dmkVXaEE3GtxhpqMUqoCsH1bZgH/sX1bbP8WdPj6r60x8AeA/iqH3o32b7v//vszZswYlFK+4Xzj9q4BzJ07l5kzZ8bOl1u4nIwcObKaU6WThg0bsscee6RtO/bYY4HqM2z8xolzidPbPa4FnrSAJ32vNckCrzPxI6NY4EFObG6LMQkBh+RakkkIlPv6YQK+yy670KRJk7SodM7nEHQ/ubbARSSx6UDZ4OfYWJOJ4NvyIPBgvvJjv2ft27cPrcwzscC33357z2AhYQTlZeDAgQwcODBWei+//DLr16+v1q2eZCS2qF7bQQLqzo97YRHn/ocfftjXex6ijYHnCmOBFxFOi69ly5a0b9/ed86kl4AHLUofpQvdj5os4CNHjqxmZQc5jjVv3py77roL8O4RSWIOq5NcjpNFpTYKeLERx+ErU6ewTIgyjSwODRo08JxN4ZffIEczJ841DmbNmhU7X+6y5XYgtK/94osvMnToUDo5lgT2G+oII5c9DHb+oi5DbQQ8DzgF48MPP+Snn37iwQfTjYSgeeBhAh4k0pkKeByrvkePHpGPjZIXCBfwkpISdtlll7RtzmfnTm/p0qX8/e9/B7wt8AcffJCbb745Vp79iDLVJB8YAc89fuXWK1BPJl3omZKvij3b6ziDnWQyb9od7cwZohg25a9Dhw7cc889kaOoAb4RMXP5bP/xj3/w/vvvs9dee0U63gh4HnB2oderV8+zBRfUhe5+SXOx4EE2L8KYMWO48cYbAwOMOJf0C8sL6AIXhNd9B3WhO595PrrQjYDXDfzGmr1mfBTCAo/LG2+8Eev4KPm1V8tyO8AlgXPdCdBj9M7fIug5hD0j9wJFNlGt40xo2LBhahZAFAo5VbTOCLjTgnZW5uecc061Y70KufsldQv4HXfcAcAtt8QL+RwkMnEs8G233Zabb745rTW99957p72I7jjDQXmxCXI2syvIvn03BeIKm3sdlm5Sc9ndY+CFaiXfd999QLpHvCFZ4kRQPPfcc9O+/+c//6l2TNR3JSwOQJATmx9KqdDgQH7XCUrziiuuYMGCBey2226x0o5CWOS2IIFz5t1r5o0t4M8880za9l133TVOFnOKscDzgJ+AP/nkk9WO9bLAwwR80KBBLF++nBtuuKHauUmMgS9btixSXF/nteJauUG9El7Yjj3ONXyzdWJLUsCztcAzcVxyc9FFF7Fs2TIuu+yyrNMyeBMUtezJJ59k4sSJqe/Dhw9n/vz5qe9eYXmjvCtKKYYMGRIpX1Eq+ExidttEHQN3T1lNijALNOj+w3rlbAF3e9676+NCYrzQ84C7C93G6+XLxAIHHaM3LlEFvHnz5pEE2Zn3Ro0aVavUXn/9dY47znuNibgvot1d7zwvWws8qdlGIpI2lSjOwiWTJ0/moYceqrb4SaY0b948kXQM3gQ5sbkt7pKSktBoiEkHconSIJg6dWrabI44FHu0v6gWeJCAb7HFFixcuDBSIJ58YyzwPOBngcOmsd6jjjoKgBNOOKHa+Yccckja9zhj15la4IMG6SizAwYMAKoHlDjmmGMA6NixY2qbsxI744wzql3PnkvqRVwr1Zlfu4HTs+emFWGD0ouz2ITf4iVhOJ+X19KSfhx44IE8++yzGTXIDPknjhc6hL/nSY+BRylXrVq14vjjj8/oOoUSkKlTp/LKK6+EHheUvzABt+vOzTffnFatWmUcLz+XeM0MyBd1RsD9LHCAGTNmMGXKlJQgnnLKKXzyySep/SeddFI1j8SoUzQgeBw5SMCvvfZaPvzww1Q3v5eAT5kyJW0VLmcc44EDB4bmzdn9HbSqjxt30Jc5c+bw6aef0r1799S2TBzVvM556qmnYqfjdjoMW9/dUHOJs/AHhAte0gIeJwpkJmRjQGRD9+7dOfHEE0OPi+rEZpd9e+0IJ3HWkAjim2++4ccff0wkLZtCrkxYZwQ8yAJv1qwZ++23X9q8zf333z+1f++99w5MO+gFbd++fWCggiABr1evHj179kw5i7nFraSkhP322y+te/+WW26hQ4cOPProo5Eqoj333NP3+uBf+N1TRbbeemu6dUtfSM5pjUflkksuoXv37jz66KOpbVHix9u8/fbbdOnShTFjxqRtr4UhTQ0WcZ3FwizipKeR5XoGRNgYeJTncu+99zJ27NhE82UT1QK36+grr7yy2nHuBnmmdOrUKTAMbCbkIyy0H3VmDDxIwHNF79690xae9yJOV7zbAncGRLA58sgjmT17dmA6IuK5sEAcAfe6tpt69epxxBFHhHq/O9lqq62YOnVq5OPdHHXUUamhECdGwGsvxd6Fnusu7ihObGFcccUVSWUnVj68LHCv3zEpC7y2UWcs8KAu9ELiLHxhiyY4W3rPPvtsxlGM/K4ftaLZcsstOfnkkyMdG7SWeDZCHRfThV57iTONDPLXhV5oC7xYiDsG7uWoVowCPnv27LzWYV4U9y+fIIWwwKO0gMOcOJzcfffdiAjDhw9PObaFEbaWr/P6p512Go0aNeK8884LTLN///6RW/dLly713de9e/eMIj9lgrHAay8tW7YE0oeDgshXF3ocJ7ZsKHYBj1pXBFnguV78KBM6dOiQ5vNTCOpMF3o+lp9zk7SA77PPPpSXlydaITiv37x5c9atW5eWvlcDwC86khedOnVi6dKldO7c2XN/vqbAGAGvvXTt2pXJkydHrkzD3rmknM5sIarrAh6UP2e59LLAv/rqKz799NPcZa6GU2cEXEQYPXo0FRUVOfcKjUOcLnSIXxmErRXsXlUoSvpxBHzMmDHcf//9/O1vf/Pcn6+WtelCr90ceOCBkY8NE/A4TpNB2EKUawEPu58cruQaiaD8OaeFeVnge+yxR7VlVW3uv/9+vv3224RyWTMpHiXLA2effXZO0s0muEAcCzwXxOmZ6Nu3L+PGjYv1HFu3bh0YECVKoyUqXt7+//d//8e1117L7bffnth1DLWbpBr4+RJwv0ZwmLAvWLCAVatW5SBH6YRFYmvQoAFlZWWBXeheXHLJJYnkryZTpwQ8V2TTPVsIAfezwMME/KWXXmLJkiWJhmRM4p47d+7M+PHjPfN19dVXc8YZZ9CmTZusr2OoGyQ1rJMvAQ+LRe5H69atcxZe1UmUOBllZWUcdNBBPPnkk+yzzz45z1NtwQh4AiQl4Elao1EJCyvrPjbpAp+EgIuIb4SmoH0GQy7Jl4CHLftbaMIMA7sH4YQTTmDx4sWJrEFQVyhu74ciIWwMqZgt8IqKimrb/KLIeQn44MGD0/4nTdR77t+/f06ubzDkimIR8GIeAwdSazOUlpYa8Y6JscATwE/Aozho5VrA165dW21bHAF/4IEHOOWUUzj44IMTzxtEv2dniNjp06ezzTbbpJYfLETPhaFu8txzz0Xuss6XgPuVoWJZ5CTMAh85ciQ333xzWrS1d999t+ANj5pATi1wETlaRL4XkdkicrXHfhGRB6z9X4pIcMzSIsUt4GPHjmW33Xbj/vvvDz03113oXgLuJKyQN2zYkCOOOCJnIhk13WHDhtGpUycef/xx9tlnH9q1a8err77Krrvu6rkkrCF31JVy7UX//v0jLzpSLF7ohSYsfw0aNGCnnXZK29a7d28OP/zwXGarVpAzC1xE6gEPAUcAC4FPRWS8Usrp938MsLP1tx/wiPW/RuGeonTaaadx2mmnRTo3bD3cbFmzZk3gNQtN1Hvefvvt+eabb9K29e3bl759++YiWwYf6lK5zpZ8CXgYhbZki32eek0ml0+2OzBbKTVHKVUGjAXctW1f4CmlmQJsKSI1bhAkmzHwqOtnZ4qXgBcThVwIwJARdaZcZ0uhBbxYGurFko/aSC4FvBWwwPF9obUt7jGIyGARmS4i04NiayfNOeecA8BZZ53lud+e33zXXXdlfI0mTZrQsmXL1JrkSfPMM88A8PTTT6e22ctzjho1iqZNm9K8efPEV+iJyo033pj231D0JFauoXBl+/TTT2fkyJG++6+//npuuOGGrK7Rp08funTpwk033ZRVOn489NBD1ZxLH374Yc4991wAjj32WDp37pz1fWTKa6+9xhFHHGEs8BwiuepeEZFTgaOUUoOs72cC3ZVSFzuOeQO4Qyk12fr+HvB3pdQMv3S7deumpk+fnpM8e7Fx48bAcdqw/VEoLy+npKQkZy11rzw6t1VUVESOwpYLkniGtRkRmaGU6hZ+ZO7JVbmG/Jdtg6HQZFu2c+mFvhBwRs9oDSzO4JiCEiYsSQhPrsOJeuXRua3QoWWNeNcoakW5NhhqA7ns2/gU2FlE2otIA6A/MN51zHjgLMtrdX9gtVJqSQ7zZDAYssOUa4OhSMiZ6aWUqhCRi4B3gHrAk0qpb0TkfGv/COBNoA8wG9gAnJur/BgMhuwx5dpgKB5y2neqlHoTXZid20Y4PivgwlzmwWAwJIsp1wZDcWDcAw0Gg8FgqIHkzAs9V4jIL8D8Qucjz2wLrCh0JgpAXb1vSL/3tkqp7QqZmXxQB8u2eb/rJomV7Ron4HUREZleLNOI8kldvW+o2/deV6jLv7G592Tu3XShGwwGg8FQAzECbjAYDAZDDcQIeM3gsUJnoEDU1fuGun3vdYW6/Bube08AMwZuMBgMBkMNxFjgBoPBYDDUQIyAGwwGg8FQAzECXgBE5EkRWS4iX7u2Xywi34vINyJyt2P7NSIy29p3lGP7PiLylbXvAakBC+963buIdBGRKSIy01pasrtjX624dxFpIyLvi8gs6/f9m7V9axGZICI/Wv+3cpxTK+69LlFXy3ZdLddQ4LKtlDJ/ef4DDgb2Br52bDsUeBdoaH1vbv3vBHwBNATaAz8B9ax904ADAAHeAo4p9L1leO//tfOOjqE9sbbdO7A9sLf1eQvgB+v+7gautrZfDdxV2+69Lv3V1bJdV8u1leeClW1jgRcApdQHwG+uzUOAO5VSG61jllvb+wJjlVIblVJz0QtEdBeR7YGmSqlPlP7lnwJOzMsNZIHPvSugqfW5GZuWnqw1966UWqKU+sz6vBaYBbRC3+MY67AxbLqPWnPvdYm6WrbrarmGwpZtI+DFQ0fgIBGZKiKTRGRfa3srYIHjuIXWtlbWZ/f2msilwD0isgC4F7jG2l4r711E2gFdgalAC2UttWn9b24dVivvvY5SV8v2pdShcg35L9tGwIuH+sBWwP7AlcB/rPEPrzEQFbC9JjIEuEwp1Qa4DBhpba919y4imwMvAZcqpdYEHeqxrUbfex2mrpbtOlOuoTBl2wh48bAQeFlppgFV6KD3C4E2juNao7uiFlqf3dtrImcDL1ufXwBsZ5dade8iUoou4P9WStn3u8zqOsP6b3ev1qp7r+PU1bJdJ8o1FK5sGwEvHl4FDgMQkY5AA/SKNeOB/iLSUETaAzsD06wumbUisr/Vmj8LGFeQnGfPYuAQ6/NhwI/W51pz71Y+RwKzlFLDHbvGoys6rP/jHNtrxb0b6mzZrvXlGgpctgvtwVcX/4DngCVAObrVdR66UD8DfA18BhzmOP46tKfi9zi8EoFu1vE/AQ9iRdYr5j+fe+8JzEB7Zk4F9qlt927dowK+BGZaf32AbYD30JXbe8DWte3e69JfXS3bdbVcW3kuWNk2oVQNBoPBYKiBmC50g8FgMBhqIEbADQaDwWCogRgBNxgMBoOhBmIE3GAwGAyGGogRcIPBYDAYaiBGwOs4opksIsc4tvUTkbcLmS+DwZAdpmzXfsw0MgMisgc6UlJXoB56HuPRSqmfMkirnlKqMtkcGgyGTDBlu3ZjBNwAgOg1itcDTaz/bYE90XGchymlxlmB+p+2jgG4SCn1sYj0Am5CB3LoopTqlN/cGwwGP0zZrr0YATcAICJN0FGiyoDXgW+UUs+IyJboNWq7oqMNVSml/hCRnYHnlFLdrEL+BrCH0svjGQyGIsGU7dpL/UJnwFAcKKXWi8jzwDqgH3C8iAy1djcCdkTHNn5QRLoAlehlEm2mmQJuMBQfpmzXXoyAG5xUWX8C/Fkp9b1zp4gMA5YBndEOkH84dq/PUx4NBkN8TNmuhRgvdIMX7wAXWyviICJdre3NgCVKqSrgTLRTjMFgqDmYsl2LMAJu8OJWoBT4UkS+tr4DPAycLSJT0F1spmVuMNQsTNmuRRgnNoPBYDAYaiDGAjcYDAaDoQZiBNxgMBgMhhqIEXCDwWAwGGogRsANBoPBYKiBGAE3GAwGg6EGYgTcYDAYDIYaiBFwg8FgMBhqIP8fgzoCka98iLkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" }, { "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfcAAADQCAYAAAAaqygdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABj80lEQVR4nO2dd5hU1fnHP+82dlk6SxNQUBQLEQtBFFTsCvqzEAsqllDEElvUqFFsEbvGgqKEBLvGEiUBa6KigkRQNFRFBEFApBfZfn5/3HuGM3funbmzO7M7O3s+zzPP7tw2587cc77nfc973iNKKSwWi8VisWQPOfVdAIvFYrFYLKnFirvFYrFYLFmGFXeLxWKxWLIMK+4Wi8VisWQZVtwtFovFYskyrLhbLBaLxZJlWHG3ZAQi0kFEponIFhF5QERuFJG/1He5EiEik0TkT+7/h4rIovoukyX7EBElIj3quxx+iMitIvJcqs8VkYEisqJ2pUstIrKziGwVkdyA/TX+LnyuVavf3Ip7AkTkbBGZ5f6gq0TkLREZ4DnmAveHOMOzfaC7/XXP9t7u9g+Nbd1E5AMR+UVEForI0QHl+Zv3RxeRM0Rkunvuh37nNQBGAWuBFkqp3yulxiqlRkDku1Eikhd0ciorVU1RSn2slOpZn2VojNg6GnM/GSWI2YRS6gelVDOlVFV9lyURVtzjICJXA38GxgIdgJ2Bx4GTPYeeD6x3/3r5GThERNp6jv/Gc9yLwJdAW+CPwKsi0s5TngHAbj6fsd4t592J7ilVxBPaGrILMF/ZrEqWJLB1NHnSUHcbHEGWd1ahlLIvnxfQEtgKnJ7guF2AamAIUAl0MPYNBFYA44FL3W257rYxwIfutj2AMqC5ce7HwGjjfR5Ow7IvoIAePmUZoa+ZoMwnA3OAzcB3wPHu9qXA0cZxtwLPuf93cz93OPADMA14G7jMc+2vgNPc//cE3sNp2BYBZwSUZxJQAZS73/nRns/+wf3sre7rYM/5x7vnVrj7v3K37wRMdj9/MTAyzncyCJgPbAF+BK7x/IY34ngWlgLneMr+J/NYY99S4Brga2AT8DJQaOw/0f0dNgLTgX3r+7lvSC+yu45eC6wCVgK/Na8HNAHud+vFT27Zi4BiYLt7r7qu7OTWpVeB53Dq/Aj3u5vofsaPwJ+AXPf6FwCfuJ+xAfgeOMEoW3fgI7euvAc8hltX3f393Od5I057MDDsuZ7vQP82MXUP+LV773nG8UOAOQHXmgQ8AUwFtuG0MTsBr+F07r4HLjeO7wvMcr+vn4AH3e3d3N8iL9H94GkP3G1LcdtY9zNmuN/TKvfcAuNY32co7Mta7sEcDBQC/0hw3HnALKXUa8AC4ByfY55xjwM4DpiHU2k1+wBLlFJbjG1fuds1VwHTlFJfh74DH0Skr1uea4FWwGE4D1xYDgf2wrmPF4ChxrX3xmlIp4hIMc7D/gLQ3j3ucRHZx3tBpdQFwPPAvcpxeb3vOeQw928rd/8Mz/lv41huL7v7e7u7XsRpHHYCfgOMFZGjAu5rInCRUqo50Av4j7GvI1ACdMax6J4SkbDu9zNwOh/dcRr9CwBE5ADgr8BFOJbgk8BkEWkS8rqW7K2jx+N0Co8BdscRIpN7cDob+wE9cJ7LMUqpbcAJwEq3HjRTSul7OBlH4Fvh1LWncTo6PYD9gWNxRF9zEE6HvAS4F5goIuLuewGY7e67A8MbIiKdgSk4nYU27n28Zng4As8NwLfuKaU+B9a535HmXODZONc6G7gTaI7T+fgnzm/YGTgKuFJEjnOPfRh4WCnVAscT8/eAayZ7PyZVOM9MCc6zfBRwSRLnx8WKezBtgbVKqcoEx52H8wPj/o35cZVS04E2riCch9OQmDTDsexMNuE8hIhIVxwRGJPMDQQwHPirUuo9pVS1UupHpdTCJM6/VSm1TSm1HadR3U9EdnH3nQO8rpQqw7FKlyql/qaUqlRKfYHTS/5NCu4hIe53NgD4g1KqVCk1B/gLMCzglApgbxFpoZTa4JbX5GalVJlS6iOcxuuM2Ev48ohSaqVSaj1OY7Kfu30k8KRSaqZSqkop9TSOZdgv7D1asraOngH8TSk11xXsW/UOV2BHAlcppda7nY2xwFkJrjlDKfWGUqoaaIHTCbjSrctrgIc811imlJqgnLHlp4FOQAcR2RnHatb1YRrOc605F5iqlJrqti/v4VjAg0KcG0RQ3Xva/TxEpA07DI4g3lRKfep+B78C2imlbldKlSullgATjO+gAughIiVKqa1Kqc+8F6vF/QCglJqtlPrMbR+X4nTwDw97fiKsuAezDihJEMTVH8cie8nd9ALwKxHZz+fwZ4HLgCOItTS24lQ4kxY4rh5wxupuV0p5G5ea0BXHFV9Tlut/3IZlCjsqxFk4VgE4FvxBIrJRv3DEv2MtPjsZdgJ046dZhtNL92MIjmt+mYh8JCIHG/s2uI2seZ2dQpZjtfH/LzgiAc7383vP99M1ietasreO7oRRz3CeN007oCkw23hu3na3x8O83i5APrDKuMaTOB42TeS5VUr94v7bzC2bX30wr32657kegNM5SHSuH/Hq3nPASSLSDEfwP1ZKrYpzLe93sJOnnDfixG2AYwTtASwUkc9F5ESf69XkfiKIyB4i8i8RWS0im3E6aSVhz0+EFfdgZgClwClxjjkfEGCOiKwGZrrbz/M59lkcl8tUo7Jo5gG7ikhzY1tvdzs47pr73IdAV7oZInJ22JsxWI5/wA84Y1FNjfd+QuwNeHsRGOqKYRHwgfE5HymlWhmvZkqpi2tQ5jBBdt5jVuJYYuZ3ujPO+GLsyUp9rpQ6GaeBe4NoN1xrd5jBvI7psq0Jy4E7Pd9PU6XUi7W8bmMiW+voKpyOnmZn4/+1OOPq+xjPTUullO40BtUVc/tyHC9RiXGNFkqpmCGzgLL51Qfz2s96nutipdTdIc71I7DuKaV+xHkGTsXxyMVzyUPsd/C9p5zNlVKD3Gt/q5QaitMe3IMTPFnsuV6i+4lqT90gPrMT9gSwENjddf/fiPOspgQr7gG4PfAxwDgROUVEmopIvoicICL3ikghTm9xFI6rVb9+B5zjtSaUUt/juFz+6PNZ3+AEVt0iIoUicirO+Oxr7iF74DQk+jMATsK1LkQk1y1PHpDjXiM/4NYmAheKyFEikiMinUVkT3ffHOAs9z77EM6FPhWnF3w7zph3tbv9X8AeIjLMvV6+iPxaRPYKcU0vP+MECe0a55ifgG4ikgOglFqOM652l/t97IvTG3/ee6KIFIjIOSLSUilVgRNE453qcpt73KE4Qw6v1OA+TCYAo0XkIHEoFpHBHvGwxCGL6+jfgQtEZG8RaQrcYpSjGufZeUhE2rvX7iw7xop/AtqKSMs439sq4F3gARFp4bYDu4lIQpewUmoZjptd14cB7n1qtDV9nL5ncabndQlxbhDx6t4zwHU4bvZEsRcm/wU2i8gfRKTILWsvEfk1gIicKyLt3O97o3tOVJsQ4n6+AQrdep0P3IQTDKlpjtPWbHXb4JoYPsGoDIh6zeQXjit5Fk4vbDWOG/oQHBf0KiDfc3whTu/6RHyiJY3joqJmcaIwP8TplS/CiFr3OTcqihInSEt5XpPinH8qTgT3Fpwo8uPc7bviWDZb3ft8hNho+Tyf60109/3as72ne52fcVyo/wH2CyjTJNyoc/f9rURH4N7uXmcj0M/n/LY4Eb4bgC/cbV1wOhnrcYYiRgd8dgGOa3MDTmX7HBjg7huIE5T3R/d3/QEY5ldu7+9NnNkH7vvj3c/a6D5Lr2BEY9tXo66j17v34hctX4jjwl3iPq8LiI70/qtb3zayI1r+Oc/1W+JYjitwYge+BM4yyvpJ0P3gtBMf47QTftHyB+FEkK/HqbNTgJ3DnOv5zIHEqXvuMU3d7+DpBM/IJIz2xd22E47ncTVO3f+MHZHszwFr3HLOA04xngEzWj7Rd3EBzjO4Bie4cKnxGYfhWO5b3Wvcbn7v3mco2Ze4F7FYLD6IyECcytqlnotisVh8EJHvcGa6eGfZNGqsW95isVgsDRIRGYJj4f4n0bGNjUafqchisVgsDQ9x0vjujeOqr05weKPDuuUtFovFYskyrFveYrGkBBHpKs7CKgtEZJ6IXOFzzEAR2SQic9xXKpK+WCwWD1nlli8pKVHdunWr72JYLBnF7Nmz1yqlEiU5SQWVwO+VUl+4U/pmi8h7Sqn5nuM+Vkr5JQXxxdZri8WfeHU7q8S9W7duzJo1q76LYbFkFCISOmtWbVDO/OlV7v9bRGQBTkZAr7gnha3XFos/8eq2dctbLJaUIyLdcBYkmemz+2AR+Uqcddd9s6KJyChx1mif9fPPP6ezqBZLVmLF3WKxpBRxcn2/hrMwyWbP7i+AXZSzct+jOKl+Y1BKPaWU6qOU6tOuXV2MKFgs2YUVd4vFkjLcNJuvAc8rpV737ldKbVZKbXX/nwrki0jKFsuwWCwOVtwtFktKEBHBSUW8QCn1YMAxHd3jEJG+OG3QurorpcXSOLDibmHNmjX069eP5557rr6LYmnY9MdZnetIY6rbIBEZLSKj3WN+A8wVka9w1i44S9lkG2ljyZIl3HvvvfVdDEs9kFVJbPr06aNsVG3yXH755Tz66KMAZNPzYHEQkdlKqT71XY6aYut1zenRowffffcdP/30E+3bt098gqVBEa9uW8vdwvbt2+u7CBaLJQ1s2bIFsJ32xogVd4vFYrFYsgwr7haLxZLlWMu98WHF3WKxWLIcK+6NDyvuFovFkuVUV9sVURsbVtwtFosly6mqqqrvIljqGCvuFovFkuVYcW98WHG3WCyWLMeKe+PDirvFBttYLFmOHXNvfFhxt1gslizHWu6Nj7SJu4j8VUTWiMjcgP3niMjX7mu6iPQ29i0Vkf+5ualt3kmLxWKpBVbcGx/ptNwnAcfH2f89cLhSal/gDuApz/4jlFL7NeSc2A0Fd5Eui8WSpVhxb3zkpevCSqlpItItzv7pxtvPgC7pKovFYrE0Zqy4Nz4yZcx9OPCW8V4B74rIbBEZFe9EERklIrNEZNbPP/+c1kJaLBZLQ0J75ay4Nz7SZrmHRUSOwBH3Acbm/kqplSLSHnhPRBYqpab5na+UegrXpd+nTx8b9l0DbLS8xZKd6Lpto+UbH/VquYvIvsBfgJOVUuv0dqXUSvfvGuAfQN/6KaHFYrE0fKzl3vioN3EXkZ2B14FhSqlvjO3FItJc/w8cC/hG3FssFoslMVbcGx9pc8uLyIvAQKBERFYAtwD5AEqp8cAYoC3wuDsuVOlGxncA/uFuywNeUEq9na5yWmy0vMWS7Vhxb3ykM1p+aIL9I4ARPtuXAL1jz7BYLBZLMtiAusZLpkTLW+IwZMgQfvOb39R3MSwWSwPDBtQ1Xuo9Wt4Sn6qqKl5//XXAqajpcKHbaHmLJbuxlnvjw1ruGU55eXnkf1tBLSaXXXYZu+66K5MnT67vogAgIl1F5AMRWSAi80TkCp9jREQeEZHFburpA+qjrJnCxo0b66RzbduOxocV9wynoqIi8r+toBaTlStX8v3330c9I/VMJfB7pdReQD/gUhHZ23PMCcDu7msU8ETdFjFz+Omnn2jfvj0ffPBB2j/Lth2NDyvuGY4Vd0sQ27ZtA6C4uLieS+KglFqllPrC/X8LsADo7DnsZOAZ5fAZ0EpEOtVxUTOCNWvWUFFRwcqVK9P2GTagrvFixT3DqQtxt1PhGia//PILAE2bNq3nksTiriuxPzDTs6szsNx4v4LYDkCjSCut63ZdCK8V98aHFfcMxxT3ysrKeiyJJdPINMtdIyLNgNeAK5VSm727fU6JGXRWSj2llOqjlOrTrl27dBSz3qkLcbfR8o0XK+4ZTl1Y7mZAj42cbzhkouUuIvk4wv68Uup1n0NWAF2N912A9PmlMxgdLFsXnXZruTc+rLhnOHURLW9e1/bwGw6ZZrmLM74zEViglHow4LDJwHlu1Hw/YJNSalWdFTKDsG55Szqx89wznHRb7lu2bGHSpElRn5Gbm5vyz7Gkjg0bNjBp0iRWrFgBZJTl3h8YBvxPROa4224EdoZI2umpwCBgMfALcGHdFzMzqAtxtwF1jRcr7hlOusX9iCOOiHpvG4HMZ8SIEZHERpA5lrtS6hP8x9TNYxRwad2UKLNJt7h/9913/PTTT2n9DEvmYt3yGU66A+pmz54d9d42ApnP+++/H/lfRCgsLKzH0lhqih5yS1ed69GjR+R/W68bH1bcM5x0Wu6rVsUOddpGoGHRtGlTO5WxgaLrdjo67WVlZVHvbSxN48OKe4aTzoA6PWZrYhuBhkWmuOQtyZNOt/wXX3wR9d522hsWp556KpdddlmtrmHH3DMca7lb4pFBwXSWJEmnuP/www9R7229blgsWLCAgoKCWl3DWu4ZTjrFffXq1THbbCPQsLCWe8MlnWPu3rpt63XDYtu2bbWu21bcM5x0BtRZy73hYy33hks6x9x1lLzG1uuGxdatW2nWrFmtrpE2cReRv4rIGhGZG7A/cOlHETleRBa5+65PVxkbAtZyt3gxA+isuDdc0umW99ZtG0vTcFBKZba4A5OA4+Ps9136UURygXHu/r2BoT7LRjYarLhbvJgpgu00uIZLXYq7rdcNg4qKCjZt2kRlZWXmirtSahqwPs4hQUs/9gUWK6WWKKXKgZfcYxsl6YyW17nJTWwPv2FR26AbS/2RzjH3eG75kSNHsscee6T8My215/DDD6d169ZA7eNp6nPMPWjpx1BLQmqybWlI78It6Rxz97ue2QjYRWQyE9Mtn5+fX48lsYTlX//6F1dffXXUtnRa7uvXR9tV5mf85S9/4dtvv035Z1pqz4wZMyL/Z6zlHoKgpR9DLQkZ2ZFFS0POnDmTkpISXnrppci2dLrl44n7e++9R0lJCVOnTk3pZ1pSi7XcGwYnnXQSDz30UNS2dAbUea9p3fINj4Ys7kFLPzbaJSHPO+881q9fz9ChQyPb6kvcjzvuONavX8/gwYNT+pmW1GLFPfNYsWIFN998c0LPVzot98rKSvLydqQxseLe8GjIbvmgpR8/B3YXke4iUgCc5R6b9fg1BvUl7rosVjwyG+uWzzzOPvts/vSnP8VkifOSzjH3ysrKKHGwsTQNj9pa7mnLUCciLwIDgRIRWQHcAuRD/KUflVKVInIZ8A6QC/xVKTUvXeXMdNIZUJdozB3sVKtMx3a+Mo9t27YBiWNW0m25N23alE2bNqXtMyzpJWPFXSk1NMH+wKUflVJTccS/UZHIcq+srOTaa6+loqKCP//5z7X+PD9x9/bwrbhnNlbcMw9dj/0W9FFKRbane8zdtNytuDc8GvKYuyUEXrf8/fffz8MPPxy1vaZYy71hYqPlM5t44m52nuvCctdYcW94NOQx90ZNWVkZw4cP51//+ldkWyLL3XTRp2IMzYp7w8da7pmHrsd+ddSsc3U55u6NpclmFixYwFtvvVXfxag1RUVFtTrfrgpXT/z1r3+NvOJVOFPczTWaU9EgWHFv+Fhxzzx0ffbzrlVWVtKkSZOo/brOffPNN/To0YOcnNrZXEqpGMtddzRKS0trde2GwN57OwlNG3pHRj8nNcVa7vVE2IQ7ZgNhVkzdIFRXVzNmzBguueSS0NfUWHFv+Fi3fOaRSNw1prjPnTuXnj17Mnbs2Fp/vhZyP7e8DvZrCMyYMYOtW7fW+PxUDF3WJ3bJ1waKX6/Sb5vpivez3D/88EPuuOMOnnjiCV555ZWkyuAn7u+8807UeyvumYc5lmst98zFT1zMzrMZULds2TIApk+fXuvP1fXadOuOHz+eioqKWollXVFRUcGFF17IIYccwsMPP1zj6zT0jKW17bhbca8nwrqMErnlzQxyyfbK/cT9rrvuiipbtor7hg0buO+++3wXz8l0zN/HinvmoX8fs2OuCRpzjxeElyy6bfAuKjRu3LgGYbm/9957TJo0CahZbFFubi4Qm1+/oVHb4Rkr7vVEWMs9kVvezEXs15jEI2gKzvfffx/5v7ZBHZnKlVdeyXXXXcfxx8dbuDDzySS3fIhlngeKyCYRmeO+xtR1GdPNf/7zH+bOdW4/Gbd8KsVdf4ZX3L/77ruMstyVUixatChmu/ZiQM0Erm3btoD/qpeNiVDfnIi0E5EbReQptwL/VUT+mu7CZTOpsty3bNnie2wYgsTddA2morHJRGbOnAnAV199Vc8lSZ4MdstPIv4yzwAfK6X2c1+310GZ6pSjjjoq8n8iyz2RuJeWlvK3v/0t0lkIS5C4L1iwIKMC6p5++mn23HNPPvjgg6jtK1asiFjfyRossEPcG7rlXlvCdoveBFoC7wNTjJelhtRE3P0sd9PNlirL3RT3TE9buWjRoohQJ0NJSUkaSlP3ZJK4h1jmuVER1nKvrKyM1DPTUp00aRK//e1v+e1vf5vU5+rP8EZbz58/Py0Jc2rK7NmzAfjf//4XtX3FihXstNNOFBQUWHGvBWGnwjVVSv0hrSWx+BJkuevGwFyTvaaW+3vvvcf06dN55ZVXmDt3LosXL475nEzkrbfeYtCgQYDjwUgmo1NDX0FQk0lu+ZAcLCJf4SwGdU1QamkRGQWMAth5553rsHjJsXTpUgoLC+nYsWOMcNZ2zH3yZGdJjZrW665du9KiRQtGjx7NmjVrmDRpUpQxYGbLqw/0s+u9vxUrVtClSxc2bNgQWtyrq6sZPnw4I0eOjHRqNm/enNoCNzDCWu7/EpFBaS1JIyNV0fJmZa1pI3DkkUcyZswY7r//fgCWLFkS8zmZxs8//8yJJ54Yea9zaIdF9+4bOnVpubsLOdWGL4BdlFK9gUeBN4IObChLOXfv3p1OnToBjtCb1HbMXXukalqvi4uL2bRpE/fccw+HH344EB1PU991O564d+7cOaHl/uyzz3LDDTdEzpk0aRJnnnlm5HoNIXgwncQVdxHZIiKbgStwBH67iGw2tltqQHV1deix3nhj7kqpKMs9GRdWdXU11dXViEjEFdi1q7PSrinumWq5f/PNN1FlS9Z916JFi8j/27dvT1m56pp0We4i8qGIdDPe98VZsbHGKKU2K6W2uv9PBfJFJDvGR4B169ZFva/tmLuOp6mpuJtLvmrvx3fffRfZVt91Wz+73u9pzZo1dOzYMaG4n3feedx9993Ajk5L165dI/dvxT0OSqnmSqkW7t8cpVSR8b5FvHMtwTz44IO+aWeTjZYvLy/3nTcbBn2eDlyBHeJulqO+GwBwol7NTgzA8uXLo96bHZ94bNu2jdWrV0c1sg1tbM4se22ny8ThLuBtEblERO4ExuOu3FhTRKSjuOrldhZygHXxz8osFi1axDXXXONbL7xClMhyj+eWr6ioiJxf01gaU9x32WUXILPEXZfPuzjWxo0bKSkpCT3mXl1dHRH3bt26xRX3DRs2MH78+JRlr1NKZWwmvLDR8v8Os80Sjuuvvz7qfTz3WDzL3St4yTQCfg1A8+bNadWqVeiy1QU//fQTnTp1Yo899oja/sMPP0S9j3fva9asify/yy670KlTp6gEF3UxNvfzzz+npBFYu3Zt1L2ma8xUKfUOMBp4GPgtMEgpFXeBcneZ5xlATxFZISLDRWS0iIx2D/kNMNcdc38EOEtlassYwCmnnMIDDzwQ5d0Cp+PtfQbDWu5+AXWpCJQ163bHjh0Bx32tSXfdnjx5Mq+++mrgft2emdPz1q934jH9xH39+vWcddZZkWM0GzdujHRaunTpEvleve0jwOjRo7n44otrFITrx3XXXUdOTk5GCnwit3yhiLTFWZO9tYi0cV/dgJ3qpIRZiLdS6Qc4keXuFXdvz1QfG8aK9WsAgBhxr+/e/ZdffgnAjz/+GLU9rOU+YcIEOnTowLhx46iqqoq4Ts3GOd1zf999913at2/PFVdcUavrzJkzh3bt2kXda7rEXURuxhkXPwy4FfhQRAbHO0cpNVQp1Ukpla+U6qKUmqiUGq+UGu/uf0wptY9SqrdSqp9Sqvbp2OqYoMVeVqxYkbTlHs8tr+t2Tk5OStzyOl+FOXU23XX75JNP5vTTTw/cr8XXjJdZu3Yt4MTEeMX93nvv5eWXX+app56K8mKuW7cu0mnJyclJaLl7P7M26DilVHyXqe4gJLLcLwJmAXviBMPMdl9vAuNSWpJGTLyeubnP65b3Przl5eU8++yzFBYW8o9//CPuZwaJuzdpTX2Le1DAWFjLfdSoUQBcdtllUeeYwxF+jUAq81LfcccdADz66KO1us6zzz4bsy2N0c4lQF+l1Ayl1JPAccCV6fqwhoJXfDV+4l6bMXd9/datW6fEcs/JyaFJkyZ1Ku6J0LEufuLuZ7nr45o3bx7V2V+8eDEbN24EnHuKJ+46kj7V8/1T4QVJdS78RGPuDyuluuNMWeluvHorpR5LaUkaCX4/oN6WrOXudTtVVFRw5ZVXAnDaaafFLUeQuHvTzda3W978TswKqcfJtfibjYDfOFhOTg7ffvtt5L35XXobgVWrVtG0aVNGjBiRgjvY0WDVFrNDokmjW/4K9/o93ffLlFLHpOXDGhD6+zZFEpyhndqMuet6li5xB6dum0NQ9S3u8Sz3eOLesmVLVq1aFdk+aNAg3njjDcD5LoOi5aurqyPiHjZGJyypyB+Q6hwEYaNxfhSR0zyvo0SkfbyTROR4EVkkIotF5Hqf/dcaqSjnikiViLRx9y0Vkf+5+2bV4N4yEm+jAPEt93gBdX6W+69//euoY4JoKJa72YHRvXPYsShE586dgR2Vtby8nF69enHWWWdFXaewsDC0uL/44otUVlYyceLElNxDqhaw8AueS1dAnYicBMwB3nbf7ycik9PyYbXk7rvvZp999qmTz9Lft7cel5WV1WrMXW/X4q6f+1atWqXELQ9O3TbLVN8dd6+4L1++nE8//RRwxD0/Pz+qvLr+r169OmbcXVNVVRW5f7PtmDdvHrm5ubz//vtAZop7nVruBsOBvwDnuK8JwNXApyIyzO8EEcnFcd2fAOwNDBWRvc1jlFL36VSUwA3AR0op81c7wt3fJ4l7ymj8KnxYcf/iix3xTEGWe5cuXSLv440rhRX3+m4ATOH1E3d9v/o7nDlzJvPnz+fvf/971HWKiooi420Q3VHyjrl703bWFu8UqZriJ+RpdMvfCvQFNgIopeYA3dP1YbUhJyeH+fPnp2wcNR5BlrtfQN2jjz4a82zpeqeUinLL6/+9AXWtW7emsrISpRRr166NsliDaGgdd10X99lnHx588EEgesz9m2++YcaMGZHf99prr+XCC/0nbgS55adNmwbsaBNT4ZY3vYMNWdyrgb2UUkOUUkNwxLoMOAgIylzXF1islFqilCoHXgJOjvMZQ4EXQ5anQfHMM8+w5557snTp0tDifueddwLBP7hpubds2TJyHfN4v2hRTUNrAGBHMExZWRlbtmwhLy+P9u3bR7ZBdAfAnL++bt06br755sj7eJZ7qsVd06ZNm9DHVlVVceSRR3L55ZdHtnnd8r169eLQQw9NWfk8VCqlvGqZeSHBwO677w4QlVkxXSQj7mVlZYwYMSJKBB5//HGUUlGdZtPa9HPLg9MO7L///uy0U+I45oZWt3Wbpb/TNm3aUFRUFBH3nj17csghh0TVbW25P/LII1EzaYLc8l4xj9c2hsUsT4MbczfoppQyJwOvAfZwreygEnUGzJDmFe62GESkKc6CE68ZmxXwrojMdlNR+iIio0RklojMytT1e88//3wWLVrExRdf7OsO8hP3m266CYgv7qbrTh9rHh8viUOmNADvvvsuffr0YcGCBb77/Sx3/Tu3a9cuMoamv0OzwsUb6zYru/4MpRRnn302V199dfI3EoJkMq199dVXfPDBB1FBeKbl3qFDB77++uuY/OEpZK6InA3kisjuIvIokJHR7T169ADqRtw1Xovczy0P8PLLL0c1/FOmTOHdd9+NOnbZsmWRZ9Ur7rpul5eXRyLCE91nptTtROjOt26z9HoPAwYMAIgZc/ebsjps2LAob6XZUdq2bVukY+VNVOU3PJosZnlqa7kvWLCAiy++uLZFiiKsuH8sIv8SkfNF5HycaPlpIlKM67bzwc9fGNTzPwn41OOS76+UOgDHrX+piBzmd2JDSVMJsHDhQt8G4JJLLvENAvPOaTYxLfcgca+J5V7XAXXHHXccs2fP5txzz/Xd72e5m+KuA+p0p8ns4B177LGBn2t2snRD/fPPP/Piiy9GuXdTGeRiZsVLhNn5UEpx7rnnRqLuwfHWpDkv+O+AfXA8dC8Cm8nQaPnddtsNICqmIl14LXftTTEt9759+0ad432GFi5cGNNp116lIMu9vLw8YrVrF3MQmTbk5hco/OWXXzJrlhNKpb83/Tvqtdy94u7XFjZr1ixqRo3pljeteK+4p2L6q1me2rYTp556Km+++WbkfSrqdtiFYy4FhgD9cUT7GeA1NwHFEQHnrAC6Gu+74CwW4cdZeFzySqmV7t81IvIPHDd//Kc6w1m6dKmv5f7JJ5/wz3/+M6YSfPnll4GW+5lnnhlJTGH27hua5a4xLW4Tr+U+d+5c+vfvD0Rb7rNmzeK1116L+g4XLlwY+Hl+bnm/3vzWrVtj5v4ng1kev2j3IMzfcd68eTz//PNR+4uLi2tcpjAopX4B/ui+MpqmTZvSpk2bOlm/W3e6br31Vv7+97+Tl5dHVVUV1157Lccf76x2O23atMjQTlFRUUwd/v777wPrdZDlXlFRQevWrVm5cmXC2IKwHfe6qtvl5eUxHibtmYQdz3ppaSknn3xypEPjFXczGRU4w2d5eXlR4q4FPS8vj8rKSrZt20ZBQUFaLHe/tT5qirftrzNxd0X8VfcVls+B3UWkO/AjjoCf7T1IRFoChwPnGtuKgRyl1Bb3/2OBBrv2c+fOnSPzMoMs8X//+98xvb+lS5cGNgJr166NuPJSabnXl7gHVQ7zHrZs2cLIkSMjFXWXXXaJVOwnnngi8NoDBw6ka9euUfPEzd9BN6R+jebmzZtrJe41rfRm+cxAQE0ac8r/kzhj60qp/0vLB9eSwsLClEdA+2FafPPnz4+qL2+//TYQ/duYbmLN4sWLA+u1N6DO7Ljr6ybKmZ5pdbu0tDRG3PVQCux41ktLS6PiXRKln9WrQPpZ7j169GDhwoW88847nHXWWTFj7vVpuf/4448MHjyYKVOmRGb7eDv+qZgFEzb97Gki8q2IbAq7cIxSqhK4DHgHWAD8XSk1z5OOEuBU4F2llPnEdgA+cdNU/heYopR6O5kbyyTMMaGgh7W8vDzmAdm+fXtEHB544IHA65sNgHkNbyPwl7/8JeLazTTXXdDnxEvDeeyxx4Yac27VqlVcgdaf4ec9qG0P3xScZBoAs/H3G2v0/m4p5H7gAeB7YDvOzJgJwFZgbro+tLYUFhamPDGJyeTJk5k5c2aMKPgJpNkwe71p4D8nXmNa7vn5+RFr268zGkSm1e1WrVoxcuRIACZOnMjnn39OVVUVbdq04aqrroqy3L3iHi/IrHnz5oB/Z+rUU0+lW7dujB8/nqVLl6bdck+mbo8fP56vvvoqaqptvYk7cC/wf0qplsksHKOUmqqU2kMptZtS6k53WyQdpft+klLqLM95S9xEOb3ddJV3JnNT9U1ZWRnXXHNNZM6mKUBB1oVfI6AfwLy8PH71q18Ffl5Yy33kyJGMGTOGlStXZlzvPqhyeNer32uvvSLvjz322FBLnjZv3jzucbrB9rOQ60vcTaHyuiMhfZa7UuojpdRHwP5KqTOVUv90X2cDA9LyoSkg3eJ+8skn069fvxiRCBJIU6S85SotLY3UUz3TRVNeXs4bb7zBtm3bKC4ujjy3FRUVEYFvaJY7OIYFwIgRI+jbty+lpaUUFRWRn58fV9zjWe5a3M26XVFREUlW06lTJz766CO6d+8eU49TIe41zRmgzzPrsFfMvb9VTQgr7j8ppfzDmS0xjB8/ngceeCAS9Wn+cFqsDj744Khz/Cx3bbEVFBREIkn9SHbM3Qw6yZRxOb/KUVpayjPPPBN5X15eHmkox44dS+vWrUOJe4sWLeIe99lnn7F+/Xpfy722i8rU1HVn/nYrV8aGqtTBOu7tRGRX/cYdXsvYiNWioqK0irvJbbfdFgluC2rUN27cyO23OyOJ3k62Ke7jx4+Pmp3x/PPPc+qppzJlypQocTfrdkMUdy9ayE0BT4Vb3hRO06jyDrmlYpnnmnbcdRn1/d15551R7faAAQP45JNPal2+sOI+S0ReFpGhZpa6Wn96lrJs2bKo92YDoB+yDh06RB0Tz3LPz8+PG2kdxnI3t4tIxrnu/CrHa6+9FvXeFHc9tzWMWz6e5d6qVSs2bNjA0Ucfzdy5sV7nVFruyXyX5m/nJ+7pstwNrsJZLOZDEfkQ+IAMjZYHx1JORYPt5aOPPorJ6d+8eXMuueQSIHixjyZNmkTEJ564FxQURAJjTX788UeKi4sjv7NZt73X27hxIyLCuHHOch8NSdzz8/Mj8/63b9/uK+5BVqyf5a7rW15eXlTb4O24p2Kee0077uZv/+ijj3LTTTdFTQV+4IEH6NWrV63LF3bgrgXwC05gm0YBr9e6BFmId/zEbNQnTJgAOD/sgQceyOzZswF/y90Ud/0g+xHGcjcbPjPIJ1MaAD/h81rN5eXlkfvQ5Qzrlg9i7733Zvr06Xz55ZeRFehM6sstn8hyT+OYOwBKqbdFZHecRaMAFiql0h+xVkPS5ZYfOHBgzLaCgoJQHTUtzH7iblqYflN4y8vLQ1vuekGk8ePHc+mll2ZExz3RCmem5a7fl5eX+4p7u3btfDtu2uAxO7q6vnktd70WhSYV4l7TjrtpuS9dujRmf20CeE1CWe5KqQt9Xr9NSQmykHjirt0tBQUFvP3225E0itu3b4+pEKm03M3/zVzWmSLumzdv5qWXXkIpxeLFiyP53U1McdeNQFi3fJCFr62rIBK5QBPh7d1//vnn/Oc//0l4nvl7ff/99zH768ByBzgQZ657b+BMETmvLj60JqR7zN0kPz8/VBZD/Wx6hcm03PPz8wMb87DirkVGH5sJQ27eupubmxuzCJS23GFH3ItX3P3yf2gOOuigyHEa03I3t3u9qWHFvbq6mq+//tp3n7duz5kzJ9QzaHbs/IwHPRWwtoSNlt9DRP4tInPd9/uKyE2JzmusmOLuTTWpadKkCSUlJQwdOhTwf9hMcY/nfg5juZvXj2e51+eqcEOHDuXf//43u+++O2effXbELd+2bVsg2i2vOyG1dcsnEvfa9vDN3v33339P3759Oeqoo1i1ahUTJ04MTEhi/nZfffVVzP5DDjmkVuVKhIg8ixM5PwD4tfvK2DUe6lLcCwoKQol7PMvdFPegjnuQW95vwSjYURcyQdy9Q4ze+f5ey1176UzjwrvPi/aqhHHLewlbrx966CF69+7NjBkzYvaZdfvll19m//3358knn0x4Tf17VVdX+96bN8iypoQdc5+As7BLBYBS6muceesWH8ye+ssvv+w7p1I/kPqvn4Wof/j8/Py4SQ2aN2+OiKCUinrgamK5e8WursflFi1aFPl/5syZQHTu/Jq45Vu1alVjcQ9ruX/88ccsX748ZnvQ7IgxY8YwYsQIDj/8cN/ee7zG58wzz+R3v/ud82bNGkjgAq0hfXCyRF6ilPqd+7o84Vn1RCZb7onG3IOGjcJa7qabF4LFvS7rdlhx150XXQfM71XXcb869Le//Y0DDjgA8Bf3RAZRWHHXVrtf9kOzXHq4de3atcycOZOHHnoocEhPfw8VFRW+4p6qYNmw4t5UKfVfz7bULj6bRZg/6tChQ30zpekHL6gBgOho+XiYjYD52Tq38qeffho1nSqTxd20LnRjrS0bP7d8GMu9X79+gd9hvPF4CNcIzJ07l8MOO4ydd945Zl9QtO/8+fMj//tlVovXqbj64ovJf+01GDQIOnUCY7XAFDIXiI30ylDqWtzDPHdBdbuioiJS1kSWeyrF3fusp9Mr5/0t/MS9SZMmocTdjwsuuCBi8PiNuSey3Ldv3x6qbdPX8BvzN+u23r9t2zZuvvlmrr76ap5++mnfa+rzgsQ9VYSNylkrIrvhZq4Skd8AidcebKSE+cHCWO6mWz4excXFtG7dmtWrV0ctllJRUcELL7wQk7c9GXGv6yVfva5DiLbcvW75ML3cDh06BB6XKI1rGMvdFGovQZa7aeWvXbs2srJZ0OfmAANx1ls+8MQTQXuD8vIccT/wwITlTJISYL6I/BcnvzyQ2RnqEon7pZdeyoABAyJDYTWloKAgVCrhILc8hAuWbdq0aSi3vL7vTLLcvTMAwrrlTXH3844EeUI18cS9qKgoSqRLS0t92xsTXQa/Z8uvbq9fvz5yn94gPu955eXlaV2mOJnc8k8Be4rIjzjZq85JW6kaOGEirONZ7v379+fTTz9NStzbtm0bYwFWVlby3HPPxRwfb8zd29Ck23LPzc2N6kD4NZrasqmoqIhxyydK9vD5558DwZ2AVIy5x3PRBom7XuELHNffr371q6iy6M89ECdn81lAZLHPrVuhb1847zw480yIkwOhFtyajoumizDi/vjjj/P444/XWtzz8/NDdSq9dfuWW26hvLycu+66K1SwrGm5l5aWRuqiV9z19TNF3P0Eq7CwMMrSTcYtD46l3rNnT04//fS4Q5Tx3PJdunSJcq9v3749objHGxrw88qtX78+cuy6det8r2kmI0rnYkdhc8svAY725Hy/Evhz2krWgAljueuK5e3dd+nShXvvvZf+/ftHeqhmQ5IP7A3sgdPY7wS0+P3vuX/tWtbiuFY2u68OCxeyTIQ1wFJAL7mXSW55r7j7VRi/MXdzYY4gdt11V/r0cWLA0hktH68MQW55MwJ49OjR/OEPf3Dm4ioFc+dy2v/+x71AT+OcxcDzwPD336fLUUclLFdtcLPUNRj0PHelVLpXywvtlvfW7WOOOYZ58+YB0ZZ7kPfIFHf9HObm5vLLL7+glGLdunV89dVXkTphiruIxGQ9qyuvnDm74/zzz+fpp5+murq6Vpb7XnvtxXXXXef7eebvHc9y79ixY5SY/vLLL5Fg3SB0Gfzc8kGWuz42kbjPmjUrreshJDVZ1pP//WqsuPsSxnL3utL0A5Gfnx8lFsXAwC1b4NJL+RJH2GNshkmTON7vQ9zECLe5b9cAXwKdH3uMbcXFdCJW3L0NTbrd8nl5eQmXdYznlg8S1jPPPJNbb7018j6dlrvpbSgrKwuVbthEgH02baLs8sspmDoV+e47znf3/QS8hCPqn7vbrktjpLyIbMF/4RjBWUMqcE6miPwVOBFYo5SKycIhTiv8MDAIJ2/GBUqplAQMFBUVRTIv+nm6Es27Toaw0fJey90MxDPjaYI6I8XFxZGZMHop4+LiYjZv3kxVVRXHHnssX375ZWTdCVPc/fIg1JVXzhT3Y489ltLSUubMmRMl7uvWrUvKco/nKQkr7tpDoleMS8YrV1pailKK+fPns88++wD+bdWGDRsihtPy5cu5+eabuemmm6LKotuw6dOnx9zHG2+8kbBMYalNJoz0do8bKGVlZZGK+9BDD3HVVVf5HucVd01eXh5FOTkMAS7AyRpUMHcuzJ3LfkA1sAiYh7PU3ipg7JNP8vQLL/DeRx+Ri5NxqAVwYJcutN68mTabN7Mr0B44DuD55+mKs/7uT6+8Ajk5MHAgHH00uZ6EGum03JVSMfNh/cRQV8pt27ZRVVVFbm5upFHwinuvXr0YO3YsJ510UtR2v8YhNzc3YSMdxnI3Gy3dSOlGO0jcuwDHAEe7r/YAjz7q7GzXjtcqKnhy40b+A3i7V6nIOx2EUip+hGF8JgGP4SwJ7ccJwO7u6yDgCfdvrTEbYT9xj5fGNFm80fLjxo3j/PPPZ8mSJVFuXq/lnpeXFzlPu67jeQCKi4tp0aIFeXl5rFrlhDgVFRWxefNmKioqIkmXdLCsORXOT9zrwiunlOKGG26IvNdDGH4ZOE1x/8INCjXn/IcVdxNzvrz3u9XvW7Zsybp165LquK9atYoLLriAZ555hunTp3PwwQf71m0z/mbGjBnMmDGDnXbaiYsvvjiyXbcp69evR0To2rUrP/zwA5dffjn/93+pC2mpjbinZf5NQ+aaa66JWr0tnsvHT9w7AzeuW8fuhx8eWVu3CljYujV7XnEFX7RuzWFXXIFXbsaOGsU3y5bx/EfRntRDu3dn9erVfOt2NnYB9gceOOcccmfPps3ChXTYtAmeesp5iUC/flwP/AsnXDqd4n7BBRfENLp+jbAWd90gxouofeutt6JW4dP4NQ6JImohnOVuNlrff/89Bx10ECeddBJvvvkmZWVlCLAXjoodhBMY19Nzje+Bf7ivaStX8vsePVgWsMZ9pqKUmiYi3eIccjLwjLuE9Gci0kpEOimlah2cq5+J9evXs27dOrp1iy5GKiPpvW75Jk2aUFxcHLO4k9dyN8Vdp0ON9/w1a9YMEaGkpCSSpVB3HsxOsQ7c0oJen+K+ZMmSqOmseXl55Ofn+4q7UiryHb300kv079+ffffdN7Lfm9AmCK/nY6edduLQQw+NGc+uibjrMpuR78uWLePggw8O3WH0ls80GFq1ahXxlobxBiVD3KlwemlXn9cWjPgei4N3WdZ4yQjMcbLdgYnAEuCC9evJ3bSJL4ErgE7AmKOPhltu4YDLL+eSa6+Nuo6OsvZbWObjjz+OesCXAW8A3w4bxuujRtEGeOjMM+Huu+GYYyA/H2bM4C7gfziCc+fGjTB1KqQhb7e5KIwmnlveL9GFV9yDGgG/7WHmKydjuQtwct++DFSKLpMnw6WXcuKDD7IBx9PyV+AiHGHfhPNbXIaT33VX4PfAJ8AZQ4emZL3pDKQzYCYDWOFui0FERonILBGZpV3S8dC/46BBg+jevXuMcKUy77zXLR8UOa+t0kmTJkXeey33eM/fLrvsAjh1W1vuWtxNodTiru85SNzrIkGVtxNlWu7eur169eooL8sBBxwQJYQ1sdzBWZSradOmMedocdfegSBxv+222yLJpfyWnNXfrddy1+56L5MmTUJEIvdv1u22bdtGnoFUi3tcy72WLrpGTzxxr6qqgp9/pvjmm5mP80NUAe+2bs3Br7/OAUccETnW7N2bDUnnzp155ZVXgPheAi86oK4SWNm1K/zhD85r61Z47z0mnnYag4FuwG9LS2HwYCgqgiOPdP4fPBh85nQnQ1BjG88tr6f5mZXe22A1KSiAjRth5UpYt87plGzfTvsFC7gAaMKO8aTdO3Vit/ffZxTBbqiS1asdrwZAdTVs2wZbtsDmzc7fjRs59OuvWYrT241yCD/+OF3df5cBM93X9v3246k5c2Lc7ZpXX301pqKPHz+eBx98kCeeeCLgrAaB31Ce71evlHoKZ4YOffr0Segl1N+XdouuXbuW9u3bR/YnK+5TpkwJnKfs7RQGibvfkFuQW/7ss8/mhRdeiDq+Z0/Hv9OuXTsWL14M7Hj2Tctdu+X1tiBx91qQ6bDcvQKuxd2bGhscV7f5HXnjfWoq7rrD4L1ffQ3dngSJ+6233sqtt97qO2wIO8S9vLycnJycyPc4ePBg2rZty7Rp06JWtNPJuDZs2ED79u2jYrLatGkTeTYTTctNlvSuPtHICcoZ3b1rVx7t3h169CB/82aqgL8AdwHt9tiDD/v1izreFHczAnbZsmWRhiXekrBeTjzxRC6/3Ek2FtUINGsGp57KCJxW+NfAbwoLuXaffWD2bJgyxXkB9OoFRx0F/fs7r52Sc+R89913Ue/HjBnD7bff7us+1Z2kPBxPxpk77wyvvgorV9J82TKexTH/OgMtOncGn0rbDfibd+O338K33xI3YeS6dXDRRXHvpcR9AawFvgHmAyMeeIAXvvySa557LiopxBl77EHVnDlxr+n9HgYNGsRFCcrRAFgBkf4OOKEHsavi1ABvZ2jFihU1FvetW7dy4oknBu4vKCgIrJPe40xMcdfrC2ghev7551m5ciUffvhh5PhOnToBTt3WlqTuzJrPh7bcE4m7l3SIu1fA4425n3zyyVGWu3fYoKZueX1NbxDloYceylNPPRXJM5/skJv3+mVlZTRt2jRqnF+XuWvXrjFt3B133MFdd90V1WFo27ZtJLWtN9dFbbHingI+++wz34bXz3J///77OerFFx1XOKCOP57eb7/NPHf/Tj7TbMz35oNhWgzJiDvAI488AgSvLqaA/wILCwq4dtYsWLUK3nrLEff33gM3yI+HH3ZO6NYNfvUr2Htv2Gcf6NEDOnZ0Mqj5uJuGDBmy4/6A9qWl9AG6fv01F7JDrHcCDv/971mFE3SWA/Dpp84Lx1KOStHzyy9QXAydOzvzv5s2haIiNldW8vpbb1GGE5QowPHHHUdRYSFvvvkmuNuKi4vZarji8/PyIov7IOJcu3lzrrn9drYAZ4wYQXlJCZfdfTcrAVOSR1x9NQtuvjkm25PfEp+JaNOmTdLnZCCTgctE5CWc8INNqRhvB39x1+lJITlx19PVgghruXsD+7znNWnSxDfSW6P3lZSURFzo2prVLnsIb7l7qQvLPWjMfdiwYVx00UVRyyzX1HIPEncvQ4cO5dNPP2XAgAGce+65vuLu7RD4ibs+pry8PEbcdTn9xH3cuHEx7XSbNm0i8Rd77bVX0C3WiLSKu4gcjzP1JRf4i1Lqbs/+gcCbOMO7AK8rpW4Pc24mceyxx8ZMf8vPz49yGecBW665hsI//AGqqqBrV3jiCWTwYOYZD2deXh4iwuuvv85pp50GEGpqVTJueRO/RuCGG27grrvuAowGoFMn+O1vnVd5uSOuH3/s/J0xA5YudV7//Gfsh7Rs6YhsQQE0aYIS4d1vvqEp0BRnuh/33sulAG++yUjv+d98Q3OcYYuVQMu996Z4990dAe/cmeE338wP1dX8CMzfuBFatHCE2GD1N99w4VtvRW2besUVdOzYkYtccQc46cgj+adxD1JVxQVPPhnTgDxw++0AHNCnD7m5uSyJvWvA//eqibgnSraRCYjIizjxgiUisgK4BXekQik1HpiKMw1uMc5UuAtT9dl+4m6SanE3xSYZt7zZgHs78VoYb7jhBoYNGxbZbgqC33Ogz3vhhRc46qij4or7J598wtKlSzn33HPTMubuFcOqqioKCgqorKyMEv5WrVohInHd8mEt9zPOOIN77rmHDh06MHfu3MBjc3NzeeKJJyLzz/3E3euG93PL6/soLS2NKnOTJk0in+0X1AtEpQGH6HZ7t9128z2npqRN3EUkFxiHM+NnBfC5iExWSnlzdX6slDqxhudmBH7z2ps0aRLpeXYDXgAK77/fEZ3f/Q7uvBN80k76TfEyG4GgCM1kLXeNXyMwduxYrrvuOlq3bu3fuy8ogCOOcF7gdFYWLYJ583a8li1zrP3Vq2HTJuflIjiR+5F7AspbtuSbTZvI7dSJOatWsRJnqt9K4LHXX6fvaaexGkfgF/3jH+yxxx6R85+//fYdIprEikp+85WHDBnCtm3bmDNnDuvXr48sxhMU7JKTk+Pbu9f4BeTVZEnHdCdmSQVKqbip39wo+UvT8dmJxD2ZaPlE4l5QUBDlig9yy/tZ7vn5+YwdO5Ybb7wx5nj9DPfu3TuqE2DW7UTTIIcPH87QoUMDOxz9+/ePCNKLL75IixYtOMKI76ktun1q1qwZW7dupayszDfFtr6PeG55c1+8LJ1du3ZlzZo1nHHGGcydO9fXLa+NFdjRQfITd29d9qvb+h43bNhASUlJZF6/abnvFDBM6X0O27Rpw0033cSUKVNCeVuSIezCMTWhL7BYKbVEKVWOk4vj5Do4NyMoKCigqKiIM4A5wMGA6twZPvgAHnnEV9hhh9iaPfQw4h5vvfd4BD1QurH85ZdfOOOMM9iwYUPwRXJzHXf86afDrbfCK6/Af/8Ly5dDWZkzbr1iBSxZAgsXsu3zz9kFx83eHMct/8K993IgcHOfPlwA3IjTu/sH0OKYY/iRHfO9vY1AmDzfXbt2jdnml2msqKiId999l5UrV0ZEOF7EvIjEFXe/LFU1/a0swXjF3fu8xrPcP/vss6jEK961v714hSYZyx121G2v5azrttc6b2fkngjjwUnkltflffnllznyyCMTXi8ZdF3QCXOCxF3/XvEsd7NDG2QJm+hOlvf3GTlyJNdff33MZ9dW3NevX0+HDh0i203LPSiY2uvJa9u2LXfccUdknn8qSae4h532crCIfCUib4mInkuQtikzdUXT/HzyrrySl4GWwOtA5ezZcPjhcc+rqbjX1LILagRMa+SVV17hdtcNnTQ5OdCmjeNC794devaktHt3fgB+BvSkEF0pvFPAJk+eHGOteDNthRH3oqIiNm3axDXXXBPZ5g2MAseyyc3NjcxdhviBN/HEvaqqivXr18dst+KeerzPiFfM44n7wQcfzK677sqgQYOYOXMmpaWlccUkrLh7j/PWba9XTDf83nsxLfcwEdVbt26NK+5BnoZUoNuns85yVgTfY489fMXdr52Lly0yjMta/w76e+/Vy0mSeIgno6OIUFRUFFOvy8rKYtrXROJudrzMxDlBiwH5We7pIp3iHmbayxfALkqp3sCjOFN/w57rbFTqKaVUH6VUn3ae7Gr1RTvg1Y0bYdw4yoCLgSEQk/3ND/1gJivuNSWMuAORebapwO8e9D16xb1Dhw4xjafXegk7J7xFixYxGcTM+1y5ciWdO+/oQ+pja2q5l5eX+1ruB7oruDVr1oyDDz44VNkt8fFa7t5G1BT3oFS0b731FsOHD6e0tDQSqe6H1yJPJqAOdoh3WMs9Gbc8wKJFi1Iu7suWLeOyyy7zHYM20fcwatQoNm3axF577RW5b7Me6e/MHKKK13EJU2avuPfv35+lS5dy/vnnxxzbtGnTKHGfNGkShYWFfPPNN1HHBY25V1dXs379+qgZGYWFhRGxDvKw6Fwden9DFfeE016UUpuVUlvd/6cC+SJSEubcTOUAYBZwUFkZ7LQTp7RuzXh3X5gHNJHlHi9X+W9+8xvAWf0qLEGNgLfBSmVubj9xD7Lc/RqzoLIFjXOZmL9BQUFB1HRFb4Putdyrq6u5/fbbo6YrxRP3srIyX8u9U6dOLFmyhOXLl/Pvf/87YZktifGKezzLPd4wSosWLSgrKwu0vCC2zgTVa+9zmgrL3Ssafh67JUuWpEzct23bxvbt27ngggsYN24cn332Wdzj9XdrrnbnZ7nr78Ysv5+4n3DCCfz+978PXV792ZpddtnF9zvyivurrzo5QXVKX3CSgHlzD4Bzj1u2bKG6ujrKcm/SpAk333wzt912G+edd55v2XSuDi3qNQ2EDkM6xf1zYHcR6S4iBTirVk42DxCRju5iEohIX7c868Kcm4mciZNhbGdgTlERzJrF/5KMcq5pQB3AhAkT+N///pfUkpZBjYC3QmSKuMcbfthzzz0TfrbZ4OpFer799tuo9dU1Xst9ypQp3HLLLVEBSNu3b2fMmDG+n2Va7t4GtXv37rRq1YqioiIyxePUkPFGVsez3MvKyli4cCFFRUUscBdX0rRs2ZLS0tK4aWG9z2C8YSFzcRD9DCQ75h7Pct911119PzfMmHsYmjVrRrdu3UJ7DPVxpnfDb1lrvzL4ueWnTp3K/fffH+qz9feZaIlscL5j85nwrgMAcNhhh/meW15eHum0m+JcWFhIcXExY8aMIT8/P2YqHMSKe4O03JVSlTjZNd8BFgB/V0rNE5HRIjLaPew3wFwR+Qp4BDhLOfiem66ypoLrcKL+ioAJwOiePaFTp1APmhnZ620AILy4t2rVil69esV85uDBgwPPCdvDDzMnVinF+PHj+eqrr+Iel4xbXjdmuvH262TonN6R+ehxMBsV3ej06NHDd4xVWxJa3FevXh1zzJVXXhn4WXfeeSdbtmwhNzc3rssxUZTsOeecE3e/JVrc27ZtG2O5m2J/4oknctddd1FaWhojHM2bN48sRzp+/PhQsSbxxNIMuNLouu19loMsd/P93nvvHbXPHEYyScZyN61VP9asWROp/0uWLGHq1KmBx5qWuybemLtJbTO0aXEPk81OW+433XQT9913X6Q8YaZMPvnkk5FOlSnOXu+RXxIzHRemhyPSabmndZ6762qf6tk23vj/MZxVpEKdm5FUVjIOuMR9ezXwENDP/aHDTG8wK6iu8DWx3DXmZ7Zr145XX32VmTNn8uCDDzJ58uTAY73k5uZGKvVrr73G+vXrfXuaP/74I2+//TbNmzePrH4Uz9LX97Dffvtx33330aNHD5YuXQoEi3ubNm0ii2d4effdd/n888/jZhUz70mTqOOlG+Hly5dH8kN7iefi1YmCWrduHUlU4UfQb3D55ZczcOBAjjvuuLjltETXkbZt28ZY7qawTJs2LZLxTWcH01RWVkbE/aKLLmLBggWBnhlNPDe3nwcgaDxWP0t++++8807222+/mPpnjvmaJCPup5xySsIZAro+6/HrLVu2+Frafpa7rsPmDAa/DlFtxV23VWEt902bNnHnnXcCRLydYbLWmRa5+Xt4fze/36CsrAwRoWXLluTk5KQ1uDadbvnsZ9s2OO00LsHJTHY6jrDDjkqd7NxF/YAGnTdgwACAmFWvTMyH+8wzz6SwsJDDDz/cNwNSMo1AkAXZt29fRowYwYgRIwKvZWI2AEcffTTdunWLfF9esdQVJt7c8I4dO3LSSSeFmjHgZ7kHoRubUaNGceGFF/K3v8UksA1FSUlJJDDHr3MU9Bu0a9eOU089tUEksKlvzN9V5+v+8ssvOfHEExGRQOvUXMEMnIAnLe4QTijiWe5+z1iioDi//TfeeCODBg2KKc+gQYN8r5FMvV6xYkXCQDlvZ113jrz4We66A/Ljjz/6lm/atGmMHDmy1ksZJ+uWN+9BlyeMuJuYHj9vmxz0GxQXF9OkSRPatGmT1pkLVtxryk8/oY44Av75T9bhrMn9qrFbV+qairuJOTZ30003MX78eD5106/6YT4wicbXkmkE3n77bd/jtEVtJvOZOnVqwsVh/MblvGjRr0niFz/MewpruWu847NhMVeL8hsjDfoN4k0NsgSjLfcDDjiAKe5aCEGuZG9984p7GBdvsuKeqLMWT+TMZ+Xjjz/mggsuYNGiRfTu3TvwOC/e8lZXV8dkToNoQfeKu9fjofGz3P3E3SyDzvle20RNyVruJmHE3S+zpJkG2NtxD/oNmjdvTo8ePWKWCE41VtxrwpIlcMghyOefswQ4BPBKrRalMA+aSSJxLyoq4qKLLgoVGQ7RwT9+105V4I2XwYMHR6L3vfg1AEEBTLr8Oriltq67mljumpqOj5m9++7du8ctk4kV95rRqlWrGi/xunnz5qiMhOmw3IPEXQtFPGvOLM+AAQMQEfbYY49I3dbPTLLR8n5DXuYQoFfcg75ffY5ZTh13EGS5p4raiLv27GwyMml6OeCAA2KMjHgdknid9rFjx6Z9poxdOCZZ5s6FY4+FVauYBQwGYvu86bPck8V8+PyuE698tV1YYurUqSilYiqAn7gnihi/6aabKCgo4PTTT69VmWoy5q7Ry24mi2lV6WEVE2u5p5amTZv6pps99NBD+fjjj+Oem8gt7zdGGk+MkxH3GTNmxMyz9hL0rOi63aJFixolsfETd9MT520LgmJNKioqyM3NjfqM4uLiqKlno0aN4uyzzw4sX01J1i1vMsddpdGMjWnVqlXUe6VU1O+ZKNgyJycHEUEpxUEHHcTWrVuZN29epF6nO6W0tdyT4b//dTLMrVpFWf/+HIG/sENqxb020yXMSpasuKciYc6SJbFLqujrmtZ6SUlJ3EayqKiIW265JSZaOFmSccvX1EtgulV79erF+eefz8cff8wNN9zAJZdcEnO8+RuY30mq13duLBQWFvpaljvvvDNbtmzhwQcfDDx3w4YNVFRURH4Hrzgff/zxkf914xzPcvfbF+R279SpE4cnyGAZ9Mya4g7Je+T8xD1ecqigMfry8nLfMmrXfElJCU8++WTgWg21IRlxD8pjYFruXivdFPchQ4Zw8803A076Yr+ptLDjdzCX+42XQyGVWMs9LB98AP/3f7B1K5x0Eh8OH87WOOPeqXDLT548mY8++ijuVLZEJHLLx2uY/Crw5s2bk4rw9HNz+Vnuubm5dOjQIaWZ8Pww3YuJgllqKq7NmjWLiMvdd99NTk4OAwYM8LXaIbohbt68eSQmwVruNcMvtSg4neRmzZrFHdLSFr9uiE0R6tmzZ1SCqLy8vIilmgy1cUmHFfd4ZQpruZviHmYpVL3dz1vRvn17li5dmtYOq27fwsRJmGPlJmZEv3cqmynuZht40EEHBX6OfkbiLZCTLqzlHobJk+GEExxhP+cceO01vkwQXJUKy/2kk07i/vvvr1VEZW3c8n6Y42ZhiJeb2VsJvRninnvuuaQ+KwzJDHGEWazCD7NnHrSAhIn5G5gV34p7zQiyChOlBvW7htkoT5w4MSruQgtoTernuHHjEuaD8COovup2Q4tOvOe8JuLurcd+Hf/Vq1fz5z//2fczdSKedD7TyVjuQbnqzWlu8Sz3MPUadjwjpuVuxb2eUEpFu/Sefx5OO81Z3ezii+GZZyA/3zdnuEkqA+pqQ6rF/dtvv416n2gKTTLibkajXnXVVWlJ3pLM97v77rvX6DNqI+777bdf5H8r7jWjpuJuDonoa5j1JyidbE0CTy+55BL23XffpM9LZLnr5y1evfQT94kTJzJq1KjItR555BHMhbi8nhC/eq3TxOr86Sa6XHVhuddG3E28lnt1dXXkNw/rvTTd8no4pq7c8lbcPQwfPpymTZs6S0A+/jgMG+asV37DDTBuHEqEqqqqhPMhUznmXhtSLe4nn3xyJPikqqrKdy17E79GQH938Sz3dFWAZCz3MA2AH2bZwzQC5m9gzlu289uT46KLLmLYsGGBY9p63DfoezWFx6+D4K0rWtRrM6skWcJa7vHE3VteXe8mTJgAOEvBXnHFFVx77bWRY0zB7tChg+/149WtuhD3ZCx3v1krXvzc8towqY24W8u9ntCJSr4bMQIuvRSUgnvugbFjUThTvPbaa69IFOUxxxzDwIEDY66TieKe7FS4IMaPH09VVRV77rlnlKXph1fcN2zYwO9+9zsgVtzNHNrpqgDJiHtNGyLzvGQt9/bt2zNmzBiGDRvGzjvvXKPPb6yMHz+eZ555JiLM3umVepw1SPwTiXsqLfeaEtZyj/ecm8/b8uXLo/IwwA4hN7PWaU9lUVERbdq0obKyMiZoMV4+/rq03MMuAa3X4vDev8bPLa/H5MPm3TDFXXtqajpNM1kalbgvX77cd4qMl7uBo//zHxCBJ5+E667jrrvuoqSkhLfeeotvv/2WefOcVPfDhw/ngw8+iLmGtvqSdcuncoEWqF20vDk97d57743837FjR3766ScWL17MDz/8EPfzveL+5ptvRv73irtZYTJB3AFuu+02+vXrR9euXRMf7GI2ismKe15eHrfddhvPPPNM2qfKZCtanI466iieffbZyHbdWQqy3M3tyYh7OrOMeQkbUBfPcm/SpEkkdqC4uDhwiNFsK3W71LFjR/Lz85k/fz5Nmzbl+eefjxwTLwJe14N0zG/XaHEP+3uMGDGCXr16MXbsWN/93k6gmezHu0Z8EKa4ayMwKLI+1TQacZ8wYQI9e/bk4YcfDj6oqorxwB+AqpwceOEFcMehbrzxxqjlO3VgWVBP9IQTTgAyy3JPVtynT5/OPvvsw6OPPhrVWOj1jMPgbWTM3r1X3E03WLrEPdnvd8yYMcyYMYP33nsv9DmmuCebEjedjV9j4cgjj6Rt27Y88MADnHvuuZHt2v2cKnHPJLd8MmPu4ASOTZkyhdatW3PPPfcAjii+8sorkfUh/OjYsSN5eXnMnz8fgHPPPRcRYeXKlXHrVthy1Qb9HSTb2dIi7j1Pt08HH3ww4HhpNT179gx1bf175efnc8ghh/DHP/6Rhx56KMFZqaHRiHu3bt3Yvn07f/rTn3zX2Ka8HM45h4uA7cDfzzkHzjor8Hp66T6/huLss8+OLAaTSQF1ybrle/Towdy5c7nssssYPnx4ZPs333wTanlVgNNOO41hw4ZF3puV2+tFMcU9XWPuNf1+441/n3nmmXTt2pV+/fpx6KGH8sILL9CpU6eEa19rvJa7pXbsu+++rF27NuYZ9Vtx0bTOzI66n4vZ+9vUx28V1FlMZswdHLHV8R3HHHMMt912G9XV1YwcOTLwnD333JORI0f6tmlff/113OxuYctVG7S4J9vZ0s+Dt23Iz8+nqqqKTz/9lB9++IHrr7+eefPm8cUXX4T2qpmWe05ODn/6059CdwxqS6NpSY455hj69OnDrFmz+Prrr6PHyX/5BU4/HaZOZTNwInBUyGAqP8vddFWFbQAefPBBrr76au66665Qx4elNm55k/bt2/Pyyy9z5pln8tprr4X+/Orqap577jmWLl3K6aefHlUpvJ2sTHTLa+KJ+/333x+1sp+IcMopp4S+thX39DJu3Lio5XpNQW/ZsmVkDPRXv/oVn3zyScwxmiDLPZFgjRw5MvTUqZqSjFveD1334gn0Nddcw4UXXsjEiRNj9o0ePTrueHqYWIDaksyYu0lQDEZBQUGk/dTDcskm0TLFva5pNJY77Ji3HDXGtGkTHH88TJ1KdZs2HAF8jJN6sbq6mmHDhnH33XcHXlM3+kGNf9gf9aqrrqKiooJf//rXoY4PiymmOvrVdLsl89AlkynPmyTik08+4YorrohK5+gd66sLt3w6xL2goAARibySJZvEXUSOF5FFIrJYRK732T9QRDaJyBz3FX891RRwySWXRKUKNV3u+pmbOHEiZxmeOr/fO2jMPZGQPvXUU9x3331JlzsZtLBpj1ey4h6mbuvvxM9yX7ZsWcRV/9RTT8Xs1wKayW55L2GS4STCnOde1zQqcdfR2Nqlzs8/w5FHwscfQ+fOrHjhBb5wj92yZQvffvstzz33HDfccEPgNXVvNegBScYtn8oH4KSTTgKIarAOPPBAfvnlFx577LHItmR6uWEXTlm/fj1HHnmk7z5zbeyGJO7xgoVq2wiYv3uywziZhIjkAuOAE4C9gaEi4mfqfKyU2s99xU/QnQbMDpi2KA877LAoV7yfuHvrp04/anpt6gs9BKHrTU0t93joti5eOzVkyBBf174+JxMt96COeyrqorXc6wgt7uvWrYMVK+Cww+CLL2C33eCTT1jnzoMFp/d5+eWXJ7ymfuBra7mnmjfeeIMNGzbEjDsWFRVF9WyTGYMO07vPzc2lVatWoSrG1VdfHfXebGAybcw9nkVe20Ygiyz3vsBipdQSpVQ58BJwcj2XKS5a3AsKCgLFPShwbtiwYSilMiLZ0NSpU3nrrbdCZajzw285Uy+6rYv3vAcNP+jrJ5o6Wxv0EqrJDoGkwjALImvFPYSL7hwR+dp9TReR3sa+pSLyP9d1NysV5dGW59Y5c1i3996wcCH06uVY7t26xYw3vfvuuwmvqRuBoAekvhrrnJycmCQMfiTTw9dLN8ajWbNmiEjCivHnP/85ZklYs1Kmaz7sySc7WnPAAQek7JqptNwbuLh3Bsx5PivcbV4OFpGvROQtEfGfZJxmWrZsyYgRI6LE3fwd/SLn6zIqPh4nnnhizKyfkpISjj/++NBDBV7233//hJ13/Z3Ee0aDvHt77rknM2bMSOvwxIQJE5g2bVpg3vggzLY71TNXzGj5uiZt4h7SRfc9cLhSal/gDsA7WHOE67rrk4oylZSU8Cvg8ldeoe2WLXwG8NFH4E6RiRdMEkQicdfu8b322qsmRU47YXrsmsLCwoTLHGorJtHD3KtXr5htZuOazOI0ydCvXz8WL17M9OnTa3wNPTVGU9tGIIvE3c+94U3c8AWwi1KqN/Ao8IbvhURGicgsEZllpkFNFRs3bmTChAmBlrtZn/X2upzPHo9//vOfgV7Fmoq7iLB48WLef//9wGPCWO7eumHSr1+/lIxjB9G0aVMOPfTQpM8zf+sFCxZEfu9U5JnIVss9oYtOKTVdKaWX4fkMqNlKHSHpsXYtHwEdgfeBo4FtRoX2nSIXhyZNmkR6ekHiPnDgQObMmcN///vfmhU6TaxevZrFixcn7cK66aab4t5LmAYAgr0AK1as4Pvvv09rI7DbbrvFzaaViFGjRkWl5qxtI5BF4r4CMLP9dAGiViRRSm1WSm11/58K5ItICR6UUk8ppfoopfqYyZRSTZC4m8+vtmjTGQyWKrS3riaBua1bt464tjWmBy3MmLtfts5Mx7yf3XffnSFDhgCp6czVp7in8xP9XHTBa+PBcOAt470C3hURBTyplIoNwcTp4QOjgPjpOt9/n4PHjCEXx1Q4CygD5syZQ//+/ZkwYUJSU7wg+sGPF03du3fvwH31RYcOHUK52b2ISNyGI15ErUnQlJJMCE5KRO/evWvVOfCSReL+ObC7iHQHfsSpZmebB4hIR+AnpZQSkb44Bkb8VZjSSKdOnSgsLKRJkyZRv6nZYXvnnXd48cUXk/Jy1RcdOnRg1qxZSU/Z0njbsd12242vv/4aSNxxHzduXOi0rJnG2LFjI0HAOi4nFZZ7fUbLp/MTw7jonANFjsARd3PB6/5KqZUi0h54T0QWKqWmxVzQEf2nAPr06ROcu/WHH8jdvp2n3Q/S4SZr1qxh9OjRPPnkk5FDhw4dyl577RUV2e1HUDKMxoxeFCaR6y5TXJzJ8MMPP7B48WL2339/FiRY8jcZsiVDnVKqUkQuA94BcoG/KqXmichod/944DfAxSJSiZMv6iyV6pzLSTB69GiOOeYY8vPzAztsu+66K3/84x/ruGQ158ADD6zxuV5xN70micbczURXDQ1zRlSyaWzjoTsI2SbuCV10ACKyL/AX4ASlVKQHr5Ra6f5dIyL/wHHzx4h7aH77W7a0bcuFp5wS1cO49tpro9bwBTjnnHM46KCDEoq7OS5sxd1BD23Ee5jffvvtuipOSunatWskmUUqMwlmkeWuXe1TPdvGG/8/BjzmPa++KC4ujizokUpvTEPFK2h+GfyCOu7pHEqrS3RfM5UGSFYF1GG46ESkAMdFN9k8QER2Bl4HhimlvjG2F4tIc/0/cCwwt7YFKj7ppBjXgVfYwXHvh4k0N6dr2eU5HfSqSUEP8z777JO2YLm6JJXibn4f6Vw1yxKfhpxjIF2Y+R28LmZvVHq2LHSUSre87ihkleUe0kU3BmgLPO5+kZVuZHwH4B/utjzgBaVUrc29sD2xrl27Bv4Y7777LsceeywQLe4HHHAAzzzzTG2L2OBJtKZyQ3TH+5FKcR81alRkCd10pym1BJMtz2Yq8fNI6rZx1113jVokKVtIpVtet4NZJe4QykU3Ahjhc94SoN6i0OJZ7UcddVTkfzN5xaWXXsr27dsZPHhwOouWsRQWFlJaWhpZG9mKe3jatWuXcAjIYqkPCgsLWbBgAd9++21km67bLVu2ZM2aNbQ3kn9lA6l0y992223stddenHrqqbW+VrI07AG+esD8wU0By8vL4/rrY/L0NBpefPFFZsyYwSh3iVzzu7nooosiAYvZIu7pnJ5lsdQnPXv2ZNGiRYDTid1zzz2jMl1qK7R58+ZZWQ92cxcNS8W9HXTQQRx0ULxJYukjO1raWmJmKzvssMNCn9fQg59qw6xZs6LmxHbp0oV77rknUjFMcTd7rdkyLjd48GCuv/56pk6dmvhgi6UBsXDhQt577z0AZs6cGbNf1+10pYiub8aOHcuUKVMYMGBA4oMzmEanTrm5uVRVVdGpUydWrVoFOEu0VlRUcN9993HnnXdGjn377bd57bXXqKys5G9/+1vMtRqzuB944IHMnj07EiHrdcOb781x5GRTQ2YqOTk5KV+e15IZhAmmzXa0sPktXWxa7gCvvPJK1njkwIn612vdN2QanTpNnz6de++9lwceeIC77rqLX//61xGXkzcg7rjjjuO4445jw4YNbN26NeJy1mRKrun6Ij8/n6effpovv/wyMp3I3Kdp0aIFM2bM4IEHHojJiW2xZBJLly7NWos0GQoLC9m2bZtvQJ0OmtUzhLxrRFgyg0Yn7n379uXVV18FYPz48QmOdmjdujV///vfY7Y3Zstdc95553HeeefFbPda7nvvvTevvPJKXRbNYkmabPEspYKg6b2lpaWAze2R6WSPL6UesOIejPnd2OldFkv2sH37diB6Drwl87DiXgvswx2MGThnE7NYLNmDFndruWc2VtxrwLhx4+jZsyd/+MMf6rsoGYtuACB7IuQtFosV94aCFfcacMkll7Bw4cIGsUpUfWGKu8ViyR7smHvDwIq7JS3o1eEsFkt2YS33hoEVd0taGDJkCABnn312giMtFktD4p577qFfv34ceuih9V0USxxsuLclLXTs2JHS0tKsWQbSYrE49O7dmxkzZtR3MSwJsOJuSRt2fWyLxWKpH6xb3mKxWCyWLMOKu8VisVgsWYYVd4vFYrFYsgwr7haLxWKxZBmilKrvMqQMEfkZWJaiy5UAa1N0rYaAvd/sZRelVLv6LkRNsfW61jS2e25M9xtYt7NK3FOJiMxSSvWp73LUFfZ+LY2Bxvi7N7Z7bmz3G4R1y1ssFovFkmVYcbdYLBaLJcuw4h7MU/VdgDrG3q+lMdAYf/fGds+N7X59sWPuFovFYrFkGdZyt1gsFosly7DibrFYLBZLltFoxF1E/ioia0RkrrHtZRGZ476WisgcY98NIrJYRBaJyHHG9gNF5H/uvkdEROr4VkIRcL/7ichn7v3OEpG+xr4Gfb8QeM+9RWSGew//FJEWxr4Gf88WW7fdbVlbt229riFKqUbxAg4DDgDmBux/ABjj/r838BXQBOgOfAfkuvv+CxwMCPAWcEJ931vY+wXe1eUFBgEfZsv9xrnnz4HD3f9/C9yRTfdsX7Zuu9uytm7bel2zV6Ox3JVS04D1fvvcHtwZwIvuppOBl5RSZUqp74HFQF8R6QS0UErNUM7T8gxwStoLXwMC7lcBuofbEljp/t/g7xcC77knMM39/z1giPt/VtyzxdZtvZksrdu2XtcMu567w6HAT0qpb933nYHPjP0r3G0V7v/e7Q2FK4F3ROR+nCGZQ9zt2Xq/AHOB/wPeBE4Hurrbs/meLTuwdTs779fW6wQ0Gss9AUPZ0bMHx23jRcXZ3lC4GLhKKdUVuAqY6G7P1vsFx2V3qYjMBpoD5e72bL5nyw5s3Y4lG+7X1usENHrLXUTygNOAA43NK9jREwToguPmWuH+793eUDgfuML9/xXgL+7/2Xq/KKUWAscCiMgewGB3V9bes8XB1m0gS+/X1uvEWMsdjgYWKqVMl81k4CwRaSIi3YHdgf8qpVYBW0SknzuWdx6OW6ihsBI43P3/SEC7KrP1fhGR9u7fHOAmYLy7K2vv2RLB1u0svV9br0NQ3xF9dfXCcc2tYsfYy3B3+yRgtM/xf8SJtFyEEVUJ9MEZ7/kOeAw3y1+mvfzuFxgAzMaJJp0JHJgt9xvnnq8AvnFfd5vlz4Z7ti9bt7O9btt6XbOXTT9rsVgsFkuWYd3yFovFYrFkGVbcLRaLxWLJMqy4WywWi8WSZVhxt1gsFosly7DibrFYLBZLlmHF3RIacfhERE4wtp0hIm/XZ7ksFkvtsHU7+7BT4SxJISK9cDJg7Q/kAnOA45VS39XgWrlKqarUltBisdQEW7ezCyvulqQRkXuBbUCx+3cX4Fc46YxvVUq9KSLdgGfdYwAuU0pNF5GBwC04SSn2U0rtXbelt1gsQdi6nT1YcbckjYgUA1/gLNbwL2CeUuo5EWmFs2by/jiLMlQrpUpFZHfgRaVUH7cBmAL0Us6SjBaLJUOwdTt7aPQLx1iSRym1TUReBrbirJV9kohc4+4uBHbGyXX9mIjsB1QBexiX+K+t/BZL5mHrdvZgxd1SU6rdlwBDlFKLzJ0icivwE9AbJ3Cz1Ni9rY7KaLFYksfW7SzARstbass7wO/clZYQkf3d7S2BVUqpamAYToCOxWJpONi63YCx4m6pLXcA+cDXIjLXfQ/wOHC+iHyG47azPXqLpWFh63YDxgbUWSwWi8WSZVjL3WKxWCyWLMOKu8VisVgsWYYVd4vFYrFYsgwr7haLxWKxZBlW3C0Wi8ViyTKsuFssFovFkmVYcbdYLBaLJcv4f+860IIUh20gAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABUh0lEQVR4nO2dd5gUVfa/3zOBIYNEEQREERVQdDGiCCoqoCILooIgGDAroK45rKz+1DXrV1kxomJG1gAoqyCoiCICghgQVJAswpCZcH5/VFVTXV3dXd3TPd0zc9/nqWd6Kp6urlufe+4991xRVQwGg8FgMFQscjJtgMFgMBgMhsQxAm4wGAwGQwXECLjBYDAYDBUQI+AGg8FgMFRAjIAbDAaDwVABMQJuMBgMBkMFxAi4IW2ISFMRmSEim0XkQRG5WUSeybRd8RCRF0TkX/bn40Tkx0zbZKh8iIiKyH6ZtsMPEblTRF5O9bEi0k1EVpTNutQiIi1FZIuI5EbZnvS98DlXSn/zKingIjJQRObYP9oqEZksIsd69hlq3+wBnvXd7PUTPOsPsddPd61rLSLTRGSbiPwgIidFsed57w8rIg+IyM+2+P0gIkNS8uXLl+HAeqCuql6rqveo6kUQujcqInnRDk5lwUkWVZ2pqu0yaUNVxJTRiO+TVaJXmVDV31W1tqqWZNqWRKlyAi4io4BHgHuApkBL4Emgj2fX84EN9l8v64BjRKShZ/+fPPu9CnwLNARuAd4SkcYee44F9vW5xlbgdKCefe5HReSYOF+vTMQS0yRpBXyvJluQIQFMGU2cNJTdCkc0D7pSo6pVZsEqaFuAs+Ls1wooBfoBxUBT17ZuwApgDHCFvS7XXnc7MN1etz+wE6jjOnYmcKnr/zysl8fBgAL7xbDpXeDaGNv7APOAQuAX4FR7/a/ASa797gRetj+3tq97IfA7MAOYAlzpOfd84O/25wOAqVgvzh+BAVHseQEoAnbZ9/wkz7V/t6+9xV6O9hx/qn1skb19vr1+L/tebACWABfHuCe9gO+BzcAfwHWe3/BmrBaCX4FBHtv/5d7Xte1X4DpgAbAJeB2o7tp+mv07bAS+AA7O9HNfkRYqdxm9HlgFrAQucJ8PKAAesMvFGtv2GkAtYLv9XZ2yspddlt4CXsYq8xfZ9+5Z+xp/AP8Ccu3zDwU+s6/xF7AM6OmybR/gU7usTAWewC6r9vaj7Od5I9b7oFvQYz33wPltIsoecLj93fNc+/cD5kU51wvAU8AkrMrUSfa9eRurArcMuNq1/xHAHPt+rQEeste3tn+LvHjfB8/7wF73K/Y71r7GLPs+rbKPrebaN+YzlOhS1Tzwo4HqwDtx9hsCzFHVt4HFwCCffcbZ+wGcAizCKpgO7YGlqrrZtW6+vd5hJDBDVRfEMkZEamA93IuibD/Ctud6oD7QFeuhCsrxwIH29xgPnOs690FYL8sPRKQW1gM9Hmhi7/ekiLT3nlBVhwKvAPer1Tz1P88uXe2/9e3tszzHT8HywF63tx9ib3oV6wWwF9AfuEdETozyvZ4FLlHVOkAH4BPXtj2BRkBzLO/paREJ2lQ+AKuCsQ/Wi30ogIgcBjwHXILl0f0HeFdECgKe11B5y+ipWBW/HkBbLLFxcx9WhaITsB/Wc3m7qm4FegIr7XJQW1Wd79AHS8TrY5W1F7EqM/sBhwInYwm7w5FYle5GwP3AsyIi9rbxwDf2ttG4WjVEpDnwAVaFoIH9Pd52tVREPTYKvmVPVb8G/rTvkcN5wEsxzjUQuBuog1XBeA/rN2wOnAiMEJFT7H0fBR5V1bpYLSpvRDlnot/HTQnWM9MI61k+Ebg8geMToqoJeENgvaoWx9lvCNaPiP034gdU1S+ABvZLfwjWy8JNbSwPzc0mrAcNEdkb60V/ewC7x2A9lB9G2X4h8JyqTlXVUlX9Q1V/CHBehztVdauqbsd6cXYSkVb2tkHABFXdieVd/qqqz6tqsarOxart9k/gWklj37NjgRtUdYeqzgOeAQZHOaQIOEhE6qrqX7a9bm5T1Z2q+inWC2pA5Cl8eUxVV6rqBqwXRid7/cXAf1R1tqqWqOqLWB7eUUG/o6HSltEBwPOqutAW5TudDbaIXgyMVNUNdoXiHuCcONecpaoTVbUUqIsl9CPssrwWeNhzjt9Udaxafb0vAs2ApiLSEqvy4ZSHGVjPtcN5wCRVnWS/X6ZiebK9AhwbjWhl70X7eohIA3Y7FdH4r6p+bt+DjkBjVb1LVXep6lJgrOseFAH7iUgjVd2iql96T1aG7wOAqn6jql/a78dfsSrxxwc9PlGqmoD/CTSKEzjVBcuzes1eNR7oKCKdfHZ/CbgS6E6kx7AFq1C5qYvVLANWH99dqup9gXjt+TeW9zhA7TYYH/bGajZPluXOB/vl8QG7H/pzsGr3YHniR4rIRmfBEvg9y3DtRNgLcF5wDr9h1bb96IfVjP6biHwqIke7tv1lv0jd59kroB2rXZ+3YQkBWPfnWs/92TuB8xoqbxndC1c5w3reHBoDNYFvXM/NFHt9LNznawXkA6tc5/gPVkuZQ+i5VdVt9sfatm1+5cF97rM8z/WxWBWAeMf6EavsvQycLiK1sUR9pqquinEu7z3Yy2PnzVhxFGA5OvsDP4jI1yJyms/5kvk+IURkfxF5X0RWi0ghVkWsUdDjE6WqCfgsYAdwZox9zgcEmCciq4HZ9nq/CNOXsJpHJrkKhMMioI2I1HGtO4TdTWwnAv+2f2inYM0SkYHOziLyT6xa9cmqWhjD5uX4B9mA1TdU0/W/n9h6XzqvAufaglcDmOa6zqeqWt+11FbVy2LYFo0ggW3efVZieVTue9oSq78v8mDVr1W1D9ZLbCLhTWZ72F0C7vO4m1eTYTlwt+f+1FTVV8t43qpEZS2jq7Aqcw4tXZ/XY/Vzt3c9N/VU1akYRisr7vXLsVp7GrnOUVdVI7q3otjmVx7c537J81zXUtV7AxzrR9Syp6p/YD0DfbFa1mI1n0PkPVjmsbOOqvayz/2zqp6L9T64DytgsZbnfPG+T9j71A6cc1e0ngJ+ANraTfU3Yz2raaFKCbhdk74d+D8ROVNEaopIvoj0FJH7RaQ6Vq1vOFazqLNcBQzyegWqugyreeQWn2v9hBXMdIeIVBeRvlj9pW/bu+yP9bJwrgFWROs7ACJyE1b/Tg9V/TPOV3sWGCYiJ4pIjog0F5ED7G3zgHPs79mZYM3dk7Bqs3dh9UGX2uvfB/YXkcH2+fJF5HAROTDAOb2swwrMaRNjnzVAaxHJAVDV5Vj9XP/PvqcHY9WqX/EeKCLVRGSQiNRT1SKswBXvMJF/2vsdh9U98GYS38PNWOBSETlSLGqJSG+PQBhiUInL6BvAUBE5SERqAne47CjFenYeFpEm9rmby+6+2zVAQxGpF+3ktpf6EfCgiNS13wP7ikjc5ltV/Q2rSdwpD8fa39PB8YpPEZFc+151E5EWAY6NRqyyNw74B1aTeLxYCDdfAYUicoOI1LBt7SAihwOIyHki0ti+3xvtY8LeCQG+z09Adbtc5wO3YgUgOtTBetdssd/ByTg3wdEsiDwt7wWr2XcOVm1qNVaT8TFYzcWrgHzP/tWxasmn4ROF6NrvIuwIV90d3Tgdq3b9I65ocJ9jw6IT7f93sjvydAtwc4zj+2JFRm/Gis4+xV7fBstD2WJ/z8eIjELP8znfs/a2wz3r29nnWYfV3PkJ0CmKTS9gR3Pb/99JeGTrXfZ5NgJH+RzfECty9i9grr2uBVZFYgNWt8GlUa5dDasZ8i+sAvU1cKy9rRtWINwt9u/6OzDYz27v702MqH77/1Pta220n6U3cUU5m6VKl9Eb7e/iF4VeHau5dan9vC4mPIL6Obu8bWR3FPrLnvPXw/IAV2D15X8LnGNvGwp8Fu37YL0nZtrfwS8K/UisyOwNWGX2A6BlkGM914xZ9ux9atr34MU4z8gLuN4v9rq9sFoQV2OV/S/ZHSH+MrDWtnMRcKbrGXBHoce7F0OxnsG1WAF9v7qu0RXLA99in+Mu9333PkNlXcQ+qcFQZRCRblgFskWGTTEYDD6IyC9YI0i8o1cMLqpUE7rBYDAYshsR6YflqX4Sb9+qTpXP3mMwGAyG7ECsNLcHYTWrl8bZvcpjmtANBoPBYKiAmCZ0g8FgMBgqIBWuCb1Ro0baunXrTJthMJQL33zzzXpVjZfQo1JgyrahKpGKsl3hBLx169bMmTMn02YYDOWCiATOAlXRMWXbUJVIRdk2TegGg8FgMFRAjIAbDAaDwVABMQJuMBgMBkMFJG0CbufL/UpE5ovIIjvpv3cfEZHHRGSJiCwQaz5lg8FgMBgMcUinB74TOEFVnckAThUR77zIPbEmt2+LNTnBU+kw5Pbbb6d3796Ulpq8AAZDZeLBBx9kyZIlmTbDYMgIaRNwtdhi/5tvL96sMX2Acfa+XwL1RaRZqm0ZPXo0kyZN4quvvkr1qQ0GQ4bYuHEj1113HSeccEKmTTEYMkJa+8Dt6dzmYc3aMlVVZ3t2aU74hOwr7HXe8wwXkTkiMmfdunVJ21NS4p1N0mAwVFScFrUtW7bE2dNgqJykVcBVtURVO2FNAXmEiHTw7OI30XlEbldVfVpVO6tq58aNkx/3LpK2edUNBoPBYChXyiUKXVU3Ys25e6pn0wpgb9f/LbDmyk0LRsANhsqDmcfBUNVJZxR6YxGpb3+uAZyENdG5m3eBIXY0+lHAJlVdlUab0nVqg8FQzjhN6KZcG6oq6Uyl2gx4UURysSoKb6jq+yJyKYCqjgEmAb2AJcA2YFga7TEYDJUII+CGqk7aBFxVFwCH+qwf4/qswBXpssGLKegGQ9kRkb2BccCeQCnwtKo+6tmnG/BfYJm9aoKq3pVKO0xQqqGqU+EmMzEYDBmnGLhWVeeKSB3gGxGZqqrfe/abqaqnpcsIR8BNxdxQValSqVRNQTcYyo6qrlLVufbnzcBifIZ/phuTmMlQ1alSAm4wGFKLiLTG6irz5ngAONpOpTxZRNpHOT7pHA+mCd1Q1an0Am6GmhgM6UFEagNvAyNUtdCzeS7Qyk6l/Dgw0e8cZcnx4Aj4+vXrWbZsWZy9DYbKR6UXcHct/fXXX8+gJQZD5UFE8rHE+xVVneDdrqqFTiplVZ0E5ItIo1Ta4G5Cf+2111J5aoOhQlClBPyhhx7KoCUGQ+VArGCSZ4HFqupbqERkT3s/ROQIrHfNn6m0w122TXyLoSpS6aPQTT+ZwZByugCDge/suQ4AbgZaQmioaH/gMhEpBrYD52iK+7OMgBuqOkbADQZDQqjqZ/jPY+De5wngiXTaYaLQDVWdSt+Ebgq5wVA5MR64oapT6QXceOAGQ+XECLihqmME3GAwVEjcrWtGwA1VESPgBoOhQmI8cENVxwi4wWCokBgBN1R1jIAbDIYKiWlCN1R10ibgIrK3iEwTkcUiskhErvHZp5uIbBKRefZye6rtMAJuMFROjAduqOqkcxx4Vk05aDAYKhdGwA1VnbR54Nky5aARcIOhcmKa0A1VnXLpA8/klIMmkYvBUDkxHrihqpN2Ac+WKQcNBkPlwgi4oaqTVgHPhikHvQJu5gc3GCoHpgk99ezYsYP169dn2gxDQNIZhZ51Uw6CEXCDobJgWtdST8+ePUm0ldOQOdIZhZ51Uw6CVWvPyan0w98NhkqPaUJPPdOnT8+0CYYESJuAZ8uUg34CbjAYKj6mCd1Q1an0ruicOXPC/jcCbjBUDowHbqjqVHoBv+qqq8L+NwJuMFQOjIAbqjqVXsC9mMAXg6FyYCrjhqpOlRNwU+gNhrIRcJ4DEZHHRGSJiCwQkcNSbYe7Mm7KdWoxo3UqBpVewNu0aRP2vynoBkOZceY5OBA4CrhCRA7y7NMTaGsvw4GnUm3ENdfsrjeYcp1ajIBXDCq9gDdp0iTsf1PQDYayEXCegz7AOLX4EqgvIs1SaceWLVtCn025Ti2mq7FiUOkFfMeOHWH/m4JuMKSOGPMcNAeWu/5fgc9kRmWZ58CNKdepxQh4xaDSC/jOnTvD/jcF3WBIDXHmOfALC49oly3LPAc1a9YMfTblOrWY+1kxqPQCbjxwgyH1xJvnAMvj3tv1fwtgZSptqFu3buizKdepJVEPfMKECbzxxhtpssYQDSPgBoMhIYLMcwC8Cwyxo9GPAjap6qpU2uFuXTPlOrUkej/79evH2WefnSZrDNGo1AK+bds2Vq0Kf2eYgm4wlBlnnoMTRGSevfQSkUtF5FJ7n0nAUmAJMBa4PNVGGAGPzttvvx3hvCSC6QOvGKRzMpOMc+CBB0asMwXdYCgbAec5UOCKdNphBNyfzz77jP79+3PFFVfwxBPJTTVh7mfFoFJ74L///nvEOvNgGgwVn+LiYpPIJQqbNm0CYOnSpUmfw3jgFYNKLeB+mIJuMFR8zOiS6DjTJZflnpj7WTFIm4BnS7pFL6ZmaTBUfIyAR8cR8LJkUzPvyYpBOj3wrEi36LD//vsDpqAbDJUBI+DRcWZmMx545SdtAp4t6RYdcnNzAfNgGgyVAUfAR48eDZhy7aY8PfDRo0fTr1+/pK9jKBvlEoWeRLrFsLFfIjIcy0OnZcuWSdmQin4hg8GQHVx33XWANVlRXl6eKdcuyrMP/Pbbb0/6Goayk/YgtkynW3QwAm4wVB7efvttAAoKCsjJyTHl2kUq3nWmD7xikFYBz4Z0iw5GwA2GykdeXp4RcA+mD7zqkM4o9KxIt+hgBNxgqHzk5uYiIqZcu3DedTNnzuSxxx5L6hzJeuBmHvHyJZ0eeFakW3QwAm4wVD5ycnKMB+7BedcBjBo1KvBxbvFN9n4WFRUldZwhOdIWxJYt6RYdjIAbDJUDt9Dk5uYaAQcmTZrE3LlzufXWW8PWFxQUBD6H+74m64Hv2rWLatWqJXWsIXECCbiINAYuBlq7j1HVC9JjVuoxAm4wVA7cZdgR8KredNu7d28AGjduzFtvvRVan4iAu++rn4B///33tG7dOmwedi/l7YFPmTKFmjVr0rVr13K9brYQ1AP/LzAT+B9QIcMTjYAbDJUDt7gYDzycSy+9NOz/6tWrBz7WfQ+993Pbtm20b9+eM888k3feeSfqOcpbwHv27AlU3b73oAJeU1VvSKslKWLt2rVs2LCBAw44IGy9EXCDoXLgFnDTBx6bZAXc64E7iXOmTZsW8xy7du1KwLrUsXXrVmrVqpWRa2eSoEFs74tIr7RakiKaNm3KgQceyMqV4aPRHAE34xsNhtiISFZ3YhoPPDjJNqEHuZ/ffvttxLpMBbGdfvrpMbc7M7RVNmIKuIhsFpFC4BosEd8uIoWu9VnL4sWLw/43HrjBEImITLczJTr/HwF8nTmL4mMEPDjJCvhXX33F5s2bfbc5DBgwIGJdpgQ8VsvAvHnzqF+/Pq+88ko5WlQ+xBRwVa2jqnXtvzmqWsP1f93yMjIZvA+cyYVuMPjy/4ApInK5iNwNjAGGZdimmLjLsGlCj02yAj5y5MiwHOd+LZfFxcUxz5EKtmzZwpw5c8p0jnnz5gEwderUFFiUXQRqQheRj4Osyya8D5wj4H4PncFQVVHVD4FLgUeBC4BeziRE2YrxwHfzxx9/hDKv+ZFsHzjAl19+Gfrs3HN3sFh5CPg555zD4YcfHtYakCiOTbHuU0UlXhN6dRFpCDQSkT1EpIG9tAb2KhcLk8TblFO7dm3AqtEZDAYLEbkNeBzoCtwJTBeR3nGOeU5E1orIwijbu4nIJlcCp5TOeOEn4FW1Yh7PO03WA4dwwcuUB/7VV18BVhR8sjiVjvIQ8AkTJjB27Ni0X8chXhT6JcAILLF218oLgf9Lk00pwSvgderUAShTTc5gqIQ0Ao5Q1e3ALBGZAjwDfBDjmBeAJ4BxMfaZqaqnpcxKF94o9Fq1apXpBV+R2bFjR8ztiQh4tMBfCC7g3bt355RTTmG//fbj5ptvLnNSl/z8/KjXCooj4O7vky6cboeLL7447deCOAKuqo8Cj4rIVar6eLlYlCKieeBGwA2G3ajqNSJSQ0TaqeqPqvob0CPOMTPcgW/ljdcDr127dpUt187wrmgEFfDCwkI6duwYts4teH4C6rdu/fr1oWCxJk2acPnlZcuOnZdnSVRZhqdV2SZ0F3+IyN89y4ki0iSt1pUB44EbDPERkdOBecAU+/9OIvJuCk59tIjMF5HJItI+xvWHi8gcEZmzbt26QCf2ZmKrU6dOle0au/vuu2Nu37BhAx999FHc8/z1118R65JpQnezffv2uNeNh+OBx6uoxKI8m9DLm6ACfiFWs9ogexkLjAI+F5HBabKtTEQT8Kpa0A2GKNwJHAFsBFDVecA+ZTznXKCVqh6C1b8+MdqOqvq0qnZW1c6NGzcOdHJvE3qdOnWqXMX8u+++48orr+Snn36Kud+0adM45ZRTKCyMPerXTyD9BLywsJCDDz4YVY0r4KnIjuYIeLyugiB2pFvAV69endbz+xFUwEuBA1W1n6r2Aw4CdgJHAlmToc39wBgP3GAIRLGqerNclOnNq6qFqrrF/jwJyBeRRmU5pxtvE3omBXz9+vU8+eST5Z7Ks3fv3vzf/wUPQzr77LN54403om73E/BofeDfffcdpaWl5Srghx56aNzWhnh2pLsPvFmzZmk9vx9Bv1FrVV3j+n8tsL+qbgB8R+5nIlLV/ZB5a2xGwA0GXxaKyEAgV0TaisjjwBdlOaGI7Cm2u2MnhskB/iy7qRbZ1Ad+4YUXcsUVV4TGGpcXiXqTU6ZM4eyzz466PREBd/6PJ+CpiEh3BByImGnNS7QKg2lCh5ki8r6InC8i52NNbjJDRGphN7358AJwarzzqmone7kroC1RcT9Q3v4XM4zMYPDlKqA9Vovaq1gjTEbEOkBEXgVmAe1EZIWIXCgil4qIM5NGf6yKwXzgMeAcLaM7pqr069ePadOmlZsHfsIJJ/D222/H3Mfpty/vKHgnr0Wq8AsScwueV6yDiHMqPfAg+FUo+vXrxxVXWDNWl6eAl1dGuqCTmVwB9AO6YM3xPQ542y6U3f0OyESkqrtgewW8Ro0avusNhqqMqm4DbrGXoMecG2f7E1jDzFLG1q1bmTBhAh9++CGzZs0Krc/JyaF27drs2LGDkpKSlAlbaWkp06ZNY9q0aTGFyImSLu8Uosk0BzutkA47d+7ksssuY/To0Ul54PFIhYA799cPbyWiqKgoQvAnTJgQ+lyeAv7BBx9w5plnpv06gQTcFuq37CWVHG3X0lcC16nqIr+dRGQ4MBygZcuWUU8WywN35rA1Am4wgIi8R4y+blU9oxzNiYsjBiUlJREeuLtsOy1tZSWoIDsCkyoPfPv27SxatIjOnTvH3C8ZAW/YsGHY/xMnTuT5559n69atDBsWmT03loBngwfutSneb+YI+C+//ELr1q1T3orhpm/fvmzYsIE99tgjbdeA4KlU/y4iP9t91qmazCTlkapuAff2gTuFvKomfDAYPDwAPAgsA7ZjjSwZC2wBfONWMonzsvYT8HS0rgUVcEcEUjXb1UUXXcThhx/OqlWrAl03Fi1atAj73zvdpnMfc3NzA0ehO1x//fVxr5/qPnCHbdu2sWjRoogmc/dvNnnyZNavXx+2XURYtmwZ++23H7fddluZbYvFMccck3bxhuB94PcDZ6hqvVRNZpKOSNUgTehGwA0GUNVPVfVT4FBVPVtV37OXgcCxmbbPi/OyLi0tjRhG5hbwjRs3piTOxS0GsYTI8cDjDdMKyuzZs4H4sTpBPHCv+HmbkJ17Gk3AY3ng//nPf+JeP10e+FlnnUWHDh0i3uXOb7Zt2zZ69epFz549w7bn5OSERP3DDz8ss22x8F47XQQV8DWqujj+bsFJR6SqaUI3GBKmsYi0cf4RkX2AYAOyyxGnbMfzwPfYYw9atWpV5uu5g7rGjBkTdb9UC3jQiOkgHni8ADDnPubl5fkGscXLxBaPdPSBl5SUMGnSJCCyldX5Do6Q//jjj2HbRSSU2rUsmd3c9OnTh6effjpiffPmzVNy/ngEFfA5IvK6iJzrzsYW64BMRKoGbUIvLS2N20RlMFQRRmJNYDJdRKYD04gThZ4J3GXbm4nN27q2YcOGMl/P7YEHSdCxdevWMl8Tggt4Mh64l3geeLxMbPFIhYB7Kyr33HNP6PPo0aPDtn300UeMGDGC+vXrA5H30P3/rl272LVrFyLCU089lbR97777LpdccknE+sGDyye/WdAo9LrANuBk1zoFJvjvnplIVfdD5n0g3YV88ODBjB8/no8++ogePWKmfTYYKjWqOkVE2gIH2Kt+UNXk81amCbeAe5vQU9W6tmPHDn799VcOOOCAMAGPlU/cuWYyAudHKgU83kQibg/cT8B/+eUXatWqxYcffpjU9ytrH7iqRqSBnTt395xa3mb84cOHh/3vbRXJyckJed47d+4MVbpuvPFGLrvssjLZ6qZHjx4xo+dTSSAPXFWH+SwXpNu4RHEXcu8D6S7k48ePByjXad8Mhizmb1hjwQ8BzhaRIRm2JwK3gKQriO2KK67gwAMP5M8//wwT8GhzapeWlvLbb78B4e8eVaV///5Mnz49YRscAY/nvUZrQnd7g2X1wMFyeK677rqMCPhrr70W0bJRlnOKSJiAO/c41d2qqWqeD0LQKPT9ReRjJ6uaiBwsIrHT4mSAWH3gBQUFiEjYg5rIVHsGQ2VERF7Cikg/FjjcXmKPYcoA0Txwt4A/8cTuBr3zzz8/UKCVGyeA7I8//gjkgc+fP58lS5ZE2LdlyxbefvttTj/99ISuD7uFO1af8+effx6aB/yCC8L9KLewB+0Df/LJJ/nuu++i7letWrWMNKH//vvvEeviCbg30t6NW8B37doV+k6pHsNfnjkBgvaBjwVuwk6bqqoLgHPSZVSyuB8yb2YmEQkVdIeyzlVrMFQCOgNdVPVyVb3KXq7OtFFeYjWhO+V64sSJofXjxo3j0ksvJREaNGgAWH3oQTzwn3/+2dc+RyQSySLm4B7v/umnn0Z4xgMHDuTYY61BAt26dePZZ58N256MgAM8//zzoc/9+/cP2y9TAu7XjRDvnE7/d7TzOb/rzp07U9bt4SXrPHCgpqp+5VmX/AzraaK4uJhOQDX8h2E4zegOxgM3GFgI7JlpI+IRK4jNW66TxUl04m1CjyaES5cuDW33a/1z+kE3bdrEaaedxuLF8QfyOAL17bff0q1bN/7xj3+EbX/11VdDn51AXfd7zB08FbQJ3Ys3qUu1atWSikIvaxN6qgX8vffe47777gMsL7msAh7t+5WngAftaV8vIvtiZ24Skf5A1oVx15w5k8+BycDVrgCGjz/+2NpuBNxg8NII+F5EvsLKhw5kXya2aB64X8tasjgCvmHDhrCZpaK96FeuXEm9evUiBM4r4B9//DEffPABv//+OwsWLAhky4oVK4DIoVBu1q5dC8Abb7zBTz/9xLXXXhsmel4B94pftO/lFc5s8sDjjcmP9U5fvHhxqBLlnQ5148aNMcXfD2/cg0N5NqEnkgv9aeAAEfkDK3vToLRZlSQ79tiDnVhJ27f++SdDgf5nncUJJ5wAEFHQX3vtNebPn8/EiROpW7dMeWkMhorKnZk2IAjRgtggslwni/MOKCwsDHsJRxOvwsJC6tWrR1FRka+AOwLqiPbvv//Otm3bYrYYOELgDImL1c3Xvn17AM44w7+ulawH7iUnJ4ebbrop0L5u0jHF6pQpUyLWNWvWjKFDh3LfffcF9vpVNex33WOPPSgtLU0oX3q0ViHHyy8PgkahL1XVk7ASPBygqscCfdNqWRJs3mcfemONdxtSUsIDQA1X/5W34KxevZpp06bx6KOPlqudBkO24GRk8y6ZtstLNA8cUifgTv9xSUlJmIBHE7rCwkLq1q1LXl5eTAF3POVNmzZx7rkxR9dGCHg0j7JOnTqh0TTR8Ip/tExsXrwiOGXKlFC0vR8HHHCA7/pEBPyaa65h5syZYeuCiumkSZNo0KABpaWlCWXh8z5H0Zq+i4qKOO644yJGFfg9k//617+SCl5MloQy4qvqVlV1osNGpcGeMlFcXMwsrJrFLiwD//7DD6Ht0Wq+qcpjbDBUFJz5DHyWVMxzkHJiCXi1atWSmtzDiyPgxcXFYS/zRAXc6Zt2BNwdiBYvhWdQD7xPnz5xJ26J5oGXlpaydevWqILlFd5YLQbPP/888+bN41//+pfvdYJQUlLCY489RteuXcPWBxXwRo0ahVpPgr7LvR44RI5cWr58Ob///jtLly7ls88+ixhn7vdMpnOCFD/K8tRn3ezozk38CDgPKAX6fP01PPkkEL2mXt5TARoMmcaZz8BnKfM8B+kgloCnqh/cqQQUFRUl7IH7zcPg9IG7s0LGC3Dyjk2OJuDeqUH98Ar4woULERHq1q1L7dq1+euvv2La4OBE5/tx2GGHUVBQwMCBA+OeJxrR3r9BBbxhw4YJCzhE/q433HBD2LpLLrmE4cOHh0Y0/fzzz8yfP9/3eKeyUpEEPPUdHGWkXbt2oSTybwKhlAZXXgnjx0etSSYTYWkwGMqPWBMVQXjlPIi4xcIr4KNGjWLlypWoKj179uSDDz4A4jeh5+Xl8f7774c1dccTtaBN6EGmTY3mgTvJUaI1iyfigTuBX34tIMkI+NVXX03fvn0Tan6vUaNGSMATiQD3VgSffvpp8vPzee+99wArmPGvv/4KG5I8bdo0Jk6cyD/+8Q/fSmUqWoISIebVYjWzAXuVk42Bad68edjYz2eAj08+GVRhyBC6RKlxGg/cYMhu/JqomzZtGlrnHqudbGYtx4vyCjhYAa8lJSVMmTKF0047DbC8vXr16sXsAx83blxCNjjC9frrrwPhHvi1114b+hwkYjpeEFu0+SBUNaxJPJYopULA3aL7+OOPM3HiRPbcc09GjYrfS7to0SIA6tWrF+habtuiBSc6Y+t37tzJzp072bhxY2hbUVERffv25d///ndYYF9WNqHHaWYrn2SvCeLNQTvv5JPhhhugpIQRX3zBcT7HGA/cYMhu/ATSPcTKLRbJlmdHwIuLiyMEXFVDQuOIlRNRnpeXx5w5cyKav7/++uuEI7G9+xcUFLBo0SJUlYceeii0PkgrQ7xEVStXrvRdX1payi233BL6P5aAOy0BfsIVtA/cz2t2Av/icdBBBwEkPIooloA7Q/h27NjBzp07wybHcY/Ld1fOslLAKyJeAa9Zsyb8v/8Hw4dTraSE94BDPccYD9xgCI6IPCcia53Uyj7bRUQeE5ElIrJARA4r6zX9BNzdbO68QL1eZyJl2znHrFmz+Oc//xmxzTmXI2i7du2iWrVqfPvttyxfvpw33ngjzD6At956K/D1/Zg5cyYdOnTgmWeeCVsfJHlNPA983bp1vuudSkSvXr2A2H3Rzr1IlQeeLMkIeLSK3jfffMPSpUvZuXMnO3bsCPPAo/Htt98CRsDLjFfA69SpAyLw5JPMb9eOesAUYH/XPsYDNxgS4gXg1BjbewJt7WU4kPx8jTbeJnQRCRMoR3y9Tcvbtm2je/fuXHjhhXGv4XiMs2bNCmVZc1/fERpH0BwBd1iwYAHjx48v0+QYXtFzWhlmzZoVtj5I0F6yM2I5Njh9/U7FxfF2HZw88FA2AQ+a3CYWLVq0iDqcLRrRJnABOP3000NN6E48QixuuOEGoBIJeCZq6RD50IaCPXJzmTJoEJOBJsBUYG97H+OBGwzBUdUZQKxJt/sA49TiS6C+iDSLsX9cvEFsNWrU8J2veo899gg7btu2bUyfPp3nnnsu7jViNfm6+8WLiopYsGABpaWlYQJ+zz33MGjQICZMiDrLcuj4aLhFr379+mGVBTdBBDzZuR7cNrgnAPF6/a1btw59LouAR0tEkwi5ubm+83LHIpYwb926NdSEHqRC5lQwsyqIrYy8QDnX0iGGgAPtOnakP/AZ0BJLxBtjBNxgSDHNgeWu/1fY65LG24TuFTCnCdUr4Il4w7EE3Ds2/JBDDgH8m6mjBYc5rF69OmLdxIkTERH+/PPP0Lq8vLywSoObFi1axLxGNNuC4L4P7jm0vQLuFis/4SprLnQv69ati9l10LJly4TOF+vZcOZId5rR4+Hco0rjgWeilg6RN9At4H369OEfd97Ja4MGMQ9oh9WcLp6J3w0GQ5nw6zT1dcdEZLiIzBGROdH6ZCGyCd07Q1ijRo2AyOkkgzR/OsQTcL+Kvp+XG++F7xc8duONN0asy8vLC2UWc1ceunbtyuGHHx7zGpC8gLs951gC7m4B8ROueBWZRGnUqBEjR46Muj3R7xvr2XALeJBKoNPVUWkEPACBa+lBCznE9sBFhDvuuIOuZ5zBKcDPwGHAHXPnQoondTcYqjAr2N1DBdAC8A15VtWnVbWzqnZu3Lhx1BO6BXzbtm0RHnjnztYU5l5hT6WA+wVbJSLgl112GbB7HLYbv0lL3ILkFpGTTz45qp3Rjk8Er4A7fcWxvF8/D3zixIkp98JjCWQqBVxEKC4upri4OKH0rFVJwAPX0oMWcogt4A75+fmsBXoAfwCHFhby54kncsHgwYEiDg0GQ0zeBYbYcS5HAZtUtUzumFvAN2/eHCHgDz/8MK+//npormyHdHvgfqLhlw2sY8eODBkyBIgdPOXG/S5bs2ZNzGv64RWToP2zziQpzjFOxaVLly5Rj4l2bneXQFlwkqnEGu+daJ+/Eznuhzvmwv177r///n67h6hKAh64lp4IvsPIPDgF4DcsEd+Qk0PDWbM46eWX+eftt5fVBIOhUiMirwKzgHYiskJELhSRS0XEyaI0CVgKLAHGApeX9ZodO3YMfS4sLIzwtKtXr86AAQMixC1VAl5UVBTYA/dy6623MmPGjNC+QYdNud9lP7jmdAgq4N53Ybzjjj76aDZs2BB2r90CPmjQIF588UXfY6MJeJMmTaKONw/KvHnzQo7YlVdeyXnnnee7X5D7snDhQr777jsA/ve//0Xdzy3gTmY2iD/+vjIFscUj5bV0iHxovUEtEP5DLwYG1q/PZmAgcObEiRBj7tuSkhJefvnlUBrCO+64g+OOO65cJ3E3GDKJqp6rqs1UNV9VW6jqs6o6RlXH2NtVVa9Q1X1VtaOqzinrNbt06cKDDz4IWALu7et28JZ/b//l+PHjI5pE33//fUQkzMv1snPnTgp9YmWCCHiHDh2oX79+wgLufk+5m+WT9cDjHZeXlxfxvnQ3oefn50cdqhXL8/zqq69813/88ce+99SLEzAI1v2+7bbbfPcLcl8aNGhAhw4daNKkScxrR2sliTf+vtJ44JmopUN4AR42bJjvj+r9ET7ftYuewGbg+OXL4fzzo4r4G2+8weDBg9l3330BuOuuu/jss89856k1GAypwynbGzdujJoL3Cuo7jzWs2fPZtCgQVx99dVh+zgVA/dEFV6eeeYZevToEbE+iGg4L3Unr3mQJnQRiTqOO6iAu/uy27ZtG3dcuF/ClpycnJA3mpeXF1WgYnmefkFgq1ev5qSTTmLQoEExbfIj2veIVplyV36cYMeaNWvGFPA//vjDd73z/Y899lhu92mtrTQCnolaOoT/uNHyBXtr71u3buVzrHFt23Jz4ZVXYMgQXxF3mrK8afiCDDUwGAzJE0TAvZVz90vamX3LSZXpUJZAqyAeuGN3Ih54fn5+VKGOJ8Rjx47l0EMPDQl47969mTt3btzmXb93mPuYvLy8qOdIVMCdVpDvv/8+pk1+OCLpfQai3a+CggKaNGnCXnvtFdqnVq1agWMR/K6dm5vLrbfeGnV7eVGpM7FFe9C9P7zzoH8O3HrYYVC7Nowf7yvi7vGX7hruww8/XFbTDQZDDJyX76ZNm5IScCf62/2S3bJlCzNmzIh6zU8//TSmTdWqVWPMmDEx90lWwB07vWlC401kctFFFzF37tzQ+6lVq1bUrl3bV1xGjRoVmiQlnoC7bfISK92qn4A7laZ4lQq/fmrne3nvQ6zKlDOvt0OQVLR+OPbm5uaSn58fNnkWpH7se1x7yvVq5YB7+r1oAh6t/wxgQd26MHnybhE/5xxw1dTcQQzu6MQvv/yyLGYbDIY4BKmce1/M7jLqeOBuEfr8889Dn72Zw/bee2+6du1Ku3btotqUn5/PueeeG7He3ZecTBN6fn5+qMLRqlWr0PqzzjqLvn37xj0edn8fR1z9xLJTp04cdpiVBDOegOfm5kYV3GQFPJ7H6udVOwGMzqxwsfZ1KCgoCNOGWBoQC7cHDvDkk0+y3377hbYvX77c97h0UekE3F0Li/aDxppLt6SkBI49FqZMgbp14a234PTTwW7ycTed/xVlelKDwZB63KLt7tt2E8sDd4LU3KLh/uydE2HAgAFAbC+xWrVqvpUJJ4+42+5EPPCuXbuGJhtxZxg77bTTAkc6eyskfsfl5+eH3od+QusW5pycnKSirP36mt0eeP369bn66qspLCzk73//e9h+fgK/5557snjxYh577LGI7xKURJPMXHDBBRx11FERAu7Nye9OL1seVGoBT8YDLy4u5u2332b8b7/B9OnQpAlMnQonnQR//hlWyL0CnujUgQaDITju8uw31hp2l22nD9kt9M5L2y0KI0aMCH12C1idOnW47777gNgeczQBd6/zeuDxBHzYsGG8+uqrIU9z7713j7ZNZIKSIB54Xl5eSMD9Esx4m4ST6eP1q2y5Bby4uJi8vDzq1KkTag3wfgcvBxxwQIRgJzIO3D0Ri5fjjoucdPrZZ59l1qxZYU3oDs5v8tJLL3H66acHtiEVVGoBj/awxSoERUVF9O/fn0GDBrHjwAPhs8+gVSuYPRu6dqVg/frQvu55YsHMamYwpJMgAu544Lm5uRQUFIR5f04OcuclXFpayqJFi0Lb3QJ+9NFHh94fsQJU8/Pz4wq489n5G68JvUuXLtSsWTOUNrRt27ahbbGaqr0EFXDn/N73GUQKeCwPvFGjRtx///0R693D9jZt2sSmTZvCJv9wBNyxJ1kS8cCjzQUO1vC2aHg9cNhtc6yulnRR6QTc/YAl8rA7uFO1btq0Cdq2hc8/h4MOgu+/57S77+Zge7v3gY9VMOfMmeNbQAwGQzDcL/d77rnHdx+3gFevXt1XwJ1y6p1UxF1+o6Ux9VKjRo2owujgbm6tVq1aXA/ceW9dc801rF27NqyPNZbweHEE3M9rdMjPz485MYr3erE88HXr1nH99ddHrHcLeP369alfv34oq92iRYvYsWNH6H55z5/IOzwRAT/mmGOibov1HWN54OUdwAaVUMDdxLqhTZo0AcKTBED4+L9QLb95c5g5E7p0ofZff/E50BurWcVNNAH/8ssvOfzww2M+NAaDITZuUfSmTHVwBDwvL4/q1auHdXM5gu2kS3aSMfnhFo5YHni01M7RAu4KCgoiBNz7nnIqDCJC48aNfec9D0JQD1xE+N///hfWGuG17cwzz4x6jni89tprvPrqq2FpVR0Bd84fTcATIZEm9A8//JDPPvvMd1us7+jngTufM9ECW2UFfOnSpaxZs4a99torbL1bhMPyojdoQMmHH/JD587UBv4LHPjRR2HHRhvTOHXqVMB/wgKDwRCMIB6W8xKvV68e1atXD0vj6Qj43Llz2bVrV0wBd4t2LA+8YcOGvuv9PHDHPq+Au1v92rZty4UXXhj1XIl4eUGC2Jxzn3jiiRx00EER253rOUlskk0VOnDgQLp37x7635sONRUCnogHXrt2bbp06RIaQhcUPwEfNmwYAG3atEnoXKmgygp4rVq1aNKkSczxgO5+tnXr1tGoRQsOnDOH24Bc4BHgGcDJyty1a1ffWpj7x85EM4sh+zAjGBInSP9ogwYNGD16NFOnTqV69eph3VZOkNa2bdtYtmxZYAFPxqZoHni1atUiWur23HNPAB544AF++umniDzv6fTA4zVRu7OweW1JFCcHOcCyZcvCtkXrA+/UqVPg83u/36OPPho3Q2ai3ax+TegXX3wxxcXFNGtW5tmwE6ZSC3iQqHDvrEZu3B54586dQ///CzgH2A5ciJUAZh97v/WuIDeHe++9N/Q51XPkGioejz/+OA0aNOCVV17JtCkViiACLiLceuut7L///hFC6Gbbtm0xBdzP63YnAolHIh64e1u8c6VawONVVByHwxFu91jqVOLngT/33HNJj9cGuPrqqznllFNi7uPcI7/gOz/8PHARKfcMbA6VWsCDPOyxxoQ7TVtr167l999/D9v2OnA0ViL3w4BvgNOwCsSYMWM4//zzKS0tZd68eWHDKKJFzxqqBps2bQrl4nbmhzYEI1Hx8NvfmY5y69atUfNdg39FfJ999gl9njFjBu+//37U46N54Pn5+RFzmztEE/BkPXCnf97xDP1EJqiAO9+hPAW8LBHp6cJPwDNJpRbwIM3VsWpoTopFZ+ISL/OBzsBEYA/gPaDuHXcw4rLLGDduHDNmzIgYkhCrP81Q+TnrrLNCnzdv3hyKjzDEJ9H5nr3xLbC7ufree+/1navaKetu7/yTTz7hzTffDNvvuOOOo3fv3lGvHc0Dz8vLo6ioKJSP3W1DkOb4RLrgBg8ezCuvvBIajubngccb0uZtQk9EwBcsWMDhhx8eaN9UCXhZuig7dOgQdx/nHmZL5aLKC3isyPDFixdTUlISMf2gm01AX+AfQDHQYNw4vgE6YRWOn3/+OWz/ROYnzla2bt3KI488EtODMfjjFWzTjB6cRL2/c845J2KdE3T2wQcf+DahOwJ/5ZVXhtZ1796d/v37A/Drr78GSpscywN/88032XvvvVmwYEGYgEfrX3avP//88+Ne2yEnJ4eBAweGRNFPwGNVQmB3E7NjQyKeZ8eOHcMqrLHw6wOP1ToajWSGDjvHzZo1K/ROc//+TZs2DX2uUh64iJwqIj+KyBIRudFnezcR2SQi8+wlcn62MhCkD9yZXs6PwsLC0Oxj8fg3VpP69pYtaQ/MBuo/+SQ/L14ctp/bA580aRIPPPBAoPNnE9dffz0jR44s96xD6eaZZ55h/PjxKT9vSUlJ1BwA3bp1S/n1KiuJeuDuDGYO7gkwVqxYwRlnnMHkyZPDRK60tJTHH3/c95ytWrXiyCOPjHvtaB64W4x/+OGHsAj0eLOP7bXXXmFzMSSKV8DbtWsXMVFKNBwbEhVItxAGOb/7XpXluyZD7dq1Q602jz32GCUlJbzzzjth85lXGQEXkVzg/7Bm6TwIOFdEIscpwExV7WQvd6XShiAeeKxhEb/++isvv/xy4OvNAV4aOZLHgWrAke++y4MzZnAEu18mbg+8d+/eXH/99WHRmeXJ6tWrI5JZBOHdd98F4Ntvv03ouOLiYhYuXFjuKWdnz55Nv379Ys73XFhYyMUXX5zU/MTx6N27Nw0bNuTnn38Oe7H36dOHoUOHpvx6lZVEPXC/MdreGaw6duzIqaeeGuobz8nJScqLe+WVV8LGFTvjq53P7vUOZ599Nm+99ZbvNjdlifx24xWdhx56KPCxydpQo0YNDj744LB1Tg4ON9kg4G5EhJycHM4888ywXPSxkuJkgnR64EcAS1R1qaruAl4D+qTxehEE7Q9xxu/51fDdEeR+NGrUiIkTJ4b+v2TkSK4GTgaWYTWlzwIe2rGDesAdd9wRYVsm+sVVlWbNmtGsWbOEBTXZQLyrrrqKjh078p///Cep45PlqKOOYsKECXTq1Clqi4q7myTVQ/0+/PBDAN5+++2w5riK2PqSSRL1wN2ta45AuGcJg92TTzRo0AAo2zjnLl26hF3PEfBoHjjA008/HWGjl1QJuPe79erVK/CxZenz9faz+3UjZpuAR6PKeOBAc8A9t9oKe52Xo0VkvohMFpH2qbjwGWecARDYm/r222/56aeffBMZxOOJJ56gT58+9OkTXjeZCrQH7gVKgP7r1vEjcMyCBeiuXWFNZ05WopkzZ4Y116QDR6ydawIx+/j9SHT/wsJCxo0bF5o32ZkkIpUErYQ89dRTEev+/PPPsDmdd+zYwaxZs5g+fXrC54+FiITlHcjGF1Q2k6gH7gxB6tevX0i83B74888/H+pTdoQ9WQH3kpubG9cD9xIkiK0sDB48GLDuozeRSjzKYoO37PgJuPPbuq8TtHm/LCRarquSgPu1Q3nv1lyglaoeAjyOFdAdeSKR4SIyR0TmuIUvGu+88w7r16/n0EMPDWRo3bp1adu2bVJDJJyxpn5jTrcDNwGHAl8VFNAUeAr4saCAJ046KbTfli1bmD59Ol27duWYY45JW5P6jBkzaNKkCWPGjOGuu3b3Vuy5555JBdcFvV8jRowIC75J9VC6ZcuW0bx5cx599NG4+7qH9Kkqu3btom/fvowePTq0fvv27RxzzDF0796dTZs2MXToUDp16hQ3Yre0tDTuPs726667Lswbr0hkKrYlUQ9cRFi/fj3jx48PvaidwKjDDjuMoUOHhrxbJx9EqlrD3E3xsTxwN9FEMtnALC9XXHEFu3btYseOHbz00ksJHVuWVoAJEyaEPlevXt23hctpAXG/R7OxgluVmtBXAO4okhbASvcOqlqoqlvsz5OAfBGJiCpT1adVtbOqdo6We9hNTk5O1BSHsYj1grjtttt8tzvrYonZIuDsPfekH/AzcAAweuFCvgbOBHqeemoozWBJSQkHH3xwTC93165d3HjjjcyaNSvud3IYP348xx9/POvXr+eyyy7j7rvvDm3btm0bc+fODXwuB7+COHHixIikCM8//3zY/37zA5eFRx55hFWrVjFixAhuvfXWmGNlnfu6bt06Tj31VAoKCpg5c2bYPu7I4B9++IEXX3yRBQsW8Oqrr0acW1VD6TpPOukkqlevzltvvcXq1asZNWoUkydPDu27efPm0Ljb6667DkpLoYINK8xkbEuiAg5W1Hm1atVCAl5QUMC3334bMbzTGTL6xRdflN1Qm1R54Km0J1khLott7du3D7VwRIssd7a7RTtWlsxMUZU88K+BtiKyj4hUw0pe9q57BxHZU+ynXESOsO2JHJxZTrhF+MYbb6R79+48++yzTJ06lbvuusvXo3eyKsVrVt68ZQsTsN54VwBrsMaQvwMsAM7DCnxzcDffehkzZgz33Xdf3MlRtmzZwpAhQ7jgggvidickkiDCoaioiBEjRoQ1Q/Xt25cbbrgh1IrgF+hWUlLC/PnzWbJkie9Y3ERxZ2u6++67effdd9m8eTPDhw9n0qRJYfu++eabTJ48mSZNmvCRJ5e9w/HHHx/67M5vP2zYMAYNGsT333/PmjVrALjpppto3rw5zz33HNOmTQOssd7NmjXj4YcfplevXuwJHAv8cffdXP/XX7wJNDrxRKhdG25P6cCL8iBjsS2p6AuuVq0anTp1ighmGzVqVJnP7SVVHrgjZEcffXQKrUuMslYunHsRLbOan4CnquUhlWSbB46qpm0BegE/Ab8At9jrLgUutT9fieWgzge+BI6Jd86//e1vmi569+6tWM38unPnzojt/fr1C23v0aOHDh48WHft2qWqqoccckhom9/y4IMPhv1fHfRK0N9A1V7Wgt4D2gr0ySefjGrnFVdcETpPLO65556YNnmXMWPG6GeffRbznDfffHPEcXPmzAltd9bdeuutumHDBr3wwgvjXres/Pvf/w47X+3atXXQoEEJffdoyz//+c+o26ZPn66A5oC2BO0OejHofaBvg84H3eL6fX2XQYNifjdgjqaxjCa6AP2BZ1z/Dwae8OzTDasiPh+YDLSPcb7hWAM45rRs2TLub53sM5Obm6uAjh071nf7mjVrUvI8Dhs2LHSOFi1aKKDbtm0Lbf/73/8e9XmaMWNG1PPOnTtXt27dWibbksGxbe7cuRHr4h3jplGjRgpomzZtfL/7hg0bVFV16dKlZf4dEjl+1KhRCugDDzwQaP8bbrhBAb3rrruSts8hFWU74y+ERJd0CnifPn1CP35paWnE9osvvji0/bnnngvb9uKLLyqgHTt29H1AS0tLfdfngw4Fnet6qZeALmzaVHXsWFX7wXZz6aWXho4/77zz9Mwzz4ywt7S0VK+++uqkRGvx4sVh5/r444/1008/1aKiIt/9HdEvLi4OW3/ZZZdp37590yrgJSUlvud0XthlXZwKSH3QQ0D7gF4N+hDou6Dfg+6II9LrQGeBvgx6B+i5oKWzZ6v+9Vfc75eFAn6Wj4A/7tmnLlDb/twL+DnIuYOU7WSfmZycHAX0xRdf9N2+Y8eOlDyPbn755RcdM2ZM2LoBAwZEfda++OKLlF07VTi2LViwIGJdNFauXKk//fRT2LrGjRsroK1bt/b97iUlJaqqum7dunIV8JkzZyqg8+bNC7S/I/j33Xdf0vY5pKJsZ0c+uCzBuqcWfs037dq1C332RqsOGTKEvn37UqdOHfbbbz9++eWX0LaaNWtGbQ4qAl6wl6OAy7HekO3XrIGLL4bLL4cePaBnT+jVC9q0Ccul7IxTLywsDI1lHTduXEIZm7z8+OOPHHDAAYAVkX3iiScC1rh4PzZu3MjOnTsjAoD8Ir5TzU8//eS7PtEugSZAK3tp7frc/rXXeAhLkWKxEisv/i/23yWu//1C9sYfcURC9mURgWJbXJ8niciTItJIVSMTjJcTTtmO1o+ejhzfbdq04ZJLLglb5zSht23bNiJLY7ak5/TD3R/dvXv3mF2GfrNyxWoOHzZsWOh9Wt6Ba8cee2zYez8ezrs3VUP7ykqlTqWaKPHG/w4fPjz02R3N7OA8fOPGjaNVq1ZcddVVtGzZMnC+68+KizmzsJA9geF5eehJJ0FJCUyaBFddBfvuy7qGDTl2/HgGA+4M7b/++iuFhYUUFRWVSbwhfJjH8uW7RwJGSzpy2mmn0a5du6SnyIw2O5OXSZMmcc8991BcXMxvv/1GaWlpzOQsDgXAwCOPZPP77zMQa2TAf4ApwGJgG1ZMwlfAm1hZ9a4ETgfabN1KXWAzsBB4HyuC63qsFLoHA7WxxkceD1wA3AO8gTXEIi+JYMosp8LFtkB8AS8vHJH2ywCZzQLuHjHxySefJDzc1enj9hNL96Q+6ZosJVV4c8NnmuywIkuIJ+Du2mGs4WzHHHNMyFt97LHHou5Xq1YtjjnmmJDA5+bmUqdOHXbVqMHY7dt56J13qL11K0yeDJMmse2//6Xxhg2cDzgSvRaro3Fap05M2GsvNrdsSUPC35arVq3i22+/ZeTIkfz444/84x//4Jlnnoma3nPatGkcfPDBbN++PSzfeazAut9++41LL7006vZYbN68OdCoASdv85NPPskff/xBrZo1Yds29sNyA/e2/3qXJgCzZ8NppxEt8/gG4FfgN3vxfk6uagIPP/ww55xzDh06dAi1Ftx5551Jni3zqGqxiFwJfAjkAs+p6iIRudTePgarn/wyESnGGk15jibi5sShZ8+eSR+baQF3PLf99tsvYhRJtoiCH8nkJXdz4IEH8uOPP4YmcXHjF9gWL0A3UzgeeLb8VtlhRZaQyPAmv+kGE6W4uNg3cUSjRo1Yvnw569evp3br1jB0KAwdyhndurH900/pAhyDlXu9KdDDXli5Elau5CFgC5b4HHDyyeTeeSc9mzSh5+WXQ+PG0KgR8194gcX2flsAtw88duxYxo4dm/D3iRbVHY/NhYU0rF0bNm2ylsLC3Z83bYKNG1n65ZeMxRLjpn/8Yf3dto0gA01KcnLIbdECWrRge6NGPP7uuxFC7W4QbNasGVOmTOGss86K2kTvx+GHH07z5s3JyckJjX2tUaMG+fn53HTTTQwbNgzYnY2voqLWkM9JnnVjXJ+fAJ5I07XLdHwsAf/8888jMrWlGsd+J/ujm2wRhXTwyCOPUFxcHMp54cbbbL527doyVxjShRHwLGbJkiVx9xk+fDhPP/00F198ccLnv+iii3jmmWdC/+/cudN3OELDhg1Zvnw5f/75ZyjVI0CJCF8A7pGq++bkcGBpKR2wMr+1B9oA9ezPRBHVKZ7/i4CtWEK2FcttKsKaYa3Y87kYK7vckZ07M2fOHHKwsva4/7o/N6xdmwP32QcpKmLZDz9QAGFL9X33tcK9YtDGXrxsB1ZjpfxbAex3/PG06tKFq+6/n2XFxawA7vnPfxh20UUA5BUVcYPPS/yss85i0KBBfPzxx9xyyy00bdqUQw45JCEBv+666xgwYAD//Oc/wwQc4LzzzmPBggUxp681pJ9YAl4eXt/atWsBwvJrO2SLKLg58cQTfb3mRGnVqhXvvfcep556asQ2r4AHyfWRKYyAZzEnnXQSL7/8csxZtsaMGcMDDzyQVLDF008/zUMPPUTLli3ZuHEj4D+e0GlOXrVqFSUlJeTm5vLdd9/5NmE3PuII3v/yS973rK8H/Pbpp9TbuBGWL4d162D9+tDfn774gpo7dlALqw83H6hvL4GZM4czguy3ZQvY48Lb+m1XpTgnh7wGDaBePahbN/R3+rx5/LF5Mz/89Rdrsfqq3X/dnvP69etD9+6FW24JNc2d0KNHaJ9owScNGjSISIl77bXXRswD7eboo4/2TabjziblCHheXl5Ck0cY0kOmg4+cOBG/LHzZIgpu/ve//6X0fKNGjQrNDeCQrd62H0bAs5hHH32ULl26cO6550bdR0SSjpR0jq1fv35IwP2a0J0kE6effjo9evTgtddei5jRB6yUsVu2bPGdn/i4006j7nHHQZToz4n3388NN9yAiKCq5GMJuSPoNbA6OPOxHhL3kg+ce9ZZnDNwIOTkMOraa/lxyRIU2LNZM6pVr84vy5ZRCpx66qlcf8stUL06FBSw/8EHsxMiltLSUrYvX0716tUpLi7m119/Zd9996V7wNzUbvEGK2p29uzZbNmyhVatWsU93s8zOPLII1FVpk2bxgknnAAQ+u0GDBjAcccdFybg7dtbqfz9BNyQHWTau3PiTvzsyBZRSCcnn3xyxLqK9L2NgGcxDRo0SDoQKxFGjRrF1VdfzZAhQ3yj2d1J/KdOnRoR4DV69Gj69u1L+/btUVWaNm1K9erV6dq1a2if9957L64NBx10EPXq1aNr164UAfePHcvMmTMZN25cxP716tUL5TB/7bXXOPvss0Pb5jzwADOd7odVqygqKgp5Ogfuuy8ce2xo3/CBM+Hsu+++fPLJJ6EhbH7Z4+69915mzpzJBx98ELbeLwjuiChDtRo1ahSKYdh///155JFHfAXcwT0EZs2aNUyePJkTTjiBmjVr0qpVK5o3b86mTZuMgFcA/OYIL08cD9xvSs1Mtw6UFyNHjmT8+PGhbIapZsaMGWlLw5ptAp7xxBCJLulM5FJelJSU6OzZs3XHjh360UcfKaDnnHNOaPuIESMSTnyyefPmpJKjLF68OHRMaWmpXnPNNb7XLC0t1aOPPloBXbhwYdg5Tj755NB+t912m6ruTqZw+eWXh+37yiuvBMrOFm1ZsWKFzpgxI2zd66+/Hvj7qqpu2LAhdGy3bt3i7v/JJ58kdF9feOGF0P4///xzQrZ5IcsSuaRzSWfZTrRcpIu2bdsqoFu2bIl4ttetW5dp88qVbPlNEsFJ9jVhwoQynysVZTtLqhFVi5ycnJB32KNHD5YvX85ee+0V2p7MNHruoRg333xz4OP22WcfGjRoQJs2bSKmu3QjIsycOZM1a9aE2QrhnsNtt90Wts07VG3gwIEMHDiQZ599NrCNburXrx/WhdGuXTsGDBiQ0DnckcZBchonOmuY2wNPZlIdQ+p59tlnWbhwYabNYMqUKXzyySe+Q6eyxqsrJw455JBAeRyyCTMO3BBBixYtwv5PRsDdzbzuxAjxKCgoYOXKlaEH0m/ChE8++QSwxM4r3hA+BaO3GdCJuo1G3bp1WbVqFQMHDuS///1vXHtr1qwZdr86d+4c95hYBJn/+aCDDmLs2LHsu+++cfeF8EqBkx3PkFkuuOCCTJsAWMPH/IaQQfaIQnnxzTffhIbVVRSyrQk9O6wwhLFq1aqkjvv6669Zs2ZNRIUgHu7sR6eddhrjx4+nSZMmrFy5kkGDBsUVuVgzikXrAz7//PN58cUXGTp0KDVr1uSdd96hZs2aoek2/ejevTsiEpbFKuic79EIIuBgDQEMytatWxM+v8GQLaJQXmTNjF4JkG0Cbt4uWUjfvn0B6NWrV0LHde7cOZStLFlEhHPPPZcTTzyRwYMHBxIgR1DdOZA//fRTTjzxRB555BHfY5566ikmTZoUmjtcRCIC07y4A/NefPFF+vfvH5FrOijOfRoyZEhSx8fCLeAGQ1CyRRQM0TnyyCOByFbTjFHWTvTyXipDEFsQvv/++7AZktxLtvHdd9/p0KFDdcWKFWU+15IlS3T16tXatGnTsO985JFHpsDS3ezYsUPnz5/vO+tcWfnll18U0C5dupT5XJggtkqL82w7waHpeBYNqaW4uDgiiDdZUlG20+qBi8ipIvKjiCwRkRt9touIPGZvXyAih6XTnorEgQceSEFBAaNHjwas2YsA7rrrrkya5UuHDh14/vnnad68eZnPte+++9K0aVNWr17N6tWrWbp0KSNHjuSdd95JgaW7KSgo4OCDD445S1KytGnThrVr18bMHW8wjBo1invvvZfJkyfzzTffpOVZNKSW3Nzc0HDRbEA0TUEEIpIL/ISVpnsF1ixG56rq9659egFXYc0ZfCTwqKoeGeu8nTt31jlz5qTF5mxl586dFBQUhP4aqg4i8o2qli1Sr4JQFcu2oeqSirKdTg/8CGCJqi5V1V3Aa0Afzz59gHF2i8KXQH0RiZxMtorjiLYRb4PBYDA4pFPAm2PNMeGwwl6X6D6IyHARmSMic2JN42kwGAwGQ1UhnQLu16Hjba8Psg+q+rSqdlbVzpnOZWwwGAwGQzaQTgFfAbgTD7cAViaxj8FgMBgMBg/pFPCvgbYiso+IVAPOAd717PMuMMSORj8K2KSqyWUxMRgMBoOhCpG2KHQIRZk/gjUz5XOqereIXAqgqmPEGjfxBHAqsA0Ypqoxw1BFZB3wW9qMDkYjYH2GbfDD2JU42WqbY1crVa0S/UZZULaz9VmA7LXN2JU4KSvbaRXwyoqIzMnGoT3GrsTJVtuy1a7KTDbf82y1zdiVOKm0zaRSNRgMBoOhAmIE3GAwGAyGCogR8OR4OtMGRMHYlTjZalu22lWZyeZ7nq22GbsSJ2W2mT5wg8FgMBgqIMYDNxgMBoOhAmIE3GAwGAyGCogRcEBEnhORtSKy0LP+Kns61EUicr9r/U32FKg/isgprvV/E5Hv7G2PSRnnB/SzS0ReF5F59vKriMwrb7ti2NZJRL60bZsjIkeUt21R7DpERGbZ13lPROpmwK69RWSaiCy2n6dr7PUNRGSqiPxs/92jvG2rzJiynRK7Ml6uY9hWtct2WScUrwwL0BU4DFjoWtcd+B9QYP/fxP57EDAfKAD2AX4Bcu1tXwFHY+V4nwz0TLVdnu0PAreXt10x7tlHzrmxpoidng33DCsr4PH25wuA0RmwqxlwmP25DtZUuwcB9wM32utvBO7LxO9ZWRdTtlNyvzJermPYVqXLtvHAAVWdAWzwrL4MuFdVd9r7rLXX9wFeU9WdqroMWAIcIdY0qHVVdZZav8Q44Mw02AWAXTMbALxa3nbFsE0BpwZcj9157TN9z9oBM+zPU4F+GbBrlarOtT9vBhZjzbzXB3jR3u1F13XK9fesrJiynRK7Ml6uY9hWpcu2EfDo7A8cJyKzReRTETncXh9tCtTm9mfv+nRxHLBGVX/OIrtGAP8WkeXAA8BNWWLbQuAM+/NZ7J5AJyN2iUhr4FBgNtBU7fz/9t8mmbStimDKdmKMIDvLNVTxsm0EPDp5wB7AUcD1wBt2zTjaFKiBpkZNIeeyu4ZOjOuXp12XASNVdW9gJPBslth2AXCFiHyD1cS1K1N2iUht4G1ghKoWxtq1vG2rQpiynRjZWq6hipdtI+DRWQFMUIuvgFKsJPTRpkBdYX/2rk85IpIH/B143WNvRu0Czgcm2J/fBJxgl4zapqo/qOrJqvo3rBfjL5mwS0TysQr4K6rq3Kc1dtMZ9l+nOTcbfs/KiinbiZGV5RpM2TYCHp2JwAkAIrI/UA1rBpl3gXNEpEBE9gHaAl/ZTSSbReQouzY/BPhvmmw7CfhBVd3NLdlg10rgePvzCYDTBJhR20Skif03B7gVGFPedtnneRZYrKoPuTa9i/WCxP77X9f6TP+elZWJmLKdCFlZrsGU7YxHiWbDglVzWwUUYdWCLsQq1C9j9bHMBU5w7X8LVk3vR1xRgkBne/9fsKZJlVTbZa9/AbjUZ/9ysSvGPTsW+AYrwnI28LdsuGfANViRoT8B97qvUY52HYvVHLYAmGcvvYCGwMdYL8WPgQaZ+D0r62LKdkruV8bLdQzbqnTZNqlUDQaDwWCogJgmdIPBYDAYKiBGwA0Gg8FgqIAYATcYDAaDoQJiBNxgMBgMhgqIEXCDwWAwGCogRsCrOGLxmYj0dK0bICJTMmmXwWBIHlOuqwZmGJkBEemAlWHpUCAXaxzjqar6S6zjopwrV1VLUmuhwWBIFFOuKz9GwA0AiDUn8laglv23FdARK2/0nar6XztR/0v2PgBXquoXItINuAMryUInVT2ofK03GAx+mHJduTECbgBARGphZaXaBbwPLFLVl0WkPtYctYdiZRsqVdUdItIWeFVVO9sF/QOgg1rT4xkMhizAlOvKTV6mDTBkB6q6VUReB7ZgzUV8uohcZ2+uDrTEyon8hIh0AkqwpmV0+MoUcoMhuzDlunJjBNzgptReBOinqj+6N4rIncAa4BCsAMgdrs1by8lGg8GQGKZcV1JMFLrBjw+Bq+wZcRCRQ+319YBVqloKDMYKjDEYDBUDU64rGUbADX6MBvKBBSKy0P4f4EngfBH5EquZzdTODYaKgynXlQwTxGYwGAwGQwXEeOAGg8FgMFRAjIAbDAaDwVABMQJuMBgMBkMFxAi4wWAwGAwVECPgBoPBYDBUQIyAGwwGg8FQATECbjAYDAZDBeT/A7D9BawN+zQEAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfYAAADQCAYAAAD1aUMjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABXRElEQVR4nO2dZ7gURdaA38MFAVFBkoIKCCYERRAwK0bAsJjWRUyIyKeCiuyuWdacdpVgBmFZXNMqiK4iirIIBlBEMgaCBEElKRku3PP96O6hp2/3TPeEO3Pn1vs8/cxMdXXV6Z6uOhVOnRJVxWAwGAwGQ2FQKdcCGAwGg8FgyBxGsRsMBoPBUEAYxW4wGAwGQwFhFLvBYDAYDAWEUewGg8FgMBQQRrEbDAaDwVBAGMVuyAkiso+ITBKRDSLyhIjcKSIv5lquZIjICBF50P5+koh8l2uZDIWHiKiIHJRrOfwQkXtF5N+ZvlZEOojI8vSkyywi0khENopIUcD5lJ+FT1oZ+8+NYvcgIt1EZJr9Z64UkfdF5ERPnO72n3CJJ7yDHT7aE97KDp/oCmsiIv8Tkc0i8q2InOFJp8SWwTmucp2/REQ+t6+dSPmkF7Aa2EtV/6yqD6tqT4g9GxWRykEXZ7JApYqqTlbVQ3MpQ0XElNFS95NXyrCQUNWlqrqHqu7MtSxRMIrdhYj0AwYCDwP7AI2AZ4EunqhXAWvtTy+rgONFpI4n/veeeK8C3wB1gLuAN0Wknuv8CvuFco5/uc6tteV8NPzdpUciJZsijYF5ajwkGSJgymh0slB2yx1BPe6CRVXNYemWmsBG4I9J4jUGSoCLgB3APq5zHYDlwPNAbzusyA7rD0y0ww4BtgF7uq6dDFznTieEzD2dNJPE6wLMANYDC4FOdviPwBmuePcC/7a/NwEUuAZYCkwCxgF9PGnPBC60vx8GjMeq1L4DLgmQZwRQDGy3n/kZnryX2nlvtI/jPNd3sq8tts/PtMMbAu/Y+S8Ark3wTM4G5gEbgJ+Av3j+wzuxRhR+BC7zyP6g3/9kx/0LMAv4HXgdqOY6f679P/wGfA4cmev3vjwdFHYZ/SuwElgB9LDf/4Psc1WBf9jl4hdb9upADWCLfa9OWWlol6U3gX9jlfme9rMbZufxE/AgUGSn3x341M5jHbAY6OyS7UDgE7usjAeexi6r9vlj7ff5N6z6oEPYaz3PwPlvSpU9oJ1975Vd8S8CZgSkNQJ4DhgLbMKqYxoCo7AadouBm1zx2wPT7Of1C/CkHd7E/i8qJ7sfv3cCVx1r5/GF/ZxW2tfu5oob+8/TPUyPfRfHAdWAt5LEuxKYpqqjgPnAZT5xRtrxADoCc7EKrEMLYJGqbnCFzbTDHeqLyC8islhEBohIjfC3sgsRaW/L81egFnAy1ssWllOA5lj38QpwqSvtw7Eq0fds+cbbcerb8Z4VkRbeBFW1O/Ay8LhaPZ2PPFFOtj9r2ee/8Fw/DqvH9rp9vpV96lWsiqEhcDHwsIicHnBfw4D/U9U9gZbABNe5fYG6wH5YPbkhIhJ2yP0SrIbHgcCRWJUmItIGGA78H1YP8AXgHRGpGjJdQ+GW0U5YDcIzgYOxlJCbx7AaGkcBB2G9l/1VdRPQmfiRA+ceumAp91pYZe1fWI2cg4DWwFlYCt/hGKzGeF3gcWCYiIh97hXga/vcA7hGQURkP+A9rIZCbfs+RrlGNgKvDcC37KnqV8Aa+xk5XA68lCCtbsBDwJ5YDY//Yv2H+wGnA31FpKMddxAwSFX3ApoB/wlIM+r9uNkJ3GJfe5wtww0Rrg+NUey7qAOsVtUdSeJdifXnYn+W+mNV9XOgtq0MrsSqRNzsgdWjc/M71gsI8C1WIW4AnAYcDTwZ6i5Kcw0wXFXHq2qJqv6kqt9GuP5eVd2kqluwKtSjRKSxfe4yYLSqbsPqjf6oqv9U1R2qOh2rdXxxinJHQkQOAE4EblPVrao6A3gRuCLgkmLgcBHZS1XX2fK6uUdVt6nqJ1gV1yWlk/BlsKquUNW1WBXJUXb4tcALqjpVVXeqNWy7Dau3YwhHoZbRS4B/quocW1nf65ywleu1wC2qutZuaDwMdE2S5heqOkZVS4C9sBoAfe2y/CswwJPGElUdqtZc8r/s+9pHRBph9Zad8jAJ6712uBwYq6pj7fplPFbP9+wQ1wYRVPb+ZeeHiNRmV2cjiLdV9TP7GRwB1FPV+1V1u6ouAoa6nkExcJCI1FXVjao6xZtYGvcDgKp+rapT7PrxR6zG/Slhr4+CUey7WAPUTWKwdQJWT+w1O+gV4AgROcon+ktAH+BUSvcwNmIVNjd7YQ3voKo/q+o8u6AsBm4ldQV5ANbwe6osc77Ylcp77CoMXbF6A2D13I8Rkd+cA0vx75tG3lFoCDgVn8MSrNa5HxdhDccvEZFPROQ417l1dgXrTqdhSDl+dn3fjKUgwHo+f/Y8nwMipGso3DLaEFc5w3rfHOoBuwNfu96bcXZ4ItzpNQaqACtdabyANbLmEHtvVXWz/XUPWza/8uBO+4+e9/pErIZBsmv9SFT2/g2cJyJ7YCn7yaq6MkFa3mfQ0CPnnVh2GmB1gA4BvhWRr0TkXJ/0UrmfGCJyiIi8KyI/i8h6rAZa3bDXR6HCG1W4+ALYCpyPNYTlx1WAADN2jVIBVot/hifuS1jzvCNVdbMn/lygqYjs6VJErQhufaqdbyoswxpa8mMTVqXh4KeEvcZtrwJ/E5FJWPN8/3Pl84mqnkn6hDGo88ZZgdUDcz/TRljziaUvtob2uohIFazK/T9YihZgbxGp4SrAjYA5UW7Ah2XAQ6r6UJrpVGQKtYyuZNe7B9b75rAaax69har6vctBZcUdvgxrdKhuiNEOP9n8yoOT/jLgJVW91nuhPbKX6Fo/Asueqv4kIl8AF2CNxD2XRHbvM1isqgf7RlT9AbhURCoBF2IZStbxREv2LOLqU9tgz90Aew7LGPNSVd0gIn3J0oim6bHbqOrvWMYzz4jI+SKyu4hUEZHOIvK4iFTDaiX2whqCc44bgcu8vQi7FX8KljWtN6/vsSqZv4lINRG5AGs+dhTElrA0EosDsCxr33auF5EiW57KQCU7jSoBtzYMuFpETheRSiKyn4gcZp+bAXS177Mt4V6ysVit3/ux5rhL7PB3gUNE5Ao7vSoi0k5EmodI08sqLIOgpgni/AI0sQsiqroMax7tEft5HInVCn/Ze6GI7CYil4lITVUtxjKY8S5nuc+OdxLWNMMbKdyHm6HAdSJyjP2/1hCRc0Rkz6RXGoCCLqP/AbqLyOEisjvwN5ccJVjvzgARqW+nvZ/smhv+BagjIjUTPLeVwIfAEyKyl10PNBORpMPAqroEa2jdKQ8nAue5oji96I7OPdvPZv8Q1waRqOyNxBodOYLkthZuvgTWi8htIlLdlrWliLQDEJHLRaSe/bx/s6+JqxNC3M/3QDW7XFcB7sYyfHTYE6uu2WjXwddHkD8SRrG7UNUngX5Yf8gqrFZeH2AMVi9hC1br/mfnwFKcRVgGU970PnUZs3jpCrTFskJ9FLhYVVfZ59pg9U42YSmrOcBNrmuvsGV5DjjJ/j404J6+BK7GmlP7Hcui05kjvwerN78OuI/E81VOetuA0VgGPq+4wjdgGeR0xeo9/4xl9BPZOMweCnwI+EysYTO/eWinsK8REWd+/FIsK9YVWIX+b/acnx9XAD+KNSR2Hfbcnc3PWM9kBVbD4LqIdgmlUNVpWHOlT9tpL8A2rDOEp0DL6PtYS+MmYL0XEzxRbrPDp9jv60fAofa132KNoi2yy0rQ1M6VwG5YK0HWYY14NAiI66UblnHdWqxGR8wewW5Qd8Ea1nb+j7+yS7cEXhtAsrL3Flb99ZZnSDwhtu3AeVgNvcVYIyEvYq0WAOvdmCsiG7EM6bqq6lafpBI9i9+xjOFexBop3IRlzOvwF/v6DVjvwuth5Y+KqIYZ9TQYKgYi0gFr+cr+ORbFYDD4ICILsVa0eFfTGGxMj91gMBgM5QIRuQhrTts7qmFwYYznDAaDwZD3iOWa93DgCpdtj8EHMxRvMBgMBkMBYYbiDQaDwWAoIApqKL5u3brapEmTXIthMJQpX3/99WpVTeawpNxiyrWhopJq2S4oxd6kSROmTZuWazEMhjJFREJ7vyqPmHJtqKikWrbNULzBYDAYDAWEUewGg8FgMBQQRrEbDAaDwVBAGMVuMBgygogcICL/E5H5IjJXRG72idNBRH4XkRn20T8XshoMhUyFUeyTJ0+mbdu2zJgxI9eiGAyFyg7gz6raHGuf+d4icrhPvMmqepR93J9uph9//DFvvJHuHj0GQ+FQUFbxiTj55JMB6NKlC0uWFLQRscGQE+xdxFba3zeIyHxgP6yNR7LGGWec4eSfzWwMhnJDhemxO6xfvz7XIhgMBY+INAFaA1N9Th8nIjNF5H0RaRFwfS8RmSYi01atWuUXxWAwBFDhFLvBYMguIrIH1r7lfVXV25KeDjRW1VbAU1jbrZZCVYeoaltVbVuvXsH63jEYskKFU+xmuM5gyB4iUgVLqb+sqqO951V1vaputL+PBaqISN0yFtNgKGiypthFZLiI/CoicwLOXyYis+zjcxFp5Tr3o4jMtq1mM+pyqqTEbApkMGQDERFgGDBfVZ8MiLOvHQ8RaY9VB60pOykNhsInm8ZzI4CngZEB5xcDp6jqOhHpDAwBjnGdP1VVV2daKNNjNxiyxgnAFcBsEZlhh90JNAJQ1eeBi4HrRWQHsAXoqqZQGgwZJWuKXVUn2QY0Qec/d/2cAuyfLVk8+ZZFNgZDhUNVPwUkSZynsRr8BoMhS+TLHPs1wPuu3wp8KCJfi0ivRBdGtZ41it1gMBgMhUzO17GLyKlYiv1EV/AJqrpCROoD40XkW1Wd5He9qg7BGsanbdu2SbW2UewGg8FgKGRy2mMXkSOBF4EuqhozoFHVFfbnr8BbQPtM5WkUu8FgMBgKmZwpdhFpBIwGrlDV713hNURkT+c7cBbga1mfCkaxGwwGg6GQydpQvIi8CnQA6orIcuBvQBWIWcf2B+oAz9qrX3aoaltgH+AtO6wy8IqqjsuUXEaxGwwGg6GQyaZV/KVJzvcEevqELwJalb4iY3JlK2mDwWAwGHJOvljFlxlGsRsMBoOhkDGK3WAwGAyGAsIodoPBYDAYCgij2A0Gg8FgKCCMYjcYDAaDoYCocIrdYDAYDOnz5Zdf0rp1azZv3pxrUQwejGI3GAwGQ2RuueUWZsyYwTfffJNrUQweKoxitx3eGAwGg8FQ0FQYxW4wGAwGQ0Wgwih202M3GAyGzGMMkvMPo9gNBkNBYBRM2WLq1NTYsmULK1euzGoeRrEbDIaMICIHiMj/RGS+iMwVkZt94oiIDBaRBSIyS0TaZCp/o9jD8f7773POOeeY55Ujzj33XBo2bJjVPLK2CUy+YRS7wZB1dgB/VtXp9tbLX4vIeFWd54rTGTjYPo4BnrM/02bnzp1UqlRh+iopc+6551JSUkJJSQlFRUW5FqfCMWHChKznUWFKgVHsBkN2UdWVqjrd/r4BmA/s54nWBRipFlOAWiLSIBP5l5SUZCKZCoPpseeWbD5/o9gNBkPGEZEmQGtgqufUfsAy1+/llFb+KWEUezQKTbGffvrp5aqe37lzZ9bSNordYDBkFBHZAxgF9FXV9d7TPpeU0jAi0ktEponItFWrVoXK1yj2cDh1Yaaf1/bt29mxY0dG04xCWQxxZ5Li4uKspZ01xS4iw0XkVxGZE3A+0IhGRDqJyHf2udszJE8mkjEYDAkQkSpYSv1lVR3tE2U5cIDr9/7ACm8kVR2iqm1VtW29evVC5W0UezQy1WMvKSnh1VdfpWrVqhx//PEZSbMiUC4VOzAC6JTgvNuIpheWEQ0iUgQ8Y58/HLhURA5PVxij2A2G7CJWIRsGzFfVJwOivQNcaTfsjwV+V9WMrP0xij0amVLsO3fupFu3bgB89dVXGUmzIpBNxZ41q3hVnWTPswURM6IBpoiIY0TTBFigqosAROQ1O+68wJRCYBS7wZB1TgCuAGaLyAw77E6gEYCqPg+MBc4GFgCbgaszlblR7NHI1PPK5lxxIVMuFXsIgoxo/MLTXg5jFLvBkF1U9VP859DdcRTonY38jWIPh1MXHn/88cycOTPt9Ixij4aIoKrldig+GUFGNKGMa2KJhDSyMYrdYChsKrJiX7lyJZ988kmka2bNmpVWnk6dahR7NBzfAYWq2IOMaEIZ1ziENbIxit1gKGwqsmI/+uij6dChQ+TrGjVqxB133JFW3kaxR6NyZWugvFAVe5ARzVfAwSJyoIjsBnS146aF8UhlMBQ2FVWxv/vuu5F8j7s7OcuWLePRRx9NK3+j2KNRrnvsIvIq8AVwqIgsF5FrROQ6EbnOjjIWWIRlRDMUuAFAVXcAfYAPsDxX/UdV52ZAnnSTMBgMeUxFVeznnXde1vMYPXo0v/zyS1yYGYpPjbJQ7Nm0ir80yflAIxpVHYul+DOGUewGQ2FjFIy1hC3Tdd3GjRu56KKLOPLII32N7cxzj0ZZNIgqzPi0UewGQ2FTUXvsbsIoi6h1oeNNbsmSJSnnadhFtjz/uakwit1gMBQ23ory5Zdf5ueff86RNLkhGy5dkzmyMYo9GqbHnkFMj91gKGzcin3NmjVcfvnlnH322TmUqOwJo9hT9TjnrUMdg2Sj2KNhFHsGMYrdYChs3Ip9+/btAHzzzTe5EqdM8CrpHTt28Msvv7BiReAK4UhGWyLCtddeG3gO8k+xt2nThkWLFuVajECMYs8gRrEbDIWNW7G7v6friCWf8VPs++67L/vt578T7ssvvxw5j1GjRgHlp8f+zTffpL2EL5sYxZ5BjGI3GAqbIMW+YMGCXIhTJnjtCpIpi7vvvjvlvLx1qPM7l1u1BvHrr7/mWoRAyqJBZBS7wWAoCIIUeyGXfa9ycCtZp6ftJp1nUV567ADr1q3LtQiBGKv4DFLIhdtgMFgV5ejRo7nvvvtYu3ZtLLyQvU5+/fXXcb/din3OnDml4kepBwcMGJDw2nxW7Pkok0NZDMXncne3MiXohd62bRtbtmyhVq1aZSuQwWDIKCUlJVx00UUADB48OBZeyI36E044Ie63W7H73XeUZ9GvX7+436tXr2bZsmUccMABcWktW7as1LW5Jp99Gpg59gwS9EI3atSIvffem99//72MJTIYDJnEXZnnc4/9iSeeQESy4lLUrSyiKPZt27axevXqpOlffPHFse/Oc3366aejipl18lmxOxjFngG8L/Rvv/0G7DKy+O6778paJIPBkEGCKvN867Hfd999AGzevDnjaafaY+/atSv16tVLusbdLbOj2PNxtDOfh+KN8VwGcb/Qw4cPZ++992bgwIG+5w0GQ/kjqKIMW7bXrFnDvHnzMimSL07F7qy1zyT//e9/Y9+jKPYxY8YAuzo8YXDSqlmzZngBy4h87rGbofgM4n6h+/btC8Att9wSCzvjjDPKWiSDwZBBli5d6hsedii+Xbt2tGjRIpMi+eLURVu3bs142rfffnvsu999Byn2ffbZB4CffvopdF5O+hs3bowiYpmgqvTr14+XXnop16KUwljFZxD3C12lSpVS59evX1+W4hgMBYeIDBeRX0WktDm2db6DiPwuIjPso38m87/kkkuC5Ap1/eLFi1PO+6mnnqJx48ah4joKccuWLSnnF4YoPXZnK9EpU6aETtP5no+KfefOnQwYMIArr7wy16KUwvTYM4i79eo2rDEYDBljBNApSZzJqnqUfdxfBjJFnmZLxajtpptuYunSpXz77bdJ4zp1UTZ67G5SmV689tprE05HzJ49GxFhy5Ytsfn4DRs2pCxjtnD3hqdPn14m+YV9b/Jmjl1E6onInSIyxG6VDxeR4VmTKguYOXSDIbuo6iQg71rNYcr+qlWrYt83bdqUcl4dO3YMPKeqrF+/PqeKPehZuI3m3M8iiNWrV8eUp9fgLtVNZjKJW7EfffTRWc/vvPPOY7fddgsVN5967G8DNYGPgPdcR7nBKHaDIS84TkRmisj7IhI4oS0ivURkmohMC6NoEhGm7J900kmx7+kMLS9btixw7nTIkCHUrFkzthInXxV7GMUsIoHx8sEi3fsfTJo0Kav5jR07NnTcfFLsu6vqbar6H1Ud5RzJLhKRTiLynYgsEJHbfc7/1TXfNkdEdopIbfvcjyIy2z43LeJ9+cmSbhIGgyE9pgONVbUV8BQwJiiiqg5R1baq2rZevXqhMzjkkENKhYUp++7lrun02FWVhx56yPec22IdUrOKV1WGDRsWqlGQqoOasD3uoHj54Dv+hx9+iPt9yimnhLpu3rx53HPPPWU2fJ8twir2d0Uk0sbGIlIEPAN0Bg4HLhWRw91xVPXvznwbcAfwiaq6h/JOtc+3jZJ3gDzpJmEwVGhEJNxYYwCqul5VN9rfxwJVRKRuRoSzqV69eqmwqGU/3Z7Uu+++y5gxY0pV3JUrxzv6TGXIesyYMfTs2ZP+/ZPbHfrdd9BwcVRZVDVQMeWDYk/lP/ziiy9o0aIFDz74IO3atcuCVBY577GLyAYRWQ/cjKXct4jIeld4ItoDC1R1kapuB14DuiSIfynwahTho1CjRo1sJW0wFBwiMlFEmrh+twe+SjPNfcWu1ez0KgFr0knTy8yZM9NOI92e1JdffskFF1zAHnvsgXu0IROK3TFU+/nnn5k9e3bCuH6KvXnz5r5x3bKMHDky6WjCzp0787rHngruUZtE78Dq1asTGmDPmDGDuXPnBp4vC+O5hL7iVXXPNNLeD3A7EV4OHOMXUUR2x7Km7ePOHvhQRBR4QVWHBFzbC+gFlnvYICZMmEDt2rWjyG8wVGQeAcaJyGCsstwZuDrRBSLyKtABqCsiy4G/AVUAVPV54GLgehHZAWwBumoGLK2mTJnCscceG3g+qqLO1BDpli1b4pa0ZUKxO0qhpKSEI488MmFcP8Ue5t5GjBgR8wcfxI4dOwpOsYeV22ms+d1/5cqVYwo76Pk470E2HBTF8ggTSUQ+VtXTk4V5L/MJC3qTzwM+8wzDn6CqK0SkPjBeRL61rW7jE7QU/hCAtm3bBpaUfPMXbTDkM6r6gYhcB4wHVgOtVfXnJNdcmuT800DGHYsnK9tRFWi25j4zqdhffvnlpHG9il1VA+fmvQaKyRzVbNu2LSND8RMnTuTRRx/lvffei62lzxaqmnBaJhMNkjC98LJQ7MmG4quJSB2sFvjeIlLbPpoADZOkvRxwN/v2B1YExO2KZxheVVfYn78Cb2EN7aeMUewGQ3hE5B4sA7eTgXuBiSJyTk6FCiBZ2f7Pf/6T8LzXWK48KPYweJXYkCFDYq5jvXhlSfYMWrZsGXeNWylHUZB//OMf+eCDDzLiW6Rly5YJzye7p6iKfejQoZHiOzjvwbZt21K6PgzJ3pL/A6YBh2FZtH5tH29jGcYl4ivgYBE50Da66Qq8440kIjWBU+w0nbAaIrKn8x04C/D1ZhUWo9gNhkjUBdqr6heq+gLQEeibW5H8SVa2X3zxxcBz8+fPZ4899ogLy9bcZ64VexT3qiNGjEgax60oq1at6hueDEe5eZ9NED/88EOgHUWy55lMrmQOZgYOHEjv3r1jv3v16pUwfjKyqdiTzbEPAgaJyI2q+lSUhFV1h4j0AT4AioDhqjrXHt5z5twALgA+VFV3s3kf4C37xawMvKKq46Lk78UodoMhPKp6s4hUF5FDVfU7VV0CnJlrufxIZwh3xowZpcIy3WN3hoBzrdgzPfTrbgBVrVo1tvNbKoo97LNwljP6xU+Wxs6dO0u5E3/uuedo3749Rx99tG+P/amnnuK4446jbdu2cXuLOKxduzay7ZbzfHKm2F38JCIXesJ+B2bbQ+W+2EtaxnrCnvf8HoHlitIdtghoFVK2UBjFbjCER0TOA/4B7AYcKCJHAfer6h9yKpgP6ZRtv8o804q9pKSEoqKiUop96NChnHNOtNmNdO4104p96tSpse8tW7Zk8uTJQLTn58iUiVGSZPn65XHDDTcAVqPA71246aabYuf9aNOmDT/++GMkOZ20cjbH7uIa4EXgMvsYCvQDPhORK7IkW0Yxit1giMS9WHYtvwGo6gzgwNyJE0w6Zdtv+DXTit3Jo379+nHhb7/9NgsWLODPf/5z6B5rlHv1xs20InEb4lWvXp2RI0cC8Upw/fr1fPzxx0nTSveZb9++Pamffq9i9z7zO++8M3K+S5YsSXnVRS7n2GOyAM1V9SJVvQjL4cw2rOVrt2VLuExiFLvBEIkdqvq7Jyz3TsB9CFO2oyzNilpRJ1qzDLsUu9+ukueffz5PPvlkqM1jILWh+MWLF6OqkfZaj0qlSpXiluIB9OnTh5o1a3LGGWck3T0zXcWebE0/lFbsURo648YFzwTfcccdodOB/FLsTVT1F9fvX4FD7OVp0bdCygFGsRsMkZgjIt2AIhE5WESeAj7PtVB+hCnbX375pW94JhR7hw4dEp538vAbCnaUfljveFHqsZKSEiZPnkzTpk0ZMWIEK1euDH1tVESklGJ/5pld9tXJLM7TVexhHJB5n3+UbXOdaQY/Hn/88dDpwK57zYeh+Mki8q6IXCUiV2FZsE+yLdZ/y5p0GSRMwTHbuRoMMW4EWmCNzL0KrKecWsVD8MYufkPxjhFYWJIpLSePRPPI2VLsjgX5tGlpb7eREL8eu5tkc+jpriEPs7NaVMXuHuV5+OGHUxPMB+f5uDceyjRh35LeWAZuRwGtgZFAb1XdpKqnZke0sufvf/97rkUwGPICVd2sqnepajt7M5a7VDW725GlSBhl51TikydPjs0Fg79COfvsSNtiJFXKQ4cOZevWrb4KL6plfFTF7vQKw24pmioiEnsOqSj2Jk2apJV/mOfolmHixIk0bGi5YglaatejR4+0ZJo1axbdu3fnk08+iQtXVS699NKY4V42CGUVb7t9fNM+CpZsznkYDOUBEfkvCebSy4NV/DHHHBNnsQ27euEnn3wyAFdeeSWQGW9jyRT73XffzfTp0xk9enSpc45CylaP/eefLWeB2Vbs7h67n5LNpl/0BQsWhNqRr2vXrlxyySX06dOHRx55JBYe9GzCrOVPRKtW1sKuZcuWxRkQlpSUZH1qOFTqInKhiPwgIr9H2ASm3BHmYf/www+cfvrpfPrpp2UgkcFQ5vwDeAJYjOXPfah9bCRNJ1HZwltu3c5SHIKGXTOh2MPUG35KHXb1brOl2J1RyLLosScaih8/fnxK6/YTMWjQIESEgw8+mPPOOw+A228vtTt4jMmTJ3PjjTcC8Pvvu+xCN2/eHGq3vFRxNu5xyBvFDjwO/EFVa6rqXqq6p6rulU3BckGYh92rVy8mTJiQ1fkRgyFXqOonqvoJlm/4P6nqf+2jG3BiruXzw1tu/cqxV7EvXboUSF2xjxo1KrYGPZ0toZ2e7JQpU0LFj6rYHcKmnyrJ5tivvvpq3njjjVBpnXrqqdx2W+nFVo8++mjse79+/ejbt2/s97Jl1n5jTi85ERdffHGpEZ0HHngglGwAl112Wei4QCnPhiUlJVnfRjzsW/KLqs7PqiR5QLIXb+XKlUycOLFshDEYcks9EWnq/BCRA4F6CeLnDK+y8/NE51U2jRs35rXXXkuq2P/yl79w3HHHlQq/+OKLGTt2rM8V0XDkuvLKK0NZaUdRCO57/uijj6ILF4FkPXZIvrGMw8SJE0tZmn/33Xdxy8oGDBgQKEcyRo0aFUqOIMK6v3XYfffd436ratZ77GElnCYirwNjsKxkAVBV//GlckoyD0L9+vUrG0EMhtxzC9bGL4vs302w9o7IO7yVpF/l7jfHO3nyZPbcM/HO1E888UTS/JP5GE+EW65t27ZRvXr1hPGjDGeXlJTQsmVL5szJ/gxKGMWezPWv997ef/99OnfuDJQezg6iLJY1R83De9/5NBS/F7AZazOW8+zj3GwJla/88ssvySMZDAWAvTfDwcDN9nGoqn6QW6n88VacYfch37p1a0bm2NNJY8WKXRtehkknqmLP9pCvQ6VKlRJaxUPynu6zzz4bp/C6d+8el35YObJJ+/btS71vye7Lb+e8vOixq+rVWZXCYDDkI0dj9dQrA61EBFUdmfiSsidMJfnYY4+Vspzetm1bSkrZvVucqqbVY3cTJp2oij3TBmtBuHvsQXl6FaLXE96zzz5bKk2HfFHsxcXFpe5jr732SugDxeuIJm967CJyiIh8LCJz7N9HisjdWZUsz3jwwQf53//+l2sxyh3bt2+nR48evP3228kjG/IGEXkJy0L+RKCdfbTNqVABeCtJVS2lXFauXMldd90VF7Zt27bQSvmdd96JzRFfe+21sfANGzZkpNfvyJOMfFXsbuO5qVOncs011yS9xjvv7214Oent3LmT1157LZQcfiMUhx56aKhrw/Dcc8+VUuzJphi8/2s+Gc8NBe7Adh+rqrOw9levEGzZsoV77rkn12KUKevWraN79+5pL+sbMWIE//znPzn//PMzI5ihrGgLnKCqN6jqjfZxU66F8iOM8ZwfxcXFoZVyly5dOPHE0osCatasmbE12slcjC5atChS5yJXPfabb76Z4cOHl4pz3XXXxf32Nqq8Hv8c5ffJJ5/w2GOPhZLDryf8xz/+MdS1YWjcuHGpPJK5w3VvlgNlYzwXNvXdVdXrbDkzzdQ8ZPHixfTo0YMffvgBKP3HVAT69+/Pv/71r7SX9a1ZsyZDEhnKmDnAvlEuEJHhIvKrM7Lnc15EZLCILBCRWSLSJhOCeitJv81W/KhcuXKk3nbU7TmjkkyxN2vWLM6xSiIqVaqUsx57IiZNmhR75t5n7+2xO4o9jPMZtxxewviRD0tRUVGs4fiHP1i+mpIpdu+UQ94MxQOrRaQZtkcqEbkYyN6OAtlg+vRQJr0lJSWcf/75/POf/6RTp05AxfRIt3z58lyLYMgtdYF5IvKBiLzjHEmuGQF0SnC+M5ZB3sFAL+C5TAjqrSTDOmOpVKlSxobRM0Em65mioiJWrlzJ/Pm7Vik3b948Y+l7cbuUTcQpp5wScwbjdhIDwT76o4yI+CnMWrVqhb4+GW7FXrNmTcAa3UzEDz/8ELe7XT4p9t7AC8BhIvIT1mYQ1yW8AhCRTiLynd1CL+USSEQ62N7sZthH/7DXRmLrVrjkEp4HXgYcdwHvvFO6ntqxY0dsC8VFixbZl1e8HntZWdMa8pZ7gfOBh7E80TlHIKo6CUi0k1IXYKRaTAFqiUiDdAVNVbEXFRVF2mEr22XCK0vDhg1jTnCiUqlSpVLD4QcccEDKsrm56KKLSoVt2LAhtLKaNGkS3bt3j3mBC8J53lEaX37/UaYVu3OfYad8du7cGWsEQH5ZxS8CzrB3c6ukqhtEpC8wMOgaESkCngHOBJYDX4nIO6o6zxN1sqqem+K14ahWDR54gI3dutENy9T3YmCfffYpFdXvJYqyvV8hMnfuXFq0aJFrMQxliO19LtPsByxz/V5uh5Ua/RORXli9eho1apQw0XQUe1DZLi4uLjWkn23F7u2xr1y5MuWtVv0UR6bk95vq2LJlS2hl9dlnn/HZZ58ljeekF0Wx+8ngVqrpUrlyZapVqwaEV+xe8sl4DgB7NzfHU0Ayby3tgQWqukhVtwOvYbXYw5DOtf5ceiltgdnAocCXQIP33y8V7cYbb4xrOb/66qsF02Nfu3Yt/fr1Y9685O0j94vXsmVL7rjjjpSGLd3pzJgxgxNPPJHrr7++Qk5vlAecfSB8jkzsD+FXm/lOAqvqEHtXubb16iV2eJfqHHtRUVHge+jXOAhSXA0apD3oAAQPOacyt+8na6Z6iX7rtqMo9rAsXboUEeHXX38NfU1ZDMU7c/ZR68MGDRrQt2/fvDKe8yNZkyOode7lOBGZKSLvi4jTLQx7LSLSS0Smici0VatWJRToO+AYYBhQHTjg3nsZAbgd/nmHr7p165axHvvvv//ObbfdFkqxZpqPP/6YOnXqMGDAgFD+lL0tykcffZSXXnopLRlat27NZ599xvPPP8/AgQPTSsuQHZx9IHyOTOwPsRxwjwfvD6wIiBuaoB6725e4H1GH4oMq8g4dOsT9TrWcBCn2MWPGxM3RhiGRYj/kkEPS8kbn1+jZunVr1pSVMzUaBj8Z6tSpkzFZ3Io9aufk559/ZtCgQXk1x+5HMnPLMK3z6UBjVW0FPIXlsjbstVZghJY9WNtV9QSuAkqqVeMqrN57IrOSIKOOqI4pbr31Vh5//PGcDGufccYZse+pGgwlGxZ87733SvlwDhpyWrhwYUoyGMo17wBX2tbxxwK/q2raRrjeSrJx48ZAsD9xh+rVq2dk5OjVV1+N+920adOAmImHb4Osq2+55RZOOeWUSDIlUhw1a9ZMqxfrNyKSTcX+3HPhbSxFhDFjxsTVO87QeSZwK/YwI7l+SyRzrtgTDcsBDZOknbR1rqrrVXWj/X0sUEVE6oa5Nl1GAr+PH888oAXwFXB5QNzVq1f7hg8ZMiRSnt98803su2OYV55INi907rnn0q9fP+bOnZs0rUx56zLkDyLyKvAFcKiILBeRa0TkOhFxDG3HAouABVi+MW7IUL6x7/vvvz+33HJLqOtKSkoi9dghuYOYs846i+OPPz7wfKL5/0TW3zNmzEgqmxs/xeHe+z2ZYpk5c2bgOfdQ/JNPPglYSi4fDG4rVapEly5d4gyjgxpvt912Gy1btoycftgee//+/X39d+RcsScZlktmePcVcLCIHCgiu2E5tIkzQxeRfcV+G0SkvS3PmjDXZoLd27WjPZaSrwG8hFXbeNt3P//8s+/1S5YsiZSf+0W49dZbE8bdunUrDzzwQNY2cPjxxx+57777fJdqFBcX++6AFPQyfvXVV3FbKiZb/gGZ2QfbkF+o6qWq2kBVq6jq/qo6TFWfV9Xn7fOqqr1VtZmqHqGq0zItw9VXXx3aeK64uDhyjz1ZgzSZI6ZE8/+ZcnQD/mXQGRFw+3VPBeceWrduHWvEZGOOPRUcGdyyNG7c2Nf7XNOmTVN6Ds5GPcnenVq1avk+k7wznouCqu4A+gAfAPOB/6jqXE8L/mJgjojMBAYDXe3C73ttJuX7+uuvqVq1KvsfeihXYQ3PO8P0U7AW2joEzd1HfZHdL8KoUaMS7lj05JNP0r9/f4444ohIeYSlQ4cO3Hvvvb7TAkOHDvW9JmgYsX379nFbKrpf2qDhRaPYDZlkr72s6f8oFeawYcPiRtHCkK4HxUSKPZmjk3RJptjdLnfDOrZxGlE7duzIC8Xu3JcjS8eOHdltt918DRxTVbDOf5isIXbmmWf6PpOyeFZZTV1Vx6rqIXYL/SE7zN2Cf1pVW6hqK1U9VlU/T3Rturh7oW3aWE6vPv/cynIYlmHd90Ar4Gugmx1348aNvulFXe7gnZN59tln+eAD/w2zwgxnh8VvVzpntMFv3vz777/3TcfvZfTb/MAdL+jlN0PxhkziGMplsifk9+6+77OSxo2zVrxHjx4AMe+VDmXVY3fjKF/Hi2SQlzh32L77BjsddDdAnGH5nTt35oVid2Rw3oNEjaVUvfK5GzNBbN26lZYtWwY+k4kTJ6aUd1hy/0+UIX7rYWvXrs0ee1gua2ZjrXF/FdgTy5nNK4AG7NyTTo8d4Pbbb6dTp0489thjse0bVZXnnnsuck8iEd26dUseyUVQ5bh582b+8Y9/sGzZrgULTgXm5o033oh9D6qsctVjX7NmDU888UTgKIyhfOKeP84UUZe5Tpw4kXPPtVxyDB06lO3bt3PQQQfFxalatWrg9ZnqsZ922mmlfm/atCmm2EUkcDmfs4HO7rvvXuq8H+7eazqK/fbb0/NB5uAdik/0XlSpUqVU+NVXX5101ZJzz4nqMOd/DnomYdbxp0OFUuxhCs5GrJ56T/v7pcDfRo3iNJ+4zp+2du1aBg0aFGhk5xA0J3P77bfHdoz66KOPuOGGG+JcQabLJ59E8zUS9DIOHjyYv/71r7Ru3ToWNmnSpFLxBgwYEPMRn29D8VdccQV/+ctfMroxhCH3OBV4IuXStm20zemijiq5LdcrVaoUUwB77713LHzs2LGB13sbwZm05t59993jhuL9GhhuJeenCJ1lY+6ebqYU+3HHHZfytW68it25Z/f91K5dG4Crrrqq1H22a9eOPffcM2EeYYfivfmWJRVKsUcZehkGHIVl4ltnyxY+Bp4E3MXBGYq/8sor6du3L3/6058C0ysuLk5oVOYo36gGeWGIuglCUAF1erlr1qyJGfUFvbjO9EW+DcU7W0VGbewY8pswPXbH6CksUd5R93JSL6NHj459P/zwwwPjectKoqm+REvqvM/AeTZuxZ7MAY+3DjjiiCNiu7M589UiEtd7TUeJ+Tm9SQVHBu9QvFu2GjVqcPXVV/v22OfMmcP+++/P1VdfHZhHmKF4h6C6NNtLno1iTxC+EDgJGH7ggewAbsFaeO8sZnFeCmeefMKECYF5P/vsswllc1qJiYbqUiWqYg9TQB2jvqAX98UXX2ThwoV5NxSfD/OAhswTRrGHHV522L59O/Xr1w8V9+677w48d+SRR4ZKwzu6lehddZ9L5nPdwT2q4Zf2WWedFZh3UVER9913HwsXLqRZs2axcLdiT6dshfUWmIygoXg3iYzmZs2aBcD1118fmIej2MM0/IKeyVtvvZX02nSoULVcKnNYO4Hn69blOOBb4HDgM+BZoJo9tB70kmzbto1hw4axcuVKvv7664T5OC3WTCn2Dz/8MLaXetQKLUoBDYr74IMPctBBBwU+82wZCiUjH9baGjKPX8/MS9Ry8Nprr4V2Z5qozIRtWEfpsbvP/fnPfw6VftAz2r59O6rKMcccEwvzxpkxYwZFRUWllohlaig+Vb/rHTt2jPsdZije7dLVe5/OFqt+9/Lhhx8Cu+45HcUexplaOlQoxR61x+6wadMmpmENzT8AFAPXA/83eDC89VbcyzFmzJjY94cffpiePXty/PHHJ33pnRc7E4p98+bNdOzYkZNOOolNmzZF9vIWtvU8ZcqUpPdleuyGsiAbPfZ//vOfoeMmUky77bYbN910EyNHjkyYhrcRnOhe3O+xN95tt90W99t5NocccggAl1xySdx5v/KeqJz4KfZ0e+zJFHudOnV48cUXS4V76+4wQ/HuHruf6+wgec4880yAmLG1d7c8v3o26JlEnRaKSoWq5VJd3uBYSW4D+gOtsebe99qwAS68kHeKi2MuaS+44AJmz57NunXruP/++wHLGUyyFzfRHFOUTRAg3kgv0by/g7dCCTtMdNxxxyXtAefbHLtb3mSjKIbyQzYUe5T6IlH5FhEGDRrEFVdcAQT7ifCWlUQjjEGKXVVjCshLkyZN2LJlCz179gxM1y/9ROfc9VY68+TJGgUDBw70XYHj/Y+ceiWRVXyiHrszapFInv33358333yT119/PS68SZMmpeL6pdO9e/esTLnG5ZvV1POMVBW7l7nAiVgedDbvthsdVZmF5ey+DpYidzt7gOQv7sKFC/nqq698Fd6pp57KqFGjWLp0aSj53Hm99957SeO7K5QPPvgg0hr6ZP7jg87nQ4+9bdu2WXcKkirbt2/n9ddfj60uMCQmjFV81OHPKO9GlN7qxRdfHPvuViyZUOx+uBV5tWrVQk1HeeN07tzZ95y7t5/qcLpffl6KiopCye24CHaWGXbv3r1U+ol67M79JLuXiy66qNTmMiJC06ZN41Yz+Ml8wQUXJL2PdKlQij2TlXgJ1obxR1StypCiIgRL0f8AHPLGG0z2KNREXuYc2rdvz7hx40qFz5s3j4svvpgDDzwwlGxRGzBuJTtlypRI1ybD26r1y7Ms8Ra0fPXZ//jjj9O1a9eE1taGXYSZY4+6L7e3HB188MEBMaMpNbeMzrAulK6fMqHYly1bltLSzlQUezZ77GHTdhT7Pvvsg6rGlhG7WbVqVeDqIyefVKYVRITvv/8+zqGZXzrZ7q1DBVPsmeqxu1m2dSu3VK1KK+BDYG/g0JdeYtLy5dwBOMU2SMF5GTZsWOC5sA2TqA2YHTt2MHXqVGbNmlVmii7q5huZwlvQfv/995zIkYzx48cD0Tf/qKg4w+yJ5i6DlO+jjz7K2rVreeCBB+LCv/vuu7jfQV4iIZoicCtG9xr3qVOnxsVLVF+FVeypznt703T3QoPyznaP3Q/vMwqqV7zpOx4EU+2xJ5LTfa3f8w+7l0E6VCjFHjQUl47CLy4uRkSYC3QETgNWHXYYe5eU8DCwBHgEa3u6siKqYl+3bh3HHnssrVq1SmrgkymiPHNVZezYsRnxFuctyAsXLuSDDz7ISqMvHbJtXFNo3HHHHdx333306tUrME7lypVju5G52X333dl77725++67Y85L/Eg0R5+qYt9//101g7fsJSrHbuWRDcXuxd3L9OY3cOBAZsyYkZMeu7fcBrnC9cocNBSfTo/dD790MrW0L2G+Wc8hj2jRogXPP/98zElJNvgfUP/bb7myYUMmA7WB24HFwGtY6+LTwc83u5eoin3BggWpihMZx8DEWbe/bds23n//fcaMGRPoue+VV17hnHPOyYh3Km9B/tOf/kSnTp1CLxkqK6IaelV0qlevTv/+/RP2hoqKinwrVXcjKlGFnkhxRVlG6Y7rt176b3/7GyKScFTLkfOwww5LmHc6vWg3fvPGzufNN99Mq1at0lLsQdMTDmHTPuqoo5KmD7u86HnDneeaqecW5Mo221QoxQ7wf//3f5x++ukZTdPvz5tSowYnY20s8wqgwJ+ASVjz8HcRv+F8WBLt9ewQVbH36dMnBUlS48ILLwR2zbHfeuutnH322VxwwQWBO2e9/fbbgP9ykqgEVYIDBgzg8ccfz5ueu+mxZ57KlSv7Kn53IypRhZ5p72jg/z8/8sgjQLg59rvuuqvMe+xBaSZThjfffHPgOXea7vX0DkENNnd5TWRD4X1GTnpBzy6sYr/pppsSnvf7D41iLyf4vRzOrk5fApcBBwIPAcuBg4AHgR+ByUA/INhBZDzeeT8/oir2TPqlT4ZTQTgWwC+99FLsXNDGCFHnwbdu3cqECRN8Vxgkqpxvu+02nnrqqUh5ZYtMKRHDLtw9drchavv27WPfEynCTFXIibY17tmzZyTHJ8m2Hs2UYk/kvMYh2Ts7YMCAwHPu/dIrVapUyodAkP92t2L/97//nTB/N8nqyLDz4MneCb/lvkaxlxHp9tK2bNmSNM5PwN1AY+AsrF78Nqxlc09gua+dCTwGdGKX0V0qRFXsQetes4Gj2J0eu7cA/fTTT6Wuca8oCOOxrlevXpx++uncc889pc65KxA/HnvssaTpf/fdd3z++edZNWzL1FBgRcfd03QrdvfIl3sHtrLusXvrnkTGs26ybTznxT13nWovN5GcbsVdVFRE8+bN48473vtuv/32uP/L/fzOOeecwPQvv/zyuN9OPRIkU9gNeJz3yb2E0Y3f6h9jPJcjHnoo2vbvUZZulQDjsXrx9YE/Yin534EjgVuB94F1wOdYG89cjuXKNkxVv3PnzshbAm7atClS/HTwbqDgfcndxkQO7sI7aNCgpHk4owDPP/98qXPupSh+1KpVK+H5bdu2cdhhh3HCCSfQunXrSKsInP8mzIqA8qrYRaSTiHwnIgtEpNRenCLSQUR+F5EZ9tE/m/IsXbo0Tok771tQA7GsFXuqrpXdDliCDMHc8dJhyJAhodIM83zcxouJ0vH+D86UxSOPPBK39A52bayTqOHQtWvXuEa9U/8EXRN2SZpzz87eGV78/l/HA2A2MYrdh0zPwfsxfvx4ajdqxJtYSr4ecCaWBb2zkvw4rI1nXsJyirMBmAPwhz9Av34weDDbRozg+2efRWfMgGXLGHDnnfTs2pWgwZ5KQGVgN6AasDsw6/PP2QuohWXsVxer0bEv0BDLov8AO2wvCEw7DO4e+7Rp01i+fHnSa9yFz9lMZ82aNXz66acJRyf8tsmdPn16wrz8Wurr1q1j9uzZsXzdfPPNN77pbN26lWnTpsU1Sh544AFOPPFE+vbtm1AGKJ+KXUSKsNw7dMZqi14qIn7bmU1W1aPs4/5sylS/fv1Yha6qnH/++fTq1YsBAwbQu3dvHn744bj4Dz74YGBa2bCUTja6FmRr4afYk+WVKt614EH5hcnLHef+++9n4MCBsT0tHLxLxiDeDsK98kFVmTRpUij/G+5OhFfh7rXXXnEdurCK3WlUBO225+TjfoZlsl+FqmbtwBpV/g5YANzuc/4yYJZ9fA60cp37EZgNzACmhcnv6KOP1lRo27atYtm3KaBz586N++0cffr08Q1P5VBVbdGiReD5PUE7gt4J+gboQlCNeOwELQbdkcK1YdLeCLoK9AfQqaDvg74C+jTofaD/B3ouaGvQ+qAC+vTTTyd9Ntu3b4/7fxo3bhw7V7duXZ07d662bNlSAX3ooYfi4i5fvjwurY0bN+r06dP1o48+0vnz5yfNu127dqXej7p16yqgc+bM0S+++CIu/r///W/97bffdN68eaqqumHDBp01a5Y2b95cAb3pppti6RQVFcWumzFjhk6fPl1LSkp838nrr78+Fnfnzp0J39+w5SPbB1Zb9APX7zuAOzxxOgDvRkk31XLt0KNHDwV0yJAhSeNu3LgxYZk9+eSTfc/NmjUrtDzbt2+PXTdy5MiE7+Nll13mGz5u3Dg98MAD9ddff9U1a9YooJUqVYrl4cTbsmVLoByXX365VqlSJfC8+77dTJgwQQFt3bp14DVBz2/gwIGx38XFxb7X3n333Tpz5szY79NPP71UOfnf//6ngJ588smB8ntp3bp1LM0aNWqoquqJJ56ogH7wwQdJ78WPkpIS/fzzzwPL8TPPPKOAXnfddQnTCSLVsp3NQl6ENXXcFKuDOBM43BPneGBv+3tnYKrr3I9A3Sh5ploBLFmyRGvVqhV78EuWLAl8MV9++WXdbbfdkiqIRMcbb7yhqhpYaIOOPUBbgeobb6g++qjqDTfo66Afg84C3b7PPrq6UiVdD7odf4W8wz63DXQzlnJeD/ob6FrQ1aC/gv4MugJ0OehS+/gZ9Hf7Wr+0kx3bQNfXrq0TQYeD3g16KegxoPVc99mtWzddsWKFqqru3Lkz6XNZtWqVuyCkdRxxxBE6f/78WHrffvtt7NyIESNKxX/xxRe1fv36CujEiRP1yCOPLBXHaXz45Td8+HDfd7Jnz56xOJs2bUr4/qZa+DN9ABcDL7p+XwE87YnTAVhj1wfvAy0C0uoFTAOmNWrUKOH9J6N3794K6ODBg5PG3bp1a+C74eD8dv9HTsMuDMXFxbHrfvrpJwX0hhtu8M3zwQcf9A1funRpLL21a9cq+Cv2bdu2hZbLi/e+HSZNmqSAtmrVKvCaoOfnVuzeBqsTXlxcrHPmzFFAGzZs6CvbxIkTFVJX7NWqVVPVXYp9/PjxSe8lFQYPHqxA7B2Mmk6qZTubprftgQWqughARF4DugDznAiq+rkr/hTK1o9LjEaNGjF06NCY60W/dZQO3bp1Y+HChfTvn9rU4LJly2LzyIMGDaJ69eoccsgh3HrrrUmv3YhVG+Iy1PiTe5/3X36Ji18JEKy3KRVnuieffDKTJk3yPVeJXUP5tbCG8N1HXaxh/P1cR11gt7VrOQU4xSfNDcAiYOErr/DyK6/Q4/772dKgAYditfJKD6xbLF68mLp16wa6ifSjffv2fPnll6XCZ8+eTfPmzZk4cSLff/993LDf+vXrS8XfvHlzbJOeDh06+OZ11113+S7hAWvf+quvvrpUuNsyesuWLeVlXbvfGKN6fk8HGqvqRhE5GxgDlPLVqqpDgCEA9ohayjjD2Zs3b04aN8oUyOOPPx7bceywww4LfZ17KLZhw4aoKqNHj45NM7kJGt52p1EWxnNunGeUrovuRNb1Th7JLMgt3RcOd1xniNyxd8nW8lInn7KeWsumYt8PWOb6vRxrWXcQ12C14B0U+FBEFHjBLuilEJFeWK17GjVqlLKw7gefbP/kKC+TF7dxWJ06dWI7PX3++edxW75mgnQ9448YMSJw7qgE2Gwf/m5lSlMNeGPgQAb07UtToBnEPpthNRBa2QcAduPpW/vnT1iKf7F9ON+rrV7Nb2vXxlnLJqJy5cpJ/Yb7KWm/Nau3317KPsyXIJ/vQUub3AZ269atK7XhRJ6ynHj3DPsDK9wRVHW96/tYEXlWROqqatjXKDJOoyhTiv2qq67ivPPOizMWS8VBjfsdC/KYFkWxZ8t4zotz39lS7LBL7iCDvFTmqf0Uu7OiKajO33PPPRGRwOV2yXDyKevlq9nMLUzr3YoociqWYj/RFXyCqq4QkfrAeBH5VlVLdR8z1bJ3G01VrVqVRx55hMqVK/PXv/4VgN69e7vzTDWbQO6///6MK/Z0yfRmBVuBHY0bMwGY4HO+FvHK/kD7aAo0YlfPv5T3vrPPpqRKFebu2MEyrAbActfh/F6F9QJWqVIlYwYsYZRFIhYtWhTbtc/dMHUr/NWrV4dutOSYr4CDReRArMfeFejmjiAi+wK/qKqKSHuswZ+sbmHnVNpbt25NGjfMezFixIjQ6flRqVIlZs2aFbfNp9+Wn05cP9x1UCKZs2Go5SipVC36Ibgh4+BYrWeyx+7ulTtlzVHsfiNic+fOpU6dOtStWzd0Hl6c+yikHnvS1juAiBwJvAh0VtVYAVfVFfbnryLyFtbQvv+4cAbwtticnlj79u0ZMmRI3AYRyV6m+vXrR95D3b1c4rHHHuO2224LjKu6yxK2cePGkYagE3HBBRdw2mmnceONNwLBiv3VV1/l0ksv5Z133uEPf/hD0nSd+JB4DedvwNf24aUI6wVyFH1T1/cDgX2KizkESLSQZDuWtvl5+3a2zpzJWcBKn6Mst4VZs2YNjRs3pnLlyvz444/st99+QLxiLy9bt6rqDhHpA3yA9ZcNV9W5InKdff55rHn460VkB7AF6KrZaCm7uP7665k7d26o6a4opNML8y6PatiwIUOHDg1tge7uLSfqsWdDsScain/wwQcZPXp00tUnl1xyScLzyRS7c19RXp3XX3+dIUOG0KZNm9jUmKPY/YbiHYv3dMjVUHw2DWkqY42WHsgu47kWnjiNsCzmj/eE1wD2dH3/HOiULM90rGenTZsW2rhh0KBBgQYiIqKVK1dOaoDjx7Bhw7RLly66cuXKhEYoboOYE044IWHcREf16tXjfq9YsSLOWG3Dhg1J7yFMPu+8807s+4cffpiyvImOGqCHg54JejXoPaAvgL4LOgPLKFBDHpuxViF8irUiYTDoHaDdsVYqHIll7CcJ5OnatWvke/j4449jz7Vz586x8AkTJiR8b8gT47lsHelaxUclbNktKSkJXWekmvcTTzzhK8vixYtj1zjltHLlyqXSyYQsXhzDtoMOOsj3ultvvTXw+f3666969NFHx8nvl59TH/tZ3quqTp48WQE9/vjjU7w7C2fFi9sAN5Pcf//9Cuhdd92V0n+SatnOWo9dw7Xe+wN1gGftFtgOVW0L7AO8ZYdVBl5R1dIblWeQZI5J3Fx77bWBfo+LiopS3mu8R48e9OjRA7A2PunWrZtvvOLi4qSONsLgHearXr16XJhf7/rpp59OmOY111zD5s2badq0aWxdqLu1mo68idiEZZU5L0GcalhD+S1r1uSM5s1ZOmUKDSB27CfCPqrsya5RgUQUA7/g3+s/b889WWB//9WOmwz3JjhOj/3DDz/k1FNPDXG1IRuMHTuWs88+2/dcWaxHDhqK9+uxlxXJ5tg1QS+6Xr16TJs2LWkezZs3p0mTJjzxxBO+5zN1zx9++CEjRozImg1L586d6d+/P+edd15kx2fpkNUZfVUdC4z1hD3v+t4T6Olz3SJcNlRlQbNmzbjxxhtjQ6GJSGRBmakX7tJLL02o2B3CNiJ69OjB8OHDAWjVqhWdO3fmhRdeiPM659gZ3HPPPXGNB7CeT5hd4L7//nsmTZrE7NmzfRV7qo0egIMPPjjmgz8VtmKtv9xSowbPjR7NBRdcELcHdru2bfnqq6+owS5l39D13XvUxpoe8F3KMXQo57p+rsZS8j+7Pr3fF02fDn/8I7h29ioLv9KGYNIxyM0E6Q7FZ4NMWcUnYvfdd2fx4sVJ4yVqRIShdevWtG7dOq00EtG2bdu0ZUwFs9OEi8GDB6edRqVKldh9993TNqpKxLvvvsvll1/OunXrQitK98t133330aVLF1544YVY2F/+8peYYr///tLOwMLez9///ncgXpm7v4fZ4CKI8847z3c/7agUFRXRoEEDxo0bx9577w3AU089xdixVht0E9b8ULJmTFUs73x+Sv+cNm1YMX06DbA89tW1D3/HkzaPPcbOJ5+EffflmXXr+AE4dNAg2HNPOProFO/WEBW37UhZN6xq1KgR19gOmsfP5x57WZDKHHtFwriUzTB+OxOli3fjkr59+zJlyhRq164deiMS93INv4rAUchBhFXszn7IQYo9HSOSTK01XbbMWoXpNg7s1q1b4GY4/fr18w3fBizBcsDwFvAscA/WENRPQ4ZwNFaPfzesuaWjsFwxdsdyyTYI+A+WRej3WOv4i4qLKVq2jJYbN3IB0GDMGPDZGMeQPU46ade6i7JW7N792YPKS+PGjWPf/XrsgwYNokWLFlmQcJdMmZ5Wmz59euiVQeVRsd900028+uqrZZKXUewZpqioKKnFZ1ScJXcOa9as4bjjjouUhtuhTiot/LAbxTjK0qvMn3nmGbp06RI4XxmGsDsuhcW785dfJdq5c2dfW4NkQ7QNGjSIfS/BmmefiWVw8i/gUaAv8CcsZz2HYvnh3wNrqd+JWObjy2+7DezGkqFscL8HZa3YvbsL+r2T7du3j3t3HeXmLtc33XQTc+bMyYqM7i1jM0nr1q3p0qVLqLhlPUqRCQYNGkTXrl3LJC+j2DOM89K/8MILdOzYMW5L1zZt2qSUZiYqF7dxSJRC4Qy7RZ0bdxv9FBUVccMNNzBmzJi0lgiF6bFHacG7ZVT130zj1ltv9VXs8+bNS7iZi/t5J7rnhx9+mHHjdtmFbsJaSvIZMApYf+WVkON53oqG+72oUqUKU6ZM4aOPPirzvKHsnM5EIZliL0+96ELFKPYM47z0vXr1Yty4cXG9TGctd6ppZpoww+JOzzNM4+Lrr3etQM/U8LubbLTS+/XrR/fu3alVq5bvc65cubKvYq5Ro0apncEcJk6cGMq5T+3atbnjjjsSPltTSZY93h77Mccck3DHx/bt22c0/y1bttC9e/fYb+97H1SeCsl4Lhn169cHiDxyWVEwij1FnnnmGd/wREo4VYvwevXqccUVV3DCCSdEvrZjx448+uijcWFOBRBGWf/3v/+lffv2TJjg5ytuF3379o0bkXD3cqMo9qOOOirmZteLV96gpTB+uP+Xyy67LC4NxyYiSLF7wy+88ELAfzngmWeeySmnnALAbbfdxoUXXhj4vzuVUyKnPV77CkP2iTIUv3HjRiZPnpzR/KtVq5awYez9XbVqVdq3b5/x+ds///nPvmUxW0PxUWjatClz5szh8ccfz5kM+YxR7Clyww03+IYnUmJRFfv999/PmWeeyemnn87IkSNjVtt+7LPPPr7h48aNK+XFzlHsiRSKQ6tWrZg6dSonnnhiwnjenqV3/joKp512WtzvgQMHcsIJJ9CjR4+4Xsk111zje73f6oZmzZrFvo8cOdL3Or85/KKiolI9IcfTn999uQ2KHn30UUaNGlUqzkcffUSbNm144403gGDl8eabb5a5j2lDNMVeo0aNUOUoHbwNS7/fU6dO5fzzz89ovv/4xz/o2bPUauTYMwlytZpodCOTtGjRwiwHDcAo9gyTaAOZqFak99xzDx9++GGsct9rr70CGxRRKpcoij0smVTsXkV688038+mnn1KjRo24guz17+wo9BtvvJHi4mLatm0bO/fiiy9y5JFH8uabbwaOqvgZthQXF5eK755y8OLXi+nUqVPc79NPP52vv/6ali1bAsH/w0UXXRSYjyF7uN+/fFAc3lU23hG4sqZmzZoMHTqUDz/80Pd8p06dQhvbGrKDUewZYvz48Rx++OG+PTSHdJyzODzzzDO+W0SmshQsk5WWV6ElUuyJ1qJ7jdhef/31wLju3uz8+fNjPu6dc5988kns9yGHHMLMmTMTKsvq1auX2o5369atpeT/73//G5iGn2J3+wV46623Sp3PB+Vh2IX7/StzH98+dOvWLTbnPmzYsMAtgMuSnj17JlwZ4m50t2zZ0kwplTFmnC9DnHHGGcydOzdhnEwZQrVv355vv/02LizKft1OxZVo3/moeBWaW+l67/uWW26hXbt2ceuF3TRu3JiOHTvSqFGjUksHg/ah9hspccsQtoL2xtu+fXvcPuzJ/kO/ofM2bdpw6qmncvjhh/sOl/r12GvXrh1KXkN2eOGFF/Jq/rY8Lu9ymD17dq5FqHCYHnsZMGjQIA477LBA//JR8RuK81NsQbtZOZXE8OHDadasGW+++WbaMiUypInqbU5EGDduHEOGDCl1ztu7veKKKzjrrLPi9rl3SEWx9+7dm8MOO4wqVapw9NFHc+qpp7Jhw4bA+AMGDOCwww7j6aefplmzZr6+9IuKipgwYUKgn32/SrtPnz6h5DVkh169eoVyoZxtvA3J8rZKIpOdB0N4jGIvA2666Sbmz59PvXr1MpJegwYNSg0Zp6LYW7RowYIFCzIyl5uowomi2JNVXGPHjqVRo0aMHz8esAzhPvjgg6TrfcNWiHXq1GH+/Pls376dadOmUbVqVW655RaaNm3Ks88+Wyp+3759mT9/Pr1792bBggU0b948VD5utm3bFvkagyHf+fHHH/nxxx9zLUaFxCj2NJg3bx4HHHAA//rXv8o87/vuu4/Ro0fHfvu1jL1rqfv06UOrVq3o0KFDxuQYPHgwjRs35u677w6M42dbkGrP46STTmLJkiWcccYZka5LZ2lO48aNWbhwYSl3n5nisMMOo127drGd/QyG8jz07tC4ceOs7ZpmSIyZY0+D5s2bs3Tp0pzl7y78jz/+eJyiP+2000r14p966qmMy3DjjTfGGa256dmzJ1OnTqVdu3alzh177LEceeSRzJo1K+Myubnwwgv59ddfA5fm5AOVK1fmyy+/BKxlec8//zy9e/fOsVSGfOLWW29l0qRJsc1pDIZEmB57Ocat2Js1axZnkf/RRx/lvNU/dOhQZs6c6WscVqVKlbgNbGrWrMnee+/Niy++mFEZRo0axaRJk3L+LMJy5513smTJkpjzGoMBrFGdBQsWZGw6z1DYGMVeQARZjOeSRHKICA888AB77LEHM2bMYM2aNb69+2zKkI+UN3kNBkN+kVXFLiKdROQ7EVkgIrf7nBcRGWyfnyUibcJeayjNmWeeSd26deNcpuY7d999N+vXr6dJkyZGoRUA6ZR5g8GQGbI2xy4iRcAzwJnAcuArEXlHVee5onUGDraPY4DngGNCXmvwsMcee/DLL7/kfPenqBiFXhikU+bLWlaDoZDJpgZoDyxQ1UWquh14DfButtsFGKkWU4BaItIg5LUGH8qbUjcUFOmUeYPBkCGyqQX2A5a5fi+3w8LECXMtACLSS0Smici0VatWpS10eaJDhw4UFRWV8kVuMOSIdMp8HBW5XIO1M+BRRx0V20nQYIhCNpe7+Y2vehcvB8UJc60VqDoEGALQtm3b8uWWKU1q1qzJ5s2bja9xQ76QTpmPD6jA5RrgoIMO4ptvvsm1GIZySjYV+3LgANfv/YEVIePsFuJaA5ndoc1gSJN0yrzBYMgQ2RyK/wo4WEQOFJHdgK7AO5447wBX2payxwK/q+rKkNcaDIb8Ip0ybzAYMkTWeuyqukNE+gAfAEXAcFWdKyLX2eefB8YCZwMLgM3A1YmuzZasBoMhfdIp8waDIXNIedstKBFt27bVadOm5VoMg6FMEZGvVbVtruXIFqZcGyoqqZZtszbKYDAYDIYCoqB67CKyCliSazkiUBdYnWshUsTInhv8ZG+sqgXrRLwclmsovHesvFBosqdUtgtKsZc3RGRaeR1CNbLnhvIse0WiPP9PRvbckEnZzVC8wWAwGAwFhFHsBoPBYDAUEEax55YhuRYgDYzsuaE8y16RKM//k5E9N2RMdjPHbjAYDAZDAWF67AaDwWAwFBBGsRsMBoPBUEAYxZ5hRGS4iPwqInN8zv1FRFRE6rrC7hCRBSLynYh0dIUfLSKz7XODRcRvV6wykV1EbrTlmysij5cX2UXkKBGZIiIz7C1A2+eb7CJygIj8T0Tm28/3Zju8toiMF5Ef7M+98032ioQp1/kje3ko13aeuSvbqmqODB7AyUAbYI4n/AAsH9pLgLp22OHATKAqcCCwECiyz30JHIe1zeX7QOdcyA6cCnwEVLV/1y9Hsn/o5I3ln3xivskONADa2N/3BL635XscuN0Ovx14LN9kr0iHKdd5JXvel2s7z5yVbdNjzzCqOglY63NqAHAr8XtPdwFeU9VtqroYa2OM9iLSANhLVb9Q618dCZyfXckDZb8eeFRVt9lxfi1Hsiuwl/29Jru2B80b2VV1papOt79vAOYD+9ky/suO9i+XHHkje0XClOu8kj3vy7Ute87KtlHsZYCI/AH4SVVnek7tByxz/V5uh+1nf/eG54JDgJNEZKqIfCIi7ezw8iB7X+DvIrIM+Adwhx2el7KLSBOgNTAV2Eft7Uztz/p2tLyUvSJiyrUp12Ep67JtFHuWEZHdgbuA/n6nfcI0QXguqAzsDRwL/BX4jz2/Ux5kvx64RVUPAG4BhtnheSe7iOwBjAL6qur6RFF9wvLtuRc8plzHwnNBuSnXkJuybRR79mmGNV8yU0R+BPYHpovIvlgtrwNccffHGlZabn/3hueC5cBotfgSKMHarKA8yH4VMNr+/gbgGNnklewiUgWr4L+sqo68v9hDcNifzlBpXslegTHl2pTrpOSqbBvFnmVUdbaq1lfVJqraBOtPaqOqPwPvAF1FpKqIHAgcDHxpD89sEJFj7Vb0lcDbObqFMcBpACJyCLAb1g5E5UH2FcAp9vfTgB/s73kju53PMGC+qj7pOvUOVgWG/fm2KzwvZK/ImHJtynUyclq2M2kFaA4FeBVYCRRjFfZrPOd/xLaetX/fhWX9+B0uS0egLTDHPvc0tpfAspYdq8D/25ZlOnBaOZL9ROBrLEvTqcDR+Sa7LaMCs4AZ9nE2UAf4GKvS+hionW+yV6TDlOu8kj3vy7WdZ87KtnEpazAYDAZDAWGG4g0Gg8FgKCCMYjcYDAaDoYAwit1gMBgMhgLCKHaDwWAwGAoIo9gNBoPBYCggjGI3BCIWn4pIZ1fYJSIyLpdyGQyG9DBlu7Axy90MCRGRlljenVoDRVhrMTup6sIU0ipS1Z2ZldBgMKSCKduFi1HshqSItVfzJqCG/dkYOALL3/S9qvq2vcnBS3YcgD6q+rmIdAD+huVk4ihVPbxspTcYDEGYsl2YGMVuSIqI1MDyTrUdeBeYq6r/FpFaWPsEt8bysFSiqltF5GDgVVVtaxf+94CWam1FaDAY8gRTtguTyrkWwJD/qOomEXkd2AhcApwnIn+xT1cDGmH5b35aRI4CdmJtC+nwpSn4BkP+Ycp2YWIUuyEsJfYhwEWq+p37pIjcC/wCtMIyytzqOr2pjGQ0GAzRMWW7wDBW8YaofADcaO8yhIi0tsNrAitVtQS4AssYx2AwlB9M2S4QjGI3ROUBoAowS0Tm2L8BngWuEpEpWEN1piVvMJQvTNkuEIzxnMFgMBgMBYTpsRsMBoPBUEAYxW4wGAwGQwFhFLvBYDAYDAWEUewGg8FgMBQQRrEbDAaDwVBAGMVuMBgMBkMBYRS7wWAwGAwFxP8DrFhdM8LJds4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABjE0lEQVR4nO2deZgUxfn4P+/uci23gEQuQeUQjCiCQkQFzVfx1nhERVESY/BI0Gg0v3jhlYQQTTSaEA+8hRi8MEFRUfAW8QBFTkG5Ve5LlmPr90d3DzU93T3dPT2zM0t9nmefnemjqrqnqt5633rrLVFKYTAYDAaDobQoq+kCGAwGg8FgiI4R4AaDwWAwlCBGgBsMBoPBUIIYAW4wGAwGQwliBLjBYDAYDCWIEeAGg8FgMJQgRoAb8oqItBaRN0Vko4jcKSK/F5EHa7pc2RCRR0TkdvvzESIyt6bLZKh9iIgSkf1quhxeiMgIEXki6XtFZICILM2tdMkiIh1EZJOIlPucj/0uPNJK7DffbQW4iJwnItPtH22FiLwkIv1d11xkv+yzXccH2MefdR3vaR+foh3rKCJviMgWEZkjIj923dNKRJ4SkXUislZEntTOnS0i79r3TqE0uQRYBTRRSl2tlPqDUupiSL0bJSIVfjcn2XDiopR6SynVtSbLsDti2mjG8xSV0KtNKKUWK6UaKaV21nRZorBbCnAR+Q3wN+APQGugA/AP4FTXpRcCa+z/br4DfiQiLVzXz3NdNxb4BGgBXA+MF5FW2vlngZXA3sCewF+0c2vscv4p3JPlTpAwjcnewBfKRAwyRMC00ejkoe2WHH4adK1FKbVb/QFNgU3AWVmu2xuoBs4AdgCttXMDgKXAaOBy+1i5fewmYIp9rAtQBTTW7n0LGGZ/Phb4CijPUpaLnTSzXHcq8CmwAfgSGGQf/wr4sXbdCOAJ+3NHQAE/BxYDbwIvA1e40p4B/MT+3A14Favzmguc7VOeR4DtwDb7nf/YlfdiO+9N9l8/1/2D7Hu32+dn2MfbABPs/BcAvwh4JycAXwAbgWXANa7f8PdYFoKvgMGust+uX6ud+wq4BpgJrAf+DdTXzp9k/w7rgHeBA2u63pfSH7W7jf4WWAEsB35m1//97HP1sAYHi4Fv7LI3ABoC39vP6rSVNnZbGg88gdXmL7bf3UN2HsuA252yAxcBb9t5rAUWAcdrZesETLXbyqvAvdht1T7f167P67D6gwFh73W9A+e3yWh7QB/72Su0688APvVJ6xHgn8BEYDNWH9MGeAZrALcI+LV2/aHAdPt9fQPcZR/vaP8WFdmeB1d/YB/7CruPtfN4z35PK+x762rXpn7zXP92Rw28H1AfeC7LdUOA6UqpZ4DZwGCPax6zrwM4DpiF1TAdegALlVIbtWMz7ONgNYi5wKMislpEPhSRo6I8jIOIHGqX57dAM+BIrEoVlqOA/bGe4yngXC3t7lid5f9EpCFWhX4KSxs5F/iHiPRwJ6iUugh4EvizssxTr7kuOdL+38w+/57r/pexNLB/2+d72qfGYnUAbYAzgT+IyDE+z/UQ8EulVGPgAOB17dwPgJZAWyzN7H4RCWsqPxtrgNEJOBCrc0REegFjgF9iaXT/AiaISL2Q6RpqbxsdhDXw+z+gM5aw0RmJNaA4CNgPq17epJTaDBwPLLfbQSOllPMMp2IJ8WZYbe1RrMHMfsDBWAOQi7U8DrOfpyXwZ+AhERH73FPAR/a529CsGiLSFvgf1oBgD/s5ntEsFb73+uDZ9pRSHwKr7XfkcD7weEBa5wF3AI2xBhgvYv2GbYFjgCtF5Dj72ruBu5VSTYB9gad90oz6PDo7gavse/vZZbgswv2h2R0FeAtglVJqR5brhmD9iNj/M35ApdS7wB52pz8Eq7PQaYSloemsx6poAO2wGtgbWBX6TuAFEWkZ7lHS+DkwRin1qlKqWim1TCk1J8L9I5RSm5VS32N1nAeJyN72ucHAs0qpKizt8iul1MNKqR1KqY+xRrtnxihzZESkPdAfuE4ptVUp9SnwIHCBzy3bge4i0kQptdYur86NSqkqpdRUrA7q7MwkPLlHKbVcKbUGq8M4yD7+C+BfSqkPlFI7lVKPYml4fcM+o6HWttGzgYeVUp/bQnmEc8IWor8ArlJKrbEHFH8AzsmS5ntKqeeVUtVAEyxBf6Xdlr8F/upK42ul1APKmut9FNgLaC0iHbC0X6c9vIlVrx3OByYqpSba/curWJrsCSHu9cOv7T1q54eI7MEupcKPF5RS79jv4IdAK6XUrUqpbUqphcAD2jvYDuwnIi2VUpuUUu+7E8vheQBQSn2klHrf7h+/whrExxr0ZWN3FOCrgZZZHKcOx9KsxtmHngJ+KCIHeVz+OHAFMJBMjWETVqPSaYJllgHLLPaVUuohpdR2pdQ4YAlwePjHSdEey2welyXOB7vz+B+7Kv05WKN7sDTxw2yHnnUisg5LwP8gh7yj0AZwOjiHr7FG216cgWVG/1pEpopIP+3cWrsj1dNpE7IcK7XPW7AEAVjv52rX+2kfIV1D7W2jbdDaGVZ9c2gFVAIfafXmZft4EHp6ewN1gBVaGv/CspQ5pOqtUmqL/bGRXTav9qCnfZarXvfHGgBku9eLoLb3BHCyiDTCEupvKaVWBKTlfgdtXOX8PZYfBViKThdgjm1NOckjvTjPk0JEuojIf0VkpYhswBqIxRnwZWV3FODvAVuB0wKuuRAQ4FMRWQl8YB8f4nHt41jmkYlag3CYBewjIo21Yz3t42DNoSbl3LUEyyTkxWaszsHBS9i6yzEWONcWeA2wNBAnn6lKqWbaXyOl1KUxyhzm2d3XLMfSqPR32gFrvi/zZqU+VEqditWJPU+6yay5PSWgp6ObV+OwBLjD9X4qlVJjc0x3d6K2ttEVWIM5hw7a51VYg4UeWr1pqpRyBoZ+ZdCPL8Gy9rTU0miilMqY3vIpm1d70NN+3FWvGyql/hTiXi98255SahlWHTgdy7IWZD6HzHewyFXOxkqpE+y05yulzsXqD0ZiOSw2dKWX7XnS+lPbcU4faP0TmAN0tk31v8eqq4mz2wlwpdR6LCeW+0TkNBGpFJE6InK8iPxZROpjjfouwTKLOn+/Aga7tQKl1CIs88j1HnnNw3JmullE6ovI6Vjzpc/YlzyHVVEuFJFyETkTS5N8B6yKYZenAiiz06jj82gPAUNF5BgRKRORtiLSzT73KXCO/Zy9CWfunog1mr0Vaw662j7+X6CLiFxgp1dHRPqIyP4h0nTzHZZjzj4B13wDdBSRMgCl1BKsea4/2u/jQKxR9ZPuG0WkrogMFpGmSqntWI4r7mUit9jXHYE1PfCfGM+h8wAwTEQOE4uGInKiS0AYAqjFbfRp4CIR6S4ilcDNWjmqserOX0VkTzvttrJr7vYboIWINA14byuAV4A7RaSJ3Q/sKyHm7JVSX2OZxJ320B84WbvE0YqPc55ZrKVt7ULc60dQ23sMuBbLJJ7NF0JnGrBBRK4TkQZ2WQ8QkT4AInK+iLSy3/c6+560PiHE88wD6tvtug5wA5YDokNjrL5mk90Hx1FuwqGKwOu0Jv6wzL7TsUZTK7FMxj/CMhevAOq4rq+PNUo+CQ8vRO26NG9ULO/GKVij67lo3uD2+SOAz7BMedOBI7RzF2GNLvW/RwKe6XQsjWEjlnf2cfbxfbA0lE32c95Dphd6hUd6D9nn+riOd7XT+Q7L3Pk6cJBPmR7B9ua2v48g3bP1VjuddUBfj/tbYHnOrgU+to+1wxpIrMGaNhjmk3ddLDPkWqwG9SHQ3z43AMsR7nr7d10MXOBVbvfvTYBXv/19kJ3XOrsu/QfNy9n87dZt9Hf2s3h5odfHMrcutOvrbNI9qMfY7W0du7zQn3Cl3xRLA1yKNZf/CXCOVta3Xdfr+e+D5YG/CW8v9MOwPLPXYLXZ/wEdwtzrynMAAW3PvqbSfgePZqkjj6D1L/axNlgWxJVYbf99dnmIPwF8a5dzFnCaVgd0L/Rs7+IirDr4LZZD31daHkdiaeCb7DRu1d+7/s5z/RM7QYNht0JEBmA1yHY1XBSDweCBiHyJtYLEvXrFYLPbmdANBoPBUNyIyBlYmurr2a7dndntI/cYDAaDoXgQKyRtdyyzenWWy3drjAndYDAYDIYSxJjQDQaDwWAoQUrOhN6yZUvVsWPHmi6GwVBQPvroo1VKqWxBPUoa07YNuyO5tO2SE+AdO3Zk+vTpNV0Mg6GgiEjoSFClimnbht2RXNq2MaEbDAaDwVCCGAFuMBgMBkMJYgS4wWAwGAwliBHgBoPBYDCUIEaAGwwxWLFiBYcddhjjxo3LfrHBYCgZ5s+fz5133lnTxQiFEeAGQwxuvPFGpk2bxrnnnlvTRTEYDAly1FFHcc0117Bp06aaLkpWjAA3GGKwefPmmi6CwWDIA+vXr6/pIoTGCHCDIQYmBLHBUDsppbZtBLjBEINSauQGgyE8TtveuXNnDZckO0aAGwwxMALcYKidOG27urr4N0IzAtxgiIER4AZD7cQIcIOhlmMEuMFQOzEC3GCo5ZRC4zYYDNExc+CAiIwRkW9F5HOf8yIi94jIAhGZKSK98lUWgyFpjAZuMNROjAZu8QgwKOD88UBn++8S4J95LIvBkChGgBsMtRNHcO/WAlwp9SawJuCSU4HHlMX7QDMR2Stf5TEYksQIcIOhdrNbm9BD0BZYon1fah/LQEQuEZHpIjL9u+++K0jhcuXJJ580cbJrMUaAGwy1E2NCD4d4HPPsFZVS9yuleiulerdq1SrPxcqdnTt3cv7555s42bUYI8ANhtqNEeDBLAXaa9/bActrqCyJUgqmF0NuGAFuMNRuSqEfr0kBPgEYYnuj9wXWK6VW1GB58oLp6Gsn5nc1GGo3paCBV+QrYREZCwwAWorIUuBmoA6AUmo0MBE4AVgAbAGG5qsshUbv3JVSiHjNFhhKGSPADYbazW4twJVSgRPAyuoBL89X/jWJW4Abah/mdzUYajfGhF4iLF++nLFjxyb2g+kjN9PR10703/jll19m5syZNViawiIi7UXkDRGZLSKzRGS4xzUmUJOhpCkFDdwIcOCAAw7gvPPOY8yYMYmkl4QGvnr16pLaWH535vjjj6dnz541XYxCsgO4Wim1P9AXuFxEuruuMYGaDCXNwoUL6datGytWFK9rlhHgwNq1awGYPn16IunlqoHv2LGDli1b0qxZs0TKY0ie3dmyopRaoZT62P68EZhNZgwHE6jJUNLcd999zJ07lyeeeKKmi+LLbivA7777bjp06MDSpUtTxxo3bpxI2nrnHscMs2XLlkTKYcgfpWBeKwQi0hE4GPjAdSp0oCaDoRgxc+BFzJVXXsmSJUsYOXJk6lg+BHgcTa2sbNfPsjtresWM+V1ARBoBzwBXKqU2uE973JLx0koxyuKUKVPYsWNHrHvnz5+PiPDCCy8kXCpD0hgBXgLowjIpAZ6rCV2/J25HYcgvu7sAF5E6WML7SaXUsx6XhArUVGpRFt955x0GDhzIzTffHOt+Z5pu7NixSRbLl6lTpyIilMrgqJgoBSvbbi/Ay8vLU58bNWqUSJq5auBGgBc/u7MAFyuwwUPAbKXUXT6X1cpATStXrgRgzpw5se53FIZCCYdRo0YB8P777xckv9pEKWjgeVsHXiroArxevXqJpJmrANcb9/bt22nQoEEi5TIkx+4swIHDgQuAz0TkU/vY74EOUPsDNeWC098USjg49VS3NBrC4fTDxRyIa7cX4HrFrqhI5nXkakLX7zcaeHFSCua1fKGUehvvOW79mloZqCnXgVshBfhXX33FxIkTgeIWQsVKKWjgu/2wLB8/Uq5e6G4N3GAw1A4cAV6IAeCbb76Z+mwEeHSMAC8B9B9Jb1TTp0/n5ptvZtu2bZHTjKKB79ixgxEjRvDBB7tW4RgNvPjZzU3ohpg4Fr9CCAe9HzEm9OhUVVXVdBGystub0HUBqXfKffr0AaBFixb8+te/RinFK6+8wiGHHELLli0D0wwzB15VVcVrr73G3LlzueWWW7jllltS1+r3GA28OPHSoKqrq01HuZsQV6MtpAauDxKMBh6d2bNn13QRsmIEuI8Ad1i4cCFgLfsYPHgw7dq1Y8mSJRnX6YQR4FdffTX33Xef57ma0MDXrVtH48aN05z6DNHYuXOnEeCGQAqpgRsBXvvZ7XsbvZIHmUVfffVVgLTIbX6EMaE/9thjoe4vhABfvHgxzZs356ijjsp7XrUFr9+1FObMDDVLITXwfJrQd+7cSa9evZgwYUKi6RYjxTz42e0F+AMPPJD6PHToUB5//HEOOOCAnNIMcmK75JJLOPnkkwMHC4V2YnM8Vd95552851VbqF+/fsYxI8BrP1F8HzZv3szrr7+edqy2aOAbN27kk08+YciQIYmma4jGbmlCD2qE7goZp+IHmdD1AYMfhdbAnWAPhvB4aVBGgO8+hOkXLrroIsaPH8/ixYtp37592n2FdmJLWoCXwhrpbdu2sX79eqJG+GvWrBnr1q3LT6ESJq8auIgMEpG59p7Av/M431REXhSRGfa+wnkL9rB69WoeeeQRtmzZknN0tGwkGUo13xr4li1bUvP8hvB4DayMADcArF+/nqVLl/Lxxx8D6d7MTt9QaA08aRO600cVswA/44wz2HPPPSPfl1Q8kEKQNwEuIuXAfVj7AncHzvXYM/hy4AulVE9gAHCniNTNR3lOOukkhg4dyrXXXhur8UQRxElGYsu3Bl4KSyWKEa86ZAS4AaBHjx60b98+1bb0CI9O2056Dnz58uUZA/F8mtCd8hez0+Z///vfWPeVUjvO51DjUGCBUmohgIiMw9oj+AvtGgU0tmMrNwLWAHmRWE4s4EmTJkVqPE7FL6QGXsg5cLNMzfqNonZwXo3crNmv/YRpz8uWLQN2DY51IZcvDbxt27YZ5SuEAC9mDTwupdSO8zl8CrMf8L3A/li7FH0GDFdKZUjXJLccrKioiDX6jauB5xqJLd/eqru7AJ85cyatWrXi4YcfjnSfMaGXBn/4wx946qmnaiRvJwiUV3sutBd60oGHnLpezBp4XNztuJiDNuXz7YfZD/g44FOgDXAQcK+INMm4KcEtB+fMmcOpp54a+vo4GniSJvR8V57d3YR++eWXs3r1an72s59Fus+Y0EuD66+/nsGDB+c9ny1btrD33nszefLk1LEgAV7oOfB8CfAgDfyDDz5IbZ9ak0R9dvdvU8ztOp8CPMx+wEOBZ5XFAmAR0C2PZQJ2rekOw1133cX8+fNjm9BHjRrFli1bIpUvVw0+CnFCxdYm4jZOI8B3b9yCa968eSxevJjf/OY3qWPO4LiQA3Iddz+yceNG/vCHPyRST8MI8L59+6YiWtYkUftQt3WtmNt1PgX4h0BnEelkO6adg7VHsM5i4BgAEWkNdAWKziW6W7dusTXwe+65hzvvvDNSfvlq8Nu2beOdd95Jq6C7uwYedQph9uzZLF261NOEvnbt2qSKZciBG264gSeffDKvg193u6xTpw7gHdnRa0Ce69zxhg0bmDdvXuA1eh7V1dVce+21XH/99Tz77LM55Q27nrMUTOhh6sHOnTv55z//ybZt24wGDqCU2gFcAUwCZgNPK6VmicgwERlmX3Yb8CMR+QyYDFynlFqVrzLFJWpH4L5+7ty5se9PshP65S9/Sf/+/bnppptSx/KtgSulilrLj+Kwsm7dOrp370779u09G/UhhxySZNEMMbnjjjs4//zz2bhxY8HydJYeeQ0IvdpzrgJ84MCBdO3aNfAatyKwfv16IJk2X0pz4GH60DFjxnDZZZd5xsS46aabinYePK9vXyk1USnVRSm1r1LqDvvYaKXUaPvzcqXUsUqpHyqlDlBKPZHP8hQK94/dpk0bz+N+5EsDf+SRRwC4//77U8fyrYEfeeSRVFZWsnnz5rzmE5coAnzlypWx7jPUDPkU4G4B7KWBO+RjQO6sMQ9CL8vcuXNTfUkSQtfPhD579mz+9a9/5Zx+kujvfOvWrXg5Qjtt+9tvv/VMI9v+FzVF8Q+fioS4JnTwXuIRRL7nzPRGl2/t+O2332bnzp2hOpyaIIp5zAk5C/kVDoZk2Lp1q+fxzZs3p9X7t99+mzPOOCMn4eq0qUJo4LNmzQosx9///ncgvW5fccUViWrNfgK8Z8+eDBs2zOuWGkN//8cee6xncBfHKukXga0QqwbiYAR4SMaNGxf6WveP7TSYsMI4KSe2tWvXcu2112Zsi6c34EKZt4vV1OalMa1evZprr702Y47x6quvTrvGUNz4CfBGjRpx6KGHpr6fdtppPPvsszn9pk6b9RLgSTul6ns1eKX3t7/9DcgcnCYZfMVvMJDEstR3332Xjz76KDHlRU/nrbfeCrz27bffzppGMVGcvWqJ4/6xHSERtvEmpYFfffXVjBo1ioMPPjjteCE1cIdSEuBXXHEFo0aN4rDDDquBEhlyQRdaQdNDM2bMyDgWRiv2a49Om82mgSctCLzqrzNl5+dNncSWwXGd2LZv3551+unwww+nd+/e3HPPPbHLpxNl0OREs3M/lxHguxF+AjyOCT3uiH3nzp2p0aa7I9Mrp583ddIBXoo1YpPX83/22WeAvznNULzoWrfzOZuQibtfgVe8h0LNgTt8/vnnGeV3TMRuDTxJz/Ewy8i8qFu3LnXq1OHDDz8MTBeCd0ecOXNmmk+Km3//+9+pz3HeudvMbgT4boS7woTRwN1LPhziVpxjjjmGBQsWZM3L3chXrFjBHnvskaG150qxauBec+CFHGwU69xaECIyRkS+FZHPfc4PEJH1IvKp/XeT13X5QBfg7ljkCxcuZOnSpRn3xGlj48ePp3fv3qnvYTXwpEOQHnLIIfzlL39JO9agQQO+/PJL/vrXv6Ydd8qWDwH+9ddfp737bO900qRJnsf1AVCQpaBnz57st99+vufPOeec1Oeobaxx48YZK0qMAN9N2LlzJ0cccUTasTAaeOPGjQGrkfXr1y91PG4HP3XqVN9zy5cv5/DDD2fHjh0ZGsOUKVOAYEeZOPh1WOPHj6dr167MmTMn0fzC4qUxhe1cb7vtNk4//fSc8h88eDCNGzfmueeeyymdAvMIMCjLNW8ppQ6y/24tQJkA+P7771OfHYHy/fffM2vWLPbdd9/Utp46TruM2tZ0x8ya0sAhc173ySef9BRu+dLAlVJ07NiRs846K3Ve7+vWr1/P8OHD0wS8XxvTB0DZTP1hV7Z4vfOgvrhz586MHj2aq666KjCNYsAI8IT55JNPMiKvhdHAGzVqxPz58zM033yN/N59911mz56d0eE4m74kjV+ncdZZZzFv3jwuv/zyvOQbxKJFi3yXjYShWbNmOQXFmDdvHuPGjWPTpk00aNAgdjqFRin1JtbGQ0WHPl2kLxcKiggWRYDHmQPPNZDL5s2bA8sW1o8lHxp4WVlZ6vn03b/0fuWOO+7gnnvuSVu+6leGKAI8LF7vLmipW2VlJe3ateOuu+5KHYvTDz/11FO88sorke+LghHgCeO1l6xT2YMqQUVFBQMGDMjQfJMa+TmatU7jxo0zTMhJOY64KcY58DPOOMPzuN65BIXBrayszCn/k08+OfW5RYsWOaVVhPQTkRki8pKI9PC7KMmNiiB9SmTEiBGpz7pmHubeqAS1bacNL1iwgIsuuihSuhs3bqRRo0bccMMNaWnphPVXcYRqEm1R1+a93pvXHuj6sSQ08LB4vbNLL73U93qvwXRUAb5hwwYuv/zyyJskRcUI8ARZsWKF5/rgMCb06upqli93h4oPX3HWrVsXGGxg4MCBnmnnMyCJXna9wSqlmD17dlpjdQJhhGXjxo188MEHgRr0999/z/z5833P+4Wi1Mt6/fXX+96fq9as+yi0bNkyp7SKjI+BvZVSPYG/A8/7XZjkRkWQLoS/+uqrUPfENaHrA7ige5045HEGx0543ieesGJcZROWQeTLhO7l0Kaby72C3NS0Bh6E18A8qgDfb7/9WLduXd7bda0X4IVyPqiqqqJNmzYceeSRGefCmNC9nGvAv/xKqbTG3Lx5czp06BApHnd1dXVe4/z67Yb01FNP0b17d84+++zUsbp160ZKu23btvTt25fWrVv7XtOnTx+6dOnCBx98ECltnddff933XK4CXL+/NmngSqkNSqlN9ueJQB0RyVtP9sorr/D8888D0TrrTZs2AbvqZtS2oFvbsg3OO3XqlAqwAv4a6Pr16xk4cGBqC1S/FS06cUzo48eP58QTTwy8fuHChYgI7777bsY5XWh7TQvogwqvMLM1rYEDXHDBBZ7H69evn3EsqhxxrEn5bte1WoAPHTqULl26hDKf5UqQ4Iy6jEzHzwGjX79+tGnThm+++SbtXFitA6xRYj6jJumdjf4cDzzwAECq04XoAly3dPg1UGc6Qo+gFga9c5k5c6Zn6EWIbjVwo2shjhNjbUBEfiD2SxSRQ7H6mbxFvjnuuONSzoRRhLAzhRRXA9d/v2waeNggMfPnz2fKlCmpXc2csjl10uv5ogrw8vJyzjrrLCZOnJjRf+g4nuKPP/54xjl9DtxLA9cFuJcG7ifA9Wu8piP1vMPi1+86Vg03XvnGVQSLQgMXkVYi8nsRud9eQjJGRMbktWQJ8Mgjj7BgwQLeeOON1FKSJPj0008zjgVVqrvvvps5c+bEms/2qjibNm1KmY/d2mUxzTXr70R/dq93pQvDV155BRHhd7/7XeR8vPAbyfu9K/fxMWO8q3ocU+T06dM58cQTmT9/ftrAsph+t2yIyFjgPaCriCwVkZ+7Nik6E/hcRGYA9wDnqAKZwqJ27rrGF/Ve97SQH16Dar/f2xHGfoI1FxO6roE73viLFi3yvd4xg3v1nboA99LA9fI7AvGZZ55JHcvFhB512q+6uprNmzeH3tbZq2xxfZHyrYF7D3EyeQF4C3gNKN691XzYsGEDe+65Z2IB6Y8++mjWrEl3ws3W+E8//XTfMH1BeFUcvcG6n6mYBIGfBp5NgB933HEAjBw5kj/96U+h8gnShv1G8vq70hut+x3Wq1ePp59+OuP+OALc8Yb+5ptvSnZDFKXUuVnO3wvcW6DipDjwwAMjt/Ft27ZF0sB1n4qwGvjgwYMjlUfHrYF77SkQVQPX0w0qt3sdvY7uEOelgR9++OGpz077++KLL1LHwpjQ/dpt1CBT1dXVNGrUiObNm2ecW7lyJXvttVfaMa92HWb8+e6777JhwwYGDdq1wrJp06aRyhqVsAK8Uil1XV5LkkeS3njCy1yeTYCvWLEiMQ1cb7ArVqyInGahcAvwFStWsGLFCs93VbduXT755BPPjQai5ONFGA28oqKCTZs2ecZgLi8v56c//WnG/bk4A3300Uex7zV440TQA8tHYtmyZVnveeCBB1LribO14WeeeSZtK96wGngU9MH5+++/n2oPTl5HH310xj1RvdCVUqm+KK4Az+bEpuMliKNo4E8++SR//etfmTRpEi1atIglwMG73/76669DlS3M7+sMWvTfMN/LQ8P2QP8VkRPyWpI8smnTprw7s2WrVE7Ag6hk08CXL1+edk0xaeBuE3qbNm045JBDPL2/v/nmG3r16kW7du0i55Pt3YcR4OXl5Zx22mkMGDAgQ8vx69j9OqGwpjqHa6+9NtL1+UZEojkkFCFBzo0611xzTepztgG2PkAA/+iJuaAPzvv168f06dMz8nIT1vTvtBNdgAcFEApjQodd7zCKAPe7VheoTru95ZZb+Oijj1JxyvX27vjTBJGLb4NDlL77wgsvTH2O059FIVCAi8hGEdkADMcS4t+LyAbteCAiMkhE5orIAhHxnNC0wy5+KiKzRMQ/fFgOxBWeUchmxtK9NaOQTQN/+OGHOemkk1Lfy8rKimbrTj8TuleMca+RcJx8vAjjzVpRUcHkyZM9z/nVHa+Gft9999GwYcO0WMzZ2HvvvUNfmzQiMkVEOmrfDwW8A1WXEM2aNYt8TzZB6PZOzkUDzzYH7uAskxQRpk2b5nlPWAHupYHrwUrcOIqCl1e2k+fixYt57LHHAP8Brdf0ltfzb9y4MS02g1NGZ0Ds5Km390suuST1efny5dx4442+oay98Nqxzm8OfOnSpYHLUh1eeOEFwHrGzp07Z70+FwIFuFKqsVKqif2/TCnVQPveJOheESkH7gOOB7oD54pId9c1zYB/AKcopXoAZ7nTiYveoOrUqVMUAjzupgnZ8nrppZfS8nG2E8yVOXPm0KdPn7T0o+DnxOZFLkFRkjKh+xFFA7/iiisAIkWWq+E48X8EXhaRy0TkDmA0MLQmC5QEUVc1QHAd/frrrzMEWdLbhEJm23bM+0uXLuXGG2/0vCesL4W+nDVMecNo4Hob8lvt4+fVvWrVqrS25Z7q9NtNzW1xc44PHjyY22+/PWN6ylku6EVYAa6Uon379nTp0sU3LQfnfXXt2jXrtbkS1gs9QzXxOubiUGCBUmqhUmobMA441XXNecCzSqnFAEqp+HEtXbh//FIV4NlM6F54LfuIwx133MH06dM54YTg2ZN77703NQrX8dPAvYgiwMOsjdUJ48QWJMD9TPRBgjfKGtaaFOBKqUnAMOBu4GfACUqp4jDh5ECSAvy9996jY8eOjB07Nu34d999lzIfR23bfnXW3bYd4bNt2zbfsJxBGnivXr1Sn71M6EE4eXu9S6f8YbR/r/q9du1aWrVqlVou55WWe/ntjh07mDRpEuvXr0+7znkuJzCSW+MP6h+8Bh25eqE7ArwQWzVnM6HXF5EWQEsRaS4ie9h/HYE2WdJuC+guoUvtYzpdgOa2Ge8jERniU47I4RbdHpdOJfjFL34R6v6ohJkDz4cJ3U2S86lhhOqaNWv41a9+lTbv4xBFA2/YsKHnca/n92roVVVVPP74457z688//zyrVq1KfX/xxRczTPZBAtdv04QgwRvFF6EmBbiI3IgVLe1IYAQwRUSCI3yUAHHW6PsJI2fu+5NPPsk4d+eddwLRNXC/AYa7bYdxwA0SULpJ2kk7rADfsMGaJfV6L+PHj8+at4NXG3bao760zE/jdu6fN28egwYNYsiQdDHh9L1OMCy3pSRokBHFhB6WohHgwC+B6UA3rPCIH9l/L2CZx4Pw6sHcv2QFcAhwInAccKOIZNgo4oRb1F+eLsD1hj1y5MhQaUXNz4tCaeBRg5YEEaSVOrhHwzpRNHA/b02v+9zvevv27Tz44IMMGTIktQRN59VXX01FyHvllVc45ZRT6NixY9o1Qc/qZ4ILErxRhHINm9BbAocqpd5TSv0Lqx1eWZMFSoI4AtyvjjoCwG+QCdE08IYNG/rWd3fdDjL/OngJIQe9XusabRjNOUiAO0FewqQT1Ifp5XOntXXrVu69997UO3EG0jNmzEi7LpvylNQceFgcAR52fX4uBPbQSqm7gbtF5FdKqb8HXevBUkDfu68d4A72vRRYpZTaDGwWkTeBnoB3kOowbNkClZUZAtxB/3HiLFkC786hppzY8kmUeTIvogjwoKAN7nPuBrtjx45U1DW/SHSzZ88GSAsLGdaEHkeAl5AJfbiINBCRrkqpuUqpr4H/q7ECRcRPcIYZfLrxE0ZOPQ4aFERp2y1atPC9Po4ADxJQ+ntw8kxCAw+TN0C3bt0883L6jSAB/tBDD6V9DxO9zSudJDTwbLs06vWwmDRwh2Ui8hPX3zEiEiQBPwQ6i0gne1nKOcAE1zUvAEeISIWIVAKHAbMjP4XDypXQqBF07Uqjn/+c/wecAPx5+PBUZCD9x4kzTwbeI/FsP9a3334ba8/nMBpovtArvlf0OUifQ3J3plFM6H7nvToId2CMHTt2hNaAbrnlltTnfArwUtHAReRk4FPgZfv7QSLibqdFi9/vHieOthN/3E2YXbyiaODl5eW+1zuDU2cVQxgBHoSfA1mY8jplCRKA2TRwv8GClwaebTDgp9H6ObWFKaNXml7tUZ+r90LPwxHgUderxyHsMPXnQD/gDfv7AOB9oIuI3KqUyvCaUkrtEJErgElAOTBGKTXLCbeolBqtlJotIi8DM4Fq4EGl1Oexn2bBAigvh3nzqJw3jz9op1YBM4Dyt99mrf25bsw1014/ehhTkr5BfFh+//vfZ8QrL1QEL73hDRkyhJkzZ2Zco695rq6uTus49XI6c4V++L0/r0bwv//9L+27W4DffffdoWJPu9eB++G3rjspDTypTRtiMgLL4XQKgFLqUxHpVJMFikKSGvg//vEP7rsvc2YwrpnYj4qKiqz7ip9yyinUr18/ZwHulU9YE3qYTV7iCnCnTel1P1tafl7u2QS43g/Vq1cvrf/26l/iDKj1Z3QUwxo3oWtUA/srpb4BEJHWwD+xNOY3AU+3Z3snoomuY6Nd30cBo6IV24f+/WHTJvjiC5ZNnMjTN9zAQVg2+ZbAMQAff8wA56GGDGEa8I72FyaumZcGnNQyEjdr165l8eLFdOjQISOvn/zkJ8ydOzdjD/Gk0BuCX+PRHbx27tzp2yCDdvVyX6vz1ltvsW3bNt+9uyFTgF955ZWBeWXL043fNEFt0MCBHUqp9S7tsjBb+CWAX7uLOyiqrq7O+D2yRRqD6Br41KlTWbJkSSomuTudsrIyKisrcxbgXtOEbqGqlPJ8NueaXPdJ9/qNnOcqKytj2bJltG3bNi2fH/zgB6xcuTLtnrgCXP/epEmTtM2JvJShXAW4M9WSz50eHcKWtKMjvG2+BboopdYA+bcThGTDhg289Prr/OO991jQvz+/AY4GWmBNxp8EvHzEEfwHa5Jddu6kD5bHzn+wJugXAo8A5wN+sZx27tzJpk2b0gRnPpepuQWIvnlALuuns6FXSj9zkO4l624MUSwFfteecsopnHnmmYExrhcsWOC7Y1gQ+jMFDcBquQD/XETOA8pFpLOI/B3I3D+ySEnShA5k7HEA4epxlAG846dx6qnuVbW70ikrK6NBgwY5C/B69eqlHM4c3ELVb0ouKQHudb8zpfn555/Trl07li1blrruuuuuY4899si4x68dRtHAmzRJD1+i3/vjH/8YiNce9TwLIbgdwpb0LRH5r4hcKCIXYs1dvykiDYF1eStdRBYtWsQJJ5zA5ZdfzsCBA9POLQX+B7zZvz9nA12Bl8eN4xjgJiw7/wagE3AhlklhJZap/S9Yrrm632jv3r054IADmDJlCpA/DdwL9yg9X4QR4LqpOqjhZCNbpffqWB3OP//8WP4F+Rbg1dXVoQZ2NSzAfwX0AKqAsVjN4MqaLFA2qqur6du3L88++2yiJnTAc+ol6TlwJx0v4ewenOcqwMvLyzPqlzuQi1/9zqcG7jiVOqxduzb1ngcMGOD5+/lp4MOHD0/7HtQPuX9Dr+1Lc9XA33nnncj3xyVsSS/HUkwPAg4GHgMuV0ptVkoNDLivoOij7jDhL1WjRrwO3AYMAppjmduvwrL7bwYOBK7G8vBZgyXofwOUz50L7Aqbl08N3J22PkovJgHuFtg33HBD6LzCBmNJcqAUVoD7dRxBDV0pRefOnRkwYEDWctRk/Hql1Bal1PVKqT72Us3rlVL+SwuKgO+//54PPviAM844I9U2zj777LRr4r7TIP8WvzTLy8sj1csg64A+OE9CAy8rK8vIz+3E5jdX6yXAN27cmHU6zJ1XmHfToEGDVD7l5eWRBPhrr72W9jxBJnT3OX2DE8f0HUaAf/nll3mJxBeVUMNUZZV0vP1XtIQxm+k/TsbIFMubbibwN6Aulufe/wHHYi1YP9b+uxMrSs3SV16B8eMpT3jHsyD0UXo+d7vRK3scDfytt94KnVfYcKi5mqfq1q2bMhnqjS6oAX7+ubdfZVBD/+abb1i/fn1qA4Yg8h0l0AsReZGAuW6l1CkFLE4kdIHjvDv3ipK49cRLmGXTwMNaWhyC+il32851J8WysrLAELCQ3btbf5ennHJKyuoYhrACvLq6OqsAD1qyGrRdsd63uPuZv/991+rosBr4lClTGDhwIA8//DAXXXSRZ56FImwo1Z+IyHwRWR9lM5NCE0aA69dkG6VvA6YCN2C56e4JnAs8imVebw/0++ILOOsszhg2jLfta/sQ3rQRh3yY0L3eXRgN3FkrCrlV4mz3Or9Vrua8oE44Kkl5odfQ6P0vWOPQRcD3wAP23yYg/kqQAuAV4yEpAe4lJMKkFWXJUJB5v7q6OlVHKysrc64b5eXlNGrUKO1YWAHuFS41ivB28grzDDt37kzlF1UDh+DBuC60wwS9ySbAnX3N9c1lakoDDytn/oy14UhTFXIzk5ogqgbutcF7EKuxArpfhBVH9iDghb59YcAAEOFwLHP8NOAb4EngAvyd4cLiZ0JPUgP38mQPI8D147ksb8t275QpU/juu+9yyiPIIpC0AI+ypWhNaOBKqalKqanAwUqpnyqlXrT/zgP6F7xAEQijgcd9p17CzEkrqI5E0ZSzmdCdeuW1C1hUysrKMuJW5KKBR42dEVaAL1y4MLWEr6KiIpIAb926dVrQF/eAa+jQXXvzBE1JRJ0DLwYTelgB/o1SKn6AlQIRVQNv1KgR06ZNC71n65133knbtlY4d4Xl4Dbp4IPhjTcYd999nIq1tdoirGVr52E5C6zEikP7R+AoIHqQx3QcIebMkyWBlyYfVYDnUwMfNmwYPXr0SLvumGOOiZTHhg0bfDXwoJCwfgQ19KCRvpuaavw2rURkH+eLvQY8XLziGsJLgLu3ZI0TShWCI3MFDR7PP//80Hk4gsJrkDFp0qQ0U3Ku5KKBJyXAw/QLJ554Is8++2yqzFFM6D/96U+59NJLU9+99kNwCNLind85mwB34lAEzbsXirACfLqI/FtEztWjseW1ZDGIMwfep08funXrFir9I488MqNiOT/itnr1mIDl7bcP8NtTTmHNiBH8D9iC5fn3O6xoGauB57Hcfw/EO2h8ED/72c8ASyDF9bZ14/Xu9EqZLXIU5FcDB9I08ObNm9OyZctIeTRv3txXgMdxFkrKe7wmNHCNq7A2MJkiIlOwgjVdWZMFyoaXAK+oqEhF6CsrKwvdpoPSdnDqTFIBlPza7LZt25g+fXrqexL1q6ysrMYEeMOGDTM83jt16pRSgvwoLy/37I/8hK97AOzeTjQsTp7Zpla99psodg28CZYcOhY42f47KV+FikvcOfCwHaiIZOShxxfW+a55czZceCEnAXtgOcL9BWtysTHWvqr3YGnxq7HW5f0Gy1HO/RR+5fv4448Ti+LlpcmHGVXq85G5jEKj7mlcUVERWcuaNGlS4Ag8KmE72FdeeYWDDz44NXfmpiY1cKXUy0BnYLj911VZW4z6IiJjRORbEfGcKxeLe0RkgYjMFJFeXtfFxUuAi0jq97jkkkty8kJ/44030rQ4J62kQmMGxf3XSUqAu9u2uz/x02yd8jz33HNs2bKFk046KXA5p5uGDRtmmNCvuOIKsm1I5aeB+w2y3c8T1/oSVgP3yrfYvdCHZr+q5gnz4vVrnIaZyxKQ559/ntGjR2csmSorK0s1+CrgNfvvt1h7qh6LFY/2SKAjcIr9B9ZC3HewomlMA8rWrQNg1KhRaV7NFRUViWmB7lE6hBOqXib09evXc+6550bKP6zwd67zmycL4rbbbot0fTaC3n19oKH9N/y442gI3HXaaQwCKrVzlcABzz0HfftC586Jli8Ch2BVwwqgp71zXuYG77t4BLgXa4bIi+OxBgWdsaI1OlEbE0EX4M6ATBfgQbHGs7F161aOPvpoIH1wAMlr4Hqo0n/96198/HH6NuxJmdDdg5kgDdxZYqb3X2CZjd0hjLPRsGFDqqqqMsKMZutv/dq2n5+BO71CCvCDDz6YjRs38tprr8XKM1dC9YD2Fp//BForpQ4QkQOxnNpuz2vpIhLVhO4lwKuqqlLB6N14aeDffvstEyZMYPny9I3WysvLfXc7WwY8bP8BdMCaGz/S/t8Zqwc83rnhRz9i+9570+brr1kG/AhrqVuSArxOnTqh4gS78TKh33jjjbz00kuR8g/bOTobTviN0vNFA2BfrC312gB7Ac1vuAE2bOANoKn918T+79mFzJ/vnfhzz8GFF9aIABeRx7Ee7VPAGUUp/IUzSqk3RaRjQLKnAo/Zy0/fF5FmIrKXUipMpOKs6HX0Bz/4AZAuwHOpFzVhQh89ejRXXHFFxnVJaeBu3AJPf+bBgwenwrzqzxvHutawYUO2bt2aIcCzDa6iauA1KcCdTZ6KWgPHWl7yW+BfAEqpmSLyFFByAjybCT1ojkdEPCvWaaedlnGsrKyMpk2b8vDDD6d5QXqxGCvymxNQvg1wBNbStUOBH9WrR52vv2YwoO/Dtfirr9j0zDPUY9f69YVY69nj0Lhx45wEuNPI/bb0DCJsB/Hb3/4WiKeBZ6MCS5J1Y5f66Px5ujk+Zsm4AR6ntmKtx9pi/20GaNCA777/PvXd+X/0iSdy0H77Jfcg0egNdFfJTsS3xQqT4LDUPpYhwEXkEuASIC3efxB+QlbXwOOa0L3qvHsJ45o1a3jiiSf49a9/HSsPd72daweFcpMvAR6kgY8dOxYgLQ65vsQrCk2aNGHVqlVpwq1evXqxBbi+74JOUlW31prQgUql1DRXoyjMllgRiCrAnR8q7MsXEd+gHm6cjqBr166hrtdZDvzb/gOY9cEHnHfQQSmB3hvYH+iwfTvMm8fN2r2bsebZPwdmAV/Yf/6RxHfRqFEjVq1alfEMQXhp4HG2aY3aQeQiwOtgCeXuWDFEu9t/XbCC93ixDWtw9DWWFFoOXHH77TTp2pUBZ53FBmA91vTHBvt6N907dfKcB3/gtNM4qEePWM+SAJ8DPyDcPj5h8ZKenr2sUup+4H6A3r17h+qJvUypugDPRfB51UO9oy4rK6N58+Y5mbede5VSbN++PS2YiE7U56ioqMgov1c5n3766bTvXgOiqVOnApbA3bFjRywN/IADDuDLL7/McILL1t/6CXC/+9zH4/oqhHVicygGL/SwPeAqEdkXuxGKyJkk2+ATIQkTehBRRvVOo0jExF2nDjOwHN4esA9VAKd268a5PXow75lnOBDLo7091mSje8JxI9ZG67pQ/wJLIDnVUHd2KSsrCyVUvZzY/KYggogqwMvLy7OaypoC+2EJ6/3ZJaw741/xFwFzsDa7ma/9LWaXfdnhF5dcAq1aMTVSyTOp4WVkLYEvRGQalrsGkHMktqVYVdGhHdaYJzYLFy7k0UcfpWPHjlk18Dht7phjjmHy5MmeHbH++zh9TNytIsvKytLKF7TtbdRBwvbt2zP6KP2dOM/hhH928HqW9957D4AePXqwePHiyAJq+PDhbN26NcOJLYwJvaysLNLg3N1+nD7p5JNP5sUXX8y4/sYbb/T0h4n6vhcvXuxbhkIR9i1djjVK7iYiy7D6ucHBtxSeQnihh8XtAJM0O4DFjRvzRc+e3PTMM6njzbEEeXftrwdWMBlHg9fZgiXYueACLl2/nlexBPtX1dWRNfDPP/+cl19+OTVPHQV3BzFkyBAee8zfj6qiooJ6InTAkhR7YwlrR2DvhyWZvKgGFmA9pz6gmYP1PsKSlP9BDQvwEXlIcwJwhYiMwxpLrs91/vvjjz/m1ltvBeCOO+7IOO8W4FHa3Z577sn48eNp3ry550DSS4B36hRvy3QRSStb0MA1ifrllLd+/fq+wYW2bt3KqFGjePvtt9OOwa4Y5VEH2M5zuteBB+2Frpc5ijB1p+f0ScOHD/cU4IMGDWLq1Km8+eabacejvm/dca2oBbhSaiHwY3v3sTKl1EYRuRIrZHjREFeA50MDd0iiEQZtmeh+5rVY4V/dWmELLC1UF+rdsebbDwF44gl+hbU2Haw53K/mzOFT4CssTZ2JE2HvvVkiwmPPPst5gwenCfBZs2Zx1113xXrGVPAKrGV3+23bxhFYQtj5+wGWsG4HdJw7lxazZvHHgDQ3YwnqBViDFEdQz7WfL4h27drxm9/8ht/85je+19QGAW5HY4uEiIzFmvpvKSJLgZux/faUUqOx9gI6AevVbwFyXsWia2ReS5l0wSgiGftsB9GpU6fUKgz3oHX16tWMHDky9d1pb6eddhrDhg1j9OjR4R/CVU6lVKjAIrngpBFkraqqquLaa69NO+a8hzp16sQyoesCXP+9dEtA0L25hCLWy+5FZWWl57vV609Uit2EDoBSSvci+A1ZBLiIDALuxuqXH1RK/cnnuj7A+8BPlVKxN0wpJhN6Lve4CYrqFbaRrwbeBlqfcQZXahp7MyzB/u4DD/DsbbfRcPFiumMJym5VVaSFwzjxRLDPXQ1svO02nsGaS1kHdJgwgZ5YdtgqLCtBOVYl0//XBxppfw2BJt99RyWWF3cZwLhx3Bj0QDt2UC3CUqVYimXiXqD9zceKgBeXhg0bZv3tonawfgOx7t27R0onCURkI97z0oK1f5FvqGSlVOAaQdsh7vLcSpiO3rbDzIGfdNJJTJ48OVS0Pl1g6G1t+fLlGcshdUeqvn37hhbgTZo0SUUC1OtVUMjdJAV4UFpe3t2OEKyoqGDnzp05CXB9hU6YJX5Rn/v9999P++6U3S+dhg0bBgrwOBS1Bu5D4NOKSDlwH1YMk6XAhyIyQSn1hcd1I7F26syJqOvAnc/uCtW2bVuWLVuWcW8cE3oSjdDP+zJO+m7T3zrgPYCLL+bRF19kgj2v0xhLsHfFMk/vDfz8mGOQxYvZumAB9ZWi/rZttLKvAWDBAmJH7LAbQDWwCqjeYw/mrVnDKvv7KuBb7B3ggBY9e3LYqadyk21WjUubNm0ylgACGfGjvUjit91///1DbTmaNEqpxgXPNAd0Dfz+++/POK8LcKedOuu5w+DcrwvUWbNmZZhZdaL8/o5jp96HKKUCBXhS68AhuKxeAyJnHrlOnTps3bo1UmhgSBfg33zzTVp59txzT+b7LakkuiB1e/FnE+CVlZWeeeTize4lwHXLTb7IRYBne9pDgQW2+R17PuxULCumzq+AZ7A28cqJMD+8lwndvWnA66+/ztFHH50hxGtKAw8S4FEbedD1uhPbRqwgMtO08+dNmEBlZSVH9+vHp++/Twssc3cLLIexYw4/nA/feYd6QD2syrUDy/nL+b8TSzvfiLXMqnufPrz+4Ycoe4nVeiwhft0vfhHYAPo2aEBFQps9eBFml7ckBPiZZ56Zcxq7A9mcmrI5sf3pT39i1qxZPP744xnnHKqrq5kxY0bqe9OmTbPmGRbdsVO/r1Am9KgC3BGCmzdvprq6OrV8Myy6ANcdXcvLy/nPf/5DmzZtAsucizB18gvSwIN+uyRM6Pvuu2/GtEQ+CGwVWcxs2XbR8FoLmuYcLSJtgdOBowkQ4HHWivrhZUJ/4IEHOPvss1POMV26dGH06NGcfPLJ7nLklF9c/Ebp+s5FYQkS4NmWf/3lL3/h5pt3LVpbav85yJ578lyk0sDxZ5zB3A8/pL5SafPS2Rqw35r8qMRt5EH3+uH1TEnNo9d2sg1Udcc1r9/tiiuuoGHDhoECHNK3y1yxItjvzv3bdenSxXcjDS8NHGrOhD506FDGjBmTMu27cYRgnD0CIF2A6w5wZWVl7LXXXlnLnIsAD2NCTxq3Bp4v52U3gT1gjma2MGtB/wZcp5TaGfTAcdaK+uGlgXfr1o2ZM2emXedVnprSwP1CCCYtwLOVVRfeXkTZQtPBEcJuE122OaWoS0388HsfhTKhF6qhlzphNHDnXXr9Ltm28PTCK0CTjjufoAGw19JKpVSi02Ne+K1tdqxt9erV8xTgjhAMem/HHnssy5cvZ+jQoVx99dVp5/y80MNYDJ374pKt7HEjtQVRlAI8R8KsBe0NjLMftiVwgojsUEo9n69Cec2Be5GrAE9yDnydHQvdK4+o6Qddn2tZ42wU4tcxJ71WNCgdL8II8CTmKI0AD0e2d62/R693mo+wu+58ggS4roHr93kJT4ck6pfbL8DBEWLl5eWe7dYRgkED6Tp16vDZZ58BBApwXQMP62icTw3cKZ/ffXHeu9uEXqgdBvNpv/sQ6CwinUSkLnAO1vrQFEqpTkqpjkqpjsB44LJ8Cm/w1sC9KCYN3E+AQ7Jz4LkK8AULFkS+xy/PfffdN+t9+RTgfo4uOlHzNyb0+ORTA4+LO5+gAEZ+JvQgAZ6tbjzyyCNZ56b9nNh007qXg1oYAR7GSlZdXR1LA/dLO0x/GkaAe+FMFzRuHN3w7C5vyQtwpdQO4Aos7/LZwNNKqVkiMkxEhuUr32x4zYGHpdg08DjpRxXge+yxR+i0vby5s+H3Ti+++OKs99W0CT0qXktxjAYejlw18Hy85ygmdEc4fP/992nrwMMI8B49evDHP2ZGPGjRogVnnHFGqDL6CXAR8RTgzhx4kCAKEuCOT4LXHLib448/Pu17UJ8WxrnUiW4XV4B77cyYDXegm0ItK8vr8F8pNVEp1UUpta9S6g772Gg72IP72otyWQMelrAC3KviFpsGHtaE3qvXrsVdUQX4hAkT6Nu3b/ZCxsTv/dSpU4e2bdv63ldWVpbIXFYhHV10b1wHI8DDkasGnu3eOEQxoS9atMjz+IYNG3wFhvMczZo1o0+fTB9f3fPeDz8Brr8rr1CquWrgUebA3b+tlwnduS+MBu9YAoPezQknnJBxzPE1iqOBuwMA1QoBXoyENaH7CfCBAwdGyi/f68D15/FbtqCH/IvqxFanTp28OH0E5RmGpEzo3333nefxevXqcc455+Scvo7XXKMxoYcjVw3c4W9/+1tSRYqkgfuVf9OmTb4CQzd/63m1aNECyJxPz5aGV9n9NHBnm0yvftAZWLtX6bgJOwfu7l+8nNjitHWvvJxjw4cPzziXpAAveRN6saJX+Dgj9d///vcZx509iXWSjIUedq2on6DVyxBVAy8vL89ZyKxZs8ZT+/TLMwz5FuAVFRWe+7n/8Ic/BOLFwvbKy2jg4YiigevvtGXL9Ij4w4cP57LLLkukTFE0cL96XlVVlRGHwn2Puw3q2ngSGrhf2wTvaZ9ly5axdu1azz3MHerWrZsXDTxKfxElXOpdd93FHXfcQZs2bTjwwAND5+FgNPCEeEYLE+pFriZ0r0rh1wDd+cXFT4C7Teh+nVxYz3u/Cp+rkKlbt26owUVU8in8vDqa6667jo8//piZM2emBfzIBSPAwxFFA9fb7ieffMLkyZPTrk16/2iHsAJcL+vWrVt9nd904etXT8IKcPf9+vGgMKl+76pZs2aeZTr55JO5+uqrueaaa1Lavb681Ku8YTRwpw8Met4jjjgi7bvXtX73X3XVVangXXHmwN17QBRKA8/nMrIawUtr0snViS3MCNJ9T674hTF0C3A/IalfE1UDd5vv4hB1OUcY4u75Gxav37R3795UVFSktPAkMCb0cGTTwJVSnnWpXbt2tGvXLuu9cYjihe7X7qqqqrIK8CArWFwTuq6BxxHgfjRo0IC//OUvvmULMms7eGngzvegkK7Dhg1j2rRpgVs556u96Tu5gdHAY5OtQoedK/O716sCBHUuSWrg/fv3zzinV/4wGngcAZ5PLTFu2tu2bcvrKNfrPeUjP6OBhyOX7SXzRVwTuu6F7gjw6dOnZ9yjB2HR79en58Jq4GeddZbn8WwaeI8ePQLTdxg7dmzGsbACPIwJ3SFoOrGioiIt/UIKcDdmDjwm2TrEfJjQvQRnksvInFHn+eefz49+9KO0PJLUwP2W3+TyDMcdd1zgFEPU38Chqqoq9ij3gAMOyHpNPgJ/eGEEeDjiauB+14YlKPRqFBO6X9mcOfBDDjnEN32/NhimbTrt/dZbb03bQEQvj7PsyotRo0ZlbB4zceJE3+uzKUhxndgcgn47twD3yssI8CInigYex4ktapCIJDro2bNnA5aJzi20wsyB5+LElosJ/corr+Tll1/2fQf16tWLnXYuGngYr/p8BP7wwpjQw5Ht99DrQtx64bWX/T777ON7fRQN3I8NGzZkNaG7P+vPF8WJzfFe149/+eWXgffXr1+fQYMGpR0Leic6Xu0+jAIUpIEHUadOnawaeKEGzMaEHpOa0MCDzK1JdtBlZWVpFUMplZZ3rhp4v379PO+NW+nXrl2b9n2//fZLfV64cCGrV6+uERN6GOFcKAFuNPBkyEUD103aboIGe1E0cK/8lixZwscff8yrr76aNf24c+B+/V3YdyUiabsUQnjrVD5M6EEUkwndCPCYhB2RQnJz4Plw0vJi9erVsTTwsF7oZ5xxBuPHp8fSycWE7nYo/N///pd2LsyOX34kKcDdHRQYE3qxEaVDzFYvnPNDhgzJel8U/5Ygx8o4v3M2YRR03CuNONbHsrKyjCmwoClDnbgCXESybiTjhZcAf/nll9OuMSb0IicpJ7YoGrhXOn4auK6FRmXr1q0ZGnjUOfAgjUJEMkIzlpWV+a6V1rnmmmsyjrnXzHuZ8OIKsKqqqsQEuNuD1OuafGFM6OHQ644XUTRwB/f1UQW4+/6VK1cGls/vPj+ytZEoTmzudKJo4GEEuN+9bsLOgQ8ePNhzd8OhQ4dyzTXXZIRfBWuQ5xbg7lDQRgMvcqKYlIJ+zFwFuN+5XCrQJZdcEsuErpchalS1srIyPvzww6zXjRo1Ku17gwYNaNasmW85chXgO3bsSEyAd+3aNeMao4EXF/Xq1ePBBx/0PR9lDjyKg1QUE3rnzp19r9177719zz300ENZ03e3e4coCku2mOR+ZaioqEiLuha2D4k7B+7c52UZq1+/PqNGjfJ0jK2qqspwYnPHKI/b/1533XWRlC8jwGOS1By4X9pRTeh+6y+jctJJJ9GiRYtYJnSdqIIpbnmzvSfducaPoI5YKZXhXBMWr3Wn2a4Jwz777MO7774b6R4jwMOTzWKW67vMVQM/88wzfa994IEHfO9zL/FyyCbA9f4ozLM3b97ctwx+ONdNmDAhdSwXDTzqMlw3Tpv3+q22bduW0b+7pzXiCvA//elPXH/99aGvD1qalyS7nQDPxzpwr2MnnXSSZx5lZWWceuqpkfKFXQIlSIDnw7s6boXPtoQjVw1cKUXr1q1TOwi52bx5c8byF7+yJSXAwTsq3x/+8Aff60vRhC4ig0RkrogsEJHfeZwfICLrReRT+++mJPINO9gLa5lxO6/lqoEH1ZkmTZr4nvO7Tz/up9HpwV6yISIMGDAg7b5s5CJwc8nDj1NOOcX3nFsD37lzZ4YGnssgz/2O582bx/nnn5/6PnXq1NTnoP0rkqT0eo8s5FsDz7an83777cfrr7/OhRdemHHO+f7UU0/5ep764aSjrxcNG0pVJ6pgilvhswlwJ91cBDj47xpWWVnp+6xeXq/ZrgmL15KgoM671DRwESkH7gOOB7oD54pId49L31JKHWT/3ZpQ3qHOhzWh5zoH7q43Ya/1m1Zzb57jp4HrOGnla2Du9c7Dtg2vtuD1joMi2EUpV9++fTOmFB0B7pQ5lwGzl/OrbtXIxb8pLkaA++A3B55NgDdp0oSBAwf6aphlZWVUVlby4x//OLCcbpzK495NKcwcuE6YxtetW7fU5ygV/o033gi8z8v6EfU3cMhljimfGrhXZ+R+xk8++ST12a0hlACHAguUUguVUtuAcUB0k1IMkjKhR9loKJvTp055eTkvvPAC48aNy7g2qB05de2pp57yvEdEPOu7bhHM18Dc6zqvd+LEIR82bFjqmB5T3HEm89rPu27duhlLTuOw7777pt5Dr169aNq0aap9OWXORYB7zdXr6dWvXz9wg5d8kFcBHsLUNlhEZtp/74pIzwTyDH0+HwLcfT6pOXCnYuqOYUEa+LHHHuuZThgBrnt4RqnwjnkuzH1JaeBeZAs0oXd2v/3tb/OugbvTP+igg1KfnS0MS4i2wBLt+1L7mJt+IjJDRF4SEd94nCJyiYhMF5Hp2VY7hK2LUZ0bgzR3vR5cddVVqTjfXuWpqKjglFNO4ac//WlGOmE08CCHV6ds/fv39wzkElaAO3nkYt72yqtdu3YopdL6AH1bzgcffJDVq1d7WsxEJMPhNS5O2Zyw087Obddddx2QrAbujpHRoEEDz90q80neBHhIU9si4Cil1IHAbYD3pGW0fPNyrXN9NgGeLY+4FUi/74EHHqCsrIx//vOfvkFavOKmu68Jk1eSJnQvopjP9N2GgjrpoDJfcMEFaWU7/fTTERH69OlDmzZtUseTnAMPKs+8efNi5VODeD2M+8f4GNhbKdUT+DvwvF9iSqn7lVK9lVK9W7VqFZxxwhq4Gy8tVxfgd911F1dffXXqe5Q58LCOrtOmTeP999/PSM8pm7ttOt/dA85hw4axatUq3zy93pUz7ZfturB9mC7AmzZtmrGkKyiPuDjvzPnfqlUrlFIcffTRQG4C3EsZ08tev379NJN6IcinBp7V1KaUelcp5dhO3geCtw0KQVjNLxtRlppE0cCTcAq7+OKL2b59O/379/cN9uD3nF6djFtj8FrulUt5HbyEddOmTTOO9e3b1zNNPchMkAk927I+rw1gPvjggzTTdpImdK936CzL0ZfnlAhLgfba93bAcv0CpdQGpdQm+/NEoI6IpG/MHYOkNfAwc+BRTOhxNzXS0+nTpw+HHXZYxj2OMHRbl/zmwEeOHOm5dj5IA3fHgMhW7mzoAtx5Jgd9vj9JR063AHfnkU8Tunismc83+Vzs6mVqO8znWoCfAy/lmmm+nYL85qL8cJ/Tv7do0SJwIwEdv4GAnwbuF9bRXQlnzJjB/vvv75tXkgK8oqKCpUuXpp1zO3h9/vnn7Lvvvp5p6u8urgZeVlbmueGBuzEmaUL3Ks/TTz/NvHnzEt2atEB8CHQWkU7AMuAc4Dz9AhH5AfCNUkqJyKFYikK4ih5AUhp4UBpuogjlsBp42HLqpvVevXrxzDPPMGjQoLRBn9MfufMOcpz0K4NX+XN5p45F69JLL80wnY8dO5Y99tiDf/zjH7HS9mv/fgI86tRBUNoObhO6w/z58wsWCCqfAjyMqc26UGQglgD3tPuKyCXAJQAdOnQIzjTCHHgcogaJCNLAP/nkEyZOnJjm+OGHX4VwC9vJkydTVVXla5p1p3PggQcGphn3ffk1lLZt06dL3R2Nvn3hPvvskxbdKsjSoRNHAwc8BXtUvDQ2r/LUr1/f890XO0qpHSJyBTAJKAfGKKVmicgw+/xo4EzgUhHZAXwPnKMSiC0Z1mclbiAXL6KsA096UyN3G/rJT36Skaaz3jgJL3SvZ81F4HXv3p05c+bQsWNHz/NhVw0EMX78+LT19857cD+LY77/5ptvYufl1q7dg36HQnqj59OEntXUBiAiBwIPAqcqpTxH6UnNk0XBr1J5pR+0O1DQHHj79u355S9/GaqRhBHg5eXlHH300Rx//PG+5dcrdu/evbOmmcScfRC6Cd1xNHEYO3asb1nCCHA/R0Q/Qa070qxbty574X3ydkel08v9/PPPx0q3mFBKTVRKdVFK7auUusM+NtoW3iil7lVK9VBK9VRK9VVKRYtu40O2deC5eqGHjeftd73etpYsWeI7+AxbTr82r+frCPAkAjQlrYGDFeUw225rcQS439SBnwbepUsXIHMQFIUBAwZw4403ppXBKYffctZ8k08BnjK1iUhdLFPbBP0CEekAPAtcoJRKxJsn3yb0gw8+2PP4s88+S6dOnXjkkUfSjoeZAw8j7PyuCbPhgd/1YfJK0oTuRatWrRg4cCBdu3bN8ODs0KFD2tIa/beNOwfuZ0J37rvhhhvo3r17msNcVK655pq0+US9PLqFwRCNpDRwv/SiChJ3HdTrUrt27WjdunXqe5x2FOaeNm3acOihhzJmzJhQaQaZkgu9f7ZTljhLQv2C7/gJ9rKyMtavXx8YjjcbZWVl3HrrrakBif5urr322tjp5kLefh2l1A7AMbXNBp52TG2OuQ24CWgB/EOsiE3Tc803KRN6tjkWN6effjoLFy7MMIsGzYFHKVNYDdwPx1StO8H45ZuECb2qqirUdWVlZbz++uvMmTPHc97Ob4CSDxM6wG233casWbNSDjjnnntu9ofIQhIDIkPNOKgG4RY8cZ3Yst0T9Fx16tThgw8+4JhjjomUtleaXuXXr+vZM+dVvmnkooH74aTl1Rc2adIk7RmffPLJnPLSVyXVVLvO644NtgfqRNex0drni4GLk8wzKQGuBzPJRlAFDKOBhymTXwUJK8BXrlzJ1q1b04IrhMkrbsUM2pkpCnqDi+rEFmYJTDZLwRNPPMHYsWMB701PwpCEV78heQ3cjd9mJP/v//0/z9jWQRq4myQ18CiBaNxE1cD1PN5//322bt0aOc9sZclFgPu9gzBTCueddx6XX345I0aMiJ13rRbgNUFSJvQf/vCHvPLKK3Tq1Clwl6Go5UlaAw+roTZo0CC1u09FRQU7duzI8D73Sidqxezfvz9vv/12YqZiv+dLahlZNgFeVlbG/PnzPa0rYTECPBny7YV+3nnnpcW2dvCLZR9XgOc6Bx6Uzpo1a0KlH2cOvH79+okuk0pCgPsRdgovlwhwxWBZq3UCPCkzG8D//d//hbo3rjk3yjVRTehBAVJmzJjBgw8+yA033JA1zaid4tNPP83IkSP59a9/Hek+P9xz1A65OLFFXS6233775eRZWgwNvTaQzYnN63PQtWEG10G4BXg234uo+N1z0003MW3aNE9/nLCBRMJq4PkklznwbBTiWYpBA691vUk+nNiGDx/O+eef7xtJKFfC/Phh5qv1zxdddBFHHXUU9913X8Y93bt356677vJ9nlwEzl577cXf/va3rOFMwxJnDjyIICe2JNF/L6OBJ0NS02POss2o88ZuotRBv/oQhN8c+MCBA9m8eXNO4UfDTC/lm6TmwH/4wx+mYpAHzYEnTZzfNGlqnQaejxfp3kDETZQKGHWpSjb8hFFlZSVTpkyJlWYxaYxJmdAvueQS7r//fi699FIeeuih1PG4AVuyof/ORoDnnygaeL9+/VBK8d577+WUZxTNMc7vno++LGgOvKYEeNB7vP7661m0aFHGRi/6u5k5c2bqs/Pb56td65SVleXF/B+pDDWaex7IdyCXfJBLmfIhbJPwQk+KMCb0iy66KO0erzL/61//YsuWLfTo0aMgGrhOMQ2ISpmgjj7OHHiPHj2oW7cuN998c+LlcVNMbcqvDIWum2FM6Lfffrunt3g2wVlT0wGFptb1JjXxIrNVpgULFgRe61Vmd8QyP8J6oUfBLXBqssMJs8599OjRadYGPy903YnPK/0kMSb05AnaejWOF3qTJk2oqqpi0KBBscrjBAcJQ5zfPR/aXTFp4MXgxBaHsL44haDW9SbFMLp1o8f2zibAv/jiC0aOHMlVV10VKu18a+BlZWU1KnT8lpHp1KtXj6OOOirjujBr+fNlatM3kjAaeDJ4LeVySMILPSrt2rVj27Ztoa4tKyvj6aefZurUqZHzyacpXccI8HDom7TksqQvCXa7OfBiFPB6w9l///3Zf//9uffee0Pdmw9zsNvcVywauONBns10ma28hTCh33777axYsYLLLruMzZs3p44bAR6fIAGuU0itKGi3Mh0R4ayzzkp9rmmKQQPPZyCXfM6Bv/XWW7z44ospix4YAZ4YxWhCz0bcteGQH+3Obf6tSaHjLksSy/IKIcBbtmzJCy+8AMBzzz2XOm4EeHyKTQMvZYpJA3cG5McccwyTJ0+OlYabfGrgXbt2TQV1Mib0hMnWiLPtZhaHmvRCz8cceDEJcHfe119/PZC58YlOtvdZaJO2MaEnQzYB7vW5GMk15GsSeceNCJkkbg38tddei/zMUUNe5wvjxJYnpk2blva9SZMmLFmyhDVr1iSWhz7/mo18LiPLhwbu9b2QuPMeMWIEs2bN8oyO5YyKBw4cGDv9OBxyyCFAZuAfByPAkyGbAHfM2YXuvPNNoebAw04HJF2GMN78r7/+Oq+//nrotAtdB2pq0FjrTOjuyqDHr3b2pW3Xrl1i+T344IOe4Rf9CCvA45jQC+FRXWjcAk9E6N69u+e1U6dO5cUXX2Tw4MGBaSbd2F566SVeeOEF341P9PCTRoDHxy3AzzrrLP7zn/+kvl9++eUsWbIk0DoTBa/NdZKgGAbEXvWwTZs2/PGPf2TPPffk5z//ecHKEqY9+g3K3e8y6UAuq1evDhw4OoOeoBUS+aTWCfCgl33YYYclmtdee+2VSEUP06D9Rsc1od2NGTOGiRMnMn78+LznFaWza926NRdfnOjeOKFo1apVYL5GgCeD3raPOOIInn766VT9GDZsGJWVldxzzz2J5LVly5ZaPafuNwf+u9/9DoC5c+cyevTojGvyUYZ8aK9JObFli75Zt25dIPzui0lT63oTr/jEjz76KN26dWPkyJGJ5pVUAw8zH+UX2zzfc+CQ2cCGDh3Kf/7zH2bMmEHnzp158cUXE8nXi9og8HQBXpuFQr4JGpw3bdo00bwaNGiQ6MYdOjU5B+6QzQt95MiRrF+/Pm/56/nl8pw1PQfuCPCwywmTptZr4JWVlQwZMoQhQ4YklseIESMYMWIEt912W+R7486B+wnwQnhU+zWSAw88kHnz5uUlT4d8CPBCz1cZDTwZvAT4Lbfcwl577VUDpSkchZoDL/TgstQ3MwEjwBNHD6CxcePGvPyQN998M5dddhmtWrWKfG/cOfAwGni+hENNevXm0qn07NnT83ihhagR4MmgzzM6+xPcdNNNiebx6aefsmXLlkTTdFOsc+CFJhcN/Nprr2XSpEn0798/7bjT3xdKgDv9ck0J8Lz+iiIySETmisgCEfmdx3kRkXvs8zNFpFeuee6xxx68++67fPHFFzRq1CjX5HyJI7z9yEUDL4QJvSbJpaPp3bs3r732Gl999VXa8aTNrdmobSb0mmjXAIMHD+aAAw5g0aJF9OqVSJIZ9OzZk379+uUl7WKiGOphmM1M/OjXrx9btmyhZcuWaccdx8Pt27fnXsAQ1FoNXETKgfuA/wOWAh+KyASl1BfaZccDne2/w4B/2v9zotQaYFIm9GIYVSdNrh2N15aRhRbgTiOvDdRku27dujWfffZZrsmUDPm0fBWDAM+HE5vTtvM9f+9Qm53YDgUWKKUWKqW2AeOAU13XnAo8pizeB5qJSK2e0PKqrLk4sRVio4yaNKHn45ly2Uc5DrVJgGPadc5EFZ5JClu/PcZrgnwIcKdtF1qA15QGjlIqL3/AmcCD2vcLgHtd1/wX6K99nwz09kjrEmA6ML1Dhw6qFPnzn/+sADV58uSMcy+++KIC1L333ps6tnLlSgWk/latWuWZbnV1tWrTpo1q3759YmWdOXOmql+/vjr66KOVUkqNGzcuVY4RI0Yklk8YqqqqVOPGjdVBBx2UWJrr169X9evXVyeeeGJiaQaxc+dO1bp1a9W1a9fYaQDTVZ7aapS/JNu1qiVt+4YbblA33HCD57mHH35YnXvuuWnHZsyYkWpP48eP9013/fr1qlevXuqzzz5LrKyTJk1ShxxyiFq0aJFSSqm//vWvClDNmzdPLI+wrFy5Uh144IHqq6++SizNhQsXqj59+qjvvvsusTSDWLNmjerVq5eaM2dO7DRyadui8qRdichZwHFKqYvt7xcAhyqlfqVd8z/gj0qpt+3vk4FrlVIf+aXbu3dvNX369LyUOd9UVVX5atJe53SzjN99YDn3iEiijhubNm2isrIyNWLfunUrO3bsyKtfgR/bt2+nvLw8UW1827Zt1KlTp2CaSK6/kYh8pJTqnXCx4pQjL+0aSrttGwxxyaVt59MLfSnQXvveDlge45paQ5AQ9joXdL1OPnbecQvqfK2JDUM+QjwW2qydz92RCoxp1wZDkZDPOfAPgc4i0klE6gLnABNc10wAhtheq32B9UqpFXksk8FgyA3Trg2GIiFvaoFSaoeIXAFMAsqBMUqpWSIyzD4/GpgInAAsALYAQ/NVHoPBkDumXRsMxUNe7XpKqYlYjVk/Nlr7rIDL81kGg8GQLKZdGwzFQe1bOGwwGAwGw25A3rzQ84WIfAd8nXCyLYFVCadZLJhnK03cz7a3Uiq58H9FSB7a9u5UP2oTtfnZIMG2XXICPB+IyPRiWKKTD8yzlSa1+dkKRW1+h+bZSpckn8+Y0A0Gg8FgKEGMADcYDAaDoQQxAtzi/pouQB4xz1aa1OZnKxS1+R2aZytdEns+MwduMBgMBkMJYjRwg8FgMBhKECPADQaDwWAoQWqlABeRMSLyrYh87nHuGhFRItJSO/b/RGSBiMwVkeO044eIyGf2uXukCDbR9Xs2EfmVXf5ZIvJn7XhJP5uIHCQi74vIpyIyXUQO1c6V0rO1F5E3RGS2/RsNt4/vISKvish8+39z7Z6Seb5CYdq2adtF+Gw117bj7kNazH/AkUAv4HPX8fZYMZy/Blrax7oDM4B6QCfgS6DcPjcN6AcI8BJwfDE+GzAQeA2oZ3/fsxY92ytO2bDia08p0WfbC+hlf24MzLOf4c/A7+zjvwNGluLz1WQdsY+btl16z2bado7PVys1cKXUm8Aaj1N/Ba4FdM+9U4FxSqkqpdQirA0YDhWRvYAmSqn3lPVmHwNOy2/Js+PzbJcCf1JKVdnXfGsfrw3PpoAm9uem7NqWstSebYVS6mP780ZgNtAW6zketS97lF1lLannKxSmbZu2XYTPVmNtu1YKcC9E5BRgmVJqhutUW2CJ9n2pfayt/dl9vBjpAhwhIh+IyFQR6WMfrw3PdiUwSkSWAH8B/p99vGSfTUQ6AgcDHwCtlb3Vpv1/T/uykn2+QmPaNlCaz3Ylpm1DDs+3WwhwEakErgdu8jrtcUwFHC9GKoDmQF/gt8DT9txJbXi2S4GrlFLtgauAh+zjJflsItIIeAa4Uim1IehSj2NF/3yFxrTtNErt2Uzb3kWs59stBDiwL9ZcwwwR+QpoB3wsIj/AGuW0165th2XKWWp/dh8vRpYCzyqLaUA1VsD82vBsFwLP2p//AziOLiX3bCJSB6uBP6mUcp7pG9t0hv3fMZGW3PPVEKZtW5Tis5m2bRH7+XYLAa6U+kwptadSqqNSqiPWi+qllFoJTADOEZF6ItIJ6AxMs00eG0Wkrz3iHQK8UFPPkIXngaMBRKQLUBdrt5va8GzLgaPsz0cD8+3PJfVsdlkeAmYrpe7STk3A6siw/7+gHS+Z56spTNsu6WczbTvX50vSG69Y/oCxwApgO1aD/rnr/FfYnqr29+uxPAHnonn9Ab2Bz+1z92JHriu2Z8Nq1E/YZf0YOLoWPVt/4CMsr80PgENK9Nn6Y5nDZgKf2n8nAC2AyVid12Rgj1J8vpqsI67zpm2XzrOZtp3j85lQqgaDwWAwlCC7hQndYDAYDIbahhHgBoPBYDCUIEaAGwwGg8FQghgBbjAYDAZDCWIEuMFgMBgMJYgR4Ls5YvG2iByvHTtbRF6uyXIZDIbcMG279mOWkRkQkQOwIiEdDJRjrWMcpJT6MkZa5UqpncmW0GAwxMG07dqNEeAGAMTaZ3gz0ND+vzfwQ6xYzCOUUi/Ygfoft68BuEIp9a6IDABuxgrUcJBSqnthS28wGPwwbbv2YgS4AQARaYgV6Wkb8F9gllLqCRFphrVH7cFY0YaqlVJbRaQzMFYp1dtu5P8DDlDW9ngGg6FIMG279lJR0wUwFAdKqc0i8m9gE3A2cLKIXGOfrg90wIpdfK+IHATsxNrq0GGaaeAGQ/Fh2nbtxQhwg061/SfAGUqpufpJERkBfAP0xHKA3Kqd3lygMhoMhuiYtl0LMV7oBi8mAb+yd8RBRA62jzcFViilqoELsJxiDAZD6WDadi3CCHCDF7cBdYCZIvK5/R3gH8CFIvI+lonNjMwNhtLCtO1ahHFiMxgMBoOhBDEauMFgMBgMJYgR4AaDwWAwlCBGgBsMBoPBUIIYAW4wGAwGQwliBLjBYDAYDCWIEeAGg8FgMJQgRoAbDAaDwVCC/H/6tnU9rfEDRwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABtHElEQVR4nO2dd7gVxfnHP++9NJEqRRREFCuiEAUssUcNahRLNKLR2GMXS9TY8KcxtmjsGiMIdk3sRo0VS7ABKgpipYggiApyabfN74/dOczZs/WcPeXeO5/nuc89Z8vsnN2d+c77zjszopTCYrFYLBZL06Kq3BmwWCwWi8WSHCvgFovFYrE0QayAWywWi8XSBLECbrFYLBZLE8QKuMVisVgsTRAr4BaLxWKxNEGsgFuKhoisLSJviMhSEbleRC4UkbvLna8oRGSciPzF/byTiHxW7jxZmh8iokRko3Lnww8RuUxE7k/7XBHZVUTmFpa7dBGRviJSIyLVAfvzvhc+aaX6zFukgIvI4SIyyX1o80XkeRHZ0XPM0e7NPtSzfVd3++Oe7YPc7ROMbf1E5DURWS4iM0RkD885PUTkQRFZLCI/icgDxr6/icgXrvjNEJGjUr0JpeFEYBHQSSl1jlLqr0qp4yFzb5SItAo6Oc2Cky9KqTeVUpuWMw8tEVtGc35PRYlec0IpNUcp1UEp1VDuvCSlxQm4iJwN3Aj8FVgb6AvcDozwHPoH4Ef3v5fvgR1EpJvn+M89xz0EfAB0Ay4C/i0iPYz9jwPfAesDPYG/GfuWAfsBnd20bxKRHWL9yDwJE9M8WR+YruxsQZYE2DKanCKU3SZHkAXdrFFKtZg/nIJWAxwScdz6QCNwMFAPrG3s2xWYC9wJnOpuq3a3XQpMcLdtAqwCOhrnvgmc5H7eC5gFVMfM+9PAOSH7RwAfAj8DXwHD3e2zgD2M4y4D7nc/9wMUcBwwB3gDeAE4zZP2R8BB7ufNgJdwKs7PgEMD8jMOqANq3Xu+h+fac9xr17h/23vOH+6eW+fu/8jdvq57L34EvgROCLkn+wDTgaXAt8C5nmd4IY6HYBZwhCfvfzGPNfbNAs4FpgJLgEeAdsb+37jPYTEwEdiq3O99U/qjeZfRPwHzgXnAse77v5G7ry1O42AOsMDN+xrAmsAK97fqsrKuW5b+DdyPU+aPd+/dGPca3wJ/0XkHjgbecq/xEzAT2NvI2wbA625ZeQm4Fbesuvu3c9/nxTj1wa5xz/XcA/1scsoeMNT97a2M4w8GPgxIaxxwB/AcTmNqD/fePIbTgJsJnGEcPwyY5N6vBcAN7vZ+7rNoFfV78NQH7rZZuHWse4233fs03z23jXFs5pmn8dfSLPDtgXbAExHHHQVMUko9BnwKHOFzzL3ucQC/BqbhFEzNFsDXSqmlxraP3O3gFIjPgPEi8oOIvC8iu/hlRkTWwHm5pwXsH+bm509AF2BnnJcqLrsAm7u/40FgpJH2AJzK8j8isibOC/0gjjUyErhdRLbwJqiUOhp4ALhWOe6plz2H7Oz+7+Luf9tz/gs4Ftgj7v5B7q6HcCqAdYHfAn8VkV8F/K4xwB+VUh2BgcCrxr5eQHegN471dJeIxHWVH4rTwNgA2AqnckREtgbGAn/Esej+ATwtIm1jpmtpvmV0OE7Db09gYxyxMbkGp0ExGNgI5728VCm1DNgbmOeWgw5KKf0bRuCIeBecsjYepzGzEfALnAbI8cY1tnV/T3fgWmCMiIi770FgsrvvCgyvhoj0Bv6D0yBYy/0djxmeisBzA/Ate0qp94Ef3Huk+T1wX0hahwNXAh1xGhjP4DzD3sCvgFEi8mv32JuAm5RSnYD+wKMBaSb9PSYNwFnuudu7eTglwfmJaGkC3g1YpJSqjzjuKJyHiPs/5wEqpSYCa7mV/lE4lYVJBxwLzWQJzosG0AengL2G80JfDzwlIt198nMnzkv534D8HgeMVUq9pJRqVEp9q5SaEfL7vFymlFqmlFqBU3EOFpH13X1HAI8rpVbhWJezlFL3KKXqlVJTcFq7v01wrbwRkfWAHYHzlVIrlVIfAncDRwacUgcMEJFOSqmf3PyaXKKUWqWUeh2ngjo0NwlfblZKzVNK/YhTYQx2t58A/EMp9a5SqkEpNR7Hwtsu7m+0NNsyeihwj1LqE1eUL9M7XBE9AThLKfWj26D4K3BYQFqat5VSTyqlGoFOOEI/yi3LC4G/e9KYrZT6p3L6escD6wBri0hfnMaHLg9v4LzXmt8DzymlnnPrl5dwLNl9YpwbRFDZG+9eDxFZi9VGRRBPKaX+596DLYEeSqnLlVK1SqmvgX8a96AO2EhEuiulapRS73gTK+D3AKCUmqyUesetH2fhNOJ9G31p0NIE/Aege0Tg1C9xLKuH3U0PAluKyGCfw+8DTgN2I9diqMEpVCadcNwy4LjFZimlxiil6pRSDwPfAL/05Oc6HOvxUOX6YHxYD8dtni/f6A9u5fEfVr/0h+G07sGxxLd1A3oWi8hiHIHvVcC1k7AuoCs4zWyc1rYfB+O40WeLyOsisr2x7ye3IjXTWTdmPr4zPi/HEQJw7s85nvuzXoJ0Lc23jK6LUc5w3jdND6A9MNl4b15wt4dhprc+0BqYb6TxDxxPmSbz3iqllrsfO7h58ysPZtqHeN7rHXEaAFHn+hFW9u4H9hORDjii/qZSan5IWt57sK4nnxfixFGAY+hsAsxwvSm/8Ukvn9+TQUQ2EZFnReQ7EfkZpyHm1+BLhZYm4G8DK4EDQo75AyDAhyLyHfCuu90vwvQ+HPfIc0aB0EwDNhSRjsa2Qax2sU3F6Q8JRET+D6dVvZdS6ueQQ7/BcQn5sQynctD4ia03Hw8BI13BWwPHAtHXeV0p1cX466CUOjnsdwQQJ7DNe8w8HIvKvKd9cfr7ck9W6n2l1AicSuxJsl1mXd0uATMd072aD98AV3ruT3ul1EMFptuSaK5ldD5OY07T1/i8CKexsIXx3nRWSumGYVAezO3f4Hh7uhtpdFJK5XRvBeTNrzyYad/nea/XVEpdHeNcPwLLnlLqW5x34EAcz1qY+xxy78FMTz47KqX2cdP+Qik1Eqc+uAYnYHFNT3pRvyerPnUD58yG1h3ADGBj11V/Ic67WhRalIArpZbgBLHcJiIHiEh7EWktInuLyLUi0g6n1XcijltU/50OHOG1CpRSM3HcIxf5XOtznGCm0SLSTkQOxOkvfcw95AmcF+UPIlItIr/FsST/ByAif8bp39lTKfVDxE8bAxwjIr8SkSoR6S0im7n7PgQOc3/nEOK5u5/Dac1ejtMH3ehufxbYRESOdNNrLSJDRWTzGGl6+R4nMGfDkGMWAP1EpApAKfUNTj/XVe493QqnVf2A90QRaSMiR4hIZ6VUHU7gineYyP+5x+2E0z3wrzx+h8k/gZNEZFtxWFNE9vUIhCWEZlxGHwWOFpEBItIeGG3koxHn3fm7iPR00+4tq/tuFwDdRKRzyH2bD7wIXC8indx6oL8E9Nl7zp2N4xLX5WFHnOh6jbaKf+3eh3biDG3rE+PcIMLK3r3AeTgu8ahYCJP3gJ9F5HwRWcPN60ARGQogIr8XkR7u/V7snpNVJ8T4PZ8D7dxy3Rq4GCcAUdMRp66pcevgfIyb+KgKiDwt9R+O23cSTmvqOxyX8Q447uL5QGvP8e1wWsm/wScK0TjueNwIV7U6unECTuv6M4xocHf/TsDHOK68ScBOxj6F06KuMf4uDPlNB+JYDEtxorN/7W7fEMdCqXF/583kRqG38klvjLtvqGf7pm463+O4O18FBgfkaRxuNLf7/TKyI1svd9NZDGznc343nMjZn4Ap7rY+OA2JH3G6DU4KuHYbHDfkTzgF6n1gR3ffrjiBcBe5z3UOcKRfvr3Pm5Cofvf7cPdai9136V8YUc72r0WX0Qvc3+IXhd4Ox936tfu+fkp2BPVYt7wtZnUU+v2e9DvjWIBzcfryPwAOc/cdDbzlOd68/oY4Efg1+Eehb4sTmf0jTpn9D9A3zrmea+5KSNlzj2nv3oPxEe/IOIz6xd22Lo4H8Tucsv8OqyPE7wcWuvmcBhxgvANmFHrUvTga5x1ciBPQN8u4xs44FniNm8bl5n0373kaf+ImarG0GERkV5wC2afMWbFYLD6IyFc4I0i8o1csBi3KhW6xWCyWykZEDsaxVF+NOral0+Jn77FYLBZLZSDONLcDcNzqjRGHt3isC91isVgsliaIdaFbLBaLxdIEaXIu9O7du6t+/fqVOxsWS0mYPHnyIqVU1IQezQJbti0tiTTKdpMT8H79+jFp0qRyZ8NiKQkiEnsWqKaOLduWlkQaZdu60C0WSyJEZD1x1tD+VESmiciZPseIiNwsIl+KyFRxFnqxWCwp0uQscIvFUnbqcZbNnOLOMjdZRF5SSk03jtkbZ9WtjXEmAbnD/W+xWFLCWuAWiyURSqn5yl3ZTTkLy3xK7oIyI4B7lcM7QBcRWafEWbVYmjVWwC0WS96ISD+ctaff9ezqTfZKUXPxWTVORE4UkUkiMun7778vWj4tluaIFfAyMH36dIYMGcLLL9tZAi1NF3GWfHwMZw1q70pcfisw5Uw6oZS6Syk1RCk1pEePygq2X7ZsGRdeeCGrVq0qd1YsFl+sgJeBI444gsmTJ7Pnnnsyb16hK1iuZtasWTz11FOppWexBOGuxPQY8IBS6nGfQ+aSvXxmHwpfrrWkvPXWW1x11VU2Mt5SsVgBLwNLly7NfB44cGBq6W6wwQYccMABvPTSS6mlabF4ERHBWa3uU6XUDQGHPQ0c5UajbwcsUc6Sl02GxkZnJs/6+voy58Ri8ccKeJn56aefUk9z6tSpqadpsRj8EjgS2F1EPnT/9hGRk0TkJPeY53CWxvwSZ63rU8qU17zJR8BHjRpF69ati5UliyULO4ysGWIrEEsxUUq9hX8ft3mMAk4tTY6KQz4CftNNNxUrOxZLDtYCT4H6+noqaVGYVq3Sa5cppawL0dIi0QLe0NCQ+FwRscFvlqJjBbxAVqxYQffu3dlnn33KnZUMaVrgBxxwAF27dqWmpia1NC2WpkChfeC2zFiKjRXwAnn//fdZsmQJL7zwQuxzim2tpyngTz/9NDU1Nfzvf/9LLU2LpSlQqIBXVdnq1VJc7BtWIJVYSKNc6MuWLaO2tjbVNC2W5oaNQrdUOpWnPk2MShTwMAt81apVdOjQgXXXXTdRmlbALS2NQgU8n75ziyUJlac+TYymJuB64pgffvghUZpWwC3lZtq0aUyYMKFk1ytUwPX5abBkyRIbFJcnU6dO5eOPPy53NoqCrZULpFIE3OxXDxPbfCsVK+CWcqMnPSrViI9CotDN89OgS5cu7Lrrrrz22muppdlSGDRoEOD/3tx0003MmDGDO+64o9TZSoXKUJ8mTKUIeNw+7XwrIyvglpbEyy+/zMqVK4HKsMCBVL0PSil22203nnnmmdTSrDRGjRrF5ptvHnnMnXfeWaIcpY+tlQskHwEvhgVhCnhYxWEF3GIJ5/3332fPPfeka9euQPPsA6+vr2fChAm89dZb1NXVlTs7RaElTKpTGeZjE8aZFtqhnJO5mP1jaQm4eWyleBoslmKjlzXV0xyX2wJP25IHMqJtG+ZNm6LWyiIyXEQ+E5EvReQCn/2dReQZEflIRKaJyDHFzE+xKUZBi0tcCzxJHs2WeSXNNGdp2Tz00EMlvV65BTzpkM8kadppl5s2RRNwEakGbgP2BgYAI0VkgOewU4HpSqlBwK7A9SLSplh5KgZmIS3neNFiWOBWwC2VyOGHH17U9L3verld6MWIPrcWePOgmBb4MOBLpdTXSqla4GFghOcYBXR0lyfsAPwINKlZE9IU8P/+97/MmjUrr3NXrFiR+TxlypTA4/K1wMvpXbBY0mTp0qX8/PPPgfu9Al7uKPQkAr5gwYJYx1kBLw6LFy/m3XffLdn1iingvYFvjO9z3W0mtwKbA/OAj4EzlVJNSinyEXA/a/aNN95g+PDhbLTRRnnlw1xj/Jprrgk8zrrQLS2dLl260Llz59jHl9uFHlfA//e//9GrVy8eeeSRyGO1C90KeLrss88+bLfddiULYCymgPstN+hVgV8DHwLrAoOBW0WkU05CIieKyCQRmaQDTCqBQw45hP333z/zvRALXM+lnu+DD7MoTKwL3dIcKOR9TCqsTcWFPnnyZADeeuutyGOtBV4c3n77baB0HstiCvhcYD3jex8cS9vkGOBx5fAlMBPYzJuQUuoupdQQpdSQHj16FC3DSVBK8e9//5uFCxdmthUi4Pm6zjWmBR6GWalEVYJWwC2VSjHfx7T6wNO2wKNGguiyXV1dHZlmSxTwd955p2TXag4W+PvAxiKygRuYdhjwtOeYOcCvAERkbWBT4Osi5ik1/MZOFuJC//bbbwvKj1fAgyo4M49RFYwVcEulUswK0pt2pQh4VMS4FfBwtt9+ex5//PGSXKvJC7hSqh44Dfgv8CnwqFJqmoicJCInuYddAewgIh8DrwDnK6UWFStPaVKIgPuxfPnyQrKTl4BbC9zSVCmmi9JbtvOtjPV577zzDhtttFHsbi4vWsDbtAkfoKPvSRwBb6l94EEBvmnXb01ewAGUUs8ppTZRSvVXSl3pbrtTKXWn+3meUmovpdSWSqmBSqn7i5mfNPEbm1mIgPv1cy1fvpy//OUvfPrpp5Hnp2WBz5w5k8svv5wlS5ZYAbdULKUU8EIt8NNPP52vvvqKadOm5ZVOMS3wljYOXE+P6yVtwW0WAt6cSdsC93uxrr76ai655BIGDPAOn89l2bJlWd+DKrgoC3z77bdn9OjRnH322bEEPG7fu8WSJsWsINMW8K+/dnoFu3Tpklc61oWeHtdffz233nprzva05/CwAl7hpG2B+wl4kha7Nz9xBNzvGD2OdMqUKZEC/uKLL9KpUycuvvji2Pm0WNKgWBb4xIkTGT9+fNa2QqPQf/zxRyD/POvuNW8jPeh6caY9bqkCDo5HxEu+z/jzzz/nxRdfzNluBbzCSdsCNydi0SQpXN78BFUWcd3i1dXV3HLLLaHHXnbZZQBceeWVsfNZqXz88ceceuqpLFqUG4Ixc+ZMTj31VGbPnl2GnFn8KFYF+ctf/jJnyc60gtjy7YbSfec1NTXcc889gcclscCj+sDr6ury7rNviuT7Pm266ab8+te/Ti29pFgBz5NSWOBJBNybn0Kj0BcsWMDDDz8ceqyZv1mzZjXJfnKlFLNmzeIXv/gFt99+O6NGjco55je/+Q233347Bx54YOkzaPGllDMDpiXg+ebZFNKXXnop8nppuNBHjhyZaLKbpk6SZ/zxxx8jIrz66quBx1gBr3BK0QeeJMAkrgUeNwp97ty5Wd/9jjUrig022IDrr78+Vl4riRtuuIENNtggU+BmzJiRc8z06dMBmDp1aknzZgmmlAJeaBS6Jt8G7pIlSzKfzdUPg66Xhgv9scceA+CHH34oeIhrUyCo7r7hhhuyDBlYPVFO2Ix3VsArnEIscL+C7HduIRZ4kj7w+vp6jj766NAXMkrAAS6//PLY+a0URo8eXe4sWPKglGttF8OFPmbMGHr06BFL1E0LPI6ApzmMrHv37vTp0ycyvUomToMm6Bmfc845jBw5MmvbGmusAQRHtEPzmImtSbNq1Sree++9WH3JmjQiGdu1a5f5XIw+cD8L/NFHH2X8+PEcdthhgen7VTTeghGn4qg0vM8srIJMq4tAKcWkSZMKHvtfLkRkrIgsFJFPAvbvKiJLRORD9+/StPPQ1F3oJ598MosWLYq1VGhaAr7ffvsxfPhwoOUOIwsiyTPWdXSYgFsLvMwceeSRbLvtttxwww2++0sh4EkKVyF94IsXL45M3y89bwOjKUa0JnlmaQn4gw8+yNChQ9l7771TSa8MjAOGRxzzplJqsPuXimtmvfVWz8ycZgW5ZMkSjjjiiMBykNZc6Ob7o8tKnHnOk65zECTgzz77LP/973+zrmsF3MEKeDPjX//6FwBjx47N2ffRRx+x00475WwvxIWuMWdbKpUFfsEFF0Smr5RiypQp7LTTTkyaNAnIrSiaooCX0hWr0X1qb7zxRsmvnQZKqTdwlv4t9XUzn9O0wG+88UYefPDBwMZ6IRZ4UJ51WYljgZsjVMIs8LhBbAsXLuSPf/wjkG0w5Mt3333HqaeeGuu3lArzvscxZpLUA3Fc6FbAKwS//pMgyylOQa+pqeGbb77J2ma+YGaLuBh94OZxuoKJMxmLUoqjjjqKt956ix122AFoHgKehDRd6C2A7UXkIxF5XkS2CDooyUqDDQ0NmfKRpoBrUYxT0SehsbExq7z5lfM4FriZRhpBbOb8Em3bto28fhSnnXYat99+O88991zW9rq6OiZOnFhw+vkQ5/0w41/8nnFQg0QbWX5DfzVWwCsEv8Lw3Xff+R4bp6AfeeSRoeeZBbQYUehmv2tjY2PsflilVCaf+lpeAW+KfeDloJT9t2ViCrC+UmoQcAvwZNCBSVYabGhoyFSeaVaQYaJYyLUaGhpyypsmiQvdLNtpBLGde+65mc9B86tH3RMTbYl6r3vRRRfxy1/+kg8++CB2WgDvvfce//vf/xKd48W810ENs9dffz3z2a/urqmpCb2GtcCbAH4vciEt9SeffDJnm1mI/Qp5HOL2gZutRqUUP/30U6z0lVKsv/76WduaQx+4l0mTJnHaaacV9RrNXcCVUj8rpWrcz88BrUWke6HpFssC18Qt19dffz0zZ87MOc4UBMhtIFeKBW4u6KHTa2hoyMpLksZ4UEDcxx9/DPgbPOPGjfNdQvnBBx9k2223Zccdd4x9fT/iCGiHDh0yn/3q7qCZ7/RztALeBIgzBEFjtpQnTZrEM888w8svvxzZ12kWKL9Al7DzdIMgXws8TgCbztfaa6+dtS2pC/3RRx/lk098A5crittuu62o6Td3F7qI9BJXGURkGE4980Oh6TY2NmZEIt8K0m964iQu9O+//55zzz2XXXfdlTPOOCNr5r5dd901J79RjfOkAh5WH+n0zd/x3nvvsd5662WNJTfRx+611155j4DR98d7js6rty6qqanhmGOO8e2KfP/992NfV7Nq1aqcQL+oBt53332XCegD5zc8++yz3HXXXZltQQKu064EF3rTN5mKTBIBNwv60KFDs/aFVdq77LKL73FmgVBK5bS+t9lmGwBmz54duw/caxHEtcAbGxtZc801s7YlEfCJEyfyu9/9LnPdSsfvfqeVXlO3wEXkIWBXoLuIzAVGA63BWW0Q+C1wsojUAyuAw1QKD72hoSETQJTPPVy8eDEDBw7M2Z5EwPXnOXPmcMstt1BTU+Mb6KrzaAp0vlHoSS1w895ceumlzJ07l4022sj3HJ0nPatYQ0MD1dXVeVng3nOC3nc9N7yfizqfPvk99tiDt956K1GQ48svv5z1vaGhgf322w+AE088EQhe4llfpxIE3FrgEeQr4PkS9OK9++67Wd/NQr1ixYpYFvjSpUuzWphvvPEGO++8c6x8KaWyWuiNjY2JxoHnu5RiuejUqVPivrsgXn/9dTp16sS///1voOkLuFJqpFJqHaVUa6VUH6XUGM8ywbcqpbZQSg1SSm2nlEolkqlQF/pWW23luz2JgHuvGyWo3qBRTZIo9KQC7vc7/Ob49ztWB9jmY4HvvvvuWdu9Aj5lyhREJDOTWdeuXXPSMvvk4z5jnZ5J1Llez6Nf3e03VBhW37Ow+t4KeJ4sXLiQq666ioULF6aSnilS48aNC52LOA0BD2pFvvPOO1nHzZkzJyuPYRb4kiVLuOqqq7j77ruzjjn88MMT5cvMW01NTaI+8KDCUKnU1NRw++23F5TG/fffz/PPP8/vfvc7ampqOOSQQ4Cm4YGoRMwgtpkzZybujvGO/ohLmICHBZrefPPNWf2kpeoD13n84YcfstzEfug8dezYEVhdr+RjgXvRdae+hjYe9BBdPwE3LfBC6tMoAfd6HsME3HvPzRksg7Au9Dw57LDDeO2113jppZdCJ5uPi354s2bN4phjjgk9NuyB+lmsQcf5ffa+cOZc5Y2NjTmFyKwszj777EA3X1yUUln5Wbp0aSIXepiAr1ixgnbt2qXqsk6D/v37A847ECW6K1asyLh3wXET6hEH3ujqpm6BlwvTAh8xYgSQTmMoygI3K2PvMWECPnHixCxXbbFd6Lr+0deJM3e/KeBLly7N9CXnG/tjYgq4Uop//OMfwOqx53EEPChK3o/6+vrMfY0qY9qNb57rJWi+eH3Pwuo071oSxaLZWeATJkwAyFkSMF/0S/jDD9ExOGm0yMxCbp7jdfmYY7e9rjoIt97zQSmVlZ+0BHzevHm0b9+egw46qOA8pk3c/rizzz6b9u3bM3ny5My2INep33dLPMwgtjQxI7H9WLVqFccdd5zv1MpR+QlqkBfDAtfWfpIZFvWx7du3B1bXK/lOItXQ0MBFF13EFltskeVCN++t7lvu1q1bTlqFWOBmn3RUGfPOOeB3Lb3NW8/FcaH7DRcuBs1OwM2bnUbEsxbwONZh2gIeZoGbEZLeYBnvuUla02H58lrgXmskzO1mFvIvvvgi8/nxxx8H/IfXlRv9PKOe/d///ves/5BdAYY9G0t8TAtc88wzzxTcdaWfb1B/9IwZMxg7diznnHNOzrWiLEQzOjqJBV5XV5c5Pq6AawHT71dQ5LmJvoYeUqXzm8SFbt6TFStW8Ne//pXp06dnWeBm/Td79mwgfQEPGnPvhzfCPIkFrtM267RydYs1OwE3xWq33XZLLb04Ivjzzz/ntOw0cQU8qMXubU2bL2tDQ0POmMRiCLj5G5YtW5bzm+Ja4GbgXBp5KxZJ++3NcaXeeAET2weeHP0+ewV8//33j7WMbdg916IYJRgbb7xxzjF+Fvgpp5yS+WyWW7NMaqH65z//mXP+ihUraNOmTWZ1v7hTlOo6QP/WKAFff/31M8fqESZawPO1wE0r2BxGZtYVX3/9dVY+TczrFtMC90aQX3vttTnHRLnQvbERacRAJaVya888MVuOQZGXSdCFO44FPnr0aPr06eM7PKLYFrhXwM10imGBewslxBdwc2KHSuv3NgkKYglCBwJBeAViLfDkhAWPLliwIPL8e+65J2ebV0DGjBkTmoaIxBLw7t1Xz1ljllvzer179wb8RfbLL78E4KGHHgLiz8RmutAXLVrE22+/HXhsu3btqKqqyuRJx2+kYYF78+qtK7Sb3q8cmMcV0wL3DhHzi2SPEnBvXR02rKxYFFXARWS4iHwmIl+KiO+KGe7Sgx+KyDQRed3vmCSYL14awpU0jdra2oyLyMRPwK+++uqcbeaLZ57jtQZNAa+rqwvtAy+GBd7Q0JBTwMIEPMiKCMvbuHHjOOOMM8pmsdbV1bFy5crYjS/TArcCni6tW7ema9euDB48GMh+17wTDPnhV0Hr56qFJqo/ur6+PpYL3RT1IAtcf/abh0HPULbBBhsA8VzoL7/8cmaRocbGRrbYYgseeeSRwN+ig0Z12dL5yUfAoyxwcxpmk7QF/L777uP+++8PTNskbBY1TZQL3butHMsDF03ARaQauA3YGxgAjBSRAZ5jugC3A/srpbYADin0uuaL16tXr0KTy7yESV4mP7HyE4Hzzz8/E+msCbLAvSJmCrjfi2Oem8Yc5XEs8Lh94Pr8Dz74wLcwfPXVVyxatIhjjjmGW265xXc89hdffMGrr75a1BWQ6urqGD9+fOzjzYluwhod1oWenN13350ff/yRQw89FMguj2uttVbk+aZVrNHvXtwGlZ+A+1ng5rtuCrhf2fYTcB3B3KdPnxzXrFfAP/roI8aPH5+x1vV1oobRtm3bNkvAdVnWdUkaFrhZd/rVf37lIK6ANzQ05Jx/9dVXZ4LHklrgfkQFsXm3NSsBB4YBXyqlvlZK1QIPAyM8xxwOPK6UmgOglCp48LZ5s3VkZSHE7R8z8ZuCL8iK8+YxHwH3u17aFrhXsJO60L3WzVVXXcXWW2+dM+/4ggUL2GijjTIuRr90582bxyabbMKvfvWrokZ71tXVBU6n6Ie1wIuPX/mOcz/DBDyuh8VPiPws4r59+zJ8uLNcuinQft61JUuW+E41Cs775G34esvy4MGDOfroo7NGycS5H61bt85yoXsbM/la4OboGLPu9LvHhVjgrVq14phjjgn8rVH3IGqhEgieYc5PwJujC703YM6cMNfdZrIJ0FVEJojIZBE5yi+hJEsOmjc737VudWQ05GeB+7XEgiqJTp06ZX0PcqEntcDT6gM3x8iaeauvr89x0YUJuDePN998M5Bb0LSFZVrW3uFc06dPz3x+9NFHI39DvtTV1XHZZZdlbZs8eTJ77LFHZoSD+V6Y48DDrGwr4PljvsubbropEC/Y0M9S1uUrbtn2s8D9ynXr1q154okngGgLXCmV0w+uxaVt27Y5rt4gF/pTTz2Vk3YYbdq0QURyGjH6ez4zsUH2Smf6WdXV1cV2oZvbop7r+PHjA13hUfcgzhLKSV3ocYYap00xBdzvTfPWaq2AbYB9gV8Dl4jIJjknJVhy0Czg+Qh4bW0tBx98cE56aQn4hhtumLXdO5lBkAXuFfZnnnkm893PSjRdaIUIuLZyvH3gfuv8hi0B6L0nQQLnt/CLt5LM57nW1dXxwgsvJLKof/7555yCvttuu/HKK69k5k0OanVbC7w4mO+ybjDFEXC//u04M2qZ1NfX58wv4SfgVVVVGRd1UB+4eZ53IQ79jvoFp8YJqIzTRaMF3OtCj+ONmDZtWlbgoHn/33vvvcxnU8DTtsA1QW7rqN9RiIAHudALnbkxH4op4HOB9YzvfYB5Pse8oJRappRaBLwBDCrkoqYFns/E+BdffHHW93wEPMyFrsc+agHs0qVL1nFBom2+NLfddhvz58/PfPdzB+21116Zz4X0getK0q8P3Mv8+fMDJ9CJK+B+eK+Vj4Bfdtll7L333hx99NGxz5k3z/u6ri74uoEUNBbUWuDFwa98xxFwv1iJpAL++uuvc8kll2Rt8xOKvn37IiJ06NAhsAyHlSVdnv3csnEE/LPPPos8pnXr1r5BbI2NjUybNo2PPvoo6/i//e1vgBOfMnDgwMyCH0qpwDgUnddiCriua71LHUeVsTjvTBIBb2xszEtvCqWYAv4+sLGIbCAibYDDgKc9xzwF7CQirUSkPbAt8GkhFy1UwL3zhecj4L///e9ztnnddTpvXgEPmonN3K7nEtZEBU8UMlQryAIPurdPPfUUSil++9vfssUWW2QCcrx5TCJi3mPz8SjoYUR6QZE4fPvtt5HHmJVX3NWQTGvw008Let1bHH4etjhl088CT+pC9xvyZT7njh07MnTo0Mw8B3HLtvdd0aLU0NCQl4A/8MADkccEWeCNjY2+Q+7+9Kc/AatnpHz6aacqDxPCqCC27777DhHJmq9dp6vPiyJoVjfvPTVjaqK45pprsq4f14Xe0NBA586dY18nDYom4EqpeuA04L84ovyoUmqaiJwkIie5x3wKvABMBd4D7lZKFTR9mvnQ86novUKTTxCbH8uWLeO+++7LjIHWDY24LnRze9iQMj8KcaEHWeAffvih7/GzZ8+mpqaGxx57jOnTp2eG73jvq3cuYn0Nsx9Z4y0wpVoowCvgZpS5aV1owoIOTUy36Mknn1xwPlsSfgJeiAX+8ccfM2XKlLzz421k77TTTpnv+XjXYLUFno+Ax22sewXc7AsPC/71WqVhxkNUH7he+/vGG28EnHgBsxsuiYCbczBAbp1hxs1EccEFF2TyDfGD2BoaGujRowd/+MMf6Nu3b+zrFUJRFzNRSj0HPOfZdqfn+3XAdWld06wc86novS31fCxwPy655JKs1qUuAN4WW5xC7q2MoizwsLxfeumlmRmf/AiywM0+eJNvv/02K3/e4SlR+QwqHCb5PNd8hm55+ybNlrjf9Jv5WODlmL2pKWOKdZs2baiqqiqoDzxoidG4NDQ08PHHH/PBBx9kLaYB+TXOIduFnrQPPM7CO5DrQjct8DAB1++7rhd1l9Jxxx2XMxFOVB+4Rt8L729N4kKPEnBvsHAckgj4m2++yfLlyzNrqVfUamQi0gM4AehnnqOUOrY42cofP/EoBF0gC61on3suqx2TSdccegTx3GxeAdcv2g477OAbXBY2Vtr74nsJssCDWLVqVc7iBhBPwM35n03KJeBe/FyoSfrAdeVrVlT5jpRoqZjvUXV1Na1atYpVNsP6wAuhoaEh0who1apVqIDHHWGif2M+FnhVVVXsKHRzGJkp4GHdOvp91+KsZ7vcd999eeGFF7K8VuaUo2FlVu/zNrKCnqt5v/S98tajhT7bKVOmRC4nanLggQcCsPnmm5dUwOP6Vp8COgMvA/8x/iqOYcOGZT4nvYl+lW5aFrjXja0LuumWNfPx008/MW7cON+8eS0OnTe/tCB8hqmoxRiCLPAg6uvrsypLnbc40d91dXWRgS1+3+NQrMlTkljg+h2wAp4/5nvUqlUrWrdunbcFnkYl6w26yscCNz9feumlmUa4n4B//vnnofmJ213mHUZmzsR27733+p6jlMoRNT2st0ePHjkiqu9NkAtdo6/tbeQHnWPer7gu9KRss802mcaIt+4Iq0sq0gIH2iulzi9qTlLCfIGT3kQ/6zVppGoQQUtvBgm4XjvX3KYJEvCgwhtmgUcth2gKeJxCUV9fn7PQCsSfOCFqbKi+RlK8XRBJ1hkOIx8L3BSTckSuNmXMBYqqq6tjC3gxLXATs5yHiUqQBX7FFVdkHe8V8KeffpoFCxYETh8btw88yIVurl/u5dtvv81MnOS1wLt3755Tx5kCHlYX6zx4f2scAdcufNNF3tjYmMqz1XVWEgGvqqqqSAv8WRHZp6g5SQnvfN1J8Fs/13wJCyGpBe6dFCCsDzxq2cswCzyugPvNvObH999/z+abb575rldKizvuMqkL3fS4hGGm0bZt26zI10IIEvAgC9xbKVWigLujRiqSNddck9133x1YbYGX24VuYlrgYd1jcQIe/VYZhPB1vuNa4EECHsYZZ5yRmVlOi7Up4N5r67IR14UeZIE3NjZyzDHHZKZUNu/dm2++CWR7O4IMgaT4LVrivb6XUlvgoU9bRJaKyM/AmTgivkJEfja2VxxmYU5qqfkFbyQdahJEEgu8sbExNHAiSMCDCm+YgEfNuKT3x7XAvXM719fXZ9xs6667LrvsskvgufkIeFjD6pVXXuHyyy9HKZWT7umnnx78IxJgPouoSrmqqiqzlKKm3ALuzoLYz/g+DGcIaMWiG6q6D9zvHRg3bhzt27fP7CuFCx2yy5O3bMftAzePSTo9p743/fv359133w08LigKPQwzBkRfZ9GiRVRVVdG1a9dAAY8aBx7kQtfnf/PNN4wbN44RI0bk5HXatGlAdsR/WgLuXZ5V02Rc6Eqp8AinCsQU2oaGBhYuXEjPnj1jnRsUqaqU8p3UIwleQdbfgyxwv8U/NEktcO/xZuBPlICbU6nm81LqZwDQs2fP0KC5IAFfunQpy5Yty9yruJM97LHHHoAzX7TX05BW9HcSC1xEePLJJ7O2RXlASsBVwAsicjPOVMd7A8eUN0vh6HcyrA/8+OOPp6GhgWXLltGlS5fYCwwlJYmA6/fj9ddfz1rqM0hsGhoaMr/t1ltvzVk3wA8tou3btw/1TuVjgZvdYPo633//PWuttRbV1dWhAu5X3vR+/fu9jRWdN11GdBpmOVu8eDFt27bNGn5aW1tbNgGvSBe6iLwSZ1slYN64qVOnsvbaa3PLLbfEOtfPXdXQ0MB5553H6NGjC8pXEhd6Y2NjTmMibh+4AF2ADQCmToUpU9hi2TK2A7YDtgQ2a9OGHkBrkgl4PoWivr4+S8DDrhc0r/G+++5Lhw4dsqJaNXG6NvTyjN58FUI+w8j8XOhp9cXni1Lqv8BJwE3AscA+Sqn8B0aXAF2WwvrAvXN7m/XCOuusk7WvEPKxwP/85z9nbQ8SBG08APzud7+LPB5W35uo4Mh8LHCzG8zsA9cLxXjrOP2uB1ng+rkFudB1nvTyzKZLXbN48WI6d+6cZSClJeC6QVHJLvTQ2ltE2gFrAt1FpCur5zfvBKxb5LzlhV/FfMYZZ1BfX89ZZ50Vem6QBa6nESyEpEFsvgLe0ACzZ7PrypX0xpmnti+wzauvcgWwzgsv0B6jVTbImZX2Ve8FjIKy8qSTeB9n1ZnPgY9xZtWZAVx57bUZF1VaFnjYcLIod2F9fT2tW7dm7NixmW1xBHzFihU5QXRBY87jsnTp0qyhJhAdxFZVVZVzD6OG8RUbEbkEOBTYGdgKmCAi5yilKnKUCWRb4FHDyPQ+876nNTRUp2s2IuJY4N5upjAXuhaLuMG5+t5ENQyDhpGFYc6L8MMPPzB9+nQWLVqEXp8iaR94lAWut++www6+x4Mj4H369Mm6drld6HGH8qVBVBT6H4FROGJttsp/xlnru+IIKpRnn312XgKeVksqyAL363dX9fV0W7CAw4HN3L8t58yBNdeEVatyx+/pFdrcF3wJ8BPQb+BAaN2a9z/4AP0r1gTWatOGtrW1dAXaLVnCEGCIJ8laoM0TT/Dc0qV8D3w9ZUpoX3oQs2bNylQqPXv2ZM6cOYHHBlngmlWrVtG6deusCXHiCPjy5ctzhrHV19enMtTEnNY2ygJfunRpZmrZdu3asXLlypK11EPoDgxTSq0A3haRF4C7qdBhohDPAtf4LdJRbgGPM7e2Tlu/R2b3mL6W9zy9RKjfNbxoF7qfh0Kj31GNtxG8//770759+8wCTUld6F4LN0jANYsXL2bp0qVZ21euXEnHjh2zrr1q1SrrQgdQSt2klNoAOFcptYHxN0gpdWtJcpiQONGOQQS50NPA+9B1AWvdqhX9gaOBW4D/AWusvTZXP/MMDwCXAIcAm9XWwqpVsO66vAaMBf4POA64eNgwNgOO2mcfWmG40D/+mIb332cYsD1Q/+abdJkzh6N23JEeQFvg5XvuYTscE2w08BiOJd4K4O232eeTT/gPMPrWW/n7Bx9wLk6DIi533HEHX375JeCMFQ2Lko2ywP0aEHEqYb9l/vwE/JJLLiFqtTsvSadSveuuu4DVFlK5BVwpdSaAiGzqfp+tlNqzrJmKIE4fuKZUAu5NG4Jd6HHm1tbb9XvktTAhN7albdu2meOiYiviuNC90xp7R5I0NDRQW1ubCcT0xuCEBbGZ9yAoUNivDD355JM5eW3btm2Wh3P58uWplCuzgXHPPfdw0EEHAfFc6H6Bs8Ug7jjwb0XkIM+2JcDHSqmFfieUi7BCWVdXF7oyV9iSg4ViNg42Aqr/8Q94803av/EGX3oPXrGChWuswf9WrGAajjt76Trr8NSMGdCpE7t7Csqvu3blM2DgGmtgvrYvvPAC1157LeAUxh133BFYPQylAajv1Yt3AW+8akfg5+ef5z/nn0/nqVPZFtjF/bsO+Ap4AngYmBzx2ydPdo7o2bNnQQJeW1ubUyjiWOB+a8j7ufVatWrFwIEDA1dU8+Phhx/OfI47lSpUjoCLyH7A34A2wAYiMhi4XCm1f8g5Y4HfAAuVUgN99gtOn/o+wHLg6DT71c0o9LZt24Z6hipJwL1BWd7tfmmHWeDe361F2ZsPP3r27BkZxNa+ffssd7/3ndZDS3Wd6i3buoHhV9bM4X863bDAXY3pNdB4A+h+/vnn1C3wY49dPeloHAscnHuaZF31fIg7Dvw4HLfaEe7fP4Gzgf+JyJFFyltiFixYEDpTUdiEJlA8F3o1MGTZMq7DEeMvADntNHjkEWT+fBbiWL5/An4F/Pz11/xhl104CMcCfwD4qE0bCJjPNygKfe+9986IkdknZi7e4H3BBg506uOlAMOH88TQoeyE42c9BBgPfA/0B84FJuFY7JcDm+OPrgS6dOkSKuBxXOjeZxRHwPVYVRM/CzyfVdtMd35UH7iJfh4VMBf6ZcAwYDGAUupDXAdOCOOA4SH79wY2dv9OBO4oLIv+tGrVijXWWCO04ffiiy8C2WKQtoCbZcssT16h9uvPhnAB97PAdb69ZSGuBb7//vtzxhlnRFrgQZPFaObMmUN9fX2ggIdZ4Gb+pk6dyoMPPpjzPIIE3Hu/vAK+ZMmSogaxxRlGBqVpnMcV8EZgc6XUwUqpg4EBwCqc5T8rZoa2qKUZowQ8TRe64Fir/wAWAi/X13MusClO/zSHHgp33AHTp7M28FscM+hVoLFr10zhvOqqq4DwlyZqHDgEjzf2Crg3DS1qPwP/xnH19wJ2BG4GFuDU0pcA04GPgPNwFn/XmP2DhVrgfn3ZUfgJuF+gS1VVVUFLryaxwPXzKLcFDtQrpbyTvIe2PpRSbwA/hhwyArhXObwDdBGRdQrMZwZ9b6urq3P6ad38ZT6feOKJvPbaa1n3WVewxbbAgyxtb6MzLArdT/TDLPA4feCnnXZapg/85ZdfRkR838Mnn3wysjzMmjUrUMB1/vz6wL35O+KII2JZ4H7bTdGE4ljgcfLlzUslCXg/pdQC4/tCYBOl1I9AYVOUpUjPnj05/PDDOeecc3z352OBJ30RBuG4mOcAE3DMj7VwLO/rcES9B8Ajj8BJJ8HmuXarUiqT1/XWWy+zDfwrnahx4BAcleotSN40/AS3Eaev/kxgo3btePsvf+FunIbJVsA1OFHtrwHHA0u/+SZzrUL7wL0Cbhb68847jwMOOCCnwE2dOjUnLT+3XiHLrkJ+FngFCPgnInI4UC0iG4vILUDunMLJ6I3zCmjmuttyEJETRWSSiEzy6+rwwxRwPwvcW87nzJlTVBe6WYbiWODeeiZsHHgSF/rRRx8d24XuTdPvPVxvvfUyS2uGESTgesRJkAvdS5w+cD/PWVIXetxyrgXcO299Ehd6sYlbY70pIs+KyB9E5A84i5u8ISJr4rreKoEBAwbwwAMPBL50+Qh4nELeHmcA7bvAhziu5T7ATOBKYCCOe/k84A0g6rGa48D1eE790vhNSZqmBe4V8KgWeD3w4+DBnIBjmY8AHgVWALvi9LV8BzwOrDtxIm1CClYcF3qYBX7dddfx1FNPZYa+eQlbnxnSFfCm0gcOnA5sgeNRewjH2TKqwDT9XhrfWk8pdZdSaohSakjcAELTrexngXsFfdWqVb4CHvW+QXQwWGNjY9Y7GCTmZr6D5njwm3Ewjgv9nnvu4YcffmD06NGxXOi6TMcZmhYnEEv/Tm/50WU1yoWuieNCX758ec52r2EQJeBBiz4F4Z2Doym60E/F6fcaDPwCuBc4VSm1TCm1W8h5ZSEoUC1tAR+AEzk+DxiD05H4E874uh2ADYGLAX85CcYcB64FXL+QYQIeJrZBAu4tSEEu9DD0ObXA08DvgLVx3O0v40wYcyAw+MoruenRR7kb2I3cly8fF7pfYdL3zrsGcLdu3bK+p22Bx4lC11RKH7hSarlS6iKl1FBXSC9SSkUrWzhzcaYp0PTBKSapEmSB+1nk+Qp41HhqHYntTRvCLfA999yTRx55BFj9rnjf7TAX+uOPP84LL7wAOA3TtdZaCxHJrKDlVwf+6le/yvruZ9XnQ5QFHseFbubhoYceAuILeFIXetI14M2yHDVJTEUKuNuX9W+l1FlKqVHu5+LHyOdJkIB7X9JvvvmGfv36ZWZqC3NPm2yPI1TTgNNw1lmdCPwBx094GvB2zlnxMS1wcz1uyJ5MwZvHMAHq3Lmz7/a4M7EFoZTyPWYpTsDbnji199nA0o03pn1tLcfh9PXPBq7F6XaA/FzoujCNGTMmsy2oMvIKeBpBbCZNqQ9cRJ4RkaeD/gpM/mngKHHYDliilJqfQraBaAvcO1nQsmXLfAU8zjzjcSxw830z654gC3zlypX0798/4xHS74q3bIe50A8++OBMV6Ff4zzO8r1x3vc41XyQgOs81NfX5zyjIAu8Y8eOmRXnkgi4ee158+Zxzz33BOb3pptuYt999w37SVl4BbzJudBF5CAR+UJEllT6YiYQ3wI/99xzmT17NmeccQbgf8PNwrk38DqOWO+H4ya+A6ff95c4bolkSw/442eBK6WYO3cuf/3rX3OOj2OBe93HGm8lc/TRR7P++utz0UUXRaap8xVluc4H/g58OGYMow85hCuAr3GE/U843Q6fADu89hpbhqRTW1vrazUppTj++OMz3/2WhYVoAS/UAl+6dCk333wz8+fPbwp94H8Drsfp6VmB09vxT6AG53EEIiIP4bRRNxWRuSJynIicJCInuYc8h/OIv3TTPCXNjJsCHscCX7hwYdYiMnEEfLPNnNkOoizwxsbGvCxwM2I8qHEe5ULX5LsgTrEF3AzaiyPgdXV1We5wv2svW7YsUsDHjh2bs+aASd++fXn22WdDflE2lexCjztI7VpgP6VUeJh3hRBkVXoFXM+xq/GztlVdHSOBC3CEGhw3+a047vN4YTfJCBLwYcOGMX9+riFjWuB9+vTJzPZlYi63Z+K9V126dGHmzJmZwh2nkMe1XKurq1nYrRt3ApfizM1+BI7LfQtgi7feYjiO//U54HmcQDgdIr18+XLfgu8t0Oeccw5nn312TkHz3oO0Xei6cTVmzBj+/ve/hx5bbgFXSr0OICJXKKV2NnY9IyJvRJw7MmK/wul2KyqmBW56grzLbd5www1Z38Nc6EOGDOHFF1/k0ksvZcaMGbFc6GYjP24feNu2bbPWGYDs1b502n4W+BFHHJF1nJ+A+9ZlnvKQj4BvuummLFmyhO+++y6zLUjANXV1dTmNJb86Wk+VrNPxs8CvueaaHA+b14UeRdJynsSFXpEWOLCgqYg3xLfAvUJn3vB2wMnAq3Pn8iCOeH8LnIMz//ilFEe8IduFrgunUspXvGG1l6Cqqor33nvP9xjTAtfr6oJ/QTILdhoWuMZb0N7BiaBaF9gXeGOTTZiHY5mfiDNRzI84Q9NuA/510EG8+o9/5Ly0cUcKeGeWStsC10ydOjVT6KtxJsXpCfTDCWYcCgxdupT9gc0CnmkJ6SEiG+ovIrIB7kCJSsVrgZujNiC3XHuJssC7du2aee/juNDjWuB6dq4gAfda4GYfeNL4ljjzpefTZTR48OCc7rg4Ap7EAtf5CirX3gaZ30poYQT97lGjRvluNwX8kksu4cILLwxM28xLKeZDj2uBTxKRR4AncaJVAVBKPR52kogMx5mRqRq4Wyl1dcBxQ3Hq898ppf4dM0+B+I1t9hY08G/xdsYR7lE4gVg0NPA5ztCo+3ECtYpNWBCbH6YLXa+05MUU8P79+2c+F6sPfMCAAUyfPj1rW9Awsnoci7vLkCE8+PnnDMKZwmtvnMDArdy/UwCefZa/4MQffIzj/2X8eHbDaWAtxrXYfdxcpjXVBlA//sg6wBo4Iwl6zZ7N4J9+op373e9vTePzGj7/9edu++9PLU4Any/ucpKfBkTMl5CzcBYw0T7mfjhrIFQ82gIHR4y1kH3zzTdhp2XeedOK9E4QErYoyJprrpnVv+vXv+79DNli365duxyhCnKhR4mT33oKfhb4wIEDefXVVzOrh3nLbbdu3XKmHfZa4K1bt/aNAodgAa+vr2fFihVZ8Qr5WuB+JBXwoGODDD/zXt57772RealEF3onnCkR9zK2KZzRQb6ISDWO4bQnjlf0fRF5Wik13ee4a4D/Jsh3JKeccgq333474LzgNTU1OQJuRp03zJ3LIZMmcSvOjwVnlrHbOnTg3poaSrO2jENYEJsfepEB/WL+5je/yenjMSOyzRZ7ocPIjj32WN9j/ApJVEHTwUcfuX9X4czXPgRn4pgdcYZB9MG1YvWJJ5yQu+Ja27bMqatDQeav3T33cB2OyFYBDB6cHRp9ww0cGvxTk+H+lgacDubl7v8VOAF+7Xv25OuFC1m51lqBM9iVAqXUCyKyMaunuJ+hlEq+ak0JMS1w71rRQFZ/tx+6gv3qq68y2/RKcV7r1E/AzXrEO3IlygI3PWtmX+/YsWNzxEG70KPK4FprrZWzzU88rrvuOg466CAGuasU5uNC9xPwKAtcB7FFCXicPnA/krrQg353kDET1SA0qaqqYuTIkYwYMSJnFEwxiCXgSqlj8kh7GPClUuprABF5GGeY8HTPcafjzCQ6lBQxX6YgAa+rq6M/TiBVQ9++7Oe+MC8DVwOvAJ2rq33F+8orr2TRokWRfZ35YLbqdQUS9jL/+KMzKZZ+MceMGZMzDWJQxRJViMP2P//88+y666688847OfvyEXC/CPtVOJPG/A+nlQfOYi0DcfrN+wLn/e53/O+RR+iN0/jqDLStq6OLNzHDjVcLVHXowPc1NRmB7bH++sxfsoR5ixez3N22HFhmfNZ/KyL+3/evf7HvIYcEemz+sPfejB8/nuEbb8whgXekZGyDY3m3Aga51mi4qVEBVFVV+Vb2EydOpH379oFL1+qy4Cfg5nfwd0937NgxU+a8ruEoC9wUcNOFftxxx+VcR7vQo6xLv/gWPwFv06YNu+yyS+Z7nCldvdtatWqVk3aUgDc2NrJixQrWWGONTHyCnwt95cqVsVzoXtKywNOYt1zPz59vYGFS4kahbyIir4jIJ+73rUTk4ojTImdjEpHeOEOE74y4fuLZmkzh0QP3swT8vfd4BPgMx1/YSine7t2boTgug1fcw4KGJG233XZZrug0CSrkUegX02+NabOFGjUDk1+afgwfPpx27dr55i0tAfdjMfAWzjS1FwEr/vlPdsWZ0nVtnPiFn+bNo/caa7AW0A1nLverzj6bDjj9OW2B1x5/nHVx5nXfEnjyz3/m3G22YV+ced//gNOdci5OzMPVONPH3o0zP/0TwAs4k/O8j+PW/xpn4pra9u1Du1t0AS/3OHARuQ8nIn1HVjs2vKvLVhSmBe6t7JVSzJgxgyFDgn+CrqjNKXa9lrf+7zfpx/77r17nJUzA/QQySdn2utBff/31nGPat2+fJRZ69Egc9623ca7v4WOPPZbT/aVJaoH36NGDxsbGjAVupuNl5cqVoS50bwyLef1KEvBSEvdX/xP4M+60qUqpqcBhEefEmY3pRuB8pVTo25bPbE3mQ9KFcOXy5fDss7DLLrDtthyK4+IcgzMpy7VDhzLJk05QBRs1b3a/fv1i5dMPXSkkFXCN30sU9GJ53W9JXehBefMrJFFTqXpjEsL44x//mHFR+bXUa+rr+VEpfsIJhPsBaOjalWWQ8ah4PQdpBbFBk5pKdQjwS6XUKUqp092/M8qdqTBMAfda4MuWLaO2tpZevXoFnq8rarNBr9OJI+DXXXcdjz76KHvssUeogHvRQgbZfeBBdYzXhb7zzjvnHOMtv3vvvXdomibesq3v4YYbbsjm7hTPfhb4XnvtlbVN1y1+dcX222+fZYGb6XhZsWJFVh3hLddBLunq6upEAXnmsWajwq+OHDBgQOx0Id06JNb1Yh7XXinlDW+OekPizMY0BHhYRGbhrOdxu4gcEDNPoZg3snvHjhwD7HvBBbDffvDGG9CpE9fiLLt0PI4l7h1+AsEWeFSrb7PNNmPmzJkceWTyxdp0dKzZTxbHnZSJfI4h4PPnz+frr7+OnFYwXwFfd911ffOQloBHBbvU1NTkbPf2Z1566aVZ372/9bPPPoudHy9NaCrVT3BmwW1ymAKu77cOwurZs2fgeVo8zP5rrxDrdP3KR9u2bTnkkEOorq5OJOBBfeB+i+3o31RfXx9aZrzzOySZ5z1IwM1y4tcHftttt/H8889ntoVZ4Ouuu26oBW529a1YsSKrXOuofY2fZ9G8flx0+j///HPWvfd7dkFWfxCltsDj+gwWiUh/XAtaRH6LMz9HGO8DG7vDUr7FsdgPNw9QSmWWLRSRccCzSqknY+YplKqqKjoDJwF/mjKFbgDffQe9e8OoUXDiiZzvGQ4xYcKEnHSCLKkoC7y6upp+/frlTB4SBz8LPImAB7mvTcIsFJN8BfyCCy6gc+fOPPDAA1l5CKuM4swepYkS8L322isn5iHOpBwmm2yySez8eDHdrH5UkIB3B6aLyHtkjzAJ/wFlJMyFnkTAw6ZW1un6RXjr9y6pgAf1gQc1XL/44oucGJsXX3wxywL29rXq6+fjQtfnmGn6CXibNm3YeOONc64Z5HXTFriftWu60lesWEH79u2znqn5O8IEPB8L3Juen/gmdauX2gKPm7tTgbuAzUTkW5zRO0eEnaCUqheR03Ciy6uBsUqpaXq2JqVUaL93QcyZw/4TJjAaZwwuq1YxFfjqoIM48KGHoE2bgsfoRb00+kHm80D9BDxOgdSFzS9f+bYM8xXwLl26cP/995dNwP3GAkcFlpRi3KamUvrAcdYDb5L4udCTCHjYvdfvvV8FblqcYVHoXpRSeZdtjbcL0VuukwxhChLwsIau/n3m7wyzwKurq2lsbGTx4sVZRoPZCNKsXLmSzp07Z5Vr83d06NDBN0/V1dWJuhiT9IEnrTcr0gJ3I8n3EGf1sSql1FIRGYXThx123nM4Q3zNbb7CrZQ6Ok5eQpkxA/7yF3jkEXZ2C+fLwPR99+XM//yH8zbaiAPdlzOJWPhhVh5+REVmhmG60PMR8LD8RJFPH7gfumXdqlWrTEUZ1QeeNP2k40WTWuDFZNCgQbz77ruBVkWp0DOyNSXCLHBtzfoNrdKYFXXbtm1ZtWoVG264IV9//XVOH7jf+2o2zr0WeFg5864y6NcHbo4xj8q73/U23nhjOnfuzF/+8pfANDTesq3zEeVC9143rK7Tc3D88MMPbLHFFlnbvb/Hrw/cLJNxV1SMojkJeKLaVDmrj+nlsM4uQn4KY+ZMeOABUIoPBwxga5yI8nkDBwLZixwkGdvnR5QL3a+FGZf//Oc/QHkE3Eu+FrguDN6CnpaAt2nTJnUBL6U7u3PnzgwbNiwTLFRqxF3PwOevotc5gPAgNi2oQdaaPk/TunVrFi1axF133QXkCndYd5QWJ7+8BeXbrw/cTCOqayvI4tasueaaLF68ONZiHd7fpgU8zIUeVK790tPbGhsbWbRoUWYCGfNY04XuHUamlMoqk0ECXkgQm0kSATfTMH9DpQax+ZGfaVZMhg93LPAvv+RfBxyAnjBUWzlmy3bmzJkFXSrqpQl7qU866aSs76eckr3Wg16Mo7a2NnN+MQX8mmuuCdyXr4CbFriZh0q2wEsp4KVuqXtRSnVUSnXy+euolCr+DBQp4BfEpgUyLDhTRDL3v7q6mm7duuWIQxwLPMloDwgeRma+d1ExM16RKWToU1DZjmOBx3WhV1VVsXz5cpYtW5Yl4H5dFDU1NTlxP+a9CSq/SctS0O9O8jzNNMzPFW2Be6i85URF4KKLoF+/rJdJDz8wBbyQCGOIdqH7teB79erFsmXLuOOOO7KOve2227LyNmPGDMBZHCNJyzJfAT/vvPMC9+n1hb2Yrt+4Fni5XehRfeB+Ah4VpZ8v5RbwpkyYC11b4FHPzSs6QV1Hfu+r375HH32Uxx9/PLTvvbGxkQ8//BDIdqHHsTK9+Q76noQ4Ah50/SQWuH5e3bp1Y4sttuC0007zFfDly5dnor615R7XAk9CEgs86NgkjYBiElqbhrnZcNagqFjMl8nPAn/jjTci04hykSe1wFu3bu0b1Qr+0a5rr712SQQ8jFmzZmV9P+GEE7jqqquyFkQJu15TssD90vnoo4+46qqrCopI98MKeOGEudCjnnWQ6MTpAzevr+nVqxcHHnhgzjGvvfYaH3/8MeCsU/3EE08ATjCan4BHWdRRfeBJiCNk3jrFT8DDotC99fAnn3zCLbfc4nstWD0uWwt4nD7wuPdgyy3DFiv2T8f8/UuXLuXwww/P5M+PUs3ApgmtTSPcbIVPW1NEzBusW3VmxGgcC9w7W5A5JjBuFLr5UkRVKl7MQu5l2LBhOduKEcTmTbNjx45ccMEFWbPQhU3kUqw+8FIJeP/+/bngggsCG175YgU8f+JY4FFC6CdEJqZl/uqrr3L33XcHHgPB79auu+7KQDcGZ8yYMaxYsYI999yTHj16+HaPxW14BH33EjaOeerUqVnfJ0yYwJlnnpm1zVu2/YLPvI2hoNnozDIUFOWvBVzcxWXStMBfe+21TPekH37vjPn7O3TokPkNQfWyOVSuFJS2x72E+AUZmA8jzpSsZmE64YQTsvrN84lCj6pUbrrppqzv3bt3D3xR3n77bcaOHZu1rRgWeNC8x1HXDSrolSzgcZZgTAsr4IUTZIGLSCYYLGz2Lp2Geb7GtMR32203dtxxx8A0IHrZUc3ChQvZdNNNs65hvndR6SS1wGfPnh24z5wLHmCXXXbhxhtvzNoWJOBhLnRTaM3j/BrBURZ4HO9E3LLUrVs3tt9++8D9fukHLTlsBbzIeF3XsPph1NfX5yyb54dZ4XtXvPG60J944omsVrpfH3jUWEWvuHXo0CFQ8KqqqnJe3EoUcK+rze/8uJWf95xi9IGnLdRBWAHPH78odL1Ix6pVq2jXrh1du3Zl6dKljB492jcNrwXunUMhiSsdohvnui5ZvHhxZvYxv2FkSfvAo66bT9kyKVTAgyzwoPzp++Qn4GH9zmms/BVmgV9yySWZfJn/vSSdua1QWoSA6wejK3o9fV5UxKd3eICZpteF3rt376wVhfwe9Oeffx47z3qYSZx+dk0xXOh6THrSdPx+f5DXwluIb7rppkywSxBJp5kFG4XeXPBzoS9cuBAga8rOsAZwVB+419LyS2fevNUzQ0c9zxNOOCHzWQe6+c2yuM8++3Daaafx+9//3jedpBZ4oQ3SfATctEKjXOje/OvGjBZwc5x9mIBvttlmPPnkkzz99NNZ+8aOHcvbb78d9hNzfoeJ/v1bb7111u+xFniRCbPAtYCHRYxCuPvXK0ZBFYFfsEecPOuWXJx+dk0xLHDvkox+FVncxUyCtnsF/IwzzuCTTz7JWRLVpH379okFPMoaKeVELmmsfNTS8WsQeufcjooWjjNMSF/L7/re9MLyqtFj1P36wNdYYw1uueUW1llnHd90kgp42uOS/Rrm+VjgQX3gOk5JRHjttddiBY/q648YMYJtttkma9/vf/97tttuu8g0/PICudNTWwEvEWEWuBalqKEmZoXvJ+DmQ4xqyXvTi8pzVLCEzpNJKQTcLx0/y7YQAY9KA5yKLqmAR4lmY2MjnT3z4yelVatWvqtGeSm1q6054WeBa7wCHkSUK9TrQvd775OM/w0r23594EFlOWkQW9oWeNg0zUkscI237Ov56auqqpgyZUrktc3rez/7fQ8jzAL3vi/WhV5k/ILYdEWv3cJRN9sr4N4CG2aB+z3oYlvgYeTrQo8j4L/61a8YMWJErLwlEfCwPBdDwBsaGrjxxhvZZZddMrPhJaV79+7st99+kcelHdXeEvGzwHUfuHmM5owzVq+SGtQHronTB56WgJt94GkHsRVqgV966aVZs7r5pecdRpaGBV5VVZVTRoK8Et7YJJMkDZiwILaoeQM01gIvAvrmJxVw73CIQi3wfAQ8jFJY4N5Z4oJmK3ryySez3FdBL3paFng+LvSoe9DQ0ECfPn2YMGEC++yzT6w0vZxyyimx7rW1wPPHDDjzviMrVqzIEhD9/p166qn07ds3sz0oCj1JH7hJEiH1Ns7N0SRRAp40iK1QC7x37948++yzme9+90HnSV8rqAFlvvNBAm5a4KbxMHr06EBxDLPACxXwOBa4eQ0r4EXAW9HrFyPKCgpzoXst8iABT9JKN4+NY6GVog/88ssvD71m0DWaogvdu7ZyPlx44YWxrB4r4IXj50JftmxZVteY39SfENwH7ldu9bW8mOUtSeNcl229zZxgKkk6QfkySXtURZiA633mux1llHh/rx5N4M334sWL83KhJ8HMy4EHHsiAAQNsH3i5MAuXt6I3LfC///3v7Lbbbr5ppBHEliQwqhIt8CQuu7D7Eba9UAt85MiRgceZVFdXc91113HIIYfk7DvssMNyJrEwiVsRxh3rboPYCsfPhe4V8KOPPpozzzyT//u//8sqH1HjwIMschOzbBfiQg86Lg3C0rviiitSSc9rgZvGhz7+hBNO8LVaveXg5JNP9r3OBhtsEGvmuELun/kMH3/8caZNmxZLwM13x7u8bLFptgJuom/65MmTaWhoyFjga6yxBqNGjcqa2s8kjSC2fAW8UAvcXLoP8u8D9xKWTtAE/ybFsMDjzmvfqlUrzj33XB599NGs7ZtssgkPPfRQavOep10JW7IJC2LzCnjbtm258cYbc4IToyzwOAJuBp9VqoCHleeLL744cXphAq7vmZ+AewNdgwTce787d+7MO++8w+mnn15SC1wT5kI///zzMw0OjZ6kp1Q025rGzwIHZ0C+tsD1ixY0PjjJOPAg11a5LPDJkyfz4IMPBh6bL0kFvFh94KaAx6VUY6+b+xhvERkuIp+JyJcicoHP/l1FZImIfOj+XVqMfMSxwD35ynwOGgeuKZcF7m1ARJF0cqhCCRNwHYznJ+BBBJV9fR86dOjAtttu6/usvdePc70w/J5hWBDb1Vdfze23357J67x58yLnFkmbFifgt956a04Qm/ngjjjiiMznKAu8mC70OC7WMAFv27YtG220UeCxSXj88cd98+gljps5SsDvueeeWNcKEvBrr7028Jyge1qKfsLmgohUA7cBewMDgJEiMsDn0DeVUoPdv8t99udNEgs8iCgB165Q3acZVrkH7Tfxa5z7XbuUFng++OVPlys/Afc2hLz5CiqT+jrms6w0C9xLOcp9s61pggRcKZXlQofsF+P888/PfA4bRiYiWd+9D79QCzzOixgVxGYWpEJc6LvvvnusdNIQ8G233TbWtcypVE2C4hkg/X7nrbbaCoDNN988a3tzFnBgGPClUuprpVQt8DAwIuKcouAXhZ5UwPX/9dZbD4C99toLWL0oijk3t5d8BVxHyYdZ4GGMGTOG448/HsgeguZHKYPYdJeCn/cwXwH3G1EAzvA27/W9n5OSRMCj5gUoFc22pgkTcK8Fbq5tHWQF+/WVhUWN+03SEEWcIDC/a2i8Au5dPS0OfmMtkzYswogS8DjusIsuuihWWl7Sdm2ffvrpLFmyJMtrE5SvZkRv4Bvj+1x3m5ftReQjEXleRLbw2Q+AiJwoIpNEZFKcBYYgeBiZbpzHiR/xWuD9+/dn7ty5XHCB0yOgBVwLSJp94LpeCesDD3ONH3vsseywww5AdNBUlKi8++67ofuD8meif/vSpUuB7NEcUS7+KAE376v5W/74xz/mXN97TFKaogXeIkJhvYVcv2hauLt3787YsWNZa621Aq3qqAfmbXUW6kIPqxDeeeedWOklscAnTJjABx984LvqUtyGRb4WeNBQu6Br+VWqnTt35u677w61sgtxofsdo5SiU6dOOc/Y/A0jRozgF7/4BW+++SavvPIKAG+99Vbk9SoYv5vlraWnAOsrpWpEZB/gSWBjv8SUUncBdwEMGTIkVsevKeDmc1mxYgVKqbwscHDGPGu8LvQoCzzJ8K+g+JCgbX7osl1o1HNS0QkT8Llz5wJOxLgmXxe63h8kzkF1RiECnmQmtlIEIMahqFeMEexyhIhMdf8misigtK4dZoFrATdXsDnmmGMYMWKE7wxusPrhDhs2jC222CKnkggS8LjBKN58hgmu6WY2KcQC32WXXRg1alRkvgod5xjl8ksSkGLuP/nkk/ntb39bUgtc3++gBR/AqcxGjx5N165dM9t++ctfppqPEjMXWM/43geYZx6glPpZKVXjfn4OaC0i3dPOiNcCnzFjBkDoHPqaqD7wOC50v2FpQcS12NZdd93QdDS6/okr4Btv7Nt+SlXAv/nGcczEEXBNVABrkDh37776dUqrXCeZic2PZiXgMYNdZgK7KKW2Aq7AbYmnQZCAA/z8889Atuvc71g/AX/nnXeYOnUqIpKZNcjc703HdLMliRjN52VIw4UelS9TiPJBt9JNklrgfvv1AhFhAp52H5W+30FrBkOzHO/9PrCxiGwgIm2Aw4CnzQNEpJe4N1tEhuHUM9Hr98bEfM/NZ6pnAgxq4JoEDSPTxBFws2wneVc13vfxX//6V5b4haHLdhwBnzBhQqDXJ00B17M2msGzmjgBaH7X8YveHzVqVGC3WyHEmeMizAIvRx94MWuXTLALgIjoYJfp+gCl1ETj+HdwWvOpEMcC9xPwIBe6OVmBPsZc6i4onWIGsQVNPqExX/IknoCwfCUVcO9L/eOPP4Yen6+A69/q15Aq1ipjQRZ4WkE1lYhSql5ETgP+C1QDY5VS00TkJHf/ncBvgZNFpB5YARymCnkBA/ALYgPo0ye6GolrgYf1gedbtjXestG/f//Y6el8mUZEEHp2Mz/0fYjb0PQTKX3uWWedxVlnnZU1s1zQY/dzkZv4WeAjR45kzpw5ORMuFdMCj+NCDxtqWGyKecW4wS6a44Dn/XbkE+hikkTATaL6wMNav6WIQvcStnJQnIIeJ19h043GaYGefvrpbLTRRtxxxx2++5OIn9/98j4nHSleDOK40L2zVDUHlFLPKaU2UUr1V0pd6W670xVvlFK3KqW2UEoNUkpt52mop3H9zOcwizCMKAs8aR94FHEEPMk7oueuSKsPPO4qfHHut5/hEPTbgkTPT+BbtWrFRRddlPG2BV0/X8K6Sbwibf4er8iXkmJeMU6wi3OgyG44An6+336l1F1KqSFKqSE9evSIdfE0LPAoMdHR7H74WeBRBdTcn4YL3WSttdZKnJ5fXgqdL7xv37588cUXnHTSSb7787XA/YRyrbXWilXJ5iuucVzozc0CryS8QWyaJAIetw/c7zqFCrh3W5Iyry3wMC9gHPTvSlPA41jzUVZr2HCtqOvnS1CgqpmfQoN406aYAh4Z7AIgIlsBdwMjlFKp9ZOZeG/6kiVLAH8BDwpM8XtJkrrQk/SBp2GBA3zyySe88cYbWUEfSTFfzELXy45Kv1ABNysPcy7jNPOoaakWeLlJwwKPEgivgPuRj4AHRVKbx0B0XaEFvFALXM+JkaaAJxkCGyXgcdIqpoDrZxxmgYeNKig2xewDzwS7AN/iBLscbh4gIn2Bx4EjlVKfp3nxoEJeW1vLggUL6NixI7169QpNI2wcOMQT8GKOA4/qA4fcOdHz5aSTTqK+vj7xfOFJX+o4Au7nstLn9ezZk9///vf06NGDXr16lcUCb8594JVA0DAyTRoW+Lhx47jyyisZOnRoYBr5lO24Ah6Fnq/hqKOOin2OH9qL2LNnz1jHJ20w5etCrzQLPEzAy0nRBDxmsMulQDfgdveG1CulhqR0/cxnv5dk6NChka6eKDHZaaedAHyt21IEsXkpQpxQhqA+a5OwAhCXfC1wc3KM++67L+/rJyGJBW5Jn6AgtiRWW9Cxm2yyCePHjw9No5x94J07d2blypWB6zjEZYcdduC8887jrLPOinV8WgIeNcw2Ksgt7vWTkK+An3LKKdxwww2Ra7kXg6L2uscIdjleKdVVrZ4zORXxdtPOfPZ76ZJM9uD9rNlhhx149913fVfD0tdMErVdyQIehzSCOOIIuJ/7Leh+FSsC3Uw7TMCb4TCyshNVtuMQFcQWBz39ahz8Kv6wPvA4Zblt27YFW4LV1dVcc801kd5Ijd/9TtLnHfQ96Dpxnm9aZSxJEJvJ3/72N2pra8tS1ksfNlcGkrx0SYLYwJnYxS9ATKdz9tlnZ7aVehx4qYljZfiR9J6HudC9lMKFbi3w8hDkQo9DnIk5ovAuSxtG2i70cpGvBR7EmmuuyTbbbMNmm23GE088kXOdSrHAo4aRlcP6hmY8lWpUKz1IwM3zovrAw9AP2DvkIYykFf+WW26Z9b3cAp5Gv1ChQWxe4gh4ofctTh/4kUceyaOPPppZLMOSP5VigScJDG3pAh5kgYsIkyZNCrxOOQTcjHuIE8RWTqyAh5BETLzkM1NPUgu8Z8+efPPNNxlXXrkFPN8KKOhZBaWnp8ospQu90Cj03/zmN3zxxResv/76qeTHks6816USzaR94EkmdSklaQt4ELp+LrWAf/fdd1mjkyo9iK3ym3x5kq+AJ3XnBhHWnxLnnLjXM2edaqoCHhTNaz6LBx54gKFDh3Lqqady7LHH5lwvyt0eRr6FUTcO4o4D32ijjcrmamtOpGmBl1rA4/aBn3LKKbz44oslyVsS8h22F1TGgsqnrp/zGUZ25513Rp7jh4iw9tprh65nXmleksrKTYqkYYGn4UJPQr59p6eddhoA5557buJrpolfnuPchzgCfvjhh/Pee+9x6623+k6bWsogNr0++gEHHAC0rKlUK4GRI0cCzlCqJBWqtqw6deqUeS6lalAldaFXVVWx5557liRvSUgi4DvvvHNklHnQ/qCpkf3wHmMuNZqEpjiMrNkKuEkaLvSkFXE+rtJ8g9huvvlmfvzxR379618nvmaa5Ns63XDDDX23RxWSOAsaFMMCf+mll/jpp58ybk4bxFZa/vznP1NTU0OPHj0SPbtjjz2W66+/ngsuuCBT/pMI+ODBg7niiisS5xcK6wOPGyFeCuIO22toaGDChAmZ70nLWDlc6H6/QxsAYUFs5aTF9oEnfTHiFvSJEyfy8ssvZ6yEJORb8YtIwauEpUFSAZ88eTJPPfUU+++/P+PGjcvZn4aAB42TnTRpEkOG5DdqsaqqKmtKWTuMrLSISGYYaJJ3rlWrVplRIfrdSSLgH3zwQYJcZpPvOPCVK1dWhFiICEqp2Pe7UFdzIRZ4vjRFC7xF1C5JLPB+/frRo0cP+vfvn1W44xb07bffnu233z5r27333stRRx3lK1JB+ay0vpY4JM3z1ltvzdZbb83UqVPzup75TIKep55y0oteejIN7Fzo5SPfijQfAffjyiuvzKyDHUbSPnBN0PtbaqqqqmhoaEh8v/N1oRfSB54vTVHAm55KxMScQjSJgLdu3Zp58+YxceLELOutkBmPjjzySOrq6thvv/1CjwsKoGsqFDqeOml6cSzwsLms414nCtsHXj7ybejq8lyogF944YWxZils6sPI8g360wFh3uG0cct2uS3wG2+8ke7du/uOfKkEmq0FPnLkSJYuXcrOO++cuA9c7zNFu9CCHseV2tQtt1K/3HEEvBwWTFN/jk2JfN+5tCzwuDR1AU8yM5rJKaecwrJlyzjnnHN890dZ4OUW8IMPPpiDDz44873SLPBmK+BVVVWZJSv9XpI4gpqWBR6XluZC1wwcOJDtttuOAQMGZG1PwwJPS8DD8nLhhRfy3HPPZeaTtgJeOgp1oZcqRiHfPvBKIV8Bb9OmDRdddFHO9rgu9LDyU1VVRWNjY1EF3It+b5IsZFNMmq2Am/g9mKQCXoqWelOv+P0K94gRI7jhhhvYcccdA8+rrq7m7bffTny9tFzohdK7d29mzpzpm5em+BybEvk2GkttSeXbB14p+An4v//9b1566aW80ovbOA+7J23atGHlypW+ZaxPnz6Jl1qNc//XWGMNAOrq6hKlXSxahID7UekWeFOs+P0KgF6SMZ8hbqWywJMukRqFLuTQNJ9jUyJfAS61tdvUXeh+E5l43cv5UIgF3rZtW1auXOk718Ps2bMT5yXOO6ENgtra2sTpF4PKfWOKTJyKtZwWuPl5xIgRRb92GvhVQO3ateOwww7La5hbsYPYnn/+ebbeeuvI0QFJsQJeOgoVvVLNXtjUBTxfF3oQaUzkMmHCBM4888ysIZ2aqqqqVKa/9mIFvEJoShb4xRdfXPRrp0HaVk0aAq5nSxs4cGDOvuHDhzN58mQ23XTT/DPpgzkVox0HXlyamoCbiAhnnnlm1vdKpVgCHkQcC3zw4MHceOONqd23OOlYF3qFUOl94JXcGg+iEqPQDz30UHr16sWgQYNKlS1rgZeQpuxCB2daV+8xlUjaAq6JssBLeU+SWOBWwMtMU7LAmwppF7YkFnjY4jS77LJL0fNiYrrtK7lSbg4UKuDldKEHHVOJlNqFnmQYWSmxLvQKodIt8Ep7ceNQTgGvpPtl3odKaalbyosV8GzSXE60lFgBrxAq3QI3P5d7mdC4WAHPpVIKusWfcvaBe2kKfeBp5zGNqVRLie4eq5Q6ubLuTglJOsNPKQTCWuDZNAcBTzoW1VIaKqUPPI21zUtB2l0OUelV6r0oxbwSSSjqXRKR4SLymYh8KSIX+OwXEbnZ3T9VRLYuZn5M4ljgpS7kYZM8NAUqMYit3DRHC7ySynWlWEJRNBcXut+Y62Kg71OprheXUnhik1C0N0ZEqoHbgL2BAcBIERngOWxvYGP370QgelWAlKhEAbcWeDbNwQLv1q1bubOQKpVerpNSSUFslexC1+WrVIJa6gZDXPQzOvDAA8ucE4diRqEPA75USn0NICIPAyOA6cYxI4B7lVOK3hGRLiKyjlJqfhHzBVTm+Fwr4MkopYAnrVxfeuklJk6cyJ577lmkHJWNiirXXgGOW67L1TgPy18lC3jaghrXhV5pAg7w008/pT57Y94opYryB/wWuNv4fiRwq+eYZ4Edje+vAEN80joRmARM6tu3r8qHbbfdVgGZv6lTp0aes3LlStWxY0c1bNiwvK6ZlNraWrXhhhuqdu3aqS+++CKzffny5Zl8jx49uiR5yYcZM2YoQJ166qmppLds2TLVunVrteOOO/runzVrlmrfvr3q27evWrlyZSrXDOK1115TgPrrX/9a1Ot4ASapIpXRfP7SLNcqhbJdV1endt55Z9W6dWsFqJtuuinWefPnz1eDBg1Sc+bMSXzNfFiwYIHaZptt1D//+c+s7XPnzlWA2nLLLUuSj3x5/fXX1Y477qhqa2tTSW/27Nlqq622UvPnz/fdP3HiRDVo0CD1+uuvp3K9MB555BG13377Ff06XtIo26KK5EISkUOAXyuljne/HwkMU0qdbhzzH+AqpdRb7vdXgPOUUpOD0h0yZIiaNGlS4vw0NjZSX19PXV0djY2NdOzYMdZ5tbW1tGrVqmTWZW1tLXV1dTktvNraWhobGysuiMLLqlWrUl3Cs7a2ltatWwdaJ8uWLaN169Yl6ZtK+7fFQUQmK6WGlPSiIRSrXEP+ZdtiaYqkUbaL6UeeC6xnfO8DzMvjmFSoqqqiTZs2iSv6UgctBOWx0oIngkhb4KJ+dyldWeVYW7wCqahybbG0ZIppVr4PbCwiG4hIG+Aw4GnPMU8DR7lRq9sBS1QJ+r8tFkve2HJtsVQIRbPAlVL1InIa8F+gGhirlJomIie5++8EngP2Ab4ElgPHFCs/FoulcGy5tlgqh6KGYiulnsMpzOa2O43PCji1mHmwWCzpYsu1xVIZVO7MARaLxWKxWAIpWhR6sRCR74HZ5c6Hh+7AonJnwoPNU3wqMV86T+srpXqUOzOloALLdiW+F1CZ+bJ5ik9qZbvJCXglIiKTKmmoD9g8JaES81WJeWppVOozqMR82TzFJ818WRe6xWKxWCxNECvgFovFYrE0QayAp8Nd5c6ADzZP8anEfFVinloalfoMKjFfNk/xSS1ftg/cYrFYLJYmiLXALRaLxWJpglgBt1gsFoulCWIF3AcRGSsiC0XkE8/200XkMxGZJiLXGtv/LCJfuvt+bWzfRkQ+dvfdLAUs+OuXJxF5REQ+dP9miciHpcxTSL4Gi8g7br4miciwUuYrIE+DRORt9xrPiEinEudpPRF5TUQ+dd+fM93ta4nISyLyhfu/aynz1dKwZbugPJW1XIfkq+WW7ULXI22Of8DOwNbAJ8a23YCXgbbu957u/wHAR0BbYAPgK6Da3fcesD0gwPPA3mnmybP/euDSUuYp5F69qNPFmRN7QrnvFc4iHLu4n48FrihxntYBtnY/dwQ+d699LXCBu/0C4JpSP8OW9GfLdkH3qazlOiRfLbZsWwvcB6XUG8CPns0nA1crpVa5xyx0t48AHlZKrVJKzcRZwGGYiKwDdFJKva2cJ3MvcEDKeQLAbaUdCjxUyjyF5EsBuhXcmdVLSZbzXm0KvOF+fgk4uMR5mq+UmuJ+Xgp8CvR2rz/ePWy8cY2SPcOWhC3bBeWprOU6JF8ttmxbAY/PJsBOIvKuiLwuIkPd7b2Bb4zj5rrberufvduLwU7AAqXUFxWSp1HAdSLyDfA34M8VkK9PgP3dz4ewer3qkudJRPoBvwDeBdZW7lKb7v+e5cpXC8aW7XiMovLKNbTgsm0FPD6tgK7AdsCfgEfd1rFfH4UK2V4MRrK6hU7ItUuVp5OBs5RS6wFnAWMqIF/HAqeKyGQcN1dtOfIkIh2Ax4BRSqmfww4tZb5aOLZsx6MSyzW04LJtBTw+c4HHlcN7QCPOpPRzWd3iA+iD41qa6372bk8VEWkFHAQ84slr2fIE/AF43P38L0AHu5QtX0qpGUqpvZRS2+BUiF+VOk8i0hqngD+glNL3Z4HrOsP9r9235X6GLQlbtuNRceUaWnbZtgIenyeB3QFEZBOgDc6KMk8Dh4lIWxHZANgYeM91mSwVke3c1vxRwFNFyNcewAyllOl6KXee5gG7uJ93B7T7r2z5EpGe7v8q4GJAr19dkjy5aYwBPlVK3WDsehqnYsT9/5SxvZzPsCXxJLZsx6HiyjW08LIdFuHWUv9wWnHzgTqcVtFxOIX6fpz+linA7sbxF+G0+j7DiBoEhrjHfwXcijvzXVp5crePA07yOb7oeQq5VzsCk3EiLd8Ftin3vQLOxIkO/Ry42ky/RHnaEccdNhX40P3bB+gGvIJTGb4CrFXqZ9iS/mzZLug+lbVch+SrxZZtO5WqxWKxWCxNEOtCt1gsFoulCWIF3GKxWCyWJogVcIvFYrFYmiBWwC0Wi8ViaYJYAbdYLBaLpQliBbyFIw5vicjexrZDReSFcubLYrHkjy3XLQM7jMyCiAzEmVnpF0A1zjjG4Uqpr8LOC0irWinVkG4OLRZLUmy5bv5YAbcAIM4ayMuANd3/6wNb4swTfZlS6il3ov773GMATlNKTRSRXYHROBMsDFZKDSht7i0Wix+2XDdvrIBbABCRNXFmoaoFngWmKaXuF5EuOGvU/gJntqFGpdRKEdkYeEgpNcQt6P8BBipneTyLxVIB2HLdvGlV7gxYKgOl1DIReQSowVl/eD8ROdfd3Q7oizMX8q0iMhhowFmGUfOeLeQWS2Vhy3Xzxgq4xaTR/RPgYKXUZ+ZOEbkMWAAMwgmAXGnsXlaiPFoslmTYct1MsVHoFj/+C5zuroiDiPzC3d4ZmK+UagSOxAmMsVgsTQNbrpsZVsAtflwBtAamisgn7neA24E/iMg7OG422zq3WJoOtlw3M2wQm8VisVgsTRBrgVssFovF0gSxAm6xWCwWSxPECrjFYrFYLE0QK+AWi8VisTRBrIBbLBaLxdIEsQJusVgsFksTxAq4xWKxWCxNkP8HP5WlpCPZpwcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABd5klEQVR4nO2dd7wVxfXAv+c9HgoIQkRBqcZYY8SIBdQY7NgilkSUqCQSxRYxmsSuMSoo+dmDJIi9dw1gV8SCKChSRCw0QQQBpUp5753fH7t72btv997dvbu3wHw/n/u59+7Ozp4tM2fOzJkzoqoYDAaDwWCoLKpKLYDBYDAYDIboGAVuMBgMBkMFYhS4wWAwGAwViFHgBoPBYDBUIEaBGwwGg8FQgRgFbjAYDAZDBWIUuCFVRKSNiIwRkeUi8n8icpmI3F1qufIhIveJyHX271+JyPRSy2TY8BARFZGflVoOP0TkGhF5KOljRaSHiMwtTLpkEZGOIrJCRKoD9se+Fz55JfbMN1oFLiKniMh4+6HNF5EXRWR/T5q+9s3+nWd7D3v7M57tXezto13bOovImyKySkQ+E5FDXPsus8/vfH4UkXoRaW3v/52IvGcfO5rK5ExgEdBCVS9S1RtUtR9k7o2KSKOgg5MsOHFR1bdVdcdSyrAxYspog+spK6W3IaGqc1R1M1WtK7UsUdgoFbiI/AW4FbgBaAN0BIYAx3qSng4ssb+9fAfsKyJbeNJ/7kn3KPAxsAVwOfCUiGwJYCuzzZwPcCMwWlUX2ccuseUcFOMyY5FLmcakE/CpmohBhgiYMhqdFMpuxRFkQW+wqOpG9QE2B1YAv82TrhNQD5wA1AJtXPt6AHOBocC59rZqe9tVWAUcYAdgDdDcdezbQH+f8wnwFXC6z75+Tp55ZD4WmAgss/PqaW+fBRziSncN8JD9uzOgwBnAHGAM8BJwnifvT4Dj7d87Aa9iVV7Tgd8FyHMfsA5Ya9/zQzznnmOfe4X96e45vqd97Dp7/yf29m2AF+zzfwn8Kcc9ORL4FFgOzAMu9jzDy7B6CGYBfTyyX+dO69o3C7gYmAQsBR4HNnXtP9p+Dj8A7wG7lfq9r6QPG3YZ/SswH/gG+KP9/v/M3rcJ8C+7XCywZW8CNAN+tK/VKSvb2GXpKeAhrDLfz753w+1zzAOuA6rt/PsC79jn+B6YCRzhkm1b4C27rLwK3IldVu393ez3+Qes+qBH2GM998B5Ng3KHrCXfe2NXOlPACYG5HUfcBcwCliJVcdsAzyN1YCbCfzZlX5vYLx9vxYAN9vbO9vPolG+68FTH9jbZmHXsfY5xtr3ab59bGNX2swzL/SzMVrg3YFNgWfzpDsNGK+qTwPTgD4+aR6w0wEcDkzFKpgOPwdmqOpy17ZP7O1efoVlaTyd7wL8EJG9bXn+CrQEDsB6qcLya2BnrOt4BDjZlfcuWJXlSBFphvVCPwJsZacbIiINrklV+wIPAzepZcG85klygP3d0t4/1nP8S1gW2OP2/i72rkexKoBtgBOBG0Tk4IDrGg6cparNgV2BN1z72gKtgXZYltl/RSRsV/nvsBoY2wK7YVWOiMgewD3AWVgW3X+AF0Rkk5D5GjbcMtoTq+F3KLA9lrJxcyNWg2J34GdY7+VVqroSOAL4Rtf3BjjXcCyWEm+JVdbux2rM/Az4JXAYlmJ32Aer0d0auAkYLiJi73sEmGDv+yeuXg0RaQeMxGoQ/MS+jqednopcxwbgW/ZU9UNgsX2PHH4PPJgjr1OA64HmWA2M/2E9w3bAwcAAETncTnsbcJuqtgC2A54IyDPq9bipAy60j+1uy3BOhONDszEq8C2ARapamyfdaVgPEfu7wQNU1feAn9iV/mlYlYWbzbAsNDdLsV40L6cDT6nqijxyBXEGcI+qvqqq9ao6T1U/i3D8Naq6UlV/xKo4dxeRTva+PsAzqroGy7qcpar3qmqtqn6EVaGdGFPuSIhIB2B/4O+qulpVJwJ3A6cGHLIO2EVEWqjq97a8bq5U1TWq+hZWBfW7hln4cruqfqOqS7AqjN3t7X8C/qOq41S1TlXvx7LwuoW9RsMGW0Z/B9yrqlNspXyNs8NWon8CLlTVJXaD4gagd548x6rqc6paD7TAUvQD7LK8ELjFk8dsVR2m1ljv/cDWQBsR6Yhl/TrlYQzWe+3we2CUqo6y65dXsSzZI0McG0RQ2bvfPh8i8hPWGxVBPK+q79r34BfAlqp6raquVdUZwDDXPVgH/ExEWqvqClV935tZAdcDgKpOUNX37fpxFlYj/tdhj4/CxqjAFwOt8zhO7YdlWT1mb3oE+IWI7O6T/EHgPOBAGloMK7AKlZsWWN0y7vM1AX6L9eLGpQNW915cvnZ+2JXHSNa/9L2xWvdgWeL7iMgPzgdLwbct4NxR2AZwKjiH2VitbT9OwOpGny0ib4lId9e+7+2K1J3PNiHl+Nb1exWWIgDr/lzkuT8dIuRr2HDL6Da4yhnW++awJdAUmOB6b16yt+fCnV8noAaY78rjP1g9ZQ6Z91ZVV9k/N7Nl8ysP7rx/63mv98dqAOQ71o9cZe8h4BgR2QxLqb+tqvNz5OW9B9t45LwMq+cELENnB+AzEflQRI72yS/O9WQQkR1EZISIfCsiy7AaYq3DHh+FjdHpYSywGuiF1fXkx+lY410T1/cuAVYLfqIn7YNY47APqOoqT/qpwE9FpLlL4XShYWvyeKzx3NERrsPL11hdQn6sxKocHPyUrdfJ7FHgahEZgzUO96brPG+p6qEUThjHNm+ab7AsKvc97Yg13tfwYKtL7lgRqcGqxJ/AUqgArUSkmaugdgSmRLkAH74GrlfV6wvMZ2NmQy2j81n/7oH1vjkswhrn/rmq+r3LQWXFvf1rrN6e1iF6L/xk8ysPTv5fAw+q6p+8B9o9dbmO9SOw7KnqPBEZCxyH1bN2Vx7Zvfdgpqpu75tQ9QvgZBGpwnqmT3mcHCH/vciqT23HOXdD6y4sp8iTVXW5iAwgpR7Kjc4CV9WlWE4s/xaRXiLSVERqROQIEblJRDbFavWdidUt6nzOB/p4rQJVnYnVPXK5z7k+x6pMrhaRTUXkOKzxUu8Y2ulYlUvWCy8i1bY8jYAqO4+agEsbDvxBRA4WkSoRaSciO9n7JgK97evck3Av0yis1uy1WGPQ9fb2EcAOInKqnV+NiOwlIjuHyNPLd1iOOT/NkWYB0NkucKjq11jjXAPt+7EbVqv6Ye+BItJYRPqIyOaqug7LccU7TeQfdrpfYQ0PPBnjOtwMA/qLyD5i0UxEjhIRvy5Zgw8bcBl9AugrIruISFPgapcc9Vjvzi0ispWddztZP3a7ANhCRDYPyBvbSn0F+D8RaWHXA9uJSN7uW1WdjdUl7pSH/YFjXEkcq/hw55rFmtrWPsSxQeQqew8Af8PqEs/nC+HmA2CZiPxdRJrYsu4qInsBiMjvRWRL+37/YB+TVSeEuJ7PgU3tcl0DXIHlgOjQHKuuWWHXwWdHkD8aWgZep6X4YHX7jsdqTX2L1WW8L1Z38XygxpN+U6xW8tH4eCG60mV5o2J5N47Gal1Px+UNbu9vh+104pNXX6xWn/tzX45rOg7LM3o5lsVxuL39p8A4rO7CkcDtNPRCb+ST33B7316e7Tva+XyH1d35BrB7gEz3YXtz2/+vIduz9Vo7nx+Abj7Hb4HlOfs98JG9rT1WQ2IJ1rBBA49hO11jrG7I77EK1IfA/va+HliOcJfbz3UOcKqf3N7nTQ6vfvt/T/tcP9jv0pO4vJzNZ6Muo5fY1+Lnhb4pVnfrDPt9nUa2B/U9dnn7gfVe6A958t8cywKcizWW/zHQ2yXrO5707vP/FMsDfwX+Xuj7YHlmL8EqsyOBjmGO9ZyzBznKnp2mqX0P7s/zjtyHq36xt22D1YP4LVbZf5/1HuIPAQttOacCvVzvgNsLPd+96Iv1Di7Ecuib5TrHAcBn9rFvY9Vx7/jd80I/YmdoMGxUiEgPrALZvsSiGAwGH0TkK6wZJN7ZKwabja4L3WAwGAzljYicgGWpvpEv7cbMxujEZjAYDIYyRayQtLtgdavX50m+UWO60A0Gg8FgqEBMF7rBYDAYDBVIxXWht27dWjt37lxqMQyGojNhwoRFqpovsEfFYsq2YWMlbtmuOAXeuXNnxo8fX2oxDIaiIyKho0FVIqZsGzZW4pZt04VuMBgMBkMFYhS4wWAwGAwViFHgBoPBYDBUIEaBGwwGg8FQgRgFXqF8+OGH7Lrrrjz8cIM1PAwGg6Fo1NXVccUVV/D999+XWpSNDqPAK5Qrr7ySqVOn8vvf/77UohgMho2YF154geuvv54BAwaUWpSNjlQVuIj0FJHpIvKliFwSkKaHiEwUkaki8laa8mxILFq0qNQiGAwGA+vWrQNg1apVJZZk4yO1eeD2Iuf/Bg7FWjruQxF5QVU/daVpCQwBeqrqHGcdXEN+TAhcg8Fg2LhJ0wLfG/hSVWeo6lrgMeBYT5pTgGdUdQ6Aqi5MUZ4NCqPADQZDOSAigKmTSkGaCrwd8LXr/1x7m5sdgFYiMlpEJojIaX4ZiciZIjJeRMZ/9913KYlrMBgMhqgYBV460lTg4rPN+4QbAV2Bo4DDgStFZIcGB6n+V1X3VNU9t9xygw0FbTAYDBWHUeClI00FPhfo4PrfHvjGJ81LqrpSVRcBY4AuKcq0wWAKi8GwYfLJJ58wfPjwUosRGqPAS0eaCvxDYHsR2VZEGgO9gRc8aZ4HfiUijUSkKbAPMC1FmQwGg6GsOfTQQ+nXr1/FeHU7CtxQfFLzQlfVWhE5D3gZqAbuUdWpItLf3j9UVaeJyEvAJKAeuFtVp6Qlk8FgMJQ7jp9PfX19iSWJhrHAi0+qy4mq6ihglGfbUM//wcDgNOXYEDGFxWDYsKmUMm660EuHicRmMBgMhtgYBV46jAI3GAyGMqRSFKJR4KXDKHCDwRAJEekgIm+KyDQ7BPIFPmlERG63wyhPEpE9SiFrJVMpCtE4sZWOVMfADelRKYXbsEFSC1ykqh+JSHNggoi86g6TDBwBbG9/9gHusr8NIam0Ml5p8m4IGAt8A6K+vp4zzzyT+++/v9SiGDZgVHW+qn5k/16ONfXTG2XxWOABtXgfaCkiWxdZVEMRcCzwkSNHct9995VWmI0Mo8A3IF555RWGDRtG3759Sy2KYSNBRDoDvwTGeXaFCaVsyEGlWLTuLvQbbrihhJJsfBgFXqFMmjSpwbbvv/++BJIYNlZEZDPgaWCAqi7z7vY5pIFGMuscBFOJCrxRIzMqW0yMAq9Ali3z1pUWtbW1RZbEsLEiIjVYyvthVX3GJ0mYUMpmnYMcVIoCd8vpVeCqyoIFCwo+x+rVqxPJJ4g333wTEWHKlMqKI2YUeAXy448/+m43CtxQDMQyuYYD01T15oBkLwCn2d7o3YClqjq/aEIaioY7YlxNTU3WvsGDB9O2bVu++uqrgs5xxBFH0LZt24LyyMXTTz8NwOjRowFYs2YNrVu35tlnn03tnElgFHgFEtQyX7duXZElMWyk7AecChwkIhPtz5Ei0t8JlYwVgXEG8CUwDDinRLJWLO5y/s0333DSSSeVZXx0twL3WuAvvfQSALNnzy7oHI5iTQtnGMC5lnnz5rF48WIuuuiiVM9bKGbAogLxU+BLly5lwoQJJZAmPPPmzaOqqoqttzbOyJWMqr6D/xi3O40C5xZHog0Tdzm/9NJLeeKJJzjyyCM5/fTTSyhVQ3IpcIdyHw7wBqOpq6sDoKqqvG1co8ArEL/C0LFjx8Cx8XKgtraW9u3bA+VfmA2GcsPpXStHJ7FcY+CVEuTFq8CdRkl1dXXJZApDeTcvKpAff/wx9VWEvApw1apVZa28wRpTMhgM4XGXc0eBe8eY0+LHH38M9LXx4q7vyl3hBRGkwL0WeN++fXnkkUeKK1wOUlXgItJTRKbb4RQv8dnfQ0SWusbRrkpTnrRZtmwZTZs2pXv37qmex6vAmzVrlur5ksDdEjcWuMHgj9vZy11OHAfVYlngLVu2pHnz5qHSuhV4kMWdRpm/7777EBEWLVpUcF5hFfj9999Pnz59Cj5fUqSmwEWkGvg3VkjFXYCTRWQXn6Rvq+ru9ufatOQpBh9++CEAH3zwQarnqUQF6C7kzviSwWDI5s0338z8LqUFvnbt2tDl1F22vXVTmgud3HvvvQBMnTq14LwcRZ1PgZcbaUq3N/Clqs5Q1bXAY1jhFcuC+vp6DjzwQM4666zE8vQWroULF7LTTjtx5513JnYOCKcAt9tuO95+++1Ez1sIRoEbDPkJGn5zjIJiKfAouGX2yp+mAt98880B+OGHHwrOy+uFXilObGlKFzaUYncR+UREXhSRn/tllEa0pk8//ZTRo0fz3//+N5H8oGH31uDBg5k+fTrnn39+YueA4ELuZsaMGRx66KGJnrcQjAI3FJMlS5aUWoSCcZRekyZNcOq9cnRic5fnIAs8DRwFvnTp0oLzCupCnzx5csF5p0maCjxMKMWPgE6q2gW4A3jOL6M0ojWloUS8reOgwCqPP/44J554IqtXr0ZVOfvss/nXv/4V+jxhZS8nxzGjwA3F4o033mCLLbZg5MiRpRYlMm4F6PxevXp1Zls5WuC5FHiaOPciifokaBqZqvL3v/+dfffdtyyHLtNU4HlDKarqMlVdYf8eBdSISOsUZcqQhqd42NZx7969efrppxk+fDhffPEFQ4cO5a9//Wvo86Tt5Z4GRoEbisXYsWMBeO+99xLLU1WLMiTlLiczZ87MXItDMby8hw8fHjptfX19lqESpOTSUH5O93YS9aFXgbuv6aabbmLs2LFlWe+mqcA/BLYXkW1FpDHQGyu8YgYRaWuHZURE9rblWZyiTBnSeBju8ZK6urqsl3blypVceumlvP/++5ltK1asYO3atZHPU4kK0C1zJcpvqBzScEC66667OOCAA3j++ecTy9MPd52x//77s++++2bt7927Nx07dkxVhn79+oVKV19fT3V1NRdeeGFmWzGd2JJU4F4nNr/e03Kst1JT4KpaC5wHvIy1XvATqjrVE27xRGCKiHwC3A701iL1U6ShwN2iexXz9ddfz6BBg7KmmFVXV8caIyrHlmA+jAVuKBZpKPAvv/wy6zst8lV/8+bN4+uvv86ZJm1mz57N6NGjM57xK1asyOwLUuCLFydvl3kdz5LMy6+OimNspU2qLnaqOkpVd1DV7VT1envbUFUdav++U1V/rqpdVLWbqibX55WHNJSgO881a9ZkvcxffPFFg/RVVVWRFXhtbW1m+kQYFi5cGCn/tDAK3FAs0vAgdobHHKU1ffp0/vznPydej5TjOKuXLl26cOCBB/pee5D8v//97xOXw2uBT506lbhOzk49fPPNN2fl6aYc15oobx/5FElbga9duzbrZfarTOIo8CFDhmResjAcdNBBkfJPC6PADcXCeb+SHC92HKacrtWjjz6aO+64o+BVtryUW++an9JyvL7dznUOTp23fPly1q1bl6rSc56vc8923XVXdtnFL9RIfpx62Jm94NcQMQq8jCi2Be6nwON0oUd1zJk6dWpqL96aNWsYN25cqHvpTvPpp5+mIo/BAOnEsfYqcOcc3vK7YsWKgspbuVngEydOzPrv7gr3s3Yd+Vu0aEGvXr2y7kXSDXe/LvS4Udm8z9HvObRp0ybz+4cffoht7SeJUeAJ4n5B07LA4zBgwIBU8j3ppJPo1q0bt99+e9607vt9+OGHJzJ302DwI40xcG8XuoO3/DZv3pwjjjgCgClTpiAifPTRR6HPE1aBF2vtg1atWmX9b916/SQhv1jp48aNY/r06QCMGjUq634lvRSq83yTnEbmkO85tGrViq222qrg8xaKUeAp5emdg+1X4OJY4HEU/pAhQyIfEwbHI/e+++7Lm9ZbyMplbN6w4ZGGAncscEchuSv4FStWMHny5Mw7/vrrrwPry8dTTz0V+jxhFbgTxCRtcvViBE2rc0+JdSvwJHoX3Hl4u9Bzceqpp+ZchMT7rpRbT0gQG60CT2McNtcY+IgRIxqk91rgYV6aclyeL8y99BaycgxIYdgwKKYCFxGOP/54dtttN849N3v58zhTqKKk9c4RT4OgYFRAYIRJ931PU4F7p37l4qGHHsq5CElUC9yh1IaIUeAJkssC96OqqirrRSk3B5aw5CrkDt5rq9RlBw3lT7G70B1L1NsTFUXBAHz77bc888wzoWXyzhFPgzPPPDPyMW5l6L5fSdRvCxcuZOXKlUC4LnRVDbUsalwF7h4XLwUbrQJ3v0zvvPNO4nl6LXA/qqurI3tnl4sF/sorr2R+x7HADYa0SGMamdeJLYwlGHWe8qGHHsq7775bsKyFMGvWrKz/o0ePjpyHe6580hb41ltvzd577w2EC+Ryyy230LRp07z5Nm7cOPNbVU0XernjfujHHHNM4nl6vdD9qKqqqlgFfvjhh2d+x7HAjUI3pIXzbn3zzTd5UoYnSIGLSGBDIWoX+owZMwoVMzajR4+muro6sJt5zZo1oSxZsJz3HNLoYXRmsYRR4I8++mioPDfZZJPM7/r6+oqpn4wCJ/slu+aaa2J1G3nzDGOBV1VV8dJLL/keH0S5KHA3hSrw1atX85vf/CZSgBqDIQjn3brpppsSy9Mpd35j4I4i8ZaDqAq8lEtXOoFZgqapduzYMZQl6+XEE0/M/E7aqg2jwMPWl24F7g2DXc4YBU72i/WPf/yDYcOGMXfu3ILyDGuBX3TRRZn/lRrgJIzc3jTue/XAAw/wv//9jz/+8Y+Jy2bY+EgzTLJXgX///feZGSaFroVdjo1zh7jOWu4FnpJ+LkkqcLdPTn19vVHg5U6QAvfbHyfPtWvX5l1r3NvirqQudDdhuiq999N9rUnPDzWki4jcIyILRWRKwP4eIrJURCban6uKKV9Q2X3++edjxx9w8vQq8F/+8peBx6S5kEelkK+eLYQkFzPxdvVXyjMzCjylPB1PyVx4PbErVYGHIZcFbqg47gN65knztqrubn+uLYJMGfzera+++opevXpx2mmnFZRnlChrxbDAy13RuOV79dVX2X333RNbFMRR4P/4xz8KDmnrljOpLvQffvihQSS7pElVgYtITxGZLiJfisglOdLtJSJ1InJiUJokmT59Oscff3zm//Lly/nss88Kztc7rpsPrwWe9hj4q6++muU9niYrVqxgyJAhLFiwgPHjx/Pwww9n7XdfayU1Sh5//HHGjx+f+f/uu+/y7LPPllCi4qOqY4AlpZYjCL+GsNOgnjlzZkF5+nmhB1EMBZ5EmOQ0GwHucn7aaafxySefMG/evETydt+voIZZ2HvqljMpC7xHjx45e2iSoFH+JPEQkWrg38ChwFzgQxF5QVU/9Ul3I9ayo0Vhp512arBt5513znpohS7zGaeVGcYZrBBld9hhhwFWZZS2w8zll1/O7bffztChQ5k8eXKD/ZWowKdOnUrv3r2B9ZXe/vvvD1jDCFtvvXXJZCtDutvLBH8DXKyqU/0SiciZwJlAIutcL1y4MJXlNp33tdwU+Nq1a2ncuDFjxoyhe/fusQIkFUuBO6QRA6LQOqSQLvSLL76Yf/3rXw22f/LJJwXJFIY0a/G9gS9VdYaqrgUeA471SXc+8DRQ8tiab731Vtb/zz//nM8//zz08e6X9eOPP86b3vuS5FL6kydPZvbs2aFlyXWuuAXWCTQxadKknOnWrFmTiY/up7whHQVeV1fHW2+9FWr4Ig65FMMPP/yQ+b1o0SLef//9VGSoED4COqlqF+AO4LmghKr6X1XdU1X33HLLLQs+cZs2bTKhTAHOO++8RLpE43Sh/+1vfwPSV5Djx4/n17/+NZdffnnsPNLC79qTUuBhDK6wdUshXej/93//l/X/22+/pVmzZpn/AwcOTK1OSlOBtwPcNd5ce1sGEWkHHAcMTVGO0PTo0SPr/4477siOO+4Y+mF6Pavz4c03qNt98eLF7LbbbnTu3Dm2snN3K8YtsFtvvTUnnHACXbp0abDPHQAizDS8NDzub731Vnr06MFxxx2XeN6Qe5qPu1Lafvvt6d69e+SV4zYUVHWZqq6wf48CakSkdZ7DUuHf//43EyZMyPyPW37cClxVmT9/ft5jHGUftrzFHQP/9ttvgXir/M2cOZMbbrgh8nFhScICzxXD3CHo3uVzkP3444+ZN29eok5sr776atZ5L7vsslCROeOQWhc64HdHvXflVuDvqlqX6+WN2s22ePFiWrRokVi8bVXNvCBr165lxYoV/OQnP2mQLqpS8r7cQQ/ZPW5XSgWei08//ZTOnTsD4RovaVjgTtCGV199NZH8vOSS010pOdb4mDFjihLustwQkbbAAlVVEdkby1BYnOewUCxfvpzmzZtHOmbmzJlZkbbi4Fbgb7zxRqRj07TA3VHD4pSjI488MhH/nyCSsMDffPNN3+3u6w269lw9JkuXLmWPPfYAyNRdYNWVhdSRfrK455knSZoW+Fygg+t/e6zxMDd7Ao+JyCzgRGCIiPTyZhSlm23OnDm0bt2avfbaqxDZvefP/N5pp53YYostfNeCjfrQvS93kAIPGwEpF14njaSJ6kyThgJP27M9V7xkP+u8Uuf150NEHgXGAjuKyFwROUNE+otIfzvJicAUewz8dqC3JqDF7rnnHlq0aBFZ4fTu3TvLabW2tpYLL7wwY7mGwa3Ao05FSzOQS6HW4ooVK2IfG4YkyqSfFT148OC8Ud6+//57pk2blrVt5cqVmePcQ5buHsRC7+mGosA/BLYXkW1FpDHQG3jBnUBVt1XVzqraGXgKOEdVnyvkpK+99hpQuANB0PxFxxr+8MMPcx4ThjgKvFwt8CjOPW55krROgq4rqXN4K1h3o8Vv3GxDVeCqerKqbq2qNaraXlWHq+pQVR1q779TVX+uql1UtZuqJjKW8MILVvVRiMUoIrz88svceuutnH322aGPc7+vURVt2l3ohRyftgOpX9mLWh79DBjHv8DBr+687LLLGmzbbLPNMhH6gnoCklbgIpLa4k2pKXBVrQXOw/IunwY8oapTPS31NM6bSD7uLpWw3UBRFaM3fdAYuLsFOnz48EjncLjmmmt8fydFbW0tTzzxROh1ivfff3/+8pe/sPXWW2dZNE8++WRsGfzu/8KFC2nXrh1XXnll7HwdvBW3uwV/0EEH0apVq4zzHmy4CrxUFNJV7MbrUR7lmLq6urwBmryk+R64u9DjTpFLkySMhTA9kH51dNB9d8bUg96ja6+9tqBhOG++jRs3Tq2hlOpcIlUdpao7qOp2qnq9vS3TUvek7auqTyVwzkKzCJWnXyu8UAs86IWLUtEE4faU9JvyUCi1tbWcdNJJLF++PFT6uro6brnlFhYsWMBjjz2W2f673/0utgx+z+mBBx5g/vz5XHfddbHzdchlgX/99dcsXbqUCy64ILPNKPBkSaJsB1Wkqspxxx3Hyy/7z2Z1yvYnn3zCiy++GOmcuWaXTJ8+HRFh6tSpsS1wZw2BKVOmJLqAi/sccfGrE6PmFyZSo995gvweHAs7SI677747tqEE/go8LUIpcBHZUkQuE5H/2mEU7xGRe1KTqgDcD2X//fdn+PDh7LvvvqGmdYXJ0yEJC9ybb7lGVVqyZEkDD30vhQSUSHMM3M/ZMC5eOfNds1HgyeKUj3fffZf//e9/LFiwIPIKXhMnTmTs2LENttfV1fHcc89x1FFH+R5XiCWZ6z1xHC+ffPLJ2LEnnn/++cx/P9+cQoniK+DlrrvuarAtVz3nN90qrgIPGneeMmUKVVVVifTKOYwdOzawh6jkChx4HtgceA0Y6fqUHe6X491336Vfv36MHTuWU045JZE8HZKwwL3pg17sUgc6ueGGGxrMkfeSRC9Bofjd/xYtWiSWv/eZ57tmo8CTxSkfgwcP5je/+Q1t27Zlu+22i5zPwIEDG2xznlWucdG45LLAHeXUtGnTREKp5pPz6KOPjhxwKG1HN4d77rmHzTbbjC+++CJru18X+hZbbJH136+s5VOcQ4YMiSGlP/vuu29maKUcFXhTVf27qj6hqk87n9SkKoAgJVjIPLx8Cvy6667jnnvuKdgCP/fcczNjL3V1dQwYMIARI0bEkDg/UQKNhAlCUIgCTyoqXNpRn9wFc9KkSXmf9+DBgznzzDP56KOPEpNhYybpHir383Te36B3sZDGWC4F7pStOEt1QsN7ku9dGzlyZGSLOuywWFiCnuMzzzwDZDspTp482ddpcdNNN83671f/pOX5HcTUqVawwXJU4CNE5MjUpEiQoJcjrHOVH7kUw6xZs7jyyis544wzYilwt4KZNWtWJtzpU089xW233cYxxxyTigXep0+fRPMrRIEndX1pRn2C7Mp99913D6VQhg0bRteuXROToRjYs0Y2KvIp8LQt8EaNGrFgwYLIeXvfwX79+iU+y6RYFrhfL8huu+3m23jyKme/+qfY66s7MpSNAheR5SKyDLgAS4n/KCLLXNvLjqBKtZCH6Zfn7NmzufXWW7MKXdQumVWrVgW27NMYy3IzY8aMwHv13XffcfPNN7NkSXHWq0iqqzmMBT5p0iSGDBlSsDWnqpEqyjCL25QCERktIp1d//fGmgJadqQ5z98Zp06jCz3X++3si1sG3n333QbbwkSJi0KxLHDnHoepq93rjANZ3e5pDucdcMABgfvKToGranNVbWF/V6lqE9f/5AYXE6RYXuh9+vThwgsvzApDGHXueS4nikLnd4YhKKb58ccfz0UXXUTfvn1TOa+XpCLm+VWy3sqgS5cunHvuuTz1VPQJD4U4HfqNu5YJA4GXROQcEbkeK6zxH0osky9JrLwVRJoWeK5jnbIdN3+/WRvumRBJUCwLPIoC//zzz7n2Wv9Vak899VQgHV2Qqy4uOwXuICKvh9lWDgQ9tEIepnOsXyHzC+gSFvcCGLmYO3du7HPkIiii1DvvvAOQCRmZthNdUmNVfs/YLbv7+fktUjN//vycznre5x+l0nUvQVpOqOrLQH/gNuCPwJGqWpaD9mlaVk7ebgt85syZ1NTU8Omnn0Z61l4rLUzDI8lrcwLeJEXSCjyoLvZ2oeers4N6LdzTUouJ8wy9oXZL2YW+qYhsAbQWkVYi8hP70xnYJjWpCiBNC9zvhUlrnMV9HX/+859TP4cfxfJ+T6prNN+cU3cl6Xdt7dq1o0ePHr7dkt68/P5XIiJyJdaKYQcA1wCjRcR/LlWJibNEb1jcCnz58uWsWrWKxx9/nNraWu6///5I76i3wp4zZw433XRT5n1ZsGABl1xyCXV1dZn3MEkFHua9jLI6VqkUeKE9LlHelyTqutraWj777DP+/e9/Z21PqofRj3za5yxgPLAT1hKBE+zP81hrfVcMzhhknHFdVaWurs430lFaIfKKoRzCKvAwshRSALyV49y5c2NVaO585s2bBzRcJjAI94pE48aNCyVnlGeU6/7MmTMn9TjuOWgN7K2qY1X1P8DhwIBSCZOLYnWht2jRgk6dOmUUwG233ZbplQqD972YPXs2f//73zNDVmeddRY33nhj1rKnSU45DJNX//7hg2EWa4qoUwaSUOArV66MtMpa2LKcqxyvW7fOd8nhNJ3p8o2B36aq2wIXqxW33Pl0UdU7U5OqAIIexLRp06irq2swfzBsnsceeyw77rhjg31pKfBikE9pRFHKSUZr6tChQ8YbP24+7du3bzClJqgi+uSTT2jfvn3mf9hhmCSU7pNPPkmnTp2K5m/gRVUvABCRHe3/s1X10JIIk4egCt2ZIhrUcxIGbxf6okWLMvmuWbOGDz74IHReqsqUKVMabHfeF8eYcL8/YZRu2Jk0YcriV199FSovSD6eQT4L3FF4hfS4JO14F4ba2lqWLSuub3fYpsE8ETne8zlYRLZKVboY5KpU43oCqyojR/rHrUmre6QYFng+BZRU7Ok4cgQtIZgL7z174YUXArvQ3Tz33HM583EoxAL3u8b6+vpM7PQHH3ywJJ7qInIMMBF4yf6/u4gkO4iaEEEK/KGHHmLcuHHsv//+kfJzv9dO3m5rKW7siPr6enbbbbcG23ON7YaxcpOMKhil8VmsgETOeZznUogFXirDKq11v4MIq8DPAO4G+tifYcBfgHdF5NSUZIvFX//618B9cS2mXBW1nzNUEpSDAl++fHnoe1ZIazmtMfBGjRoFdqHnWks4DQv8xRdf5KWXXso6dpdddsnqmj3yyJKEWrgG2Bv4AUBVJwLblkKQfHz66ae+2+vr6zNDJnEYNWpUJrCRW4HHfadHjx6dM/iTu2F8//33A+ksMJSLUirwfBa4I1shdUopoleKiG93eZqyNMqfBIB6YGdVXWAL1Aa4C9gHGAM8mI540cnVaos7lrMhOCv5EaZghu0SKqTrKKn7670erwIPev5hFXghFjjAaaedxsKFCwGrcTR9+vSs/d7oUkWiVlWXeu5Bxb3whcxkcMc/d1tuSVtThY6FJqkInHc5TJ5J+2fkK19xVosLe440CVLgaRL2bJ0d5W2zENhBVZcAgRpTRHqKyHQR+VJELvHZf6yITBKRiSIyXkSi9YFFJG5LMk53biUQ5n6EvWeFKPCkKghvga+pqckqyL179878zlVxpTUG7k7vd/4mTZpEyi8hpojIKUC1iGwvIncAiazfXSyqqqoSm4rofoeSdt7ys8CjkIYCD0Oxu9C9ijwOpXAKFZGiW/5hFfjbIjJCRE4XkdOxvNDHiEgz7K43LyJSjeWpfgSwC3CyiOziSfY60EVVd8eag3p39EsIT9wCWcgSl3Ephy70sGkgeE55UnKEwft8vRZ40BzvYlng+dKXSIGfD/wcWAM8CiyjTL3QgxCRxObauv0Qoky1ikMpFXgUpZyEAm/btm3md9gu9ELOW04KvBy60M8FTgD2AwR4AHharSdxYMAxewNfquoMABF5DDgWyAxkqap7gmEzUu66q6TVoYqhwMPcj2IocGcRgEJQ1QbzVb0WeBD5FPjdd99N//796d69e9b2Qixwv2NLocBVdRVwuf2pSEQkVnnxC3jiXvlqzpw5BcnlxSlvjqxRZU6ye7bYFniuBVR+/PFHXnvttQaWdyVa4MXuQg+lwG1F/ZT9CUs7wD0pbi7WmHkWInIcVjjHrQDfABIiciZwJkDHjh0jiJBNOSx5GUQV0BjL2YAid1nlSxOmBZm2tZIPvylEXgs8iHwK/E9/+hNAg7nAUSvgfNOGijkGLiL/I0eDWVV/UzRhQpDrXa2qqkqsbLsVeNJKwMkvrgIvVRd60vdh3bp1rFq1KrMC2wUXXMCwYcManK+QhsN9991XkIxBeJ1fixHyOhehFLiIHA/ciKVkxf5onnjoflfT4I1V1WeBZ0XkAOCfwCE+af4L/Bdgzz33jG2apq3AN8Nqtbg/WwEtfT6bYSls55M16aFRIy7E6tusBVZhjVM4n++xWkOz7c8sYBpWH2gUkhwDL3Xvhl8L/6yzzuLBB/39K92F7a677sraN3LkSDp27Mjvf//7nOc899xzI8m4bNkyXnrpJXr27FkOFvi/7O/jgbbAQ/b/k7FeqbIil0eyiMQu296lKqPOzY6CV4EX20p0+/KUcgz8sMMOY9asWZn74HXmrKurY+XKlfTr1y/2Oa644oqCZAyDtwEW1BNUDl3oNwHHqOq0CHnPBTq4/rcHvglKrKpjRGQ7EWmtqosinCc0cV/EaixF7FXO3k8hq7vUA2uxWj2N7HM6yr0pVrisXNQCnwOfYIXMG2N/56rWwhTiSlHgQYEbBg0alPO4cePGNYg1/9577/Hee+/Rs2dPWrcOvvPvvRfd1+uII47IRPbzUkwFrqpvAYjIP1XVHbz7fyIypmiChCSXAq+qqor9/u28886B+yZPnhwrzyC8MgbJHKQICu2eveiiizK/w67DAMmX7VmzZmX99za+6uvrGT58OGPHjk30vMWg2N7vYRX4gojKG6wlCbcXkW2BeUBv4BR3AhH5GfCVqqqI7IGlrxZHPE9o/FrpP8EK6r4NlhL2/m4HtMFjIQfwI1arZZ7rswDLYr74n//kiVde4YW33+YHYCWWxbzW/niLiKPIG2E5B2wOtMKy3lsDg849lxH//jcdge3tzy7252Q7j5VY7sRvACMBb3XkVzC9L2A5KvBXX32V7bffns6dO2e2BcVrDhpfd1rFzrQuP+666y722GOP+ILmoAwscIctReSnLl+VbYEtcx0gIvcARwMLVXVXn/2CtTjKkVgdSH0LXSAl35zgNHrXkp5G5rXAg6a8NmnSJLNOuJvtt9+eadOiVsPrcVuCucakvaTdU+CnwIs9lpwEcX0xCiGsAh8vIo8Dz+HqqVXVZ4IOUNVaETkPeBlL/92jqlNFpL+9fyiWY9xpIrIOS/+dpAndgaY0VMRbDhzIY2Qr6rCjjguwug/m5fh8n+P48486ih1++lM+fvvtUOdTrPl5zo1xd0nstNNOdLrzTs5zBc3fFEt5dwG6Ya1MsRNwqP0ZCMwBRgEjgNfwV7ovvvhi1v+wFWOx/As++OCDTJhV96sSZIE3adIka1zTb38QV111VUwp8+NXKZZoHviFWAuYzLD/d8ZaAyEX9wF3Yjmz+nEE69uV+7A+ZkRscilTVU3s/Yta/XTp0iX0MsJeBR7UKGnZsqWvAi80upi3kfvMM4HVdxZxGueNGzcOHYjFm399fX2qC4AEsckmm2S9Z7/61a94O2R9DdYqaL169WqwvRy60FtgtaTdAaoVyPkGqOooLJ3h3jbU9ftGrLH1ZJgxg6lYCto3avBDD3GSZ9MPrFfM3wT8/pbcXdFhSHKOoF8+q7G6zD8C7rW3bQX8GuiJZQp1xFo3sj+wHPj2jjtYsGIFbfr2hWbNgIYLeYStGIs1nueNbw6W41FQd3a3bt185/E797AUVm9tbS3fffddg+0l8kJ/SUS2x2rvAXymqjlNT3u4q3OOJMcCD9iN8fdFpKWIbK2q8+PKmUsZ1NTUlGwIp5ldbsKwePFinnvuuUyZ+v57/yZ/x44d+eabhqONURoXAwcOZJ999uGggw7KbPPeoxNOOCFUXnHubU1NTWgFPmHChKz/pVLgSfS4+D2jNK3ysF7of0hNggTR5s1xJpqvpqEiPuH887n0jjuytjds56ZDVVVVqgrcj4XAk/ZHgD2w3Px/A3QFmk+YABMmUH/xxVQdeSSccAKbegqdE+oxH8WqQP0aFCeffHJgrPp88ZSTCgAShdWrV/t2zZfIAgfrdeiMVR90sbsCg6zrMPjNQGkHNFDgYWeY5FIGdXV1JYuWKCIMHTo01Ope3lC5AwYMaJCmf//+XHHFFVmL6zhEucbLLruswTFxY4vHVeD5UFXfuqy+vp5GjcLalslxwAEHMGZMePcPvy7zOKtdFkKogQYR2UFEXheRKfb/3UQkfTe/iKxr0YJfYI1rNwF+htWV3Bu4CJhx3HE8iuXg9SXFU95Qmig9bhRrHdhrgT2xgl1fDIwFqlavhmeegT59+OvgwbwAnIY13u4stpGPYnWh+53n+eefD0zv1xUJ6xVCKeaLBo3Xl8LqEJEHsTzS9wf2sj97FpqtzzZf7aOq/1XVPVV1zy23DB56d57XPvs07Imvq6tLdanRXIgIZ511FldffXXkY/0svoEDB9KuXTvf9IW+q3HLaJzzhnmXg+QplQKPGgzIb5zeb2ZKmvV+WE+BYcCl2GFTVXUSll4sK9asXcsUgseijz/++GKKk0WSDzGJvGYB/wfsC9x+8cVw223wq19RXV/PMcD9WBb8/9asQYcMYes8+RVLgUe1Bvy63MGaZrJkyZKSKHCv17tDiRp4ewL7qeo5qnq+/flzgXlGmoESBkeBux0XHYYPH57Tz6GSyDXOXei7Wm4WeJA8tbW1JSkLYXwMci2CVArCKvCmqupdELfsoqLkG3OJMnUiadIeA3dwTxUJy9IWLeDPf4YxY7jjkks4G8vJTbAc4IZg1b5jgb9heSZ5KaUFHpcRI0aUlQVeIs/bKVjzwJPkBSznVBGRbsDSQsa/Yb216jfkMWbMmEjORmmQVNnOpUQKHSaIu7pXXCe2fAQp8HXr1pVkSMRb/vI900pS4ItEZDvsbjARORGf8axSU8jyc2lTjC70K6+8kk6dOkU+zq3EVrVowVAsxd0G6IsV+P5HLO/2G7Hmm0/BirrT1T6uXC3wXCxatMh3HDJtghoNJVLgrYFPReRlEXnB+eQ6QEQexWrP7Sgic0XkDBHp78wwwXJcnYE1UjUMOKdQIZ2y7VbgI0aMyPz+4AOvfVFcKkGBx/WxKLYFvm7dOvr06RP5nIUS1cs/bOO/HLzQz8WKhLaTiMwDZmKtC15W+Cnw3XbbjUmTJpVAmmyKYYGraiyLMij61BKsrvT7sablHQ4chzUB+Of25wqs6Wlvfvst9wFv03BOe5Ik2VBYuXIlH374YWL5OVRXV+es9HIF8CgB10Q9QFVPzrNfseqMxGjbti39+/dnm222yWzbfvv1fUFffPFFkqeLTNoKvG3btrEU+OTJk/nFL34BwKmnnsq//vWvPEc0JE6d4rXAzz//fO64446sbUFluVSGWFQFXg7LTIdq8qvqDFU9BCvAw06quj9WXV5WdOjQgaVLl/Laa69ltg0fPryEEq2nGBa4qsZ6qa699tqM92RQq3gV8CyWc9tWZHetdwROX7aMN7Gm3N2LFZ9zs8iS5CdJCzytApjPki4nC1xV3/L7FF2QPOy8887cdddd/OxnPwMsj+6f/OQnJZZqveJOW4HPmTMnliLdbbfdMr/jyNiyZctELPD99tuvQZpcFngp8N57v/J46qmnZn5XjAJ3UNWVqupEzPhLCvIURFVVFS1atMgq2OUwTgHFm0YW96X6xz/+AcBWW22VN20t1hj5uVjeSfsAdzZrxnSs/ti+wNNYwWdGAWfb6ZIgSQs8rfHvfIo4qEIspgIXkeUisszns1xE4i/unjJuhVkKT+Ug0i7bNTU1Bb+vcRRxhw4dYh0XxpoNUtSlssC95c+vPPbt25ezzz4bCF/XloMXuh/loRl9KDdPQSiOHEFd6GGGEBYvtiLYRp0XrcAHwLVNm7ITsDPwd+AdoAYrJNcQrEnBH2H114YJTlpVVcVVV13F7NmzrfOoMmjQoJI7K4UhX+VVDl3oqtpcVVv4fJrnWaSopLjvUaGRyZKkWOW7EOI0fp24/U43fFgKUeDlbIFDaWJHBFGIAi99/0EA7sJULjF1i+WF7qfA27RpkzdPp8srbhe1Uzl8hrXyza+wXJv7YlnjK4BfAldjzUefixVf8wjArzjU19fzz3/+MxNJ6plnnuHSSy9toMALqdRMF3rlUW4KPOku9Fw476tzrv/85z85YyB4iVO2HaMg6r0O8y4HKeqgWRpp473Gcni/8pHzLufqZsMKJV6WlKsFXgwnNj+lFGas0AntGbeL2q8wfoflAHciVte6Y407Ybn6Y3WxL8aKyfsHrPF1NzNmWCG6Z86c6Xve119/PZa8AC+8kNPZOjb5Ki+/uO3NgU2XlW3PddngVphpVrDPPfdcqHRepZomTsPPOde2224byrPcUYhxFXhdXV3ke+1N73d/1q1b5zt//4YbbogmpIeoAVkcwnSh+3Haaafl3F+yLvQ83WzlMwCVg3KxaooVic1PgYcZK3RCkca1wPN1e60BXsIaN+9AtjXeDMsj8h6sRWMmAbfb25ymh1/+S5Ys4dBDD40lL8DEiRNjH5sLp/KqwpqKtztWPPo/YEVDWt63L09ieex/idU7sQzYzeOla2hIsRR48+bNQ6UrZgx2rwIXEXJFr3NYvXo1EE/W+vr6WArcW+/61Usff/xxllNYUsSdgha2C93LXnvtlXN/yWOhVxrGAm/II488wimnnOK7z02hXehhmWh/rsWyxo/GitF+IPAL+3M+1jrp7LorPauqmI+l8CdhK70SWaybAltjDRFs7fndFuiwbBlbYvUm+FZ7Pvd4FUCZNDYrgbQVeFgHOae8lKJxLiLsuOOOeY9zZIs7Bh6nCz1M+jPOOIPWrVtHlimJc/sR1wIvZVd7qgpcRHpirQtcDdytqoM8+/tg+TyBVSefrarh1ubLfV7f36WkGAq8TZs2gbG/Tz755FAKPG4XeiGWyDzgP/anMbA3liLvgRXqddOpU/klltXu8C3Q6ne/YzhWWNhvsaz3BVhd9yuwlOIq7EZAAE2xprtthtWNvTlklK/7e0vWK+iW+S7IdS++s2Wbb3++9Xw7v5cDL19zTdZyf4aGBJXt008/PfTCO2EIG5feaxWniaPAq6qqMuWtadOmgYuCODhpC+lCj9qTuXTp0qz/QfKF7e7eYYcd+Pzzz0OljatQw46Be69lg1TgIlIN/BtryvBc4EMReUFVP3Ulmwn8WlW/F5EjsILFFLRusH3uzO9y6UJPshvFrzD079+fs88+O1agBjelWpbRYS2WB/s7WJHeNgFWjxvH2fvsQ1esyG87Y8f+/PBD/hgiz9VYU9/E82lMPC/OteRWxuu22IIpixezAHvxgJCUS2OznAm6RzfeeGOiCjxspVxMBR73XM5xhY6Bd+rUKTMrJB8ff/xxqHR+y6b60atXL2666aZQaaPW+U7gpbBd6N66PK7TahKkaYHvDXypqjMAROQxrHWCMwpcVd2LOL9PQtOFg1rpO+64I9OnT0/iFJGpr69PrZC3b9+eu+66Cyh8ikOpFbiXNQB7781Q17YqrG73d++7j+v79qUj1liz82mNNa7e1P7kcvNZiWWtO59lWFbzd1iLubi/v7U/+RYMbLfppswLf4nrr6tMGpvlTJDXd5j4BVHw60Lv1q0b77//fta2UnShR/V8r6urY9myZSxcuDDWOevq6qipqWHq1Km8/PLLodcRz8ef/vQnhg0bFiptFCs3KQs8bHnMl65Sx8D91gTOZV2fAbzot0NCrhnsSu/7u5TU1dWlJos73/79+zNq1CiOP/54nnvuOX7729+GysPpyipWTHM/tt1220Bv83bt2jFvnqUW67FerB/22IP/hMi3CdYYjno+a8ndvR6XpMbgDA0JKkNJly2/hrDfOdJW4I899hjbbbcdEN8Cv+uuu7j55ptjrdimqixdupTWrVvTrFkz2rZNbt2bKIotStCetBV41C70NBV4mjWG31vmeyUiciCWAv+73/6wawa78sv8dj+EUoa+S1KBe/Nx/99ss8144403OO+883jttdc466yzQuW5du1aBg4cGGtd46Rw5nz74Y577XDPPfeEyvdHLOt6JdaY+I9Y3eppdWzFfc7l0tgsZ4pVhstFgZ900knsuae1PPuRRx4JwAMPPMC2226b1/vZ4frrr4+93KqqMnnyZN58883M/zj43Z/Vq1eHtuaLYYF7FbY3n2uvvTbW+dLsQk9TgYdaE1hEdgPuBo5V1cVJnDjIAldVbr31VjbbLI0o3blJsws9qXwvu+yyRPKJS66C4HeNt956a4rSxCfu1Bhjgecn37xrb9Aib1nffPPNATj66KMz2/zuu9/86lIocDdXXHEF3377Lb/97W+ZMWOG71S3MAaOH126dPHd7lU+cRV49+7dG2yrra0NLW8UCzxuOcpngV955ZWxzlepCvxDYHsR2VZEGgO9sdYJziAiHbFieJyqquFcDCPiLVgXXHBBSaYfFcsCD0OPHj0SkSNpKiHyURi22GILXn755cjHGQUeHr93fsWKFcyaNStrm1fhOP/dCsHvvvtZ4H7piunEVlVVlTeqYpxxbghWzEkNqbVv355nnnkmdt75FLgTnxyilyPn2cUdA98gu9BVtRY4D3gZmAY8oapTJXvd4KuALYAhIjJRRMYnce58Xegiwi677JLEqULz05/+NLG8ClXgaVY2Ybv1/MhVSCupe7m+vj6WMq6kaywVuSrDZs2aNbCcg9K73zW/+x62Cz1N66qYBF2Ho2TDlOt8dar3/kVxmM2nJJs1axY6rRfnHfFOHcxXhh1/gPbtc/teV6oFjqqOUtUdVHU7Vb3e3jZUVYfav/upaitV3d3+7JnEeXN1oTtMnDiRBQsWJHG6vCxZsoTNNtsstQo6qrKI2yIM09119tln89lnn8XKP6jgrVq1ijfeeCNWnqVg3bp1sZ61scDDk+v+vvXWW3mnlLkVuDPG7KYcu9DTIpfsTgRExxk2qO6YM2cOU6ZMiXTeKAo8nwXulstdj+yzT/hZyVEV+F/+8hemT5/OvvvuG/ocSbNB1hhhFHhNTU3s8aKotGrVqoEsheDkc+yxxwLhx1ydNXnjTgMJE1N9zJgxdO7cOVb+QQr8nHPOiZVfqaitrTUKPCXCND4POOCAjHUUxgI/44wzGuz3C+Ti93z69esHVLYC32STTfJ2oeezajt06JD3Hnj3J9mF7sYt6+jRo/Omd+TyniPfjIeqqip22GGHvNed5tDgBlljBHWhewtgoYXub3/7W9b/oUOH8tVXX4WSqxCcfB555BHeeOMNLr/88lDHvfTSS7z55pucc845HHPMMZHP26RJk7xpZsyYEfs6g170adOmxcqvVDRq1CjWPahkJVBswiqLMGPgfnmF2fbss89mHD9L/ew+++yzTN3TokXu1WAffvjhrP+bbrppoAJ3LHCnbBYynvv9999n/Y/iFxRFCbrr+TCLvTh4G22q6usoGPUeGAUekSALPOlC5h0X2nXXXXOOdSetwJs2bcqBBx4YunW62Wab0aNHD6qqqjj44IMjn7dp06Z50+y+++6R83UIskArzTKtrq42FniJCVLgznQqd2UdpkJu27YtAwYMyNpWVVUVOahKWI488shI3b877rhjpu4ZMmRIzrTekMp9+vTJq8CdOqYQBe52Hm7Xrl1sCzxfz2lchemnwMPEms+HUeARCbLA/QrZq6++GnrpQDeXXHJJg67oqF1IpeScc85h2223Ddzv56nudhQJ4s9//nPs6wxSYH7Lb5YzUbr73BgFnp+wCmS//fbj4IMP5rbbbsva7iiNxYvDz1ht2bIl8+fPb+Ck5ZYl6bI9cuTIBlHfwtKnT59I47JXXXVVwV3oYXDfo5qaGurq6kI/T/f583naJ6XA6+vrfeWL+qyNAo9IkNXtV0EecsghHHXUUZHyv//++xk4cGBkb/CkCrlfUJOo1NTU0L9//8D9vXv3brAtzBKLTZs2jX2dQYqvlNHh4rDNNtvEOq6cGni5EJGeIjJdRL4UkUt89vcQkaX2zJKJInJVUucOu/52kyZNeO2119h111199//www++2w866CAmTJiQtc095hlEuT27IHl+9rOf+aYNUqR+Qw5h8LtX7m2NGjWitrY2tAIvRiQ2PwUeF7djpFHgBZBvrCvXdi+vvvoqF198cdZ6s8462n506dKFUaNGhZQ0PLfcckvieXrZaaedGmwL03DIN/570kknBSq4TTbZJGs+p8POO++c97zlxIknnhjruEqwwGX9IkVHALsAJ4uI3/yht12zS/xDWMXA8VwutFIMWr/+9ddfZ4899sjaFqab3Nn3m9/8xnd/ucQ4COtd7yXqGLjf9fpZ4GGVZDECuURV4Lnuxdtvv83dd98NGAUeGfeLEkaBh33ghxxyCIMHD856IE54Q2i4NN6gQYM44ogj8p7foWXLlqHkCOMNHoZc8njHmdq1axeq8OYraI899ligk42IcN555zXYvmbNmrznLRf69euXNTYahXKz4gLILFKkqmsBZ5GiouAo8LjDFA7eXp2nnnqKqVOnZm3be++9gWAL3D0+6qRxZpx4SWIsNQn8lu8UEQ455JCsbZdeemmWo2vUMXC/5+Otl/0UuLtXsE2bNvz85z8PzM9N0DSyKITtQg9D48aNM2udp9kw3+AVuPuhFGqBBzFw4EBOOeWUBi33qOcRES65pEGPZEmI+zLH9cDORSUpcD8OPvhgrrvuurzpwq6NXGL8Filq55Ouu4h8IiIvisjPgzITkTNFZLyIjP/uu+/ynjzqmGzQu+id6njCCSc0GOMeMWKEb17V1dUsXrzYt5cq6HzesL+nn356gzT5nM+iECRHkAK/5ZZbsoYObrjhhoKCo+SzwJ0udK8Cd/e2NW7cODMdsBgK3HuOfBZ4vh6Zbt26AdZ88bTY4BV4GAu8UC655BIefvjhvPmHUYADBw5MSqyCiPoyu4+Lex9ExPfYpBR4vjCUafHaa6+FmupX6FKwRcLv4Xof6EdAJ1XtAtwBPBeUWdSFipLqQncr0KD3tWXLlohIZh1qtyXl7QXL9857371f/epXDdIkvSSqH37z20WEmpqazKpnDo899ljmdxJd6F45PvroI+69996s7d784zzvpCzwfOUx170QEdq0aYOqphq62ijwFPE+4NmzZxf1/PnIdT/8FPhFF12UdznXMFOoSqXAg7jooosKOt69YEYh71iFKPC8ixSp6jJVXWH/HgXUiEjrJE6eVBd6mOdUU1NDfX09f/zjH/Meky+/3XbbLSsWuF8ZKEZY1iAL3P3tR9D9fuKJJxg8eHCo9O7rC/v8nGPizgOPgqPAq6urufTSS7nlllsS8UJPkw1SgbtxP/hSOwl5AxmUM35d6G3atMlaLOK6667j5ptvzkpXSMWatgIPKnhOV1dcnAq+UCpEgYdZpKit2DdbRPbGqmcSWWkwqWlNixYtinyMU3/4VepOGNHXX3898Pjjjjsu89svjyQXvYji7xNGgQfd7169enHxxRc32O6uB/7whz8ADSNh+hFkgRfDC905R1VVFTfccANbbLFFrHyKyQapwN0xdt3jyqVc6xqslz0q119/ffKChCCoC91byD/44IPMbxEJ1UiKWlGlrcALbVEXag06RIkaVSpCLlJ0IjBFRD4Bbgd6a0LayVuhd+3aNVbwoBUrVkQ+Jtd78tJLLwHw9dfr3QO++OKLwPRpK/Ag/K4higXulTGovLuV6D333NPg2LBl5pprrqFZs2aBy53mO3cYnOt2GhWFNuiLSaoKPMR80Z1EZKyIrBGRhs24mHg9TAcOHMiSJUuyWsBhybcoQi68L3uuwCngX4Auu+wylixZEluGqOdzCDMG7p0/mkS3ZlIWuHdszcnfj0J7ZoKsiXy0b9+e+fPnZ/5XiAUeZpGiO1X156raRVW7qep7SZ3bKdvOuzZ+/Hg+/vjjyPnEWbM913vSrl1DPz7vmLKbUitwd5CYKBZ4t27d+OUvf5nZHkaBO4SpK7z34JBDDmHFihWZddzDkEuBv/nmmw2GAd2rkU2YMKGB82I5k5oCDzlfdAnwZ+BfSZ7bL/BH0PSOfLjHN9PC6WJyplB45z3Hlb0QampquOCCCzL/gxS4W+nkU+D5FiUJUuCrV6/OJ24D/O5ZMSzwMJWhO63bcSkpS35DJmoXelD0wCZNmmTKXVhyPVMn4pu7kZ4rvaoyefLkrB6sYnShO7jDtEZR4M2aNeOjjz7Kex4/xR7Uhd6hQ4cGab1EKaNxy7OIsMcee+SNJe9QjAZXPtK0wPPOF1XVhar6IeAfVSEmUZapc5gzZw4TJ05k3LhxRVulzGHo0KG89957XHutFe/Czymk2FRXV2fJEeTMEUaBb7755rz33nsNptL44Vf48i376tc6z9VVmDRxFa8z5PDVV18xY8aMhKXaMInqldylSxfuvfdeHnnkkdihSR1yjYE7MRyCAsR4qa+vZ9ddd81aT6EYCsFvuCFIgQc5A8fFbQQ4Mekh3Hi4V7Zcfidhpuv6/c/X6ChH0mzy+80XDR+d34WInAmcCeT1goZ4gU46dOiQaQkW+6E1btyY7t27Z/7H7ZJNkpqamlCVpNurNag7raamJuv6gu6vE7QhKl27di3peuGFNgxyLYBjyMaJtRAl1nffvn19t0ct52GGnLy9f+PHj2fp0qWZ//vttx/vvvtuSbzQx44d67v2eZACb9y4cWb4Kuq4sp/Cd1/z5MmTs87jTvPOO++w//77+8rocMYZZ2TG1r3kGxLLNQsmCuXgjZ6mBR5mvmgoos4Vbdu2LSNGjGDcuHFxTlfyVlepX4zXX3+9QYENssDdsroroLfeeivz21ug/PLq168fPXv2jHXtfhVflOkfcZ/3X//616zrzHUOP0r9nCuRww47jG+++YZjjy1a8LcMuRSD0+j2WuBdu3bloIMOyvx3LOBSeKF369Ytb4Q0N27FGtUCd4YeH3300cy2oGlkXoMlTO9Z0DKxQceHIaoFXmo9Aekq8LzzRdPkqKOOyoRCjEpSDyZuPsWq2IPO465wHIIUonu7e+jigAMOyPwO4yR2yimnBI6B56N9+/aRj0mCE044gQMOOKDsn/OGxtZbb12S8+Z6XkEKPCiPsI3OYpDLAneI69ntHt8OcmJLQoHnOz7M/rDlsZzKbZpd6Jn5osA8rPmip+Q+pDxwvxxJF6oXXniBqVOnMnDgwKz1cd2U0wviEMaiDfI9CGOBO3nFud+nnHIKnTp14rDDDuPXv/51YLqkLPARI0YwadKkjCNQObTEDdGJWs5yjYE7viBt2rQJLNf5zlkMh1k/wijwJFYjC3Ji8waXKdR/Je6sklLHCYlDahKHmS9qB3yYC/wFuEJE5opIOBfAFEnTAj/mmGO45JJLcp6jadOmDbY53rR+8ZeTJGguchgLPGjZzzCFzzlvnHHA6upqrrvuuiyrv9BKIJfH/FFHHcWll16a8/hybIQZCiPXM23SpAkPPfRQzkAu7jz8ylOcaa75zuOQK0xrkAJ3K7S4FribMF3oqhrLAg/r/Z9rn1HgHkLMF/1WVduragtVbWn/Dm6+FolSW1TdunWjb9++3H777ZltY8aM4cgjj+S5555L7Dzel3n77bfnnXfe8U0b5p4EWeBhur+iWrP/+c9/AvN38hk2bFhOOXLJExczBr7hkq+C79OnT94pUY6VnSukadLssMMOOWdyRJlGFhbnXrnzTLIL3Yt7FcN80/eCqMTyWHlNjiJQ6vm4IsK9997L+eefn9m2xx57MHLkyFSXJRw5ciRdu3b13RfGAg8iTMs219igHyeccEKDY70cf/zxvucIQzEKcyVWGBszSTyvyy+/nKuvvpozzjgjs+3999/nxRdfLDjvuAQp8EKCNEWxwBs1apS1YpdfL0U+I6Cqqirju2O60Ddy/ve//9G5c2deeeWVUotSVKK2XMMq8CgOKGGtYXeeYZ1SimGBG8qbI444IvaxSVTwTZs25ZprrsmywPfZZx969uxZcN5uwpQP7/5c5TRuF3qQBe62ut155+tCd+bNu/PyRjAsJJCLl43ZC71i6d69OzNnzuTQQw9N7Rzl8PDDKjiINi3LS5SKL6wF7s4zKP+w5y30WcSdwmIs8OIzcuTIzDuW5Dzwcibf1NswXeiFBCtyyKXA3VZ3kBwffPBBA6OqU6dOzJs3L+tccedzGwvckEU5KOko5JqOlaQFnouwCjyOBe4XxCIJKu05b8zEnaoIlVnBn3jiiTz11FM506RhgfsR1CXfqFGjUOV5r732ykS8c/Lq1KlTg1XD4jqxRbXAy6FBV3lvpCEVfvzxx5yLaSRpgcftlho6dKjvucMq8M0335xBgwZFOmdcyqFwG8JRifN/8+HI2r9/f9q0aRMqbS6iWuD5AtW48/M2DsLI4+Tll9Zb37hn9eQq61EbaOXQcDcKPEWiLIFXCg488EDAmrsadynLpMfAc1ng7gaGu7C583e277777g0K5HHHHUeTJk3yylssKkkhGNY/rzihmovNoEGD2GmnnWIHs/IS1QJ3xvS32WabzDb3CnBRx8CDCOOxPnfuXHbYYYe8eeVS4HfccUfOc5YKo8DzEOdhLVmyhOnTp4eK215KunTpwqeffppz3WKHtL3QHXIpcHehD7LAFy1axPTp0+nUqVPW9ldeeSXQUSiNaWRJDy0YSo+IMGzYsNghmovJXnvtxbRp02jevHnsPArpQr/66quZO3duVh3onqvttsCrqqoiOd15ZfMe5z2+VatWtG3bNm+euc7rjjFRDpa3g1m/MAVatWpVkiVA4+BdujQIv5c2rGKOoqhyFTS/ZTu9v9333r29S5cuOeXo1atX7Dn27nvTrVu3WHkYKoN+/fqVWoSSECcSm98a6Q5BjXH3/7iN4Hzj3EH7K9HHofIkNpQNSUwje+qpp5g5c2bmv7vLzUvQymdhCmS+wvnAAw/4LrUYlT59+oROayxwQzmTtBObG3d+3rIZ1wIPyi/ssZXoC2EUeB7S6i4pp26YuCQxjeyEE06gc+fOWduCxuODWu1B+YdJ49C8eXNOOaXwUP1RWvHlVBEYDF4KCeSSjyAFHnYMPJcTW5KzDMq9njYK3FAQaYz1BilB77hZvvz9LPCwU0WiyFzo8YbSUu6VdDmQpgXu7daO68QWZh541Glhjt+M31z6cnhvjALPQ6lWCKoE0phG5pfeIYwTW5B8aY5vVYJXsqEhTk+PNxa3wSLNLvRcw1uFdqEnGchl0KBBzJkzp2RL2ObDOLHl4dBDD+WMM85gv/32SzTfcmi9hSHXOHcaoVQhnAUeVYHnqoAKfRbnnHMOEyZM4KSTTop03Nq1aws6r6EwBg0axOabb07v3r1LLUpZUoox8CSmkeVLH1Qf+dU71dXVeReoKSWpKnAR6QncBlQDd6vqIM9+sfcfCawC+qrqR2nKFJWqqiruvvvuUotRMpJQ4FGt3zChUcN0oYftXitUgTdp0oRHHnkk8nGrVq0q6LylYkMo1xAc2MfQkKR7sLxlM4lpZEnKlES6YpBav6KIVAP/Bo4AdgFOFpFdPMmOALa3P2cCd6UljyEe+aZkFHMMPKiQR1HgYSlGD8mPP/6Y+jmSxpTrjYc0y0BQYzwJJ7a4Me7NNLJs9ga+VNUZqroWeAw41pPmWOABtXgfaCki5TnYsJGSa/3isHhDtOYrYEF+B4W0fOM6tqRJJSpwTLk2JIDXP8WvsR0mOmQhjXSHZs2aFXR8SVHVVD7AiVjda87/U4E7PWlGAPu7/r8O7OmT15nAeGB8x44ddUPg8ccfV0CHDx9ealFyMmzYMBURHTJkSGbb8ccfr4B+++23OmnSJAUU0BtvvDHr2Kuvvlqrq6v1ueeey9r+/PPPK5CVp5sHH3xQq6qq9KqrrsrkDejKlSu1pqZG9913X1VV3XPPPbVVq1a6ePHiQPk7d+6sbdu21fr6elVVnT9/vgL629/+Vo855hgFdNGiRaqq+vXXXyugJ598sk6bNi3r3Nddd502atRIBwwYEOq+rVy5Uhs1apSRVVX1/PPPV0AvvfRSBfTRRx8NlZcDMF5TKq9hP0mWa91Ay/aQIUO0b9++pRYjL4MGDdLevXtnbevVq1fmvXzllVcU0GOOOabBsQMGDPAtC3fffbeecsopgee89dZbtVevXvrFF19kytaXX36pc+bM0V/84hf6zTff6MqVK3W//fbTZ599NjCfFStWaNeuXfXjjz/ObJs4caJ27dpVly9frkcffbQ++eSTmX3jx4/Xrl276sqVK/XNN9/U/fbbTwcMGKDXXnutPvbYY3rAAQfo6tWrA8/nZvbs2fqLX/xC58+fn9nWr18/vf322/W2227Ts88+O1Q+buKWbdGUrA8R+S1wuKr2s/+fCuytque70owEBqrqO/b/14G/qeqEoHz33HNPHT9+fCoyF5s1a9bkXECkXFixYkWWVayqrF27NiP7mjVrgIaWtt+xDvmu3Tlu7dq1rFixgpYtW1JVVcXatWupqalBRKirq2Pt2rU545vX1dWhqlkOcGvWrMn0KLivw71PRDIyOt9B1xKEW1bvdcd59iIyQVXTWVItvAyplGvYsMq2wRCFuGU7TSe2uYDbfa898E2MNBsslaC8oWGXtohkyZ7rOoIUXr5rd3fdu6dpubvyq6ur8y5O4uc9m0t2v33Od9QphX7DDt48KxBTrg2GMiHNMfAPge1FZFsRaQz0Bl7wpHkBOE0sugFLVXV+ijIZDIbCMOXaYCgTUrPAVbVWRM4DXsaabnKPqk4Vkf72/qHAKKypJl9iTTf5Q1ryGAyGwjHl2mAoH1KdB66qo7AKs3vbUNdvBc5NUwaDwZAsplwbDOVB5U18MxgMBoPBkJ4XelqIyHfAbKA1sKjE4ngxMuWn3OSBypGpk6o2XFVhA6GMy3a5yQNGprCUm0xB8sQq2xWnwB1EZHypp9R4MTLlp9zkASNTuVFu115u8oCRKSzlJlPS8pgudIPBYDAYKhCjwA0Gg8FgqEAqWYH/t9QC+GBkyk+5yQNGpnKj3K693OQBI1NYyk2mROWp2DFwg8FgMBg2ZirZAjcYDAaDYaPFKHCDwWAwGCqQslHgInKPiCwUkSmubT8RkVdF5Av7u5Vr36Ui8qWITBeRw13bu4rIZHvf7VLAIq8BMg0Wkc9EZJKIPCsiLUstk2vfxSKiItK6HGQSkfPt804VkZuKJVPAc9tdRN4XkYkiMl5E9i6WPHZeHUTkTRGZZt+PC+ztJX3Hi4Ep2/Flcu0retkut3IdJFMpy3bJy3WcNUjT+AAHAHsAU1zbbgIusX9fAtxo/94F+ATYBNgW+Aqotvd9AHQHBHgROCJhmQ4DGtm/bywHmeztHbDiU88GWpdaJuBA4DVgE/v/VsWSKUCeV5z8sOJ0jy7yPdoa2MP+3Rz43D53Sd/xYnwCnocp2yFksreXpGwH3KOSlescMpWsbFPicl02FriqjgGWeDYfC9xv/74f6OXa/piqrlHVmViLJuwtIlsDLVR1rFp35AHXMYnIpKqvqGqt/fd9rKUSSyqTzS3A3wC3V2IpZTobGKSqa+w0C4slU4A8CrSwf2/O+uUti3WP5qvqR/bv5cA0oB0lfseLgSnb8WWyKUnZLrdynUOmkpXtUpfrslHgAbRRexlC+3sre3s74GtXurn2tnb2b+/2tPgjVkuppDKJyG+Aear6iWdXKe/TDsCvRGSciLwlInuVWKYBwGAR+Rr4F3BpqeQRkc7AL4FxlP87nhblft2mbPtTbuUayqRsl6Jcl7sCD8JvbEBzbE9eAJHLgVrg4VLKJCJNgcuBq/x2l0Imm0ZAK6Ab8FfgCXtMp1QynQ1cqKodgAuB4fb2osojIpsBTwMDVHVZrqTFlKuMKPl1m7Kdk3Ir11AGZbtU5brcFfgCu2sB+9vprpmLNS7k0B6r22Qu67u93NsTRUROB44G+tjdHaWUaTussZRPRGSWnf9HItK2hDJhn+MZtfgAqMcK5F8qmU4HnrF/Pwk4ji5Fk0dEarAK+cOq6shSlu94ESjL6zZlOy/lVq6hxGW7pOU63yB5MT9AZ7KdEwaT7Qhwk/3752Q7AsxgvSPAh1itQ8cR4MiEZeoJfAps6UlXMpk8+2ax3tGllPepP3Ct/XsHrG4jKZZMPvJMA3rYvw8GJhTzHtl5PADc6tle8ne8GB+f51Hy6/aRyZTt/PeopOU6QKaSlW1KXK5LXrBdF/woMB9Yh9UaOQPYAngd+ML+/okr/eVYHnzTcXnrAXsCU+x9d2JHm0tQpi/tl3ai/Rlaapk8+2dhF/IS36fGwEP2OT4CDiqWTAHy7A9MsAvPOKBrke/R/lhdYpNc786RpX7Hi/EJeB6mbIeQybN/FkUs2wH3qGTlOodMJSvblLhcm1CqBoPBYDBUIOU+Bm4wGAwGg8EHo8ANBoPBYKhAjAI3GAwGg6ECMQrcYDAYDIYKxChwg8FgMBgqEKPADYjFOyJyhGvb70TkpVLKZTAYCsOU7Q0bM43MAICI7IoVxeiXQDXWfMaeqvpVjLyqVbUuWQkNBkMcTNnecDEK3JDBXtt3JdDM/u4E/AIr/vE1qvq8HbD/QTsNwHmq+p6I9ACuxgqysLuq7lJc6Q0GQxCmbG+YGAVuyCAizbCiK60FRgBTVfUhEWmJtVbtL7GiDtWr6moR2R54VFX3tAv5SGBXtZbJMxgMZYIp2xsmjUotgKF8UNWVIvI4sAL4HXCMiFxs794U6IgVYP9OEdkdqMOKh+zwgSngBkP5Ycr2holR4AYv9fZHgBNUdbp7p4hcAywAumA5Qa527V5ZJBkNBkN0TNnewDBe6IYgXgbOt9f6RUR+aW/fHJivqvXAqVhOMQaDoXIwZXsDwShwQxD/BGqASSIyxf4PMAQ4XUTex+piMy1zg6GyMGV7A8E4sRkMBoPBUIEYC9xgMBgMhgrEKHCDwWAwGCoQo8ANBoPBYKhAjAI3GAwGg6ECMQrcYDAYDIYKxChwg8FgMBgqEKPADQaDwWCoQP4fMby5iFEV5NMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABbnUlEQVR4nO2dd5wURfbAv28XBEFABM6AJBFFTICAeIpiRvTMYrg7UAEBT1H0MOGd3p2KiuHMyBkw/VQ8MSuKngkVAQOgIIigiICIJFHChvf7o7uHnt5Ok3Zmduv7+cxnZ7urq990V9WrV/XqlagqBoPBYDAYiouSfAtgMBgMBoMhdYwCNxgMBoOhCDEK3GAwGAyGIsQocIPBYDAYihCjwA0Gg8FgKEKMAjcYDAaDoQgxCtyQU0RkexF5T0R+EZFbReQqEXkg33JFISLjReQ6+3svEZmXb5kMNQ8RURHZNd9y+CEi14rI49m+VkR6i8iSzKTLLiLSWkTWi0hpwPm0n4VPXll757VWgYvIWSIyw35py0TkNRE5yJPmbPth9/Mc720fn+g5vq99/B3XsbYi8raI/CYiX4nIEa5zV9n3dz4bRKRSRJrb528Rka9t5feViPTPycPILecBK4HGqnqpqt6gqoMg8WxUROoEXZzNipMuqvq+qu6eTxlqI6aOVvk9BaX0ahKqulhVt1HVinzLkgq1UoGLyCXAv4EbgO2B1sC9wAmepAOAVfZfLz8BvxeRZp708z3pngQ+A5oBo4D/ikgLAFuZbeN8gJuAd1R1pX3tr8AfgCZ23neIyO9T/8XxCVOmadIGmKMmYpAhBUwdTZ0c1N2iI8iCrrGoaq36YFW09cBpEenaAJXAKUA5sL3rXG9gCTAW+It9rNQ+9nesCg6wG7AJaOS69n1gqM/9BPgGGBAi04vApSHnTwA+B9bZefWxj38LHOFKdy3wuP29LaDAQGAx8B4wCbjAk/dM4GT7e0dgMlbDOQ/oFyDPeKAM2Gw/8yM8915s33u9/TnAc30f+9oy+/xM+/hO9rNYBSwABoc8k77AHOAX4Afgr553eBXWCMG3wB89sl/nTus69y3wV2AWsBZ4GqjvOn+c/R7WAB8C++S73BfTh5pdR0cCy4ClwLl2+d/VPlcPuMWuFz/asm8NNAQ22L/VqSs72XXpv8DjWHV+kP3sHrTv8QNwHVBq5382MMW+x2pgEXCMS7Z2wLt2XZkM3I1dV+3zPe3yvAarPegd91rPM3DeTZW6B3S3f3sdV/pTgM8D8hoP3Ae8itWZOsJ+Ns9ideAWAcNd6XsAM+zn9SNwm328rf0u6kT9HjztgX3sW+w21r7HR/ZzWmZfu5UrbeKdZ1xX8l1Zq/uDpRTK3QUkIN3fgGn299nAJT4F8PfAx/axvsDrdiVyGoeTgLmefO8G7vK538FYFXObAHm2tgtDn4DzPbCUyZFYIystgY7ewmX/fy1VFfijWA3F1kB/4ANX+k52Yaxnp/keOAeoA3TFqoR7hlSw6yLuHfgu3Oldx97FssbqA52xKurhAdcvA3rZ35sCXV3vsBy4zf5dh2A1ALt75cZfgU/Daii2A+ZiN/j281gB7I+lMAbY6evlu+wXy4eaW0f7YCmNvex69H8kK/B/Y3UAtgMaAS8Bo/3KoKtulAEnYtX5rYHngfvt/H9nl9Mhdvqz7fSD7bI5DKsjIfb5j1z14WAs5eXU1ZbAz/YzLMFqZ34GWkRd6/McehNe9+aQ3LF4joBOEVY9XQscaMvVAPgEq5O2FbALsBA42iXnn+3v2wA97e9tSVbgYc/C7118yxYFvh9WZ6eOne9c4GJX2qwp8No4hN4MWKmq5RHp+mNVMOy/A7wJVPVDYDsR2d1O/6gnyTZYhcvNWqzK6WUA8F9VXR8gz1isXu/rAecHAg+p6mRVrVTVH1T1q4C0flyrqr+q6gasCtNZRNrY5/4ITFTVTVjW5beq+rCqlqvqp1i93VNTuFfaiEgr4CDgclXdqKqfAw8Afw64pAzoJCKNVXW1La+bv6nqJlV9F3gF6Fc1C1/uVNWlqroKq6HtbB8fDNyvqh+raoWqPoJl4fWM+xsNNbaO9gMeVtUvVPVXLAUMgIgIVtkZoaqrVPUXrOmDMwLycvhIVZ9X1UqgMXAMlrL4VVVXALd78vhOVf+j1lzvI8COwPYi0hrL+nXqw3tY5drhT8Crqvqq3b5MxrJk+8a4NoiguveIfT9EZDvgaLa8Zz9eUNUP7GewN1an4p+qullVFwL/cT2DMmBXEWmuqutVdao3swx+DwCq+omqTrXbx2+xOlSHxL0+FWqjAv8ZaB7hOHUg1hDKU/ah/wP2FpHOPskfAy4ADsVSfG7WY1UqN42xenPu+20NnIZVcP3kGYPVa++ndhfOh1ZYw3vp8r3zxW48XmFLoT8DeML+3gbYX0TWOB8sBb9DBvdOhZ0Ap4Fz+A7LQvDjFCyr4TsReVdEDnCdW203pO58doopx3LX99+wFAFYz+dSz/NplUK+hppbR3fCVc+wyptDC2zr0VVuJtnHw3Dn1waoCyxz5XE/liXukCi3qvqb/XUbWza/+uDO+zRPuT4IqwMQda0fYXXvceAPIrINllJ/X1WXheTlfQY7eeS8CsuPAixDZzfgKxGZLiLH+eSXzu9JICK7icjLIrJcRNZhdcSax70+FWqj08NHwEasYaf/BqQZgDXf9bnVMU7QH2tu081jWPOwj6rqb570XwK7iEgjl8LZl6q9yZOx5nPf8QoiIv/A6lUfoqrrQn7X90D7gHO/YjUODn7K1tvoPAlcIyLvYQ3Nve26z7uqemSILHEJaujC0izFsqjcz7Q11nxf1YtVpwMniEhdrEZ8ApZCBWgqIg1dFbU18EUqP8CH74HrVfX6DPOpzdTUOrqMLWUPrPLmsBJrnntPVfUry0F1xX38e6zRnuYxRi/8ZPOrD07+3wOPqepg74X2SF3YtX4E1j1V/UFEPsKa3vgz1hx3GN5nsEhVO/gmVP0aOFNESrDe6X89To4Q/SyS2lPbcc7d0boPyynyTFX9RUQuJkcjlLXOAlfVtVjzI/eIyIki0kBE6orIMSJys4jUx+r1nYc1LOp8LgT+6LUKVHUR1vDIKJ97zcdqTK4RkfoichKwD9aQs5sBWI1LUoEXkSuBs4AjVfXniJ/2IHCOiBwuIiUi0lJEOtrnPgfOsH9nN+IVplexerP/BJ62h6cAXgZ2E5E/2/nVFZHuIrJHjDy9/ITlmLNLSJofgbZ2hUNVv8dypBltP9N9sHrVT3gvFJGtROSPItJEVcuwHFe8y0T+YafrhTU98Ewav8PNf4ChIrK/WDQUkWNFxG9I1uBDDa6jE4CzRaSTiDQArnHJUYlVdm4Xkd/ZebcUkaPtJD8CzUSkSVDmtpX6BnCriDS224H2IhI5fKuq32ENiTv14SAs73oHxyo+WkRK7WfVW0R2jnFtEGF171HgMqwhce+oSRjTgHUicrmIbG3LupeIdAcQkT+JSAv7ea+xr0lqE2L8nvlAfbte1wWuxpord2iE1dast9vgYSnInxpaAE4r+fhgDfvOwOpNLccaMv491nDxMqCuJ319rF7ycfg4MbjSJRxkdItzxDtYvet5uJzJdItzSDk+Tg1YPb5NbPE8XQ9cFfKbTsLyjP4Fy+JwHDd2AT62r38FuJMYjmRYnQIFunuO727n8xPWcOf/gM4BMo0nwInN/v+fdj5rsB1KPNc3w/KcXQ18ah/bGasjsQpr2qCKx7CdbiusYcjVWBVqOnCQfa43lpPTKPu9LsZ2bvHK7X3fhDgF2v/3se+1xi5Lz+DycjafWl1Hr7B/i58Xen2s4daFdnmdS7IH9UN2fVvDFi90r4NnEywLcAnWXP5nwBn2ubOBKT7yO/ffBcsDfz3+Xuj7YzmQrsKqs68AreNc67lnb0Lqnp2mgf0MHokoI+NxtS/2sZ2wRhCXY9X9qWxxMHscy8l0Pdboy4muMuB2Yot6FmdjlcEVWCtSvnXd42DgK/va97HauCl+zzzTj+N9aDDUKkSkN1aF3DnPohgMBh9E5BssD/o38y1LoVLrhtANBoPBUNiIyClYlur/8i1LIVMbndgMBoPBUKCIFea2E9awemVE8lqNGUI3GAwGg6EIMUPoBoPBYDAUIUU3hN68eXNt27ZtvsUwGKqdTz75ZKWqRgX2KFpM3TbUVtKt20WnwNu2bcuMGTPyLYbBUO2ISOxoUMWIqduG2kq6ddsMoRsMBoPBUIQYBW4wGAwGQxFiFLjBYDAYDEWIUeAGg8FgMBQhOVPgIvKQiKwQEd/dnexNJmbZnw9FZN9cyWIwVBdXXXUVxx9/PJWVJv6EIZpVq1Zx9dVXU1Hh3WPHYIgmlxb4eKxNHYJYhLX93j7Av4BxOZTFYKgWRo8ezUsvvcSsWbPyLYqhCBgxYgTXX389L774Yr5FMRQhOVtGpqrviUjbkPMfuv6dirXDlMFQIygvT3U7ZkNtZMOGDQBs3rw5z5IYipFCmQMfCLwWdFJEzhORGSIy46effqpGsQyG9DBD6IY4iAgAJqS1IR3yrsBF5FAsBX55UBpVHaeq3VS1W4sWNTYQlaEGYeY0DXEwCtyQCXmNxCYi+wAPAMeo6s/5lMVgyCbGAjfEwShwQybkzQIXkdbARKwt4+bnSw6DIReYBtkQh5ISqwk25cWQDjmzwEXkSaA30FxElgDXAHUBVHUs8HegGXCv3QstV9VuuZLHYKhOzBC6IQ6OBW5GbAzpkEsv9DMjzg8CBuXq/gZDPjENsiEOjgI3GNIh705sBkNNxChwQyqYIXRDOhgFbjDkADOEbohDsTmx/fjjj9xwww1FI29NxyhwgyEHGAvcEIdiU+DnnXceo0aNYsqUKfkWxYBR4AZDTqjJClxEWonI2yIyV0S+FJGLfNL0FpG1IvK5/fl7PmQtdIrNC72srAyAdevW5VmS6ufDDz9k/fr1+RYjCaPADYYcUCwNcpqUA5eq6h5AT+AvItLJJ937qtrZ/vyzekUsDorNC71BgwYA/Prrr3mWpHpZtWoVBx54IKeffnq+RUnCKHCDIQfU5DlwVV2mqp/a338B5gIt8ytVcVJsQ+gNGzYEap8C37RpEwCffPJJniVJxihwgyEHFItFlSn2hkVdgI99Th8gIjNF5DUR2TPg+lq9z0GxKXDHAnc2YaktlJaWAoVXr40CNxhyQKFV9FwgItsAzwIXq6p3UvRToI2q7gvcBTzvl0dt3+eg2BR4bV237vgqFNrImlHgBkMOKLSKnm1EpC6W8n5CVSd6z6vqOlVdb39/FagrIs2rWcyCp9gUuEOxyZspjgIvtI65UeAGQw4otIqeTcTSOg8Cc1X1toA0O9jpEJEeWG2N2bDIQ7Eq8NpKodXrvO5GZjDUVGp4g3wg8Gdgtoh8bh+7CmgNib0OTgWGiUg5sAE4Q2v4Q0kHo8CLA+f9GAVuMNQCavIQuqpOAUInQ1X1buDu6pGoeClWBV5b58ILrV6bIXSDIQcUWk/dUJgUqwKvbRSqBZ4zBS4iD4nIChH5IuC8iMidIrJARGaJSNdcyWIwVDeFVtENhUmxKvBikzdTnN9bmyzw8UCfkPPHAB3sz3nAfTmUxWCoVowCN8Sh2BR4bR06r3UWuKq+B6wKSXIC8KhaTAW2FZEdcyWPwVCdFFpP3VCYxA2lWllZmYhDbqh+ap0Cj0FL4HvX/0sICMdY26M1GYqPQqvohsIkboCQ/v37s9VWW1WHSKEUy0hBbSGfCtxvLMa3dNT2aE2G4sM0dIY4OBZ4lAJ/4oknqkMcQwCFWp/zqcCXAK1c/+8MLM2TLAZDVjFD6IY4xFXghvxiFHhVXgT6297oPYG1qrosj/IYDFnDDKEb4lBsCry2O7EVGjkL5CIiTwK9geYisgS4BqgLiUhNrwJ9gQXAb8A5uZLFYKhujAI3xKHY9gM3FBY5U+CqembEeQX+kqv7Gwz5xDTIhlQoFgu8tlKoFriJxGYw5ADTIBviUKgBQgzJGAVuMNQijAVuiINTTopNgReqQssVhfp7jQI3GHJAoVZ4g8Wjjz7Kxx9/nG8xjAVeJBRqfTa7kRkMOcA0yIXNgAEDgPw3zMVqgddWb/RCw1jgBkMOMEPohjgUqwLPFVOmTGH16tX5FqMK+e7oBWEUuMGQJdyVvCY3yCLSSkTeFpG5IvKliFzkk8bsNhgDo8C3UFFRQa9evTj66KPzLUoVjAI3GGoRNbxBLgcuVdU9gJ7AX0SkkyeN2W0wBo4Cv+uuuxARvvvuuzxLFI9cKDTnWXz66adZzztTjAI3GGo47kpek4fQVXWZqn5qf/8FmEvVjYjMboMx8JaTadOmhaYvFEWSi/Lt/Law3/j5558XzDMoBIwCNxiyRG0ZQncjIm2BLoDXpTvWboO1fadBrzJydieLm766ce9f/vzzz/PGG29kLe+oLTsnTZpEly5dePDBBwPzeP755/nHP/6RNZm8shUaxgvdYMgStU2Bi8g2wLPAxaq6znva55IqraCqjgPGAXTr1q0wW8kc4lVWUd7d+VYkbiv5pJNOSjqWrbyDWLBgAWBZ4X6Ul5cnZLrmmmuyIlNc2fKFscANhhxQ0xW4iNTFUt5PqOpEnyRmt8EYpKrA58+fn0txYpMLhebNs6KiAhHhyiuvBKL3Tl+/fn3ie7aH+I0CNxhqOLXFAhdLyzwIzFXV2wKSFcRug6rKjTfeyA8//FDdt45Fqgp8+PDhuRQnNrl0YnMoLy8HYMyYMYgIt91mFbU4dWvdOu+AUM3EDKEbDFmitihw4EDgz8BsEfncPnYV0BoKa7fBr776iiuvvJLnn3+eqVOn5kOEULxKK2oO3FFq+aY6LHAHpy598803Sf+HXV9WVlYtsuWbnCpwEekD3AGUAg+o6o2e802Ax7Eqfh3gFlV9OJcyGQy5YOzYsdx0002J/2uyAlfVKfjPcbvTFMRug46C/OWXX/IsiT+pWuD5VOBvvvkm9957L5BbL/Sg/x2C7u0+nu36V6gKPGdD6CJSCtyDtR60E3Cmz1rRvwBzVHVfrL3DbxWRrXIlk8GQK4YNG8a3336b+L8mLyMrJtxe04WIVy4RoaKiInAtdD47hhddtCVeT3VY4FEWedhxMweeOT2ABaq6UFU3A09hrQ11o0Aje05tG2AVVpAIg6GoqckWeDHhKPBC7VD5WeA33ngj++23n+9mK/ksV8uWbXFhiFJoq1atSnkY2/ssMlHgxgLPnDjrQO8G9sDyTp0NXKSqVWpabV8raig+jAIvDLwW+G+//ca8efPyKVISfgrcsb6XLFlSJX0+h9A3bdqU+B6l0Jo1a0b//v1Tyj/TIfRcKvBCJZcKPM460KOBz4GdgM7A3SLSuMpFquNUtZuqdmvRokW25TTUMlauXMkNN9zA8uXLc3aPhx56iEmTJjFmzBjmzJmTs/sYwnGcwhxlcOqpp9KxY8d8ipRE2By4nwLLp2JyyxPHIn3qqafSzj/sHmYIfQu5dGKLsw70HOBG2+FlgYgsAjoC4fEEDYYM+P3vf8/XX3/Ns88+yyeffJKz+xxzzDEAXHbZZQXbANR0vEPo2Ywclg38FHiYI1u+LPC1a9eyYcOGxP9hCjLdsh53CD0fFnih1t9cWuDTgQ4i0s52TDsDa22om8XA4QAisj2wO7AwhzIZDHz99ddAYW6aYMguXgu80BpirzJ66aWXePbZZ5OOvf3224nv+VLggwcPTvo/7Dmma/1684yjqIOOGws8Q1S1XEQuAF7HWkb2kKp+KSJD7fNjgX8B40VkNtaQ++WqujJXMhkMhtqF1wL3NsTl5eXUqZO/cBheReMs03Jz9913J77nawjd7cAGubHAC3UO/JVXXmHVqlVZyy+b5LTkquqrWAEd3MfGur4vBY7KpQwGg6FmcMMNN7DnnntywgnexSwWFRUVTJw4kVNPPTWhuKOWkeVbgYcpO+dc3bp1E8fStcBVlfXr19OoUaO0rvcO64cpyFwr8Or2Qj/uuOOylle2MaFUDQZDUTBq1ChOPPHEwPO33347/fr148knn0wcc+9wNXr0aF8LPJ/EGep1dzDSVUz33XcfjRs3ZuHC7MxQhj23bMyBl5WVpazAP/jgA9+8ajKxup4i0gIYDLR1X6Oq5+ZGLIPBYEgNJ965e3WBowS+//57rrrqqirXFLICV1VWr16dtIohXQU+caK138zChQvZZZdd0srDTdhzi6s8r7rqKpo3b84ll1wCJCv+rbbaKnC5X5BiHzJkSOJ7bVlGFnfs6AXgfeBNoHY8GYPBUFQ4DmtuBRJlDWY7ZnaqRCm7Qw45hNmzZyf+T7fD8dZbbwFkbbrALYeqRi5/82P06NEAvgocrE6XH26HxM2bN1OvXr0qaWqLBR53CL2Bql6uqhNU9Vnnk1PJDIY0UFXOPPNMLrvssnyLYqhm/BR4VENeXl7OTTfdlJflZTvvvDOTJ08OTeNW3pC5ZZmuAvfOgTs7gwGcf/75Seeqy4nt5ptvpn79+vz888+AZbU71BYLPK4Cf1lE+uZUEoMhCyxevJinnnqKMWPG5FuUoqVY9yPwc1iLUibl5eVcccUVHH300TmVzY+oLU7ffPPNKscyHfIvLS1N67qwteljx45N+t9RsFEbs3jxdraCOl/OO3V8HRYvXgzADjvskEiTSwU+fvz4gukghCpwEflFRNYBF2Ep8Q0iss513GAwFDEi8o6ItHX93wMrhkNRMHPmzIQiTGcI3U8hTp48mX79+mVRyvR44IEHqhzLlwJPhWxZ4FG7jjVo0ACwwuMCnHPOOVXS5IJzzjmHa6+9lkceeSRn94hL6HiKqqa35sCQVVSVO+64g27dunHQQQflW5yCJp9LgqJ47bXXWLZsGeeeW1C+n6OBSSJyJ9ZeBceQp727U+Hvf/87e++9d0LRqmrW5sCPOuqoRD5R+3M7bNy4kccff5yBAwfGsjzjKLmGDRuyfv36pGP5GkJPBee3pWqBe5+JE8kwKJ2jwH/99dcq1+faQr7uuusAa4lZs2bNcnqvMGKVThF5K84xQ2545513GDFiBL169cq3KAXNZ599xksvvZT436+RzJdzyzPPPEPfvn0ZOHBgYsivEFDV14GhwB3AuUBfVQ0NUSciD4nIChH5IuB8bxFZKyKf25+/Z1vuf/3rX1Ws5GxZ4A6plJVRo0YxePBgXnzRCjb53HPPMXfu3MD0cRRMw4YNqxwrxCF0L3E6JytXVo3XFfd5ey3woUOH0qZNm6RnU131PN9OkKHdMRGpDzQEmotIU7ZsUNIYawMSQzUQNVdW21i0aBFLly7lwAMPTPy/bNmyxP8OlZWVVRqsXCwbirNDnlvZLFiwgNatW2ddjnQQkb8B/YCDgX2Ad0TkUlV9JeSy8Vg7CT4akuZ9Va3WCBjZUuAlJSVUVlZSUVER22J1lq798ssvqConn3wydevWZfPmzb7p3cfr1KnjK4ejoNxkalnGHVFIBa9yjzMH/swzz1Q5Fnfo3UnnvJtFixYB1rN3qK456nyHWI0qnUOAi7GUtbtXvg64J0cyGTxUx7xVMeGsY12wYAHt27cPXNdaVlZW5dk5FlI26dy5c0rpDz/8cCorK5k9ezYdOnRg6623zrpMKdAc6KGqG4CPRGQS8AAQqMBV9T33vHmh4KfAowKXRCnwuDgNeUlJCevWWe5BYdaZW4GXlpYGyhF0n3TJhcLxypmtOfAgnPfrve9dd92V+F5d6/vzvVwttDumqneoajvgr6razvXZV1XvDrvWkD1SnUuqLcyfPz/0vF8DOmXKlKzLsXSpd5O9aF566SX23XdfDjvssKzLkwqqehGAiOxu//+dqh6ZhawPEJGZIvKaiOwZlEhEzhORGSIyI85IRhh+Cvz4448PvcavjDj1LSzqmxf3vO+aNWuA5GVNYfcNsvK/+eYb3+NhUzAiwsCBAyPlTJWw65zn9cMPP1BaWsqMGTOSjsfNL1ULPGw0obqGtgtagbv4QURO9nwOF5Hf5VQ6A5CbYa+aQDrDo/Xr18+VOCnhDCFOnTo1r3KIyB+Az4FJ9v+dRSTTYYpPgTaqui9wF/B8UEJVHaeq3VS1W4sWLTK6qaMwvbt5heFu6NeuXYuIJI5Nnjw5ZaUiIrGGkL1D6Klw8cUXh55/6KGHAjuquVA4Tj2bNGkSlZWVvhuyhOHIlMoc+Lp160Kf7+OPP56SDOlSLAp8INaw2h/tz3+AS4APROTPOZLNYGMUuD/peBj7zSvmg3xXfBfXAj2ANQCq+jnQLpMMVXWdqq63v78K1BWR5hlJGYMmTZoA0KpVq9jXuMuIX+jOVId13Qo8jEwU+EcffRSZplevXr6RzHI5vO0ocu9GMlFs3LgxJdnKyspo3rw5EyZMCEwzYcIElixZEiu/TMj3evC4mqES2ENVT1HVU4BOwCZgf+DyoItEpI+IzBORBSJyRUCa3ran6pci8m6qP6A2YIbQ/YkTZcvLbrvtlitxUqKAFHi5qq71HMtoolREdhC70NrrykuAnzPJMw7OM3X8HuJs3OFW4H7lJR0LPOqa8ePHJ/ltpOrjErdD7zh1ueUJ2sktijjPwVFmqRocqSrwX3/9NdYQeTaUayarGKqDuE+6rar+6Pp/BbCbqq4CfJ+kiJRiObodg6XwzxSRTp402wL3Aser6p7AaamJXzsoNgt8/fr1HHTQQUn7GOeCOBb46tWrOeCAA3jwwQeB7PWYP/74Y7p27cqHH36Y1vX57rm7+EJEzgJKRaSDiNwFhP4oEXkS+AjYXUSWiMhAERkqIkPtJKfa+c4E7gTO0Cx6Tz36qL/zu1eBuJ2agsi2Ancc4MJwBxyB1C3wuB1657e55UnHKp0wYQLvv/9+ZDrv88+VBb5hw4ZY6bLh/BvV4cm3Ao9bct4XkZcBx/f/FOA9EWmIPfTmQw9ggaouBBCRp4ATgDmuNGcBE1V1MYCqrkhN/NpBsXmhP/XUU3zwwQd88MEHXHDBBTm7TxwL/N5772Xq1KlMnTqVgQMHpqU4165dS4sWLSgvL2fVqlVsu+22DBkyhJkzZ1ZZupYt2auRC4FRWCNqTwKvA/8Ku0BVz4w4fzfWMrOcMGDAAN/j3rnnOKMt7qHsTBS4c++33nor5WkaR4HXr18/oczCCFKMQVulZtp3Ov3002OlS1eBOwo5bp1wIq9FkY120x1Xwo98d8TjmnZ/wVr72RnogrX+8y+q+quqHhpwTUvAPQmzxD7mZjegqR3O8RMR6e+XUTY9VVPhrbfe4oILLghcy5kP8r3uMA7VtSwqqsJXVFQkNSKDBg1K2poxLnfeeWdif+LBgwczaNAgFixYkHI+bgrlParqb6o6SlW7285ko1Q1WotUM+kM4e64446R17gtcL96nqoFPnbsWI499thY1zg4CrxlS2/z6E+QYvSWST8LPJf4DaF/+umnHH744WzatCnwurgWuOOAGqbA995778T3OO9uzpw5HHPMMYE7n0Xh7PI2bdq02B2LbBLLAreHv/5rf+LiV8q8T7QOsB9wOLA11jrUqaqatD5IVccB4wC6detWbS3fEUccAUDHjh1zaklG4e7llZWVhS5PKQS23XbbarlPVAWtqKhgm222SfzvDKO7+fTTT+natWtoPu4hu//+N5UqEEy+LXAReYmQuW5VDV9/Vc3EeV7fffcdADNmzEBEuOGGGyKvybYCd+NVtLNnz04qjw6OpRh3qiwonXfEoRAU+LBhw5g2bRqfffYZPXv2TBx3P684Crxly5asXr0aCB9Cb9euXWIHtzi/+9RTT2Xu3Lm0bt06cf9NmzaxadMmGjduHHn9iBEjuO+++5g/fz6nnHJK1tqHuMQNpXqyiHxth0eMu5nJEsDtDroz4F0wuwSYZFvyK4H3gH3jCl9d5DsSmleBFzrVNWcfx8HEr8F0s99++0Xep1Gj7G8JkG8FDtwC3AosAjZgrSz5D7Ae8A2Rmk+intdPP/2UmPN21uW//PLLkfm6lbbfcGgmCtx7bJ999knEWXfjWOBxh3x/+uknLr/88sjhW6etqK7RHkcetxe689vC5orjKHC3d39YWXDX1Th1zG0MlZeXU15ezqGHHppY0RAHJx7FCy+8EPuabBG3pb0Zy9Gsiao2VtVGqhrVPZkOdBCRdvb2hGcA3vWlLwC9RKSOiDTA8moPDiCcJ/I9z1FsCry6iGOBZ2MezC8mdabkW4Gr6ruq+i7QRVVPV9WX7M9ZQMHtmBP1vNxhNB3i1Ft3ffK7h1PGNmzYwM8//8xdd90Vmi4Kv6kXR8nFdWb77bffuPnmm5k0aVJoOkdpeuXNdhuy555WnB7neTuKbOPGjQknzzAFHmcOvKSkJNb7dBsPceqYu4N/4IEH0qBBg8QyvTj+CG7Ky8tjO9hli7gK/EdVTUmxqmo5cAGWU8xcYIKqfun2VrXznATMAqYBD6hqXnr/S5cuDYx8lG8F7i78hTQfn28+++wz34bbIVsKvF69ehnn4SXfCtxFCxFJrGkSkXZAZhFVckDU8/J7R3HqrVOfghSEc9+dd96Z5s2bM3z4cN9hUj/5guaqvdadU0ZTLatRzyRoCP3GG29M6T5RdO/eHVVNhCn27qAGVRV4qkPocdfXu595nPTuzvm0adOSOjepKnAg4StTXe10XAU+Q0SeFpEz3dHYoi5S1VdVdTdVba+q19vHxqrqWFeaMaraSVX3UtV/p/czMqdly5bsuuuuvoUv3wq8mC3wXA7fjR49OjQOeUVFRVaG8+vWrZtxHl6c+doCYATWBibviMg7wNtY+x8UFF9++WXoeb9yFqcBd+pTnTp1Qi3rVatWJY75tRGplHNvNEDH8k61rEZ5eQcNoccN/fvxxx/HVpqTJ09m+vTgbeSzOYQehvsZxnE0Davb6SwRq6ys5IorrqBevXqhjnvZIu4yssbAb4B7AkeBiVmXKM/89NNPVeZNi0mBb9iwId+bYyRVNL8dwbJJWLCO8vLyUAs9LrnYQzlKIVUXqjpJRDoAHe1DX6lq7lueFIlSOn6NeyoWeGlpqW/66667LtR6DDsWhFfWVOfA4xI0hB5n/+r333+fgw8+mNGjR8e619q13lhA/rI4uDsfTofILefWW2+dNBwdJ0AOWAp8xIgR3H777Rx99NGR14Qp8HQUcEVFBWPHWvbpxo0bczJ65yZWl09Vz/H5nJtTyTIgE6sv3YYgl7gLf5gCf/PNN2nQoEHWh8hSxavA88UJJ5zA0KFDoxMG4JSjXP6G7QDuvx8OOQTefjtn94lgP2BPLAfS04OWc+aTKI9gvzoax4JyW+B+edx0003ceuutSccyVeDetI7iTjXiYlwL3Ft+mzePjmrrLKuaOXNmZFpVjfQT8bZb7mfgBLZxH/MaIXGfTUlJSeT6/yVLlnDnnXcC4Qo8nfnsioqKKs58uSSuF/puIvKWiHxh/7+PiFydW9HS46abbmKnnXZK23O8EBV4XAv8sssuA+DKK6/MuUxhuJ9hPp/dypUr07528eLF7LTTTowZMybrv2FrrA24XwCWAwwdCu+9B08+mdX7xEFEHsPySD8I6G5/ulW7IBFEeQWnW2+dTWV++eWXxPKjKNJR4GGd2lRjhzucf/75oSMTZWVlbNy4kT/96U9Jx+OM0DmyxOmYqGpk8JpUOlOQmQKPSturVy8uuugiVq1aFTq6FjYlEER5eXni/VaH93/cSZf/AFdih01V1VlYXuUFxxVXXMHy5cu55ZZb0rq+srKS77//ni5duiSOFYsCT8fpIhe45S0gZ62UuOSSS1i+fDmXXXZZVt5/CVawg4exlPbTwPH28TU9e8Ijj0CaZTZDugEHqur5qnqh/RmeD0HCaN++fej5MAe0MGbNmpX47rW0g3A3zMuXL2fixIn8+uuvgenXrl2bZM15G/ZUI5c5LF68mGHDhgX+zvLycp5//nlee+21pOOpeHPHUUKVlZWRfiLedstPBrfjl1eBZ7pG3s23334LWM8nbNrirLPOinVPN24LvDravrgKvIGqTvMcy28Q2DSprKykf//+3HHHHYHnL7/8cj7//PPEsXzHu43rhV4oCjybQ+ivv/46ffv25ccff4xOnCZ+jdSKFVui+qaqwH/3uy277HbBMm+/B94EzsZyKJkGDAd2AppOncptK1dCjMAROeALYId83DgVoobQszFyls6a7x133JFTTjkldJ/5bbfdlj59+iT+98qaydz3iy++SGlpKYsWLapyrqyszDc6WJz2zOlMxHmGqprSCERQvu62zRsMKhULPO57zIVDcEVFRcrbo2ZCXAW+UkTaY0duEpFTgWU5kyoLBL3wqVOn8thjjwXuqVtZWVmlN/3xxx9nW7yUcBf2Hj16BO63Wx1ej3HIpgLv06cPr732Gn/9618zFSuJnXfeOfHdb6jM3ZNPVREsnzmTx/fZhy+xNsa+FEtRLwD+gRU/eH+sjbKdbsKll16a0j2ySHNgjoi8LiIvOp98CZMuhTj15cat4NMdQm/Tpk3gObfB4ZANBR4nrapGPmuvUnWndyK0ZWsIPUyBu0cjysrK2G677WLlGxe3BV4d5S+VWOj3Ax1F5AesZSbpewdVA0EvPGp93jPPPJNYz+iQb8vWW4n+8pe/+KbLt5wO7gbqiy++4Oqrr/b1Bp88eXLsqY5sR8O78MILE9+9HZ/ly5fz7rtbdraNUxFLgb5YyzKkVSv+OGsWnYCfsBR1T6AD1ubbX2cqfHa5FjgRuAErMpvzKSr83pEzVJptXn/99VjpNm7c6Nup9irwuEPoYXPXfoq2vLw8bQXuyBSn7FdWVkZ21IM2WunSpUsietpXX30VeH22FHjfvn0T38vKyrKuZCsqKqrF+dUhrhf6QlU9AivAQ0dVPQg4KaeSZYiIMG/ePO6//37mzp3L/fffT2VlZeQcyT/+8Q/fvPJJ3EJWKEFe3AX3wAMP5Prrr/d9rkcddRQjR45MRD4KI9sRjsKcV844I9m9I+z5t8Pauutb4BXsSqHKp61a8Qcsy3s4kN8xnGCciGzeT77lSpXq9LV47rnnYqf167imq8C33377wHN+c/BlZWW+98+FBZ6qAnfqVN26dRPXjhw5ErA69suXL0+kfeyxx1JS4HHLQqoKvFevXpFpqtv/J6XIAXbMcqdEXJIDebKGiNCxY0eGDh1Kp06dGDp0KI8//nhaa3rzHTwlbiErlCFDv4I7b968wPRxdphzFHi2PDvDysG0acnuHl5PX8Gytl8FFgJXYwX6/xq4AuD777nzsMN4mdQcRaorZjWAs5+BzyfOPgcFR6GUfS9r1qypcixoGRmEO07ddtttgee8e4yD1W751a04z8pRmH5Ba7ykY4H7KXCHdu3a8fXXW8ap6tWrF9uJLe56cbA6J6mUmwMOOCAyzc8//5z4XnAK3EN+zdII/Hpss2fP9nUYiXrhZWVlrFmzhk8++SRr8qVCXCe66lQAYfgVXG/0qTi4rYfqVODec4538rZYYcu+xrK2j8HaBeQx4BCsue2bAGJsY+lHdfowOPsZ+Hwi9zkQkYdEZIWzrNTnvIjInSKyQERmiUj4dm9ZoFBXOyxbVtVVKGwO/IknngjMq2vXrkm+G1GMGjWqigc6hLcn5eXlfPbZZ4n6Fuac55DuHLiIUFpaWuV5+Dn5RVngzs6RXgXufv7eabiysjL+85//hObrJk4b5rbSC12BF4a2CCDOkEtcd/+ysjL23HNPunXrxvvvv58V+VIhqHIsXbo0ad67UAKo+IUJDYtIFPSu3NGd4mx4kAphCtw77LgXMBZr67zbgPZYQ+aXYVne/bG20cuU6t4IIQPGA31Czh+DNeXfATgPuC/XAhWqAvdbPZHJMrIlS5akdP/FixdXORamwEeNGkXXrl354x//GPse6QyhO0u4/OasvR7o9evXj9xr272rmDu/nXbaiffff59vvvmGE088MemaVEdWGzVqxP/+97/Y6fOuwMOG2bCm9wqWoMrgVobOnHEcBe4Mo77zzjuJ42FrP7OJnwJftGgRLVu2ZK+99vJNl6/58M8++4y///3vVY6no8Ddx3OpwN33cXZPKgVOxgoMPhsYAjQEJmOt324PjAG2RMjOnEJxQoxCVd8j/KefADyqFlOBbUUkvWGJmBTqELpfGxF3DjydlQnHHx+9jXuY4poxY0ZK96tTpw4bN25Mcgr1w28ZmaPAnXP9+vWjRYsWtGiRvJdOvXr1QkMmQ3JENW+H4OCDD2bXXXdNGt6G1BV4ZWUlhx56aOz0efdCjxhmy36A6CziN9QqIkm9T2f3sfPOOy80L/eLdgrKBx98wDbbbJP15U1++PWYnY6Eewc1d4HJ15Ky++7zN7bSiQnsfodODzxbQ+juCu+OnPTc+PGMAL4BngV6A+tFuAvYA2szgJcAv27EhRdeyN133w2k5/hYRBZ4FC2xlr47LLGPVUFEzhORGSIyI44vRBD5sMDjlEWv5ehncXrnd9977z3efvvttIJRuS3RIMLkTnVNemlpKS+//HKkgvUbQq9Tp05Cga9cuZIJEyb4zrnHGboOssDdeOtkqvE9Ui1jZ599dkrp0yHzrZpCEJE+IjLPngu7IiRddxGpsNeXZ4Wbb77Z97j7pTlW9fjx40PzcluzTsPvBPmPG70pE/x6cueeGx6KPl/WXNCmBmGRmoKUnbvj5DSE2Wqo3fIccsghdG3WjLENGvCPhx/mNqANMA9rP9ydVBkOBC9ysbjzzjsTS/zS6WjUIAXu90J9H4iqjlPVbqrazWt5efnnP/8ZeG7duur3u4tjYXktcD+HL6esOPWgV69e9O7dOy2Z4ijwW265hdNPP933XKo7ovlNRTnH3OFvvc/KPYReWVnJk3YYYb864Nf593rkO2nCnNi87cxhhx1G48aN6dixo296L6m2PVOmTOFvf/tbTgOB5UyBi0gpcA/WfFgn4EwR6RSQ7iasfcNzjvthqmqsYRT3i3MqSC532PKSTkORDwv8l19+YcKECb7nwhqGOArcIVsK3Hl/PYCngOmrVjFs40YalJfzP+A4LIv7HiDz/cziUSxD6DFYArRy/b8zEG8PyxDC/BaOO+64TLNPmThlMWruFqoq8EyI6yyaTj31w++dOO2VuzPvbcOcIXRnm9AwJbfDDlUDBXq99eNY4H6sW7cu8pk5m6Ok0/Zcd911id3JckEuLfAewAJ7DflmrHbyBJ90F2KNVq7wOZd13AWlsrKSuXPnRl7jrlh169blb3/7W1KwFz9Pz6B7n3rqqYlh1jg8/PDDgWFf3bzwwgtJ/+dDGYR5dP773/8O7IhUtwIvAVpOm8YUrPXZp2MNiT+GFfr0cCwv8+r20qxBFviLQH/bG70nsFZVM47cGNaRDSsXgwcPzvTWvqTTsQ4jGwrcuxVyqqRqmPgpcD8FGqTAnSmFIAV+0kkn+Xree+8bNgfu4J0Dd4hS4C1bWrM/TsCZVJ9xJpsqRZFLBR45DyYiLbFiX4R2UbI1TwYktpEDGDFiBE899VTkNe4CUbduXa677rqk8+7oPmG89tprPPvsswmHjxdeeIHBgweHOpxFDZWD5ek6YMCApGP5sMCjhoqCIlgFNVx++WUyB14K/BmYA/z+lls4EFgN3Ai0xfIm/zzt3DOnWBS4iDwJfATsLiJLRGSgiAwVESc6o7NEfgHWRkjnZ+m+KV9Tr149xo0bl43bVyGOAl+9enVkmmxa4FG7gkWRDQvcDz8nNvccuPdZ3nDDDQDsvvvuvvl5OxpuBR6kYP3W5EO0Ah8xYgR33HEH559vFeM40xRuctkW59IRLc482L+By1W1Iqzwquo4YBxAt27dAlvwOOE23Upk3rx5sTesd8jEs9DbG3eWNfTt25eTTko/sJ3fEFOhxEV341jU48aNS6pkqVjg6cwn1cVS3FdheY8D/Pq733H5ihWMB6pnLUE0xaLAVfXMiPOKFX45q6Sj4ByFtGnTprQcKcOI0xbEWfaVzfgNU6dOjZ125syZlJaWJq1kSVWBx91kKGoOPKheBz0brwJ3dyQGDRrEsGHDYskF0dur1qtXj+HD09+gL5dtcS4t8DjzYN2Ap0TkW+BU4F4ROTHdG1aHJ2omS8eC5Eu1RxeHdIbQVZVx48b5bowQh6gGtk6dOqxZs4YhQ4YkrTNVVe67774q+zF7FXhQbOkgtsJa/jUfeBBLec8HBgBv3HUX95CZ8p48eXLguXSUTQ2aA88JcRSmN1qW0ynKdh0rLy9PWgESxKpV0QsNs2mBpzIE3rlzZ/bee++0r0+FsCF0Pws8ajvTIAWuqtSpU6fK7wojygJPtVPjpVgV+HSgg4i0E5GtsPYPT9olRFXbqWpbVW0L/Bc4X1WfT/eG7m0c/chGBcnkZVSnAk9Hzscee4whQ4Yk7YWeClHPt7S01LcDNHHiRM4//3z22WefpONeBX7TTTeFKjlnFKM+lvf4N1hzM22xhs3PwvKmfBQgYv/iODRr1izjPNwUiwWeL6JGX/bbb79qG3mqW7cu++23X2S6OPEY4u5GFgcRCXRQi0OmyiqIoCF0x4nN60fkPAvnujCLG7bMTzuk0hHxU+COV3yqeflRlApcVcux2tHXgbnABFX90jNXllWyPUTmRyZWvruX6Y237WXjxo08+OCDad8rnULjnUdPlTgK3G9Y/IMPPvBN7007ffr00NjM5WvXMgJr8vUurCGfWUA/YG/gScB5A02bNg2VNQ7ZtlaMAg8nSoGXlJQU3DMsKyujdevWPP7444FpdtllF2BLONBMEBFOO+20lK5x4o7ffvvtPPPMMxnL4EfYELqqVtmy2WlLHAvc27HwLkt15v6d6zJR4IcffnhS1La4eXk7EQ5FqcABVPVVVd1NVdur6vX2sbGqWsVpTVXPVtX/5lKebBC27KyyspKvv/6aJUuWREZg2n///RPf/YaJhg8fzqBBg9KWM2xrvlwRR4H7WSRz5szxTe991i1btvSN8tYQGAk89sEH3AbsiLUP90lAZ+AZqgZecTxLMyHbCtwMoYcTpcBFpOAism3evJndd989NDTpHnvsweLFi7nsssuqnGvXrh0A999/f6z7pWPFO9uuXnJJ7vanuvXWW5kzZw6vvPIK9evXZ82aNQkF7tdWehV4q1atks4HKUuHVEYSvArcGYZ3qLUKvNDIhrNIUCO7bt06Lr74YnbbbTdatWpFmzZtqqQJst7djY6qsnLlypSC7Ptx6aWXBjr1VVZWxtplKNvUqVMnpRCv3ga7Z8+ePP/884n/G2M5pn0L3Aw02bSJaVhruPcDnid4KVhpaWnKloqXbAw3Hn744YnvhWY9FhpOkJwgvvnmm4KLiV5WVhbpqV1SUkKrVq18y9P8+fMpLy+PjBbpkI4Cv+aaa1K+JtX7rV69mu7du3PcccexadMm5s6dm1CMixYtqpLeOwf+9NNPJ52PGm1NpXPtl5f7+rh5BXm/GwWeJbIREefGG2/0Pd6kSRPuuuuuxP9+aw7jKPBBgwZFzuXHJcgD9qijjqJRo0a+m45kQlQHqaSkJCUr02uBV1ZWUlpayrbANViK+3qgOfABcGffvuyPtYY7ipKSkowt6GxY4O7GMxujAjWZ1q1bh57/+eefC1qBB/mWhJWjOnXqpFTOwhTq//73vyqWLMBHH30UO38vYREWvbiD2jhz4EEjml4L3NsmRnWKUnlmXh8kVU16jnHzCvJlyuW+FLVKged7eC2OAn/ooYeytqwk6Pe+9dZbALRt2zZrw2b33XdfZFz48vJyunfvHjtPb+Wus3Ytr+23H98B1wJNgXeAw4CDgHlt28bOu1AUeNOmTVFVVJX+/ftnnF9N58svvww9X8gK/JFHHvFNk0o5cubLgwhT4IceemjW/YRSUeBunDnwIOUWNge+1157ccghh4Tmn6kCD8vLkc0b1yLo2RoLPC4VFYwCzgT2B7yRlfOtwIPun6tGJ06+t99+u+/xOBHq3DhBDsIICqQQhKPAdwRuBc668kqOnDaNxsCiXXbhEOBQrB3Dbr/99thBJSA7Cjwb5Mrrt6bSqVOVaMxJFJoC//HHH5k0aRIQbKGlUgaioj5GDWlnu7ylq8CXL1/Op59+Gvh7wrzQZ8+eTbt27ZKmn6KUbhje9+IdqfU+M+de3vbGKPBMWbKE64D/A6ZixWZdhxVdayJw4vvvcz7WRsa7Ya0Trg7Gjx+PiATO4eWqY9G3b98qcXjffPPNWNeOHDky6/KkOoVRb+lS7gMWAZcAdTdv5lXg98DTgwdzgmsjmYsuuiiy0rorXDoK/Nhjj00agszGdrJGgWeX5cuXZ5xH3HjicdM7vg1BHcxUyqETlzuIXCvwDRs28N577yX+T1eBRxHlhQ7hbVnUMx0zZkziu/f9ef2DgvLyymQUeKZstRWv7LUXE4AZWGEyGwH7YnkkHzFrFvcAr2HtNLUB+A7LgnsQQq33dHDmmM8555zQdBUVFUycODEyXar88ssvVSISHXnkkbGuzcaaVC9x5oJUFT75BP78Z06+4gqGYkVSewa4+fTTORYrhmedOnU46qijkuSNapzcFbGkpCTSYvdukPHSSy/x7bffJsI7tm/f3u+ylMjFc67NZDrfeNZZZ7FixYqUwq/6KTE/B0l3+fv3v/+d+J7NTlyuFXj9+vXp1atX4n9vHcrU+dZh4MCBDBgwgGuvvRZIXe4oBd61a9fE95122onbb7+dN954A7DazbC8gtbtuxV4z549E99zubqkoPf0Tpkdd2SnRx9NejnbArvYnyN32QVduJD29v+tXZ/ePtn9grWm2O/zLRDVVPTv35933303UuyZM2emHNI117z88sux0o0dOza2xRLWuJZidbI46CD48EPrYEkJj2DFKv8KOM+1PaETBMJNnGVsDnEscHd+zv1EhC+++IJNmzbRsGHDWNeGYSzwwuLggw+mUaNGbLvttrGv8VPgfmXL/a4vuugiLr74YiA6AFUULVq0IO4eEUHlbf78+Wnd25tfpr/F2eipYcOGSds8p1pPFi9eHHre3fGoW7cuF198cWJL2qOPPjoprfddBvkoeXdEa9++Pd98802sHenSpca1Ht6HvQZrTfB/gSELFzIUOBIrrObWWIr8COA8rD1NnwE+sa9zW++XQmzrvbl9b7/lEX7kWnl7dyqLS5Qz3YYNGxg2bFjskQM/Bd4KuBqrU/QMIB9+CE2awCWX8OjVV3M2W/bhdi+zKikpqaIk3Ra5H+5GIB0F7v4epry9rF27lqVLl7JgwYIqUxpGgeeHIAUdFdbUb6mQo8AfffRRunXrBvgr8KDy5p7LjYN33tgdES6qPAXV6aBNQ6KIqkOpjCqOHj06cJox6nd531eUD49bbqduN27cmB9++CFpdMSbNuyebgu8srKSt956i+23356DDz44VJZMqFkWOKkNSZZjza8uAt7yOb8tJKx17yeO9f798uVw0kncgqWgFmFtz/Y9sNbnmlxx4oknMnHiRPbcc0/f86rKh47V66KsrCw0zGuqcztO+vrAicC5WFt3OlVzHtD21lupd955sM02/Oya4wZYsGBB0v/eSu2dHth6661p0qRJYl7Ua4Gn0ihkMtfXuHFjGjduDMD7778feA9D9qhTp06gz8X69etZsGABnTt3rnLOGfoMei+33XZblTXZflMxfsey1Vnbbrvtkv5319Go8hRnd7RU8Co3rxNhlDznnHMODz/8MLAlaI0f2e7ouuV21+2ddtopNC3EG0KvrKykTZs2WfHJCKPGKfCwSGlhtGzZskrgkzVY1vgnPunrYClvr2Jvb3+aAJ3KyuD557nU5/r1bFHmSwK+/+JzXbqcfPLJgefWr1/PQQcdVOX4xo0bQxV4KnM7DYE6EyfyNNAXcOyYjcBzwMPAm8Cqc8+lnm3leN+le71qZWVlaONwwAEHcM8997Djjjuy4447AlWDM0yZMiVU5q5duyZGL1LxcA+jEDzfawNho0cNGzb0fZ+bNm1KlPegsuVXH+IOoWfr3Xt/m3foNoxsK3CvYg3alCSIhx56KKHAmzdvHpgumwr8yy+/TBrWjhNoxw9vGUnlPWSLGjd+l64Ty/77719lN6wwyrGs6jex9jm9Aivm9n5Ylvt2wGGNGsHTT3MF1qbIk7GGg3/FUmB7AEdhWaLXAA8Ak4Avsbzn1wJfYA3b/wf4O3AOMOOGG+iIpRS9xNlgwUtQQJcoCzvqfEfgQqwdbH4Chr3zDv2wfvs0rE2id8TaZGQyVtQ0t9KO6oyFVerTTz+dLl26JG216rXAV65cGXj9fvvtx0UXXZT4P1sK3CtzoS17KjaauPwi3DgN6DHHHON73u+5x7Fk/RR4lAXuRA/MlhIKU+DOPtpBpFPe/EYqHDJV4G7CpqXSnRpwcLftnTp18h1CDyKoLLRs2ZI99tiDDh06AMnbklZXva5xFni6gQo+//zzpH1xM2U18N5vv0G/ftx0+ulVzm+LtdlGK/uzs+dvK6xQoXvanySuugpnhmcNydZ7p2bNeABrfv47+1jUmMQXX3zhezzMwl6zZg0LFy5M/L8Vlr9ADyw/gN4k7yULVrS0Z7GW9AXFgHOGPdesWRPaGfNGS/Lid847Bx52/YgRI5Kc84JGIrp378706dMD8/ESNeRYDIhIH+AOLN/DB1T1Rs/53sALWLNGABNV9Z+5kCVqH2n3SoIhQ4YkhsijGvygsuHX2Dtlw52n+z078+bZUuDeMuPON2iaLBPC5M5kCH3IkCFJ/2eiwMMYPnx4lVES93tMV2dstdVWzJkzh4qKCtavX5/UeTIKPE3Ceoth5GKtXkVFRWADs8b++KtOi6ZUVeo7A2f16kXFt99SsnQp21ZUsC3WblsAvPEG7sHwSuAHtij0b+2/y4GVwM/AX848E6Fq3PAkBa4K69bB8uUs++wz/nrmmewOPAXsjjWa4K0GK7BGKCZjbUm3LOS3OmzatIl58+bRsWPHxDG/+UxVDR3e92s4vBa4t4MwadIk+vTpk0jrruRB9+ratWtKCjwoKESxICKlWP6cR2L1D6eLyIuq6t2R5n1VPa5KBlkmSoG7n6/bgTBdBe43DO5WPI6i8HOAzNYQulc55FpZhClh729KxQL3rl4JiiUelY8bP1n9lpgGzYHHzdN9vLS0lCZNmiTdo0Yo8Bg99T8Cl9v/rgeGqerMDO/J008/zek+Vm8YufIGzsT5abX9meU5fsqrr1qFXRV+/pnOLVokFPzZRxzB2lmzqL9iBW2AlmxR/lVnubdQieVZvwlredxmYIdevaCiAjZutD52Y7kj8IRPHnOwhsanYVnbswneTCQIP0cWv0a6YcOGtG7dmsGDB/s6nqSjwN3LR5ydkhyC3mOq77cGWOA9gAWquhBARJ4CTsB6/dXCnDlzEhHZooIgBSnqqOcepGz9LPCWLVsmOnGONeee/nHyytUQej4VeNSUUCpOmu4haC/OM4y75eqLL77IoEGDWLFiha/DapzOeZMmTVi7dm3sOXB3mSl6BR6zp74IOERVV4vIMVjTyftXzS01+vXrl7ICLyZv4ERBEYHmzZkJOL2e3Y87jifWrmX6ihWA9YJ3BtoAbV1/W2Atd2sONMOy9hvimVf/8cfkG2+zDeywA0srK5mycCFfY3mOf2V/sul0F0WzZs0AAgNu+FVK7xB66Lr00tJYGxpcffXVvPfeewwfPjyW3MVugWP1Cb93/b8E/zp7gIjMBJYCf1VV3yDmInIe1irOyM1KHPbYY4/E9yALfKuttmLz5s2BHayo6bKgeVH38UGDBlFZWZmkrB0F7i5bzvd8WeDDhw/n7LPPTvt+Tj3w2xI1m3PgYZ3hOnXqMHPmzMhY8A5/+MMfGDlyJCNHjoy0wIMU+NZbb83atWsDdYM3z5pmgUf21FXVvXZpKpauyQvFZAlFzf26Q3yWYw2bfwuEhZQpxVreVQ9rPrsellW+T/fuvPzmm1C/PtgF/aX772fo0KEZ/YZM6du3b+h5v+AyXgv8ueeeC4xMF1Y53Wy//fbMnBl/0MgtQ9OmTSNDYxYgfoXP2wv5FGijqutFpC/Wzq4d/DJT1XFYHXe6desWuzcjIqgq++yzD7Nmeceo4KuvvmLcuHGB65CjRk7iKPDLLruMDh06JG1C42eBOx7PubLAKyoqWLJkSeBvGjFiBG3tjX7S6TCmYoF7lWEqhlGUM9k+++wTmYff70tXgR988MFMmDCBBg0a+J4P+23VpU9y6YXu11MP2y9xIJbDdRVE5DwRmSEiM+JGHEqVfG90AsmBIPxo1qwZDRo0iJz7TSdGdwWWd/wqrPnx77Be3ivTp9Nv0CCWr1qVSJur+MdxWbZsWWClcvA771XgRxxxBHPm+I/8eitnthpfdz5fffVV1rzbq5ElJPsn7oxlZSdQ1XWqut7+/ipQV0SC1wilgbP16kMPPeR7vl27dowePTq0roQRJ265d8hXVfOiwCsrK2nZsmVgFLRM75vKHHi/fv1i39v7OzKpC34yuvNPZwh9/PjxzJ49OzDoT01X4HF66lZCkUOxFPjlfudVdZyqdlPVbi1aZCNKeVVSfeDpNgxh1KtXLxFe0Y9ly5axevXqKoXx+OOPT3w/6qijYoXuc4ag4/DMM88knANnzZrFpZf6rWyvPtxLw4Lwm09zP7dUY0anOvwZxwmqCJU3wHSgg4i0E5GtgDOwVgomEJEdxH4AItIDq535OZtCOI1zo0aNko5/9tlnscIXRxFHgTudxH333ReANm3acMYZZwDJsbCdSGveMrRixYq0An2kOgeeSwXuPed9btkaQk8H90YojhxuxzOHsCF0v6mWOKMK1WUQ5rIFieypA4jIPlhLoI9R1axW8lRI9YH/9ttvvPjii6EBUlKlrKyMM888kz/96U++54MK+IQJE5g/fz7bbbcdLVu2jGWBz54929f5K4gff/wRVU00VtVJqku1APbee+/oRAQPKXob21xY4MUYRlVVy0XkAqyFBaXAQ6r6pYgMtc+PBU4FholIOZZv5Bma5cl+Jzvve0p3FYqXIAXubrydTuKIESM4+OCDE3vdV1RUJE2rOJ1l7/tO1xhJ1dhw3zed15BJOQ1Tdtm0wP1+1znnnMPzzz/PRRddlPgNzt84Fngq9/Li3QgpV+SyBYnTU2+NtSz4z6qaXjT9LOHdPej8888PVRqlpaXsuuuuWZVh06ZNaVWWevXqsffeeyeGFf2cTbyELdkIwr2NYCa0adMmpfRHHHFE7Njjy5YtY9asWb4OUX6NSa6GHYPwRoMrRlT1VVXdTVXbq+r19rGxtvJGVe9W1T1VdV9V7enxdcmWDEB23tOdd95ZxRnST5k88MADSfdz/CxKSkoSytv532+EK1uOsl4Fcu+994amr04LPJN7Z+NduuVp0aIFH374IS1btkzUNe9fyN5oqvNehgwZwm233ZaVPKPImQJX1XLA6anPBSY4PXWnt44VXKwZcK+IfC4iM3IlTxS3euJuH3jggYHz0fPmzQPSr5BB+bo36wArOlw63HTTTZFpgpTHgAED2H777X3Pff3117FlCNtWsGnTprHzARg2bFjsef0ddtgh0Pr2e1/NmzfnvffeqxKFz9uYfPrppzGltQjqpbvzLVYFXgg4VmhpaSknnHBCRnmddtppDB48OOlYkDUYdxomF1NsDl4LPGokLZcKPJNrq3MFhtcCz0SBRz2Pli1bVtv0WE7H8GL01AepalNV7Wx/gj24UiRVByFnOGzOnDmMHTs2MZflZbvttkt4DqdbMYKGV7xzu2HB/cNo2rQpJ554YmiaIOXRs2fPwI6Dt5ELY9CgQYHnUi3cqWzWEEbQtb169aoy15WrZYU1wQIvBNwW+NNPP51RXn7v2q+M1q9fPxGv2xtFzEsuHT1TVXyptFPvvPMOd955Z9KxTOpCoUwTeRW4O/paLjtbuaYwnm4O2H333avsGhSHPfbYgyFDhgQWvFzOYZ500kmB94q7/tHBuyWel7A5vlz3HlPNPx/zxpnex5nOCMu3UBq3YsQ9B55pRyiOgtpll10444wz2H333ZkyZQp33HFHaPpcKvBM5sCjOOSQQzj33HOTjtVEBe5eZlrMHenCeLo5wl3QgzyXR44cyeOPPx47z2xsMem3RhnC1x6nWhG8Ww5G3ct9vJAVeCaVLZWGKNNKffnllzNo0CDeeeedwHyLueHIN24LPBcK3OvUeuWVVybuc+CBB0bGz86lVecOZBPE22+/nfie6QqKVOfA0/GvqS4KpUORLWrWr/HgVuDuF9e/f3+OPvpo5syZw8033xzq9HXYYYcl/e8usHGD4B999NEMHDgw8b936UsQ7oqXai84lb2uvddluoaxffv2GV3vJR8KPNOKvs022/Cf//yHQw45JFCGmtaYVCfuOfBMpzv83kOmy4ByaYG3a9cucu+G3r17J76n6oWeigL3Y926dfzjH/+ITJfNOXDHifDAAw8MvVc26pwzlejtqOQjqmKNbkHcD9Rd4Dt37sykSZNi9WS9uAtz3F72pEmTkuJsp6PAUy146RZUJ8JVJjz11FOh54MCIwSRyXNIF++6UUNh4ZTRbLwfvzy825Smep9cj66kYuGnWmcyDWIkIrGeVzaVau/evVmxYkWg749jbLnb4XS5/vrr2bRpk28gH6jeNqNGK3B3L9rZNN57PAr3y2jWrBnPPPNM4v8gC/y+++6rcuzYY4+lffv2XHjhhZx88snsuuuuSUvX/DazLykp4amnnqJZs2Y8+uijsWV2rvXiWINBy07atm1bZTldOmQ7PGi2LPAOHTrQpUuX0N947rnnstdee9GjRw/AKPBCJdcKvH379nz00UexlmSmijvIS3WQqQLP9Rz4d999l3KcBz/C1tU3aNCAr7/+mvHjx2d8HxFJeSfEXFGUoaDi4h4K/sMf/pD4nq4C/+mnn2INoQ8dOpRhw4YB1npy2FKAnOvnz7eWvTsdgjFjxlTJp6SkhNNPP51+/fplZQj9f//7X2DveLvttmPhwoVZKXxRlTYTL9qwDUiiKC0t5ZNPPgn9jQ8++GDSXuPZroxFuHlJQZJNBR5UXnv27Bm6HDIdVqxYUe1zxJmO3qWzDtw9xRGE8w533nlndt4599tgZDtuRyFQoy3wdLcSdOMuoN7C6tcL8wYQcXuDe/Ny/++3q5Lf3sJx8au0JSUloXPfzrlMlUwuFLjzrJP2KE+RuEN77jQ33mjtgHv99denfV9D9snm8GsuLSbv6pEWLVqEbpuZC3I5Bz5gwADf404bW8h+HsOGDWPPPffMtxgZUbhPNwsEKep0LXAvfoXTsazXrVvHqlWrYjuzBO15nS5e2YKWNTlksxGLyktVqzgHhlFSUsJVV10FwAUXXJCRbKly6aWXsnjxYq688spqva8hHKdu52oI3eHyyy+nY8eOaQWL+eqrr5gxI2+xqRLkcgh9yJAhvu2pc6yQFfi9997LF198kbX8jBNblgl6oNlS4H44w+qNGjVKKeKYe/cih0yG2rxy+8lywAEH+F4bVRCHDx/OsmXLAs/HqbQvv/wyl1/uu3dNFUpLS7n66quZOnVqRiEK02nsRYRWrVqZufAC49lnn+XII4/MynB02LvdbbfdmDt3rq+PShS77757ylEHU2HhwoUsXLgwMl0uFbi4tup0O/7FGUKvqRgntiyRawscrE1BHOswE/ws8K5du2aUpzv8p9/vePXVVxPfU5lW6NGjR+iOYHGG0LfeeuuEo1gUzlrf/fffP6PlOYWghM0ceHY46qijeOONN7Ji4RWylRhGu3btYkVrdJf7sPLXq1evKun9/vdj/fr1LF26Za+qsCH0bE3VGWq4Au/YsaPv8Wwq8L322itpO890cTtxfPnllzz88MP07ds3ozy7dOmS+O5XkdzLuVJR4FEVL+4ceNzeebYUbzrLBg01n0Lo2FUXYfX8tddeA9JbRtawYcPE9qru+3ivHThwIHfddVdseaOYPn16Ym+K2kiN9kIfOXIklZWVnHLKKUnHsz2Evv/++3P77bfH3sLSzYcffsjbb7+dJGOnTp3o1KlTynn54azr7tChQ2g69zPJthNbr1696NOnD6NGjQKs5WpQfcNrs2fP5tlnn409ZG8oPjp27EifPn3SurY2KfAwgnxu0nk+QXPgdevWTRzLhgUetDFUbaFGK/D69etzzTXXVDneuHHj2HnELbwXX3xx7DzdHHDAAYFz0dngs88+45577uG6664LTZeKAo+ad/Q+szp16nDVVVdx5JFH8sADDzB69GggXIGfeeaZPPnkk6H3ictee+1VZbOSfBEURteQGXPnzk372mIdQq8unLbBXa9HjhwZGpAqbA68pnaYapwTm4j0EZF5IrJARK7wOS8icqd9fpaIZDbpG8Gzzz7LSSedxPDhw3N5m4Ji3333Zdy4cYH7Xju4h9ailmqlulm907Pv3r07999/f8KxJ6zhjLMlajHStWtXBg4cGLnZTCFTaPU6U2qqQskWfmFbb775Zv72t78FXhM0hO5WcjVtDvzkk08GUm8fMyFnFriIlAL3AEcCS4DpIvKiqs5xJTsG6GB/9gfus//mhJNPPjnxkONSWyq3W4GH7b09ZsyY2JuRPPfcc1x//fWBc15hCrymPncR4YEHHsi3GGlTiPU6XZzppZpa1rJFVNx1P+Io8JpG9+7dq/335dIC7wEsUNWFqroZeArwLqY8AXhULaYC24rIjjmUKWVqeuV2AqS4g0uEKfBUlu2ceOKJTJ8+PTHn7SXTDSMMeaFG1Gs3Nb2OZ0o2Fbghu+Ty6bYEvnf9v8Q+lmoaROQ8EZkhIjN++umnrAsaxtVXXw2QcMCqadx+++2ISNKQ9a233grg6wXvXtrmDk/bs2dPWrRokdJOZPvssw+NGjXioIMOYuLEiUnndthhB5o2bZo1Zz5D1shavYb81u0XX3yRI444osYqmX/+85+cddZZScf+7//+j1NPPbXKFspOxEGHY489llGjRtGjRw/uuece9t1330RbGIdzzjmHHj16cNRRR3HzzTcnjo8cOZLTTjuNfffdl8suuyyNX2VwI7ky+UXkNOBoVR1k//9noIeqXuhK8wowWlWn2P+/BVymqp8E5dutWzet7uhGmzZtir11aDGyfv36Kpa185ud3nd5eTkVFRVJDoCqyubNm6moqKBevXqJ4chUvMt/++036tWrR2lpKb/++iuVlZU0aNCA0tJSysrKKC0trbENbKqIyCeqmle321zVa8hP3TYYCoF063YuvdCXAK1c/+8MLE0jTd6pycob/IfFnd/s/etGRDJ+Nu61o95lLLncU9mQNjWmXhsMxU4uTZvpQAcRaSciWwFnAC960rwI9Le9VnsCa1U1OEanwWDIN6ZeGwwFQs4scFUtF5ELgNeBUuAhVf1SRIba58cCrwJ9gQXAb8A5uZLHYDBkjqnXBkPhkNNALqr6KlZldh8b6/quwF9yKYPBYMgupl4bDIWB8Q4yGAwGg6EIyZkXeq4QkZ+A76rhVs2BldVwn3Qx8mVGMcrXRlVb5EOY6sDU7QRGvswoZPmCZEurbhedAq8uRGRGvpfshGHkywwjX+2l0J+tkS8zClm+bMtmhtANBoPBYChCjAI3GAwGg6EIMQo8mHH5FiACI19mGPlqL4X+bI18mVHI8mVVNjMHbjAYDAZDEWIscIPBYDAYihCjwA0Gg8FgKEJqjQIXkYdEZIWIfOE6NkZEvhKRWSLynIhs6zp3pYgsEJF5InK06/h+IjLbPnenZGkzYT/5XOf+KiIqIs0LTT4RudCW4UsRudl1PO/yiUhnEZkqIp/bW1b2yKN8rUTkbRGZaz+ri+zj24nIZBH52v7bNF8yFiumbudGPlO3Y8mW33qtqrXiAxwMdAW+cB07Cqhjf78JuMn+3gmYCdQD2gHfAKX2uWnAAYAArwHH5Eo++3grrLjT3wHNC0k+4FDgTaCe/f/vCky+N5z8sWJzv5NH+XYEutrfGwHzbTluBq6wj1+RzzJYrB9Tt3Py/EzdjidbXut1rbHAVfU9YJXn2BuqWm7/OxVr20OAE4CnVHWTqi7C2pShh4jsCDRW1Y/UeuKPAifmSj6b24HLALe3YaHINwy4UVU32WlWFJh8CjgbmDdhy5aW+ZBvmap+an//BZgLtLRlecRO9ojrftUuY7Fi6nZO5DN1O55sea3XtUaBx+BcrF4PWC/ge9e5JfaxlvZ37/GcICLHAz+o6kzPqYKQD9gN6CUiH4vIuyLSvcDkuxgYIyLfA7cAVxaCfCLSFugCfAxsr/ZWm/bf3xWCjDUMU7dTx9TtFMlHvTYKHBCRUUA58IRzyCeZhhzPhUwNgFHA3/1OB8hRbfLZ1AGaAj2BkcAEe96mUOQbBoxQ1VbACOBB+3je5BORbYBngYtVdV1Y0gBZqvsZFjWmbqeNqdspkK96XesVuIgMAI4D/mgPXYDV+2nlSrYz1hDNErYMxbmP54L2WHMkM0XkW/ten4rIDgUiH/b9JqrFNKASK1h/ocg3AJhof38GcBxd8iKfiNTFquRPqKoj14/28Bn2X2eoslCeYdFi6nZGmLodk7zW60wn8YvpA7Ql2RGiDzAHaOFJtyfJjgYL2eJoMB2rV+o4GvTNlXyec9+yxdGlIOQDhgL/tL/vhjU0JAUk31ygt/39cOCTfD0/O79HgX97jo8h2dnl5ny+42L9mLqd9edn6nY8ufJar/Ne8arrAzwJLAPKsHo7A7EcCL4HPrc/Y13pR2F5CM7D5Q0IdAO+sM/djR3NLhfyec4nKnmhyAdsBTxu3+9T4LACk+8g4BO7wnwM7JdH+Q7CGhKb5SpvfYFmwFvA1/bf7fIlY7F+TN3OyfMzdTuebHmt1yaUqsFgMBgMRUitnwM3GAwGg6EYMQrcYDAYDIYixChwg8FgMBiKEKPADQaDwWAoQowCNxgMBoOhCDEK3IBYTBGRY1zH+onIpHzKZTAYMsPU7ZqNWUZmAEBE9sKKaNQFKMVaz9hHVb9JI69SVa3IroQGgyEdTN2uuRgFbkhg7/n7K9DQ/tsG2BsrLvK1qvqCHbD/MTsNwAWq+qGI9AauwQq40FlVO1Wv9AaDIQhTt2smRoEbEohIQ6yoS5uBl4EvVfVxEdkWa6/aLlhRhypVdaOIdACeVNVudiV/BdhLrW3yDAZDgWDqds2kTr4FMBQOqvqriDwNrAf6AX8Qkb/ap+sDrbEC7N8tIp2BCqw4yQ7TTAU3GAoPU7drJkaBG7xU2h8BTlHVee6TInIt8COwL5YT5EbX6V+rSUaDwZA6pm7XMIwXuiGI14EL7T2AEZEu9vEmwDJVrQT+jOUUYzAYigdTt2sIRoEbgvgXUBeYJSJf2P8D3AsMEJGpWENspmduMBQXpm7XEIwTm8FgMBgMRYixwA0Gg8FgKEKMAjcYDAaDoQgxCtxgMBgMhiLEKHCDwWAwGIoQo8ANBoPBYChCjAI3GAwGg6EIMQrcYDAYDIYi5P8BYrnd8m1ssrcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABbN0lEQVR4nO2dd5gUxfaw37NLBkFJBiQoiIAgKBgwguFiRgwI8pkFc7rXnBX0illAwayICZWfWcygooigokRFEOGCZJUkK7v1/VHdS09Pd0/3TE/Y3XqfZ56Z6a6uPtNTVafCqXNEKYXBYDAYDIaKRVG+BTAYDAaDwRAdo8ANBoPBYKiAGAVuMBgMBkMFxChwg8FgMBgqIEaBGwwGg8FQATEK3GAwGAyGCohR4IasIiLbishnIrJWRO4TketF5Il8y5UKEXlGRIZYnw8Ukbn5lslQ+RARJSJt8i2HFyJyq4iMiftaEekhIoszky5eRKSFiKwTkWKf82k/C4+8YvvPq6wCF5FTRWSq9actFZH3ROQAV5ozrYfd13W8h3V8nOt4Z+v4BMexViLyqYhsEJE5InKY65pLRGSBiPxlyXOA41xfEfnSunYCFZNBwEqgvlLqP0qpO5VS50L5s1EiUs3v4jgrTroopT5XSu2aTxmqIqaOJv2eglJ6lQml1G9KqXpKqdJ8yxKFKqnAReTfwIPAncC2QAvgEaC3K+kZwGrr3c0KYD8RaeRK/5Mr3YvAd0Aj4AbgVRFpYsmxD3AXcBLQAHgS+D9HL3C1JeddUX9jugQp0zRpCcxSxmOQIQKmjkYnC3W3wuE3gq60KKWq1AtdCdcBJ6dI1xIoA04ENgPbOs71ABYDo4CLrGPF1rGbgQnWsbbAJmArx7WfA+dbn08BpjjO1QUUsL1LlnPtPFPI3Bv4HvgL+AU4wjr+K3CYI92twBjrcyvrnucAvwGfAeOBi115TwdOsD63Az5EN15zgb4+8jwD/AOUWM/8MNe9f7Puvc56dXddf4R17T/W+enW8R2AN637zwMGBjyTo4BZwFrgf8CVrv/wevQMwa/AAJfsQ5xpHed+Ba4EfgD+BF4GajnOH2P9D38AXwK757vcV6QXlbuOXgUsBZYAZ1t5tbHO1QTuterFMkv22tY9N1q/1a4rO1h16VVgDLrOn8uWTsZSq7wPAYqt/M8EvrDusQZYABzpkG0nYKJVVz4ERmDVVev8vlZ5/gPdHvQIe63rGdj/TVLdA/ayfns1R/oTge998noGGAm8C6xHtzE7AK+hO3ALgEsd6fcGplrPaxlwv3W8lfVfVEv1e3C1B9axX7HaWOseX1nPaal1bQ1H2vL/PNNXVRyBdwdqAf+XIt3pwFSl1GvAbGCAR5rRVjqAXsBMdMW02Q2Yr5Ra6zg23ToO8B5QLCL7WD3Hs9EN/++hf42FiOxtyXMVsDVwELpQheVgoL31O14A+jvy7oBuLN8RkbroAv0C0NRK94iI7ObOUCl1JvA8cLfS01MfuZIcZL1vbZ3/ynX9ePQI7GXrfGfr1IvoBmAH9MjoThE51Od3PQmcp5TaCugIfOI4tx3QGGiGHpk9JiJhp8r7ojsYOwG7oxtHRGRP4CngPPSI7lHgTRGpGTJfQ+Wto0egO36HA7uglY2ToegORRegDbpc3qyUWg8cCSyx6kE9pZT9G3qjlfjW6Lr2LLoz0wbYA/gXWrHb7IPudDcG7gaeFBGxzr0ATLPODcYxqyEizYB30B2ChtbveM2eqQi61gfPuqeU+gZYZT0jm/8HPBeQ16nAHcBW6A7GW+j/sBlwKHC5iPSy0j4EPKSUqg+0Bsb65Bn19zgpBa6wru1uyXBhhOtDUxUVeCNgpVJqc4p0p6P/RKz3pD9QKfUl0NBq9E9HNxZO6qFHaE7+RBc00L2719C94k3ALcAgZXXTInIO8JRS6kOlVJlS6n9KqTkRrr9VKbVeKbUR3XB2EZGW1rkBwDil1Cb06PJXpdTTSqnNSqlvrd9wUhoyR0ZEmgMHANcopf5WSn0PPAGc5nPJP0AHEamvlFpjyevkJqXUJqXURHQD1Tc5C0+GKaWWKKVWoxuMLtbxgcCjSqmvlVKlSqln0f/tvmF/o6HS1tG+wNNKqRmWUr7VPmEp0YHAFUqp1VaH4k6gX4o8v1JKva6UKgPqoxX95VZdXg484MpjoVLqcaXXep8Ftge2FZEW6NGvXR8+Q5drm/8HvKuUetdqXz5Ej2SPCnGtH35171nrfohIQ7YMKvx4Qyk1yXoGnYAmSqnblVIlSqn5wOOOZ/AP0EZEGiul1imlJrszy+D3AKCUmqaUmmy1j7+iO/EHh70+ClVRga8CGqcwnNofPbJ6yTr0AtBJRLp4JH8OuBjoSfKIYR26Ujmpj24UQPeMz0b39mugC+3bIrJD2B/joDl62jxdFtkfrMbjHbYU+n7o3j3okfg+IvKH/UIr+O0yuHcUdgDsBs5mIbq37cWJ6Gn0hSIyUUS6O86tsRpSZz5hn71zBLYBrQhAP5//uJ5P8wj5GipvHd0BRz1DlzebJkAdYJqj3Iy3jgfhzK8lUB1Y6sjjUfRMmU15uVVKbbA+1rNk86oPzrxPdpXrA9AdgFTXehFU98YAx4pIPbRS/1wptTQgL/cz2MEl5/VoOwrQA522wBwR+UZEjvHIL53fU46ItBWRt0XkdxH5C90Raxz2+ihURQX+FfA3cHxAmjMAAb4Xkd+Br63jp3ukfQ49PfKuo0LYzAR2FpGtHMc6W8ftz28ppX6yerXj0Wsm+0X4PTaL0FNCXqxHNw42XsrWPaJ4EehvKbzawKeO+0xUSm3teNVTSl2QhsxhRjHuNEvQIyrnM22BXu9Lvlipb5RSvdGN2OskTpltYy0JOPNxTq+mwyLgDtfzqaOUejHDfKsSlbWOLkV35mxaOD6vRK9z7+YoNw2UUnbH0K+uOI8vQs8SNHbkUV8plbS85SObV31w5v2cq1zXVUrdFeJaL3zrnlLqf+gy0Ac9sxY0fQ7Jz2CBS86tlFJHWXn/rJTqj24PhqINFuu68kv1exLaU2tpxdnRGgnMAXaxpuqvR5fV2KlyClwp9SfaiOVhETleROqISHUROVJE7haRWuhe3yD0tKj9ugQY4B4VKKUWoKdHbvC410/o9bJbRKSWiPRBr5e+ZiX5BjhaRHYWzeHo3uEM0AXDkqcaUGTlUd3npz0JnCUih4pIkYg0E5F21rnvgX7W7+xGuOnud9G92dvRa9Bl1vG3gbYicpqVX3UR2UtE2ofI080KtGHOzgFplgGtRKQIQCm1CL3O9V/reeyO7lU/775QRGqIyAARaaCU+gdtuOLeJnKble5A9PLAK2n8DiePA+dba6YiInVF5GiXgjAEUInr6FjgTBHpICJ10NPxthxl6LLzgIg0tfJuJlvWbpcBjUSkQcBzWwp8ANwnIvWtdqC1iKScvlVKLURPidv14QDgWEcSe1Tcy/7Nore27RjiWj+C6t5o4Gr0lHgqWwgnU4C/ROQaEaltydpRRPYCEJH/JyJNrOf9h3VNQpsQ4vf8BNSy6nV14Ea0AaLNVui2Zp3VBqczuAmHKgCr03y80NO+U9G9qd/RU8b7oaeLlwLVXelroXvJx+BhhehIl2CNirZunIDuXc8l0Rpc0AryN/SU3WzgNMf5M9G9S+frmYDf1AdtGb0WbZ3dyzq+M3qEss76ncNItkKv5pHfk9a5vVzHd7XyWYGe7vwE6OIj0zNY1tzW91tJtGy93crnD2Bfj+sbodcf1wDfWsd2RHckVqOXDc73uXcN9DTkGnSF+gY4wDrXA20Id4P1v/7mevblcrv/bwKs+q3vR1j3+sMqS6/gsHI2rypdR6+1fouXFXot9HTrfKu8zibRgvopq779wRYr9DGu/BugR4CL0Wv53wH9HLJ+4UrvvP/OaAv8dXhboe+Dtsxeja6z7wAtwlzrumcPAuqelaaO9QyeTVFGnsHRvljHdkDPIP6OrvuT2WIhPgZYbsk5EzjeUQacVuipnsWZ6DK4HG3Q96vjHgehR+DrrDxudz535zPP9CVWhgZDlUJEeqAr5I55FsVgMHggIr+gd5C4d68YLKrcFLrBYDAYChsRORE9Uv0kVdqqTJX33GMwGAyGwkG0S9oO6Gn1shTJqzRmCt1gMBgMhgqImUI3GAwGg6ECUuGm0Bs3bqxatWqVbzEMhpwzbdq0lUqpVI49so5ob3ij0f4EyoDHlFIPudII2m3lUWhHN2eqZC94CZi6baiqpFu3K5wCb9WqFVOnTs23GAZDzhGR0N6gssxm4D9KqW+t/e3TRORDpdQsR5oj0f6+d0FvPxppvfti6rahqpJu3TZT6AaDIRJKqaX2aFppl7azSXZl2xsYrTSTga1FZPsci2owVGqMAjcYDGkjIq3QUa++dp1qRqKP6sV4+KsXkUEiMlVEpq5YsSJrchoMlRGjwA0GQ1qIDjbxGjr61V/u0x6XJG15UUo9ppTqppTq1qRJ3pf3DYYKhVHgBoMhMpYP6NeA55VS4zySLCYxcMeOZB4oxmAwODAK3GDIEm+//TZ77bUXv/ySSZTXwsOyMH8SmK2Uut8n2ZvA6VYAkH2BP1VwSEiDRVlZGTfffDMrV67MtyiGAierClxEjhCRuSIyT0Su9TjfQETeEpHpIjJTRM7KpjwGQy459thjmTp1Kueff36+RYmb/dFhHg8Rke+t11Eicr6I2D/2XXRQjnnoKFsX5knWCseECRMYPHgwAwcOzLcohgIna9vIRMdIfRg4HD2d9o2IvOnaanIRMEspdayINAHmisjzSqmSbMllMOSaDRvcIagrNkqpL0gR31hpF48X5UaiyoXtHXPt2rV5lsRQ6GRzBL43ME8pNd9SyC+ht5Y4UcBW1pRcPXSYus1ZlMlgyDm6eBsM4SguLgZg8+bMm8KNGzcya9as1AkNFZJsKvAw20hGAO3Rxi0/Apd5Oa83W00MBkNVoVo1PTEahwI/7bTT2G233Vi3bl3GeRkKj2wq8DDbSHoB36MDsHcBRohI/aSLzFYTg8FQRYhTgX/66acAbNq0KeO8DIVHNhV4mG0kZwHjLG9N84AFQLssymQwGAwFTZwK3ESbrNxkU4F/A+wiIjuJSA2gH3priZPfgEMBRGRbYFe05arBYDBUSeJU4DalpaWx5WUoHLKmwJVSm4GLgffRvpLHKqVmuraaDAb2E5EfgY+Ba5RSZvOjwWCosmRDgS9darbgV0ayGo1MKfUuej+o89gox+clwL+yKYPBkCs2b95MUVERRUXGP1K2+Oyzz3jnnXcYOnRovkXJOnEq8C5dupjp9EqIaWkMhhgoLS1lu+22o2PHjvkWpVJz8MEHc/fdd+dbjKxiK9o4FXih8sEHH/D555/nW4wKS4WLB24wFCIrV65k1apVrFq1Kt+iGCo4VUmB9+rVCzDGduliRuAGg8FQQNjKLA4HQEYxVm6MAjcYDBWOsrIkf0+VBqN0DWExCtxgiAHjLjW3VIVtUVEU+aJFi/j222+zKI2hEDEK3GAwVDiyrcBr1arFZZddFirt008/zY8//uh5rrS0lH/9619MmDAh9L3TGYG3aNGCrl27Rr7OULExCtxgiJkZM2YkfJ8+fXqeJKm8ZHMKXSnFpk2bGDZsWKi0Z599Np07d/Y8v2LFCj788ENOOeWUSPc3GMJgFLjBEDOdOnVK+G4CScRPNkfg69evD53WDhXrp3TtyGJROhxxKnDTGajcGAVuMMRAZTaqKkSyqcD/+OOP0GlXr14NQO3atT3P2059jAKvXOyzzz706NEj32KYfeAGQxyk01DOnDmTVatWcdBBB2VBospNNhV4lLztKF81atTwPG8bN0bJ0yjwwmfKlCn5FgEwI3CDIRaijsBXrVpFx44dOfjgg/nkk0+yJFXlJZsKfM6cOZGv8VOU9vF8KfBCmRkqKSnhr7/+yrcYlQ6jwA2GGHA3un///Xdg+vnztwTde+utt7IiU2Ummwr8iCOOCJ02lbK1z6ejSONQ5IUyAj/66KNp0KABL7/8cr5FqVQYBW4wxIC7gb7vvvsC0zv3jZeUlLBp06aCaWwrAoUyskz1n9lyVvU18I8++giAfv365VmS9JgzZ07BPEsnRoEbDDHgbqCdI2yAuXPn+l777LPPUqtWLQYOHJgV2SoLzga0UBy52DIV6hR6ISqdisbnn39O+/btGTVqVOrEOcYocIMhBtwNpfv72LFjE747R+D2tiU/S2aD5uGHHy7/XGgKPNX5qj4Cr8j8/PPPAHzzzTd5liQZo8ANhhhwN9DpTPHWrVs3LnEqJT/88EP554qiwM0UuiGbGAVuMIRk5cqVDBgwgEmTJiWdSzUCt/cDB1GnTp3MBKzkOGctcqXAV61axS+//OJ7PuwUehRFaqf97bffWL58eejrgvIK4rLLLuP222/P6D6G/GAUuMEQkquuuooXXniBAw44IOmce4Tlbjhtj1xBVKtm3DIEkQ8F3rFjR9q0aeN7PuwUehSc17jd8rpZsWJF4D3C3H/YsGHccsst4QU0FAxGgRsMIVmyZInvuagjcK/oZbVq1cpAusqP8xnmygr9999/DzyfaoSd6faxIAU8f/58mjZtyv333++bxnn/QplOv+SSS5g1a1a+xYhMoTw/J0aBGwwxkGoNPIwC9/PmVWiIyFMislxEPIeHItJDRP4Uke+t181x3Nf5DAtlDTwVmTb6Qdd//fXXALzzzjvlx3799Vff6zPp9JSUlPDPP/+kfb2TESNG0KdPn1jyygV2XX3mmWcKrtwZBW4whCQo5neqKfQwa+AViGeAVN5OPldKdbFesSyw5mMK3eavv/6iTp06vPfeewnHw66BRyHMCPz333/n1FNPTUrz+OOP++aViQLfdtttqVWrFsOHD49lJBpmSakQmTdvXr5FSKBStSqGysm7775Lz549+d///pdXOYIUuHuft+0j2+all14KnVeho5T6DFid6/tmW4HPmzfP93/57rvv2LhxY9JacbbXwP2uT8e4LdUzC/JD8Mcff1BWVsall16acl0+DNWrV884jzhZtWoVX375Zb7FiIxR4IaC5+ijj2bChAlcccUV+RYlicWLF1NaWkrfvn0Tjo8bNy7heyHuIc0y3UVkuoi8JyK7+SUSkUEiMlVEpq5YsSIww88++6z8czYUuPs/c2J3yNz3DbuNLAphFLhfRyPKLJGbJ554IoR08Tz7Qlsu6tmzJ/vvv3/KdIXW8TYK3FBhiBLmMRd88sknNG/enD59+hTc2lie+RZoqZTqDAwHXvdLqJR6TCnVTSnVrUmTJoGZTp8+vfxz3M/7pZdeSvKe58RvP3c2ptAvu+yy8s92vHE3ziWZsPeIy/AvjunvQhuB//jjj2ldN3Xq1JgliUZWFbiIHCEic0Vknohc65Omh2XoMlNEJmZTHkPFplD8X9s89dRTQHrBSLwikBVa7z5dlFJ/KaXWWZ/fBaqLSOM47xF3Wejfvz+PPvqo73m/uN628ty4caPndekocKfDmhNOOMEzjbOshL1HXJ2eQlfgy5YtY+bMmWld61WunM/66quvTjhne1HMF1lT4CJSDDwMHAl0APqLSAdXmq2BR4DjlFK7ASdnSx5DxSffCjxTBTt79uzyz//5z38yFadgEZHtxHpYIrI3up1ZFec94lBGSqnQDb1fXO9U093ZKrNhRuDu8J1lZWUsWrQo41FjHAaZ7jzi3KLVpk0bOnbsmNa1qf6vN954I+F7vreWZXMEvjcwTyk1XylVArwE9HalORUYp5T6DUAplZnbIUOlJt8KPFNWrYpVh+UNEXkR+ArYVUQWi8g5InK+iJxvJTkJmCEi04FhQD8Vc0sXhwIfPXo0HTt2ZPz48SnTukfgmzdvZuTIkQkdAK9ReBw/e/XqZHvBMJ3JBg0aJHwvKyujRYsW7LXXXjRq1Chpy1lY4pgpctflOJdE1q1bl/a1UduYfCvwbLp+agYscnxfDOzjStMWPb02AdgKeEgpNdqdkYgMAgYBtGjRIivCGgqfQlLgM2bMiFx5C0n+TFBK9U9xfgQwIpsyxNHgT5kyBQi3NchWWvZ/OHz4cP79738npFm1alWSO9w4GvjWrVuzZs0aT3mi3MP5zFavXs0LL7zA9ddfH1meOMqxW+bS0tKC8ESYago9TPpcks0RuNevdpe0akBX4GigF3CTiLRNuiiCoYuh8pLvyuKsyJ06dQoMEeqFe/3MEJ6SkpKE73EocNuyfPHixSnTuhW412zK33//DUDTpk255JJLEtJngpfxZqop9DDT+el2LuL4Te48MvX5bvP+++9ndH3UcvXdd99ldL9MyaYCXww0d3zfEXD7olwMjFdKrVdKrQQ+AzpnUSZDBSZOBb5kyRIuuuii8lCB6TBt2rRI6W3PWYboOO0HIF4FPnTo0NDX2Pf1Kov2uRUrVjBihJ6AyNYUa6p1aC+vaVEV+D///MNPP/3kOVrOFLcsd9xxR8Z5QuZ1LOoI/KqrrsrofpmSTQX+DbCLiOwkIjWAfsCbrjRvAAeKSDURqYOeYp+NweBBnAp8wIABPPLIIxxyyCGhr4nLSjzfMwkVEfcoNI5n6Ha2E0SYuN5eii1bCjxVWfRS4FH3sD/99NPsuuuu5bstbLIxAvfbF/7qq68mbB9MRaZW4bZcSik2b96cVh4lJSVcfPHFLFu2LCNZwpA1Ba6U2gxcDLyPVspjlVIzncYuSqnZwHjgB2AK8IRSKnM3P4ZKSZyKz96qE2b6NE5WrFjBNttsk9N7VgbcCtxWRkop5syZk1aeURT4oYceCugyuGTJEj744IOkNF4KPBedNacithW7lwJftGhRwvdUCtxO7/aAGNcOACc1a9b0THfyySfTpUuXUHlOmDAhaaklKvb/df3111O9enVKSkr47bffIuXx4IMP8vDDD7PddttlJEsYsroPXCn1rlKqrVKqtVLqDuvYKKXUKEeae5RSHZRSHZVSD2ZTHoM3ZWVlvPXWW7GtQ6VLSUkJTz75JGPGjPFsJOK0VPWy7M0FzzzzTNL2HkNqdthhh4Tvdll46qmnaN++PZ9++mnkPNMZYZWVlXHuued6Lp94NfTZGoGn2r7mpcDdnsZSdS7s8+7pevv4ggULAmOlB8nnvvdWW20VmIfXf/XJJ5+U/865c+fSs2dPHnzwwZTyBGGXq0ceeQTQOwtuuummSHmsXbs2IxmiYDyxGRgzZgzHHXccXbt2zasct912G+eeey6nnXYaI0eOTDof12gmk20mmRLUCaksjlyyQbt27RK+28/RtiSPalAI6ZWn0tLSpIAmNscee2zC9w0bNsSuwK+99lq+/PLLhHy/+uqrpHRhRqJh/bj7KfCdd945MFa6zbBhw1Lee7fdfL3tAskObb766isOPfTQcuX6559/Jl2Tzmh8ypQprF69OqP/LZf12ChwAx9//DGQ++lkN6+++mr5Zy9r0rgaw3zufzUuV9PD/eydU+iQ3n+azn+xdOnS0GkvvvjihE7CmjVrMi7DQ4cOZf/99w+MAQ7eI3A36fpxj/rc7PYlKO9Usrz11luUlJRw55138vfff5fPFtrGjV7e4QYPHhxJTtBxFw466KByeeydBU5SLb04y+qyZctYsGBBZDnCYhS4oWBwVmovZRmX8kvXp7pR4PnDbxRov0exJHfnkS0WLFiQoJgaNmyYUvEG4fTVbk/x+pGuArfrRllZma/FfRzOTtLJ84477uCGG27g/vvvLy8Py5Yt4+mnn/ZU4O6dC2FxOufxWmqLYnl+1113sfvuu6clRxiMAjckMGvWrLzd28sYx0lcDW4+vScZBZ4e7vIQxio8Fbk2MAN4++23086rdevWodOmq8Dt6xo0aMC9994LJJfZqGU4zHMOk+b223VY+Y0bN5aXh6+//pqzzz47yUAP4gl+5JWH2/3uypUrE747y+ratWtTru9nglHgFZiPPvrI0xo2E5577rlY84uCsxJ/+eWXvP76677n02XChAm8++67GeeTLmEaVkMybgV++umnM2TIkAQlFLV85EKBu++Rq/XRMOu/Xkar9kjWaSfiNiAL89x++eUXJk6c6Jve3XmI8l9MmTKFyy+/POGYl5FbHIFGvKbQ3TY07mUV53/85JNPRlp2iUr+fdcZ0ubwww8HdOGNI0IQ5Hd06qzEK1eupE+fPgmFP44Gt2fPnhnnkQleHaSawJVAvUriKz0beDkuuemmmzjjjDPKv5eWlkYKtJGN2RB3/XF/z5UCD/PbHn/8cR577LGU6dzKccGCBSkdINnGbUopXwWeqvPlV9+9Bi1eaTNR4LZsXh0hd7759OtgRuCVgCj7WVORTwXudW/nloxsVZRcbutyGwoeDvwIDAEOcBjxGRLxU3zOMhN1W1g2ypMzz5KSkiR/6X4djMmTJ8eytdHt8jUqQR7mbM455xzOO+883zzcs0x+sqRS4FE6WF5tR64U+K233pr2fTLFjMArKM4Cu2nTpqQgCnHkm2u8KrEzbnA6jdKqVasQERo2bOibZtmyZdSvXz9lXnFOfzcD7gf6Wt9nAj/37MnOsd2hcuGnwJ1l4scff6R169bUrl07VH3IhgJ3Kp0vv/wy6byXAldK0b17d7p27cq4ceMyun8cCty9jzmVIt24cSN16tThjjvuoHv37kmd1HRH4FE6ZF6KNlve+txT6O6lPrONzJASZ+H0WqepiKRaK0vH+rVx48Y0atQoKS8nXntIvQgTdjIV1YB/A3PQyns9cDWwB7B0110zzr+yEmYEvs8++9C4cWPq1q3LhRdeSN++fT2vscn2CNwLLwVuK6pp06aVe3zLthwA3bt3Tzq2YsUK3nwz0eN1KkVqb5O64YYbOOSQQ5KUnl+9dh53182hQ4dGGpR4KdpMBiMbNmzwzTeOtfW4MAq8guIegYdh+fLl3HzzzUmuEVN5dcoVXo20s/Hwa5SmTJnCnXfeGWgtO3jw4HKnH27CKvBMOQD4FrgPqAe8BrQH7gGMaVswflPPfqPDkSNH8sorrwTmme0RuBdev8Oe2SkqKuL333/3vO7pp5+OJEeY31a7du2kY8cff7zvnns/VqxYkfDd3Yb4zToEdc69HDkF4dUGLly4MOP2zGtk7xX33aa0tJRbbrklo3tGwSjwCko6Crx///4MHjw4yWNUUE84l3gZ4jkbD79GaZ999uGGG25gzJgxCcedv+Xmm29m33339bw+264PmwBPA58DnYBfgKOAk4DkzS8GL/xG4OkGnIDsKHCv7UxOgjqpRUVFvj7Bo7rzdP62Vq1ahZZl3rx5ScdTPWO3khs0aFDCdz8F7pQx01Cnflb3zz//fKR8wubrR5ByzwahFLiINBGR60XkMRF5yn5lWziDP+lModtrcu4YtoWiwFONwFN5ijvzzDP5448/OOiggxg0aFDoBjpbW7uKgPOBucCZwCbgNqAj4O2M0xCVTAw4s6HA27dvH3g+aAReXFzsq8Dds2apcP42t0K12bx5s+d0cNQReCrSGYFHbYf8ysGiRYsoKyvjwQcfTGvqO6pNQpRdEHEQ1ojtDfQA4iPAeKIoAJwFPKwC8qsUYSrLunXr+P7779lvv/18C+mGDRuYNm0a1atXp23btoGGY16kUuBhOO200/j888/5/PPPU66B2ixcuBCAn376iWrVqrHzzsmmZDNmRAuStzfwCGB7l38fHZpvXsA1/fr1i3QPQ/oKXCnF999/H68wIfAq484p9Fq1asVyH6dCrFbNu5mfOHGiZx11y/jEE08E3iuVw5QoI3B7cBGXAhcRXn/9da644gp++eUXhg8fHinfqH42cj0ACqvA6yilrsmqJIZIpLNu7ZcuzAj8iCOOYNKkSTzxxBOcc845nmlOPvnkcicp2223XWQHBnEocKenK3uffCquuuoqLr30Una1jMjcz2DlypV06tQpVF6NgP8CA63vi4DLgTD9eBNmNDrpOjLKRaxmL1KNwP3iYkfFWYb9FDh4TxFHtaJO1VH2mlXwG4HvueeeADRr1iySDF4W/zb2NtFs27ps3ryZqVOnZvUebsKO998WkaOyKokhEkHrR2GucRKmMzBp0iQAxo4d65u/08OZnzFOENn0f56KoAhlYeIBF6GV9lzrvQStyD8cNozXczytlikiEo8WKRDWr1/PMcccw5577skqy1lOpnGj0yWVEVumDpm8XMwGKXAv4t4G5WVNHvcauF+EuDvvvJOzzjoL8LaxiZPrrruOHj16ZPUebgJbFhFZKyJ/AZehlfhGEfnLcdyQJ9IZgfsp8Chr4LnespaJkVIUghr0VM+kK/AV8Bh6BP4RsDtwPdCoRQseeOCB2OSMGxGZICKtHN/3Br7Jn0Tx89BDD/HOO+/w3XffcfzxxwP5c2mbSoHHtYZaKAr8zz//TPIdDvGvgfvhNFD1UuBKKd56661Y7jV58uRY8olCYGlRSm2llKpvvRcppWo7vqf2fGHIGunsjw4zhf7QQw8F5vHZZ595VshssXnzZnbZZZes32f77bcv/xy2MdkGvc49Bb3m/T9gSKdOHI4eidt5FXic7/8C40XkQhG5AxgFnJVnmWLDGVULYMmSJUC83gujELQGXlxcHNsIvFevXuXH8qnATzrpJH744Yek4/PmzWPrrbcu/54tBe7E69k+9dRTHHfccbHkn6vBhpOwVuhJAV29jhnSZ+bMmXzyySeh06djOR5GgYchndCNYXCGS7TJR6Vw3zNpXytwLvATcAHaqvMeoB3Qz2W1WlpaWtAKXCn1PtpY/iHgbOAopdS3+ZUqPu6++25uvvnm8u+2Mg9aMskmQY5cVq1alRXDunwq8LDGn//+978T6l06S3Cp8FLgqbb9hWX9+vWFp8BFpJaINAIai8g2ItLQerUCdsiJhFWEjh07cuihh6bcKmWTiYeyoLzCkI3tN35OVjZv3pxzBehed3c+n4OBqcDjQGPgU6AL2pvaoH//uzyIg01JSUlBK3ARuQkYDhwE3ApMEJGj8ypUjLg7xfZ/e8ABB+RDHE8FHlSfolqle9XlqKP6OMur0zCzc+fOgWmzobSdjB49OmkJMK6R/h577FF4Chw4D91etUM7kZpmvd4AHs6uaJWL0aNHc8opp6Q0ngnbI4yyBn7rrbdy9dVXh8or6r3j4scff/Q8HqRM165dS58+fWKXZauttkqa9tsJeBWYgHZ7+hvQDzgEsCOo21Oh06dPL7/un3/+KWgFju6H7K2U+kop9SjQC204XymxG9l8rYFHiXP/9ttvRzbiLDQFHiWvbNeT9evXs9tuuyUci6st+/nnn3NmcOsk1Rr4Q0qpnYArlVI7OV6dlVIjciRjWqxevTrre/JKS0tZs2ZNqLRnnHEGY8eO5Z133kmZZxjCRmHatGkTt912G/fcc49vGq8GZPXq1fz111+eDZ07/fLlywO9mYWJsuT3u0tLS32tVe++++6kQAJxUFpaymWXXaa//PUXO44YwWzgRLTv8pvQPdqXXdfZFvq77757+bGwI/BUDkCyhVLqMgAR2dX6vlApFbj/znLktFxEPOdHRTNMROaJyA8ismf8kofDXVbz0cg6eeONN5KOedW/unXrcvTRR8eiwL0ICt4TpyKN0gbH6QTFaQPgZP78+VlzHV2II3Cb/4nICa7XoSLSNKvSpck777xDo0aNAkedcdCvXz8aNmzouXbrh5f/YSdhC4Gz0gcFQNhuu+0i5QXasKNRo0Y0aNCAtm3bJqV3Fvo5c+aw7bbbstNOO3nmff3119OoUSNeTREq028U4lbgzgYtjvCLfkyeMIGSO++EnXZih+eeoybwLNAWHfrTy2Gi129INdIrLi5mxYoVCaP2XCIixwLfA+Ot711E5M3Ai+AZ4IiA80cCu1ivQUA0x9Yx4t77m49G1omXN7CgUJrpBPAJQ5CyzJYCTyVbnPd99NFHfc/dddddoWWKQsGNwB2cAzwBDLBej6ODKk0SkdOyJFva3H777QDce++9Wb2PrZSCRrdu6tWrF3g+bAMTtuCl8pI0f/78pD2UzhjGv/76a9I1zkZl7lxtb23vr3Xz3//+F/COmfvHH3/w0EMPsXz58sARuN96fzZmWKqh93H/DNS44QZYvZqV7dqxN9od6pKAaxs0aJB0LNUI/JVXXqFx48YJYVNzzK1oI/o/AJRS36NXDHxRSn0GBPWeegOjlWYysLWIbB+QPmu4Z8jscnbSSSflQxxPMo2F7cZdL7zKX7b3RPvJEkSctjVBtgPPPvtsbPdxUsgj8DKgvVLqRKXUiUAHtGvnfYCC89CW6/Ute2tKGFIV6LgVeCp29Qhhmer5pePG1atyDho0iMsvv5zevXuHHoFnS4EXA6ei17MfA3YEFtSvz1FAkzlzQm2M9uqc7bbbboEKPBtr+BHZrJRyu6jK9ME2IzFOy2LrWBIiMkhEporIVHdUqzjwG4EXkl1COjM3fiilePLJJxOOef3WoBF4nIo0ygg8nU7LM88843k8qINSp06dcj/wVWUKvZVSyul7cDnQVim1moBIiCJyhIjMtdbCrg1It5eIlIpILN3iXChwp7FZqri1UQpxOlPomeC+X6NGjVI+P+e9w3q0cv9upVR5uMfJkydHWgN/77336NatW/noP1369+9PDfSWsDnA8+g535+AU4B9a9SIFHTEOYqeN28er7zyCocddlhBKQsPZojIqUCxiOwiIsMBf7+U4fD6wZ4FXyn1mFKqm1KqW5MmTTK8bTLuspzu1HQ2iVuW1157LWWaoDIZdidMGLI9Avf7HUEdlDp16nDyySdTr1690Pfs06cP77//fsKxpk0TV5DzMYUedoPg5yLyNmAH2D0R+ExE6mJNvbkRkWK0pfrh6B74NyLyplJqlke6oeh4D7GQCwV+5ZVXln9OZXwRZctX2EKQrd6e31S4E3srxj///MMXX3zhm86pYJVSrFmzhrVr17Jhw4YEJw72eS+81sCPOipzr761gSN//pmhQHPr2Dy0V5PRwGZg24jTjM5ef+vWrWndujVQWKM9Dy4BbkDPqL2IroeDM8xzMVseK+gJjfDTVDHiNwIvLS2lQ4cOzJo1y+uynBL3iDeM0mzUqBHLly/3PHfJJZfEJk+UGbN0FKBf3Qqqc3Xr1i03fg3j0Kdu3bqMGzcuqW2cPXs2AwYMYPz48UD0iHFxEFaBX4RW2vuje9ejgdeU/kd6+lyzNzBPKTUfQEReQq+NuWvMJcBrwF7RRPcnFwrcaXWdqoGOosDDyj5kyJCE7wsXLqRly5ahrs0U2+d53759A63A27VrV/5ZKZUQ+WivvRL/br9OUNAaeDo0RXstuQhoagUe+BG4E907dTYhBa54Y0EptQGtwG+IMds3gYutOr8P8KdSKlpkmyxRiI51vMr0ww+nv0s3VR35+eefOffcc5k9e3Zgut69e3tazUchyuxjnB2ZoP/YaUgcxs2xbXjoDjbUsGHD8k56vgilwC1F/ar1CovXOtg+zgQi0gzog95O66vARWQQ2pqVFi1apLxxLiqo22vQNddcwwUXXECrVq2S0vpZUWeC28qyV69efPfddymt3NPBr+JF2cLl7ph8803iqrLfmlXQGngUOqM3N/cH7NhI8xs14opVq3gL7/ndqNta4vJ0lwtExO9nA6CU8vUvKSIvAj3QDp4WA7cA1a3rRgHvAkehJzU2UIlcs2YDr/Jx4YUXpp2fuxzaEb5s2rRpEyoa2+23387777+fUfyDbK+B+xFWgUehqKiI3XffPcFHRL63JYZ1pXqCiPwsIn9GCGYSZh3sQeAapVTgU4i6TpYLC0unAv/444+5++67fbdzxTmC9GPu3LmMHJmd3TpxFNJUU/N+FS5oG1kqioHj0d7SvkdbkVcH/g+tfYYceyxv4q/FonYEK5ICB+4F7gMWoHfFPW691gGB/i+VUv2VUtsrpaorpXZUSj2plBplKW8s6/OLlFKtlVKdlFK5jbFYwYjTkEq5onyBNq507zSZM2dOyrz+/vvvjAdD2V4D97vGS257hjKTkK1fffVVwvcw7VGqLbSZEHaIcTdwnFKqgQofzCTMOlg34CUR+RU4CXhERI4PKZMnf//9Nz/99FMmWYTCa6p7/vz5nHLKKfTo0cNXaacqpJlUmGzti/byDhe10YliGOdk0KBBCWt1Yaa8WqEXcX9ji7L+C3gAaAOcAEwEilJ09OKaycl3L90LpdREpdREYA+l1ClKqbes16lAfvyMViKOPjq1N9qSkhJOOeWUWIMDeSlwSK8sb9zo5e0gGs5tqO5lMzelpaW+s17OUMVODjnkEM/jXr+3S5cugPa0mC7u7WlBdXv//fcHsjugDKvAlymlghdMkvkG2EVEdrLiC/dDr42VY3l1a6WUaoWenr9QKfV6xPsk8OGHH2ZyeSimT5/u20kYO3YsEydOZOnSLUt+TmVnB5fPBvYazZIlS/j6669TGmiENYR74oknko5FDQaRqjH46KOPQuXjdMLgpDraSGM88AtwI9pZ/xz01PmOaMcFCxzXeFXya67Zsiuybt26oWRKRYGOwG2aiMjO9hcR2QmI3xy8QHGva0bFz6AyTL5Tpkxh7NixXHHFFRnJ4MTLiC1IMQbRvXv3BDuWTBk1alTg+bKyMl85jzzySM/jO+64o+dxr7r93HPPAdqAL13c8gUpcFtxZ7P+h/1Xp4rIyyLS3+mNLegCpdRm4GK0VetsYKxSaqaInC8i52coty/ZXv9es2YNXbp08bXgtHH+sc4/sF+/fklp43LtZxeYZs2ase+++9Kzp599oSbs2paXN7e4R/tvvpnK+Zc33YER6FCer6IdeZcAz6Gjc7RHh9nycvTq1Vi0atWqfG/8tttu63lPp6MbJ0GW9AXMFegAJhNEZAJ6xeHyvEqUQ2wL4nSoW7eu5xbSn376KZRjnmy5enbnm25I2xo1amT0fNykCsxy3nnnRd5dIyLcdtttnsfdbLXVVhQVFYVWqMcee2zKNEF1225fsunSO6wCr482RvkXcKz1OibVRUqpd5VSba21sDusY+VrZa60ZyqlMl4siNOfrptXX32VU045JVRauyBed911dOvWLen8e++9x8CBA9m0aVNCIchUgTsj+rjXa9yEVSxeblK9PLTlinboKfJf0BuWL0IPGX8ELkWPvE8HPk+Rj1clr1atWnlHyG/qy9kAjBiROiRAIStwpdR49Pb3y6zXrkqHGDWk4PHHH/ecFg47c5ONhl0pxWeffZZwLJOY9O69ztnANiqbPHlyWtd7hUsN2h9eVlbm2zl34uce+t577y1/xkF125YrmyPwsFboFcaKNBvrDf/88w/VqlXj5JNPDn3N5s2bmTVrlu+Urz311rlzZwYNGlR+PJM/u7i4mNNPPz10+rCKxStQSSaWqenQFb1d4XjAGU9oMXrz8vNAVG/iXp29atWqlR/3Gw04n1vz5lvMPCqYEZuTrmjTgWpAZxFBKTU6vyLlhnQV29FHH03//v0pKytj7733TpjtEpFQ+WZzZObEHnnCFkOurl27Mm3atJzcPxX16tWLvN5+4IEHlu+C8WrzUynwMGFa/ertf/7zn/LPQW2o7Vo5m26SQylwEWmLDkiwrVKqo4jsjjZqG5Li0pxjr3PExbp162jatCk9evSIdF1paWlghC6b5cuXx7JNCnThDHKs4iasAj/11FOTjmVbgVdHT4Efj3Ye4LSG/AM9Xf488Bnaz286+I3A7cbOz/DOb3nEj0IegYvIc0BrtKG+LahC+3ooKN566y1atmyZEO2tTp061K9fP+1Y0ukqcPs6e2uRk1wpZi/co+958+bRpEmTpN9ZSAo8HerXr1/uV8KrIx7k4KWsrMzzP7rrrrt4+eWX+e6774DM6/aoUaPo3LlzqKn4dAk73/w4cB2W21Sl1A9oo7SC4/nnn481vy+++IKNGzcmbcNIxV9//cXjjz/uec4ZYOGzzz5LKChfffUVEydOTEvW4uLiSD3ZTDoLcVioummLNpp4Cx0p4yPre3P0SHsEcBh6unwgOjZ32F/gNR3mVflEpLxB8DMCdDYYYTxNFfgIvBuwv1LqQqXUJdbr0nwL5cUxxxxDp06dEo7VqVOHpUuXJjkKyjZOBeFWFmH/72wo+qlTE3fs+XkDvOCCC2K/d7qk04lydq7t652/KWgE7mepD9FjLfgp8DfeeIPGjRtz0003FYQVeh2l1BTXsfzG5csRUa2tbe6///6koAI2TkO2iRMnJoxmhw8fTo8ePUK5+HMTtaBkMjKMYwS+HXAy8CjaOnwuMBxtXFEPvaZ9B9rDT3O0y76PiV7w+vTp47mU4eXHXSlVXvn9/Lw7p98qwRT6DPRfUSFxPvOg8uxndJrpCNwrD2cZstlll12S8sh28AvnOq97lNqlSxfGjBmT1fs7CXrOqWJJeOF8dnbezv3dqabQ/bba2R2Dyy+/PKMReK68/YVV4CtFpDWWzwsr6EhBuEbMNmGmwb14+eWXfc998MEHCd+9lKHX9O2IESM45ZRTEraoORk4cGAkGXOtwFujnak8hQ7XuRQYi3ax1wpYAbxgpdkB2B29HcztBcTeXxmWZcuWeRq6eClo51aWMAo81d5W8H/OQXHcc0hjYJaIvC8ib9qvfAuVDkENrl/nNo6G1q0cvRS4e2obsu/y2bkFLGpEsrgJcp5y//33J3x/8sknGTBgQGB+XnXK+XtSKXC/zrY9cDrhhBNCKXC/NLlaRoniC/0xoJ2I/A89YAp+wnkg6KGtXr2aevXqRfbCk42pYjdhwyjaQQb81q6ijPSUUhmNADZs2BB4vgnaMqqb9b43Wik7WYu2Ip+I3mv4HeHiWPopxMaNG7Ny5cqk49dee63ns/EbgdsNgd/sy4ABAxgyZEjS2lbUEXj79u09j+eYW/MtQFwEKSS/c1EU+D///ONpkOTOw2sq32srZthIfukSNEsAuVXgNWtqB8Zvv/02xxyTuIHJHcOhSZMmnHHGGYHLoc62y653qX4vhB+B165du0KMwMNaoc8HDrOijxUppdaKyOVoV6gFg9802fLly9l2223Zeeed+eWXXyLlmQ0DpNq1ayd0DGwPQU6COiPuCEvpoJTivPPOS/t628E/bFHWToXd3OOaFeitXZ9Z79NJDB4SliiVZuLEiRx00EGe+8z9FLi9x91vpqNdu3asWrUqKaKaH2HW2/KF5Y2twuKsJ0FLSHGsQ/opCOfnSZMmecaF92Ls2LEZyxSEUy6vPcmZKvCjjz6a6667jgMOSO24z1bgRx99NPXq1SvvHP/www/ssENi175atWqedXnGjBl07NgRSF+B//nnnzz00EO+/tBtOWvWrJmRAs+m5bmTSP+gUmq9UsqeU/b2ZpFHnErFib2/cP78+SxYsMAzjR/ZWKcK8+cGFR57e0ImKKXS8lrXGO0sZe8PPmAcsBAdHP49YAjaarw5enQ9EbgfPVWzKzoS2Iloxyrf4q28w/Rco3Rg7H2sXvn6TaGH6eQ1bNjQc+rUC79Knk9rZTuegccrTJyDvDJu3DjP40EKKY4p9DAK3JYhTL4vvPBC6HtH2cLqJVc2RuA9evRg553Lnfhx+OGHl38+6aSTEtI6Zz6d9aFTp040atQoYbrfuRMEtoTp3G23LRtIvdrlMArcxmtmVUTKl8eCDN2c+NVtryW7bJDJP1hYMfkgoTDZuP+IffbZJylNENk2NPEjqPDUr5/KDX1m+dvYyvp6dLzXhehR9Hig1xdf0AdogVbWn6F9jQ9AO1ppgPZB/h/0unZY7/Tdu3dPmcbPja1XpbUbbq/Gym8Eni5Rp9DzqcDteAYerzBxDvKKn5/xqAr8ggsuiF2Bh80v6n/fv3//SOndstifvTobmeAcjNguSh955JGkqIx+CtzGGWXSOQJv0KBB0ggdvEfgTtKdwra3C9evX9/Ta6abiqzA89f6RKCoqChhpBl2vdkmG1PoYfyhBynYOEKGugt9I7SbPVtZ/8oWZX0HOgBIC3SoKltZ/z+0q9KtgYPRUzIvoK3J0y0cJ5wQ6KE3kCAFnq2GNQyFOAKvyPgpnqhT6I888kh5udh+++1T3jeK0k5V3qLGREhHIaWaQs90nVZEEhSVHSSkuLg4qf1yKnCvWOfOfNwjcC+chqRRptCDEBHuu+8+vvvuO1q1asURRxyR8hq7brs9u+VKgQfeRUTW4t0WCxB/4Oks8cgjjyR8nzNnDhs3bqRDhw7Mnj2b3Xff3bfAFMoI3Pk902hrjQA++IDr2LJu3dIj3Xr0VPc06zUVPZLO5spt3HsmoyrwTNalw0yh16hRo3zkXwhr4BURZ10Nu6abqlxFHY36jWS9RrpeRDWOzVSBB02h9+zZk9tuu43DDjsssmGdPQIvLi4uv0f16tWT6oJTgZ977rlJO2bcCtzeWua3XOa0H/BS4G7CzrxWr17d0ybJD7tuu8tXQShwpVT6cdcKGLf179ChQ7n66qs90+ZLgbsrgLNieVla+9GQROMy22cmxx7LnY5069FW4LainoYeSYdRMaecckrgtrkoZKLAo06heyncTCIV+eFU1OvXry9v9MwIPD2CLIyjXhNW4YaVx/4c1DkbMmRIqO2HfvdwcuKJJ/Laa6/x/fffJymeKFPoBx54YKhn4A4G4lRUd955JzVq1ODUU09NiOoHW4zD/HDmU1xcnHJGxDnlnopff/01VL1OpwzkW4Hnbh9BAeM1pWMTl2KKirsB8OtItGzZkq5duwKwLXrN+lrgFfRev1XAB8CdaAOyVmhl/b9WrXgIHfRjN3S0mgPRYajGoMPHNWvuZUueTJyKKIyPYht3KEcR4csvv0w4FsWo6OSTT+b4448PfX83YdbAnRXbjMDTIx0FniqvoGvbt28fuC/ZS1F61Vdbad90002hpmf97uGkZ8+eKKXo3LlzKLm8ZiyidGLOPPPMBFsjuzN6/PHH06hRI4YPH+5pwT18+PDAfJ0KsFq1ahmHeXXSsmXL0DsDouKnwAvSCr2y4izc7ni6c+bMyYtMQQpc0OGj+gKfdu/O3T/+yFLgd/Sa9X+Bk9DKegMwCRhGorJ+/oILuBwddnMW3iPtRYsWhZK1d+/eYX9WSsJ6ZapTpw4jR45MOHbOOeckGcHZzzHVCHzgwIGMHTs2oxmAqFboRoGnjx3Iwkkm/12QAp81a1aS17JU6+FeCvyQQw6JXb6wnWev69M1YrPru1huhxcvXpy0Z9st17777huYp3sK3U8B1qxZM6nzE2YKPQzpXO/XvsQZRz2I3IzzKwCbN29mm222Kd+fWFpamlNHB26+/vpr+hx7LCxYALNnU33aNJ5CG411RLsaBeCll7C9fP+JjkgxnS3r1nPw3q7l1cB8/PHHaXkH69+/f0rPSWHxU+BNmzZN2OdfvXr1hP/nggsu4JZbbkm6znbMkKpyZtPxQiFaoVd0vEL0ZjICj/r/p1LgqTyFRcVPvqAyFNUKPUx5dA9wAJo1a5aULmrn1K3A/fDyABmXAk8HvxF4qiWDuDAjcGDhwoVMmDAhwfPWb7/9lrYb1bAI2gn1PujR9NXAw8A7QPuTToK6daFtW+jdm7q3385ZwL5o5b0IHfTjh+OP56z69dkZ2Aa9desydCipmfg7SvFqYOzAB1GoV69erBWnTp06PProo0nHP/7444TvbmcPBx98sGfFt708ecno12BdeOGFkWROlZ9R4PET177mMFPoqe7vJYtXBzkO+47dd9+dO+/cYr3iNap/6KGHQsmYTuclrBV71LLtp8CjrCWH+R1RbQ9SYbej+RrsGQVuceaZZyZ8Lysr47LLLks7vwbo/dCHoPdGX4V2avIi2sHJT+jp7aXAZOBlYChwIXAU0K6sDEpKYMcd4fDDWX/OOZyP3q7VGL2l6zhg/hln8E7Nmiwg2tatuEYIcRfcunXrMmjQoIQ9mHXq1KFjx45cfPHF5ceqV6+eULm95DjzzDPLj6eS01n57QYwKn6NllcgCzBT6JkQl2exuBW4vRbtpcBT3SMoJKp9j+22247rrruu/LjTuYmNXS9S7fkOq7g3b97MU089Begye95551G/fv0kZy1OnP9LmNgFXkp71qxZLFy4MOW1UToLTz/9tO+5OI3YcoWZQrewvf3YlJWVef7Z2wDbo/16b+/67HwPu8duJdpBykL03mv78/Jatfhy+XKw9lauWbyYR13RzWrWrJl2rFnbO50TZyUfOXIkIsL5558fmE/cBdfe4+7sYNhyOSt59erVEyxLvQJDOGWLUjmDfpNz9BOWSy+9lA0bNiQZyJkRePrE7VksLit0u+x4RctKJZ97L7GTnj170r9/f4YMGeKbZptttmHNmjWeCtxrtB22/BUXFyd0mNq1a5fSG6KzcxrGt4PbiA3CxwqIMoUe94DDbqfSiagWB1VWgRehp6K3Qht1NUDvj26K9u3d8M47+XCHHdi8ZAlNHMfD2kivA5ZYr6XWa4nrfTHaItyLWlCuvDdv3uy5b/SWW26huLg4LUXw/vvvJ3zfb7/9Egr3zjvvTKdOnVIq8LgrhL12dMYZZ/DKK68AWyqm07ClWrVqCQrd6aDnkEMO4ZNPPuHUU08tPxZlDTworVcc5XPPPZcnnnjCd8amZs2anuvzRoGnj1e522WXXZg1a1Zs+QWRqjw5FXjYWSCbf/3rX0nHatasmdL1ql2evBS4HXzIGWgliuKL2sGJGlc73WlzZ/5hZHTPDEyaNKn8exif7m5sBT5ixAjGjRvH3XffHTmPTKhcCnz1aq5GK2RbMTtfW7k+B/L00xzmcfhP/BWyU1mnF0V8C86C1rZtW08f7nYliUMRfPrpp6xZs6b8e1FREdtvvz2vv/564NaqMI3SwoULkyIOATz66KNJAVXsbWRe7jLdI3AnTnuF8ePHs2jRooTtLmH3gQfRs2dPzwAmjz76KNdccw1t2rSJlJ+ZQk8fr8Z69OjRnHvuueUdvzDY/0EmRmxeDBkyhIULFzJz5kz++9//AuHqShyOhLy2TtphMnfdddek69JdAw+bLtsK3CbM73DO7NlxEkDb0HgZRobNr2nTpgwdOtQo8IxYu5ahUZIDf1mvtejp7BXo4Bwtunblkx9/ZHFJCcut4yvQ69a5wKmc/QKw2O4YM1XgDzzwADVq1EhoYOzPqRwmhJlCd+ax1VZblSvbJk2aJKX12gfuNQIPUuDVq1dP8osfhxW6V0hI0M8qqvIGMwLPBK818Pr163PCCSeUK/Di4uKUrpDdSi8sqcrLHnvswYwZMzxlziRfmyuvvLI8MpeN20GQM6/999+f4cOHc8YZZ4TK30+usGU2lyPwKDjLg1NGr22JYbDzMGvgcdCoEfewRSk7lbP72DpSGH35xNzOFXbB8FrbdZOpIjjsMD3X4KXAUxXMqAX3uuuu4/rrrwe8GyuvSGt2uqBKnmq9LIoVeq7I9/3TRUSOQAeVKwaeUErd5TrfA3gD7UsIYJxS6vaYZYh03I8gPwFRufTSSwPPB90jamjfe+65J+nYhAkTePHFF8vrkHtZyGkECtHKXyYKPAxxTKGHwenQxanMw4YGdpNvK/TKpcDr1cPbIWp+qV+/vmfwgnvvvZcrr7zS8xq7AoTxmZypIrArjJcCj2K9HYYuXbrw/PPP065duyRHMbvttlt5QASve3iNwH/++Wc+/fRTTjvttMD7Rv0dTz31FGeffXbgNZlSEafQRaQYvdvxcLQZxzci8qZSyr34/LlS6pgsyhHpOMDgwYNZsWIFw4YNKz8W1xR6mDoYVAbj8BS22267MWTIkPJwq2GVitdvd3unjKrA69atW/45zDVeRmxhibIG3qZNG/bdd18mT54cqv69/vrrge60GzZsyJIlSxJ8veeSrHYbROQIEZkrIvNE5FqP8wNE5Afr9aWIJPsDrAR88803nscbN27se41dKKMGPUgHr4AfYUfgYRsJ293rvvvuy6mnnsqee+6ZVOH8wkR6jcBtBd6mTRsGDhyYUs6oI/C4HNMEUREVOLA3ME8pNV8pVQK8BMTnii8i7v8wqBG/8cYbk7YIpjuFvvvuu0dK73cPexdJnLMxtqHaTjvtlCJlIk4Z7PpqE7WD41weK6Q1cICbb74ZCBdpsnfv3px44om+5999911GjhyZsJ6eS7KmwB099SOBDkB/EengSrYAOFgptTswGHgsW/JkQlS/xU5+/PFH2rZt6+kUJsz0c5ACtytGNkfgThknTZqU5DbV7zfY+0Ztvv76a9auXZvg49jdoPn5P/azQo9C1BF4LnwZV9Ap9GZoP0I2i61jbrqLyHQReU9EkjcrZ4mo26TSnUL3mzkLwkvBHHjggZHzSUWPHj14/fXXU2559Hs+06ZN843eFbbMXnHFFeVGYX379k2Z3h3MJApR65H9X8fRgW7evHnKnTrZJJsj8JQ9daXUl0op2/R5MrBjFuVJm0ymR+rXrw94T5G5ldD999+flOarr75KeY9MFYFXxC6vKfR69eolKTa/yub+vcXFxSmnCf3WEING4GFJZ4r09ttv54Ybbig/FrfCraAjcK8H6X4w3wItlVKdgeHA676ZiQwSkakiMtW5FTBt4SJ6F0t3Cj0up0fpunJNRe/evVO683RPPdvvXh4Zo06hN2jQgG+++QalVKiZgFROmYKI6kp1r732olatWuW2OBWZbCrwsD11m3OA97xORKnktiOQQiGoN+lW4F5WzmGmcrMxArcrg3ttyn0vv6n2MFbZbgXm5wwhjBV6NrjpppsCHWdkSgUdgS8GnGHqdkTvoCxHKfWXUmqd9fldoLqIeK4XKaUeU0p1U0p189qV4EeqNfCo251y4Uc7nXvkoj1zy+Ulp+1NMFVQknRxtoVRn1PU/7Bhw4Zs3LiRHj16RLpPIZJNBR6mp64TivREK/BrvM5HqeS//PILb7/9dtLx4cOHM27cuEjhKm2ijJTc8vkp8KVLlyYp8HQtGcM0Vr169WLUqFGe54JG4E75vX6LnW7hwoUJhi9t2rRhwoQJzJ0711emsM81jBV6RaSCKvBvgF1EZCcRqQH0A950JhCR7cT600Rkb3Q7sypOIerVq0ejRo0YMWJEwnGnL4MwpJpCd4eszYQwitLNb7/9xvz582OTwYm7/AXZA3Tr1o2ffvopI/fSQeRrG1ZFJ5sKPGVPHUBEdgeeAHorpTKu5Ntvv72nMVSXLl3o06dPoP9eP5/VURpadzQvv4K53XbbJVUU9/dUW8iirIGPHz/ed6tKWCt0r99iH2vWrBnHHXdcwvUHH3wwbdu29ZUpqgLPZATu9YzCBmbIFhVxCl0ptRm4GHgfHTZ+rFJqpoicLyL2YuBJwAwRmY6OZNtPxdxbKS4uZuXKlUm7D9av3+LbMMzzdSrwWrVq0aVLl4Tz6Rir+eEuYx999FHKaxo3bhzZGC1T/OrCLrvskrV6EkeHPB91ON9kcxhT3lMH/ofuqZ/qTCAiLYBxwGlKqZ+yKIunP203fm1MlArkVnJBPUt3gXMr8LBTitlcAw87Aofohihh5fZS4FOmTAl1bdR75ZJcN8xxYU2Lv+s6NsrxeQQwwn1dLshk+tU2GLXzmDRpEnvvvXfWZGvWrBnffvttbPmnSzozA3GTiQIvxLqdK7I2Ag/ZU78Z7YL8ERH5XkSmxnX/d955J+G71zSsG7+Ca287CEMUBe7eX1hcXJxgsZkqYEAQF110UflnZ7xeLwMVrxG4HVgh1QjcT4GHWQ5w+mUOwuu/W7IkaTInMvkagU+dOpWLL744q+vrVZV0DaC8rttvv/2yulSTr61HqahoCtymKo7As7oPXCn1rlKqrVKqtVLqDuvYKLu3rpQ6Vym1jVKqi/WK7ozWB/faldvRvxdelbhLly7lluRhcPsND1LgJSUlSfdPZ83Nqwfq3O/qjAbUvXv3pLRe+8BtBZ7KwcJZZ53leT7MCNwOvZgKrxF4VAqpl961a1eGDx/u6XXOkBlRG/Hu3btzwQUXMGbMmCxJtAW3bH7bJnOFXV/dhnL5UIR223vOOedEvraQ6nauqfiWQBGJqsCLiopCF+gpU6YkOcQPUmR2gAHnvVIpvubNm5d7MLPTOgvwr7/+SllZme/Ut5cSdEYvmj9/PiJSfk2qKfRLLrnE83zYEficOXNYvHixZ1xjPznTIY418MpgOGdIpLi4mEceeSQn9wpyJpQPJXTYYYdx4403pnQBm0vSeQ653ElQaOTHgWuO8Nrnl44CDzstt9deeyUVIi+lZ4+C01HgK1asYMSIEXTo0KHcmYSz0Lds2bJ8bXXkyJG0b9+ea6/d4gTvtttuo127dgkW6c577rTTTrRq1SpBJr/fcuONN3qum0P4yrTrrrty6KGH+gYKceaVi61jXjz99NO0a9curVjghtxSyIaBhaZgioqKGDx4cJKtTaHJmQqnAr/++us9Q/dWViq1Ar/jjjvKP6c7hS4iGRVoL4Vsb8Vwrk2DtqBPNco76KCDuOiii5g5c2a5K1a/Xuv555/PrFmzyqfDQY/gZ8+ezbnnnlt+LKiDEjQCHzx4cML3bClYrzXwTp06RcrDHbUKdMQo9z28OPPMM5k9ezbNmzf3TWMoDCqaAs+WI5d0sN26VtQtXSLCHXfcwa233hr6mq+//prZs2dnT6gsU2XmBNNV4JBZ5QpSjkceeST33XcfJSUlNGjQgD322MM3dKiNs1Nik860U3FxMS+//HKkaGPFxcWB96pRowYvvvhi7I79vUbgjz2Wvtfdb7/9lpdeeolLL700KWiDoWJT0RS4TSGs444ZM4b77rsvL0tFmbSxmTy7OHcZAMyYMSMtXyPpUmUUuE3fvn256667PM9lugbuhfPaFi1a8Ntvv7HffvuVn/v3v/+dkD6VQo3T8CmMj2I/K3M/+vXrl5FMXniNwKNa8DoreevWrRNcpDrvYajYeClwr0h1+TYgtN2c2mU6KOJVrqhVqxYtW7bMtxhpUwh1OIwtT5xU6il0L/bYYw/efPNNz3PZmEJ3MnfuXJYuXRo4FeulJA844IDyz14K3p5K9wrFmSmpjNhyQbYcuRgqH14KfPTo0QnfN2zYwO+//54rkcpxti+2kyZ7tPb333/nXJ58csIJJ3DQQQeVf7ct4aO407WpynW7yihw55/cokULzzRFRUV88cUXCQUrzl5drVq1Ao21wFtJOrdbeSn49957j4MOOohPP/00cyED5Mm3As+mK9VC6L0bMidMY167du2cTnPaOMuYHa3PlsNt0FrZee2115g4cWL59+OOO4577rknaUYyClWxDle5KXTw/6OLiorYf//9mThxYmTjkg4d3JFS0/Oj7KUkne4c/RS8szLEifP351uBZxJOtCr30qsSzhH4+PHjee89z/hIecEux2eddRZnnHEGsGUqvaqNwN3UrVs3rRCtsMUYePvtt49TpApBlVTgfoZlQeH+UvHxxx8nHUvHoMZLMe26667ln/OhRD/99FPKysry1sONI5xoKgVeFXvvlRFnnevVqxe9evWKNf+XX3457aBDXpHSquoUepxcdNFFNGvWjD59+iSd22uvvfIgUe6o9FPoXbt2BUgIUpCJArd7zk622WabhK1aNukocLeC7tSpU0pvaNmmR48eHHLIIQBcddVVAFx++eVZv+8999wDwH333QfAjjvuWB7cIep6v71lzLl1DLb8n85tdYaKS7at0Pv27RsYECkIr07iEUccwYknnsgDDzyQqWhVlqKiIk444YSk57t+/XomTZqUJ6lyQ6VX4FOmTGHjxo0JDX7QFLobd9phw4YlRDy6+uqrWbZsmWeepaWlkeV1K/Ann3wysovSbLLvvvuyfv36nDQ4V155JevXry/vWdetW5eFCxcye/bsyM+hXr16bNy4kalTE93tP/3006xfv5727dvHJrchf9gK/Mgjj8yzJP44R+C1a9fm1VdfrbCBbQqZOnXq5M35U66o9FPodphA9zG/tG5sxXz33Xezbt26JL/o1atX9y0k6Shw9wi7pKQkYV91vhU46IqRr3tlcm8vwyURyenvMWQXW4G7XRoXAl5T6AZDJlR6Be5FOgrcnjp2E1QZ45hC37RpE3Xr1i3/bvxxGwz+2Ls8dthhhzxLkoxR4Ia4qZLaIJMp9CjEYcS2adOmhFF/IYzADYZCZeDAgTRs2JATTzwx36IkYRS4IW4q/Rq4F36K1bmu+9hjj7H11lsnhOX0IqgyZroGXr9+fXr06MHWW2/ted5gMCRSVFTEySefnLaleDYxCtwQN4VXynOAl9vCWrVqJQTIGDhwIKtXr07Ygx0WexTdtm3byNc6FfS8efOoXbu2GYEbDJUAs1XREDdVcgrdOTIeMGAATZs2ZeDAgUnp0q1w06dP54knnuDGG2+MfK2XxXm1atV4/PHH87oX22AwxIMZgRviokoqcOcI/KyzzuLQQw+NNf8OHTpw//33p3Wtc4TtnAY0+5QNhoqNXZ+NAjfERZWcQncSt/LOFD8FbjAYKjb27Fkhhzw1VCyq5Ai8c+fOHH744Qlr3ukSd2/aOYVuFLjBUHkwRmyGuKmSCryoqIgPPvgg32J4YkbgBkPlxChwQ9wYDZEhcVdGo8ANhsqJMUA1xI3REAWGmUI3GCo3ZgRuiAujIQoMMwI3GConZgrdEDdZ1RAicoSIzBWReSJyrcd5EZFh1vkfRGTPbMpTEXAqcDPlZihETL1OD6PADXGTNQUuIsXAw8CRQAegv4h0cCU7EtjFeg0CRmZLnoqCmUI3FDKmXqePUeCGuMmmhtgbmKeUmq+UKgFeAnq70vQGRivNZGBrEdk+izLFTtyV0am0zQjcUIBUiXqdDYwCN8RNNhV4M2CR4/ti61jUNIjIIBGZKiJTV6xYEbug6TBo0CAATxesmVC9enWaNWtGy5YtY83XYIiJ2Oo1FGbdPv300xk1alTs+R522GHsueeeDB48OPa8DVWTbO4D9xo+urueYdKglHoMeAygW7duBdF9ffTRRxk2bBg1a9aMNV8R4ddffzWjb0OhElu9hsKs288++2xW8q1fvz7Tpk3LSt6Gqkk2FfhioLnj+47AkjTSFCxxK28bd0xwg6GAqPT12mCoKGRzCv0bYBcR2UlEagD9gDddad4ETresVvcF/lRKLc2iTAaDITNMvTYYCoSsDfWUUptF5GLgfaAYeEopNVNEzrfOjwLeBY4C5gEbgLOyJY/BYMgcU68NhsIhq3O1Sql30ZXZeWyU47MCLsqmDAaDIV5MvTYYCgOz0dhgMBgMhgqIVLQ9iSKyAliYRxEaAyvzeH8/ClUuKFzZClUu8JatpVKqST6EyQV5rtsVrSwUAoUqFxSubH5ypVW3K5wCzzciMlUp1S3fcrgpVLmgcGUrVLmgsGWrjBTy8y5U2QpVLihc2eKWy0yhGwwGg8FQATEK3GAwGAyGCohR4NF5LN8C+FCockHhylaockFhy1YZKeTnXaiyFapcULiyxSqXWQM3GAwGg6ECYkbgBoPBYDBUQIwCNxgMBoOhAlLlFbiIPCUiy0VkhuPYPSIyR0R+EJH/E5GtHeeuE5F5IjJXRHo5jncVkR+tc8MkhnBiXrI5zl0pIkpEGudaNj+5ROQS694zReTuXMvlJ5uIdBGRySLyvRW6cu9cyyYizUXkUxGZbT2fy6zjDUXkQxH52XrfJteyVVYKtW4Xar0Oki3fddvUax+UUlX6BRwE7AnMcBz7F1DN+jwUGGp97gBMB2oCOwG/AMXWuSlAd3QoxfeAI7Mhm3W8OdoX9UKgca5l83lmPYGPgJrW96aF8syAD+y80T66J+ThmW0P7Gl93gr4ybr/3cC11vFr81XWKuOrUOt2odbrgGeW97pt6rX3q8qPwJVSnwGrXcc+UEpttr5ORodDBOgNvKSU2qSUWoAO1rC3iGwP1FdKfaX0PzEaOD4bslk8AFxNYozlnMnmI9cFwF1KqU1WmuW5litANgXUtz43YEtoy1w+s6VKqW+tz2uB2UAzSwY7APWzjvvk9LlVRgq1bhdqvQ6QLe9129Rrb6q8Ag/B2ejeEOg/ZpHj3GLrWDPrs/t47IjIccD/lFLTXafyLVtb4EAR+VpEJorIXgUiF8DlwD0isgi4F7gun7KJSCtgD+BrYFtlhdq03pvmU7YqRsHU7QKu11C4dftyqni9Ngo8ABG5AdgMPG8f8kimAo7HLU8d4AbgZq/TPjLkRDZ0ZLttgH2Bq4Cx1hpOvuUCPYK4QinVHLgCeNI6nnPZRKQe8BpwuVLqr6CkuZatKlFIdbvA6zUUbt2u8vXaKHAfROQM4BhggDWlAbpX1NyRbEf0tM1itkzFOY/HTWv0usl0EfnVus+3IrJdAci2GBinNFOAMrTj/nzLBXAGMM76/ApgG7vkVDYRqY6u5M8rpWx5llnTZ1jv9vRkITy3SkkB1u1CrtdQuHXb1OtMFvArywtoRaJxxBHALKCJK91uJBogzGeLAcI36B6qbYBwVDZkc537lS3GLjmVzeOZnQ/cbn1ui54mkkJ4Zuh1qR7W50OBabl+ZlY+o4EHXcfvIdHY5e58lbXK+CrUul2o9drnmRVE3Tb12uP+ua5QhfYCXgSWAv+ge0HnoA0LFgHfW69RjvQ3oC0H5+KwEgS6ATOscyOwvNzFLZvrfHlFz6VsPs+sBjDGus+3wCGF8syAA4BpVsX5Guiah2d2AHpK7AdHuToKaAR8DPxsvTfMx3OrjK9CrduFWq8Dnlne67ap194v40rVYDAYDIYKiFkDNxgMBoOhAmIUuMFgMBgMFRCjwA0Gg8FgqIAYBW4wGAwGQwXEKHCDwWAwGCogRoEbEM0XInKk41hfERmfT7kMBkNmmLpduTHbyAwAiEhHtDejPYBi9H7GI5RSv6SRV7FSqjReCQ0GQzqYul15MQrcUI4V53c9UNd6bwl0QvtCvlUp9YblsP85Kw3AxUqpL0WkB3AL2tlCF6VUh9xKbzAY/DB1u3JiFLihHBGpi/a0VAK8DcxUSo0Rka3RsWr3QHsdKlNK/S0iuwAvKqW6WZX8HaCj0mHyDAZDgWDqduWkWr4FMBQOSqn1IvIysA7oCxwrIldap2sBLdAO9keISBegFO0b2WaKqeAGQ+Fh6nblxChwg5sy6yXAiUqpuc6TInIrsAzojDaC/Ntxen2OZDQYDNExdbuSYazQDX68D1xixf1FRPawjjcAliqlyoDT0EYxBoOh4mDqdiXBKHCDH4OB6sAPIjLD+g7wCHCGiExGT7GZnrnBULEwdbuSYIzYDAaDwWCogJgRuMFgMBgMFRCjwA0Gg8FgqIAYBW4wGAwGQwXEKHCDwWAwGCogRoEbDAaDwVABMQrcYDAYDIYKiFHgBoPBYDBUQP4/emBo/M0Vvp4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABXw0lEQVR4nO2dZ5gVRdaA3zNDRgQREBNBMqwKiGAWjIABVMQMqKCwgmvGtC66smL4XBezYkBdcwIRRVwDipJBEVFBREAQSUoeZKa+H9196du3u2933zxT7/PcZ+50qD63uqpOhVPniFIKjUaj0Wg0hUVRrgXQaDQajUYTHq3ANRqNRqMpQLQC12g0Go2mANEKXKPRaDSaAkQrcI1Go9FoChCtwDUajUajKUC0AtdkFBHZS0SmiMgmEfk/EblZRMbkWq5kiMizInKn+f1oEfk+1zJpyh8iokSkea7lcENERojIC+m+V0S6isiK1KRLLyLSSEQ2i0ixx/nIeeGSVtreeYVV4CJyvojMMl/aKhF5T0SOclwzwMzsvo7jXc3jbzqOH2we/8R2rImIfCwiW0XkOxE5wXHPMBH5SUQ2mvIcZTt3n4gsMpXfdyLSL62ZkB0uA9YCuyulrlVK/UspNRBieaNEpJLXzemsOFFRSn2mlGqVSxkqIrqOJvyevFJ65Qml1DKl1G5KqdJcyxKGCqnAReQa4AHgX8BeQCPgEaCX49L+wHrzr5M1wBEisqfj+h8c170EzAX2BG4BXheR+qYcXYBRQB+gNvAU8JatF7gFOM081x/4j4gcEfLnhsJPmUakMfCt0h6DNCHQdTQ8Gai7BYfXCLrcopSqUB+MirYZODvJdY2BMuAsYCewl+1cV2AF8BhwhXms2Dx2G/CJeawlUALUst37GTDY/H4OMMN2riaggL09ZBoPXOsjcy9gHrAR+BHobh5fCpxgu24E8IL5vYn5zEuBZcAU4H1gqCPtr4Azze+tgckYDef3QF8PeZ4F/gR2mHl+guPZy8xnbzY/hzvu727e+6d5/ivz+D5mXqwHFgODfPKkJ/AtsAn4BbjO8Q5vxpghWApc4JD9Tvu1tnNLgeuAr4E/gFeAarbzp5rv4XfgC+CgXJf7QvpQvuvo9cAqYCVwiZlWc/NcVeA+s16sNmWvbj5zm/lbrbqyj1mXXgdewKjzA9nVyVhllvc7gWIz/QHA5+YzNgA/AT1ssjUFPjXrymTgIcy6ap4/zCzPv2O0B12D3uvIA+vdJNQ94FDzt1eyXX8WMM8jrWeBR4GJGJ2pE8y8eQOjA/cTcKXt+s7ALDO/VgP3m8ebmO+iUrLfg6M9MI8txWxjzWd8aebTKvPeKrZrY+885bqS68qa7Q+GUthpLyAe1/0ds+IC84FrXArgEcB081hPYJJZiazG4QxgoSPdh4AHze+7A7OBLhiNyzCMkYC4yFPdLAzdPeTtjKFMTsSYWdkXaO0sXOb/I0hU4M9hNBTVgX7AVNv1bc3CWNW8ZjlwMVAJ6IhRCdv5VLA7kzzb813Yr7cd+xRjNFYNaI9RUY/3uH8VcLT5fQ+go+0d7gTuN3/XsRgNQCun3Lgr8BkYDUVdYCG7GvyOwG+2d9rfvL5qrst+oXwov3W0O4bS+ItZj14kXoE/gNEBqAvUAt4B7nIrg7a68SfQG6POVwfeBh43029gltPLzesHmNcPMn/LEIyOhJjnv7TVh2MwlJdVV/cF1pl5WITRzqwD6ie71yUfuuJf974lvmPxFh6dIox6+gdwpClXDfN93QZUAQ4AlgAn2+S8yPy+G3CY+b0J8QrcLy/c3sVSdinwQzA6O5XMdBcCV9muTZsCr4hT6HsCa5VSO5Nc1w+jgmH+7e+8QCn1BVBXRFqZ1z/nuGQ3jMJl5w+MyglGoXgDo1dcAvwDuEyZb9nBYxi93kke8l4KPK2UmqyUKlNK/aKU+s7n9zkZoZTaopTahlFh2otIY/PcBcCbSqkSjNHlUqXUM0qpnUqpOeZv6BPiWZERkf2Bo4DhSqntSql5wBjgIo9b/gTaisjuSqkNprx2/q6UKlFKfQq8C/RNTMKV0UqplUqp9RgNbXvz+CDgcaXUdKVUqVJqLMa7PSzob9SU2zraF3hGKfWNUmoLhgIGQEQEo+xcrZRar5TahLF8cK5HWhZfKqXeVkqVYXQ2emAoiy1Kqd+AfzvS+Fkp9aQy1nrHAnsDe4lII4zRr1UfpmCUa4sLgYlKqYlm+zIZYyTbM8C9XnjVvbHm8xCRusDJ7HrPboxTSk018+BAjE7FHUqpHUqpJcCTtjz4E2guIvWUUpuVUtOciaXwewBQSs1WSk0z28elGB2qY4PeH4aKqMDXAfWSGE4diTGF8rJ56EXgQBFp73L588BQoBuG4rOzGaNS2dkdo1EAYyRwCdAOo7d4ITBBRPZxyHMvRq+9r0fDAbA/xrR5VJZbX8zG4112Ffpzgf+a3xsDXUTkd+uDoeAbpvDsMOwDWA2cxc8YIwQ3zsIYNfwsIp+KyOG2cxvMhtSeTlze+/Cr7ftWDEUARv5c68if/UOkqym/dXQfbPUMo7xZ1MccPdrKzfvmcT/s6TUGKgOrbGk8jjESt4iVW6XUVvPrbqZsbvXBnvbZjnJ9FEYHINm9bvjVvReA00RkNwyl/plSapVPWs482Mch580YdhRgDHRaAt+JyEwROdUlvSi/J4aItBSRCSLyq4hsxOiI1Qt6fxgqogL/EtiOMe3kRX9AgHki8isw3TzuZmH6PPBXjN7pVse5BcABIlLLduxg87j1/R2l1A9mr/Z9jCm4mBGMiNyO0as+SSm10Ufm5UAzj3NbMBoHCzdl62x0XgLOMxVedeBj23M+VUrVsX12U0oN8ZHNC6+Gzu+alRgjKnueNsJY70u8WamZSqleGI3Y28CrttN7iEhNRzorA8jkx3JgpCN/aiilXkox3YpEea2jqzA6cxaNbN/XYqxzt7OVm9pKKatj6FVX7MeXY8wS1LOlsbtSqp2PTHbZ3OqDPe3nHeW6plJqVIB73fCse0qpXzDKwBkYM2vPJ0nLmQc/OeSspZTqaaa9SCl1HkZ7cDeGwWJNR3rJfk9ce2oaztk7Wo8C3wEtlFK7Y3QgJMlviESFU+BKqT8w1kceFpHeIlJDRCqLSA8RuUdEqmH0+i7DmBa1PsOAC5yjAqXUTxjTI7e4POsHDGOmf4hINRE5AzgIY0oOYCZwiogcIAYnYvQOvwEQkZuA84ETlVLrkvy0p4CLReR4ESkSkX1FpLV5bh5wrvk7OxFsunsiRm/2DuAVc3oKYALQUkQuMtOrLCKHikibAGk6WYNhmHOAzzWrgSYiUgSglFqOYUhzl5mnB2H0qv/rvFFEqojIBSJSWyn1J4bhinObyO3mdUdjLA+8FuF32HkSGCwiXcx3WlNETnEoCI0P5biOvgoMEJG2IlIDYzrekqMMo+z8W0QamGnvKyInm5esBvYUkdo++bYK+AD4PxHZ3WwHmolI0ulbpdTPGFPiVn04CsO63sIaFZ8sIsVmXnUVkf0C3OuFX917DrgBY0rcOWvixwxgo4gMF5Hqpqx/EZFDAUTkQhGpb+b37+Y9cW1CgN/zA1DNrNeVgVsx1sotamG0NZvNNjjK4CYYKg+MVnLxwZj2nYXRm/oVY8r4CIzp4lVAZcf11TB6yafiYsRguy5mIKN2GUd8gtG7/p54YzLBUJDLMKbsFmIaWKhdxg4l7LI83Qzc7PObzsCwjN6EYZ1tGW4cgDFC2Wz+ztEEMCTD6BQo4FDH8VZmOmswpjs/Atp7yPQsHkZs5v93mOn8jmlQ4rh/T4z1xw3AHPPYfhgdifUYywaDPZ5dBWMacgNGhZoJHGWe64ph5HSL+V6XOfI+JrfzfeNjFGj+39181u9mWXoNm5Wz/lToOnqj+VvcrNCrYUy3LjHL60LiLaifNuvb7+yyQncaeNbGGAGuwFjLnwuca54bAHzuuN7+/AMwLPA3426F3gXDgHQ9Rp19F2gU5F7HM7viU/fMa2qYeTA2SRl5Flv7Yh7bB2MG8VeMuj+NXQZmL2AYmW7GmGXpbSsDdiO2ZHkxAKMM/oaxI2Wp7RnHYIzAN5tp3GHPd3uep/qxrA81mgqFiHTFqJD75VgUjUbjgoj8iGFB/2GuZclXKtwUukaj0WjyGxE5C2Ok+lGuZclnKrznHo1Go9HkD2K4uW2LMa1eluTyCo2eQtdoNBqNpgDRU+gajUaj0RQgBTeFXq9ePdWkSZNci6HR5ITZs2evVUolc+5RkOi6ramoRK3XBafAmzRpwqxZs3IthkaTE0QksEeoQkPXbU1FJWq91lPoGo1Go9EUIFqBazQajUZTgGgFrtFoNBpNAaIVuEaj0Wg0BUi5VeArV66kc+fOvPZaqrEpNBqNRqMJz4IFCzjvvPNYuHBhRtIvtwr8pptuYubMmfTt2zf5xRqNRqPRpJlff/2Vl19+mbVr12Yk/XKrwLdt25ZrETQajUZTgbE8nRYVZUbVllsFLrIrfvq6dcnC9Go0Go1Gk17KygxX7lqBh8SuwA855JAcSqLRaDSaioilwO36KJ1UCAX+88/l1nmVRqPRaPIUPYUekUz1eDQajUajCYKeQo9IpjJMo9FoNJog6Cn0iOgRuEaj0WhyiR6BR0QrcI1Go9HkEr0GHhGtwDUajUaTS/QUukaj0Wg0BYieQo+IHoFrNBqNJpfoKfSIaCt0jUaj0eQSPQKPiB6BazQajSaX6DXwiGgFrtFoNJpcokfgEdEKXKPRaDS5RK+BR0QrcI1Go9HkEj2FHhGtwDUajUaTS/QUekS0AtdoMoOI7C8iH4vIQhFZICJ/c7lGRGS0iCwWka9FpGMuZNVockmmp9ArZSTVPEBvI9NoMsZO4Fql1BwRqQXMFpHJSqlvbdf0AFqYny7Ao+ZfjabCoKfQI+LMMBFh5syZOZJGoyk/KKVWKaXmmN83AQuBfR2X9QKeUwbTgDoisneWRdVocoqeQo+IW4+nc+fOOZBEoym/iEgToAMw3XFqX2C57f8VJCp5ROQyEZklIrPWrFmTMTk1FZdvv/2W+fPn5+TZego9InoNXKPJLCKyG/AGcJVSaqPztMstKuGAUk8ATwB06tQp4bxGkyrt2rUDdinTbKKn0DUaTd4hIpUxlPd/lVJvulyyAtjf9v9+wMpsyKbR5At6Cl2j0eQVYgwnngIWKqXu97hsPNDPtEY/DPhDKbUqa0JqNHlAQStwEekuIt+bW0lu9Limq4jMM7ejfJpJeTQaTVo4ErgIOM6su/NEpKeIDBaRweY1E4ElwGLgSeCvOZK1QvLUU0+xdOnSXItR4bGm7TM1hZ6xNXARKQYeBk7EmE6bKSLj7VtNRKQO8AjQXSm1TEQaZEoejUaTHpRSn+O+xm2/RgFXZEcijZ2SkhIGDhzIfvvtx/Lly5PfoMkYhTwC7wwsVkotUUrtAF7G2Fpi53zgTaXUMgCl1G8ZlEej0WgqDKtXr861CBWeQlbgQbaRtAT2EJFPRGS2iPRzS0hvNdFoNJpgWNO2ubC6rohUrlyZM8880/Xcn3/+CRSmAg+yjaQScAhwCnAy8HcRaZlwk1JPKKU6KaU61a9fP/2SajQaTTlBK/DssnPnTt566y3Xc8OHDwcKcxtZkG0kK4D3lVJblFJrgSnAwRmUSaPRFDhPPfUUderUiU1PauLRCjz/KMQR+EyghYg0FZEqwLkYW0vsjAOOFpFKIlIDw1fywnQ8XBdejaZ8csUVV/DHH3+wY8eOXIuSl1htX1lZGQsWLMixNBooQAWulNoJDAUmYSjlV5VSC+xbTZRSC4H3ga+BGcAYpdQ3mZIpVb777jumT3d6jNRoNNnEmo6sXr06JSUlOZYm/7APXm666aYcSqKxKLhtZABKqYkY+0Htxx5z/H8vcG+6n52JDGvTpg0A69ato27dumlPX6PRJMc+mlm3bh377LNPDqXJP+wKvLi4OOW01q5di7Y9Ss5PP/1E06ZNXc8V3Ai8UBg7dizPPPNMqHtWrozuEfLbb7/lxhtvZONGp+vo7DNx4kTuu+++XIuh0YTC3jnXMQ8SSacCLyoqokGDBuViKj7Ty6oHHHAAO3fudD2ng5lkiAEDBgDQv3//wJm8ffv2yM+zHOtv2rSJhx9+OHI66eCUU04BoFu3bhxyyCE5lUWjCYq9nuaTrctNN91EzZo1ufXWW3Mqx+jRo2PfK1VKTxP/ww8/xNquQmXSpEl07949o8+wG1bay2YhWqHnlCAV235NmIYgHetu+dSjXbt2ba5F0GgCY28MrX22+cCoUaP4+9//nmsx4mRIdQRuka6OgBsiwtChQzOWvsVPP/2Uchpjx47lwQcf9DxvL5vffPON6/F0Um4VeBCiKvAoI3DnPaWlpaHTyBR6O05u2blzJ8uWLWPVKh3rIwj2EXg+KfB85MUXX0xpxtAiXR0BL7IxG+k1vR2GAQMGcOWVV3qeV0qxZs0aZs6cGbc8qRV4BgijuN5+++3Y97AV4sMPP6R69er861//ih3LJwWeT9OQFZHVq1fTuHFjOnXqlGtRCgJ7Y5iORrm8s379+pTTyLQCzwbZ6OwppejSpQudO3fOyjZHrcBNkimxK67YFZchrPK98UYjENstt9wSO7Zz506mTJnCli1bQqWVCb7//vtci1ChscpTpgxdyhv5PgL/7LPPuOGGG3ItRoxRo0alnIZW4MFQSsWm6rOxxbHcthheUxZe0+bJFLhdaYcdsbqN9GfOnMmxxx7LqaeeGiqtTHDNNdfkWoQKjVU+ykMjmQ3ySYGPHz+eSy+9NO7YMcccw733pn1nbGSeeuqplNOwyuaECRPSMqLPBps3b45rt7MxW2PXDVqBp4CXkrUr0zAj8DDX+t3r5JNPPgmVVqbQ0+i5I9MRi8ob+TSF3qtXL55++umcypCMrVu3ppxGcXExa9eu5bTTTqN3796pC2WSbvubnTt3xtKsVatWXOcq2509rcAzgL1HFqbwpDICLwTlWAgyllf0FHo48tUK3Umh16knnngi9l1EYnn9ww8/pO0Z6bYFqly5Mn369Inl/dixY2Pn0l1WfvjhB3788ce4Y/Z3ng3j4ArXYpSVlfH555/TvXt3lixZEjvuV9kmTZoUN23kda1SiosvvjjBOUo+WnmvWLEi7v9Cb2wKGT2FHg67Ak9X3dqwYUPa62m+1PuDD44WH+ryyy+Pfb/11lv57bffAPe24rfffmPChAmhn5EJY9633nrLdWYm1dka5+9u1aoVzZs397wmG06GKpwCLy0t5eijj2bSpElcfPHFseN+Csy5+d+rYi5YsIBnn32W66+/Pu54PipHu1EepC5jPo+E8h09Ag+HPZ+WL1/OZ599llJ6GzZsoG7duml3wJIvO022bt3Kpk2bUkpjypQpXHLJJYB7+3fSSSdx2mmnJezQmTRpEh999JFnuunMI7tBsJuyTrWNuv/++5NeY29HmzVrltLzglBuW4wga+CzZ89Oen2YtO3H7Y1KvvTE7Tidt4wYMSJyWo8//jhVqlTRPqkjotfAw2Ef2VxwwQUcc8wxKaX3xx9/APDf//43pXSc5IsCX7RoEf379/e9ZtWqVYwYMcK3HbSUs1t7tnChEUSyevXqcUq8e/fuHH/88Z5ppjOPOnbsGPueCQX+wgsvhLp+3333Tel5QSi3LcaiRYtcj3sVmHXr1gVO26uQV6lSJfb9r3/9K2VlZUyfPj1WuPMJ5/TOyJEjI6c1ePBgAO2IJCKFNoUuIk+LyG8i4ho5UES6isgfIjLP/NyWzuenu6NTrVo1ALZt25bWdHNhYOdlOGX3CubG+eefz+23387s2bPZsWMHL774YsI1lgJ0U+D2dnX16tWB5U3n4Ma+Nm/lfToNHsN698xGB65cKvCdO3cyefJk13NeBaZRo0aB0/d6kZUrV459Ly0t5Y477uCwww4LnG6u0aEZc0MBTqE/CyRzKv2ZUqq9+bkjnQ9Pdz5ZjXw6PJbZycUIfNiwYZHus6bYlVK88847XHDBBQnXWIOi33//PeGcm5HvsmXLkj43U3nkpsA3b96ckWfZ0Qo8Dfhtm0hHpgbpiW3fvp1///vfKT8rm+gRdG4otBG4UmoKkLPNwOk2DrJGln4j8JKSEkaNGhXKu1YuFPjMmTNdjy9atMi33bKXwVTXyy0sozcgYa+8RZg8+v777+M8YgIsXrw4ztLcwm20/cILL8QZLoclSLnTCjzDpGPKJsj6+vbt2wumQbZYs2ZNrkWokBTgCDwIh4vIVyLynoh4hrESkctEZJaIzMpV+TvhhBMA/ynWhx56iJtuuinmDrm0tJQPP/zQN91UG/C5c+cybdq0UPf4tW92mx+v+0QkbR2k6tWrx7577ZUPk0etW7fmjDPOiP2/du1aWrRowYABA5g7d27ctW4jcCCry5lagWeAdGTqggUL6NOnD999913ccXvlKS0tLTgFnmunGBWVcmjENgdorJQ6GHgQeNvrQqXUE0qpTkqpTvXr14/8wFR2UQRxJWwtL91+++0AnHjiiZx44om+96Ta1nTs2JHDDz881D1RByhW/hUVFaWswL/66isefPDBOJsgL1LJI3uHzzl7Ys2qZDtevL0cOjsVmaBcxgMPMlUUNB23AmAZfC1ZsoQ5c+a4pl1aWprREHyp4va70tlj9Mo7TSKFNoWeDKXURtv3iSLyiIjUU0plLG5tputb1apV4/7/+OOP4/53a3Ny0SH2a9/sNjpe94lIyh1Jy1NbEKv+VNocv9/qNQLPdJtkLwf/+9//MvosKKcjcL9CcdpppwVKY+bMmeyzzz689tprntc4p/zsBWrnzp0Fp8COPvro0BXqzTffTDh2ySWX0KlTJz2iD0h5m0IXkYZiFn4R6YzRzgTf5hEBZ2O+evVqRIRJkyalJX2nAnfipsBzsQbup9T8LNHts0DpKoduhnBOouTRd999x7Rp03x/qzUCz1Sd8pq1qVu3bsKxQYMGZUQGCKjARaS+iNwsIk+YW0ieFpG8dQDsVyjmzZsXKI0LLriAX3/9lb59+3peU7Nmzbj/vfys5yM///yz63Gna0C3++zW6meddVbc+bVr1/LMM88wZ86crEwhlQcKbQQuIi8BXwKtRGSFiFwqIoNFZLB5SR/gGxH5ChgNnKsy7M3IWectY67Ro0enJf0wCtzquOdCgftt4brwwgs9z9nLYDYHHlHyqE2bNhx++OFxbaxTZmtHgXPWIV2/rXXr1oGuq1GjRpxL2nQTdM5pHPAZ8CGQH94JfLjuuutSTiPI6NFZGJwWiPnogQ0MY5bly5e7nvOTed68eXTo0IGDDjqIr776yvUa+zpmvv7+fKPQ1sCVUuclOf8Q8FAGn59wzNlhtq5J1mD/85//DPTMZNPzhTACB8M96ttvv52g6K37tm/fnlWviumaQne+Z2tNPNfLmJmu00F/XQ2l1PCMSpImZsyYwXPPPZdyOlEKlnMKPRuj8HXr1jF+/HjOOeccatSoEege51YMO4sWLaJVq1au59555x0Avv76a8AIpehHvs9C5AvlbQo9F2zdujVuRiyoAr/ttmA+ZpK9G7dohflY/t1Gg1988UXMCYrdm1kyduzYwRFHHJFS6FS/djaZHY1f/nqNwFPpMPz666+h78n0bEbQFmOCiPTMqCRpokuXLmlJJ8r6rXMKPRsj0FNPPZVLLrkk1KyDX8H3sxGw37dmzRp69eoV+TmaXeTbFLqIJDcfzjOcroCDKvCgJEsnyKxAJiktLeW6666LuYUNw5FHHhnpmT///DOzZ8/mpJNOCnT9F198kXDMK49mzJhBUVGRb7hle4CpoFPoqaxHR/HUl+lOuW/qIrJJRDYCf8NQ4ttEZKPteN6RruwK2lP78MMPGTJkCCUlJQlW6NnA2if63nvvBb4nasNivy+IswfnczZu3MigQYOYOnVqpOeXV3I5AheRT0Skie3/zoC7N5A8xukKuaIp8ClTpvB///d/WXteaWlprNwGHey4dRS82skvv/wScDeStfDqOFSrVi2mwJ1T6FFG0RZR3mdOp9CVUrUy+vR0U1rKdOBz4G4g+qsKvn5r7QVt1apVXAFVSmW1Aod5VjoUeJA0nNeMGDGCMWPGMGbMGL0+biPHI/C7gPdFZDSwL9ADuNj/lvzD2VBGVeDvvfcey5YtiwulGSSdXCvwG264IWvPAsNJSzp+n5cCr1OnDuDutjUZRUVFSQ2Z27dvHzrdKL83L6bQRSRhQ5vbsZzzxRd0Aq4CfgIeAPaOmFSQxtReaX/99VdeeeWVuPNh3C6mSjqiqVl49ajDKnBnJVq6dGns+2OPPZb0fjsjR46kQ4cOcSED08m4ceNo2bIl8+fPz0j6fliBI7wC8GQSpdQkYDDwH+ASoKdSao7/XfmHl0Fp2Aa0Z8+eseA8fuk7ufPOOxOOZUuBK6WYNWtWVp5l8eeff6ZlltGexoYNG2LfrQAzQeMz2N9PUVFRLO/d/LF36NAhkqz5OAJPNoVeTUT2BOqJyB4iUtf8NAGSxo4Uke4i8r2ILBaRG32uO1RESkWkT+hfYEMddRQHAa8D1TDm/ZcQXJHbFVuU0ZBzCuuQQw4JnUZUwijwZBVv+vTprttRUh2B2zsGQ4YMiX1XSiWNYHTrrbcyb948XnrppaTPjULv3r1ZtGgRAwcOzEj6ZWVlcb6h7eRSgYvI3zG8pR0DjAA+EZFTsi5IilgN5fLly1m2bFmcZ7F0kEyBWy5W7SSrI2VlZb7uTYNSSLYmzjV6e1tkj8UQtgNmX9IrLi7OyBJmIY7ALwdmAa0x3CPONj/jgIf9bhSRYvOaHkBb4DwRaetx3d1Ayh4XysrKmA+cDRwEvEa8Iv8P/r0O+0tPx3RmNqeJ0zmF/uCDD9KwYcOELTb2/AnyPOfv96pUw4YNo2HDhkmt2oM+NxUy9c5OP/109tprr6yPlAJQD+islPpSKfU4cDLGJFZBYSnqRo0a0bhxY84++2wAfvrpp5zJNH/+/NjODTfuueceOnXqlLJNSL7EHQ/CjTfeyKmnnhrzr2GX3W20HVQBWv7sAfbee++MtBNR2oacjsCVUv9RSjUFrlNKNbV9Djb3evrRGVislFqilNoBvAy4mS0PA94A3IcnIbCP8OYDfYEDgfdq1qQacCXwI96K3P7Sw+4fdHOMEjQ84a233pqScQUEL1xz5syJGYh4YS0F2LfYbN++Pc4rnZ9xiYXfCNzOww8bfcH7778/aZqZ7tEmc9gRlXfffRcwIiLlE0qpvwGISCvz/5+VUv5OvvMQrzXwuXPneoYWDkOUxnvAgAGcfvrprFq1ytUjnOXoaMWKFSnJdtddd6V0fzZ57LHHePfdd2NtiZcCT6Uj/d133yUYNaaDKB2lnCpwG7+IyJmOz/Ei0sDnnn0Bu7eQFeaxGCKyL3AGEG5B1AM3BfEN0Gj6dC486KDYiNxS5KOJV+RhR+B2ZfLyyy8nnA+qwEeOHMlBBx0U6Fovghb4Qw45hOnTp4dO/4Ybbohbw/773/+e9J6gCtwiSH5lWoEHCcCQCvlmvCcipwHzgPfN/9uLSPKpkDzjwAMP9DzndCE6Y8YMHn744aSjtNdeey0W62Dx4sVx5/bff//Asg0dOpTu3bsn2Fd47T649dZbA3VmLZxb6ILgtZyTbZIp8Kj1/ZprrvE9H6UeRlHguZ5Ct7gUGANcYH6eBK4BporIRR73uEnuzLUHgOFKKd+cCRpy0EtBFBUVsbRWrdiI/FUMRT4MY2rdUuR2hwRBFLgzGpmTMC98zZo13HTTTa5BEm677bak28SCTBmNGzcusDxOXn/99dD3OGVy5sfVV18d17hOnz6dtWv9410UugIfPXp03LpnHij0ERizZb8DKKXmAU1zJ0409txzT89zzjLTpUsXhg4dmrR+9u3bN2bH4lSSYfYEW7NVdiMt8N59MHLkSK699trA6UehbduE1cyss3bt2jgjM3v7ne5tgE7eeOONjKTrJF9G4GVAG6XUWUqpszDWtEuALoCXh7YVgL2buh+w0nFNJ+BlEVmK4T/5ERHp7UwoaMhBLxeAxcXFsUryDXAOuxR5VXYp8rr/+AcrZ8wA0uOCb8GCBaGuHzVqFMcdd1zcscmTJ/PPf/6Tnj39/egEUQRWlKAoRKlIzgbS+f8DDzyQMPNw2WWXpV2OMPhFbEoXnTp1in0PG+85A+xUSjm9f+S8VxGWKGue9kiCYYni1MOScdasWYgIn376KWA08m7W0pkkE1PMYalfvz4XX7xrx6K9bme6Yxslv2vVCr+rOl9G4E2UUnYz4d+Alkqp9YCX49yZQAsRaWp6djoXiJuaM9fTmyilmmAYj/9VKfV2mB9gx28E7uzlWor8L8ArQGVgKNDgiCNg6FD2yRPDkKBr43kwkvPk+uuv58wzz3TtYDnlTmbklekKka1ADosXL+bQQw/l6adzHhPoGxE5HygWkRYi8iCQ6DIrz/FT4F7v9LDDDov8vChbRK2yPmHCBGCXJ7F3332Xxo0b+xq8eWG5QC0PuLVhmaqPUdrL888/P/Q9+eIL/TMRmYBh2A1wFjBFRGpiTr05UUrtFJGhGNblxcDTSqkFVsQipVRa1r3teCnw4uJiz4xcgNGz+Cfwd+Ds0lJ4+GEmAC8B9wFfp1vQgGzbts23odi8eXPse6ats6NWpM2bN3PfffcBwZYltm7dGuk56SJdIVA3b97Mbrvt5nl+0KBBzJo1Kx+s0ocBt2DMqL2EUV+DRfjIAb/++qurwWgUBR4U5/OiOmmylMbtt98ed9yaCTjvvPM8w1R6MWXKlNBy2MnUtskouPmTz5QCz9bWu3yZQr8CeBZoD3QAngOuUEptUUp187pJKTVRKdVSKdVMKTXSPPaYm/JWSg1QSoVfaLWx997uu72DxLi1FPmBwJ9nnYUAFwFfYbRo2TbL3bZtGzVq1PD03XvttdfGTekkK5Bjx45NSZ4oFckpYxCbgGSOWjI9Qp44cWLKadx7773UqlXLN5Z8phzShEUptVUpdYtS6lBzmeoWpVQw68sc8L//ufuPKi0t5cEHH3Q9l2qZGT48fpVwxIgRKSlwJ1bbtGXLFi655JLA98EuhydReeqpp1K6P51kU4FHoRD3gQOgDF5XSl2tlLrK/J53c7ZeI7zi4uLAmf8tMP2qqzitTRseADYDJwEfYCjzi4BsRHpwWs6CEQbU2tfqtFJN9vuiWKraidKTjOKYJNkIOJ8qtBeWW8tMGyKlgoi8IyLjvT65ls8Lr2bniy++4Morr8zIM51x7UeNGoVSKrS9hNcuC3u79cEHHySc9+v4pqLAUwnskQnCOopKhaCuZ1euXBkzIC44T2wW5raxRSLyR74HM3EjbCYWFxezoXZtrsawwrsRWIXhHOY5jL1xdxJvoZdu3OIUd+rUiQMOOMD1+mT9qagxfi0nE/miOLMhR7r6pnnYx7VzH/B/GF6Ht2HsLHkSo8+a2HvMc/xmNKKUmW+//dbznLWsFXbHgmWwdeihh8YdT7a0lCkFPmbMmMj3ZgK3YFC5bneOO+44evbsSWlpaSQFnun4BkE12z3A6Uqp2kqp3ZVStZRSu2dSsHTilYlesYCLi4tj1sG/Y7iJa4IR4eEroAHGouFPwFvACbjvmUsFP4OWt956K+FYMmXxyy+/RJJjhmmVn62KtHPnTt/ORjrk+PLLL7nrrrsoKyvjo48+SnCBG8XC2IsffviBf/zjHwnHc90wKaU+VUp9CnRQSp2jlHrH/JwPHJVT4XzwKufp9kbWrl27pNeEVeBeW2CTlQW/WSmve/PByjwsbiPwXNcTy/5h06ZNkRR4WJuGsARV4KuVUgszKkkGKSoqSqj47dq1SzAmsXCb+t3BLiOAI4EXgVKgNzAZWAhcBzRMg7wLFizwjdF75plnJhzzK1xRIvpYWLMX2axIjz/+uOe5dMhxxBFHcPPNN/PGG29w/PHHJ8RST5chnVKKAw88kDvuuCMt6WWI+iISm9YRkaaA917NHOOlBDPd6XMjqs+AsPLMmzfP85xXh6Zu3boZ92mQbuydsHxxD7v77sY4ddmyZXz00Uc5liaRoAp8loi8IiLn2b2xZVSyNFJcXJxQ0P32eTsd7jv5AsObzf4YI/HlQCvgXvP7Oxhm+lGrz+rVqz1j3XrhNwKPOn0OxhT66NGjs+pT2un1KkzPd/HixXTr1s3TOte+N9/NmhlSU+D2nQFKqaxGpIvI1RgBTD4RkU+Aj8ljX+hedgV+xoepKnCvuhV1ndaZXrJ0nL4hLDZu3BjnHdFJOrytWW6Os0E+jsAt18pnnnkmy5cvT3J19gmqwHcHtmLYc51mfk7NlFDpxk2B+62LB127/A34F4bbqtOBNzE8YJyKsal9JYaXty4h5Y2icP1kTsUg5LXXXuNvf/tb5Puj4OfBLdlv6devH5988gnHHnts7JhSKjYt7jZ74SQVBf7oo4/GPTffUUq9D7TAiPnzN6CVGWLUExF5WkR+ExHXtXIxGG1GIfxaRDqmQ1bL8Um+EGWE++WXXzJz5sy4Y8lGm15tVadOnRg2bJjnfbVr107ZUO3oo49O6f4w5OMauMWPP/6YaxFcCWqFfrHLJ3G/Q57iVgH8CsbQoUNDpV/KrlH3Phit4FxgT4xNttOApRiGBEECjEZR4H6KLV17m7OFczuQXf5kjZ3b2t/+++9PjRo16N+/f1JXrZC+Ebgf+dIwmRwCtAMOBs4RkX5Jrn8W6O5zvgdGp6AFcBnwqM+1gVi+fDldu3aNdO/27dsz0pmKEvjmiCOOSDiWrFPqZagWZJfHE0884bm9LgiZtqK2k6oC/+tf/0qXLmGHS4VNUCv0liLyP6vHLSIHicitmRUtfbitgWeqYK7FGHV3xFgvvx/Dp2xj4HqM2Kw/AncBh+Ju/LZ69WpeffXVUM/1m6rNl/WkMCxZsoQXXniBkpKSOAXuXM//7rvvWLnS6aHXYNq0aezcuTNmwPfcc88Feu+pRoey8FMabu8rF2tsIvI8hkX6URhF8lAMF8eeKKWmAOt9LukFPGduP50G1BERdycNAUm2rOXHtdde67qrI1XStcacrHMRtqPgdM6SSmcxVwo8yhR6GAc76bYPuPzyy9OaXlCCvp0ngZsw3aYqpb7G8HtSEIQdgaeKFSjgK+BaoBGG4dtojO1oB2BsTZth/v80xujdcnkycODA0H7UwdvtqtcI/O677w79jGzRrFkzLrroIs4555w4+e1Rhn7//XfatGnDvvvu65YEhx9+ODfffHPcsSANUq9eblFvg2FvjP0aZufe4oEDB9Ktm6dPpEzSCThSKfVXpdQw85PqhuqkkQgtggYqSnVfsNtOgFRJlxKwB7dxwzKkCsqTTz4Z938qsw9+9cX5nFRxG4GHvT/ob92xY4fvVkELZ3p77LGH63W5muUMqsBrKKVmOI4VzLys2wg8m1OYCsPw7W8YEV2OAR7CmFbfC2N72uvAOuBT4A7geKBGyOe4Oej/448/fOMFR/G/nE3GjRvnWZnt0Z28rnEa4WRzRLF69erkF5lker+oD9+Qns0TdoJEIjQOBgxU5NYwN2vWjK+++iqwUH4GX354la1sWXl7dVCzgV+5bNiwIXXr1k3bs7I5AodoW2u9OgjZDkZjEbQ1WysizTAroYj0wRg8FgSVKlXK2hR6MsqAzzDWxptiLDzeAEzBaPWOwfDJ/iHGHvQvMEbuAzAWKP18P9WsWTPh2BVXXOHrsOHUU0/NmAerdOHn497CGarRC/t7z0SvOWrHMFflEagHfCsik9LoiS1IJMJQuDXMVatW9Y0D7sTa2RE2qpRXOcmWArcbZGYbv3JZVFTEypUrqVOnTlqe5beNLIjtStARuLXEEETZO9NL5oegevXqSdNMJ0GDmVwBPAG0FpFfMHyYXJAxqdLEPffcw9FHH+1qhZ4vRkTfmp97gTrA0cCx5qcDcLj5sSgBFgGLzc+PGCP534Ca69fD9u1gM3r5/PPPPZ9t5cmoUaPYb7/9ArsXzDZeoVTtDatXI+s0SLO/96AGZ9kghwp8RAbSHA8MFZGXMTZh/KGUSqnD79bYFhUVharHGzZsYPPmzWzatIlKlSoF7sDZrzvttNNis1bpCDkchGztZrjnnnsoKyvjxhtvjB1LpsCrVq3qu0bfo0cPBg8ezCmnnJI0v+zveNSoUcCu+urlhtaOUipQXlnXpNOfvZVWtutxoBKolFoCnGBGHytSSm0SkauABzIoW8p07tzZM2Rg1Izu0qUL06dPT0UsT37HsGa3JrVrYbR+HTGUeUegJUYI1L+4JXDMMcbf3XaDmjWhRg0+WLmSPzB8Ze7A6ACUmN+7f/EFXHYZ1atU4fKSEv50XLMNWIPRObA+wca56cW5Xmxhb1iDVkb7tFkq++PTTa6m0E1vbKEQkZeArkA9EVkB/ANzcsgMVDQR6InRx9yKsUqUEm7K1sozEQms5Cyve2FmX+wGh/YOQ7beWaoKPOj9ZWVlCe2iXztp5YVf3dt99905/fTTASN8q+Xh0uv5Fps2bYp7RpA1caUUzZo1c3V8c9ttt8UcKlmd+ijr7Eop6tWrlzAjYOVxtutxqC6kUsrucPga8lyB+wWIz+QIfOPG9LiJ34Qxlf6h7dhuQHPHZz8M964HNmhApfXrYfNm44Oh8D0Zv2umdHfgZu8rY5RgjPh/tH0WAvMwFHw2SdVzk9VIuLF161Zq1AhrhRCdbPfcRWQT7uvSghG/yNNySil1nl/aZqCjK1KTMB63zpaVZ24Kqnnz5gkOgZRSkTpt9tGfvd3IxxH4v/71r5Se4yyHfvXKujZo5/nuu+/2XQ4YOHAgl156qeu5IB2unTt38swzz/DGG28knGvYcJeZh1XvoxpGfvnll3z00Udxlue5cjyTSgnMjznoiGSywczkS9yMoSznuZz7/rPPaNmiBWzcCFu3wrZtnNKtG78tW0Z1DM9wVc1Px7ZtufWGG6CkBEpKWL96NfeNHElV23U1MXxqNjA/ewG1MbzOtXJ5/ipTrjnAVPOTyYg3UUbgdvym0J988smsOrDJtgJXSoVbCM4xfgrcya+//krVqlUTLIaVUqGM3izs5SQXI/AwZfumm25KOBZ0G5pSKqHt8tueGkSB2zsfQTrEr7zySpzzGeu9B+mgH3PMMZ72DfZ3dfLJJzNhwoRIa+CbNm2iefPmNG/e3FWB5+UUugd572bKbwTeuHHjQGmcffbZcXGdkynn8ePHJ/jWzhZlZWUgArVrGx9gcbVq/OBy7R8NG3Jr//6x/zf9/DN3jRyZ9Bk1MLbBHQA0w5gB+AvGnve9zU8PSx7gawyjvf+Zn3SuOofx0OaGX9CSq666ip49e9KiRYtQaUad7syhFXpB0Llz54RjXo3lXnvtRUlJScLx9evXM2HChMDPLCoqSihXdpsKN6PRTJDqFPqAAQNYtmwZI5PUb7cRuF+0M78ZEHuaFkEU+Lnnxu9Ott6j2wh86tSpcTEj/Lbb2X/XMeZSY5BOQdB2xbrOWY+de/LTjW93wQob6vLZhOF0LK/xUuADBgxIiKcN8Je/JK4sv/DCC6GeWVxcnFAwnnjiiVBpRMWtInk1clFnCbZi7DsaD/wbY570WAwDvAOAMzGit03F2GfYHsPi/m0Mzx8fYTi0cV3DD0kYD21uvP76677no7jujGrZnkMjtoLATVkGWZ8NypAhQxKOucX7tsfrvuqqq0I9IyqpKvAqVapw5513BnqOM0/9BjpB1sDtJFPgBx10UMIxS4G71W9n58LPf4P9d1lK1k/ucePGcf311wduV6zrnPl38sknB7o/Kr6thhU21OVTSymVnQWgFPBS4M888wz16tWLu3bo0KEJMYXPOOMMqlSpQn/bSDUZxcXFCQVj0KBBHH/88WFEj4RbRV+1yt341+qFRsE1nCm7wqveiOHWqzbQvXp1HttnHz7HKGzdMFzKzgeWYLgAO5xo6zGpTqEnw20Ul4yowUu0Ag+P36xFWAXu5ujFmf4nn3wS9/+RRx7JLbfcEuo5UUiXFfqCBQsSfoMdNyM2P9I5hb7XXnvx9ddfJxz3G4E7t/H5beuz/64gcvfu3Zv77rsvcIfc+p3OcpfpHQS61TApKipKiE4VJfPdRuBW+hZhPSsFxU1eLxeUw4cPj/ycoJV8O/Bl5cqcOXcux4hQD+gLPAP8irEP/lqMve7LgQcxTJuDTiZnOvxglJmTqJbtego9POkcgbulZT92zjnnJBhgiUjcyHa8zSg0GWeddVbga531etu2baHut2jbtq2vEVnv3r1j+dagQQO++cY1Vk0MP0XYsqVhPhtUgXs5PbIMCP12IQTBfq0l97hx41zr65IlS2Lfgypwa4Yo2/W43Clwe8UNU4mLiooSenBW4Tv//PMBw6FCshFWcXExgwcPTpDBWgvp3bt3xhxABO1wtGnTJsGwpUGDBoGfE6aXLiI0aNCASy+9lN+B14BLMNZfjsKYhv8Zw8/mUIxYliuBx4AT8DfScBuBp9OA0G1EkIy99tor0rP0CDw82VTgQRrm0047LaXneeGs15MmTeLNN98MfL8TN69h9957LwceeGBMroMOOoh27dr5puOmwHfbbTc2bNgQ8z1vlz2KkxNrBO4WpCiMsnR7ly+99FJCPi5YsIBmzZrF/g8yMHj77bdj7rOd71WPwEPipcCTVZji4mJPa82TTjqJH374gQ8++CBpjN3i4mIuuuiihOf27duX77//ntdee811bS0dpFJYqlev7hkUxElYBQ6JFUFhrJNfAzTBcMh9F4aTmgbA5cBkjJH6GIzQV85cy/QIPApRPTFlqkyUZ8Io8AMOOCB0+kEtzmfPns3tt98eOW0vli5dSvXq1VFK8d///jembFKJlgdGdD4nVl46//rh5hBFKUWdOnVc748yOrUUeI8ePRLOhUnPkvXQQw+Nk83ZnjsDGQVpV3r16pVghd6vXz8uvfTSlOIqBKHcKXC7sUsYBe43Agdo0aIFVapUSerfuri4OK5g2WVo2bIllSpVytj+UacC95o+92o89t57b957772k/o2jjBaTrVHPxtiH3hI4CMMf/EKMkKyXAu9h7DN/FuCdd2D7dtcReK5icC9fvpyysrLIHQmtwMMTRoG75W8yAyMRiT3DqrNuHbSOHTty2223JZXXTpA6tMcee8Sc1Fx44YWxafNUFbgda7bQksfKtyDyWdPPbgF8rHRSrY9+Htjs7axdUU6ZMsXznpYtW8b9tg8//DDuvLOcBJ1Cdyrwhg0bMmbMmEghZ8NQ7hR4hw4dYt/tlS1Zj7du3bq+Ctwi2RSpU4E3atQo4ZpsTKFbPWE3/PKie/fuSf0OOyv3qaeemvTaZBV548aNsUowH8O1V1vzcxvGdrQ6QH+A00+HBg1od9ddnIHh3CZTI/Dvvvsu6TXvv/8+jRo1YsCAAZHlyBfXvoWEV2QoSMxPZ6e5efPmcdOnXuXTKr9WnXbbvRKEM88801c+SIxKVrlyZUQk5j3Owm/7YxgOP/zwWL44R95ByqO1nOjWOQ+jwP2eVVJS4lmn7O2s3bDWaaDsd5/TbsFZToLW51ztAy93Ctza9tWhQ4e4bQleGTt27FhOP/10Lr300oTeklvhe+edd+jVq5dnvO7i4uK4Avnuu+8mXJOp0dZvv/3GSy+9xI4dOwL5DvZCRPjiiy9czz344IMJ60mPPfaYb1qQvCJYfq2d4T8XAv/ECOTSCmOUrtq3h02b2PeTT3gTY3tai0GDYORIDiwpSauHoSBrjVZYxeeff56XXnop0nOqbdkCEULIVkSqVq3KqFGjePzxxwPf42yYZ86cSY0aNdhzzz0B7y2YVvm1Gv2oDbS1RmrhprQ6duwY97+lwJ2ko7O6efNmPvnkk1ha1u+zggL5WatbuClwL2tsP/zytKSkhJkzZ7qe85rpTPZsv+dFbZud28iy1SEvdwp8//33RynFnDlzAk2h9+vXj3HjxlG/fv1AI/D27dvz9ttvezr4KCoqintW69atE67xmkJ324cehPbt2wPGWv3555/Pvffe6+tlLEjhOvzww12PDx06NO73jR8/3jfcYdC9otZ1V199tec1P2Csk++YNg0WL+abiy5iKsYWtN3nzoVbb+X1n39mDTAOGI4RHCaV+EBBAp7Ye/zJPH0VA62BszE6JuOBZcCVd9wBffqkIGnFoVKlSgwfPjymfJNx7733JrwXa3aqU6dOgPusmH0KPVUF7lyvddZBNyNS52AgndSsWZMqVapw2WWXISIxAzzLj3iQUb7bFLqTICNwvzzdvn27p/W61xq4W3p2OdJp/GgxYMAAALp16xbp/qiUOwXuRZCKF0SBW3i96OLi4qTP8ro36tq4M73Jkyf7+vlOtVGw/75kMlvT8ckqsiXTbrvtlvT5JSUl0KwZD1SpwlEY8TC/GzkSLr+cnzDWzU8HRmGEaf0DmIlhDHclxla1YE1/sL3gbg2JYMTTPBm4DhiL4WJ2M8aswqvArcBp5nU7KleGevUgT4zx8plkEbKc+HlGfPXVV/n888+pbXoudOI1Aj/jjDMCywuJ9cQpp9MDmfXsTI/k2rdvT1lZWWypL4wRptsWLOdukFQUeO/evSkpKfEcFXspcLc869OnDxdeeCH33nuvr/Fb1NmNY445BqVUJGPJVNAK3Iaf20Anfgo8mRLyKtRBpm/cRv5OWUQkLYYu1sjeOa0dJaBDkCl0COa3+ZVXXgHgqaeeAgwFveboo+GxxzgAY3/5+cBDwFyMQt4JwxjuPxhb1dZiRFqbDryMMbK/HDgDY9TeBsMavpZSsG2boViVMsK1btgAK1fCwoXwySccsmgRV2KEhH0bw1PdVoyR9fvm8X4YEeWqYTi8GQ+MxBiJtwT+c8cd8NlnoPeDR2b27NmB48Jb7L777nHuOIHYMoibEZv1f1hfDl4j8DBGY9b1U6dOjTuWrnjcEK4NbNUqMSKCpcDbtGkDwCmnnJI0Ha/fXrNmTXbs2OHZdoTxMlm9enWef/559t57b9+8zpfdLEHJqDc1EemO0WYWA2OUUqMc5y/AmOkEY3AyRCkVPtpAAIJUEKcy8us9eqVXXFxM5cqV+emnn0KPqINcP2bMGFeHEk7S4ZlsypQpLF68OMHyPswI3Eue5557jjZt2nDooYcCiQ2aH4899hiXXXaZa/pVq1ZlaUkJSwFrNXo3DOV5IIaFe9e6ddl3/XrqYYzeE71s2/j3v42PD+7xk4wtcN9jGOVZn28wosw5UXofeGC86t6ee+6ZkpOk5557jpUrV8bK0tq1axMcdER11OE33VtaWhoqXacL4BkzZsQcp6RKmDbr4IMPTjhm5V2rVq3YsGGD58yGHa/3WbVqVbZs2eI5nR9mBG7H7zdqBW4iIsXAw8CJwApgpoiMV0p9a7vsJ+BYpdQGEekBPIERAjvtjBw5kkmTJsUCxXvIHPd/VE9sAE2aNAn8HIsgI3C3HrIzvc2bN/uuYQU11KhVqxYdOnRgy5Yt7L777nTt2jXheUE9jzkV+N577x1nHxBmqnDOnDkJx6ypbjd5NmMEVPnM/P+sbt1484032AtjtG6N2hthRF+zFPueQDURalWpYkRtA6hcGapXNz61akHDhsxZuZIvlizhF4wA2Isxwqx6L2IkkuntJuWJdC9BWVj+G2688cbYMecaeN++fZk6dWrMUUlQnLJZ79vLh7ZFkNDE1qxcOsLfWvK4RTULcz/4zwwceOCBzJ8/3zctq82wXFkPHDiQMWPGxM6HWQO34xWxDLQCt9MZWKyUWgIgIi8DvYCYAldK2U2dp2GEts4IhxxyCH/++advJQ+jwL1GuEF60qlMobuutzrknjVrFocddphnGn4F2I2aNWuybt262LPthTyotbtbPHZ7RUt1rW/btm2UlZUFmnmoU6cOCmOE/Cvwpc+1e9Spw/r1643pc6XApXEY89e/8uijj0YVHcDXEFATT6YUuIWb32yr7FetWtV314UXznrrdKaSqgvONWvWpGV3i1W399sveFNcv3591qxZE+ja2rVrs//++8cNRLyUptUhWbhwIWDs9Q6iwJO1Jc77Hn/8caZMmcLOnTu5+OKLk/+IPCKT83b7Yri4tlhhHvPC8teRgIhcJiKzRGRW0ILiRrIKni0F7kWQBsitdxl2X2iUMIiVKlVy3RIW9NnJ/MOnun9y69atgWcDwuzljTlyEHFV3uBeToYPH86JJ54Y+Dm9e/cOfG1FJ6gC79atW6RgI25bklJVsHbZ2rZty/XXX89//vMfrr/+eiD18l+vXr1A09XJSDYj4MaMGTMCb+n7/fffmT9/ftwgwstZivM9FxcXx+2Jj6rAnQwePJgXX3yRV199NWEvfr6TSQXulouuGlFEumEocNcIG0qpJ5RSnZRSnerXr59GEeMJ48c2iHOBsNh98Hrhln6yoANgTFlbHHLIIeEEc2D/7UHfh7PDU1ZW5rmPMwphFHiYddIgU2pu5aROnTp88MEHro583MiUd76KhDMPP/roo0BhNJ3Yy+Lvv/8ORFewDz/8MHPnzo0r6wsWLKBatWpceeWVMYNXZ/kPOqNz+umnR5LLC6+41n40adKE8847L9RznnvuuZgdi5cCd7YZxcXFXHPNNUk7VWHeldNFa9RgRLkikwp8BcYOGYv9MOJUxCEiB2Hs8OmllEr0WJ9FwiiRdI/A77777gRvTXPnzmXs2LFxx6M2JNu3b+ebb77h9ttvT7AqD4tdqSULS9q9e3cgUckppSIHnnFj69atCX6M3TjhhBM8z7nlrZ8rxTVr1jB8+PC46EUWhdYQFBINGzZ0PZ6uTpBbWVy0aFGktAYNGkT79u09ZfMq9/aASH4E2XYZBqdjl6CEzft999031klxW9KbOXNmQpthyfSf//yHSpUqUVRUxOTJkxPeTSrteCbCEmeSTCrwmUALEWkqIlWAczF2z8QQkUbAm8BFSqkfMihLIJwv3m9aM90K/IYbbohbwzr00ENp3749/fr14+yzz/ZM/4ILLgiUfp8+fWjXrh233XZbqK0ibtgVeLLKYsVBd45kw1reJmPLli0MGjQo6XV+4RTd5PFT4AMHDuSee+5h8uTJCeesBi1XvtnLI19++SV/+ctfmDRpkuv5TKyBW6TqItcqW+ecc47vdc888wwTJ04MnH66y1fz5s2BcGvgEC3vi4qKeOihh5g+fXrCuX322cd1BA4wbNgw/vzzT0SEE044ISazRZgdLW7tUiGRMQWulNqJESFyEqbvCqXUAhEZLCJW9/I2DGPfR0RknojMypQ8QbBX3I8++si3F5yJKXT7vQ899JCrXPZr6tatG2fU4ceVV14ZWS4nYQq5VbGdlbG0tBQRYeHChTEjlVTYunUrn3/+eaDrvHB7d2VlZa6OQIYMGRIq/jPs2rduZ9y4cYGjwOULItJdRL4XkcUicqPL+a4i8odZp+eJSLhIHx4cdthhzJ8/31O5ZHIEHlZRWp7VrLSSyWbN2AwYMMA18pYX6Vbgw4cPZ/LkyZx00kmh7ova7l1xxRWxPeN2ioqKPBV4MsK4M/3555/j/l+1alWgZ4ARA8G5RJPtDntGN58qpSYqpVoqpZoppUaaxx5TSj1mfh+olNpDKdXe/HTKpDzJsL/wbt26+U5Xp9MK/ZprrgHiK7l9S4gzGL3lbvT9998PPJpOZwCVKArcaUxkpdG6dWtXd7NhCeq45qijjgJwHa3b8/mZZ56JfXcGkygrK4tkiezm+vPwww+Ps0/Id2zbQ3tgxJo5T0Taulz6ma1e35FJmZo2bQqkL5CEW90O2zB/+umnTJgwIen+cUtxBwmakw2Ki4t9l5m8SHcQDxFJeA+W7/Ug9wbFOf1ur/fJOPnkkyMZSaYT7T3CRpjtVX6OXMKwZcuWmIKw3+tl4FVcXMz999/Pli1bYk5QgpDO6eowaVnXHnvssWzZsiV2PN1TVUF8lp977rn07NkTcDcSsuez5dvYYoEt0EjU9W23fMt29KI0ENseqpTageHILrNBj5Pw+eef884776TN7ahb2QyrwBs2bBjnhcwrKp9lUBp15FZel2jcFHiQPfHWvfa/6WDYsGGhnp0tCq71yCQPPPAAXbp0Ydy4cUmv9dpnHVZR2kfa9hG4/bt9j7CVflinDem0cu7Rowcnnngid999d6jn2mX2MxZ566236NKlS6A1bYtp06YlvcYeCtZNcfq9u4cffjj2PYgCd/MFffLJJ3PSSSfFhV8tQAUedHvo4SLylYi8JyLtvBJLxxbRffbZxzekbVjSMQIP+l7dfCsUMulSYG5T6EF9TmQiItjo0aMDXZftDpXeu2KjUaNGgRQBGIXELXReuvaBeynwdEVDSoXKlSvzwQcfBLrWq+Pg12D17t2b3r178+KLL8ZCdSYjWRQwpyxulTuoN7SoI/DKlSszadIkpk6dyoQJE4CCVOBBtofOARorpTaLSE8MF/Gu4fuUUk9geGCkU6dOGW/9XnjhhaTbCNNhiRxUeVj1Muoz/Ywss82zzz5L586+jok9qVKlStwUuYgktBHOXTpeZHIUnKlQ0FEpuNYj30mXEZv9u73QpNsXc6aJosAtzj333LSuMSXLg5o1a/Loo48yduxY3+vCKHCvONMW2Z5ySwNJt4cqpTYqpTab3ycClUWkHnnAeeedFwud6UWvXsaKQBhHPE6CvlerLERV4EFHpalwxhlncNxxxyW9rn///q4GaUFw2uiISMKad9AOdqbq1Mcff5x0O6GeQi9wMjECtyvwfBiBhyEVBV5UVBRn5enmW7lLl3jX+XXq1PH0NJdsGaGoqIjBgwfTr1+/hHN2RRxmCt3rOW7fC4Qg20MbipkBItIZo53JqY8HiyD5fcQRR6CUiptlyvQUej4r8DfffDPBkDPdOBV4UVFRYKM1J5mYQgfo2rUrjRs39r2mXFmhV0SCVFyvl6xH4O4sXryY//3vf7Rrl7iU+re//S3heYsWLXL9vUEUuBdPPfVULD5zULeRkHwEXmgKPOD20D7ANyLyFTAaOFfl2NrKL4hREMKKH3YEHnUNPBsK3I10K0e3EbgVoCgsBTirFZnCaj0KgFQKT5AReL4qcCuSkxOn0rSsbi0HL0Fo1qwZxx13nOtvcFb8ypUrs/fee/P+++8DcMkll8T2tPbt29f3OX55ZB91h41E5aSQFTgE2h76kFKqnVLqYKXUYY6gRTlh+PDhKY2OMq3Ao4zAGzduHGrbUyo4f49ftMUoBJlCD0omrNDDPjtbFF7rkcd4uXgMSian0DM9ABo7dqxrRCKnAp82bRrr169PiMYUBLc97878sBwxnHDCCaxZs4YxY8bw3nvvsXbtWtcRvF9a6cBt3a7QFXhFJNnUqRNnQ+7VsKeiwH/88cdYKNFsUaVKFXr06MGUKVPSmq6znhQVFXHrrbdGSitdU+hufhuSoafQKwBeBctrCj3VoB8nnniib2zedCAi1KuXaKfkHNVWqlSJPfbYI9Iz3BS4X8NXr169WNjSIJUxncrUek+vv/46rVu3jnP/aX+HWoEXBkG2TNoJ+l6tjmzXrl3DipTVsmOV2ZYtWzJx4sTQrlaT4TYC79atW6QY50HaSGfcBHsMeICpU6cyf/583n///UA7XHKF3kaWBvbbbz9WrFiR4JPXC69emtcI3E7YStuoUaPAW74yQd26ddOWlpsCT+f+2Uw0iB07dkxwFatH4IVHUAtoi6Ad7aZNm7JkyZLAUeuiPCMdtGvXjkGDBsW8RqYbNwUelSBT6PatuQBnnXVWnJ3EEUccAZD3XhJ165EGPvroIwYOHMgLL7yQUjpeo26ARx55hHvuuSd09KGgLkYzwcknn5xgJZ4KbgrcacSTikLMxAg82bmKZHBTkQjzXps2bZozI9OgFBcX88QTT6TF7bEbV1xxRdz/Vv5F6aAHzfurrroq9r1Qw/lqBZ4GWrRowZNPPhl6ncyJnwIfMmQI119/feg0t23blpJMUdmwYQPvv/9+WhWUmwJ3/r4+ffpETj9VBX7DDTfEvh900EGe12kFXjg8/vjjjBgxIvR9emYlHJdeeilKqZgitfIvFUc1IsKaNWtYt859B+O///3v2Pd0d6CyVa8Ls9tRTikPU6szZszgjz/+yMiae5AReCqkWolLS0tZtGgRc+fODR3NSZOfXHbZZZHuczbgVnSyoMtsFt26dePjjz8G4LXXXmPq1Kk88MADkWQqJFIZgduXKN3sctxItwLPljGbVuB5RNQ43W3atPEMyZltq8gwAVbC4pY/TkWZSs831U5TaWkpzZs3D91Ia8o/3bp1Y+LEiaEjffXv35+PP/6Yiy66iD59+tCnT58KpcCjYNkrBLFif+SRRygpKcn7JQwvCnOYV04pLi5m3bp1bNiwIdR9kydPjn1fsWIFP/zwQ+z/8hStyE2Bt2nTJhYiNFVSVeBB87o8vRNNcHr06BHal3aqrlYLjX322Sfu/4EDBwJw5JFHBk6jUqVKKKW4+eabk147ZMgQrrrqqrSvgWdrCl0r8Bzg14DXrVs39PSz3UK2QYMGWd8bmi2uvPLKWOxnO+myFHUq8DfffDPpPc2bN+cf//gHjRs3jlsD12jSQUVT4J999hnPP/98rKPz+OOPs3XrVj7//POMPrdQp9C1Ai8H2Atfoa6dB2HPPfdkyZIl9O7dO+54VI9NTpzOZc444wy6d+8e+9+59aRhw4YsWrSIESNGsHTp0oTRg0aTKl5xxMsrjRo14sILL4z9X1RURPXq1TP+XD2FrskZycJklneihve0uPPOOzn33HNd1xbvu+++2HfnXtV8CuWoKZ9UtBF4rtBT6JqckaqntkLDijlsRR077LDDEs6F4ayzzuKll15ir732SjjXrl07jj32WMBYw7RTUUZFmtyhFXh2SNcIPNvtr7ZCLwdUNAV+7bXXsscee8Smt6+//no2bdpEpUqVGDZsWOB0pk+fzpIlS5I6p3jmmWd48803ufjii3nkkUdix7UC12SaAw44AMjs7g5N+hT40KFDWbx4cYJr1kwhhdYIderUSc2aNSvXYqRE27ZtY9u+0pH/ZWVlsQJopWcp8mrVquXMmUt5xN5B2mOPPVi/fn3oNObPnx9z9BIhytVspVSn0A8tAMpD3bbKRzrb1W+//ZbWrVsnBOkotLY7n/n999/jYjRkO2+j1ms9As8B6S4cRUVF/PLLLxVi9J1P6AZUkw3atm2baxHKPWG39+ULWoGXE7QFdPaJqsBbt25N06ZNadOmTZol0mg0UdAKXJOX6FFi5oiat5UrV2bx4sV6xkSjyRO0AtdoKhipdI7K8359jabQKNTOtG5FcoC17SlKDOCw6BF45tBbezROMhVuU6NxI6MKXES6i8j3IrJYRBLs6sVgtHn+axHpmEl58oUHHniAu+66i88++yzXomhSoKJ2jnS99mbatGksXrw412JoKggZm0IXkWLgYeBEYAUwU0TGK6W+tV3WA2hhfroAj5p/yzW1a9fO2j5BTeaoiApc12t/ateuTe3atXMthqaCkMkReGdgsVJqiVJqB/Ay0MtxTS/gOWUwDagjIumJTKHRZJiKqMDR9VqjyRsyqcD3BZbb/l9hHgt7DSJymYjMEpFZa9asSbug5ZGxY8fG/dWkh8GDB8e+P/vss7kTJHekrV6DrttRuP/++xkyZEiuxSh3XHzxxbRq1aqg8jaTVuhuZn3OIUuQa1BKPQE8AYa3ptRFK//069ePc845Jy7UqCZ1Hn300VjQkwqat2mr16DrdhSuvvrqXItQLnn66adzLUJoMqnAVwD2+Iz7ASsjXKOJSAVVMBmnguerrtcaTZ6QySn0mUALEWkqIlWAc4HxjmvGA/1Mq9XDgD+UUqsyKJNGo0kNXa81mjwhYyNwpdROERkKTAKKgaeVUgtEZLB5/jFgItATWAxsBS7OlDwajSZ1dL3WaPKHjHpiU0pNxKjM9mOP2b4r4IpMyqDRaNKLrtcaTX6gPbFpNBqNRlOAFFw8cBFZA/wc8rZ6wNoMiBOWfJEDtCxu5Isc4C1LY6VU/WwLkw0i1O1CeF+5IF9kyRc5IH9kSWu9LjgFHgURmRUlWHp5lQO0LPksB+SXLPlKPuWRliV/5YD8kSXdcugpdI1Go9FoChCtwDUajUajKUAqigJ/ItcCmOSLHKBlcSNf5ID8kiVfyac80rIkki9yQP7IklY5KsQauEaj0Wg05Y2KMgLXaDQajaZcoRW4RqPRaDQFSEEqcBF5WkR+E5FvbMfqishkEVlk/t3Ddu4mEVksIt+LyMm244eIyHzz3GgRcYuiFEWWe0XkOxH5WkTeEpE6mZbFTQ7buetERIlIvUzL4SeLiAwzn7dARO7JlSwi0l5EponIPDOUZedMyyIi+4vIxyKy0Pz9fzOP56Tc5iv5UrfzpV57yWI7VyHrtq7XJkqpgvsAxwAdgW9sx+4BbjS/3wjcbX5vC3wFVAWaAj8Cxea5GcDhGOEP3wN6pEmWk4BK5ve7syGLmxzm8f0x/Fb/DNTLYZ50Az4Eqpr/N8ihLB9YaWH47P4kC+9nb6Cj+b0W8IP5vJyU23z9eLyvrOeRhxxZr9despjHK2zd9pCjwtXrghyBK6WmAOsdh3sBY83vY4HetuMvK6VKlFI/YQRY6CwiewO7K6W+VEbuPWe7JyVZlFIfKKV2mv9OwwinmFFZPPIE4N/ADcTHY856ngBDgFFKqRLzmt9yKIsCdje/12ZXqMtMvp9VSqk55vdNwEJgX3JUbvOVfKnb+VKvvWQxqbB1W9drg4JU4B7spcyQhebfBubxfYHltutWmMf2Nb87j6ebSzB6U1mXRUROB35RSn3lOJWLPGkJHC0i00XkUxE5NIeyXAXcKyLLgfuAm7Ipi4g0AToA08nfcptP5GMe5axeg67bHlxFBavX5UmBe+G2jqB8jqfvwSK3ADuB/2ZbFhGpAdwC3OZ2Olty2KgE7AEcBlwPvGqu8eRCliHA1Uqp/YGrgafM4xmXRUR2A94ArlJKbfS7NNOylANykke5rNfm83XddqfC1evypMBXm9MQmH+taZwVGGtFFvthTK2sYNcUmP14WhCR/sCpwAXmlEi2ZWmGscbylYgsNdOcIyINsyyHxQrgTWUwAyjDcOyfC1n6A2+a318DLGOXjMoiIpUxKvl/lVLW8/Oq3OYpeZNHeVCvQddtLypevU62SJ6vH6AJ8QYM9xJvNHCP+b0d8UYDS9hlNDATo9doGQ30TJMs3YFvgfqO6zIqi1MOx7ml7DJ0yUWeDAbuML+3xJhGkhzJshDoan4/Hpid6Xwx73sOeMBxPGflNl8/Lu8rJ3nkIkdO6rWbLI5zS6mAddtFjgpXr3NeWSMWoJeAVcCfGD2XS4E9gf8Bi8y/dW3X34Jh7fc9Nss+oBPwjXnuIUzPdGmQZbFZiOeZn8cyLYubHI7zSzEreY7ypArwgpn2HOC4HMpyFDDbrEjTgUOy8H6OwpgS+9pWLnrmqtzm68fjfWU9jzzkyHq99pLFcX4pFaxue8hR4eq1dqWq0Wg0Gk0BUp7WwDUajUajqTBoBa7RaDQaTQGiFbhGo9FoNAWIVuAajUaj0RQgWoFrNBqNRlOAaAWuQQw+F5EetmN9ReT9XMql0WhSQ9ft8o3eRqYBQET+guG9qANQjLGfsbtS6scIaRUrpUrTK6FGo4mCrtvlF63ANTHMOL5bgJrm38bAgRi+jkcopcaZDvufN68BGKqU+kJEugL/wHCu0F4p1Ta70ms0Gi903S6faAWuiSEiNTE8Ke0AJgALlFIviEgdjFi1HTC8DpUppbaLSAvgJaVUJ7OSvwv8RRlh8jQaTZ6g63b5pFKuBdDkD0qpLSLyCrAZ6AucJiLXmaerAY0wHOw/JCLtgVIM38cWM3QF12jyD123yydagWuclJkfAc5SSn1vPykiI4DVwMEYRpDbbae3ZElGjUYTHl23yxnaCl3jxSRgmBnXFxHpYB6vDaxSSpUBF2EYxWg0msJB1+1yglbgGi/+CVQGvhaRb8z/AR4B+ovINIwpNt0z12gKC123ywnaiE2j0Wg0mgJEj8A1Go1GoylAtALXaDQajaYA0Qpco9FoNJoCRCtwjUaj0WgKEK3ANRqNRqMpQLQC12g0Go2mANEKXKPRaDSaAuT/AS8sSoGz43j2AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABoOUlEQVR4nO2dd5hVxfnHPy+79CYI0gVELIgCiiixoYKKCfZgIZYIogaN2H62qETsGjVGwR5ERLHFLrYIGMUEMBQVISiIoICCdNhld+f3xznnMvfcU2/fZT7Pc5+9e8qcueecme+877wzI0opDAaDwWAwVC9qFToDBoPBYDAY4mME3GAwGAyGaogRcIPBYDAYqiFGwA0Gg8FgqIYYATcYDAaDoRpiBNxgMBgMhmqIEXBDXhGRViIyTUQ2iMhfROR6EXmi0PkKQ0TGicit9vfDRGRBofNkqBmIiBKR3QudDy9EZJSITMj2uSLST0SWZZa77CIiu4rIRhEp8dmf9r3wSCsrz9wIuI2InCUiM+0H+KOIvCMih7qOOc++8YNd2/vZ219xbe9hb5+ibeskIh+JyGYR+VpE+mv7RERuEJGlIrJeRJ4XkSba/sEi8ql97hSqJ8OBn4EmSqkrlVK3K6WGQeLeKBEp9Ts5m4UoXZRSHyul9ixkHnYUTLlM+T1FJXo1CaXUUqVUI6VUZaHzEhUj4ICIXAE8ANwOtAJ2BcYAJ7oOPRdYY/918xPwKxHZ2XX8QtdxzwH/BXYGbgBeEpGW9r5zgLOBQ4C2QH3gb9q5a+x83hn5x2VIkJimSUfgK2VmEDKEYMplfHJQXqsdfhZ0jUQptUN/gKbARuC3Icd1BKqAU4EKoJW2rx+wDHgEGGFvK7G33QRMsbftAZQBjbVzPwYusr+/BFyt7fsVsBVo4MrLMCfNkDyfCMwG1gPfAMfZ25cA/bXjRgET7O+dAAUMBZYC04DJwCWutOcAp9jf9wLex6rIFgCDffIzDtgGlNv3vL/r2kvta2+0P31d5x9nn7vN3j/H3t4WeN2+/iLggoB7cjzwFbABWA5c5XqG12N5CJYAQ1x5v1U/Vtu3BLgKmAusAyYB9bT9v7Gfw1rgU2C/Qr/3xf6hZpfLq4EfgR+A8+13fnd7X13gXrssrLTzXh9oCGyxf6tTPtra5eclYAJWOR9m37sn7WssB24FSuz0zwP+ZV/jF2AxMFDLW2dgql0+3gcewi6f9v6D7Xd4LVYd0C/qua574DyblPIGHGj/9lLt+FOB2T5pjQPGAm8Dm7DqlbbAy1gNuMXAH7Xj+wAz7fu1ErjP3t7JfhalYb8HVx1gb1uCXa/a15hu36cf7XPraMcmnnkmH2OBQ1+gHvCPkOPOAWYqpV4G5gNDPI4Zbx8HcCzwJVYhddgH+FYptUHbNsfeDiD2B+3/ukDX8J+RjIj0sfNzNbATcDjWCxaVI4C9sX7HROBMLe1uWBXnWyLSEOvlngjsYh83RkT2cSeolDoPeBa4W1muqg9chxxu/93J3j/ddf5kLGtskr2/h73rOazKoC1wGnC7iBzt87ueBC5USjUGugP/1Pa1BloA7bCstMdEJKqrfDBWA6MzsB9WRYmI7A88BVyIZd09CrwuInUjprujUlPL5XFYjb0B9vn9XYfchdWg6AnsjvUu3qSU2gQMBH6w3/1GSinnN5yIJeI7YZWvp7EaM7sDvYBjsITd4SCshnYL4G7gSRFxft9EYJa9bzSaV0NE2gFvYTUImtu/42XNU+F7rg+e5U0pNQNYbd8jh98BzwSkdRZwG9AYq4HxBtYzbAccDYwUkWPtY/8K/FUp1QToArzgk2bc36NTCVxun9vXzsMfYpwfCSPgVqX6s1KqIuS4c7AeKPbflIeplPoUaG5X+udgVRw6jbAsNJ11WC8dwDvAMLs/rilwjb29QZQf4mIo8JRS6n2lVJVSarlS6usY549SSm1SSm3BqkR7ikhHe98Q4BWlVBmWdblEKfV3pVSFUupzrJbvaWnkOTYi0gE4FLhGKbVVKTUbeALL5enFNqCbiDRRSv1i51fnRqVUmVJqKlZlNTg1CU8eVEr9oJRag1V59LS3XwA8qpT6t1KqUin1NJa1d3DU37iDUlPL5WDg70qpL2xRHuXssEX0AuBypdQau0FxO3BGSJrTlVKvKqWqgCZYQj/SLr+rgPtdaXynlHpcWX29TwNtgFYisiuW9euUgWlY77LD74C3lVJv23XK+1iW7PERzvXDr7w9bV8PEWnOdkPCj9eUUp/Y92BfoKVS6halVLlS6lvgce0ebAN2F5EWSqmNSqnP3Ill8HsAUErNUkp9ZteJS7Aa7kdEPT8qRsCtll6LkMCpQ7Asq+ftTROBfUWkp8fhzwCXAEeSaj1sxCpgOk2wXDRgWWrPAVOwrISP7O3pBK50wHKbp8v3zhe7InmL7QXgDKyWPliW+EEistb5YAl86wyuHYe2gFPZOXyH1fL24lQsN/p3IjJVRPpq+36xK1U9nbYR87FC+74ZSxTAuj9Xuu5Phxjp7qjU1HLZFq1sYb1jDi2xGgWztHdlsr09CD29jkBt4EctjUexvGMOiXdVKbXZ/trIzptXGdDT/q3rXT4UqwEQdq4XQeVtAjBIRBphifrHSqkfA9Jy34O2rnxejxVHAZZxswfwtYjMEJHfeKSXzu9JICJ7iMibIrJCRNZjNcRaRD0/KkbArX6KrcBJAceci+U2my0iK4B/29vP8Tj2GSxXydta4XD4EthNRBpr23rY27FbtTcrpToppdrb25fbn7h8j+Ue8mITydaDl9i6g8yeA860Ba8+2yux74GpSqmdtE8jpdTFaeQ5SmCb+5gfsKwr/Z7uis89U0rNUEqdiFWhvUqy+6yZ3SWgp6O7WtPhe+A21/1poJR6LsN0azo1tVz+iNWAc9hV+/4zVj/3Ptq70lQp5TQG/cqHvv17LA9PCy2NJkqplC4tn7x5lQE97Wdc73JDpdSdEc71wre8KaWWY70DJ2N504Lc55B6Dxa78tlYKXW8nfb/lFJnYtUBd2EFLDZ0pRf2e5LqUDtwTm9ojQW+BrrarvrrSe6GyQo7vIArpdZhBbQ8LCIniUgDEaktIgNF5G4RqYfVAhyO5RZ1PpcCQ9wWglJqMZar5AaPay3ECma6WUTqicjJWP2lL4PlKhKRLvawlW7AfcAttlsIESmx81MK1LLTqO3z054Efi8iR4tILRFpJyJ72ftmA2fYv7M30dzdb2O1bG/B6oOusre/CewhImfb6dUWkQNFZO8Iabr5CStIZ7eAY1YCnUSkFoBS6nusPq877PuxH1YL+1n3iSJSR0SGiEhTpdQ2rCAW95CRP9vHHYbVPfBiGr9D53HgIhE5yH6uDUXk1y6xMLioweXyBeA8EekmIg2Am7V8VGG9L/eLyC522u1ke9/tSmBnsdz4fvftR+A94C8i0sQu+11EJNR9q5T6Dssl7pSBQ4FB2iGOVXys85vFGtrWPsK5fgSVt/HA/2G5xMNiIXT+A6wXkWtEpL6d1+4iciCAiPxORFra93utfU5SPRDh9ywE6tlluTbwJ6y4CIfGWPXLRrveTcegCUcVQcRpMXyw3L4zsVpWK7Bcxr/Cchf/CNR2HV8Pq8X8GzwiErXjkiJTsSIdp2C1tBeQHA2+h71tM5a75gpXWudhtTT1z7iA33QyVmT0Bqzo7GPt7bthWSsb7d/5IKlR6KUe6T1p7zvQtX1PO52fsFyf/wR6+uRpHHY0t/3/KJKjXG+x01kLHOxx/s5YUbS/AJ/b29pjNSTWYHUbXORz7TpYLslfsArXDOBQe18/LJfoDfZzXQqc7ZVv9/MmIKrf/v84+1pr7XfpRbSIZ/PZ4crltfZv8YpCr4flbv3WfkfnkxxB/ZRdxtayPQp9giv9plgW4DKsvvz/Amdoef2X63j9+rthReBvxDsK/SCsyOw1WOX0LWDXKOe6rtmPgPJmH9PAvgdPh7wj49DqFHtbWyyv4Qqs8v4Z2yPEJwCr7Hx+CZykvQN6FHrYvTgP6x1chRXQt0S7xuFYFvhGO41b9Puu3/NMPmInZjDs0IhIP6zC2b7AWTEYDDYi8g3WqBH3iBUDxoVuMBgMhiJERE7FslT/GXbsjsoOP2uPwWAwGIoLsaak7YblVq8KOXyHxbjQDQaDwWCohhgXusFgMBgM1ZAa5UJv0aKF6tSpU6GzYTDkjFmzZv2slAqb2KPaY8qyYUcg0/JcowS8U6dOzJw5s9DZMBhyhohEng2qOmPKsmFHINPybFzoBoPBYDBUQ4yAGwwGg8FQDTECbjAYDAZDNcQIuMFgMBgM1RAj4AZDEXD33Xdz1FFHUV5eXuisGHLIxIkTmTp1aqGzkRabNm3inXfeKXQ2DBo5E3AReUpEVonIFz77+4nIOhGZbX9u0vYdJyILRGSRiFybqzwaDMXCNddcw0cffcRrr71W6KwYcsiQIUPo169fobORFsOGDeP4449n4cKFhc6KwSaXFvg4rFWYgvhYKdXT/twCiXVVHwYGYk2ld6a9hJ/BUOMpKysrdBYMRcqYMWO49trC2TPz588HLEvcUBzkTMCVUtOwlpyLSx9gkVLqW6VUOfA8cGJWM2cwFClVVWbaZ4M3I0aM4K677irY9Z1pt2vVMj2vxUKhn0RfEZkjIu+IyD72tnbA99oxy+xtBkONxwi4oVhx3k0j4MVDIWdi+xzoqJTaKCLHA68CXQHxONZ3xRURGQ4MB9h1111zkE2DIX8YATcUK0bAi4+CPQml1Hql1Eb7+9tAbRFpgWVxd9AObQ/8EJDOY0qp3kqp3i1b1vgpog01HCPgNZfq/myNgBcfBXsSItJaRMT+3sfOy2pgBtBVRDqLSB3gDOD1QuXTYMgnZnnfmkt1HyJoBLz4yOUwsueA6cCeIrJMRIaKyEUicpF9yGnAFyIyB3gQOENZVACXAO8C84EXlFJf5iqfBkMxUd2tNIM/2R5hsHjxYh555JGsphlEZWUlYAS8mMhZH7hS6syQ/Q8BD/nsext4Oxf5MhiKGSPgNZetW7dmNb0jjzyS7777jrPPPpuGDRtmNW0vnHezpKQk59cyRMM0pQyGIsIIeM0l2xb4mjXWKN2KioqspuuHeTeLDyPgBkMRYSrJmku2Bby01HKgOq7tXOO8myZOo3gwAm4wFBFGwGsu2Q5ic1zZ+bbAjYAXD0bADYYiwgh4zSXbz9YJJjMCvuNiBNxgKCKMgNdcsi18xgI3GAE3GAqMXiHmqz8zW4hIBxH5SETmi8iXInKZxzEiIg/aqwvOFZH9C5HXQpMrAd+2bVtW0/XDCHjxUcipVA0GA8lWd76sqSxSAVyplPpcRBoDs0TkfaXUV9oxA7GmSe4KHASMtf/uUBgBN2QbY4EbDAVg8eLFPPXUU1RWViZZ3fmqjLOFUupHpdTn9vcNWJMvuRcfOhEYb0/U9Bmwk4i0yXNWC062hS/ffeBO/o2AFw/GAjcYCkCXLl1QSlFVVcWQIUMS26ubC11HRDoBvYB/u3b5rTD4Y35yVhxkO77BGUZmLPAdF2OBGwwFwKkEZ8+enSTa1VXARaQR8DIwUim13r3b45QUFRCR4SIyU0Rm/vTTT7nIZkGp7kFs1fXdrMkYATcYCkjt2rWrvYCLSG0s8X5WKfWKxyGRVhgs9MqC06dP57333stZ+rlyoRsLfMfFuNANhgJSp06dai3g9oqCTwLzlVL3+Rz2OnCJiDyPFby2TilVdO7zX/3qV0DuBKq6W+BGwIsPI+AGQwGp7gIOHAKcDcwTkdn2tuuBXQGUUo9gLUx0PLAI2Az8Pv/ZLDzZFL61a9cyb948wFjgOzI5E3AReQr4DbBKKdXdY/8Q4Br7343AxUqpOfa+JcAGoBKoUEr1zlU+DYZCUrt27SQLqroJuFLqX3j3cevHKGBEfnJUvOjCV1VVldGynL/97W8T390CrpRiw4YNNGnSJO30vTACXnzksg98HHBcwP7FwBFKqf2A0cBjrv1HKqV6GvE21GRqgAVuiIgufBs2bMgorS+//DLx3e1CnzBhAk2bNuWrr75yn5YRRsCLj5wJuFJqGrAmYP+nSqlf7H8/wwpsMRh2KNwCbqZSrbnowvfLL78EHBkvLbcF/s9//hOATz75JKNruDECHp3ly5fn5T4VSxT6UOAd7X8FvCcis0RkeNCJNX3oiaFmU7t2bYYOHZr431jgNZdcCbjbAm/VqhUAK1euzOgaftc0Ah7MvHnzaN++PWPGjMn5tQou4CJyJJaAX6NtPkQptT/WFIwjRORwv/MLPfTEYMiE+fPn8+GHHyb+NwKeGUuXLmXy5MmFzoYnuvCtWePrnIydltsCd/q+N27cCFgCv2rVqoyu53dtQyqLFi0C4IMPPsj5tQoq4CKyH/AEcKJSarWzXSn1g/13FfAPoE9hcmgw5Ja6desm/W8EPDN69OjBwIEDC50NT3Th27RpU9bSclvgzrrjzrt14YUX0qpVK8rKyjK6pte1Dak4wYn56A4rmICLyK7AK8DZSqmF2vaG9qIIiEhD4Bjgi8Lk0mCIz6JFi1i2bJnvfr3CbdSoUdI+I+CZsXbt2kJnwRdd+DIRQfe5bgvcEWpriD5MnDgR2C7sQen+9a9/Zd26dWnnrTrx4IMP5sTNXSMEXESeA6YDe4rIMhEZKiIXichF9iE3ATsDY0RktojMtLe3Av4lInOA/wBvKaWK0ydmMLhYv349Xbt2pUOHDixatIg33ngj5RhdwN2F3Ah4zUV/1pk856qqqkAX+pYtW5Ku4fwNGy/+6aefMnLkSIYPDww78mx8vPXWWyxevDg880XEZZddxogR2R/dmE8Bz9k4cKXUmSH7hwHDPLZ/C/TIVb4MhlyiD+/p2rUrYEUDO7N8AYHjvo2A11zc48DTxS3gbhe6W8Cd/WEWuLM4yrfffht4nJeA/+Y3v6FevXqJa+/IOAKej7Jc8CA2g6Em8f3336dsmz9/ftL/esF2V75mGFnNJVsCrpSKZIG7h31FFfCwbgg/9//WrVsDz9tRqBEudINhR+Tnn39O2eZUjA7GAt8xyZcF7gip+10KE3CnIRA2xM0t4CaoLRkj4AZDETJ79my6dOnCa6+9Fuu82rVrJ/0fNPOaEfDioKysjO+++y6raWZTwHXcFri779th3Lhxgek6Ah8l2E0nX4upVBec+24E3GAoIoYMGcK3337LSSedFOu8IAF3V35GwPOHUorXX389RZCOPfZYfv/739OpU6esuoXzZYE7abuvcdttt/mmuXTp0oTr3VnlzA+lFOvXr+f0009n6dKloYJfjGTba7B69erEc3D+GgE3GIoIZ2KMIJyhOzrGhZ5/olTQzz77LCeeeCJjx45Nuu/vvfdewsuSzkpf5eXlnu9KPvrAq6qqmDnTGtAT9V1asWIFHTt25PLLLweiCfgDDzzACy+8wOOPP17UAl5ZWUnnzp259tprk7ZHzfOnn35Kv379Ao/fvHkzLVq0YOTIkYARcIOhKIlS6L2Eo06dOkn/Gxd67onS2HLGO8+bN8/XDe3VIAujb9++NG7cOGV7rixwPe/3339/Yg6CqO+SMwW1E2wZRcCdSPXOnTsXtYCXlpayZMkS7rrrrqTtK1asiHT+4MGDmTp1KkuXLvU9xokZePnll4HtAm6i0A2GIiJKReVVMbtd6LoFblzouaFJkyZMmTIl8JjmzZsD1rSmbgHPxIr6/PPPPbfnw4WuXzvqNdzHRRFwx6tUVVVV1ALuh9f8DF4sX74cSC3DOs7EOc7Md8YCNxiKkHQF3O1CNxZ4fvjoo48C9++0006AJeDuZ+sXCJYJ+bDA05ksJhMBLysrqxYC7hZgZ75ysLwsYb+hsrKSp59+2tOz4xZwE8SWZ4p5GMSMGTPo27cvs2bNKnRWdniyJeBBfeBmHHj2CLuXjnt87dq1vn3d2Xwe2ewD1/F7n3Il4LBdEMvLy6uFgLvvmXuymrAJaKZOncp5553HH//4x5R9xgIvIM7Ul3/6058KnRVPjj76aD777DNOOOGEQmdlh0evqPwqR69C6+5HNVHo+SHsXjrPaubMmUkrwnkdkw10EcnVVKrprC0fRcD1CYqUUgkBry4WuLucuedrCBsK5xzvtWS1n4CnEz8Rlx1ewMePH88333wTOMTCD6UUX3/9dVqRqlHZsGEDUNyLNATxww8/ZLx0YjGiT42q41VpBllMRsBzR1QBB/jd734Xekym6Gnlqg88HQvc/X56CfgFF1yQdLzjVSqEBf7mm29GWlkt6Pe769Ow3+AMJ3QHpMJ2690t4PlghxfwTNznkyZNYu+992bw4MFZzJE3QUEUxcrmzZtp164dO++8c6GzkjGbN29O+v8///mP53FRBNz0geeHMJGMIqLVrQ/c691q1qwZAEcccYRvejpeAq6nq5RKWJdlZWWMHTs27k/gn//8Jy+88ELs8z755BMGDRrE9ddfH3pskMi7BTzMCHME3Kse9hNwY4HngUwE/IknngDg1VdfzVJu/PFq+YVRXl7OmDFjCrZKUNShGtWBqPfQCHjxEGalRRHRYu0DjxPE5liXfn3bUQRcFyOlVOKc8vJy/v73vyf2+XVFuDn66KM5/fTTIx2r47iyFyxYEHpsHAEPs8CdtOIIeD7I5XKiT4nIKhHxXMtbLB4UkUUiMldE9tf2HSciC+x913qdny0yEfB8Pqh0LPD777+fESNGsM8+++QgR+HUJDFasmRJpON2NBd6hHLeT0TW2UsGzxaRm/KVN7fXxE0+BXzVqlVJ/a6ZpLtq1aqkGeL8XOjONRyB97tmFAF35veGZAEvKyvjsMMOS+zr378/06ZNi/xb4uLkI0q97TeLXnl5eUrQWlQXulc97OyrW7cuW7du5auvvgrNW7bIpQU+DjguYP9AoKv9GQ6MBRCREuBhe3834EwR6ZarTGZSkIpdwB03b6GW+KtuYhSEMx40jDABX7t2Laecckri/xpggY8juJwDfKyU6ml/bslDnoDw9z6fAt6qVSuGDdu+enIm6e6///5J/we50JVSCXHyu6ZbDHWxdnBb4M45ZWVldOnSJenY1atXR/kZaTFjxgwg2v3zE3DnvWjatGliW5gLPcgCd+5vaWkpF110EY899lho3rJFzgRcKTUNCIpeOhEYryw+A3YSkTZAH2CRUupbpVQ58Lx9bK7ymfa5uQxec1Md+8CroRgB8MEHH9CzZ09mz56d2BY1iDBMwEePHp0Uyeq+R3fffXe8zBaYCOW8YGRDwH/88cdsZSf2taMSFMSm75s2bRqjRo1KOd/9DnrVifo2twvdfX463X1RGT16tG8e3fgJuJNfx+UN4Ra48y551cPOPa5Vqxb/+te/Ettreh94O0BfPHmZvc1vuyciMlxEZorITK8Q/zBqsgvdi3Xr1uWt4VFdBXzAgAHMmTOHP/zhD4ltXgLu9e4ECfjq1atT4gLc79DAgQPTyXKx01dE5ojIOyLi25+TaVl2EybgUd5Pv9EGmZJNAQ8aRuYu63/+859Tzo/iBdLz63ahu4/PtK6aN28eIsKXX37pe0yUetuvDzwdAQ+KQtcFvEmTJqH5yiaFFHCv5okK2O6JUuoxpVRvpVTvli1bxs5EdRHwbLTmVq9ezU477cS+++6bhRyFUx0F/N5770181++5l4B7NYT8BPzWW2+lRYsWTJw4MWnfDrAU4+dAR6VUD+BvwKt+B2Zalt0ECfjo0aM566yzMr5GuvnQLbVMCQpiizLEK0ochj4Zke5Cr6qqyrqAT5o0CYBXXnnF9xj35Ehe+JUtLwHPxIXuXKekpCRJwPMxQVghBXwZ0EH7vz3wQ8D2nKC/8FOnTo11bj4r33Su5RZ9Z5WiKBGc2aA6CvjVV1+d+N6qVavEd2fhCx2vytHPsrrxxhs9t1fHexQHpdR6pdRG+/vbQG0RaZGPa7uFc8mSJdxzzz2AtyWaK4YPH56y7c0338xa+kEu9CjetiizAdavX9/zmKqqqpTI80xd6I7weRktDRs2BKBevXqh6fj99kws8DAXur6ITT70oZAC/jpwjh2NfjCwTin1IzAD6CoinUWkDnCGfWzO6devn+dMO37kU8CzUdHnux+9uouT3sr3E/Bly5Zx9913s379eiBaFLpOdb9HYYhIa7FrYhHpg1Xn5C7KSWPz5s1UVlYmYhkGDRrE//3f/7F8+fKUwKtc4jdnQLYIcqGnY4EvWLAgZZy1835Dsgv9xRdfTJnVLIp1HESQgDuN6ijWbb4tcLcLvVqvRiYizwHTgT1FZJmIDBWRi0TkIvuQt4FvgUXA48AfAJRSFcAlwLvAfOAFpZR/Z0iGuF+EOGOXi90Cd5NpwYpLdRcnvVB7FfDy8nIGDBjANddck5gjOa6AV3cXeoRyfhrwhYjMAR4EzlB5Wnxgy5Yt3HrrrfTq1Yv//ve/iVkNKyoqaNu2bT6yAHhHdTv5iEpQMF2QBZ6OgAPccccdgDVkbcGCBaxduzax+It7HLqbTB9vkIA7ec22gDv36cknn0x4KnUcC9yrDtUFXPc+5KNs56xGV0qdGbJfASN89r2NJfA5x/0i+EUuOtxxxx0sWrSIJ554otoJuLHA4+Fn2TiUl5fz9ddfAySWrvQT8Lp163oG1cyZMydLuS0MEcr5Q8BDecpOElu3buXf//43YE3p6whpVVUVLVpkz4t/1FFH0aNHD/r27Zs0RNDBeUfcbNmyxXPdcC8effRR331Bw8iiuNCD6pZdd92VsrIydt99d5o1a8batWuTLHAvMg3Qy5aAp+NCd4b6udOPaoFna777qEQScBFpCVwAdNLPUUqdn5ts5Q/3y+blKtVxXEuXXHJJtRPwKKsMZZOaJOBe91+3bpyGn5+AN2rUKNL8zYbsUVlZmXgHS0pKEu9/ZWVlVof4fPTRR3z00Uc88MADiWFODsuWLfM9b+vWrZEFvHPnzr77giZySdcCd3De2bVr19KxY0cWL15cFAIe5RphFrjejx52n5y6wKsO1adO1fNcTH3grwFNgQ+At7RPtcfd0oo63vfHH39MekAPPPAAP/30U6gFny7ZeBl0V14+xNU9f3J1I4oF7rB582aWL18eaIGHkc7c0AZ/3ALuvP8VFRVZW4DDccs7uCf8CZoNLk5dEVR+MrXAo9QFa9euTcypHuZCT1fAt23bxg033JCog/NpgT/44INs2rTJN62g6Wj1POW7jo3qQm+glLompzkpEOkK+E8//ZQkqpdffjmXX345bdq04Ycfsh80n42x23rBKi8vT4kszTb6/dEXQKguhAm4454FqyJv3749u+22W8pxYRYLwAknnMBvf/vbDHJrcPPTTz+xcOFCwGq8OpXrtm3bsibg7rIe5x2PM0NiUPnP9jAyr7QqKioSEeC5ssCff/55br/99qRt999/P8ceeyzdunVLyms6feBOHeQl4DNnzuS6664LTcvr+epT1ea7DzyqBf6miByf05wUCPeLsHHjxkjn/fzzz54PKFczN+lRoFFxv2x6wcqHO9ct4NWNMAE///zUHqRvv/02ZVuYxQL5796Iij0SpNrirGOtu9DLy8uz9v6H1RdBzz2OBR4kxLkIYoNUIXbEKUzA0y3r7vtRXl7OFVdcQe/evVPymo6AO/fG2e72igUZb0ENKN2tn28LPFDARWSDiKwHLsMS8S0isl7bXu1xv4hhCyA4XH/99WmJalz0pTgzFcGHH3448T0fAq6/9NVdwDNpTUcRcL9I5XwiIlNEpJP2fx+sYZ01gnQt8KBnF7XB70UcAY9qgYfNxOaF371w141OAFemLvSo997xUOieikxc6E6+vCxwSI4wf/bZZ/nmm29S0vLy2C5dujSRvt4QL3gUulIqWoRFNcb9QIL6QXTytYi9/pL98ssvNG/ePK10FixYwIQJExL/uwX8jjvuoLS0NGkik0yp6RZ4VKK40ItBwIE7gMki8iDW9MUDgd8XNkvZobKyMnGP41rg7opZx11fuL1eQe99tlzofha4vpBJEH75SNcC99q3cuVKFi9ezOrVq/nNb37jeZ77XnkZU87vSyeIzTk3ioD/7ne/Swybg1QB79u3L4MGDeLee+/ll19+8cxT0fSBi8iHSqmjw7ZVR9IV8HyhvxRr1qxJW8Ddky3oBbu8vDwRXT98+PCkVXoyQS9A2Zz7uRDkWsCLIT5AKfWuPX77feBnoJdSqtos6h423l53ocdpgLsFfMGCBXTo0IEGDRqk1BfPP/985HSz5UJP1wKvrKykdu3aSTMOuvfr6BZ4XAHv06cPS5cuTel22rZtW1K6Om4BV0ol8pSJC91PwN2NNN2l7tx/57qfffYZn332WdLxVVVVSfkqeB+4iNQTkZ2BFiLSTESa259OQP5mQsghUVp9hSRb4wr9xjVCcv/63LlzAatyyVR0q7sLPVuFMbIF/tFH4DNmOB+IyI1Y85UfDowCpojIrwuWoZjMnz/fd19FRUWSBR5XwB3Ky8vZa6+9OPNMa/i724W+Zs32hdk+++yzjC3wLVu2cOONNwa66tMdRlZWVoZSynfyKvc7654P3c0777zjeR6QcDO7Gy36NLNhc3L4jWr56quvUqZzhfgu9KA4FEcXwroO3EGEuSbMAr8QGIkl1p9r29djrdld7alOFnjcF8K9hq+On4D/9NNPrF+/np122ol+/frxz3/+M/AamzdvZtWqVXTq1CllX5ALvbKykm+++YauXbvm3PrctGkTP//8Mx07dox1XjYbT0EFX4CT5s+H/v1h773h3/8GO+I3z7QA+iiltgDTRWQy8ATVZMhoUBCSLuDbtm2LZf3qZdA5zykXQfVF3759A9eGjpKHCy+8kGeeeSZwGKKfBa6U4r333vM9L6xRHdeF7ngHg9J1z7Px2muv+ebH3c3hV5/ss88+nufHtcCjdGOFCbh+/wtugSul/qqU6gxcpZTqrH162DMsVXu8LPAvvvgisZTdjBkzEpHFcRc7iZOHDz/8MMXN7c5frixwfSxrRUUFn3zyCUopPvroo9B0+/btS+fOnT0XSPEb3gJWBPeee+7JM888E/k3pEuvXr3o1KmTZ4R4ENlsTfsV/GZYE/2fPmcOVFXBySdDhIUacoFS6jIAEdnT/v87pdSAgmQmDYIE0e1C97No77vvvpRt+rN33mnHGg0LYnMsz7j5BZg8eXKifAT12QdZ4EENiLB3OiiIzUvA9Znu/HD6ix1EhA0bNng2ct33J26XnNsCdwu4e9EVtyHhZZHHscALLuAay0XkFNfnaBHZJae5ywPuB7J+/Xr23XdfunfvzooVK+jTpw9dunThiy++oF+/fjnJw6uvvkr//v3Zb7/9UvZlS0SiWuBRJ39wcFzuekvaQXffua8/fvx4AMaMGRP5Wunyv//9DyBSg0Qnmy50rxELB2C5tX4DbKxTB95+G0aPhgINKRORQcBsYLL9f08RyctCQpkwb948ysvLIwv4c88957tokddUmXoZdAu4W5DcBJXZMBd61Gl2/Rr5YSIXVp8E9YF7CVkUAXeXgzVr1tCkSRPuuuuuWAKeTh+4M2+D87vc85q7Bdxr3vM4An7//feH5jFTogr4UCxX2hD78zhwBfCJiJydo7zlBffLpreo9dbzd999l7M8fPDBB4D3GPJcCbgurm4LPJ0I+5UrV6ZsCxJwh3xGX8e9f9m69++++27KtouAT7DmJv4PcPOgQTBwYNrXyBKjgD7AWgCl1GzAfw7PImDJkiXst99+XHXVVYHxK7oL/R//+IfvcV5LYXrNn5ANAQ+zwNNpNOp5zVTA47rQdQG/4YYbuOKKKxL7nPvl95smTJiQcwF3ot/9BNxdF/kJuN+13QJ+ySWXhOYxU6LWnlXA3kqpU5VSpwLdgDLgIKBaz9AWFMSm74uy/qyD436PStRJETLpA3dfQ7fA9UZLRUVFkgX+1VdfRbqWV0WmC3hVVRXjx4/n0ksvTfpNue7/dqxviH//3JNipIseXNUImACMBepirfJxGPCLtgxhAalQSrkXAyjq6ENnJrS//e1vgTPZbd68mWnTpoWm52WB68/eeaedyl0PWvMiEws8zjvnlKk40xeHNRDiutCdslxVVcXtt9/O/fffz5YtW/jmm28S4u/3m8rLy1PSzFTAvTyJ48aN409/+hOQvgXuV1+7BTwfRJ1KtZNSSjexVgF7KKXWiIivv1VEjgP+CpQATyil7nTtvxrLonfysjfQ0k53CbABqMSqWHqTA9wvwhdffJH4rr9scYJeBgwYEGs61ahDMnLlQncHXugVy69//WsWL16ckt5jjz3GuHHjEv97vey6gG/atIlzzz0XgKFDhya259oCv+CCCxLfwybe8Qq08/qeLj2AScCewEZgmP0/FMcwMqxlP88CSkSkK/BH4NMC58mXKVOmcOSRR0Y6NkpDVEQ83+PqYIFv27aN5557LiXupHbt2mzbto0GDRqkeCi88tasWTPfcc1RXej6voEDBzJ16lQaNWoEJDeodcrLy1MEN24fuHJN1+wVN/D732+f1sDdxx1VwP2eyxtvvOG5PZdErT0/FpE3ReRcETkXa3GTaSLSENvd5kZESrAi1QdiWexnikg3/Ril1D1KqZ5KqZ7AdcBUpZTepD3S3p8T8bbz4LtPf0niTLoQdzrVoDzkI4jtrLPOSnyvqKhIErolS5Z4pnfhhRcyffr0xP9hAq43AvRr51rA9b7OsIAjv6AXyKwPXLBc5p9hifdcoDfbxRuKZiKXS4F9sLxrz2GNNhlZyAwFcffdd0c+NspUtfp0qzruYWRglYsDDjjAty/dwavMPvSQFf8bJuBRyrsTNzNmzBjOO++8FK9Xjx49GOjTNeOVfvv27X33x3GhOziBv2Flz2ton1uA9f+96syHH36Y2267LfF/WJ3tftZRXej5XIUyjKi1xghgHNAT6AWMB0YopTYppfyawH2ARUqpb5VS5cDzwIkB1zgTq9LIK0EuML9I7WxTSAvca+iF3lKPahmGCbj+0uvpRxUupRRz586Nvdrbr3+9fRhzmNstSMDTvfdNgFHz5zMWqAc8gtXv5I7ZLwYBV0ptVkrdoJQ6UCnV2/6em+X1skCbNm0iHxvl/voJuP7s9Trh888/Z968eYFper03p512Gs2aNcvYhX7OOecwePBgAM+x3I6lLCKedYxX+u3atUt8d5/j3Jt0otB79uwZ8Eu8BVwv6+7x6l5l+dJLL024xyF8To8wC7ykpCSlS6XYBDySC11Zd+sl+xOVdsD32v/LsOquFESkAXAcoPf6K+A9EVHAo0opz/EQIjIcGA7W4vNxefLJJ3336QUsbJ3wTMhVH7iO+1ynsLhfRrcL3UuYvfAqUB9//LHn9fX0owrXSy+9xODBgznyyCM9x6Z/+eWX/PLLLxx66KFJ2/VCGtY/lW0BPwDLyu7y88+sx3pJJ/kcW0gBF5E3COjrVkqdkMfsRKZ169aRj501a1bS/7qr2CGOBR4Vr8peRKhTp05gWkqpwCFgzjGO6Hi9n87MYLVq1fIsn155a9GiRdL57us5f4Nc6GeccUbKvoYh8xqsXr06qUsOkgV8+vTpTJpklZ5ddtklUh94WANJX2cCUuswr5nsogq4+33LFZFqDXvY2P9EZF2MxUy8TDe/uz4I+MTlPj9EKbU/lgt+hIgc7nWiUuox21ro3bJly9Df4qZtW/8J5fQXIJcLl3gJy7p16/jLX/6SlIdsCrhjSbgrkYqKiqSC4xXU44X7pS4rK0uaajBTC3zixImA/1Cw7t27c9hhh6WMpY8zG5y7sK5cuZI1a9bwwAMPxJ7g51KszuMuwH+B/fEXbyh4H/i9wF+AxcAWrFEmj2N11X8RcF5BifpuAimNPl2ob7rppsS2TATcK9DVK5DK6WsPKs8TJkwI7V930nLn0cEJqhIRz3ff6/r6NMruNMMi3IPe4Si/xd1dp3s71q1bx9/+9jfA8hJECRYLs8C7d++emD0O4J577kna7+fVCBPwvffem/333z80f9kgarP/buAEpVRTpVQTpVRjpVRY2OwyoIP2f3vAL7LrDFzuc6XUD/bfVcA/sFzyWeHDDz/kyiuvDJ2RqZACfumll3LVVVclbctEwL0EVv+rH6ffk3333Tet9N33S9+vzw71wQcfJK2SlinuPsmgyWTceFW2O++8M5dffnnk6+8CvAE8CNTBmpe0L/BN0EkU1gJXSk1VSk3Fmvv8dKXUG/bnLODQsPMLhZco9ekTrZrQ77cj2iISy4Xu5uSTT07Z5nW8cx0/IViwYAHnnHOOf+Zt9OUrvd7t5cuXs3Xr1lgC3kQbDeHe71wjzIXuRdTRLDp6PaQ/l5YtW2bFAi8tLeW4446LlSelVOCUvZDfshz1SiuVUsG5TmUG0FVEOttrCp+BNelUEiLSFDgCKzDO2dZQRBo734FjyKIl0L9/f+677z4mTpwY+JD1FyjfLnSvWd8yGUaWroDra/EG4U7fHTOg533VqlVJ+y655JKMFvsIOjcTC9yLoMVkfg3Mw5qYZQ1wKlYYd5R1r4qhDxxoKSK7Of+ISGcgvlsrT3g9zz322CPSubog+H0fOXIkEN0C9+pu8jIQHAH3K89h/eoOlZWVgS50gK+//jpFwL2GnDkENXj19bTff//9pH1Tp07N+jus3zs9X34NEjd+Ee8OjRvHX2xTKRU68qEYBXymiEwSkTP12diCTlBKVWD1ab8LzAdeUEp9KSIX2SseOZwMvKeU0n2UrYB/icgcrHku3lJKTY78q/zzlLSU3XnnnRco4LnqA//kk0/Yc889mTJlChUVFZ6uKq8pGDOxwE877bSk/52KyMuFrv/uqLOyxbHAve55Jr9NL+juCtOvQvKyfqL81kWLFqVsq4813OJNLAv8Q2A/4JXQ1LZTJMPILsdawGSKiEwBPiIkCl1EnhKRVSLi2cAWiwdFZJGIzBWRrPkWvRpuQXOG60QRcMdFH1XAvVz6fhZ4mAs9LM8QTcCBlD7wyspK5syZQ48ePVKO1UfQ+LnQp0yZkrS9ffv2HH744TkVLqe8XnDBBZEEfMmSJaECns6qi1EaDsUo4E2AzViW8CD7472oq4ZS6m2l1B5KqS5KqdvsbY8opR7RjhmnlDrDdd63yppvvYdSah/n3ExZt24db70VfV0GXWgWLlyYjSwAcOihh7Jw4UKOPPJIWrdunTLEws/dpI9pzpSoFvhjjz3G5MnhbacwC1zf7xXRn4mA6/3TmzZtSuq78rLAFy1aRL169ZIiVt3HelFSUkKzZs2Shtr0AmYBfwDKgauAAcDymL8hyjCnXGM3krsCl9mfPZVSqdPIJTMOKwDVj4F2ml2x4vjGZp5TCy8Bjxp06SXaSilPAY8azOgl4EEWeNxoZvdv0wU8yAvljkLftm2b7xC822+/PfHdneZRRx3leU79+vWB3AqXUzadhkKYx85rXQmd+vXrx4qhcKiWAq6U+r3H5/zwM4uLuCKht0ajzkscl9WrV/PJJ58kbfPrb3e7njMhahAbEKk/zn1vgyzwb75J7RFOdwajlStXJuY4Bhg8eDBt2rRJTF/qZYHfe++9VFZWJo0ZhfBxuU7lvmXLFkqwpiD8DGv2oa+wgjT+AjTdaafYvyOdyiRHHIA1FrwHcLqIBD58pdQ0rB4DP04ExiuLz4CdRCT6+K/ga6dsy0TA3d+9LPCgOiRbLnQ/kXCnr08PG5Qvt8VaXl7u25evj+TR07z++usT3UfuxqYj4Ln0Ijn1R0lJSSQLPCyAbSetjOqTu4RRLQVcRPYQkQ8dN5mI7Ccifwo7r9iI2+J98MEHc5STZNwvxSGHHJLza0a1wMEachPGyy+/nOSlcAt4UB+4e38cWrduzaBBgxL/O40uJzDOS8D9ClhYoXdmkzq+Uyc+Be7EClR7EEv1nCZeOgW4GARcRJ7Bikg/FDjQ/mQ6iZLXcNJ2XgeKyHARmSkiM8MmSIHMBLxWrVosXLiQ1157zVfAnbSiCnhUF3qtWrXScqG704/jQtfZtm1bYDCeg/67a9WqlbiW+x43aNDA8zrZxCnHUQU8bOIY3X0eNJTYTZTFl4pOwLGGlFwHbANQSs3FCkqrVuRiAL57LKEXX331FbfffruvhZer+XODuguCLHB3H3WU31hVVcWee+7Jtm3buOOOOxILtOjpBhFWmcVt3Tv31MuF7ueuDhsqtnPTpnDnnTw9bx59gKVYfUqXAfqTVUql/H43nTsnrxESVXhyTG+s4Zt/UEpdan/+mGGakYeTxh0Smkm3S0lJCV27duWEE07wjEiH7LjQZ86cmbItXRd6UB94mAtdx2vSFC/caTrp+Fng1UnA9UVrwuqWiy++OPF99erVYVktSgFvoJT6j2tb8UxHE5FcCHiURU722WcfbrjhBh544AHPFy+KWyYdgl5ipwBHscDdwR5B+R07dizXX389Tz31VEq6QWS7EeNUtGEW+LBhwxIu+CALvBvwysqVcN11SHk5H3TuzL7A+x7HKqU4+uijkybFcDN2bHJXcDFY4FgjPaLPjhKNOMNJY+ElplEsS/B2m7uHkWXDhe5FtlzolZWVkV3o+kQqQS50sKZJhuTfLSIJoXN3geXDAtdd6HpQnt8MmWECHqfOPe+88yIfC8Up4D+LSBfslrOInAbEm/C7CCiUgDt8/fXXnlZ4nDHmUYUu7LfG6QN3v5BBlYVfAF7ctYczxUvAvSzwJ598koMPPhjwtsDrAH/CWre7++bN0KEDvPsuD/fogd9Tc64TVJDd702RCHgL4CsReVdEXnc+Gab5OnCOHY1+MLBOKZWVusPrHc9EwN3f4wp41GeYroCna4HXqlWL//znPxx44IGAVSbc1zjttNMSE6WceOKJKWnqAu4Oai2EBe7krYnHKn5VVVUJAdcDTnXiCHjcspnPgNSofrsRwGPAXiKyHGvGpiHBpxQZEydSWqsWpWTXdRB12ApYbpu1a9cGHhMmvFu2bAmdlhDCA7Li9IG7CXK/+VUk6bjQt27dSt26dTnrrLN45ZU4g7K2X8/LAvdzmbkt8COw5i7fy/7//U6dGDBnDjRpQqW9IIUX1VjAR8U9QUSeA/oBLURkGXAzUBusESfA28DxwCKskSzRI4ZC8Hqnwt5dx/3q5Tb3i0LPhQVeWlrqmf/99tvPdxy4e4XDqH3gIkK3bt246qqrOP3001m2bFlKGb7yyisTDVkvq14XcDfFFsS2bdu2RGN8xowZ/Pzzzxx33HF06dIlsaRsHI9f1KG0Dvm0wKPOhf4t0N+eVKWWUmqDiIwEHshh3rJHeTkMH07HTZtYA3wM/NP+zMFa7Dxd9L6UMGrXrh26elHHjh0D92/cuDGrAu4uyGGz03mdo+NXkcR1oa9YsYI2bdpwyimnpIj3vHnz2HfffSMtAuNlgfsVsOHDhwOWGXovcK69/WvgYqDdIYcwwG7xB1WYYcFyUJwCbs/GFvecM0P2KywDIOsEudD95hqvXbs25eXleRtG5kWQBR51EhdIjkIPKl+OsDp1lddwMMcNDtvvx7Bhw1LS8KJ79+5A8fSB60bILrvsQuvWrdlll12SYnviWODdu3fnlltuSUy526hRo0AXfTG60AFQ1upjTqfDFTnIT27YuBHOOYetnTrRGMscuBfLLfoT8DJWDdMtIAk/6tSpE/mB1alTx3N+XZ2wdcTD+nYc0rXAq6qqUoLY9Jd97dq1vPnmm77pZssCd0Tby/K+8cYb+fjjjwPdpU567uUVwd/FVYo1nnsBlnhvBW7EGk81xXVeFJd/UKXnFvBCjgN31jbw+ERZ86BgrFy5MmXbkCFDOOigg1i4cCHPP/98yn5HZOMIuJ8F7p46NVsu9KjoFnhQo9opz0H5c6xo2C5A+pShQRb4Pvvsk3ReXKLMiKYLuNMH7jXZlXNsWVkZtWvXTuRJRJgxY0bimDgCXlJSwo033pj4P6wOLjoL3IeimDoqEs2bw5gxfDFzJiceeCBHAkfZn07AKfYHYAXW9FOOhf5tSNIlJSWUlpZGiup8//33Y60r7kUUAZ8+fXrSQiJe+M3EVllZGSj+ffv25euvv/bd71cphVVWbuHXKxQ3r732Gq+99hovv/xyaD68ZpbyLGBvvsk8trvL38MScz1cJ6qAp+NCLyRKqfhzShaYLVu28Nprr6Vs32WXXRLvvtczqlOnDps2bcqKgF944YX84x//SPwf14UeNmwxDF3AX3/dP1TBCfQK8hbqfcle722QgDv3KV3hqlevXuhyzW4X+tdff53krezWrVsi/qaiooKysrKk7k133uIIuNfvql+/vm9dns9ZFTNpKuQmdDqHVFRU8APwLDAU6Gx/htrbfsQKwT0Ta9zcN8ASrM7/UwCvifdKS0sjW09ffvkljz76aEa/IWyo05tvvsmvfvUrrrgi2EHiZ4GvWrUq0AIPEm+IZ4H36NGDTp06AamVbZCAOwQNk5s+fTpTpkzh+++3D0F2fodewPYHPgAYNIi9gP9hze17LKkLkGRTwN2xE7kaSlhT8Vvdyi8gzSHIAq+qqorlQu/Tp0/SGOK4FnimQbV6FHoUgvKnT2xSCAEPwy+IzcEJwAOYPXt2VgXc6z0K6sbM1agiLwLveJBrDfBfh7NI8SowS4CngN9h/aC9sdzpLwGrgY7ABVhu9p+BacD1WBW/YAm4u+UdJ7AtLmEWuD6pSRB+w8i81tqOQ5w+cN3iWbp0KWeccUbCzRVFwMMCAt2LDjiFvrKykt5Yq4bNAo4GVLNmjMSaguxVn/T0SiBTAXdXCkbA4+H37L0mYtHxEpt0LfC6dety/vnnJ4Qt3y70kSNHpoiqewVD2P4+Blngep3lZ5D4Cbhzn8MsTz8PhZeAu/MwevToxHav6+iCOmDAABYtWpT0m9znxClvYddr06ZNUl1TNH3gyl421OPTWClVFDNPxCFKi/drYAzwW6xlmPbHmsFmKpbL4TDgNqyKfwVw/fz5nFFZiT7iN9tDonSi9oGH4bzAUVz/6aTrxuue6BXm1VdfzaRJk+jTpw/HHXec71zNOlHWGE66XlUVTJvGOS+8wAysyfw3AfcAGz7/nL9iz1Tkg16pBL1LUYLY3PuMgMfD79nr99VLMBwRi+JCD5uJzd1QD3Ohu9POpJ54/PHHOfvss1PEJajcRA24jWuBO787TLj85kXwypdfY8jpA3ejB+GBtZSq/nzcVnEcK9nrdzuzMoI1p4Mu4NXFhR6KiBwnIgvslYiu9djfT0TWichs+3NT1HPTIe5wAAX8F2vKzH7A+YMG8dOjj7LhzDP5Dmvlqf4rVvDY5s2sxFo2bTRwSEUF2JZttt0p2RTwbdu2RRLBOOLirpScguglePp6xrpF9e677/Lpp5+GXuujjz6KlKdm9etzHvDnN96AI46g2+LFbATuwupC+T9gnV25tm3blqVLl3LzzTenpKNXwEHvkperPigtMAIelygWeFwXulvAHWHR32l9mV93+mEW+OTJkznllFMS3W6ZuNCdcuMWM693znkf3fnr1atXYNrudDN1oXuN2fbKF8Buu+3mcWQ0CxysIaG6gLvLV6b1sn69kpKSQHd9LsnZlUSkBGuVxYFYAd5niohXoPfHSqme9ueWmOfGItPVvMrq1aPl8OFs/etf6YTlbn+8Wzf+WacO5VgTR/8JK2JZNW8Oxx+P+stf2DfDfMP22YCyKeB777130upDfsRp+LgLiuMeC3Oh56LVOmT33XkI+F4p/g50/OUX2GUXXthzTzoB12KNQoDtY8AbNGhAhw4dPPu49Ao7KNDPqRyCKgljgWdGpi50/biwqVSdZ1NWVhbYaAwS8NWrV9O/f39efvnlrLjQnfLiVW6efvpp9tprr5Ttbkt3r7324pVXXuGJJ54IPM65TqYWuG61ep3v8Morr3DllVd6Husn4G4LfMuWLUmi6r7X2RZw/Z7VCAHHWpxpkb00aDnwPNbKRLk+15fvvvvOc/tVV13F4MGDufbaYEPfedGcv18Db3Xtypk77URzrNbG/cA8QDZvhnfeodbVVzMXK0BuAtZ6ivsQP4Tfmc40aOjUggULIqdXVVXluSqYQ7du29tLcQTcXVCcQuRVWVVVVSW2h63dGwXBmsz7FqxnM2HRIkYADbduZSYw9uCDWTdvHqcvWIB7RmNHkINmlYoq4A5Bouw1q5YhOn4R3H5i7BBHwHUX+oIFC0KDrYJc6M5KXvp13M88TiNOHx7l5pxzzkmaa9/PAq9Tpw4nn3wyQ4cOTdruFkPnOn75iyrgfoFf7nydfPLJvnFEfgLubnS4LfBsC7jeGHFb4EUTxJYhUVch6isic0TkHRHZJ+a5WeFPf/oTkyZN4o477gg8zincekF1XqgtwGTgmtq12Q8oW7IEJkxg25AhLMeKbh8CPIo14fRq4C2sgLh+QGqRScZ5yf3EdObMmZ6tbjdXX301EO8ly6UFrg/zSof2wFlYIwWWATOwxm7vCawqKeFe4KFhwzgQmNapE6ec6T3viCPITn69KiN9W9BwQK976654jAWeGX4CHmaBOxW9fv+jLGYSpYEZZzIe90xsr7/+OuPGjYt8vvMu+Ymm1/vkFjm//PoJrV89oDeKHgqYoTCqgAflza8P3P2sN27cGOhCz7S8BVng+WyM51LAo6xC9DnQUSnVA/gb2wOAI69gJDGXIPQi6jAw5yVx95/pFbOzr7JlSxgyhC1jxtAey91+CfAc1ipWzbAmlLkNa9z5eqw1pZ8FrgL6A/oaYGEC7sxzHEZYOl7ECXRzv7yOIHoN+Tr++ONZt25d5LRbYt2XK4FnsMbof491zy7AGkWwFHgIa5WwA1u14mpgtT0fslLKN8o+ioDrzzmuC9094Y/7nevRo4dveoZU0rXAvYLYorjQo8yxHmdFObcFfuKJJ6ZYwkEEWeBu/KLQ/YLavIRWRHzrAf13jxgxgnbtvG0tPxd6XAH3+s3uZ62UChRVPwMm6vwMQX3g+WyM5zKSPHQVIqXUeu372yIyRkRaRDlXO+8xLAOM3r17+5qVQRZnVAH3s8C9jnFeGKeV/bX9edg+rj1wiPbZF0vk98ayKB1+BBYCDSdPphzY7YsvYP58aN8eIsxg5MZ5qcMmkdALiVN5/fnPfw5N38+FvmjRopRjb7vtNu6//35KgOZYU5g6n13YPk7f+XjFsK4F/oU1vO99YLa2r6XdSPEaDuTGGaYSJOD6OxRkgTvX0Y+vXbs2FRUVifujp9+zZ0+OO+443/QMqWzevJlatWqlPNNM+sDdQWzO95NOOokJEyaE5imOBZ7LPnBIfveCXOhe+Am4M2eDG/d99vMKZMsC9+sD79mzJ7Nnz05s04eiRhXwf/zjHwwcONBzn47+W2rVqpV0L2uKgM8AuopIZ2A51vrhujYhIq2BlUopJSJ9sDwCq7Hq5cBz4xJkMWUi4O6X1U/A3SwDJtkfgLpYfeO9tE8PoI394b//pTfA889bH4BGjaBtW2jThhexrPh19t/1WCtHbMNavGWb/em+cCGDgLobNrANy9UhWDde/95h3Tr2s7+3WbWKykceYcWoUVyCtVJFqf1xf+/81VecoG1r/cMPbMXqImgA1Lf/tmzQgPqdO7MO8I5NTWU9MBdr/vo5WC/YXPznsncsBqdwvfjii75pf/jhh0B0AU/HAtetOD39k08+Oa9DT2oCmzdvpkGDBilBnX6WtcOSJUt8j3MLuH5+FAvcT3TuuuuulG1+i5noHHDAAcyaNctzn18UuoOXQLkF289jUKdOnZT8ObPHjRo1ilGjRiUdH9ZwOe2003jppZdiWeB+eSstLU0pK506dUJEuOWWWzjhhBMS2/Vha1Fd6FED0IL6wPPpQs+ZgCulKkTkEuBdoAR4Sin1pYhcZO9/BDgNuFhEKoAtwBn24gee52aSn6AZzOK60IOGbkQVcDdlWP0Jn+vpYrkh9gCuHjSIr994g2M7d2bPkhJYvtya433hQli4kNMiXQWYOJFTwVrgJYhly7Z///lnuPhixvof7X0egN8wtc2bYfNmmmAJ8BqsiXKcz0/Ad1jL3jmflcSb/m+bywKPgiPgXoKqF/ratWtTWVlJw4YNQ2fHc4736wPPxTK3NR0/AXeXzY0bN7LXXnuxzH4vV6+2whedNa/d5/gNQ3MLuNdUxX6ioweU6WmHVfQzZ870bdhlwwIPqvcaNGiQtMyxc52rr746RcDdv1vPU/fu3enevTsvvfSSbzn0um9+QuplgY8cOTKxT6dly5aJ71GGkR166KGRtaDGCzhYbnGs5QT1bY9o3x/C6rKMdG4mBFWyUVtdXg+3qqrKs2KOKuBebkAHhdWnuxQ49vDDufqNN7j8pJO47777QClYvx5++AGWL+e3AwbQFMuadT4N2G4h17Y/++69N/+bPx9lp6+wBNT9vUmTJvyyfj0KkDp1OOb443nx1VepYLtF7/wtrVuXDWVlVADtdt2VRUuXUgEMu+giXn/nHb767js2Q+KzBRh87rncdOedNGnThk1ktiKcH/rKVFGJaoFPnjyZCy+8kKeeeopDDjnEMy39+IYNG7JmzRrP40wEenwcAXfjLqMNGzZMKp+OKOnWmZ9oBwUtHnTQQYnvfgLplY5+nUyeezp94O78BdV7unjr1/GqA4ME3BkyF4TXffM7xyuIzW/mw1122SXxPcyF7tTBU6ZMCcyrg7sPXP8NNcWFXlQECXhU92WUIJW4FnjUa6dMiCICTZuypU4dXp09m5cipQKjTj89pQXtxRG9eiUmrahfUsIrF17IH159NeW4evXqMX369MSkED2bN2e2vUrQMf37c+sjj6ScA1Devj20bk3wEgaZ4TyDdCxwr8pNL5hHHHFE6LzweiXRtGlT39WTWrduHTl/Bgs/AQ9reDnow7r8LHB9e1Qvixd+UdOZeF68LHA9QNNvJETQ/1GIIuA6tWrVSuqimDFjBkcccURSDI7XfYtjgfutMtisWbPE9zABD2qgeOG2wAsl4PkbcV5gohTAMKI8XH1hBEgV8Pfee48uXbok/o9q/ftFj48ePZqzzooeHhD15erfvz/XXHMNYFkfN9xwQ8oxZ555JrNmzaJnz56JWZb0IJKg+6UvnpBrcmGBR0E/vkmTJinnT5kyhZEjRya5cw3RiGqBQ/JzcMqel4ArpXzFPEr9oQvZuHHjOPzww5PSd+czG0Fsetp6mdLLud97G0fAgwTOLcBuC1y/v71796Zt27aB5wflzUvAnd/nPkd/HlFnYotaH7uD2IKulUt2GAHPxgxmfpVDUB/4J598knT8gAEDuPfeexP/Zyrg77zzTqTzHaJWGrVq1eLOO+9MXPfzzz9POWb8+PGJCV+87k1QBdGvX79I+cgGcQQ8aCKXTAqmMxGPzhFHHMH9998fK38Gi3QF/Nlnn+Xzzz9PsqD0Z+0Xp7Bp06ZQD5wuRKeffnrgWO1cuNDjBkLGmTEsqM89zAJ3PxN34z2OgDdu3NjXAvcLKIbUes+vLEdt1OjDzUpKSpLugd+c77lghxHwqBa4ewUrnbgu9FGjRnH++eenHKNXKFELkXNtt0Wv9/NEIY6AQ/CqYEHD6dz73eTTbezn2uzbt2/KNud+ZtsCb9q0aV5naKrppOtCb9SoUcoc4H5l0C3gfrODOYLiNzolSMA//vhjnnvuOc90g/ASVP06XkFsXnmIez0vgsq5boE7uBuzcVzo9erV8+0DD+oiiDqMLJ14KLeAjx8/PlIa2cAIuIu3337bd0lO93SIDn4WeJRx05la4H4LBPgRtd/NyVfUiQ28CnFQBZFPq9PvWs7QMR2nYZENC9wt4Ibska4F7kVUAfcrC15BYrVq1Qq0wJ3VyA4//PDIXWA777x9aievYWR+Au5HlLpnn32syTGDBNy9T///zjvvTHKhA0ldiBCv7vCak91PwPXfl20XururxXn2++yzj7HAc0FUAa9Xrx49e/b03OdlTbtxIo1PPfVU32Oiur3GjBlDhw4dGDp0qK+AxxWViy66KNJxcQU8rgs922umB62q5lVBHHXUUZ7ehVatWgHZscB1mjRpYsZ6Z4m5c+fyxRdfeE5GFCbgXs8wKGDKYfPmzdSpU4fp06fz2muveR7vFvCg9OMGkL3++utJY8K9LHD9e7YscH0olpu//e1vnHHGGb77x4wZQ//+/VN+/3333ccDDzyQmBgmjgUOqXWmXxR6Ll3obgH385DmGiPgHvi9PF5WlLsP3Fklae7cuRldC+Diiy/mu+++44knnsiKgH/66acprms/yzCKC10nroBn0wIvLS31DYorLS31vMd+3pHG9ux2uXCh11QyWTY4HZxFibzm0U/nubktRK+0ysrKKC0t5eCDD06aLERHbygGzXsP0YVi8ODBPProowwaNIiOHTumpBnXhf7229tH5sYJyvVqfA4aNMjT/e/2PDj/O/lo2LAhl112WSLtOH3gXnmJ4kJ3C2smFri7TikpKUl4g4IaPLnADCPzwO8h5sKCCkvT3b/mvIhlZWVMnDiR5cuXR76W1xhKEeGjjz5i5MiRzJkzJ7HdzwIfOXIky5Yt45JLLkna7jXLUlDfWL5c6H5TL/rlzSn02XCh68fXVAtcW/p3APZ6MiLyulLqK9ehHyulfpONa3boYM2y7EzKAtuHZWUi4EHby8rKYo1nDhPwqPOmT5o0yXO7l3s+ivgMHDiQ/fffn88//zzS8UECHuTmjpIfZ39UAfcrm35BbPr/bsMnE69Es2bNUu57x44defLJJ/n1r38den422SEs8M2bN3PddddFPt79EO+44w7eeOMNz2PdFngQjkCmE8TmtsBvv/12zj//fGbMmBHpfOdaXgLer18/XnrppZRjIVXAd911V1588UWOOOKIpO1eFnBQYXD2/fe//42c/3Tws8DDBDxsJrYo6M95332zsSp8UZKTpX+DcARcnxjHWQjE67lmw4UeV8AhOHI7nTHYOmFR6PrkQpmIVVB5CKu7gs7Vt0edic0vvSgWuHshlkws8GbNmnlO/nP++ecnuuDyxQ4h4FH7cR3cD/Haa6/lN7/J3HjYb7/9Qq/lMHny5KT/3QLu3h8FLwF38AsAcbvQ/e5lXAF36NmzZ2KJ03QJsrDSFfBMXOheK8N5RbzXEDJZNjiJqCsLNm/enLPPPjvJHfzwww+zbt26UAH3IooLfevWrb7vzG677QakvlPZWEDJj7Ao9FtvvZVH7EmU3Pnw6zP2wvlNcQTczwL3u79Ru9/8Zp+LIuBuMmnU7LTTTr6z9+WbHULA44x3TOf4TFyjftfaddddk/53C3iUxRXc+LnQnX1euAXbL/jMT8C9ViFz4674stlfXLdu3VgWkN989xAuBEcddRSTJ0/mvffe8zy+JrrQyWzZ4OSTlHpMKdVbKdU7qC9RRBg/fnySF6ikpCTSiAy9H1k/1wv9HSgvL/c9btq0abzyyiux1wPPhLAo9JKSkkQEuZ+ARxEeP9F0X8+LMAvc6ze4z42SF6dOCnKhu8lkMRM/C7wQ7BACHpc4Ap7p2F6/l9tvViG9D9yN41r0w8sCdyodv9ayW8D9KikvAS8tLaVLly4ccMABgflyp6kP4/NaCCIOO++8c1oWuFcBD3OhiwjHHnts4l7sIOO+Iy0brJTaaH9/G6gt1rLBGTNv3rzQgFHnOUyaNMlT5KO60P3emXbt2nHyySfHqshzYYG765KoAhtEOgIetw88SKy9tun7Ro0axWWXXeaZTqYW+KJFi5LighxGjBhhBDzfjB07lvbt2ycFW+2777788Y9/TDk27gPJlgU+bdo03zy4LXCv5SzDBEYfm+rgRJFGtcD9KjGvtX6dNL2snqA09QC3m2++mTfffDPw/CCaNWsWq/Jx8uzuM4PM+sChxlrgiWWDRaQO1tK/r+sHiEhrsX+8JC8bnDHdu3cPjS8IszijBLFt3bo1tF7wGw8dZV7yuIRFoXvlxy+NIHLpQg/KXxQLvF69etx8880JCzyOgHft2tVzu57nLl26eHZ7Dho0KHBJ6XyS0ytHGF4yRETm2p9PRaSHtm+JiMyzh53MzDQvF110Ed9//z39+/dPbJs7dy5//etfU47N5gPZb7/9OPzww5OCxPxazXp/s5+lXF5ezuTJkz2jz8NmWfMq9L/61a88r+dngQetIezGKUBhlZU7Td0iLykpYe+99w48P8jSbdy4cSx3eJCAh1nUO4jFnYRSqgJwlv6dD7zgLBss9tLBWMsGfyEic4AH2b5scL7yCGQm4EEWeDpkmlaUKPSgBgTEC2LzIlsu9KiBhe76K2jilqD8TZo0iffffz8wz2EUiwWes2FkEYeXLAaOUEr9IiIDgceAg7T9Ryqlfs5mvsaOHUvjxo0TbhcvstkH3q5du6RgG/CPQg96KRxRmzt3LgMHDvS8VhQL3PnriL2fG8tJy23p+72sQUNBwiwB97l667ikpCS0ayBICxo1ahQrotzJs1cXxV577RWYjzj5qklksmxwPvBbrcohW1Hocch1FLrX/w6FCmLzO18vi2PHjgWiWeDuRlBUC/yEE07wDcaNWvcXi4Dn0gIPHV6ilPpUKeVMofUZVv9ZTmndujXjx48P7JfVH8jtt98emF5YJR3W0o4q4FFa7FEtcK9r+kV2ume7imOBBxV+vzSPOeaYpKklnWkKn3/++Ugz4XnlK86Ybj8L/M9//jNXXXVV4LX8goUMhaUYLfB0K313mQobbw75D2KLG4XubB8wYEBipsgo48DDBDtsnLoXRsC3E3V4icNQQF9aSwHvicgsERnud1LUoSdx0B/iySefHHp80AsRFpmqXytocZAoEa6VlZUMHjwYsGZxe/rppxk2bFhKmkGtdgenUI0YMSJpu18lFjSfsf4bX3rpJb76KnmOD/3cG2+8McWFDtbqTs5Y3zh4Rd4DtGnTxvN4Jy9uC/ymm26KPRxxB+kDL3qyIeDbtm1LOzYmm33g7jKcaxe6M3y2d+/eKfvCGjRRx4F7NaZz6UIPEunq5kLPpYBHGV5iHShyJJaAX6NtPkQptT8wEBghIod7nRt16Ekc/Kxin+sH7vd6yQ8++GAA2rdvH9uFHkRlZSVPP/00U6dO5cEHH+Scc85Jirr1enHDCvkxxxyTNH+6X6ENGqql7zv11FNT+rTdDRe/+5DO7G0lJckzse28887MnTs3aWEIrzynM0zPWNzFSboC7n6ns1lRp2vNu71oUVzomUxactppp7Fx40b233//lH1+Ddp0LXB9fxQXehwLfP78+SnpeGEs8O2EDi8BEJH9gCeAE5VSichUpdQP9t9VwD+wXPJ5wc8qTgcv4W3Tpg0rVqzgf//7X1Kh018EvyC2ICorK6lXrx6HH354It96IQt6OZs1a0bbtm0T/+uFSe9uyMVQGf23lZaW+kZ4pivgehq77bZbYNSyk+d0xDjMhW4s8MISV8DdFIML3d0oziQKPUoeRMRzhEkUwizwI+2lm71mL4tigbufh/sc/ffp8SvZsMD95r3PN7kU8CjDS3YFXgHOVkot1LY3FJHGznfgGOCLHOY1ibitq6AH6FfoW7VqlbK2bS76wL0E3M+l5ywS4T5Gz0ucSszLhe5FVAs8zkQZDu6hc1Hdfn/4wx9iX8uNsciLg7DREOlYXXHIhQs9yjAyv+vHCWJLh6hBbLfddhsLFy70nOvB6/7svvvuSfvC7mFUz0qUc4LyV0gBz1kUulKqQkSc4SUlwFPO8BJ7/yPATcDOwBj7JlQopXoDrYB/2NtKgYlKqfhzh6ZJXAs8kz5wPws8XRe6m6gWOCT/1mwIuJeVEHbddATcmXHKC7cFHlXAd955Zy655BIeeih68LS7oow7btyQG5xnng8L/OGHH07M759Owz4Mt3DreY/rQk+3EXHAAQckVu3zIqoLvaSkhK5du7JkyZKU/V55e/nll4Ht9YA7PXf9l87vS6cPvJDkdDWyCMNLhgHDPM77Fujh3p4v4ljg+YpCz6aAx7UM9d+QCwEPcqFHaTy8/vrrntud8+NY4Nl0k7oxLvTC4LxffmU5m5V2VM9NugIQ1Ace1YUexQI/7LDD+Pjjjz33zZwZbVqOqMNIo0S4N2rUKBG34jxPdwPZ3ahI5x7n2huTbQo3hUwRo8/3HVahh4lhPqPQvfKiC3icl86vNRwnjaiuNPfv9ous9Upn7NixgdOt1qpVKy0LPB3MMLLiJK4F/s0337B48WLfdLKBOy977bUXzz33XFI3lhdu4Y4yosRNlGFk7733HqtWrYqUnpuo5T6IoLw5sTBuAW/UqBEbNmyIlEY6103nuFxjBNwDfUa0XPWBO/hZ4O6XP93KQ2+MxClQ2XChOy3isIhut4Xvdz+9nkWYSLpd8vkUcGeyoIsvvhgwFnihCLPA3eVit912o1OnTinHxX03jj76aCB1YSIgETDasGFDrrvuOp599lnOOOMMdt11Vz744AP+/e9/e6bp7gMPa+BCei70evXqkemonjAXupsgF7pedvwscCBpqux0GhDVzQLPqQu9uqJbrbnuA9cLSZClm25rVo/cjuNCz0TAly1bRnl5eeLaXtO+6niN+/bCuVeNGjVi48aNofkAOPfcc5PugTv/p5xyCq+88krif/1ZxrWg3cePHj2ak08+mV69esVKx5BdstUHvmnTpljXveaaaxgyZIingHfr1g2AK6+8kj//+c9J+xzh9yLIAo/qQnfKQ66D2KK60J0o91122SWxzZ23e+65J/HdqS/CJq4yFvgOSlwL/IknnqBOnTqMGzcuZV+YgD/11FN06NCB0aNHR2pNx0W/fr4s8Hbt2iW5tZ0V1PyI2sdep04d1q9fjz5hT5DIHn/88fTq1SuwS+TFF1/k2mtTpukPTTsKJSUlHHjggTntVzeEky0B/+GHlFGwgdSqVctTvJ19VVVVKeIdJU39b5xJmRycuSFy5RGKGsTmcPDBB/P444/z6KOPJrbp5yqluPDCCxP/+7nQ3WS7D/zbb79NvAPFUqaLIxdFRhwLXCnFYYcdxpYtW6hVqxbnnXde0v6w8zt37sx3332HiLB+/fq08+xHvixwr+VEHR5++GHOOecc/vKXv3juD+r7d+fVHagS9FtatLBWrNQF3N2gqlWrlu+sbIaaQZDLFaILeJgnKS7pCGhQFHrUmdgcAY/rUYhLnCA2fcbIMPyi0N2kYwQF5VU3SorFAjcC7kE6gV9+L0uU4DPnpUlnnDNYIl1eXs6ee+4ZeP10LfAggXU4++yz+fDDDznxxBNT9vXs2TNwzWZ3FLpfPuLSpUsXIDwosUGDBmlfQ8cErRUnzjN3luJ1E7VcrFy5Mmt5Spc448D9BNxpBOsBX9kkG0FsQeTShR4VI+BFTLqBX154LUvpR/369RkzZkySC1+ncePGbNiwgYsuuogmTZpwyy23ULduXX744Qfuuecez7XNdQs8zixj+jFBAutQt27dxNricYnSQPDDa13f+vXrM2LECK6++mqAwD5wyJ6Ah+FeGMaQH5xn7teVkyuhyQVxotD9rEnHAs+3gKfTwG3dunXKtjAXer169SKt354JRsCLmHQtYS+cSQqi4kQse/HNN9/w4osvMnTo0KRGRtu2bbn//vs9z8mGBe64oiE3fT9BfeB+hX727NnMmjWLAQMGpOw78MADk4Je9HvlVfDSnSrSTVgF5VQ4cRdFMWRGs2bNAP/nE8WVfcUVV3DUUUdlNV/p4LbAo5Rv9+++6qqrmDJlCqecckqOcmkRdR4IPz744IOUdRMg3IVev359tm7dmtNRH8XS6DMC7kEcAQ+rtL/99ttMs5OgZcuWsaf4TLcPXEdvBedCwKNGoev06NGDHj285/qJuwhFvl3oQbNYGbLP+PHjefTRRznooIM89zvvS79+/XzT8IvfyDdu4dC9de59zlC1IUOGJG3v0qVL0uIe2cZd/jp27AjgKcZB+EXjh7nQmzdvzi+//BLL+1ldMQLuQatWrSgtLfWcZN9NWKU9atSoLOUqPbwEPAr679JX7spFP2+cILYgrr32Wu68805uvPFG32O8Cr2fBR712jfccAO33XYbN998c6TjjYDnl1atWnHTTTcFHrNgwQLatQta7bg4cMqw483RBdwtnC1atGDLli1JHqh84pSfY445hn/961/07ds3K+mGudAnT57MhAkTkhZnistVV12V9rn5xAi4B6WlpWzYsCHQcnvssccYNWoU9957r+f+Bg0asGLFioJX1rp1q6/iEza0yx3I99vf/pbvv/8+yZ2eLYJc6HEs/jvuuIPrr78+8J57CfiBBx5Ir169fC36MG699VauueaayM+6OgjFjsYee+zhu8+rH7ZQBAm4F4XorvEKnjvkkEOyln7YqILdd989I8OpOgWjGgH3IezFv+CCCxg2bFhKq7dt27b88MMP7LbbbgUXb/BeNadhw4asW7fO8/gnnniCZ555JqUv/oUXXkAplZN+JS8L/Pbbb+fTTz8NdGt6EXbPvQp97dq1mTVrVspvi1OQozzryZMnM2rUKP7+979HTtdQWFauXBkqkvnEKR9OQ7SY8uaQ6xkHwwQ8nxR6kiYj4Bng9aJ+8MEHjB49mtGjRxcgR6n4BW35CfjQoUMZOnSo575cFUyvKWSvu+66nFzLr98sH9OcHnvssRx77LE5v44he+izgxUDTlmpDgGRubJkHRd62DCyXLNkyZKk7sVCkNNQOhE5TkQWiMgiEUmZ7kosHrT3zxWR/aOeW6zsvffeTJw4MTEGudB4uaD1+YJ3NMLmZTfEJ5NyboiH08B1xKsY59cPW8Y0U5o3b56TdOPSsWPHgtelORNwESkBHgYGAt2AM0Wkm+uwgUBX+zMcGBvjXEMEcjlsKlvksxL68ccfIx97zDHHAHgubGGwyKScG+Lj7gPfEUk3JuH666/Pal98MZBLF3ofYJG9tjci8jxwIvCVdsyJwHhlNdU+E5GdRKQN0CnCuYYIVAcLPJ8CHmc6zJNOOompU6ey77775jBH1Z60y7lSKnprygBUDwHPtQWeblT9bbfdluWcFJ5cutDbAd9r/y+zt0U5Jsq5AIjIcBGZKSIz9UUuDBatWrVi5513Zp999klsu/jiixGRpAUCCknbtm1p3rw53bt3z9k1nnrqKYCkBRPCEBEOP/zwxEQgBk8yKedJmLIczoMPPkifPn2Sgqf+8Ic/cPrppxcwV8k89NBDHHTQQWmP6ojC8OHDeeKJJ3KWfnUhlxa4l1nlbpL5HRPlXGujUo8BjwH07t27+sT/54nS0lJ+/PHHpDHgZ555Jscff3xiSsVCU1payooVK3I6PeHvf/97zjrrrIKNia3BZFLOkzeYshzKgQcemLJW+MMPP1yg3HjTp08fPvvss5xeI05DvCaTSwFfBnTQ/m8PuNfj8zumToRzDRHxmlmuadOmBciJP9mcvtYPI945IZNybjAYMiCXLvQZQFcR6SwidYAzgNddx7wOnGNHqR4MrLP7xaKcazAYCk8m5dxgMGRAzixwpVSFiFwCvAuUAE8ppb4UkYvs/Y8AbwPHA4uAzcDvg87NVV4NBkN6ZFLODQZDZkh1mjYujN69e6uZM2cWOhsGQ84QkVlKqd6FzkeuMWXZsCOQaXkujjXRDAaDwWAwxKJGWeAi8hPwXZaTbQH8nOU0zfWrVx6K6fodlVItC5iXvFBDy3Ix5MFcv7jegYzKc40S8FwgIjML6bLc0a9fDHnY0a9fUyiG+1joPJjr16x3wLjQDQaDwWCohhgBNxgMBoOhGmIEPJzHzPULTqHzsKNfv6ZQDPex0Hkw1y88WcuD6QM3GAwGg6EaYixwg8FgMBiqIUbADQaDwWCohuxwAi4iT4nIKhH5Qts2SkSWi8hs+3O8tu86EVkkIgtE5Fht+wEiMs/e96DEWNTaKw/29kvt63wpInfnKg8+92CS9vuXiMjsPF+/p4h8Zl9/poj0yfP1e4jIdDu9N0SkibYv29fvICIfich8+1lfZm9vLiLvi8j/7L/NtHOy/h7WBApdnnf0shyQB1Oe81GelVI71Ac4HNgf+ELbNgq4yuPYbsAcoC7QGfgGKLH3/Qfoi7VU4jvAwAzzcCTwAVDX/n+XXOXB6/qu/X8Bbsrn9YH3nPOx5s2ekufrzwCOsL+fD4zO4fXbAPvb3xsDC+3r3A1ca2+/Frgrl+9hTfj4PMtR5Kk8+1x/hynLAffAlOc8lOcdzgJXSk0D1kQ8/ETgeaVUmVJqMdZiDH1EpA3QRCk1XVl3fTxwUoZ5uBi4UylVZh+zKld5CLoHdotvMPBcnq+vAKeV3JTty03m6/p7AtPs7+8Dp+bw+j8qpT63v28A5gPt7Gs9bR/2tJZeTt7DmkChy/OOXpYD8mDKcx7K8w4n4AFcIiJzbXeM4+poB3yvHbPM3tbO/u7engl7AIeJyL9FZKqIHFiAPAAcBqxUSv0vz9cfCdwjIt8D9wLX5fn6XwAn2N9/y/b1q3N6fRHpBPQC/g20UvYym/bfXfKRhxpKIcvzjl6WwZTnvJRnI+AWY4EuQE/gRyy3E1huDDcqYHsmlALNgIOBq4EX7BZ0PvMAcCbbW+zk8foXA5crpToAlwNP5vn65wMjRGQWlhusPNfXF5FGwMvASKXU+qBDc5WHGkqhy/OOXpbBlOe8lGcj4IBSaqVSqlIpVQU8DjgBF8vY3nIDaI/lClpmf3dvz4RlwCvK4j9AFdak93nLg4iUAqcAk1z5ysf1zwVesb+/SJ6fgVLqa6XUMUqpA7AqvW9yeX0RqY1V2J9VSjm/e6XtRsP+67he8/keVnuKoDzv6GUZTHmGPJRnI+Akbq7DyVjuF4DXgTNEpK6IdAa6Av+x3SEbRORgu2V9DvBahtl4FTjKzs8eQB2sFWvymYf+wNdKKd2Nk6/r/wAcYX8/CnDcfnm5vojsYv+tBfwJeCRX17ePfxKYr5S6T9v1OlbFh/33NW17vt6Bak8RlOdX2bHLMpjy7Fwrt+VZFSh6tFAfrNbYj8A2rBbPUOAZYB4w1765bbTjb8BqvS1AiwgEemNVDN8AD2HPapdBHuoAE+w0PweOylUevK5vbx8HXORxfM6vDxwKzMKKzvw3cECer38ZVvToQuBOPa0cXP9QLNfYXGC2/Tke2Bn4EKuy+xBonsv3sCZ8fJ5l3sqzz/V3mLIccA9Mec5DeTZTqRoMBoPBUA0xLnSDwWAwGKohRsANBoPBYKiGGAE3GAwGg6EaYgTcYDAYDIZqiBFwg8FgMBiqIUbADSmIxb9EZKC2bbCITC5kvgwGQzxMWa7ZmGFkBk9EpDvWDEq9gBKssY3HKaW+CTrPJ60SpVRldnNoMBiiYMpyzcUIuMEXsdYx3gQ0tP92BPbFmut5lFLqNXvy/mfsYwAuUUp9KiL9gJuxJljoqZTqlt/cGwwGB1OWayZGwA2+iEhDrJmkyoE3gS+VUhNEZCesdWt7Yc1AVKWU2ioiXYHnlFK97UL/FtBdWUvmGQyGAmHKcs2ktNAZMBQvSqlNIjIJ2Ii1rvAgEbnK3l0P2BVrzuOHRKQnUIm1lKLDf0yBNxgKjynLNRMj4IYwquyPAKcqpRboO0VkFLAS6IEVFLlV270pT3k0GAzhmLJcwzBR6IaovAtcaq+Sg4j0src3BX5U1tKNZ2MFyRgMhuLFlOUaghFwQ1RGA7WBuSLyhf0/wBjgXBH5DMvlZlrqBkNxY8pyDcEEsRkMBoPBUA0xFrjBYDAYDNUQI+AGg8FgMFRDjIAbDAaDwVANMQJuMBgMBkM1xAi4wWAwGAzVECPgBoPBYDBUQ4yAGwwGg8FQDfl/qVpGuf8bvJUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABo00lEQVR4nO2dd7xUxfn/388tFOkCdhFRQLErYFcUv4oaxcQSE6yIJVZUflFjokaj0USNvWAvscVeACUW7CIaxYIKYgEFAUE6t87vj3NmmT17+u7eu3vvvF+v+7q7p86eMzOfeZ6ZeUaUUlgsFovFYikvKpo7ARaLxWKxWJJjBdxisVgsljLECrjFYrFYLGWIFXCLxWKxWMoQK+AWi8VisZQhVsAtFovFYilDrIBbioKIrC0ir4vIUhG5RkT+JCJ3Nne6ohCRe0Xkb+7n3UXky+ZOk6XlISJKRDZt7nT4ISKXiMiDhT5XRIaIyOz8UldYRKSXiCwTkcqA/amfhc+1Cv7OW52Ai8jvRWSK+9LmiMh4EdnNc8xx7sM+wrN9iLv9Sc/2bdztrxnbeovIqyKyQkS+EJF9jH0iIheKyPciskREHhGRzsb+q0Vkuit+X4jIMQV/EMXnJGAB0Fkpda5S6gql1CjIPBslIlVBJxey4KRFKfWGUqp/c6ahNWLLaM7vKSnRa0kopb5XSnVUSjU0d1rS0KoEXETOAa4DrgDWBnoBtwDDPYceCyx0/3uZD+wiIt09x3/lOe5h4H9Ad+BC4HER6enuOwY4GtgVWA9oD9xonLscOAjo4l77ehHZJe7vTEOYmKZkI+BzZSMFWRJgy2hyilB2y44gC7rFo5RqFX84BW0ZcHjEcRsBjcChQD2wtrFvCDAbuA04zd1W6W67CHjN3dYPqAE6Gee+AZzifn4c+H/Gvl2AVcAaAWl6Fjg3JM3DgY+AJcDXwDB3+7fAPsZxlwAPup97Awo4AfgeeB2YAJzuufbHwG/cz5sBE3Eqzi+BIwLScy9QB9S6z3wfz72/d++9zP3b2XP+MPfcOnf/x+729dxnsRCYAZwY8kwOAD4HlgI/AGM87/BPOB6Cb4ERnrT/zTzW2PctMAaYCiwGHgXaGft/5b6HX4C3ga2bO9+X0x8tu4z+P2AO8CMw0s3/m7r72gJXu+XiJzft7YEOwEr3t+qysp5blh4HHsQp86PcZ3eXe48fgL8Ble71jwPedO+xCPgG2N9I28bAJLesTARuwi2r7v6d3Pz8C059MCTuuZ5noN9NTtkDBrm/vco4/lDgo4Br3QvcCozDaUzt4z6bJ3AacN8AZxrHDwamuM/rJ+Bad3tv911URf0ePPWBu+1b3DrWvcc77nOa457bxjg2884L9deaLPCdgXbAUxHHHQNMUUo9AUwDRvgcc797HMB+wGc4BVOzBTBTKbXU2Paxux1A3D+M722Bvt4biUh7nMz9mV9iRWSwm57/B3QF9sDJVHHZE9jc/R0PAb8zrj0Ap7J8QUQ64GToh4C13ONuEZEtvBdUSh0H/Bv4h3LcU//1HLKH+7+ru/8dz/kTcCywR93927i7HsapANYDDgOuEJGhAb/rLuBkpVQnYEvgFWPfOkAPYH0c62msiMR1lR+B08DYGNgap3JERLYH7gZOxrHobgeeFZG2Ma9rablldBhOw+//3PP38RxyFU6DYltgU5x8eZFSajmwP/CjWw46KqX0bxiOI+JdccrafTiNmU2B7YB9cYRdsyNOo7sH8A/gLhHRv+8h4AN332UYXg0RWR94AadBsKb7O54wPBWB5wbgW/aUUu8DP7vPSHMU8EDItX4PXA50wmlgPIfzDtcHhgKjRWQ/99jrgeuVUp2BTYDHAq6Z9PeYNABnu+fu7Kbh1ATnJ6Y1CXh3YIFSqj7iuGNwXiLu/5wXqJR6G1jTrfSPwaksTDriWGgmi3EyGsB4YJTbB9cFOM/dvoZPem7DyZQvBqT3BOBupdREpVSjUuoHpdQXgb8ul0uUUsuVUitxKs5tRWQjd98I4EmlVA2OdfmtUuoepVS9UupDnNbuYQnulRoR2RDYDThPKbVKKfURcCeOm9OPOmCAiHRWSi1y02vyF6VUjVJqEk4FdUTuJXy5QSn1o1JqIU6Fsa27/UTgdqXUe0qpBqXUfTgW3k5xf6OlxZbRI4B7lFKfuqJ8id7hiuiJwNlKqYVug+IK4MiAa2neUUo9rZRqBDrjCP1otyzPA/7lucZ3Sqk7lNPXex+wLrC2iPTCaXzo8vA6Tr7WHAWMU0qNc+uXiTiW7AExzg0iqOzd594PEVmT1UZFEM8opd5yn8FWQE+l1KVKqVql1EzgDuMZ1AGbikgPpdQypdS73ovl8XsAUEp9oJR6160fv8VpxO8Z9/w0tCYB/xnoETFwalccy+oRd9NDwFYisq3P4Q8ApwN7kWsxLMMpVCadcdwy4FhqDwOv4bTaX3W3Zw1WEZF/4liPRyjXB+PDhjhu87TM0h/cyuMFVmf6I3Fa9+BY4juKyC/6D0fg18nj3klYD9AVnOY7nNa2H4fiuNG/E5FJIrKzsW+RW5Ga11kvZjrmGp9X4AgBOM/nXM/z2TDBdS0tt4yuh1HOcPKbpidOo+ADI99McLeHYV5vI6AamGNc43YcT5kmk2+VUivcjx3dtPmVB/Pah3vy9W44DYCoc/0IK3sPAgeJSEccUX9DKTUn5FreZ7CeJ51/whlHAY6h0w/4QkTeF5Ff+Vwvze/JICL9ROR5EZkrIktwGmI94p6fhtYk4O/g9GEdEnLMsTiuso9EZC7wnrvdb4TpAzjukXFGgdB8BvQRkU7Gtm3c7bgt2YuVUr2VUhu4239w/wAQkb/itKr3VUotCUnzLByXkB/LybYY/MTWW+k8DPzOFbz2rK64ZgGTlFJdjb+OSqk/hKQtiDgD27zH/IhjUZnPtBfGM8s6Wan3lVLDcSqxp8l2mXVzuwTM65ju1TTMAi73PJ81lFIP53nd1kRLLaNzcBpzml7G5wU4/dxbGPmmi1JKNwyDyoq5fRaOt6eHcY3OSqmc7q2AtPmVB/PaD3jydQel1JUxzvUjsOwppX7AyQO/xvGshbnPIfcZfONJZyel1AHutacrpX6HUx9chTNgsYPnelG/J6s+dQfOmQ2tW4EvgL6uq/5PZHfDFJxWI+BKqcU4g1huFpFDRGQNEakWkf1F5B8i0g6n1XcSjltU/50BjPBaBUqpb3DcIxf63OsrnMFMF4tIOxH5NU5/6RPguIdEZBN3qsoA4FrgUtcVhIhcgNO/839KqZ8jftpdwPEiMlREKkRkfRHZzN33EXCk+zsHEs/dPQ6nNXspTh90o7v9eaCfiBztXq9aRAaJyOYxrullPs7AnD4hx/wE9BaRCgCl1Cycfq6/u890a5xW9b+9J4pIGxEZISJdlFJ1OANXvNNE/uoetztO98B/UvwOkzuAU0RkR/e9dhCRAz0CYQmhBZfRx4DjRGSAiKwBXGykoxEn7/xLRNZyr72+rO67/QnoLo4bP+i5zQFeAq4Rkc5uPbCJiES6b5VS3+G4xHV52A1ndL1GW8X7iUil+6yGiMgGMc4NIqzs3Q/8EcclHjUWwmQysEREzhOR9m5atxSRQQAicpSI9HSf9y/uOVl1Qozf8xXQzi3X1cCfccZFaDrh1DXL3Do4jXGTDFUCo0+b8g/H7TsFpzU1F8dlvAuOu3gOUO05vh1OK/lX+IxCNI4bhTvCVa0e3fgaTuv6S7JHg/dzt63AcdGc47mWwmlRLzP+/hTym36NMzJ6Kc7o7P3c7X1wLJRl7u+8gdxR6FU+17vL3TfIs72/e535OO7OV4BtA9J0L+5obvf7JWSPbL3Uvc4vwE4+53fHGTm7CPjQ3bYBTkNiIU63wSkB926D44ZchFOg3gd2c/cNwXGDXui+1++Bo/3S7X3fhIzqd78Pc+/1i5uX/oMxytn+teoyer77W/xGobfDcbfOdPPrNLJHUN/tlrdfWD0K/UHP9bvgWICzcfry/wcc6e47DnjTJ/36/n1wRuAvw38U+o44I7MX4pTZF4Becc713HMIIWXPPWYN9xncF5FH7sWoX9xt6+F4EOfilP13WT1C/EFgnpvOz4BDjDxgjkKPehbH4eTBeTgD+r417rEHjgW+zL3GpeZzN595of7EvbDF0ioQkSE4BXKDZk6KxWLxQUS+xplB4p29YvHQalzoFovFYiltRORQHEv1lahjLdDqI/hYLBaLpfkRJ8ztABy3emPE4RawLnSLxWKxWMoR60K3WCwWi6UMKTsXeo8ePVTv3r2bOxkWS9H54IMPFiilogJ6tBhs2ba0FgpVtosm4CJyN860jnlKqS199gtOfNoDcKZqHKdyw13m0Lt3b6ZMmVLo5FosJYeIxI4C1RKwZdvSWihU2S6mC/1enHmxQeyPE9i/L05ghluLmBaLxWKxWFoURRNw5QSCXxhyyHDgfuXwLtBVRNYtVnosFovFYmlJNOcgtvXJDkY/m4CFKUTkJBGZIiJT5s+f3ySJs1gsFoullGlOAfcL8u47p00pNVYpNVApNbBnz1YzpsdisVgslkCaU8Bnk71CzwbkvyKUxcO8efPYcccdueeee5o7KRaLpYB8/fXX/P3vf8fG8mi9NKeAPwsc4672sxOwWIWv/WpJwR133MHkyZMZOXJkcyfFYrEUkOOPP54//elPTJs2rbmTYmkmiibgIvIwztqu/UVktoicICKniMgp7iHjcFbfmYGznN6pxUpLa6ZLl9WrENqWei5Lliyhvr6+uZNhsSSmQwdn2erp06c3c0oszUXR5oErZ/H0sP0KOK1Y97c4dOvWLfP5p59+Yp111mnG1JQWv/zyC926daNv37589dVXzZ0ciyURm2yyCQAzZsxo5pRYmgsbSrWFU1dXl/m8bNmyZkxJ6fHhh07cIGvBWMoRbYEvX768mVNiaS6sgLdwamtrM5/LyYX+ww8/8OyzzxY1zRUVNvtbyhfdOC+ncm0pLLYGa+GUq4D37t2b4cOH8/TTTxftHlbALeWMFXCLrcFaOOUq4Hpg2eTJk4t2DyvglnLGCrjF1mAtHLMPvBwLejFF1llPx2IpT3TjvBzLtaUwWAFv4ZSrBa4ppoBbC9xSzlgL3GJrsBaOFfDmubbFUmysBW6xNVgLxwp481zbYik2VsAttgZr4dg+8GDMPvByfDaW1o0VcIsV8BaOtcCDMZ9HQ0ND0e5jsRQDK+AWK+AtnHIX8MrKyqJdu7GxMfPZxkMvLCLSTkQmi8jHIvKZiPy1udPU0rACbmnVAn7aaacxevTo5k5GUSl3AS+mBW4FvKjUAHsrpbYBtgWGuasOWgqEHYVuabUCvmrVKm655Rauv/765k5KUbECHowV8OKhHHTw/Wr3r/wyYAljLXBLqxXwmpqa5k5Ck2AHsQVjCrjtAy88IlIpIh8B84CJSqn3mjlJLQor4JZWK+DlbpnGpdx/p7XAyxelVINSaltgA2CwiGzpPUZEThKRKSIyZf78+U2exnLGCril1Qr4qlWrMp/NirylYQU8GCvgTYNS6hfgNWCYz76xSqmBSqmBPXv2bOqklTVWwC2tVsBNF3pLFvCFCxdmPpdjQbcCXp6ISE8R6ep+bg/sA3zRrIlqQSilWLRoUeazpXXSKgTcL4O3BgtcKcW0adOyvpcbxRRws9/bCnjBWRd4VUSmAu/j9IE/38xpajHMnz+fX375BSi/ci0iHH744c2djBZBVXMnoNg0NDSwww470L9/fx599NHM9tZggc+ZM4elS5dmvpdbQYfiCfg777zDfvvtl/luBbywKKWmAts1dzpaKuXeMH/88cebOwktgqJa4CIyTES+FJEZInK+z/4uIvKcEezh+EKn4YsvvuDjjz/msccey9reWgTcpBwLerEE/He/+13WdyvglnLCLNvlWK4thaFoAi4ilcDNwP7AAOB3IjLAc9hpwOdusIchwDUi0qaQ6aiq8ncytAYXuml9Q3kW9GIJ+LJly7K+xxHwRYsWMX369KKkx2JJQrl71iyFoZgW+GBghlJqplKqFngEGO45RgGdxFlVoiOwECioKVRdXe273bTAW+oc4CVLlmR9L8eCXiwBX7lyZdb3OHlg7bXXpl+/fnz//fdFSZPFEhddtisrK8uyXFsKQzEFfH1glvF9trvN5CZgc+BH4BPgLKVUjjmcz1xRM5a2aWm3Bhe6tcCDMT0wEM8C10FxXn/9dQYPHsyNN95YlLRZLFFoAe/UqVNZlmtLYSimgIvPNm9O2w/4CFgPJ17yTSLSOeekPOaKmpnbnBPdGlzo1gIPxvvOk/SB33333bz//vuceeaZhU6WxRKLpUuX0rFjR2uBt3KKKeCzgQ2N7xvgWNomxwNPunGTZwDfAJsVMhFmX6cp4C3ZAv/555+pr6+3FngCkgh40jTNmzevLJ+9pXRZsmQJnTt3RkRs3mrFFLN2fB/oKyIbuwPTjgSe9RzzPTAUQETWBvoDMwuZiK222irz2RTtlmqBf/PNN/To0YOdd965bC1wM52lKOAdOnSIfeyTTz7J2muvzVlnnZUmWRZLhrfeeotOnTqxcOFCli5dSqdOnayAt3KKVjsqpeqB04EXgWnAY0qpz0TkFBE5xT3sMmAXEfkEeBk4Tym1oFhpSmuBjx49mr/85S/FSlZBGT9+PABTpkwpWwvcHFBWjDT7XTOJgK+xxhqxj73qqqsAbH+5JW8uv/xyli1bxjvvvFO2Fng5pbUcKGogF6XUOGCcZ9ttxucfgX2LmQaTmpoaJk2aRIcOHbJW6Xrsscc49NBD2XDDDXPOWbx4cWbJ0csuu6ypkpoas4DoSE3efUuWLOH5559n+PDhiazJpqLYAu63El0SAW/fvn3sY22FZSkUOi9VVFSwePFiunTpkiPg77zzDj///DO/+tWvmiuZobTUGT/NRasIpaqZP38+Q4YMYdCgQVkZ6eyzz2aTTTbxPafcAnyY3gTviH1d0E844QRGjBjBGWec0aRpi0uxBdzrmYDiWeAWS6HQZVtEmD9/Pj169MgR8F122YWDDjqouZIYiRXwwtKqBHzWrNWz2rxuc9MiNyk3C8pMr3ant23bNmufDmP40EMPNXHq4lFsAfeODYDg9++XJjO2QLk18Czliy4Lxx13HDNmzKBnz55l50K35aWwtFgBr6mp4aSTTsraplfvgfgD18qpcIB/evXUO+++Uh281xwWeJSAm/vNz96AMF6cGEUWS/7osvDTTz8B+Frg3mNLDWuBF5YWK+Bvv/02d9xxR9a2jz/+OPM5jngppXjttdeyvpc6VsCj+e6773K2mQMc/TD3m59XrFgRel455BlLeeDNS2ECHtWwbC6sBV5YWqyA+2Xgm2++OfM5TkvwwQcf5Igjjsh8L1XBM/FLY9euXYHcCqBUW8PFFvArr7wyZ1sSCzyJgFsshcJbtsME3PQ2lhKlWueUKy1WwKMsqjgtwaeeeirrezkIuF9h1nOpy8UaLLaAm+F1NUkscFPMly9fnvj+Dz30EBtttBGfffZZ4nMtrRdvWejYsWOggHtnoJQK1gIvLC1WwJNYVEF4M1u5CrjuhzWnoZQyxRZwP+/MFVdcEXqvIAs8Svj9GDFiBN9//z3HH1/w1XMtLRhv/mzXrl2WgJvlxlrgrYPSrsnzIIlFFURLFfBSt8SbQ8Bnz57N66+/HnhOkGhHpS9s/4IFRYtZZGmBRAm4GTbau1hPqdBUFvibb76JiDB16tQmuV9zYQU8hHIUcL80Bgl40FKrzU1zCDjkzps3CRqFnk/6Fi5cmPpcS+vDW7bDBLxUG+lNZYHr7s+JEyc2yf2ai1Yr4HFc6N7MVg7unzgWuKaqqqiB+FLTXAIe1qAJcqHn06hbvHhx6nMtrY8kLvRSNTaaygLX3YTlUGfngxXwEIIscKUUd911F19++WX6BBaJJAJeqnOUm0vA27RpE3hOWhe6H3pWgMWShCgBN0W7VAW8qQRVD1Qt1edQKErTBCsAUQKdjwv90UcfZdSoUUDpuaqSCHipEqdxlQ/NbYGvueaaJTtK2FK6WAs8PtoCL9XnUCharQUeR8C9rUWdGf73v/+lT1iRaQkWuOlaLnSjo76+nrq6Ot/fHtalEDSNLE36NthgAwAOPPDAxOdaWi/evNa+fXtrgQdgXehljFKKCy64IPSYNC70I444ghUrVpR0pogaxGZWAqVqkZvWaaHTqK1vvxXF4k4jSyvg06dP54svvsiMdj/xxBNjn2uxRA1iswK+Gu1CL+W6uhC0SBf6hx9+GHlMmkFsr776KjfccENJByOIssDNgt3aBdwbRS2ssBfChX7IIYdknesXUMZiCcJbFtq2bVt2At5UdaftAy9j4lT6aSxwcKYalXKrLomAl2rmbi4LPKxyMd952kFs33//fdb83FIPqGMpLbx5raKiouz6wJvahV6qz6FQtMgaJM56zWkGseltLcUCL9XMbUaRakoB33///QOfifnOzcZf1DM00+/td7cWuCUJQWW7HC3wYud92wfewkkziE1vK+VMEdUHXg6FvJgWuF4Tfu211/bd/+2333LKKafwj3/8I2t7ISxwEckScSvgliQElW0/AS/V7jFdjortfWotfeBFfYoiMkxEvhSRGSJyfsAxQ0TkIxH5TEQmFeK+cYQprQu9vr6+pDOFt+CeeOKJWQJeDm62JUuWZD4XuiL64osvANh8881997/44ovcfvvtnHfeeVmeADMvePvAP/3001TTwqwL3ZIEa4HHp7X0gRetBhGRSuBmYH9gAPA7ERngOaYrcAtwsFJqC+DwQtw7jsCmFfCGhoaycaHvtttu3HTTTWU3iM3sJy50Gr/66isA+vfv77vfnCNufg6ywKdOncpWW21Fnz59Iu9tXeiWfDDLgs6PUX3gtbW1PPfcc02YynCaygK3LvT8GQzMUErNVErVAo8Awz3H/B54Uin1PYBSal4hbhznpaXtAy91F7pZyHfddVfatGkTKOB628qVKxk8eDCXXXZZk6Y1CFM4kwj4/Pnz2Xrrrbn11lsDj1m6dCngBFPxI2i6WFAf+KRJjtMoaPUnbx+4KeLWArckwcxLOu9EWeAXXXQRBx98MK+++moTpjSYprDAX3nlFa666irAWuD5sD4wy/g+291m0g/oJiKvicgHInKM34VE5CQRmSIiU8IWnNAU0wIv9UFsZobVYhEm4I2NjTzxxBO8//77XHTRRU2X0BDCLHClFNdddx3vv/9+znnXXHMNn3zyCaeeemrgtXXDrW3btqH7ITuPmHkqSNijsBa4JR+S9IHrzzNmzABKZ+W7prDAhw4dyrx5ji3Y0gU81jQyEekJnAj0Ns9RSo0MO81nm9ecqgJ2AIYC7YF3RORdpdRXWScpNRYYCzBw4MBIkyzOS2upg9iCWul6n190uVJrkIQJ+AsvvMDZZ5/tuy9Oo6ympgZILuBBzyhpXmgtFriIbAjcD6wDNAJjlVLXN2+qypuW0AeuPWB+s0CKQSnX1YUg7jzwZ4A3gP8CcZ/IbGBD4/sGwI8+xyxQSi0HlovI68A2wFfkQbH7wEs5U0QJuJ8FXmp94WECPnfu3MDz4giiFvCghUuSCnhU4ycsXG0Lt8DrgXOVUh+KSCfgAxGZqJT6vLkTVq6kEXC9r1TCJv/8888AdO/evUnuV8p1dSGIawKsoZQ6Tyn1mFLqCf0Xcc77QF8R2VhE2gBHAs96jnkG2F1EqkRkDWBHYFqiX+BDmj5wv4Us/K5TW1ubWWu2FEkj4MXgzjvv5KCDDsoIZhLCBLxTp06Zz+PHj8/aZwr4ySefnDMVDNJb4EF5KkrAW+s8cKXUHKXUh+7npTjl2tuFZklAlICXwwwTLeBdunQpyvWbqn4rFeIK+PMickCSCyul6oHTgRdxCu9jSqnPROQUETnFPWYaMAGYCkwG7lRKfZrkPn6kmUbWsWPHnGP8Kud33nkn9LpPPvkk06bl3QZJjfnbm1PATzzxRJ5//nkee+yxxOeGCXjnzp0znw844AAaGhp48MEHmTVrVpaAjx07NmcqGKTvAw8S6iQrp3kFvJxd6G6jPO6xvYHtgPd89iUa3xKHxsZGrr/++oy7Noi5c+fSqVOnWKGXS4FSmQe+atWq1JatFvBieQS80zlbtYCLyFIRWQKchSPiK0VkibE9FKXUOKVUP6XUJkqpy91ttymlbjOO+adSaoBSakul1HV5/h4gnQvd70X7Vc5hfefvvPMOhx56KAMGDAg8xo+ampqCFbg0feDFJM31TQH34vWU3H777Rx99NFss802voL45ptvZn03LfBtttkm5/igdb+D8lSSiqxcLXB3kGlv4/tgHA9bnHM7Ak8Ao5VSOXWGUmqsUmqgUmpgz549C5LeF154gdGjR/PHP/4x9LiXXnqJZcuWcd111xXkvsWmVFzo7du3Z8SIEanO1QJerAaGvr4mbv0zceJEfvrpp2IkqaiECrhSqpNSqrP7v0Ip1d743jns3OYkjQvd70X7bfMugGGSpiW/aNEiOnXqxPDh3hl26fBz2TZnH3icsLZewixwb/rNaVx+Au5d+9sU8AkTJnDDDTewyy67ZPbbQWy+/B2YICKnisjlwG3A8VEniUg1jnj/Wyn1ZJHTmEF7XZYvXx56nM5L5fIe8hnEVqgyrvP7o48+mur8hQsXFjQ9XrwCHqd8NjY2su+++7L33nsXJU3FJFbOFZGX42wrFa688srIY7wVctyWWph1uGzZsljXMPnvf/9LXV1dwYItmBk2joArzxKjhU5Du3btEp8fJuDeAmmKrF9F7H3P5iC2ddZZhzPOOCOr+6TQfeAmCxYsyPpt5WKBK6VeBE4BrgdGAgfo/u0gxMl0dwHTlFLXFj+Vq9HPOCrv6bJQKgO8osinD7xQg7kWL16c1/m6jmwqAU8yM2XatGm89dZb9OvXL1Vd3hxEudDbiUh3oIeIdBORNd2/3sB6TZLChCileOWVVxKfVwhXclSL349CVx5+BTVJH3ghCpYZCjXNFLW4FviGG26Ydf04Au7XB27ewxx0V4hR6GFemXKx/ETkL8CNwB7AJcBrInJgxGm7AkcDe7uhkj9KOo4mLTr/BI1z0Oj3br6HhQsXct999xUkHXPnzuW4444L9dolIR8XepKxGmGkCRlsoj1ixRLwqVOnZn2PM4hW55eqqiouuOACpk+fzgcffFCU9BWaqGlkJwOjccTarImW4IRJLTnStjS956XJYGlabYWuxKMscL8+cHNbQ0MDVVXpV5lVSmUV8jjz7b3nh0ViM9Pat2/f1BZ4kIAXchrZiy++GLgPyscCB3oAg5VSK3FiNUwA7gReCDpBKfUm/rEgio5+x2EW+Ny5c3niCWcijZlvfv/73/Piiy+y8847069fv7zSccEFF3DfffcxZMgQjjvuuLyuBekCuWiSlsMgdPdEGs8arO6CLNbYmz/96U9Z35MIeGVlJR06dADSGWPNQVQf+PVKqY2BMUqpjY2/bZRSNzVRGhNRnzKjejNUWDhOjTcYQb5ul6SZevTo0QwYMCAwZrcmygIPEq2kjBkzhs0335wffvghsy3pNLL6+vrA0bSHHXZY1liBV155hQkTJmS++/32OAJu3s/vWaxatSowzGxYg3HixImB+6B8LHCl1FkAItLf/f6dUur/mjdVwcRxoe+1116ZaYjme/j++++BdJ6jIJKWa6UUW265JQ8++GDOdi9NZYHPmDGDZcuWZQRcC11Sim2BA6y//urZiq1awA1+EJHfeP6GishaRU1dUhYtonqnnTg0xaneQnbaaadFnuMNBpLmpZvu4qSutuuvv55p06ZlxTnOV8Dzaalfc801fPnllzz88MOxr/fKK6/wt7/9LVOgvcebBV1bTEH43asQFnhYHGm9OErc9JiUiwUuIgcBH+FM+UREthURb0yHkiGOgOtV6SBbwHV+yccL5b1uUgGvra3ls88+45hjsiNL59MHnq+A9+3blwMOOCAj4GkGp8LqOq4YAq6UorKykt/85jeZbWFjlrzHJBXw//3vf9x4440pU1sY4gr4CTgusxHu3x3AOcBbInJ0kdKWnPvuo/KTT3gcuJRk/rs0Lh3vOd4Rz3EwRTtOpvnll18yVoLGrKjSCPi3336b+V6IvjLzGlEiNnToUP7yl7/w0ksvAfl1ZfilPagP3Gx8RQl4UNS2NOkxKRcBx+n3Hgz8AqCU+gjYuPmSE07cQWwaU8D1OyvEu0kq4EuWLKGhoSFTD3g9fEkscN1d9swzzwD5Ncz19d94442MlzFqfEEQxbTAa2pqaGhoyIry9tZbb/Huu++GnpdWwLfffnvOPPPMPFKcP3EFvBHYXCl1qFLqUJzlQWtwIqedV6zEJeass1h22WU0AH8BngY6hZ+RRdJMVYiRnaaAx3HBr7nmmmy00UaYQS+CBDxOH/jKlSuzWpGF6CszhSuuC11PL/EKbpJ34pd28/cqpVJZ4Gkrq6jfXi4udKBeKeUdflxa8XcNdIX8888/c++990Yebw4k1fmvEH20SZa0XLVqFV26dOGcc87J1ANeAU/aB/70009nvtfV1VFXV8dDDz2UuJ7zGwuS5vmY41uKIeBBKw3uvPPOoefpctqSXei9lVLmLPd5QD+l1EKgMMMbC4EIy0aNYhiwEDgYeBfYNObpjY2NfPPNN+ywww6xj8++ffIxO0ktcJ3xP/98dUhpU2D8+u7CLHBvtKqVK1ey77775rW0aJQFfvnll7PPPvtkHacrq2Ja4PX19SilqKqqyhLPoD7w22+/nX322Sd1YW4pLnTgUxH5PVApIn1F5Ebg7eZOVE1NDRdddFGO50sL+N///neOP/74HI+Vl5tvvplzzjkHWJ1fCtE41+UuTteYPuaBBx4omIB7PQtXXHEFI0aM4PHHH0/0Owol4GGzS8CZWy4iWWNokqCfmxmtMUm6qqqqWqyAvyEiz4vIsSJyLE4M89dFpAOuW61UqK+v57/AIOBTHFfBZGDfGOfOmjWLE044IXZAlrBMHCQ8r7zySlZfblILXBM0UttPxJJMI5swYQITJ07Ma2nRqD71P//5z7z88suZICyw2otQaAvcK+CQ279p3uOTTz7JfP7www95+eWXufDCC2OnISo9JmVkgZ8BbIHjdXsYZxbK6OZMEMB7773HZZddxuuvv561PU6URS//+te/gGABnz9/PmPGjEm1fGyccm3OSQ9yoQd1jwX1gXfr1i3zvba2ljlz5gC5c6WjKJSAh80uATKD9tJO4dLGiDcstt86FyamCz1Jo6sUiFuDnAbcC2yLE9P4fuA0pdRypdRexUlaOnQGmwnsDDwFdAPGAedGnDtkyBC+/vrr2PcKC0sa1IIfOnQohx12WGaqVVIL3O9Y815RFri3cvMeH2fQRxRxXeim619/LpYF3tjYmHHTey3fqHukrVBaSh+4UmqFUupCpdQgN+zphUqp/DNKnujnGyWQSZ5zkICfdtppXHPNNTkL6ISh834cAde/RUQCLfAoAfda4Obvrqury9QDScXXzMf6c9xuAfO4KAHv2rUrAJMnT87Zt2zZMl577bXQ+wUJeFQXmCngaRooxRxRH0UsAVcOjyulzlZKjXY/l2QfmClIy4BDcUbgVAJXAw8AQUNbvvvuu0TxcL0v2by3X+XtFyTEFPAkrXvzPDMdURa4GTbU7/hiD2ILitKmW8lBFnic7BYm4Pvvvz8bbLABkNvVUais7L1OuVvgIvKciDwb9Nfc6dN5STdm33vvPd/QwEneb5CAL1iwAEg2/1mX0aQCntYCN0etNzY25nQNmfVAEtJa4O3bt+fYY4/NfDfrLL806BXKLr/88pz9xx57LHvttRc//uhdkXo1+jmbKxZCMgHXzziJgJvHLliwIGMoNAVxQ6n+RkSmi8jiJIuZNAc5AgD8Ffg1jqAfhbOw+Qbufu+ydknmLXvDkEZZwroSMI81Ld60Aj5q1Ciuv/76wGuEFVzv8YWY/xom4GaUNr8WeZAFHqfSCXOh61HukCuchQoq4b1OVF4qAwv8auAa4BtgJc7skztwilLeqwbmi363y5cvZ/z48ey0007cfvvtkeF341zTe4627pLMf9ZCHMcd62eBA1x44YWZOiKqD9zEG6DJtMCLJeBKKfr27csDDzyQ2f/vf/87sz+uBW7eR6MjrIU1hnQXgXcQW9QsknwtcPM59+zZs8nWOof4LvR/AAcrpbqoEl/MJEiAnsZxqc8EBgJTcGI9vvxyfiHdzRcdZYGbAq6P9XNPxbmXmZE///xzRo8eHXiNsIJbKAs8aCS3V1TNKG3mADr924Is8DRLxPpdD3IFvFAWuC7I06dP56233ip7C1wpNUkpNQnYTin1W6XUc+7f74HdmjNtK1eu5MADnWiuy5Yt4+OPPwbg22+/zRHfQgi4Lm9h15oyZYpvXIc4jWKdV0wBf++997jiiiu46aabAu8dJuBNbYGvWLGCGTNmMGrUKN8ptfo61dXVoRa4Pvb7779n7NixwOrGbtjzf/vtt+natWtOBL05c+aE9vvna4EXKs58GuLWID8pZ+3ukiessHyKM7jtv8DawCtAT2OqRRqSCLg59ctPwKMKunmsd53rsGs0hYCbmdisxLxWaJSABxWGOJWOn8Ub9jw0gwcPjrx2HHTaBw4cyG677cbbb4cP1C4DC1zTU0T66C8isjFQmLU/U2LGvF6+fHmmcdylS5ecdx63gp0xY0akgAc1ymbOnMmgQYM4++yzM9t0fowj4KYFbnqpzH1JBdw8vqampqAC7vebtOu4S5cuGe+DOWBUnxMk4OaxdXV1DB06lJNPPpmlS5dmGru1tbWB67xPmzYtcFnhkSNHBv4+cxpZGgs87kqWxSCugE8RkUdF5HdmNLaipiwlUYVlITAM+BfQBuj1t79xMxA+TjGYILd5lAtd7zcrhCQCHjQ1xjzGbx64l0INYjPva7oMkwp4Pha4Xyvbr9LzFvArrrgi8tpx0PfSFXDWnHygN3AQcCHwKFB9btSwypLhbJwFTF4TkdeAVymBUeiaBQsWcM011wCOeHjfedxuobvuuivzOUjAgxq43333HZA9vVMfG6dRrOuBioqKnH5eXX7DBNyv3988fsWKFakF3K+O8mvImALuNxAvSMCXLl1K27ZteeGF1aH1a2trmTVrFuD8bl1mX3/9dTp37pwJUGOyYsWKnAFsZtomTJjA4MGD+d///uf7+0SkYBb4vHnzYp+fD3HjBXYGVpA9G0sBTbbGb1ziFNYGnDByHwN3V1dzal0dWwCHA/NDz8xFv+j77ruPN954I7Pdr9CagqVfehIXurlfVxhe8rXA00ST814naIQ8ZPeBm90AUQIep9IxG0iaOC70jh07ss466zB37tzIe4Txz3/+k3XXXZcuwFbA1sb/LXEKkYkaNy6v+zUVSqkJItIX2Mzd9IVSKlmQ+wJjelHMyrJdu3apLXCz8vcLeATBFrj2iJn9uPrYpBa4dx50WES3IAH3utDzEXA/C9zP26WfgWmBxxHwadOmUVtbm9WduWDBgszzq6ury3irbrnlFgAuueSSrHURwHlH3oF/moqKCsaNG8f777/Pq6++ynbbbZfz+0QklQX+7LPPctRRR2Vt+/nnn1lnnXViXyMtsQRcKXV8sRNSKIIKS69evXKs1vuAi+67j3a//z17Au8Dh+AEfY6LLuje1Yb8xNhvwFoSC9w81jv3Ney+SSzwQgi4aYF7K0JT3M1ugKhBbHEKVJCAe3+3X8CdNP1YVUB/DLG+9FK2xlk424+5wFT37xPgvojY7iXGDjhOhCpgG1c47m+OhMyYMYMdd9wx891sGNfV1aXuAzcHOwWdE9TI1p4lU8D1sUkEfM6cOcyePTtrXxwL3C++gz5+jTXWYMWKFZmGQD4Cbv4mpVRWWfJzoccRcL+upAEDBmTdU6ddx7D3my0UJuDmHG9v48P8fWks8KOPPpqjjjqKww8/HIAjjzySLbbYIvb5+RBLwEWkH3ArsLZSaksR2RpnUNvfIs4bBlyPM4vrTqXUlQHHDcIJmvZbpVSyMEEekvbhLttiC3bDcSXsBLwFjMRxccYh6EX7FVo/AU/bBx5EvqPQ0wq42bgIs8BNq1u7yKAwLvRly5ZRXV2d80y93QJ+fWRR1+8AbANsjxMIYTucIEF+E1RW4oy3+ITVYv0Jud6d+wwroJQRkQeATXDatvqFKpx4EE2Ody52oQTc7N7xnqPLUJAFrs/1Bk/RaYpCH6uU4s0338zaFya8cSzwTp06FdwC19cxBTyJBW6Wt6jBnKYFrvErr/kKeENDQ5YFXlNTw0svvcRBBx0Umj6NjnBXiIVw4hL3TncA/w+4HUApNVVEHgICBVxEKnHWDP8/YDbwvog8q5T63Oe4q4DwxZNjEiSCQWFO6+vrmQMMwWmhHA88glNZ/xknCHwY3sEimrgWuHncKaecwvjx43nqqad80xsnTnm+o9DTRiAKssC9Bc0UcNMjEjSILYkLHaBHjx6Z6STgPGdvgJwoAa/Esah3BXbBEe2++A8YmUG2UE8FviY635QZA4EBpRL7wZtHzW6Zurq61FMjzXwTJOBRFrgZxjONC92PoIFq5r4wC7xjx46Rc7Djps38LWbfNKx+Bp06dcqUOXPVsiQWuPf+cWaOrFixInCVNHOAWpCAm42/xsZGxowZw0033cS7776b5fGJoikFPO4gtjWUUt7wOFG5cjAwQyk1UylVi6OLw32OOwN4Aie+el5MnTqVUaNG+e4LauXpF1aDY3mfifPDLgCeJbff0u/8sCkTJlEudIBnnnkmZxRq2DW9mAWsuQaxeQu5yZVXrnbCFNoCh2wLSF/PW+HnNI4aGtiutpa/ABNxYgN/CNwI/A7HTV4PTK2s5C7gdBxx74Qj7L/BCRb0BDCdFife4DgUit+hF5MwAa+trU1tgZt96UkFXAuWWcbMYE2jRo0KHLei0x1ERUVFYP73E3ARyRJwbYEXwoUeVrbNgWt+Aq6P9wp4Ggvc7zeYFvigQYPo1atXZl9lZWXmGQcJeH19fZYF/uWXXwIE1sdBNOXskrhNhQUisgnuCkQichgwJ/wU1gdmGd9n46xelkFE1seJsbI3zgwvX0TkJOAkIOulePn+++99R2fvuOOOWVO4TLyZ8EbgM+Ax4EDgA+AI4H85Zzo0Njb6Wq1pXOiaH374ISfATNCxcY4JE3Az9jcUpg/cxKxYPvnkk6z3YFo8hQjkArkLGfgJeEVFBfz8Mzz3HEyYABMn8rLHSp+B053yFs7YiM+A7j175j3QrUzpAXwuIpNx2roAKKUObo7EeN+n14UeNYgtKC/5BVrSRLnQddn2C2I0efJkJk+ezPTp07Pi/5tEWeBB+/0EvKqqisWLF2dGanfq1Imffvqp4C70sIWR9OcgC9x8joWwwLX4agHX4Vj1b66srMz8jjgWeENDQ+Zz0ngNpehCPw0YC2wmIj/gRGYaEXGOn8/am3OuA85TSjWEreSllBrr3p+BAwcG5j5v0PpNNtmEf/3rX+y+++6BK4z5Bbp/Bac18SRO8Pd3cOKo3+xzfmNjY0EtcHAE3BzEoYnjQk/aB64juGkK4UI38UaDMjGfW6EscK+ANzQ0ZH5TV5xBisfNnw/rrAPGvWaKMF4pXsZZZssvoG7UoggtmEuaOwEm3vKWtA88aB7x8uXL6dChA8uXL09sges0+cWCqKqqcrrq5gTbPGECXlFREdo16O0Dr6qq4p577sl81y70Qgt4WLAb7V3r2bNnzrleCzxqFUc/AffWB/r5h/WBxxFw0wLXvy+pIJecgCulZgL7uKuPVSillorIaBwBDmI2sKHxfQPAG8h2IPCI+wJ7AAeISL1S6ulYqffgfXAVFRWZAQhBmWT77bf33f4NTuS2a4E/ADcBewEnAObCyKZAmKTpA9cELadXDAvci7f/Oqr1edVVV/Hvf/87J/6wpqGhgXnz5nHEEUew9957Z+3za80HWUvXXXddZNohNw6y1NTQedw4nscZjNEGYNUqqKyE//s/OPhgGDaMLbfeOtL7UEgBP/PMMwt2rWLjRmMrGbzlzWv1Rs0DD4pVvXLlStq2bRsq4FEWuHkvbx94mPcmrHGexgI3STOITSnFyJEjWW+99QJnypjP6Oeff+b222/PbNeeUNO6DhLwqMa532/3/gadJ8KmkenreLsJTRe62QeuPyd1iZecgGuUUqaf8RzCBfx9oK8btekH4Ejg957rbaw/i8i9wPNpxRtyK9ioVt61114b2vpbBZyKE7XiTpyFUbYHfovz46A4LvSgCiapBR6nD9yLOcjMO0jFj/PPPz90f2NjIxdffDGTJk0KdB/q4yDYAveuT77ddtvlBGSA1Rb41jiNreMnTKDTc8+xKc7w6YnAqz16cMW0adCjR879wyikgJsRu0oVEVlKrtcMHO+aao5wyvPmzcuyLr3EcaGb8blNVq5cGbgqXj4WuCbI8g+7LsSzwM386y3nnTp1yvJMxKkHVq5cyb333huaTvOeV199ddZ23d/vF6kyjYB7rWbvb9DPP2gQW1VVVWILXH+O8hD43aupyCcYc+ivUkrV44z3eRGYBjymlPpMRE4RkaCpsnnhfXDegR1e4ras/gM8f+mlTAE2xnGxXozT+snXAvcT5aRzUKOOSSvghQgH2NDQkDOv1Q/9bOL2V/q9zy7A/t9+y/s4QXrOBDrV1bGsf39OwxmFtS/wWJcuWeINTS/gzRk/OS56zQOfv2ZbC0HHBQ8ijgv9z3/+s++52gL3njNr1izfwEsmXgtcKZVoYaBCWuDeBT+0VaqvkbQeMPFa4B9++CFnnnlm1vz3hoaGzFiXQgl4bW1t1kqKQQKexoWup795R6Gb/eFJaMo1DvK5U2QuUEqNU0r1U0ptopS63N12m1LqNp9jj8t3Dri3go0r4JdccknktWXTTdkVx6VehdMp+C5Q+cUXsQXcdNGGWeBBGSapBa4zeRIBD+vjSkNDQ0Osdc5HjBhBbW1toAXuxXyfe+JMSJ4DHP7qqwwEFuEMSDxlxx356M47uQXQQ5TSzAOHpm1ZW/zp4Wl4eYljgQfhJ+ALFiygV69emTwcVAZ12U4SPtWb7iCS9oF70fVikgGhQWXWG/RkyJAh3HjjjVnLrDY2NmaeUyEtcL0csN85WpSDlg41XeimgD/zzDM8//zzmfv4WeBxGmKffrp6cb6mnG0ZWiNFuND8mzrNiLeCjXKhawEPGuCmB5+AkwFqcQazPQvcixOaqnH4cH45/HCqyJ5XF9eFXmoWuHnvqIovToOisbExloAD/Pjjj7EFfK26Oi7Amfq3qbH9u0035fwZM3gKZ7j0kPbtcwp7WgEvlAX+29/+lj59+kQfaMkhaqnGOH3gPXv29J2VsmrVqhwXujemdVwLPE7ZiHNdSG6Be9H1YhIBD7LAzd/V2NiY6RYw67aGhoaCC/iyZcuy3OPm+d27d8+MZQryqgZZ4K+88kpWunUa33jjjcyUVL+6XAdt0Wy11Vahv6FYhFrgES60kjNHvBXsmDFjMp/DBDzI5WFmBvOYScC2FRWMBSpqa9nq3//mf8DuxrlRLvTnnnuOhoYG3+OCWnxRlYI3/nGaPvCwaSJe4ghzQ0NDwZbmq8aZc/gc8NzUqVyBI96zgEtxujeeHz2aR1g918mvQvfLC3GeTSEEvGPHjjzyyCOJ+9UsDlFekDAL/IcffuCFF16gffv2OWtGa7wWuNfdGmWBpxXwsLXj8xXwNBa4KeCmdW2m0yxX3il4hRTwmpoa5s6dy7rrrpvZZp6/cOFC/vvf/wLBdfn999+faWzU1NRw2WWX8dxzz+W43PXvW7BgAdOnT89Kt8kFF1wQmN6mtMBLe0HihJiFe//99+e0004LPT5KwM3reY+pbduWk4Hv77iDJWuvzZbA6zjx1dcjWsDvu+8+br755kQWeFSQlbBCDoW3wOMIeGNjY6Bbyw9fC/zTT7kGZyTkk8CvgEYRHgf2xwnQfTHwLbkiu2LFilgWeBwKIeClvgZ4qRPlhZo6dSozZszI2qbz8bbbbsuvfvUrampqskTJxGuBh8XNNvFa4Eld6N6ybaYv6SA2L14Bj9OgNsu2mTazvvKOQgcnnnyhXehz5syhvr6e9ddfP7NNn+99zmHjmt5/3xl6XFNTw0UXXcTBBx+cI+B+dWxUXe6lqZYShRYm4GYFu/nmm2dZOX4Vp37ZQdaQeT3v+XrhgyU77cSTl1zCRTij1o/BCQKy7cMPg2fNbm8hfOqppxL1gUcJeFArPun0kah0aILcbCZJLHBlLIG4JnAycPajj8JWW3EOzgLUn+CsY3nw9ttzODCB7MhnXgut1AS8jNYAL0mihPHjjz/O2Wb2Z0N4zGyvBe6dWhi3D1wfFzQq2ou3bJsro8WxwJP0gcchqGybdYxZrkwBNy3wJ598MuOmTivg3377LUCWgOtzvCP745Rt85w4kSj9Gk9hU06tBZ4Ss/L2Wn1pXOhhFri+fn19PbUVFVyGs2Tkf3AGB2w1fjz06QN//jO4K+fEXTgkrYB//fXXvtvTBnAohAWeyIW+ZAl93niDF3BW7roN6P3TT9C5M7fiBA3YGmd1nF8CxNQrkH4CntZ9XYhBbNYCz4+kli3A2LFjs74vW7YsUMC9FrhXyKKmkT311FNcf/31mePSCrgZz6CioiIT1tOL1wLffffdc47RAq6PSdMHrstVlAtdL1RiPic9ZTJIwHfeeefQtOgpaX4u9CgB94tPYcbZ8NZxhRDwpqRF1SamhVQIATev5xUGXQGYI6e/xgm7OgiY3a8f/PILXH45bLQRnHQS/TyFImheaFoB9/bL+PWBB7kO/QgS3gULFjBz5sxYFnjQYi+ansCxOK7x3oMGsdd993EAzijJ8cB9++zDypkzORUnrK0mSIStBd6ySTI1S+NderexsTG2Be5tpEa50AFGjx5dUAsc4JFHHvE9zyvg3mWNIZkLfdy4cSxatCjnd+t6wztYTV9bW+DV1dVZFrh53yABj0IvHWrOQNDvxxun3Fu2/TwyfrOB/PYFHRN0nMZa4CkxK29zbd8golzoQYPYYHXB9Jt3OgV44tRT4c03YfhwqK2FO+7g6VmzmIoTAac3sHjxYvwIEryoVt+LL2Yv6KYzvCnghRhQ1rNnTzbZZJOsxUjCrpEVJQpnlZs/40zDm4szov/XAPX1zN50U04G1gUOACb368deBx6Yc93mEHBrgTcv9fX1nH766QW5Vth8YQi2wINc6F5h19+D7uMlTMDHjBnDM888w6abOvMtzHzoFXC/cuEdhR7EggULOPDAAzn88MNzBFw3bBYsWJB5Ro2NjRlh10JaXV1NTU1N1r1MARcRqqqqQr0Bt92WPctYzwQwFyrS65FHCfjGG29MGN5ux7gWeNiztAKekkJb4GF96FrA/eYug1uAd90Vnn4apk2DM8/k54oKtgKuwQnV+tKcOVyJMxDLXEMrrQWu2W+//TjttNM4+uijs37HX/7yl0SjY6Nc6EFuPZOOdXXssHgxfwZewlnp6z3gMpyVbWpxLO3Tga9fe43/nHoqY4ElbgPspZde4r333su5bpxGFzjPzFu5pnWhpxXfE044IfO5NVngInK3iMwTkU+jj47mlVdeSVQ5msFF9AAmTZCw6ryR1IUeZMkFhRj2smrVKtZaa63Md/M8bd1269aNSZMmZQ3SExEWLVrESSedBPjn0bAIlSY6nsXnn3+eU0/o+nTp0qVstNFGQHb9oL2J1dXVOfWUKeBVVVVZy6P6pcVbRrSAexd4qq+vz/FiJi1fXiMqLKpmY2Mjffr04aqrrgq9phXwlBRbwIcOHZr5brrQI9cD798frr+e7Xr25BCclc4WAwMaGzkPGAcsxAlX9x/ggLfegvvvh5dfhk8+gblzYdUqaiIs8AqcWN+HHnAAN119NVUNDVBbS2VjI2lkw89aNzPnLbfckvm8Nk7s+BE4QW6ewmmkvPvVV4z9+msuw4lF3gH4Aqd/+2CgO46lfTNQ0717prBoq8E7olgT1wKHXDeo3/t+8MEHfa8XdZ4mzNIyZ0O0JgHHca4MK9TFkniPBg8ezFdffZX13STKMk5igZuDLzVawL2L6wSxatWqrEAlHTp08D1ujz32yAgoOOVg7ty5TJw4EfDPo14LPOg5avFasWIF//znP7P2mV1vpoDra+nnVF1dHegp9BNwv7rTW4YXLVpE165dc8pOXV1dpAUehVfA/d5vXV0dzz//PAsXLuSbb76JDB/dlJTcXO58SDuILUgMvAI+bty4zHX9+sBNfPtNGhp4BngGZ07zbji12y44A7Q2c//44AM49tic8/8JXI5jtSqg0v2rcv9nOOss58/lr+5fA7DC/Vtu/NefV7l/K93/3a64AvTAkdpaqK2lYeVK7sFZeabHwoX0wJk2F9TTt0qEr9q1Y9LKlUwC3iB44feGhoZMfPMOHTqErowWJuD77rsvL730UmabtxL2K+QjRoxg+vTp/PWvfw295/jx49l///1z9i1evJj+/fvzzTffhKa1NbnQlVKvi0jvprqfKQy1tbWhjaUoC1yX3zjTyML6SOMKuBmHHfzHW/hZdt5yEGaBxx2U6te1Z9anWsD9xrf4WeAaPwH3a0z4NcJN97nGL0Z6VPnSq81p9G/t2LFj4Jiexx9/nJdffjlyWrKmZCKxlRtmpvf2gRfCAjevn8gCd8la6ABnkZRXddqBrXAE/MjttuOg/v0dy3v+fJg3DxYvhtpa2uCuqOVDg/tXWV1NZUUFNDaCax2IUlQCndy/WNx1V86mKuA4n0MX4FjcM92/VX378tj06dRvtBHV7dszbdq0yNu99957PPzwwwAMHTo0cOAOhLvQH3vsMcaPH89ZZ53FvHnzcgpm0LlR4ya8ecCkuro6MB+Z21uZBR6JiJwEnATQq1evvK7Vpk2bTIWeRMA322wzvvjiC50eYLXYecU5roDrxmcSC9w799tLHAEPq+eiFjMJG5RqCvhee+3Fvffe6zvDpE2bNjlWcZgLPY4FDsECnnR8S/fu3X0F/O9//ztnnHGG7zlTpkwByKywFoUV8JSYL89b0aYRcPNFVFRUICJccMEFNDQ0ZKY2+EV+0tu9hI2grQM+dP/abrstB919d84xR40YwWMPPURbnFHaDTjhW7Vwa5545BF+85vfZL5fdskl/PWvf6USx1JeA8eV3cH4vAbQzvN34TnnsE6XLiACbdpAmzb8vGwZ/++ii1gAmb+5gHc8/VkHHMAX119Pr8ZGKmO6PnVBAWc6TJiAh03969KlC0ceeSSXXnqpr4CntYIrKipCz40j4K3JAo+DUmosMBZg4MCBedV8egAVxBfwyspKJkyYQO/evXV6gGABD3KxevnPf/4DJOsDN/t44zb04ljgepu5UIcfYdNCtYB37do1s8a3n4AndaH7xa7wE3C/LgW/AcRRz61Hjx5ZQqwFPCzYlD4m7rtsykAuLUrAzczsfZFpXOh+sdSvuOIKAI455hggmQs97hSYwEFsNTXU4Yh9GN6pYhmrAkdol1dUcPAJJ3DHHXeEXuek445jHU+M358+/5x7LrooIgXZ03HiLiah5+v+8Y9/jBzxHacPXFeIZphHSC+iIpK3gFsLPD1R5cdstNfW1obmIS3gelS0prGxkaqqqsDVx+I2zHXjM60F7pdP4rrQb7nlFtZcc02OPPLIzDYznWkscJ22ioqKLIs+jgs9yAJfvny5b0hbv9/u9y5XrVqVc/+osu215HVjI060yFJcQbDFmgNxKukkFrgX7W6tra0NDL/nLexxR5GnnUamier/r6io4Pbbb/dd0CEqHXHmfptpqKmpSdwi7dGjR+RI8UGDBvluNwv/euutB5Az3S3OmAc/oizwIHFurX3ghSYsXjhkd4HU1dXFssBFJEv4Gxsbqa6uzpTdtBa4pjlc6H/4wx/47W9/m3OtQljgZiO2oaEhJ01+Frie5jZz5kzatm2bEXAzspqJn1j7dV0tW7YssYAHxT6PI+B6NkAUdhR6AfC+yLDBHXEE3FtQ9LkXX3xx1mL2muuvv542bdpkguzHWbJUk+80siALXKO7A6KWZvRLR9yVxcx5ozNnzox1jqZnz56hYvqvf/0rcDEBs/DrCsIr4PlY4GH95NYCz0ZEHgbeAfqLyGwROSHqnDD8BNwUI68FHvaszQrba4G3bds2cy9TwDt27Ji4ayyu29VcyhT8pzOlHcTmtcCD6pewsq3zvWmB+/3uoEFst99+Oy+//DL77bdfRsCD4mDEFfClS5cmFnBv3ZhEwBcuXBh5DMC5554b67hC0GIFPI4L3cyUfsSxwH/88cfQdOiBEWGjm70EFTBtMV9xxRVsvfXWHH744b7HRVngcedB+7XUk1rgaYiywEePHh04zcZPwL2DT+IMWvSjoqKCgQMHst9++wXuj9remixwpdTvlFLrKqWqlVIbKKVyR0UmwE/AzXdmNq5eeuml0GdtWpReCzxIwNdaa628BTxoauaCBQvo0aMHkyZN4r///a9v7INCCXiQBZ7UhW5Oq9X4NXCVUplBrJdeemlWH7gffgLut23p0qU5vyWqgewVcO1RiRP4KyhypsmAAQMyAXeaghZbm3gzsl/lrAtunD7woMVMvJjBI4DM6NYkBAm4juE7cuRIPv7448C1keO40NOmI60bPwndunWLFNOg/k1z+9prrw3k9oGnDeQiIplBT8OG5U5vthZ4cYlyoevyPGjQoMz60Jdddpnvsbr8+vWBt2vXLmNFmoLds2dPXxe6XmzDr07wbvMrUwsWLKC2tpb111+fPfbYg6FDh/pasWkF3GsxB9UvYc9Xl+eobiQ/S/nLL7/kxhtvpF+/fqy11lqRAu5XRoplgev3GSfEdFT+A+jTp0/kMYWk1Qi4H0kscG9B8Suso0aN4tprr83Z/swzz0SmxSRoXunChQuprq7OjAKdO3eu7/lxXOhx8CvocQfiJYm57iWO+MeJxBbUyMrHAtfEiSDld93WZIEXkunTp2cF25k8eXJORCxdyZuVfZCnxuw+i2uB9+jRw9cCHzJkCOA/t9zb0PQrU7phbvYJR41P0cTxrkW50BsaGqivrw8dpGV6LMIaoWEDB3WDOo0FXgwBN59VnDonKorliSeeGCsgVCFpsbVJEgs8jQvdL0Ntv/32vhnhiSeeCE3rCy+8kPXdryBpV/26666bSe8vv/zie72oOfBxRcR0T7388sv06tUr06e/6667hp6bjwVeXV1dkBXDiingSfZbCzx/nnvuOd56663M90GDBvHHP/4x6xj9vsMWIfIeqy3wCy+8EAgXcG2B77jjjmy++eY51/QTcG89EVa2/ZbLNCmWC33PPffMLEJSVVXF7Nmzc65hWuBBz7SysjK0jOQj4Hrbsccey1buzJg0Am6+o6jAOV6iLPBDDjkkJ9xrsSmqgIvIMBH5UkRmiEhO/DkRGSEiU92/t0Vkm3zvecopp7DZZpux1157ZW33e7FmIfYjqQVeVVXlmxEWedYF99K/f/+s736FXA/4MKdd+A2e8yOslR4mWmY6DjroIGbNmsU999wDQN++fUPvWQoCHlQo83Gha/wqICvgxSOOR0e/bzMPRAm4RserP+yww7Jc6KaAd+7cmbq6OiZPnuzbNeYV8GOOOSaWBa7Lttn99vbbb+ccl6+Av/baa75p0A2j+vp6KisrfUXI7AMPy+dh+dtcXClIwIcNGxZqgd97772ZeBF+feBJLHCzjoqzRkRNTU3W8z7xxBOz9hdisaOkFE3ARaQSJ8T1/sAA4HciMsBz2DfAnkqprXHWtxhLntx66618/vnnkW5kyM8C9xPwyspK3+1hAu43sjksspt57A477JAVsEXjnetYCAH3us6jhCgfAW/Tpk1qkW1OF3ocAS/EkqStkSQCbj7joHfibbxvvPHG1NTUcOyxx2Ys8AsvvJAnn3wy6xyzor/yyiuzBMSbxv322y+nUg8L+mTm15133pmtt94667jjjz8+59wkAq4JcpVrAfcru2EudP0boyxwc+qeX/n54osvGD9+vG8Z8XrW2rZty+LFi2MFcvn6668zi08FCXicQWzemQ3e59SiBBxn1cgZSqmZSqla4BFguHmAUuptpZRWt3eBDSgAcSv/QveBV1VV+VY0ej1bPyorK2O10nXF4c3c999/f+ZzdXU1U6ZMyZl76k172O8KSof390Zl1lK2wPOZRqZJ2wcep6Kw5BJHwKNc6H7vwW+bFnAdtAlgww03zJofDnDBBRdkjdz2prGysjKWCz1oJLQZmfCXX37h7LPPzjk3SR94WBrA8QRUVVX5lu0wF7rfFDM/zOP8ugh0Ov3KrXfbBhtswKxZs2K50Pv06cM22zjOXfMdmZ932GEH36Ayo0ePzngkdANHs+uuu2Z1e7Q0AV8fMCfgzna3BXECzsqSOYjISSIyRUSmxB3c4XONnG1Ro9DNTBZHwCsrK337wcJi6MYVcL9WOmQP0tlss83YYYcdcs4NE/AwMTN/v/e+SadrJCEfCzxOH3jaaxeiD9xa4Okw89NHH33ke0yUBa4Hm0F491m7du2y+jt33nlnvv/+e9q0aZNjQZtzmf0EPEnZ9uYNs4y1a9fON61JRqFrggai6rW+g56Jvl/QjJzKyspYAh5kgevr+pVb77Pp06cPM2fOjN0Hrn9TkAVeUVGRWX7Z5JxzzsmaxeJ9J2Y3ZnN0jxVTwP1qSV+ftIjshSPg5/ntV0qNVUoNVEoN1COwEyemCQaxVVVV+Qp4WP9KVCGvra3l1ltv5euvvw68ryaua9gU5rvdmOt+gWbMRQmSuovysTTjWuBh4XH1dfxI60JP2wcexytgCceseLU15SWqD9wsm2EC3rZt26xpXPp6fu/OLCN+AhxmgdfU1PDjjz8GetfMtMXx7kB2Hnz11Ve56667cvJlUESx+fPnB94nrgUe1sjNR8C99c0mm2zC119/nbgPPCgPeKcTatq2bZv1e70rXgbtayqKKeCzgQ2N7xsAOVFPRGRr4E5guFIqXqy6FKQJ5BJ2vt/LCrLAw4gq5FdffTWnnnoqJ510Ulaa46QxajvAUUcdxfLlyzPXN9HTW/zuG9XazEeo4gq433srpgs9qA/817/+dWh6zGdnBTwdaV3o5jsxy2bYezBHoZvH+qXBtMD9ykhY4/zoo49m/fXXz9wrbPZIGgEfMmQII0eOzMmXZrk2mTdvXqAIhfWBm0LYVBZ4jx49WLhwYezFTPwscK8B53euDv3qd0ybNm2ynm1LE/D3gb4isrGItAGOBJ41DxCRXsCTwNFKqa+KmBZfQdAPPM4o9KBzvduSCrhfy890cU2aNClrXyEscO/vWmONNXwzr1nQvRZ4PgIedW5cF3rUogdJXehBc4b9zjOfoR6Z75ce78BGK+DpiFOuovrAk1jgpoDrPKUHQpmYZcTPAg8TcL1i2Xnnned7vkncxnmcPvAgAU9rget0K6WKZoF7n03btm1RSsVeDzyOgOvgP977wOp85BXwFmuBK6XqgdOBF4FpwGNKqc9E5BQROcU97CKgO3CLiHwkIlMCLpc3Yf1H+cRCN0ljgeu5lyazZ8/msMMOY/Dgwbz00kuR9w1KY9D2uO5fXdAffPBBpk+fnrWvqqqKBx98kH322cf3nmGZOUrE8rHA83GhH3fccQwbNow777wz8jzzGepBLtYCLx5pp5GZ78S8RlQfuBk2M0zAjzjiiJxravy8awsWLGDq1Kk8/fTTgelPQppR6AsXLsx0EYwYMSKzffHixZny88YbbzBjxozMvrBIbPp3K6USWeDeBnPYIDZvfaLT440ZH+Vd84uBr9P829/+lk8//dQ3zaUq4EW9o1JqHDDOs+024/MoYFQx06AJE4Sglx42iK1QFnhjY2NOpp8zZ05g8Jc0i2mkFXA9eMNvcEdlZSUjRoxgxIgRoeML/GjTpk3owixBA2nipDmfQC7t27dn/HhnHOWoUbnZMs0gturq6sCR0Jb4JHGhm+/dfPZ+UwyDLHAzSJLOU1EemjgW+K677uobzS1qBHcQaQQcnDnUbdq04aGHHsrartO72267ZW2P0wcO4d417zP3DqZLaoFDfAHX9zSv4zcGaosttvC9nn4u5vvs0KFDi3ahlw2FcqGnscAbGxsTVeppXOje7XEFPGyZxKjKJiwzR00x04NKokjbB96UgVy8z6EplxpsSRRiHrhf4y5IwE30O/OzwE281/KzwIPKVNpBn948F2cUuk6H3+IcQeXaFLs4LnS/63ifufdZ6O1JBNy7NkOSRnbUIGYTPwvc2/VoBbyIhL2kOC507zFBbp6k85+TrpWdZhBbHBFJKuBRKwaFNTTiVMbF7ANPS1RrOyo9YAU8LXHyjH7WSSxwP7x5V/ezRlngfgOq4lbqabtWvNeP0wcOTtn2C8UctUiQX/+16UL384J4j9NpDBpBHqcc6XpWjyPQRBkWfmXYCngZENeFbvbpKqU444wz2GOPPdh2222zzvF7Wd5Qe354lwBNKuBpLHBvYYobhKSurs53elnQ8UGVpZd8Fisx8ZueF2fOdVoRNdN0yy230K9fPx555BHfe2u8+STp+7Y4xBFw/V6DLHC/8RFxun90d0+UBZ6PgKet/L1lO64Lff78+RxyyCE528PinOtreV3fpoD7eUE0UXE3woQ0yAKPew19T/Pe+ppxui68/eXg5IegMRZNRdM3GZqJuAJ+0003sdlmmwFOhrzhhht8z/ErcFExz0eOHMlpp52W1WospAUelHm9mT+uBT5r1qzAdcz9fr95jbDCWCgLPGpp0yABTyui5m/q168fX375ZeB+zSmnnJL13Vrg6fCOBvZDC2jQKHQzz4bNQPGWMT1VLErAvUtJ+rnQg0ibL7zXjyvgb7/9tm9AnKDnq68hIjn3jCvg+tppBDzIAo97DX1P8zmncaGb6fBa4M0h4K3GAg/DzFBBI429+AlYVP93+/bt83apphmFHscC98vEQaudgX9B9z7Hjz/+2PfcfMKsJiGosZNWwKMaFeYzue6663j77bc5//zsNXysgKejffv27LDDDjz88MOBx2gBN997kAVuCpIXbxnT0R/DXOhKKbxBpuJY4L169cqcn4aw4C8av7K9fPnyrO+bbropEC3gFRUVrL/++hx44IGZfX4u9LBZP81hge+5554AvqFPg85ZZ511Mp/9XOjeLlMr4EUkrgUeV8C9Geqcc87h4IMPBvwXHQCnEso33F4aF3paCzxqpHjYNSoqKth6662zCoGmUBZ4FIVwoQeJgR9ed9rOO++c85ysgKdDRJgyZUpOF5RJlAVuftbvIWjmgImejVGIQWxe1ltvPSB9ozKOC92vrHoFXEe3CwpVbbrQYXUER/Af2R1GMQU8qH696KKL+Oqrr+jXr1/ONYPua86X93Ohg39sgaak1Qi4+ZK6du3Kcccd57svaqSxxmxZDx48mGuuuSbzco866ijfc4LiGSchzSC2tAIehp9lISLsuuuu9OvXL7N0oHfNZihcH3gUQYU5SWVpLvEYlaY4XQi2D7x4+Al40MBDXQbiuND1WIs0Ah5lga+77rpA+nyR1oVuLsICqz0BZmhYk6222oqqqiouvvhiANZaay323ntvwN+FXigL3G/6FiS3wCsrK3OWQA4SZb9r+VngkJ0nmmOKaKvsA9dB+/32pXGhewtRUKFt37593i+5WIPYkgp4kAv9jTfeyJpOEhQoI4piFoYkVnDXrl2ZN28ekMwCb46FDVo7enBVHAt87bXX5uijj+aMM87IuY63jGmrv2PHjgwbNowJEyaEHm/eL66AB60QFkXaQWxeC1w3VIMWOllzzTUjp32ZLnQ/0gh4p06dWLRoUU73ZJCAJ6k3koTS9usDh3gRAotJq7HATbyVaxoXeth0paBCGyZcX375JePGjQvcH3Qvk7gudD+SCmaQBW7GDQ5KU1NZ4EGktcCjCrpfH6sX60IvHlEW+GmnnZa1/f7772fQoEE51zHP/+CDD7KCnQwfPjzn+KC+VO1CnzBhAhMnTvRNc6Et8LR94DqaYFBDImzMS1ILPG68CjM9Xu9HIQS8W7duvue89957ObNvgqz1KK9MsWk1Ap6mDzysUIX1+wQJZpgF3q9fP4YNGxZ4v6hrQ/xBbIUgqg88LE1hDRk96j9OQZw0aRLDhw/PzBrw48orr8zZFrY6nBczrVGVbBwXuhXw4hEm4Lvvvrvves9+mOWlW7dukfENgka06zKy3377scEGG/jeSw98a+pR6EECHhT7IUyQzUAu3tCjJmlGoes5+F6hLESdtvbaawPkBLQZPHhwpqtAY7rQTzjhBH71q18B1gJvMsaMGQPAH/7wh5x9+brQk1jgYcIUR4AL0QdeCKJGoYdtC7PAjznmmMDzvOyxxx48/fTTmf52P/RCESbeBRDiEnWe7QNvXrT7N9/K3Swv3rwa1k8bJOB+19FoD08xB7EVwgL3wxyZrvGLRw9O3bfvvvsChRHwQpQjPcA2bLaNxnSh33nnnTz33HNA84w8N2k1Ar733nuzaNEibr755px93opXZ7QwizhtH7h22yShY8eOWdcIIm4feCEIcqHH2RaW6b2jXeMQFjHOj2IJeNAiGibWAi8eeoSxOVVIkzZcsVd4w6adhQl4UBnUAp50DIpfWoOuE2cUutlVFBf9e/X1TRe6957XXnttIgv85ptv5vbbb8989wp4ISxfbYHHIciFnva9FYpWI+DgZNKoPqKKigoefvhhbrjhBh544IHAa5kFx1s4gyzedu3asdZaawUuVBKEKeB77LFH4HH59IEnJR8Xelhloa+bpG8piUscwqfH5XOe37xRL83dZ9aSueSSS5g4cSJDhgzJ6zphZTtMwE844YSsPvI4Frg+VxsNSYmTviQWeBK8fdrmynve/B+ncWum/dRTT+Wkk07KfPeWmz59+vDCCy8kTrPJWmutFfvYoFHozU2rGYUehplxRIQ111zTd3SqSVoLHOA3v/kNffv2zVmiM4ju3buzzz770KlTJ3r37h14XFNa4H7EtcDjCLjZaImiVCxw0/Lzvov//Oc//POf//Ttk7cUhrZt2wYub5sEs7wkcaF36dKFp59+Oscy9buOZrfdduNPf/oT5557bqq05jONrKKiIuOK7tSpU+J7e2eatG/fPtCFbnqeghqxYV4Sv3MOOOCAZAn20Llz59jHlqqAtyoLPIi4IUBN8hFwSCaqVVVV3HXXXVx33XWhxxWrD1xXPocddlhmm19fWdzWv9mN4B2ToAtI1MIRJkkt8LQCHmWBhwn4YYcdxnvvvRc4mMmSnpEjRwL++c/bZbHvvvtGzoIIG6Dqd4+g8h5HwNu0acPll18ee4Cdl3wEvE2bNtxxxx0MGDAglUva21Bp165dlgVu/iazkZ2msZCkPohLknQENUyaGyvg5C/gaaaRJRXwOBRrFPqxxx7LtGnTssJY+s0XjetCNwV85MiR3HrrrTnXSGKBF9OFbgpAPha4pXiMHTvWd2lME50PX3zxxcj3b4qiN//GCb2q8Vs8pdDE6ZMNcqG3adOGUaNG8dlnn6UKb+x1oZsWeGVlJR988EGmTAQJeNwupWKEX04i4NrzaS3wEiSNgKedRqYphoAXqw+8bdu2bLbZZlnp8BPwuC50U8Dbt2/PFltskXN8EgFPOiK1WC50s0/NCnjTUVlZmSi/RJF0pkccC7xYcQ28Hoa4XrAVK1aEdhXEIUzAq6qq6N27N7///e+B7EZ2GgEvxvNLUi/qqaorVqzI2ffJJ58wY8aMgqUrCbaWIbcPPA6laIEXU8C9xBXwKBd6u3btfNOXxGX2yCOPsN566/HMM8/EOr5YLvTu3btnPjdHWEVLYUgaayGOgDcVcUehQ3YdlGY6lDeyWrt27XL6ivWzDLLAm3sedVz69+8PwMyZM3P2bbnllmyyySZNnSSgyAIuIsNE5EsRmSEi5/vsFxG5wd0/VUS2L2Z64hC34g1zjxWjDzwOxXKh+51fKAs8SMDNRoM52GSvvfbKOXbnnXfmhx9+yCwmE0XaUehRwm+m2RtrujUSVf6bgjTT9spJwL2/L64LHbLLdZpGvr6uuV669obp367vESTgm2++eeg9Pvvss9gN82Ky0UYbAdkLnJQCReuRF5FK4Gbg/4DZwPsi8qxS6nPjsP2Bvu7fjsCt7v9mI26BD1oABeJZ4ElcVs1tgccV8DTTyIIE3Dxvr732YvTo0cybNy/vkaeQzOVu5ockwv/zzz8nSlNLI2b5L0mShiuO0wdeLLx5OW4ZhOzfmcZjpM/RbuX27dtn6gWvBW660M0G+aOPPsrYsWMZMGCA7z0GDBgQuK8p0Yu9pG38F4tiDqkbDMxQSs0EEJFHgOGAWYCHA/crp5Z8V0S6isi6Sqk5RUxXwfGLgexH3IhqXspFwONa4GYBrq6ujkxfQ0ND3nN7C0ES1/vChQuLmJKyIE75L0nytcD19KzmcKH7pS+owZrvwDCvgLdr1y4zOyWuC71r166+KxaWGmb3WEmhlCrKH3AYcKfx/WjgJs8xzwO7Gd9fBgb6XOskYAowpVevXqoY9OnTR/Xs2VM1NDTEPmf33XdXFRUV6rnnnsva3tjYqDp16qSAzN8aa6yRde0pU6YoQF144YVZ544ZMybrPEBNnjw5NB3nnXeeAtQHH3wQeMzGG2+cud6YMWN8j9lzzz0zx3Tv3l0BqqKiQk2YMCFzzNFHH60ANXv27My2m2++WQE5z0EppebPn68ANXz4cLXRRhupPn36KKWU6t+/v1pvvfVUQ0ODqqmpUV27dlU77LBD1rmHHnqoAtTdd98d+vujuPjiixWgzj33XAWoe+65J/Kcyy+/XAFq0qRJ6tprr1WAeumllyLPO/nkkxWgvvnmm7zSrJRSwBRVpPJZ7L845V81Qdlevny5GjRokJoyZUrsc1atWqV23313de655+bsW7x4serWrZtq06aN2nLLLX3L3QsvvKD2228/1djYmLX91FNPzSrXV111VWRaTj/9dHX11VcH7l+6dKkaNGiQ2nvvvdWee+6pamtrc45paGhQQ4cOVbvssos6//zz1SGHHKL69u2rzj///KzjjjzySHX//fdnbbv88ssD64vPP/9cbb/99mrWrFlq8ODB6tNPP1XLly9XO+20U+aZ/PTTT2q77bZT3377bea8xsZGdeCBB6pjjz028vdHMWbMGHX55Zer2267TZ1wwgmxzjn//PPVJZdcopRS6pJLLsmpg4MYOXJkzvNJS6HKtqgihXYUkcOB/ZRSo9zvRwODlVJnGMe8APxdKfWm+/1l4I9KqQ+Crjtw4EA1ZcqUgqe3oaEBpVSieX4NDQ0sXbrUNzBJfX09dXV1tGvXjlWrVlFdXZ1z7ZqaGt9WcE1NDY2NjdTU1NC+fftYLeWga5npAWe936A5p0op6urqMosSzJ07l/bt22f9PqUUtbW1OfcKu39NTQ1t2rShoaEBEaGysjLnedfV1VFZWZkTi37RokWp58j6pS/qOQX9prTn5YOIfKCUGpj3hZqBOOXfS7HKtsVSahSqbBfThT4b2ND4vgHwY4pjmoQ07q7KysrAqGJVVVUZcQoaaRlUyevtSUZoRgmGTkuYGIpIlrtcL3XoPcbvXmH31/vMBoz3eQf1gxdCvM00JBFW89i057ViSqZsWywtlWKOQn8f6CsiG4tIG+BI4FnPMc8Cx7ij0XcCFqsy6/+2WCy+xCn/FoslD4pmgSul6kXkdOBFoBK4Wyn1mYic4u6/DRgHHADMAFYAxxcrPRaLpekIKv/NnCyLpUVR1MCuSqlxOCJtbrvN+KyA04qZBovF0jz4lX+LxVI4bCQ2i8VisVjKkKKNQi8WIjIf+C7haT2ABUVITjGwaS0e5ZTeHkAHpVTP5k5IU5GibJfT+4TySq9Na/EoWNkuOwFPg4hMKZfpODatxaOc0ltOaW0uyu0ZlVN6bVqLRyHTa13oFovFYrGUIVbALRaLxWIpQ1qLgI9t7gQkwKa1eJRTessprc1FuT2jckqvTWvxKFh6W0UfuMVisVgsLY3WYoFbLBaLxdKisAJusVgsFksZUpYCLiJ3i8g8EfnUs/0MEflSRD4TkX8Y2y8QkRnuvv2M7TuIyCfuvhskzar2KdIqIo+KyEfu37ci8lEppDUkvduKyLtueqeIyOBSSG9AWrcRkXfcez8nIp2Nfc2Z1g1F5FURmebmz7Pc7WuKyEQRme7+71YK6W0ubNlu0rSWZLkOSa8t214KsSZpU/8BewDbA58a2/YC/gu0db+v5f4fAHwMtAU2Br4GKt19k4GdAQHGA/s3RVo9+68BLiqFtIY825f0/XBi179WCukNSOv7wJ7u55HAZSWS1nWB7d3PnYCv3DT9Azjf3X4+cFUppLe5/mzZbtKyUpLlOiS9tmx7/srSAldKvQ4s9Gz+A3ClUqrGPWaeu3048IhSqkYp9Q3OwimDRWRdoLNS6h3lPLn7gUOaKK0AuK2rI4CHSyGtIelVgG7tdmH1spCl+Gz7A6+7nycCh5ZIWucopT50Py8FpgHru+m6zz3sPuPezZ4XmgNbtps0rSVZrkPSa8u2h7IU8AD6AbuLyHsiMklEBrnb1wdmGcfNdret7372bm9Kdgd+UkpNd7+XalpHA/8UkVnA1cAF7vZSTO+nwMHu58NZvSZ1yaRVRHoD2wHvAWsrdwld9/9apZbeEsCW7eIwmvIp12DLdg4tScCrgG7ATsD/Ax5zW8F+fQgqZHtT8jtWt9ChdNP6B+BspdSGwNnAXe72UkzvSOA0EfkAx51V624vibSKSEfgCWC0UmpJ2KE+25r72TYXtmwXh3Iq12DLdg4tScBnA08qh8lAI07Q+NmsbqkBbIDjKprtfvZubxJEpAr4DfCosbkk0wocCzzpfv4PoAe7lFx6lVJfKKX2VUrtgFOBfl0qaRWRapwC/m+llH6eP7muM9z/2j3c7OktIWzZLg5lU67Blm0/WpKAPw3sDSAi/YA2OCvUPAscKSJtRWRjoC8w2XVpLBWRndzW/DHAM02Y3n2AL5RSpsukVNP6I7Cn+3lvQLsFSy69IrKW+78C+DOg159v1rS6174LmKaUutbY9SxORYr7/xlje0k922bkaWzZLgZlU67Blm1fwka4leofTutrDlCH02o5AadQP4jTT/IhsLdx/IU4rbUvMUb1AQPd478GbsKNTFfstLrb7wVO8Tm+2dIa8mx3Az7AGTn5HrBDKaQ3IK1n4YwC/Qq40rxvM6d1Nxx32FTgI/fvAKA78DJO5fkysGYppLe5/mzZbtKyUpLlOiS9tmx7/mwoVYvFYrFYypCW5EK3WCwWi6XVYAXcYrFYLJYyxAq4xWKxWCxliBVwi8VisVjKECvgFovFYrGUIVbAWzHi8KaI7G9sO0JEJjRnuiwWS37Yst06sNPIWjkisiVOFKbtgEqcOYzDlFJfh50XcK1KpVRDYVNosVjSYMt2y8cKuAVx1ldeDnRw/28EbIUTg/oSpdQzbpD+B9xjAE5XSr0tIkOAi3GCLmyrlBrQtKm3WCxB2LLdsrECbkFEOuBEuKoFngc+U0o9KCJdcdan3Q4n0lCjUmqViPQFHlZKDXQL+QvAlspZGs9isZQItmy3bKqaOwGW5kcptVxEHgWW4axhfJCIjHF3twN64cRNvklEtgUacJZ41Ey2BdxiKT1s2W7ZWAG3aBrdPwEOVUp9ae4UkUuAn4BtcAY/rjJ2L2+iNFosluTYst1CsaPQLV5eBM5wV8NBRLZzt3cB5iilGoGjcQbFWCyW8sGW7RaGFXCLl8uAamCqiHzqfge4BThWRN7FcbHZlrnFUl7Yst3CsIPYLBaLxWIpQ6wFbrFYLBZLGWIF3GKxWCyWMsQKuMVisVgsZYgVcIvFYrFYyhAr4BaLxWKxlCFWwC0Wi8ViKUOsgFssFovFUob8f1zYyMHJPbhhAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABt1klEQVR4nO2deZgUxfnHP+8uu7DLJZfcCngARg4N4oV3jEhQPKIRNR5BUSNeURMVNRpvo4lngholaoLHT4kXCom3Jl6gCCKoIKAcity77L1bvz+6a6jp6Z7puWeX+jzPPjvT3dNT091V33rfeustUUphsVgsFouleVGU7wJYLBaLxWJJHivgFovFYrE0Q6yAWywWi8XSDLECbrFYLBZLM8QKuMVisVgszRAr4BaLxWKxNEOsgFtyioh0F5G3RaRCRO4UkatE5G/5LlciROTvInKj+/oAEfki32WytDxERInIzvkuhx8icp2I/CPTnxWRg0VkRXqlyywisoOIVIpIccD+lK+Fz7lSvudWwF1E5GQRme3etNUi8oqIjPIcc4Z7sU/0bD/Y3T7ds32Yu/1NY9sNIjJfRBpE5LqAciwXkS0i8pyIdDb2nSgi/xORKvOczYyJwFqgg1LqUqXUzUqpswBEpJ97vVoFfTiTFSdVlFLvKKUG5rMM2yK2jsb8noISvZaEUuobpVQ7pVRjvssSDyvggIj8BrgLuBnoDuwA/AUY5zn0dGC9+9/LD8B+ItLFc/yXnuMWA78FZviU40fAA8Av3XJUueXQrHfLeWviX5UZ4olpiuwIfK5sBiFLEtg6mjxZqLvNjiALusWglNqm/4COQCVwQoLjdgSagOOBBqC7se9gYAUwBTjf3VbsbrsWeNPnfP8ArvNsuxmYZrzfCagD2nuOO8vvnD7fMQ6YC2wGlgCj3e3LgJ8Yx10H/MN93Q9QwATgG+BtYCYwyXPuT4Hj3NeDgP/gNF5fACcGlOfvQL37myqBn3i++xv3uyvdv309nx/tfrbe3f+pu70X8IL7/YuBs+NckzHA50AFsBK4zHMPr8LxECwDTvGU/UbzWGPfMuAyYB6wCXgKaGPsH+veh43A/4Ch+X7um9MfLbuOXg6sBlYBv3Kf/53dfa2BO9x68b1b9jKgLVDt/lZdV3q5dekZt9yb3TJ0BB52v2MlcCNQ7J7/DOBd9zs2AEuBI42y9QfecuvKf4D7cOuqu38f93neiNMeHBz2s55rEFj3gL3c397KOP54YG7Auf4O/BV4GdiC08b0Ap7F6cAtBS40jh8JzHav1/fAn9zt/dx70SrR78HTHrjbluG2se53vOdep9XuZ0uNYyP3PNk/a4HDvkAb4F8JjjsNmK2UehZYCJzic8xj7nEARwALcCpmWH6EUxEAUEotwWkcdk3iHACIyEi3PJcD2wEH4jxUYTkIGIzzO6YB441z74bTWM4QkbY4D/Q0YHv3uL+4lkoUSqkzgH8CtyvHPfWq55AD3f/bufvf83x+Jk4D+pS7f5i76wmcBqAX8HPgZhE5LOB3PQyco5RqD+wOvG7s6wF0BXrjWGYPikhYV/mJOB2M/sBQnMYREdkTeAQ4B+iCY729ICKtQ57X0nLr6Gicjt/hwC44YmNym3ve4cDOOM/ltUqpLcCRwCq3HrRTSunfMA5HxLfDqWuP4nRmdgb2AH6KI+yavXE63V2B24GHRUTcfdOAOe6+GzC8GiLSG8dDcSPQ2f0dz4pIt0SfDcC37imlPgLWuddIcyrweJxznQzcBLTH6WC8iHPPegOHAReLyBHusXcDdyulOuB0xp4OOGeyv8ekEbjE/ey+bhl+ncTnA7EC7jSqa5VSDQmOOw3nJuL+j7mBSqn/AZ3dRv80nMYiGdrhWHAmm3AexGSZADyilPqPUqpJKbVSKbUoic9fp5TaopSqxmk4h4vIju6+U4DpSqlaHOtymVJqqlKqQSn1MU5v9+cplDlpRKQvMAr4nVKqRik1F/gbjovTj3pgNxHpoJTa4JbX5BqlVK1S6i2cBurE2FP4co9SapVSaj1OgzHc3X428IBS6gOlVKNS6lGgFsd6sYSjpdbRE4GpSqnPXFG+Tu9wRfRs4BKl1HqlVAVO5/WkBOd8Tyn1nFKqCeiAI/QXu3V5DfBnzzmWK6UeUs5Y76NAT6C7iOyAY/3q+vA2znOtORV4WSn1stu+/AfHkh0T4rNBBNW9R93vw4030EZFEM8rpf7rXoMhQDel1B+UUnVKqa+Bh4xrUA/sLCJdlVKVSqn3vSdL4/cAoJSao5R6320fl+F04g8K+/l4WAF3enddEwRO7Y9jWT3pbpoGDBGR4T6HPw5MAg4hscXgpRKn0pl0wHHbJEtfHLd5qnyrX7iNxwy2PvQn4fTuwbHE9xaRjfoPR+B7pPHdydAL0A2cZjlOb9uP43Hc6MtF5C0R2dfYt8FtSM3z9ApZju+M11U4DT041+dSz/Xpm8R5LS23jvbCqGc4z5umG1AOzDGem5nu9niY59sRKAFWG+d4AMdTpok8t0qpKvdlO7dsfvXBPPcJnud6FE4HINFn/YhX9/4BHCUi7XBE/R2l1Oo45/Jeg16ecl6FE78AjqGzK7BIRD4SkbE+50vl90QQkV1F5CUR+U5ENuN0xLqG/Xw8tvkgB5yxiRrgGBzXkx+nAwLM3epdApwe/FzPsY/jjMM+ppSq8hyfiAWAdgsjIgNwxsG8QTZh+BbHJeTHFpzGQeMntt4gsyeA34vI2zjjcG8Y3/OWUupw0idMYJv3mFU4FlV7Q8R3wBnvi/2w45IbJyIlOI340ziCCtBJRNoaFXUH4LNkfoAP3wI3KaVuSvM82zIttY6uZuuzB87zplmLM879I6WU37McVFfM7d/ieHu6hvBe+JXNrz7o838LPK6UOtv7QddTF++zfgTWPaXUShF5DzgWx7P21wRl916DpUqpXXwPVOorYLyIFAHHAc94ghwh8bWIak/dwDmzo/VX4BNgvFKqQkQuJkMeym3eAldKbcIJYrlfRI4RkXIRKRGRI0XkdhFpg9Prm4jjFtV/FwCneK0CpdRSHPfIZL/vc8/dBufatxKRNkak5D9xepoHuGPLf8BxVVe4ny12P9sKKHI/WxLw0x4GzhSRw0SkSER6i8ggd99c4CS3LCMI9zC9jNOb/QPOGHSTu/0lYFcR+aV7vhIR2UtEBoc4p5cfcAJzBsQ55nugn1vhUEp9izPOdYt7PYbi9Kr/6f2giJSKyCki0lEpVY8TuOKdJnK9e9wBOMMD/5fC7zB5CDhXRPYWh7Yi8jMRScXluk3Sguvo08AZIrKbiJQDvzfK2ITz7PxZRLZ3z91bto7dfg90EZGOca7bauDfwJ0i0sFtB3YSkYTuW6XUchyXuK4Po4CjjEO0VXyE/s3iTG3rE+KzQcSre4/hzAwYQnJekw+BzSLyOxEpc8u6u4jsBSAip4pIN/d6b3Q/E9UmhPg9XwJt3HpdAlyN06nTtMdpayrdNvi8JMofH1UAUaaF8Ifj9p2N05v6DsdlvB+Ou3g1UOI5vg1OL3ksPlGIxnFR0ag4UZLK83eGsf9knKjTLcDzQGdj3xk+n/17nN90LE5kdAWOxXGEu30A8AGOO3AGcA+xUeitfM73sLtvL8/2ge55fsBxd74ODA8o099xo7nd99cRHdn6B/c8G4F9fD7fBSdydgPwsbutD05HYj3OsMG5Ad9diuOG3IBToT4CRrn7DsYJhJvs3tdvgF/6ldt7v4kT1e++H+1+10b3Wfo/PFHL9m+braNXuL/FLwq9DY679Wv3eV1IdAT1I25928jWKPR/eM7fEccCXIEzVv8JcJJR1nc9x5vfPwB4B6ed8ItC3xsnMns9Tp2dAewQ5rOe7zyYOHXPPabcvQaPJnhG/o7RvrjbeuF4EL/DqfvvszVC/B/AGrecC4Bj3O39iI5CT3QtzsB5BtfgBPQtM77jQGCR+9l3cNq4d/2uebJ/4p7AYtmmEZGDcSpknzwXxWKx+CAiS3BmkHhnr2yzbPMudIvFYrEUNiJyPI6l+nqiY7clbBCbxWKxWAoWcVLS7objVm9KcPg2hXWhWywWi8XSDLEudIvFYrFYmiHNzoXetWtX1a9fv3wXw2IpOObMmbNWKZUo0UfBYuu2xeJPUN1udgLer18/Zs+ene9iWCwFh4iEzg5ViNi6bbH4E1S3rQvdYrFYLJZmiBVwi8VisViaIVbALRaLxWJphlgBt1gsFoulGWIF3NIiue666xg9ejSNjd61SizbMvfeey/z5s3LdzEsloxgBdzSIrn++uuZNWsWb7/9dr6LkhbTpk1jzJgxVFZW5rsoLYILL7yQYcOGJT7QYmkGWAG3tGjq6+vzXYS0OOWUU3jllVe49957812UZo/NOmlpaVgBt7QY3nnnHc455xy2bNkS2dbU1DJSJ69fvz7fRYggIn1F5A0RWSgiC0TkIp9jRETuEZHFIjJPRPbMR1lNmntnzmLxkrVELiLyCM46vGuUUrv77D8F+J37thI4Tyn1abbKY2n5HHjggQB067Y1YVFLEfACE58G4FKl1Mci0h6YIyL/UUp9bhxzJLCL+7c3zprUe+e+qFspsGtosaRNNi3wvwOj4+xfChyklBoK3AA8mMWyWLYhvv7668hrK+CZRym1Win1sfu6AlgI9PYcNg54TDm8D2wnIj1zXNQozGtYU1OTx5JYLJkhawKulHobCPT7KaX+p5Ta4L59H+iTrbJYti1qa2sjr1vKuGchCbiJiPQD9gA+8OzqDXxrvF9BrMgjIhNFZLaIzP7hhx+yVk6IvoYrV67M6ndZLLmgUMbAJwCvBO3MZSW3NH+qq6sjrxsaGvJYkvR46aWXIq8L8XeISDvgWeBipdRm726fj8T0ppRSDyqlRiilRphDH9nAFPDvvvsuq99lseSCvAu4iByCI+C/Czoml5Xc0vwxp1w1V1fpggULOOqooyLvC80CF5ESHPH+p1Jqus8hK4C+xvs+wKpclC2Iurq6yGubH8AfEWHy5Mn5LoYlJHkVcBEZCvwNGKeUWpfPslhaDhUVFZHXpju9ObF06dKo94Uk4CIiwMPAQqXUnwIOewE4zY1G3wfYpJRanbNC+mBew5YSG5ENbr755nwXwRKSvC0nKiI7ANOBXyqlvsxXOSwtj5ZggbdqFV01C6wjsj/wS2C+iMx1t10F7ACglJoCvAyMARYDVcCZuS9mNFbA42O9Es2PbE4jewI4GOgqIiuA3wMlEKng1wJdgL84HXoalFIjslUey7aDKeAFJnyh8Qq46VXIN0qpd/Ef4zaPUcD5uSlROKyAx8ccYrA0D7Im4Eqp8Qn2nwWcla3vt2y7mGJXU1NDZWUl7dq1y2OJkscrMIUk4M0VU6CsgMdiBbz5kfcgNosl05iZ2K644grat2/Pl182r1Ear+fACnj6WAs8Ps3VW7UtYwXcsk3wyCOP5LsISWEFPPNYAY+PtcCbH1bALdsEzW01L2/wnRXw9LECHh9rgTc/rIBbtgmam4B7G9PGxsYWk1UuX9gx8Pg0Fwv85ptv5vPPP0984DaAFXDLNkFzF/CKigrc2RqWFLEWeHwK2QJftGgRK1eupKamhsmTJ/P000/nu0gFQd7mgVssmSSRddrcBLy5zl8vZKyAx6eQLfDBgwcDsGnTJsDWD421wC0tgkS5wgtRwO+77z5++9vf+u4rZGuouWIKeEtOWjJ//vyUZl00h2dOl9EKuIO1wC0tgkSpRgtRwC+44AIAJk2axA477BC1zzZQmWdbGQMfOnQokPxKfIVsgWt0GW39cLAWuKVFkKjxKUQB1/g1tM3BGmpuWBd6fJrDM6fLaK44uC1jBdzSIkhkgS9ZsoSvvvoqR6VJjFne4uLimP3NoTFtblgBj4+1wJsfVsAtLYIwjU/QeHM+qKqqirz2G4+1DVTm2dYEPNlxfrPTWKhTFu0YeDRWwC0tgjDLbb755pvZL0hIzHSvfgF4ZmN60EEH5aRMLZ1tTcDXr1+f1PFmJ7iQlq81OxPWhR6NFXBLi0A3Pp07dw48pmfPnrzzzjt89913uSpWDGvWrOH1118PbYEfdNBBPPPMMzkrX0umUIPYqqurWb0680ulf//990kdb16fQrJwzfqhMxIWUvnySdYEXEQeEZE1IvJZwH4RkXtEZLGIzBORPbNVFkvLR1sM3bp1Czxm4cKFHHjggTER37nkpz/9KYcddhhPPvlkZFs8C3zSpEl07do1Z+VryRSqBT527Fh69eqV8fOuWbMmqeNNr086MRjz58+nf//+rF27NuVzmJgdC31OK+AO2bTA/w6MjrP/SGAX928i8NcslsXSwtGVvE2bNr77zSxm+XQPfvrppwDcc889kW3xBLx169a5Kdg2QKEK+Ouvvw5kJojMdDfnywK/8cYbWbZsGf/+979TPoeJn4BbF7pD1gRcKfU2EG8QZhzwmHJ4H9hORHpmqzyWwmP9+vUZE1N9ntLS0ph9bdq0ietazwc//PBD5LXXhf7DDz9ExsiDOiSW5ElHwG+66SamTp2a6SJFkeyYtR/mb0zWAjat7nQEXA8PlZeXp3wOkyAL/N///nezWyY40+QzkUtv4Fvj/Qp3W8xgkIhMxLHSc+L+bGpqora2lrKysqx/17bK6tWr6dWrF3vssQcff/xx2ufTlbykpCRmX0lJCd26dWPdunVpf082MC3wRYsWRdJGgrXAM0k6Y+BXX301APvss0/U/ckk69evp0ePHmmdwxRhM84iDJmywLV13LZt25TPYWL+Jl2Ha2pqOOKII4DCjZjPBfkMYvNbmcH3TiilHlRKjVBKjYg3xpkpTjnlFMrLy/Ma7FTopJuK8rXXXgPgk08+yURx4lrgWsALAb9ymNfy+eefj9pnLfDMkQkX+nvvvZep4sSQiQ6mKXbJupnNz/7hD39IuQy64+DXmU4FOwYeTD4FfAXQ13jfB1iVp7JEoQOMnnrqqTyXpDCZOHEi3bp1Y8OGDSmfI9NjWPEs8KKiooIRcL/fbVrg/fr1i9pnLfDMUV9fH0mak6qAb968OZNFiiITLvRMWeDpzHzQ35tofYKw2DHwYPIp4C8Ap7nR6PsAm5RSmZ9LkQYrV67MdxEKkoceeogNGzbw3HPPpXyOZBuXRMSzwJuamujUqVNGvw8ca6x37968+OKLoY5XSkXN/9aYFrh3yVAr4OkzceJErrzySurr6yPXM1UB19OYskEmLHDTMk22jtXW1tKuXTuGDBlCq1apj67q781UfIsp4PPmzQOsBa7J5jSyJ4D3gIEiskJEJojIuSJyrnvIy8DXwGLgIeDX2SpLqlgBj086bvRsWuD/93//FzWW2NTUlLHxOJNx48axatUqjj766FDH19TU+I7XmZaKNxI5n1PeWgoPPfQQt956K3V1dREBD/vsKqWiEgBlwwLXnbZCsMDLy8sZM2aMb3rfsGTTAteR9S15NblkyGYU+nilVE+lVIlSqo9S6mGl1BSl1BR3v1JKna+U2kkpNUQpNTtbZUkVK+DxSaeCZtMC//nPf86qVVtHYxobG2nXrl1Gvw/wtabjEfSbzcbIbKymT5+esUhei/OM6JiCqqoqTjjhBL7++uu4n3n00Uc55JBDIu8zLeBmhy7TY+CpWOClpaUUFRWlNc1O14tMWeD6N/Xv3993fyFNCcw1NhNbHKyAxyedXnC2BFyPgZuu6GxZ4Mm68YIE3+wI6d8xYcIEjj322NQLl0VCJGk6WEQ2ichc9+/aXJfRD9MCnzlzJs888wwXXXRR3M94pyllWsC3bNkSEfFCsMBbt26dtoBnywIfOXKk7/5NmzZl5HuaI1bA47Bx48Z8F6GgKUQXetAYuFfAMzH1RDdyYaNtgwTczwIv8CmMfyd+kiaAd5RSw92/1EOaM0hFRQXbbbcdEN5qKyqKbiIzPQZudggy0d6kOwZeUlKStoDrZzjTAh6Ura5Qp4fmAivgHsyGPZ1xoG2BbFjgS5cuZdKkSZx33nlR6UYTocXRT/j8XOiZalwg/FSvoN/sNwaeqSk42SBEkqaCZOPGjXTp0gUI34HzBhVm2gI3z2eKb0NDQ0rpTPVnysvLkxZwHeRXVFSEUirtTm6mg9iC5shfcsklGfme5ogVcA/mGOS2nCAgCPOaZMMCHzNmDPfffz9Tpkxh/Pjxoc+n5+z7VXI/CzyTax+HtZZ1J2PUqFHMnz+fXXfdFfAXcD9PQjNjXxH5VEReEZEfBR0kIhNFZLaIzDaz02WDjRs3RjLyhX12vRZ4NgXcrBM/+clPUsoBoAW8c+fOKbnQtQUOyY8tb9iwgenTp0fe58oCf+mll7I6va+QsQLuwez12kjHWDKVramysjLy2mwoFi1alNL59GpOfgLe2NiYVQEP29BqAS8vL2f33Xdnjz32iJRPE286XDPiY2BHpdQw4F7guaADs52kyexwmgKunzmvhe3F3L/99ttnTcCLi4ujBPytt95K6Xy6Tnbq1CnpYar6+npKSkpSnit/7LHHcvzxx0edz+SDDz7gpZdeSuqcsLVN7tkzONN2snnfC4GTTjqJv/zlL2mdwwq4h0JdcrBQSCdIxsRsCDPhaotngSulYlzo+RBwfb10Z0LPtW1pFrhSarNSqtJ9/TJQIiJ5WVLNmwRE5wMIW7fN57179+4ZHwPXz0TXrl0zMrdZl7dTp04pudB1FDok3/7Nnh09kchrge+zzz4cddRR3HnnnUnV+Xgu9DPPPBNwOvCZWv0sVzz11FOcf/75aZ3DCrgHa4HHp9AF3Oylm+5PrwWeyRXJTBf6jBkzWLZsme9x2gLXZdGWjl8QWyGPgSdCRHqIa7qKyEicdiYvkUZeUezUqRMiErpum8949+7dM26B6/N36dIlI4Gd6Qh4qi70p59+mmOPPTYmSDOojl122WXcf//9SZUL8E3GpPMkXHHFFXTr1i3htMCWRj4XMylIrIDHJxMC/vbbb7N8+fLI+3hjZY2NjaGCCf1c6GY0bS7GwOfMmcPYsWMB//gJ04UOzdcCd5M0HQx0FZEVwO+BEgA3z8PPgfNEpAGoBk5SeQoo8Qr4dtttF/VcJHKhm6LUvXt36urqqK2tzViGPF2HOnfuHHmG0yGdMXDtQk9WwH/xi1/4bo9Xr5OZ+qXrhN811wKuc9R/8803DBgwIPS580Wm4gOsgHswBcq60GNJV8BfeOEFxo0bF7UtnjVcV1eXMEissbGRNWvWAM44pca0wHPhQv/2262L61VXV8eUW4/7x7PAY8bAt2yBhx6CNWvg5pszVuZ0UErFjS5USt0H3Jej4sQlkYAnwhTwrl2dUYDKysqMC3iXLl0yYj2aY+A1NTU0NTXFBOIFUVdXl5YL3Us8kUqmPxevU9uzZ0+Ki4sjdag5zBx6//332XfffTNyLutC92A27NYCjyVdAX/22WdjtsWr6GGm0qxbt46mpiY6d+4cVcnNyuy1wDPpatMCbjaUM2bMiHG3agtLu/m1Bf7ll19GGjT9/LWrr4cbboAdd4RLLoE//hFWrMhYmbcVggQ8Xt3+6KOPGDduHPPnz48ScO3CTWV6VxD6/J07d/YdA0/WcWG60CG5fAteCzzd9i9exzwVAffrNLVu3Tqq094cBPzhhx/O2LmsgHuwLvT4pCvgfskq4lX0MI1l0PrD8cbAf/azn/HVV18lPLfJunXrIg2P+WzoToMZWX/CCSfQo0ePqCQTK1wB7tOnD7C1sbnzzju59dZbAWi3YQN3AidfcQVcey2sWwd77w3PPgsB02gswXifnzAu9DPOOIMXXniBV199NesCbrrQE61UFwZdto4dO0adPww6iC1MFHpVVRX/+te/gODhnnhlT8a617+ppKSEV155JSpyu7S0lO7du6d03nzhjW9Jp8xWwD1YF3p80hHwmpoa3yVIE7nQE+FNo6oxe+N+keJPP/10wnNrnn/+ebp27cpVV10FRP92/Zx4g3iqq6vp2rUrn376KbDVxa4F3Fzx6YmrroLTTuOP06fzG6CkthYOPxxefx3eew+OPhpCukItW0nFhW7eTz8Bz+RKWFVVVZSXl1NeXu672E2ywZY6EE3HWSRTR5MJYrvgggs47rjj+OSTTwLz9WfSAi8pKUFEGD16NCeddFJkX2lpaSS7nj620PG2U+mkgs1qiyAio0XkCxFZLCJX+OzvKCIvugkfFojImdksTxhMgcpENqKWhnl9klnM45133qGsrIx33nknZl+6LvQgATctcD9LyxyzTsR1110HELGUzd+urfGg6zFt2jRgqwXet29fAIqLijgQeAmYB/D444hSTANevf12+Pe/4ZBDIEGglcUfpVTEStT07ds3oQtdU1lZGXVP27dvD2TeAi8vL6dNmzYopWIEKFkLXI9ja6s4mQ5AMkFsCxcuBJxnPihGJVNj4FVVVVEdcPN1aWlp5L5AZu9NtvC2U+nkwM/mcqLFwP3AkcBuwHgR2c1z2PnA527Ch4OBO0Ukr+G33gfAutGjMa/Pxx9/zOOPPx7qc7/97W8D96XrQg+aeuUN3rnsssui3q9IYkzZ27Ca7nL9jJjbTHr37k1DQ0NkDLxXt27w1FNc+MQTvAX8DKgCmDSJcw87jFOAqoEDQ5fN4s/LL78c6XBpysrKogTcr2On7/WWLVuiLFgtHNmwwLUIes8dVoD1wkt6QRJdF5IV8LBBbPq8jY2NgQF98b47Ge/mqlWrorKwmQJeUlISJeCFYIFXVlYiIjz66KO++73tlJ9XMizZtMBHAouVUl8rpeqAJ4FxnmMU0N6dM9oOJ79y5pJUp4D3AbBu9Gi8gvrAAw+E+ly81cDi9dSPOeYYDj/8cN9Gc9OmTQwaNIjf//73QOxYnDeg5Y9//COHHXZY5H3QfG0/vL/bnPKTyAKvrKzk+++/p0tjI7e2bUvprrvCSSexw+rVrMWZg7UDwL338q3rVi/kaWTNBW/DqKPI/SzwW2+9lb322gvYKjwPPvggX3/9NYcccgjPPPNMRKgyHcSmLXCIDToLI8DXXHMNffr04auvvopY4KkIeDIudH3eioqKwA5Npizwb7/9NjLsBE6nS9+LQrTAly5dCjjtjR/e61KQFjjQGzB9lCvcbSb3AYOBVcB84CKlVMxTk8t8ydYCj4/3+uy8886hPhdvPe54jczixYt59dVXueWWW2L2ffrpp3zxxRc8//zzQGzPdvr06XTt2jXKjWo2NuazdOWVV3LooYcGNjrejp0ZxR40Bq5pv2gRZeecwzfA77ZsgVWrYPBgXjrySHYE/sDWLCctIZFLoWA27Pvuu28kPWlRUVHMM3fllVcye/ZsqqurI/fAXBnu+OOPL0gLvLGxkRtvvBFwZjOkI+DJRKHrelJRURFqmVwvyQj4ihUrIsNOGn0vvAJeCBa49toExQaYXp3S0tKEuQjikU0B9yuV964dAcwFegHDgftEpEPMh7KcL9nECnh8Uu3hmpXMS5hG5s0334zZ5rVWvKI3atQo1qxZwzHHHOP7Gf1b6urquPXWW3njjTf44osvfL8/noD7udC7ABfiPNwXPP44nWfMoAR4t0sX+M9/YMECPt5nH7whRs0hkUtzwXyuHn/8cXbbzRnBKyoqihEX7a1ZsGBBzPN44YUXAlunMWVDwFO1wM1nbuXKlWlb4GGj0PV5N23aRGVlJZdeeimvvvpqYNm97WhYAddDT6YFDluTJ2XLAq+urk56mdLZs2ezcuXKiEAHxQaYHZ5vv/2Www8/POVyZlPAVwBmt6kPjqVtciYwXTksBpYCg7JYpoR4H4CW6kJ/4403GDduXNKLAOjGyy8JSTzizc8ME6jjV5m8EbZ+Vqu3d2s2vlos582bF/cc5rEaPwGvqajgSOBpnAf9bmAYsLm0lK+OOYadgNv32w9+8hMQiYpC17SQxUwKAlMMzXFTPwt80CCn2Zk3b17UvhNPPJEjjjgi6hzZCGJL1QI3f+OKFStSFnClFI2NjaFd6LrOrlmzBqUU3bp1ixkmM+u195qFDc777rvvaGxszLkFvu+++0aGXMKy11570adPn6Qs8HieyTBkU8A/AnYRkf5uYNpJwAueY74BDgMQke7AQCAvyWzfe+89zjzzzEhObU1LtcAPPfRQXnjhhaST6ZvrDUP861NfX8+5557LCy+8EDdiPUwj4yfgiSxwP8wGUv8WnYYRghstbwO0ZMkSwEllOGLdOpgwgQeef56XgROAYuAVEY4HTjnoIP53zDEsg6gpL36dGmuBZw6zoTQDrYqLi2OeOS0Q8+bNixIBM/92LlzoyVrgmRJws+MYRsB1fXjjjTcAR4i8HVLzu731Z926deyyyy4899xzcculA017944efdX3whvElqnOlZ76mQp6WlgYAQ+7FHEQoVKpikg34Gygn/kZpdSvgj6jlGoQkUnALJz27BGl1AIROdfdPwW4Afi7iMzHcbn/TimVlyVl9ttvP9/tLdUC18ydOzep43UFKSsro6KiIu71eeKJJ3jggQd44IEHGD16dOBxYS1wpVSURZ2KgJufaWpqorGxkVmzZkW2vfHGG0ydOpWbbropqkGK6tlv2sTQr75iAnAM0GXRIli0iPbAZ8A04FGgqHdvVqxYwT4VFZFKrRNsAL4WuB0DzxxhLHD9POlncPHixVHCYwp4LoLY0rXAi4qKKC0t9c2zHw/zuQsj4DrwSg9ttW3bNuZ5Nr/b+7uWLFnC4sWLOfbYY2lqagocB9arv5kdX4h2oZtWbL7GwM3vffvtt4FwLvR0xr8hfC7054F3gFeB0Capu5Tgy55tU4zXq4Cfhj1fPmipFrgm2QUUkrHAV63aOmISNMUKtjZS8Rqb+vp6Kisro3rbXhd6GKvV25CsWbOGf//735H3v/71rwHYddddmTBhgrOxqYndGhr4KTAGoGtXphhlXdKmDZ0mTmTUPfew0Dj3j7t3Z8WKFWzcuDGSgc5siOIJuLXA08dvChjgm8hFX/fFixdH7cuHBX7ttddG9icSYC3gJSUlrFixgh49eqRlgYcR8Orq6pjOcyIL3HvNzGVZv//+e9+lQs1zeOtDti3wZDF/z3//+18gnAWeLmFd6OVKqd8ppZ5WSj2r/zJWigKmpQq4tiaSfZi8Ah5mnAy2Cvgdd9wRc5yupIkqn9eNnq4FDvDuu+/GNHKtAd55B265BX72M+jcmU+BPwKHACjFf4uKuBL4EXD8wIGM/eijKPGGrQurbNq0ydcC93Oh2zHwzKHv9a9//esocfHmB6iqqooIzJdffhm1z88C/+6777j99tsz0jZUVVXRtm3biCCtXbuWG264IbI/kQDr+tunTx82bNiQURd60O/zyxxWXV0d1wL31m1T8OKt4x3kkWrTpg3FxcUUFxcXRBS6ue7BZ599BvjnbgfHAj/kkENYvHhx2t8b1gJ/SUTGuBb1NsVbb71Fr169OPDAA/NdlIzSo0ePyJKeXtd0PJKxwM19usIeeuihMcfpih5GwPv16xd5HyaIzYvXEti0aROdgf2AUe7fCKC1JwnDMuAN4PU2bXhs1SoO6tYt4oravbGR2bNnx3xXIgH3Nnhz5swpCAtcRErd3A3NGi2O3rWnTQGvr6+PCr7yRkf7WeA3u6vCHXrooYwYMSLl8lVUVFBRUUGXLl0iFrh3mmxYF/p2223Hxo0bqauro3379kkLuCmUiaLQ/bxpI0eOjOqQlpaWxnWhm4LnF9/y3nvvcfLJJ0dSF/tZ4Po3mgL+ySefsGnTpqh6lgv81on3m+/9+uuvU1VVRe/evdlpp53S/t64FriIVIjIZuAiHBGvFpHNxvYWz/jx4znooINCTXtYs2YNs2bNahbpV81GK5lcvMkIuDnWo3vZ3rEs2NrIJHJNZsICHz16NL2B8cBfgWOvvpp1wIvA74D9cRa2/q57dzj/fP48ciR9gf7Ar4BX2ralvm3bqN/d2NgYlSBG06VLF4qKiqiqqvL9/V4LfMSIETkfAxeRN0Wkn/F+JE4AarOnurra141pCrhpsfnlyzfrSatWraI6uumOX3700UcopRg5cmREoLxJPcIKeKdOnairq0vbAg/jQjetZ/3ZgQMHRnVIy8rKQrvQ/QR83rx5LFu2LBIs6hXwsrKyyDazrsyYMYNRo0YF/Mrs4deGeq/9JZdcwgknnMDSpUsD3evJElfAlVLtlVId3P9FSqky433MfO2WTBh32WWXXcbo0aO58sorc1Ci9DDFz2+FsCDMIDaI70I3K6Z+wP0EPKwF7m3cQlvga9bAY4/Br37FS4sWsQIn0OxcoMv331MDvAXchJP3tzNw31lnwX338ZsPP8RMuNqqVauYjkNTU1Ok8TLndLZu3TqyXV+LREFs+rgcWuC3ADNF5NcichMwBWd6Z0HzwQcfJHxe9PiyF1PAzed3hx12iDnWex/MznmyecpNGhsbI6tqZULAt9tuO2pra1NOpWp6fhIJuNcC18+xWf/KysriutDNjpOfgOvOv74efha43ubNMaFd2KmSigGmLfAdd9wxss37fJjv42WmTIZQY+Ai8lqYbS2ZMJVV5wW/7bbbCj563RQhP/dPEMlY4H4Vs0OH2H5f2DHwDz/8MOp9oAWuFMydCzfeCPvsAz16wOmnw9SpFC9bBu3b83bbtlwB/PXUU+mIk4j/amAmsImtFoJXABobG2M6Do2NjZEG6Re/+EVke+vWrSNWtr4WiaaRaXIl4EqpWTh9mbtxnAxjlFIf5+TLk6SxsZH77ruPxYsXs88++wROgdTTqaqrq30jgU0BN59fs3Ol71OvOEu4JrtSmMmzzz7Ls88+S//+/enUqVNGBLyhoYGampqsW+BawKdNmxY1i8XskLZp0yauBW4SL8eD3uftnHfp0iVyj3bcccdINkZNOl5Qs4Oir4FSKq6ho9vQIUOGRLZ5r73pMs+JBS4ibUSkC9BVRDqJSGf3rx9O9rRthkQW+Jo1axhoLECRjFWbD9IV8GQtcE28wK2gSt6uXTtEhHvuuSfqnF4h7bllC1x/PQwcCHvsAddcAx98AKWlMHo03HknzJ4N69dz4c47cxvw+Xbb4TfYqz0GXgHQwmBiCrhpDZgWuG6YE1ngmlwJuIhcA9wLHAhcB7wpIj/LyZcnydSpU7ngggu45pprAHj99ddjjqmrq2Pw4MFMnTo1lAVu1muzc3XHHXfw4YcfMnjw4MDypGOB6yGV6dOnA1sDnpIVcF0H9HNVUVERNY0sG/PAtcANGTKEYcOGRbZ7XejxxsBN4lngQR6pa6+9lhkzZkTeH3300VH7k1nnYMOGDVHJnMz2UP+Gf/zjH3Tq1InPP//c9xz6M2eccQY9e/YEYq+9eT2Cpi0nS6IgtnOAi3HE2uyVb8ZZaazF0qNHj6ikLvEq68aNG6MWlQfnwevcuXNGy7Rx40ZfF3QqmOKXSwvcj0Qu9AMPPJBly5bx+eefs2rVKrp06QI4nZC2wCk4Pt99zMCz7t2dNbTHjoXDDgOPy0o3mEEJZnQHLJ6At2vXjsrKShobGyOV1RRwHSkLW6+3Oc4aZIGLSFzrPMN0BUYqpaqB90RkJvA3YEb8j+UeHbWrswf6zaCorKyksrKStWvXpmWBt23bNrK4SRDpCLgWtP79+wNkxAKHrQKuLdZU5oFrguq2FnBvFrF4Fng871oYC9wr4F27do2bKW3p0qWRa5uI/fffn4ULF0asdrM91Nfggw8+AOD555+PpOQ10Z8ZPXo0q1atYujQoTH3Tt/zefPmRVnq6ZBoDPxupVR/4DKlVH/jb5hS6r6MlKAA8D6oJSUlUdGnfseY+PXKks2jm4hZs2bRqVOnyMIF6WAKDmRPwL2NUdDKZbosQavymOkSI8EvCxdy+scfsxJ4ANgHqC0thdNOc9bRXrkSHnzQEXGf8SYt4EHz07UF7g1sqqurizQuehyrrq4uUjm9FrgWYr0/3nQm8/fmCqXURQAiMtB9v1wplXpy5iyyZs0aYOvz4vWEmNsaGhqStsBNAQ8TRJiOgOt6pJ8vr6cm7Hd4Bby2tjZtF3rYKPREAh7GAu/cuXNKFngi9Pcppfjd734XN2GVXttc42eBa6vab7aJ/kxxcXHkeWvVqlXMvaupqaFbt24ZE28IPw98pYgc5/k7TES2z1hJ8oi3J9+tW7cYCyieUPmNt2RawK+44gqAiPswHbwNX7Zc6N7IzIkTJ/oe19DQwB133MGYMWN892sBF6DNv//tWNS77cYx33xDR+BdHCv8jksvhUcfhcMPhwQWrG4QggQ8yAJvamqKacC+++475syZA0SPbZWUlMS4Mk1hCLp2uRRwETkKZ82Vme774SLiTXlcEOgpVt9+6yxy6GeBmwKejgUeRsDTGQPXAqPvtYhQWloaaIFXV1fz8suxs3j1/GszKCoVAU8miE13or3BY0Eu9CeeeIJp06b5nqtPnz4sXrw4pg1NNAaeCN1Offrpp9x+++2RBE3x0OX1s8D1thkzZtC2bVvmz58f9dlNmzbRoUOHyMyEkpISXwvcb6ZDOoQV8Ak4brVT3L+HgN8A/xWRX2a0RDmmqamJ3XffPWqbn4DH6wl7p1VA5gU8KClAKmRCwBNZ4DqgRhPvwa2vr+fyyy8P3F/eqhXj1q/nM2DP66+H11+H8nKmd+3KMOAAnKhyP0s7iLAWuJ8A6H1+K6yZ98nPFW42ckHPVI7ngF8HjAQ2Aiil5uLMmis4dNZAnb+goaEh0E0Z1gI374F5bJh7ENYCnzNnDp07d454EHQ527RpEzUVrbS01HeKFsDFF1/Mz372s5gc3bqTYj53uQhia9WqVcw1CppGdvLJJ0elKzY588wz+fzzz3nxxRejtmsLvK6ujuLi4kBvVRD6OdArpP3oRz9K+BndtpkZJL2iXltbS1VVFUOHDo1afW3lypWRvA9QeALeBAxWSh2vlDoe2A2oBfbGmT7bbPn+++/55ptvorbtvvvuMQ9MPAvcbw5gpgU8kzc+HQHXFUMLW9B1MRuiHXbYgZkzZwaeM6iRaQdcCvzpueeY9PHH7AZUdu4Mf/oTrFrFNdtvzzzj+GR66brxSXYMHLbeb7+VhLxl8Ap40BijGUWb4zzoDUop7wNckIkMzBXgNN7Fh/Sz3djYGMoCN6czmYKUSRf6bbfdxoYNG6KC7vwac79Og64bX331FRDbrlRVVfkKeLJBbFOmOBmuwwq4Diw1Ma+rtsATRYOfddZZiEiMa9q7ZnayaDF+4QXHmaRd4GE+s2DBgsg2fY/92nhzyuiXX34ZFcQc5ELPl4D3U0qZ606uAXZVSq0HUvcjFQB+42hjx45NygL3izjPtICbvdt0XHcQ+5vTSeQSVMl1p6BPnz4sX76cgw46KPCc3mtbDlyOs7bsHUCnqipWde7ML4G/X301XHIJdOyYUiIXTSILfOPGjTQ2NvoKgL7ffha4t7EJa4Gbn8uxBf6ZiJwMFIvILiJyL/C/eB8QkUdEZI2I+E64FYd7RGSxiMwTkT3TLaRSirfeeitmu7cDZrrQ9UIhXsIIeNA9mD59Otdff33kO8Kg64wpsn6NuZ+XTdf1oPSmOlmNV8DFXa42TFuxcuXKyKpgYaPQ/TqvpqDrIDazHfSzosvKymjfvn2MEWHe11TqQ01NDfPnz+edd94BnOt2zz33RBZf8cNPwL0udD8aGxtZvHhxlICXlJSwatWqqGj4fAr4OyLykoicLiKn4yxu8raItMV1vfkhIqNF5Au3Il8RcMzBIjJXRBaISGwNzTLeBnzgwIEcffTRCS3wmTNnMnz4cM466yxfAQ8KyEqVDRs2RF4nuwCJF+/YYTZc6EHjZH7oDkRrnJR/S4DbccKj/ws8OG4c9559Nv8ANhllT2UxE++xQRa4UirwHoa1wJVSMVPFgixwbwOcQy7ASeleCzyBM8Pk4gSf+TsQvLyckw9nF/dvIk7Su7QQEYYMGRITAex9BrwC7pcww+xUJWuBH3vssZxyyimR7whDWAGPZ4HrMjc0NLBmzZpIToQgF7r+DWEE3OzAmxa4t25XVlZywgkn8OWXXyZcx7q8vJz6+voo76Zf1HhxcTEdOnSIGTow72sqHqna2trIUqfgdEYuuugiDjnkkLifgehEMPEscB3lvnz5cmpra2MEfPHixVGR8PkU8PNxKu1wYA/gMeB8pdQWpZTvFRGRYpypZkfiuNzHi8hunmO2A/4CHK2U+hHOUso5xSvgCxYsoLy8PKEF/uijj/Lpp5/y8MMP+yalz7QFbuZI1mvkpkougtiSEfDlixdzLrAYuAvoAXwIHIGTm3zJwIF0MOa5Bv2OTFrg4EQ9+zWAv//974HULHDzfSFY4EqpKqXUZKXUXkqpEe7ruDltlVJvA/F6qOOAx5TD+8B2IpLYhxkCfc29i/F8/vnnrFy5MvJM1NbWUltb6yvg6brQk3VP6zpjfm+qAr5lyxZGjBjB3nvvDfgLuH4d1gI3xUkvEAKxdfuJJ57gmWee4b///W/Cet2mTRvq6uqiBDxoWm2mLPBJkyYxdOhQwLm+5tS1MIuc1NbWRjodAwYMAIIt8KOPPjpy3fTwxi677BLZ7/f85E3A3Yr4jFLqEqXUxe7rRONkI4HFSqmv3YURnsSp2CYnA9OVUt+437OGHONtwPXD6xeFvnz5cn71q1/xxRdfRAVo6aAak0wmclFKRQm4Hvf75ptvmDBhAl988UVS58tFEFtYAT8S+PNrr/FXoA/wCXAUTnCFXuTTdxoZqS1mokkUhQ5OpyleA+gnDvEE3JtLO0jAczEGLiIvisgLQX9pnr438K3xfoW7za8cE0VktojM9i7k4Yd+DnRQkm7of/SjH9G/f/9IvdTPdKoCHk80kp1jreuMKSipCnhlZWUkCt88T5AFHqaMZlul8/dDrICbTX4iC7y0tJTa2tooAQ+6ph06dIhpg1IZA7/33nv5+GMnXUlNTU1UZL2fQVVbWxv122tqaiLtgc41EWSB77TTTmzYsIHGxsaIR7R3762PuF+SprwJuDtt7CsR2ZTEYiZhKvGuQCd3QYU5InJawPcnVcnvu+8+/vnPfzJt2jTuvffeuMcGNeBeF3pDQwOXX345U6dOZeTIkVGV0U/Ag1yzqbBly5aoDoMWsVNOOYVHHnnEd4WveGgB1z1ivyj6IJIVcL/UqQCDcBaKfxkYUFfHl8DPgR8DL3mObd26daTh1hW9vr4+pnFKxQKPF5z4ww8/RDXw3mfCbzGLkpISunXrBsCoUaOiBNxbPh0X0LNnz3xY4HcAd+KEGlTjzCx5CKgE0ksmDX6rfPh2+JVSD7qW/wh93eKhBU3Ppa2qqooIS319feTZjjfMkSkLPBUB/+9//8t5551HdXV1SgJu1lWlFHV1dZSUlGTEhb5gwQK6du2acAwcEqcCLS0tpa6uLmoYKmjxl/bt28e0QamOgRcXF9OqVatIXnhw6rqfbowYMSIq30dtbW1ED/SUwsbGRl599VWWL18e9dz07t07kl5VZ9Uzn1/vUBo4Ap7J2UQQ3oV+O46bu2MSi5mEqcStcNrsn+F4TK8RkV1jPpREJf/mm2+44IILOPXUUznllFO48MIL444Zmw+OuaKUnwWuH8bNmzdHCap3DWHI7KLt3vVydZkXLVoERE97CIM3+UMya+iGDWILtMDXr+duYD6O9b0RJ9J8d+BZnAfkxRdfjBqHKikpibHA/YIPU7HA42Fa4I899ljEPafR19973sWLF7No0SIGDRoU1RP39sqHDh3KwoUL+eKLL3Iu4Eqpt5RSbwF7KKV+oZR60f07GWfkIh1WAH2N932A5B7SAHRDrKd+VlVVRXXCvQKeyAI3O+Jh74G+j3V1dUyZMsU3ScnkyZMjayOYAj5q1CimTJlCRUVFKAHXnQTTAtc0NjbS0NBASUmJb9nDCri2QrWYeQX8H//4R8ywXSIBb926NY2NjVHXJqitSGSBJ+uRatOmTcQCLy0tpbi4OGoKn8a76ImfgDc0NESizU3t6dGjB+C0zT/88EOUl9BbZv1M5nMM/Hul1MLEh0URphKvAGa6Y+lrgbeBYaSBn5j6WcgafcMGDx7Mv/71r8h2vzFwM4DG74GArYsfZNIC97rjtYglOzdSoyuHmb0pLCm70Ovr4d57YeeduRCndzcFJ8rpT0RPZejbt2/UvM3GxsaMC3i8nrC+rr///e8j12rIkCExDexPfvKTmM/qoBwd0BLPAgcYNGgQ7du3z2cUejcRGaDfiEh/ILEpHJ8XgNPcaPR9gE1KqfQiL120gJsWuFkXkxXwdCzwRx55hPPOO4877rgj5pibb76Z0047Leo7amtrI1bohg0bQkehr1+/PhLEahocdXV11NfXh7LAN23axAEHHOC7UpduX7RomQK+efNmfvnLX9K3b1+mTp0a+Yzf7AwTvyDRpqYmHn/8cR5++OGoY70WeH19fVTHI9n60KZNm0gMhI6qNy3woI6EKeC6bTTbN53CF7a62NetW8fatWvp2rVrlIfB7Kzr31ZbW5s3AZ8tIk+JyHgzG1uCz3wE7CIi/UWkFDgJp2KbPA8cICKtRKQcZ+gz2Y5CFH5pTf3mj86fP5+ZM2dGbtjYsWOjelCJotDNqQaaP/7xj7zyyitAZgXcO/6SioArpXj55ZdZtGiRb/rFsOdIKYht5kwYNgwuvBA2bOA1nEjI84C1Pp/1Nrq1tbUxAq6F1XTRpxKF7oceWli7dm0kzaLXyhk1ahQXXnhhzGe9bsJEAu5XnhzPA78EZwGTN0XkTeANEkShi8gTwHvAQBFZISITRORcETnXPeRl4GucuMSHgMRpsEKiO8i6gzdx4kQee+yxyP5kBdzEbHTDCLheq9prgXvrhGmB6+9ev359aBd6ly5dIhHVpvhpofMKuC67KeAzZszg3Xff5dprr435jk2bNlFSUhKp02YUuukCf//99yOvUxXwU089lREjRkQd67XAvamKkxXw1q1bx1jgpoAHxfzU1tZGymta4HqZ2cmTJ0eONQX8hx9+wOsZNp8frTHZsMATLWai6QBUAT81tilgetAHlFINIjIJmAUUA48opRboSq6UmqKUWugunjAPJ1nM35RSaY2/+Qmrn4CPHz+ehQsXRtJ7esfKvBb4l19+GTUtwcs555zDZZddFgmWyKQLPRMC/ve//51f/epXDBs2jNNPPx1IXsB1Yobi4uLIA+pngc+ZM4cPP/yQgcCE6dPh1ludHTvtBHfeyU+OOSbu93jHzU0B15VBN9Tbb799pEJmygLfZZddYoYtSktLoxqSCRMmhBrPiudC957f73W2UUrNFJFdcMISABYppeI+EEqp8Qn2K5yZKxnnpZde4qOPPorKevWHP/wh8lqLaSoCbgZphQli864EpjFFb+DAgVEWWDwLPN4YuMb0NgRZ4LoDqgX8rbfeitR5vyFIvUiSLpsZhR40myYVAdfn9w6raQFXSiEikc/06NGDJUuWpGyBFxcX07p1a5qamqLa4/Xr1/suClVbWxt5BkwBFxFOO+00DjjggMix+hpv2LCBH374IWaKnNkW6fufNwFXSp2ZysmVUjpOydw2xfP+j8AfUzm/H2Et8NWrV9PU1MTKlSuBxAKuK0AQ5513HrDVtZwLF3pQUIgfN910E+DkBtaNW7ICbs5n1dfHK+Bbtmzh8BEj+D3wf0DJl19Chw7O0p4XXABxRG/o0KFMnjw5qnHW36srsXZHagFv3759ZMwrnTHw1q1bR37fuHHj6N+/f1T+5pKSkqjzexe7CSIVCzzHLnRw4lD64bQHw0QEpdRj8T+SH/r06UOfPn18M3y1b98+8lzoOpKMgJuWc7x75W0bvIJkiqw5pGcKeENDQygBj1c3gwRcZx3TAj5x4sTIWLpfh3vTpk1RnRDThZ4JAd9+++0ZN24cF110ERB7vdq3b09TU1MkKY0W2+7du7NkyZKUx8B1uldvJ2j9+vWRaWImZuCb6UKvra2ldevWUb9Z/776+nrWrl1Lv379os5ldtYrKytRSuU1Cn1XEXlNZ14SkaEicnVGS5IhjvGx7pYuXRqzTQusHlvyCniy48s6qEHnN66rq0trtSITLbha2FKxwM1OgM6nnGwQmyngvpGqDQ3U3303X+EkZCkGvjjoIPjqK7jssrjiDc5SfCeeeKLv95q5nVetWhWZnlJeXh65d+lY4N55tFOnTo1xS5rvUxHwQrTAReRxnIj0UcBe7t+IuB8qAPw6r6aAa1IV8Hj3oKioKHBBFIgeKzUxXegQmx450wKu03nuuefWRHh+Ab3eZYozLeCtW7fmwQcfjAx7+FngsNW1rdtmvURzJlzoJkG/KciF7ifg5kwEPxe6Wdefe+456uvraWpqytsY+EPAlbixRkqpeThj2gXHpSedxM89q1p5XdC6VwVbhS2RBZ4I7UIRkUijkSk3ui5/nz59gNQE3AwS0XmH9UOaEQvcHefebvJkuuAMpO4BzDv/fPBY1EEECXC3bt0ilXjz5s307t2b445zQjDKyspSEnBvw242gMXFxZSWlka5xUpKShg8eHDkfTYt8ByPgY8A9ldK/VopdYH7Fzu43wzQ+c9NEk0jM2lqagr9LJkNtHcMPCjA1bTAIbYT6SdU8fIUBI2Bm7+hvr4+Ijzbb799TO54cNrAbFrg3mvp/d3eKaK63dRGUaoudC3g3vsd7/54o9APPvhgNmzYECjgNTU1bNq0KSZJjWm83Xnnndx///2RsmWSsApQrpT60LMtM+ZlprnwQv45axYvA5OAnYitBKZ7O8gCT1bAzeO1G/2HH35ImMw/DLqT0bevE9SfrICbriHYmsnNdKGHKaduHE0B37WuDkaPhiOPhM8/p65vX44FDsUJbEg03cTEW9Fff/11zjjjDC677LLIPu9wQnl5eUx2rjB4rQDzs/q6miJfUlLCvvvuG3kfVsDDjoGHPS4LfIaT/K7ZU11dnZYFXlxczIcffshdd92VsG6Zz6q3AxxWwMNEocfLe2Fa4H7l1QJeV1fHgAEDGDt2rK+AV1VVRV2nTAp4ZWVlws6Qbnt1O22OgevfkQxBFrgW2aBpxX4Cbp7TT8B1Wb3Xw+u2f/fdd4HMC3jYlmKtiOyEO49bRH4OZGRaSMbZtInSxkaOxJlnDLDk66/h4ovhyCNp2H//KAHXASfputBNdGXYeeedGT9+fOBauGFJ1wIPStTSrl07iouLo+aTxmPUKGd6cH19PcVr1zIFOGv9epg1C9WxI02TJ/PpvvvynBHskY6AH3LIIZHcxUHT1crKyrj00kuZNWtWZGpRGLyBcmbF0hXefCZKSkrYZ599Iu8zbYGbDXsysQ0ZoCvwuYh8iJMPHQCl1NG5LEQmqKmpibGGwwr4cccdx7hx42jVqlWUpyWIVC3wZF3o5rl23HFHvvvuu0iHQQt4UIevpKSE6upq6urqaN26NT179uT777+nsbEx6rn0rtoWFIVuEiaRCzgC5xXDoGO16GXCAq+srIyxwLfbbjtqa2sjAm6Ot8NWAS8pKYn5fa1bt466X95ARm8ZvcOnejZLvgT8fOBBYJCIrMTJ3nRKRkuSKV59lVsuvpiFd9/NGJzsMDs1NsLdd8Pdd1MLtNp7b87Dia5b7vbYvQ16WAv8sMMO4xe/+EXUNrPRiLeYfVi0gHst8LANfZCA6xzKVVVVUePMfiil+O6772gHnLlqFV323ptzcN0wkyZx5tKlPPrb38Z8Lh0BD7OvrKyM008/PWGQoZd4Fri+914LvHv37kyaNImamhpfYfAjrIDnkevyXYBMUVdXF9U5Nz1FJn4CfssttyTl+TCP9VrgQWmUwwq4G0QIRAv4TjvtxPDhwyNLz+o4m6DnqqSkhM2bN0eCQLfffnsaGxvZsGFD1PCQN7gqE1Houj5t2bLFdxGTKVOmRNozr4CnOwbul8hF/66ePXtGvBBlZWVRAr5gwQIeffRR2rdvH/PcBFngQQLutcDzKuBKqa+Bn7irjxUppSpE5GKctScKju+Bx92/YmAf4J0rr+STW25hT6DtBx/wF/fYz4FXgO4LFsCQIZFAq7ACbi7qrjFvdJjFPBKhGwTTAj/77LN9F1HxI4yAJwpkq1izht8AV+Bm+diyhReB69u2Zfa99/JoQGcinoB718yNV1GD9iXTQTDx3hezYgW50IGEqXm9pOIaz8SwS1jcbGwtBlM8gzpZfgKe7JBZPAH3SzLUvn37hC50/Yx36NAh0mn3Lt6jrVKIHgMH+MUvfhG1bK/pQi8tLY1YwhUVFVGiGmSBNzU1BVrg6brQzznnnKhyguMNPeWUUyIJs1K1wPWMkrq6Otq0aRP5PcXFxXTr1i1igeugxSuuuILbb7+dRx99FHCuj7eupivgmnyNgQPgZkzTT9RvMlqSDGI+dKVlZfwXqJo8mR8DvYA/7747zwCbcJZJuxToe8YZ0LUrHHMMPPggXX0qYVjMSheUCzwZ/ARcr9+bbHlMzFWMAgPZamvh/vspHzqUO3HEe8WOO1L10kscDSwifk7oeALrfejDJM/w+w2pEMYC9xP1ZEnFAs+FgOv1DHz+wqxzULCYy+4GPXt+9zLZuAPzvnpd6H4C3qtXrxgL3NvB0PUhqNNfXV0d9ZyaY+AATz75ZGQ6K0QLeOvWrWOivc3y+z3rTU1NvmliIbje3XXXXdx8882R35LIswdbf/eDDz7ItGnTuPpqZ4KTtsAzkUoVtlrgn332GevWraOuro5LL72UW265JSb+wPs8tGnTxtdLob0FQQK+//77M27c1jW88irgHnI6UJcMl19+OR06dOCuu+6KjGOOHDkScAbu3xwwgBNwBv8OAm4Dmn70I6ishOefh3PO4c/PPss84Fb3GPN2JmrMzWkkyeQZ92Pz5s3MmzcPEYnk1m5oaEhqudIgAS8vL4+qaFFs3Ai33Qb9+8OkSbRas4Y5wKQBA+izdCm4Y9Px3Gz6O4LwVppEY8R+jWymLHA/Ac/EwgNhp5HlGr2egc9fmHUOCoIHH3wwZpvZeQ9qLP2s7WQtcDMmw1t3/ERPR0abFrgWKI1pgUNsfbj++utjLP/GxsbAeqMXFNFCps87fPhwnnzyychx8SzwoM55kIBfdNFFXHnllUnNqtDHetsRPW02VRe6mUoVnHtcXl7OunXrOOqooyLXBWLrup8LXd+77t27IyIUFxcntMAvueQS9t9//6iyZZJ0BDx3fr4kGTJkCBs2bOCiiy6KCLiZ4EX3QBtwkq9PLi5G5s+Hb76BBx6AY46hplUrhgC/A97ESfn5FPBLoF+C8U/TCkhHwGtqahg0aFBkEYTu3btHKk4yVpoWcO9YlK8F/s03cOml0LcvXHEFrF4NQ4fyyTXXMAL4YsAAEIkKdIkXKesnsHfeeSfgrBpnEraie39DKsSbRqZ/WybmYzeDMfBmy9lnn82ECROitpl1L6gDlgkL3KzXfi5087t33HHHiFvXFHBvwiL9GT8BX7VqFUcffXTU86TFI+i50t+phczstOoMlA0NDTFJZdIRcE0yAq736+yHRUVFiAhlZWWMGTMmYnyFJSgKvbi4mCOOOAKA9957j/r6el8Bf/31131d6ACvvfYac+bMAZxnJpGAmylqIccCHs/NhuONLlj8xjE1XsHp2LGjU7H69oWJE+Ff/+LS00/nMJwMF58DHYETgceAryoqeBdnPJj58yGOmKYj4B9++GFkvOZXv/oVkJrFqQXc2+PXAt4KaP3KK/CznzkW95/+5HgjDjvMmd89dy4LBzmZNnUOYHMeeFDUbVB5f/Ob31BVVcWxxx4btT1sRU90/jAUFRVFRZn7WeCZEPBCHwNv7ujG0S81ZjICnqwFbtZrPxf6yJEjmTt3Lg0NDSxdujRqXFbjFfBOnTpRUlISme5kPn9a1M1ynnDCCUBiAfe60M3P6LIHRaFnQsAT1SOvBa4tZRFhxowZjB8fN3NvDG3btmXLli0xFnirVq046aSTePnlrclBvQI+evRoDjnkEF8LHODQQw+NrPtdUlISSsBN0c6pgCdwsxWOPzAOfo2hV8D9xqlVaSmvA5cDPwIGABfgJHZvBPYHbgEYOjTiZmbmTKip4bLLLoucJx0B18I7cODASJR1UMXRveWLL76YWbNm+Z7HK+Adly7lN2vX8g3Q75JL4OWXoVUrOPlkmDMHXn0VjjgCRCKVyyvgTU1NcS3weNHjyYyBB+1P1QKHaDe63/iWtcALH33/vYk0IPj+ZcICN4OU/FzoZWVlDBs2jOLiYkQkIqam2HsF/LTTTmP27NmRYDP9vGhB06+9JOtCNz+jyxMUhR4UjBV2Glm88nmP1d6ToqKi0LM8/OjYsSONjY1s3LgxaiaC/m9a9FqY9X+dUS3IAjeJZ4GfffbZAAwbNix/At4S8MtJHkbAvZV8KXAfMBo4dNgwjgMeASfL2PLlcP/9TjKTLl24/csvWX3jjfTA6cUGzWE2UUpxyy238J///CeyTScVGDZsWMT1FlRx6urqeOqpp7j77rsZPXp01L6IgG+/PcOAG4EvgT5HHcWZ331HT6Bqxx3hzjt57v77efKoo8BIvwjECLguj1IqrgUej+Li4qgGKWxP3SSdChEk4Km60A888MCYbVbAs0s8Ac+mBR5PwKurq32TtGzZsiXKovWKVJs2bRg6dGjEM7X33nsDTvvkXWjEJKjz4XWh+wm4DrjL1Bi4JhUXuqa2tjZlzxpsTcKyYcOGGBc6RHtrdDl33nlnYGunKsgCN4kn4McffzxKKXr16tV8BVxERovIFyKyWESuiHPcXiLS6CaIySh+AVxeq9xPwONV6Po2bfgXMAGcMeIPPoCrr4bhw6GqCnnhBXpcfTWrgQ8B9dvfwowZTmBYAK+99hpXXXUVP/3pTyPbtICbrt6gilNTUxMlpBUVFdx22218O3s2Az74gKnAX198kbnAZJx1uJu6duWFnj0ZBbz/8MNsPussjj37bMaPHx+TBlYHB+mGUoxx8KDcz2FIp6KH+Uw8TAFPN4htv/32Y+bMmTHbCzWIraWghc0vZWo2x8DNNsTPhe6tp61bt45J6RyUx+GEE06gpqaGPfbYA4hun5KxwE0Xemlpqe+0SD8LPNcC7tdRTscC9wq0GcRm/je/Wydp0r83XQvcJJtj4FlrUUSkGLgfOBxYAXwkIi8opT73Oe42HO90xomXS1iTrIBHPZBFRTBypPN3ww2wYoUj1i++SPWMGewFzpjyn/4EIo7LfeRIZ33s4cOduecdOviumKY7H2bjFNQzra2pYbvKSn4C7A58sccenLhkCX2Bk/VBW7awGmcR9qeBmcuX85fjjuO/q1ezafNmzjrrrMj5li1bFpmPCVvdW6alU1RURFNTU8zSm8nQunXriBWQioCnI4pBAp6KBT5ixAjfRi3sGtMmdgw8PHour1+9yKYFrtHzu03CCng8zMxf6Qi4zg9vRlGbn8mWBe63PnkQfvUsExa4PrefcHu/W8+f1xkW07XATUzRzsTMlqgyZPRs0YwEFrtJYBCRJ4FxODFhJhcAz+KsgpRxwizU4ZfqL95UsbgPZJ8+cM45cM457NqlC7uvX89dxx1H7yVLaLdwIXz6qfNn0qULR5eXsx3wHcB110GnTgx4+21OAfZbvhyeegrq6vj52rWMxFmgvSdOJGFvoNvOO3Pmli1E1n1dsgSACuCbXr2YumoVe199NSfeeGPk95UYUejTpk3jmWeeiRTp66+/jhJwP29AcXExDQ0NvvNew5KuBZ6OgJtJMdIdA4+XX1tjLfDMozs7foKSTQtc06lTJ98xcD8Xujn/Wq/MFQ9vVDrA+eefz9NPPx21wmK8MXBwDIGgZ1nX3TAW+KOPPsqPf/xjXnzxxaSGu1Kp1+mOgZvl8FrgJqaAv/7665H1DvzmgfuVW+foCCvgzcYCx9GVb433K4C9zQNEpDdE1r7IioAfcsghvPHGG3GPSdYCD1vZG1u3ZiYwaPp0AFRVFXz0EXzyCcydS8OcOciiRRSvW0ePdes4UX/w+usBONr94/nnnT8gcJmoLVuoatuW2Vu2sBD4vLyc16uq+BwYf8gh/POf/+TRXXaJHK6naugHT6f60yxxOwAa3dM0K5a+RkHJHsKQrqstVcsJnPSZQ4YMYa+99uLNN9+MOWcyveWgcqQyBj506NDQ37utoy1w05ui8/snI+CpJurp1KlTzHBTkAWuy/roo49y6qmnJjy3buxNQerbty8LFiyIslDjWeBA1Hxnje5MhIlCP/jgg2lsbGTcuHF07NgxVOcjlSh0k3SELsgCN9ttPbxgPiN63QXvsfp4L6lY4M1JwP0GeLy+wbuA3ymlGuPl9RaRicBEgB122CGpQkybNo1BgwbFdV/5ZT6KJwzDhw+PCjYLwntTVZs2yIEHghvsNGTwYL6or+eVRx5h6Rtv8M7jj9MNOG3sWP770kt0xEkFu9eee7LrTjtBaSmvvf8+c5csoQInKc0q9/8DM2dyxR13bE3t6knSD9EPj54Trh/MqHW9Icalr4MBzYZDV/Swy5H6kU8LvF+/flx11VUAvP3225Ht+ncNGDAg9LmCypHMNLJFixYxY8YMJk2aFPp7t3X0c2vmOGjfvj0bN24MHYWuI8VToVOnTlFzzyFYwDVlZWWhOgx+FjiEz2DoXePeRAu4nwVuRqE3NDSw66678sADDyQsr4m+pkqpnMe2hLHAtYAHPSNhXej6+Qsr4Jn2wmVTwFcAfY33fXD0xmQE8KRbeboCY0SkQSn1nHmQUupBnMVUGDFiRFIDhD169OD666/n4osvDjzGb7wlqIK9+uqr7LPPPpSWliacn+i9qXo+pmbRokUA3Pvss3Tp0oVp7vbPqqt5zfjc1AsuYNczzgDgibPO4mGPdQwwbsIEVq5c6VsOcx1vjXYf6226gzN06FDmzZsX5aKDrQKeaQvcLFOinnqmBdzEvN/6dx133HHccMMNUfmlg8iEBT5w4EAGDhwYprgWF+1CNwOX2rVrF5lC5IefgKdKp06dop7/hoYGGhsb4wp4WCvMbwwcYssbRsB13dpjjz345JNPqKqqoqGhIa4FrqeRpVLHtHcvTCpVnWXRdNenU6+9QWx+Y+D62gS1OWEtcPN7gkhnqmsishmF/hGwi4j0F5FS4CTgBfMApVR/pVQ/pVQ/4Bng117xzgSJAiL8LrBfpd5777057LDDaNu2LTfeeGNCV5L3pppT2sxApRkzZvDYY49F3nvHlMNEoQeJN4QTcD2W069fv8j5TMtCu4ryaYH7VZJMCbh5v/XroqIirr76ag4wlkcNwjun1++8dhpZ5tHJTMx804nWh/d2ktIVcPP597NovWUJK+D6M4mW40xGwD/++GP+/Oc/A87YeJggtlTrmP7OMM+9t26nU6/NNiqeBe73vZqwFrj5PUFk2m1ukjUBV0o1AJNwossXAk8rpRaIyLkicm62vtePRAERfhc4mWjPILw31Rwrizf1ymvRholCj0cYAddl01mGPv74Yzp37hwR9mQs8HHjxnHCCSfw1luJF7rKpwvdxLTKkhkPffHFFzn99NM591z/R9oGsWWXH//4xyil2H333SPbdH0JEvCzzjorY/fFK+A6P3s2LXAviYLYvN9vLmriN41MDydoAU+146mva5jPe4cw0rkn5rkSWeBhvTR+x5m/K18CntUWRSn1Ms6y2+a2KQHHnpGtcqRigWciUjWeBe43bUwTT8BTccf4Cbge3/WWUa94pvn000856KCDkhLwZFZKS2a6id84ZTZd6GEYO3YsY8eODdyfyjQyS3okEnDt2r3hhhu4/vrr07LAy8vLqampiXjUdBbGTAh40Bi4l3iJXDRmPdceis2bN/ta4CKCiKRtgevnPcxz7834lm5d0SuxBVng+h6EnWmyzVnghUS+LHDvTTct8HgCnooLPR6mgD/44IMcdNBBXHTRRb7n69mzZ9R7nUUujAu9uLiY22+/Pamy+WWHCsIvo12+BTwR1gLPPbo+x3ueiouLI/c81QA22Fp/amtro0TI26akEomcrgUeJOC6DldXV/ta4ODUBx2Fnupzq13/YUTSO9883bpyzz33cMwxx3DggQfGtcDDsGDBgoTePyvgWSRTY+CZtMDjJT+JJ+BhXOgnnXRS1HtTwM8++2zefPPNSKPg/e3ejFbr16+noaGBuro6ioqKfDOW6fO/+uqrXH755QnLZ6JzD0NiAfdLKpEpsU3VhZ4IOwaee3S9S/Rs6P3pCLg2DrZs2RJVbzNhgetzZGIM3O91bW2trwUOWwW8sbExbQEP89x7Z8GkK+Dnnnsu//rXv9hpp50Cp5FBuPgdMx9GUBnjlTeT7UnMubN25gLCz3Vi4rfN76KnOwZuCnjQGt1AzLSUZC1wPY6t0b1sv16nt0PgPf+6deui3OdmY+e1wFMRKDP4K1FP3U/ArQWeexKlSBaRg0Vkk4jMdf+uzUW59LObCwGfN28eL774YqT+VFVVRXnYvM9qKgK+xx57cNNNN0WlV/YjzBi4+Vp/f01NDRUVFZSUlMSco7i4OLIQUy4E3Esm64qfC12nTvVbxS4suoylpaVpdQLTYZsQcLN3Z1p8mrAWeCaD2MysTF68vUKd3g8SW+CDBw+OiY7X7no/Aff+dm/jsm7dOl/3OcSOgadS6ZKxwP1WRip0ATfLl01XWq4wUiQfCewGjBcRPxPlHaXUcPfvD7kom36W9TVPdB/TcaEPGTKEsWPHBlrgXi9aKgLeqlUrrrrqKt8hwEi+B5J3oevvr62tZcOGDXTq1CnmGhQVFaUt4FocUxHwTHqr/Fzot912G//73/+igh+TRZcxE6sWpso2IeBDhw6lqKiIvfbayzdpS1gLPNkH2VspElngZmpPE28SiCCOOOII5s+fH5XUIug8mmQtcBOvgKdS6dJ1oWdjGlm2XOiJXKHNhEiKZKVUHaBTJOedX/ziF8DW5zysBZ4OpoDrju5+++0XkyMiFQGPx2GHHRbxzKXqQq+pqYkIuJdMCHg6z3u2LfCSkpJI2tRUMS3wfLFNCHi7du2orKzkvffe87Vgs2WBe6Oz/QT8b3/7G7W1tVRUVESWEfSW3WTQoEGIiK/rZ/vtt49aO9hLuha4V8Az4UJPRsCbexBbomCkZoJfiuTePsftKyKfisgrIhKYMEFEJorIbBGZHW9d+TDcc889rFixIvKcJrqP+n6EWfAoCNOFrq3uK6+8MuZZzrSAQ+JpWoks8LACnqo1rAU8nrcxiEwKeLzFTBIxZsyYwH1WwHNIWVlZoLj5VShvNDYk/1B5Bdx0oWsB79KlC6WlpbRr1863bHr9bc3gwYNZvXo1c+bMiTlWi2FQhfP7nX4W+AUXXBB5v379et80qrC1QmjLOJWKbv6+RBWsubvQW4iAh0mR/DGwo1JqGHAv8FzQyZRSDyqlRiilRvgNbyVDq1at6N27d2TILNF97NWrF5BeJkE/CzzeymhFRUUZe2aTEXC/DsTkyZN59dVXAwVcd8zTtcCTWYVNk20LPAyNjY28+OKLgfuTEfCXX36Zjz76KKnvD8M2I+CasBb4McccEzNeng0L3HTp+411+bnDu3fvzoABA1i2bBlTp06NbNflHTRokG95/B40Pwv8z3/+cyT3cTwXutfVnIqA+zUeQTT3KPQW4kJPmCJZKbVZKVXpvn4ZKBER/3GdLKA9NYlEwBvsmQq6TpgWeLyV0dq0aZOxgCf9+4KeV7O+686KWZZvvvkG8K+DmRwDz7eA+0Whh6GoqChuW5CMgB955JGMGDEiqe8PgxVwgl3oy5Yt49JLL41sS1agvIEsfgJuWmV+ZTvzzDNjtml23HFHunfvHnmvI7q33357Pv/cu2qrf0X3/nbtqdh///0BJyI+URCbJhUBT6YRbe5R6C3EAk+YIllEeoirUiIyEqedWZerAurnJKwFng66ToS1wDMZyKiffb+hJfM7wVnFTOMtg5+AZyIK/eSTT2bYsGGRnBNh0Pcsk0FsqVrgiSiEILaWMa8lCfys3KBKVV5ezsiRIyPvs+FCj2eBz5gxg9GjR8f9DvMzpsdg8ODBocrobWz0tTAtC11W73i8t0KkUtHbtWvHxx9/HKphswKef5RSDSKiUyQXA4/oFMnu/inAz4HzRKQBqAZOUmby/yyjBS3RfQwK9kwGs57oZyiRBZ4pbrrpJk4//fTAPPyJXOiabLnQu3Xrxty5c5P6THl5ORUVFQUzBh4POwaeB0aNGhWzLV5kdzqpMINc6EuWLOHLL78EggW8Xbt2jBkzJqE7N0jAw+JngUN0cI4OLvI2eJlwoYMz3zVMhyNXAp4tF7rfDIjmiFLqZaXUrkqpnZRSN7nbpug0yUqp+5RSP1JKDVNK7aOU+l8uyxdWwDNxn5MdA8+kgJ922mkopQLbr6BsY9566idAmXChp4J3KmAmyJYFnkyu92yxzVngEyZMABwxOP/884H4afXSScThFXAd7Tps2LDINrNRNyu+19oNwjwuqCceD29jo6+Fn4B7OwiZcKEnw/77788zzzwTtS2bq5FlAt0IQnLpGy2pE1bAM4HpQtfPYq4s8EQE/X7vGLxflHgmotBTQZetOVng+Yxt2eYEvLi4mIkTJ/LKK69EtsXriZsPb7IP8vDhw5k5c2bkva4o5li4KcBeCzwMmbTAzQAbvX3Lli289pqzOrm3g5ApCzwsDzzwAHvuuSezZs2KrHRW6C50815bcsPtt99OQ0OD77RML6+99lrgGHIYWrVqRWlpKVVVVZHnP1cWeCJ0Xb744ovjHrfDDjvEbGtoaOC9994DcmuB65GWTLYl+jpkS8C9M4VySVZd6CFSLp4iIvPcv/+JyDC/82QDP3esH2agS7IP1dSpU7n88st5/PHHAf9oTFM4TDEO6241c5qHFX0Ts7ExG5fi4uJIo/PBBx8A+bfAO3fuzJVXXhkVkFPoLnQr4LmnT58+PP3006HWDTj00EM5/PDD0/q+8vLyqExsfiKdDwEHRxD1+t9+XHDBBRFPpIm53HEuBPyss86ivLw8IuCZ/M5snBO2tnedO3fO6HmTIWsCHjLl4lLgIKXUUOAG4MFslcdLWAHv379/5HWyPbgePXpw++23R1zmGzduJF4sTyou9A4dOnDLLbdw1113xbjG3n777YSfN0XX+4B7G8BEAp6rnno23N3WArekStu2bSO50MvKynynieVLwBMxduzYhB3WXNTrhx56KKquZEPAM22B6+vWIgWcECkXlVL/U0rplTvex5lTmhPCCrg5vrF+/fqUvstMaGBOLbv//vujjkvFhQ5wxRVXMHHixJjtBxxwAKeeemro83iD1BIJuNdqzeaqO0Fkak5ttgTcjnu3fNq2bRuxwBMFlBWagCdaahny40LPxndmWsB10GJLdaGHTbmomQC84rcjk+kWNancTJ34IFnMhAZ6HHz77bfn17/+ddRxqVjgiUhmioPpbfCWB+ILeHNfaStbLvTzzz+fMWPG8NRTT2XsnJbCQrvQq6qqAt32rVq1oqioqOAEPEw709wFPFsWuB4STWdFs3TJ5p0Jk3LROVDkEBwBj53jhZNuEde9PmLEiIzMJx07diyHHnpownnWJqnmTG7Xrh0iQmVlZcSK95sTnKoFHo8wPWxNIgH3uoqWLFkSeW1GW2ebbEwpzpYF3qFDB2bMmJGx81kKj/Lycqqrq+Na4OBY4YUm4EHtwwcffMDee+8NNP8gNk2mBVwbY/nM75BNCzxhykUAERkK/A0Yp5TKWbam0tJSXnvtNS6//PKEx06fPp2dd96Z2267LaXvKioqirjRV6xYAfhPPciGgE+ePJlBgwbFuOv9GDBgQNR784E/9dRTYyzT5cuXZ6SMyZINAc/WNDJLy6esrIzq6uq4Fjg0LwE3E1jlY55zNizwTA/x+WXTzDXZ7FpFUi4CK3FSLp5sHiAiOwDTgV8qpb7MYlnS4thjjw01JSUeHTt2ZOPGjRE3vN9NN3vvmRLw7t27s3DhwrjHXHzxxTz33HOROfIac3qNjqRvqWTLhW5p+ZSVlUVSDsezwAcPHsyuu+6aw5IlZlsYA9fnzFS8jEa70FukBa6UagB0ysWFwNM65aJOuwhcC3QB/iIic0VkdrbKk2+0xf3tt05YgN9NLy4ujvTQMyXgYfjzn//M119/HTOWkyjQ7w9/+EMWSxVMc3KhW1o+bdq0ibjQ41ng//vf//jd736Xw5IlZlsS8Eyz5557AplZFCdVsmpqhEi5eJZSqpNSarj7l/nlWgoELY7xLHDYOu6c67Sbfr3TRAJ+zTXX0KdPziYOZBXz91sL3JIMYV3ohUiYzmpLGQPPtAV+9913M3fu3Ly2gbalyhHaAk8k4LpHnEsLPIgwU+3y4T7K9roYma7olpaNFvBEQWzNlXzMMMnGd2a6Xrdp0yYqLXY+sAKeI8K40KGwBLy+vj7hMfmwOLIh4DlcLMvSwmiOFvj48eNDH2td6IWLFfAcoV3iK1euBBK70AtBwMNY4C3R4rBYkqE5WuDTpk1LKGzZWJs7EdlM5NISPWtWwHOEFnCdvSdoBRsdEFEIY8uFKuAtuUdtaX6UlZVRX19PRUVFs7HAw6ADaq0FXrhYAc8RXos7yAKfMmUKs2bNYsiQIbkoVlz01Lkjjjgi8JiWIuAtuZJbsouuAzU1Nc3GAg+DFvBczsrIRhBbtqaRFQLNO/9lM8IbVR4k4L169YpaAS2f3Hnnney3334cddRRgce0FAG3WFLFrAMtyQLX+dubmppy/t3NYR54IWAt8BwRVsALibZt23LaaafRqVOnwGNaSoNlOwWWVDGzq7UkC/zKK68Ecpvr246BJ4cV8BzRHAU8DIMHD853ETKCFXBLqrRUC3zSpEkopZJaTyFd7Bh4clgXeo5oqQJ+4YUXsmbNmrRTzSZDS66QluaHKeAtyQLPB9YCTw4r4DmipQp4aWkpt99+e06/0wq4pZBoqRZ4PslGEFtLxLrQc0RLFfB8YKPQLYWEtcAzR3NazKQQsAKeI0wBb926dSTC02KxNG+sBZ55rAs9HFkVcBEZLSJfiMhiEbnCZ7+IyD3u/nkismc2y5NPTAG31nfhYS3w8Nh6HY21wDOHDWJLjqwJuIgUA/cDRwK7AeNFZDfPYUcCu7h/E4G/Zqs8+cYU8FyvNNbSsC70/GHrdSzWAs8czWk1skIgmxb4SGCxUuprpVQd8CQwznPMOOAx5fA+sJ2I9MximfJGaWmp72tL8lixzSu2XnuwFnjm0HU7k9nfWnJ7kU0B7w18a7xf4W5L9hhEZKKIzBaR2T/88EPGC5orDjnkEAAOO+ywPJekeXPVVVdF/c8E+p6MHj06Y+dsoWSsXkPLqNvdu3fn4IMPZv/99y+INQyaM88//zw//elPM2qBX3XVVQwfPpxjjjkmY+csFLI5jczPX+HtCoU5BqXUg8CDACNGjGi23alXX32VNWvW0L1793wXpVnz4x//mJqamowGAm633XbU1NRY70hiMlavoWXU7ZKSEt544418F6NFMGbMGMaMGZPRc+6yyy588sknGT1noZBNAV8B9DXe9wFWpXBMi6GoqIgePXrkuxgtgmxE8duZAaGw9dpiKRCy6UL/CNhFRPqLSClwEvCC55gXgNPcqNV9gE1KqdVZLJPFYkkPW68tlgIhaxa4UqpBRCYBs4Bi4BGl1AIROdfdPwV4GRgDLAaqgDOzVR6LxZI+tl5bLIVDVlOpKqVexqnM5rYpxmsFnJ/NMlgslsxi67XFUhjYTGwWi8VisTRDpLnNkRORH4DlWf6arsDaLH9HMhRSeWxZgsl3eXZUSnXL4/enxTZYtwupLFBY5bFlica3bjc7Ac8FIjJbKTUi3+XQFFJ5bFmCKbTyWGIppHtUSGWBwiqPLUs4rAvdYrFYLJZmiBVwi8VisViaIVbA/Xkw3wXwUEjlsWUJptDKY4mlkO5RIZUFCqs8tiwhsGPgFovFYrE0Q6wFbrFYLBZLM8QKuMVisVgszZBtRsBF5BERWSMinxnbnhKRue7fMhGZ627vJyLVxr4pxmd+LCLzRWSxiNwjKawSH1CW4SLyvvt9s0VkpLHvSvf7vhCRI/JVlmxflzjlGSYi77nnf1FEOuTx2viWJRfXxhJLIdXrOOXZ5ut2IdXrZMtT0HVbKbVN/AEHAnsCnwXsvxO41n3dL85xHwL74iyZ+ApwZCbKAvxbnwsnj/Sb7uvdgE+B1kB/YAlQnKeyZPW6xCnPR8BB7utfATfk8doElSXr18b+hbtHnv05q9dxnpltvm4XUr1OoTwFW7e3GQtcKfU2sN5vn9trOhF4It45RKQn0EEp9Z5y7t5jwDEZKosCdA+0I1uXXxwHPKmUqlVKLcVZIGJknsriS6bKEqc8A4G33df/AY53X+fj2gSVxZdMXhtLLIVUr+OUZ5uv24VUr1Mojy+FULe3GQFPwAHA90qpr4xt/UXkExF5S0QOcLf1xlnrWLPC3ZYJLgb+KCLfAncAVxrf+a3Pd+ajLJD76wLwGXC0+/oEtq41nY9rE1QWyM+1sQRTCPUabN0OopDqdbzyQIHWbSvgDuOJ7qWvBnZQSu0B/AaY5o6H+I1vZGoe3nnAJUqpvsAlwMPu9qDvzEdZ8nFdwHFnnS8ic4D2QJ27PR/XJqgs+bo2lmAKoV6DrdtBFFK9jleegq3bWV1OtDkgIq2A44Af621KqVqg1n09R0SWALvi9LD6GB/vQwIXVBKcDlzkvv4/4G/u6xVE9wT1d+a8LHm6LiilFgE/BRCRXYGfubtyfm2CypKva2Pxp4DqNdi67Ush1et45Snkum0tcPgJsEgpFXGFiEg3ESl2Xw8AdgG+VkqtBipEZB93fO004PkMlWMVcJD7+lBAu/1eAE4SkdYi0t8ty4f5KEuergsisr37vwi4GtBRoDm/NkFlyde1sQRSKPUabN32pZDqdbzyFHTdzmXEXD7/cFxpq4F6nJ7TBHf734FzPcceDyzAiYT8GDjK2DcCZ6xkCXAfbja7dMsCjALmuN/5AfBj4/jJ7vd9gRHlmOuyZPu6xCnPRcCX7t+t5rnzcG18y5KLa2P/wt0jd3vO63WcZ2abr9uFVK+TLU8h122bStVisVgslmaIdaFbLBaLxdIMsQJusVgsFkszxAq4xWKxWCzNECvgFovFYrE0Q6yAWywWi8XSDLECbolBHN4VkSONbSeKyMx8lstisaSHrdstCzuNzOKLiOyOk6lpD6AYmAuMVkotSeFcxUqpxsyW0GKxpIKt2y0HK+CWQETkdmAL0Nb9vyMwBCcF73VKqedFpB/wuHsMwCSl1P9E5GDg9zjJEoYrpXbLbektFksQtm63DKyAWwIRkbY4mYfqgJeABUqpf4jIdjjr4O6Bk7y/SSlVIyK7AE8opUa4lXwGsLtylgS0WCwFgq3bLYNtfjETSzBKqS0i8hRQibOu8lEicpm7uw2wA05u5ftEZDjQiJPkX/OhreAWS+Fh63bLwAq4JRFN7p8AxyulvjB3ish1wPfAMJygyBpj95YcldFisSSPrdvNHBuFbgnLLOACd9UdRGQPd3tHYLVSqgn4JU5QjMViaT7Yut1MsQJuCcsNQAkwT0Q+c98D/AU4XUTex3Gx2Z65xdK8sHW7mWKD2CwWi8ViaYZYC9xisVgslmaIFXCLxWKxWJohVsAtFovFYmmGWAG3WCwWi6UZYgXcYrFYLJZmiBVwi8VisViaIVbALRaLxWJphvw/r3XNJHSjmLUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfcAAADQCAYAAAAaqygdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABuXUlEQVR4nO2dd5hURdaH3zOJPKQBBEEERcyiAurCihHFhKtrjqsrxlVRjJhddY1rWBWziwndT1FcUUyrIibCoqgoi4igREGGMHmmvj/urab69r3dt/PMUO/z9NPdN9YNVb86p6pOiVIKi8VisVgszYeCfCfAYrFYLBZLZrHibrFYLBZLM8OKu8VisVgszQwr7haLxWKxNDOsuFssFovF0syw4m6xWCwWSzPDirulUSAi3UTkIxFZJyJ3i8jVIvJ4vtOVCBF5WkT+6v7+vYh8n+80WZofIqJEZOt8p8MPEblBRJ7N9L4iso+I/Jxe6jKLiGwhIutFpDBgfcr3wudYaT1zK+4JEJETRWSG+0CXisibIjLUs83p7oM41rN8H3f5K57lu7jLPzCW3Swic0SkTkRuCEjHTyKyQUReFZFOxrq7ROR/rjB+JyKnZur6c8go4FegVCl1qVLqVqXUnwFEZEv3fhUF7ZzJTJUqSqmpSqn++UzDpojNozHX06gEsTmhlFqklGqrlKrPd1oSYcU9DiJyCXAvcCvQDdgCeAgY6dn0NGC1++1lJfA7Eens2X6eZ7v5wOXAGz7p2AF4BDjFTUeFmw7NBuBwoL177PtE5HcJLzAN4gltivQGvlU2qpIlCWweTZ4s5N0mR5Dl3axQStmPzwcnE64HjkmwXW+gATgaqAO6Gev2AX4GxgHnu8sK3WXXAR/4HO9Z4AbPsluB543/WwE1QLuANE0CLo2T5pHAbGAt8ANwsLt8IXCAsd0NwLPu7y0BBZwJLAI+At4CLvAc+0vgKPf3tsA7OIXq98CxAel5Gqh1r2k9cIDn3Ivcc693P3t59j/Y3bfWXf+lu7yHey9W4xTMZ8W5J4cA3wLrgF+AMZ5neDWOZ2EhcJIn7X81tzXWLQTGAF8B5cCLQEtj/WHuc1gDfALsnO/3vil9aN559DJgKbAEOMN9/7d217UA7nLzxXI37a2ANkCle606r/Rw89L/ueleC/zZvXdPuOf4BfgrUOge/3TgY/ccvwE/AiOMtPUBPnTzyjvAP3Dzqrt+T/d9XoNTHuwTdl/PPQjMe8Ag99qLjO2PBmYHHOtp4GFgMk5F6wD33ryMU7n7EbjQ2H4wMMO9X8uBe9zlW7rPoijR9eApD9xlC3HLWPccn7r3aam7b4mxbeSZp/KxlnswewEtgYkJtjsVmKGUehmYC5zks814dzuAg4BvcDJtWHbAySQAKKV+wCk4tvFuKCKtcF78b/wOJCKD3fRcBnQA9sZ54cIyDNgO5zqeB04wjr09TkH6hoi0wXnZnwe6uts95Fo4USilTgeeA+5QjsvrXc8me7vfHdz1n3r2fwuncH3RXb+Lu+oFnMKhB/BH4FYR2T/gup4AzlZKtQN2BN431m0GlAGb41hdj4pIWPf7sTiVjz7AzjgFJyKyG/AkcDbQGcfqmyQiLUIe19J88+jBOJXCA4F+OEJkcrt73AHA1jjv5XVKqQ3ACGCJmw/aKqX0NYzEEfgOOHntnzgVna2BXYHhOKKv2QOnQl4G3AE8ISLirnsemOmuuxnDGyIim+N4Nv4KdHKv42UR6ZJo3wB8855Sajqwyr1HmpOBZ+Ic60TgFqAdTuXjdZxntjmwP3CxiBzkbnsfcJ9SqhSnovZSwDGTvR6TemC0u+9ebhrOS2L/uFhxD6Yz8KtSqi7BdqfiPGDc75iHq5T6BOjkCsKpOAVJMrTFsfxMynFeUi/jcF7YKQHHOhN4Uin1jlKqQSn1i1LquyTScoNSaoNSqhKnUB0gIr3ddScBryilqnGs0oVKqaeUUnVKqVk4teQ/JnGulBGRXsBQ4AqlVJVSajbwOI7b1I9aYHsRKVVK/eam1+RapVS1UupDnMLr2NhD+HK/UmqJUmo1TmEywF1+FvCIUupzpVS9UuqfQDWO1WMJR3PNo8cCTymlvnYF+wa9whXYs4DRSqnVSql1OBXb4xOk71Ol1KtKqQagFKcScLGbl1cAf/cc4yel1GPKaVv+J9Ad6CYiW+BUTHR++AjnvdacDExWSk12y5d3cCzgQ0LsG0RQ3vunez7c/g3a4AjiNaXUNPce7AR0UUrdpJSqUUotAB4z7kEtsLWIlCml1iulPvMeLI3rAUApNVMp9ZlbPi7EqeAPC7t/Iqy4B7MKKEvQiWsIjkU2wV30PLCTiAzw2fwZ4AJgXxJbGl7W42RIk1IcV5CZnjtxrM5jlevX8aEXjis+VRbrH27B8gYbM8TxOFYBOBb8HiKyRn9wxH+zNM6dDD0AXfhpfsKppftxNI5r/icR+VBE9jLW/eYWsuZxeoRMxzLjdwWOCIBzfy713J9eSRzX0nzzaA+MfIbzvmm6AK2BmcZ785a7PB7m8XoDxcBS4xiP4HjYNJH3VilV4f5s66bNLz+Yxz7G814PxakcJNrXj3h571ngcBFpiyP4U5VSS+Mcy3sPenjSeTVOfwlwjKBtgO9EZLqIHOZzvFSuJ4KIbCMi/xaRZSKyFqeSVhZ2/0Rs8h0r4vApUAUciePO8uM0QIDZGz1WgFPzn+3Z9hmcdt/xSqkKz/aJ+AbQrmZEpC9Ou9s8Y9mNOLXxYUqptXGOtRjHzeTHBpyCQ+MnxN4C6QXgehH5CKfd7z/GeT5USh1I+oTpZOfdZgmOJdbOEPgtcNoXY3d23HwjRaQYp4B/CUdsATqKSBsjE28BfJ3MBfiwGLhFKXVLmsfZlGmueXQpG989cN43za847eo7KKX83uWgvGIuX4zjJSoL4fXwS5tfftDHXww8o5Q6y7uj6+GLt68fgXlPKfWLiHwK/AHHI/dwgrR778GPSql+vhsq9T/gBBEpAI4C/s/T4RIS34uo8tTtxGdWwh4G/gucoJRaJyIXk0HPprXcA1BKleN0qHlQRI4UkdYiUiwiI0TkDhFpiVNbHIXjatWfvwAnea0JpdSPOC6XsX7nc4/dEueZFIlIS6NH53M4NdTfu23ZN+G4v9e5+16F0550oFJqVYJLewL4k4jsLyIFIrK5iGzrrpsNHO+mZSDhXrTJOLXgm3DavBvc5f8GthGRU9zjFYvIIBHZLsQxvazE6STUN842y4Et3cyIUmoxTrvabe693BmnNv6cd0cRKRGRk0SkvVKqFqcTjXeoy43udr/HaXL4VwrXYfIYcI6I7CEObUTkUBHxc+NafGjGefQl4HQR2V5EWgPXG2lswHl3/i4iXd1jby4b24qXA51FpH2c+7YUeBu4W0RK3XJgKxFJ6BJWSv2E42bX+WEozigAjbamDxKRQvce7SMiPUPsG0S8vDceZwTDTiTnbfkCWCsiV4hIKzetO4rIIAAROVlEurj3e427T1SZEOJ65gEt3XxdDFyDU+HTtMMpa9a7ZfC5SaQ/MaoR9HptzB8cV/IMnFrYMhw39O9wXNBLgWLP9i1xateH4dNb0tjuzxg9cXF6cyrP53Rj/Yk4vWM3AK8BnYx1Cqcmvt74XB3nmv6A04N7HY6lcpC7vC/wubv/G8D9xPaWL/I53hPuukGe5f3d46zEcaG+DwwISNPTuL3O3f83EN0D9yb3OGuAPX3274zTw/c3YJa7rCdOJWM1TlPEOQHnLsFxbf6Gk9mmA0PddfvgdMob6z7XRcApfun2Pm/ijD5w/x/snmuN+y79i4De1fazyeXRK91r8est3xLHhbvAfV/nEt3T+0k3v61hY2/5Zz3Hb49jOf6M0zfgv8Dx7rrTgY8925vn7wtMda/Br7f8Hjg9yFfj5Nk3gC3C7Os55z7EyXvuNq3de/DPBO/I0xjli7usB47ncRlO3v+MjT3ZnwVWuOn8BjjSXb4l0b3lE92L03HewRU4nQsXGufYG/jO3XcqThn3sd89T+Uj7kEsFosPIrIPTmbtmeekWCwWH0TkB5yRLt5RNps01i1vsVgsliaJiByNY+G+n2jbTY2sibuIPCkiK0TEt+OR2w5TLiKz3c91xrqDReR7EZkvIldmK40Wi8ViaZqIExr4YZzgQw0JNt/kyJpbXkT2xmlLGK+U2tFn/T44UcAO8ywvxOmIcCBOe8t0nN6E32YloRaLxWKxNDOyZrkrZ0D/6hR2HQzMV0otUErV4IxPHZnRxFksFovF0ozJ9zj3vUTkS5weoWOUUt/gBBkxgw38jNP7MiFlZWVqyy23zHgiLZamzMyZM39VSiUKctJosfnaYvEnXt7Op7jPAnorpdaLyCHAqzhxlP0iRwS2HYjIKJxxrGyxxRbMmDEjC0m1WJouIhI6alZjZMstt7T52mLxIV7ezltveaXUWqXUevf3ZKBYRMpwLHUzOlNP4kzgoJR6VCk1UCk1sEuXJmucWCwWi8WSMfIm7iKymYgT31GcmcoKcAIvTAf6iUgfESnBCUQxKV/ptFgsFoulqZE1t7yIvIATYahMRH7GCaFYDKCUGocT2vRcEanDiZV8vHK67teJyAU4MyYV4sxg5js1osVisVgslliyJu5KqRMSrP8HTqg+v3WTcWKWWywWi8ViSRIboc6SkK+++oo999yTN998M99JsVgsGWT69Once++9+U6GJQs0q9jyAwcOVLZXbeZxu0YwaNAgvvjiizynxpIsIjJTKTUw3+lIFZuvs4NSioKCgshvS9MjXt62lrslNO3bB84iabFYmhjLli2L/K6rS3Zad0tjx4q7JTS6lm+xWJo+VVVVkd8bNmzIY0os2cCW1pa4NDRsnI+huro6jymxWCyZpLa2NvK7oqIijymxZAMr7pa4mO66ysrKPKbEYrFkEjNvW8u9+WHF3RIXWwBYLM0Tm7ebN1bcLXExCwDrurNYmg9+bvmLL744MjrG0rSx4m6Ji22Xs1iaJ36W+3333Zev5FgyjBV3S1z8CoANGzbwwAMPsGRJ4Hw+FoulkWO9cs0bK+6WuHgLAKUUl112GRdeeCH77bdfHlNmsVjSwba5N2+suFviYrrlGxoaqKmp4YMPPgDg+++/z1OqLI0REeklIv8Rkbki8o2IXOSzjYjI/SIyX0S+EpHd8pFWS3TetuLe/MjaxDGW5oE3cpUtBCxxqAMuVUrNEpF2wEwReUcp9a2xzQign/vZA3jY/bbkmHhueaWU7VjXxLGWuyUuXnG3bXOWIJRSS5VSs9zf64C5wOaezUYC45XDZ0AHEeme46RaiO+Wr6+vz3VyLBnGirslLqbrDja2u1ss8RCRLYFdgc89qzYHFhv/fya2AoCIjBKRGSIyY+XKlVlL56ZMPLe8FfemT9bEXUSeFJEVIvJ1wPqT3Da3r0TkExHZxVi3UETmiMhsEbHTQeURa7lbkkVE2gIvAxcrpdZ6V/vsElNbVEo9qpQaqJQa2KVLl2wkc5PHzNve0NJ2IpmmTzYt96eBg+Os/xEYppTaGbgZeNSzfl+l1ICmPFVlc8Cbyb2WvCU/NFbviYgU4wj7c0qpV3w2+RnoZfzvCdgxlXnAzNs1NTVR66zl3vTJmrgrpT4CVsdZ/4lS6jf372c4mdzSyPCKu7cQsOSeOXPm0KlTJx555JF8JyUKcXpgPQHMVUrdE7DZJOBUt9f8nkC5UmppzhJpiWBW1L352lruTZ/G0uZ+JvCm8V8Bb4vITBEZFW9H2zaXXbyWuhX3/HPxxRezZs0azjnnnHwnxcsQ4BRgP7dJbbaIHCIi54iITuxkYAEwH3gMOC9Pad3ksZZ78ybvQ+FEZF8ccR9qLB6ilFoiIl2Bd0TkO9cTEINS6lFcl/7AgQMbp6+yCeNnuTdWl/CmQmMdoqSU+hj/NnVzGwWcn5sUWeKh83bLli2t5d4MyavlLiI7A48DI5VSq/RypdQS93sFMBEYnJ8UWqxbvvHRWMXd0rTQebt169YxHeqs5d70yZu4i8gWwCvAKUqpecbyNm4ADESkDTAc8O1xb8k+1i2fPzZs2MBHH31EQ0ND1HIr7pZMoPN2mzZtcmK5K6X45ptvrOcvR2RzKNwLwKdAfxH5WUTO9LS9XQd0Bh7yDHnrBnwsIl8CXwBvKKXeylY6LfGxlnv+OPzwwxk2bBgPPvhg1HIr7pZMYFruuWhznzZtGjvuuCNjx47N+LEtsWSzt/wJSqnuSqlipVRPpdQTSqlxSqlx7vo/K6U6usPdIkPelFILlFK7uJ8dlFK3ZCuNlsR4xb26utrWvHPEf/7zHwBeeumlPKfE0hzRedvPcs+GuP/2mzM46rbbbsv4sS2xNJbe8pZGinXL5x9rqVuyQa7d8t52fUt2seJuiYt1y+cfr7hbsbdkAp23W7Vqxa+//sqFF14YWZcNy72qqirjx7QEk/ehcJbGjVfcb7zxRn799dc8pWbTxIq7JRvU1dVRWFhIixYtmDt3LnPnzo1aB/DWW2+x3377UVJSkvb5rLjnFmu5W+LidctbYc8/VtwtmaCuro7i4mJf4a6vr+eTTz5hxIgRXHXVVRk5nxX33GLF3RIXG8wi/1jL3ZINamtrKSoq8hX3uro6Vq1yQo98//33GTmfFffcYsXdEhcr7vnHirklG9TV1QWKe319PYWFhZHfmaAxdqhbt24dt99+e7MM2mPF3RIXOwtc/rGWuyUbxBP3uro6CgoceciU8JmWe2MR08svv5wrr7yS1157Ld9JyThW3C1x0ZZ7UZF/30ulFCNHjuTII4/MYao2Lay4W7JBbW0txcXFtGjRImZdNix3U9wbixW/erUzcWlzHAVke8tb4mJGsVq7dq3v+kmTJgHRBYIle1hxt2SCRJa7zsve8Mep4hX31q1bZ+S46aCvTXspmhPN74osGUW75YMyoum2byy18eaGt+Axxd1GC7SkSqI2d22xN2fLXV9bczRKrLhb4mKGqPTDFHfbGzY7eC11s7C1HR4tqRJvKFxdXV0kb2fDcn/55ZczcsxkuO222/j6641zkK1bt46PP/4YsOJu2QSpqKgAwlnum7K4V1dX8+WXX+bEkjbveXNsK7TkhnhD4err6yPvWTYs9wsuuCAjxwxLbW0tV199NXvttVdk2fHHH8/KlSuB+E1d2267LQceeGDW05hprLhb4vLhhx8CMHDgQN/1m4q4T58+naVLlwauP/LIIxkwYAAvvPBCxs/tLXhMQbfibkmVJUuW0L59+4SWezbEPdfoZoANGzZElk2fPj3yO941fv/997z77rsZTY/Z7JEtrLhbAlm9ejUzZ86kVatWjBgxwnebTUHc586dy+DBg+nRo0fgNm+95cxKPH78+Kynx1rulnRZu3Ytn3/+Ofvss09Cyz0bbvlco/OJ6Vkz+7Lkeshv586d6dOnT8zyqVOnctFFF2XkHNmcz/1JEVkhIl8HrBcRuV9E5ovIVyKym7HuYBH53l13ZbbSaInPL7/8AkCfPn1o37697zabQoe6WbNmhd42G7XxKVOmsGbNmsh/K+5Ng8ceewwRaZSxImbOnEl9fX0ocW9OlruJKe65zkfl5eUsXrw4Zvnee+/N/fffn5HmvWxa7k8DB8dZPwLo535GAQ8DiEgh8KC7fnvgBBHZPovpbHbU19fzwAMPRE0EkQrLly8HoGvXrr5jYSE6UzRXyz2Zwi1TVo6XE088MfLbinvTQM+yVllZmeeUxKLzdq9evXzzdrY61LVr1y4jx0oWv3yST3FPRCbSkzVxV0p9BKyOs8lIYLxy+AzoICLdgcHAfKXUAqVUDTDB3XaTZdq0adx+++2ha3NPPPEEF154Idtvn16daMWKFQB069YtcFaobLjlH3vsMd58882MHCsTNAZxN++HFfdY1q9fz+uvv57vZESh80NjHNGg83aXLl1yZrmvWbOGDh06ZORYyZLIcm9s3pVMeEHz2ea+OWD6JX52lwUt90VERonIDBGZoXs+NiUqKysZPXo0n3/+eeA2Q4cOTSpE4owZMzKSNl0AdO3aNVDcTUHPhLgvW7aMUaNGccghh/C///0v7eNlgmQEOxdhNRuruIdoittHRMpFZLb7uS5T5z799NM54ogjmD9/fqYOmTHiifsdd9zBtGnTcpgah5UrV1JQUECnTp1y0qFu1qxZzJ8/nwMOOCDtY6WCn1iaHVUbUz6Cpi/ufmMPVJzlviilHlVKDVRKDezSpUvGEpcrbr31Vu6991723HPPhNv+9NNPoY6ZKTdgsuKeiRfSbFtuDPGe169fz5///OfQ2+dC3M2CqJH1c3ia+E1xAFOVUgPcz02ZOvG3334LNLr7AcS3Cq+44gqGDh2aw9Q4rFixgi5dulBQUJATy/2zzz4DCOyYm22amlu+qYv7z0Av439PYEmc5c2Sr776KvS2YS3ITLnHw4i7WZHIxHnN45nDVvLFHXfckdT22XLLmzTWEQohmuKyhr4nxcXFgNM0JSKsX78+H8mJIshyT6XT1Oeff87RRx+dtuBqcQdyEsRGv6fpNhWminXL55ZJwKlur/k9gXKl1FJgOtBPRPqISAlwvLtts8QvXnsQYQuDTBX4elKFzp0750zcddAc77HzxZIl0fXKRM9AF7pVVVWccMIJ3Hbbbb7bTZgwgf3224/ffvstqfTMnDmTn3/+OfK/MdyjJNlLRL4UkTdFZIdMHdQr7rpS5n1+ueDzzz+PcrUHCUcq1uLRRx/NK6+8kvZ1rVy5kq5duwL+4l5fXx+plGTCctfvab9+/bjsssuA3IZObmy95RPRqMVdRF4APgX6i8jPInKmiJwjIue4m0wGFgDzgceA8wCUUnXABcAUYC7wklLqm2ylM98kI+5Tp05lp512iri4gshUga8t5zZt2uRF3PNhlV5//fXsu+++kQLZG5YyUeeohoYGbr/9dlq1asWECRO4+uqrfbc74YQT+M9//hMo/kHccMMNUf8bk+UegllAb6XULsADwKtBGybbl0Y/L92Oqr/zEXt/zz33jHK1B70zqeRTvU+6E5389ttvdOzYEUhsuS9cuDAyLDZVqqqqKCgooLi4mLZt2wK5fTaJxDtovZnGfFdGkiWbveVPUEp1V0oVK6V6KqWeUEqNU0qNc9crpdT5SqmtlFI7KaVmGPtOVkpt4667JVtpbAysW7cu9LavvvoqX3/9NcOHD49a7nWbZarAN0PP5qpDXb4t95tuuokPPviA999/H4gV90SFRH19PVdeGT40g9nHIAwLFy6M+t+ULHel1Fql1Hr392SgWETKArZNqi+N14WsxT0XzSSJCBJ3811fvXp1lEcmCP2807U0N2zYEJkvIlGbOzjNHOlQWVlJy5YtEZG8PBs/sTTLq1tvvZVVq1bFbGM+u9raWu644w7eeecdHnjggaxWrBu1uFvCkchy93OJmRWCL774gnbt2vH4449HlmVa3MNa7pl4Ic3j5VO4dKb2WkiJCtVkC6xkhknV1NTw/fffA/CHP/wBaFriLiKbiVuyi8hgnPIntkRNAW8EMi0gjcHdesMNN/jmY/PZbbXVVvTq1StmGy86b6d7XRUVFRFxTzTOHdJvk66srKRVq1bAxjyVb0vYrFwBjB07NmYbb5CuK664guHDh3PhhRfGHeGULpkow6245wmlFKtWrUpouZeXl8ddf/7551NRUcFZZ50VWZYpcddu+XiWe3Nzy2t0wZOK5Z4MyRSa5eXl1NbWUlZWFmkvbUxu+RBNcX8EvhaRL4H7geNVhkr4IMu9MfSef/nll5k0KbbbkJl3wnpw9O3KhLjryaDMvG22s9fW1lJaWkqLFi3SFveqqipatmwJbBT3XFrufvfLrOCAf96N13k1m53wrOXehBk7dixlZWUJ3dBbbLFF3OMUFRXFLMuXW37BggUZOyfk1yoN0pxEmS5T4u53frPTmLaCGpPlHqIp7h9KqR2UUrsopfZUSn2SqXMHibt+P+fNm5fXe+V9zg0NDZx55pkx23mHOf7666++x0tH3JVSgeKuhVdb7sXFxRQXF6ddmfCz3PPplm9oaKCqqooxY8ZElvmVceZz8468yOawVyvuTRi/jlT9+/ePWZZoOJifuAcVYjU1NcyaNSu0O8x0y5sW7JVXXhmZ9MA81/jx4xN6GhKRaU9AunjvZa7c8n4Fh962qKgoUlA2hnuUbx577LG4lntNTQ39+/fn5JNPzlsavR6ghQsX8sUXX8RsZ4r5yJEjCepvkE7hX1VVhVLKt81dRCgoKIhY7nq+9++//963TTqZc+p3Nt9t7jvssEOkg6D2JsDGkRYmZn73lm3ZjDxoxb2Z4Z1IIEzN0CvuSqnI+HQvJ510ErvvvjuPPPJIqPSYbnmThoaGyHm94qdjVqeKabm/++67OR3rbmZW/dt7/q+/9g2+FiHZqHpBlns8F2FxcXGkUGpMlnu+MDsZetvcq6urI8MN33vvvZynTRN21IWZd6dMmQL4e3HSsaRNjxzEWqxFRUUxlvvkyZPZbrvtUj6n7lAH+WlzN+/Xt99+yyuvvAJEX/uiRYt48MEHo/Yz86e3f1RQ+XzAAQf4tt9rwly3FfdmjrfDh986r7ivXr06quCYN29e5Pf//d//AfDUU08lPLd2W0F07RaclzNI3DPRFmhyyimnpHW8ZDAzlL52b3p0R7Ygki2wggp5v+V+lrsVd6ImI/Fzy+t4Dd73OJd4xT0ouI5fxdyvAphOPvNW2r3iXlhYGGO5gzM2XnPuuedGypMwmJZ7Y3DLayvdtNYnTpzIBRdcELWtee+HDRsWdYwgcX/vvfe49dZbA9Ni7nfNNdeESm8qWHFvxMSLrqUzt1fcvSFq/Vz9YcbIatFo3bp1zPYNDQ2RwsrrFs60uE+cODGt4yWDeS36+v0qWMm64xoaGvjpp5946qmnYgqEIMvd7xx626KioohQWbd8fHE3LfemKu76HTQrjpmw3IOGwhUVFUWJu9ddXV9fz7hx4zjmmGNCn9O03PPtloeNz8PPFR92lECqbe5m3v7nP/8ZtS6THUFjG2x9EJEuwFnAluY+Sqkz0k6BJZB44q4zhvflDBN/3lvQ+BHkktfnDrLcMzFkJl/4We5+zQLr16+Pmt0qUSFVX1/PoEGDWLlyJVVVVZx77rmRdam65a3lvhFT3L2ek6ZmufuNnqmsrKRDhw4sW7Yssswr7gcffDAFBQVMnjw5YVoSueULCwsjbvmioqKoCVYgtah/VVVVbLbZZkD+3fKwMd/4daIzt822uHuNBxFBKZVTy/01oD3wLvCG8bFkkTDi7rXc/TKet8AII+7eAsB77iDL/Zprrkmro4n3Zdcilgv8AvL4We6XXnopc+bMifxPVKGpr6+PuDTfeeedqHXJuOXNphjboW4jfpa7FpDq6uqcintQgW8KWUNDQ2De9qsoaiEy+xZ48/SUKVNCT5OcyC2fyHL/8ccfAf/x8UH4tbnn03LX7efpWO6plnPmfkGV81yKe2ul1BVKqZeUUi/rT9pnt/jS0NDAVVddFXemuCBx97M0vYKfjLib40DNcwdZ7u+++y5PPvlkwuMHnfPjjz+OWlZW5hvALCuEaXMHePLJJ9l5550j/8OIu8bbKSeZ3vK6QLcd6qJpTG75IHe5fp7Tpk2jpKSE4447znc7P8HT76AWVXCmuJ01a1ZKafTmba9lri33uro6iouLY9brSka3bt1Cn7Mx9ZaHaHGfPXt2lCfOfIbxmj9StdzN8qKysjKq4pdJt3xYcf+3iByS9tksoZg0aRJ/+9vfQr1Yprh/9dVXXHHFFTHbpiLu8dzy9fX1kWP4iYs3RGpYpk+fzuLFi6PG9udyGt+w4u4lmcA2XnFPps1di3u+OtS5Ezk1OvzEXVNVVcULL7wA+LtgM435DpmVCf0OzJ8/P64omOn35jFvvtIhkpMlnlcONlrueiy8132uKxnJ5M1sRKi77777fIcT+rF+/fqoSoop7rvssgtDhgyJrEu2zX3mzJn88MMPQLgKizdv67KmoaEhcsysi7uIrBORtcBFOAJfKSJrjeWWLLB06dKE2/hZ7rvssovvtl5xD+pQ995773HEEUewfPnyhG75IMsdwlUe/NDiteOOO0aWde7cOaVjpYLp4r755pt5+OGHQ3VcSsZyLy8vj/of5FaPJ+5mm3u23PIi8oGIbGn8H4wzY2OjI16b+5w5cyJhQqdOncqBBx6Ys/HJZt7R5/QW2tddd13Uf/Pd8Iq7Nx8nMy+FiTkhlB/acl+zZg3t27ePESwt7slYrtmIUHfxxRezxx57hNp2zZo1UdPNanHXFT49mQ0kL+4DBw5k6623Tri9xvv+6eeb6amc44q7UqqdUqrU/S5QSrUy/pemfXaLL96Hv+2228Zs43U/xuObb75hxIgRkf9B4nvAAQfw+uuvc9VVV8UtAOK1uZvHf/zxx9l///1DF0L6nGZG0zNX5QJvwXveeeeFyqzJuuXNCkNQ26tfwam3LSoqijyXVAv4ENwGvCUi54nILcA44E/ZOlk6mO+Lzhf6mZiubHCajb788suspSWR5e59x7xDK03B0xVoXdGuqKiIqsgkM6OkSVjLvby8nPbt2wda7mG8WpqqqqpIG30u3fKnnXYad999N2vWrKFDhw6R3uneNvfevXtH9gnboc6vkhjGGPDup+/jAw88EFmWCY9cKLe8iMREf/BbZskM3oJ99erVMS5FbyEWj9tuu4233nor8j+RZT19+nQOPfRQILHl7icuumZ+1lln8f777zNhwoSEaYToQufRRx8FwlVeMoWfKyzTlnttbW3UMYMK6ERu+c6dOjEcuOebbyDNqIB+KKWmAOcA9wFnAIcopVJr5M0yfm55fY/1TGvbbLNNZJtkRMnLnXfeyYsvvhi43ny2fjHbve9YaWm0jWQKnhaeVatWceedd/LUU09FtQ0nEw3ynnvuicS3SCTu2nIvLy+nQ4cOgZZ7WAFSSlFbWxsR90y45cOOyhk/fjxjxoyJiPupp55KUVFRjLjfdNNNnHTSSTHHTra3vPn8gzwbQZa7nuceEkcmDUMit3xLEekMlIlIRxHp5H62BHqkfXaLL96XoqamJqZXZzLi7iWRuJtR2BL1ltfhMs2CTAfBiHcMP8xCp3379pFz5Qo/L4TOrPfff3/gfomegVmgl5SURBUAv/32W6QiZRJP3Hdfs4beJ5/MFGDvqirwRNXKBCJyLc6c63sDNwAfiEhsQhsBfuKu77kWd/MdTNUqamho4PLLL+f4448P3MZ81mZv8iDLPZ646wr0ySefzOWXXw4QyRew0U0fRiQvvfRSzjjjDJYuXcqrr74KBLvli4qKqK2t9bXca2trI6Fbw1aS9Lusy4hMuOXNvHr++ecn9GJocdfpmTZtWlSaWrRoERH3ZIbCmdfQ0NAQ9XyDBNp7zMrKyqghzCKSVgVUk8hyPxuYAWwLzAJmup/XgIQliogcLCLfi8h8EYmZ5FpELhOR2e7naxGpF5FO7rqFIjLHXTcj9ujNF+9LP2HChJgXRRcW2RB3E78CoKioKFLwaFexnqVMH3/RokVJn89sCmgMw2VgY0Y/77zzGD16tO9+iZ6BWfB458kGmDx5ckxm9svcm333HR8AN3/6KUWff86vwOVAjTFuPoOUAYOVUp8qpR4BDgIuzsaJ0sXsdxI0a5rpIk9V3OfPn59wG29FTrNo0SJmz54dtf60006LqphAdMXeb94Ic/uVK1fyySefREQpDMOGDePDDz+ksLAwymAoLS3loIMOApz8Wl5ejlIqRtzXrVsX8dyFFSD9LLIl7g899BB33XVXzDZmBVl7IbyY90D/NvNnok7N5j1YtWpV1PZB4u7nltfl5dtvv83uu++efXFXSt2nlOoDjFFK9TE+uyil/hFvXxEpxKkAjAC2B04Qke3NbZRSdyqlBiilBgBXAR8qpVYbm+zrrh+YwrU1SZYtWxaVwfv37x/JdCbpWO7JuLpNi+eJJ55ghx124Prrr48RbHNYTGFhYVTY27Avqmm550PcgzqxFBYWUlhYGNX+b4pFIte96T6tr6/3zfRmZLL33nsvqqPQvsAHwMWvvcYwYH1JCdxyC3t06cKdwKosdKpTSl0EICL93f8/KaUOzPiJMoTuOe613MGxdr3Dj/xoaGiIem+96KFnfmOjNUHiPnbsWHbdddeo9aNHj44ZK+5nuZuYcR/WrFnDkCFDIqMBwhA090F5eXmk6a6oqCgySUyHDh2ixF3fu86dO8cM4wrCK+6ZaHP35tX6+npuvfXWqDnWzUq17hzoxXyWOn3emfmCqKuri+ozs2TJkpTEvbKyMvJ+lpSU0KZNm5xY7ppfROQoz2d/EekaZ5/BwHyl1AKlVA0wARgZZ/sTgPBvaRMmXobo3r07d999d+R/UEGSjrgn01vYFPczzjiDr7/+mh49esQUPF7L/fvvv4/8D9t+ZA6/ayyWO2zM9IcffnjkeWy++eYJ99N4LXe/Hr6muB9wwAEA7Ad8CLwPjqgXF3MtMHrkSLj6alq6Q5HSma0rCBE5HJgNvOX+HyAisZOSNxK8gmEWsmVlZVHvYGVlJb/++mtMPrjnnnvo378/s2fP9j2Hvs9eV/qjjz7KvffeG3Nev6F35rviJ97JiHsqz12/v/F6uhcWFkaO7e0tb4o7hOvVHWS5p9Pm7j2vUoqxY8dGxQbxVqr9LHfzGflZ7t98803gEMr6+vqoPkfr1q0L5Zb3s9zN6JOtW7fOfpu7wZnA48BJ7ucx4BJgmogEzeyxOWBOc/azuywGEWkNHAyYgXEU8LaIzBSRUUEJE5FRIjJDRGaYExs0ZhKJqznto18Gh8TiPmbMmEi4Ry/JVAjiDZcxMce8esW9qVjuQSKtM/2AAQMi12U+Q/Na/fAWMjqoismKFSuoqalh+hdfsD/wEfAeToP3auAa4OQhQ/grUOc+E13ABs35nSY34FTQ1wAopWYDfbJxokzgFQzzWbZp04YePTZ2Efrtt9/o0qULf/nLX6KOMXPmTMDpXOWXR7WgeNedffbZkSYb87x+FfNkxN2vOcv0GPl1qPMTTHNZmEA+XnE399d5VL97YZo4tLjr+5Fptzz4jzpZs2ZN1P9Ebnkt4mb5+Omnn7Lbbrv5pqG+vj7qvPX19aFGwvhZ7uY9at26dU4t9wZgO6XU0Uqpo3Hc7NXAHkBs1BQHP99vUFXtcGCaxyU/RCm1G45b/3wR2dtvR6XUo0qpgUqpgbkMeJIOyQQo0AXABx98wHHHHRcR7ERt7ieddBJTp071XZfMpBPxhsuYmBmnvr4+LXHPV5t7UO9js+bu57qbMSN+lxCvuPuxfNky7jv8cKr32IN3gd8Dq4CxOBM63AKscN8bfe919L5sWO5AnVLKe0NyFww8SfT7UlNTw9lnn01NTQ0HHui0Itx4441MmDCBxx9/HCBSuXrmmWci+//www+RSYomTpwYGa1hovNtvMqxmbf94kmYYujNQ3oedU0qEdD80mYuCxPOuaioKGI5envLa6+SFvdkgjxl0y2vhdy8Pm9+9jNU/NrcKyoquOmmm9iwYQPffPMNAwYM8E2D13L3intQedLY3PJbKqXMibpXANu4Yhz0pv8M9DL+9wSCZhw4Ho9LXim1xP1eAUzEsSIyilKK1157LdL7M1ekIu7Dhg1jwoQJEQs5keXeqlUr3zYmyIy4m1ZFq1atojJJXV1dJGITNB23vI5BfvDBB0ct9xN3875/9dVXcY+bSNwPAQ66+WYue/tthuKI+lU4on4roIsPcygcwF577cWRRx6ZrRC9X4vIiUChiPQTkQeAT7Jxokyg35cvvvgiIsyHHnoo69ev58gjj6RLly6ceuqpwEaLSufD+vp6tt56a98IhSZ6WXV1daBL2XzWfuJuWpP6OS5ZsoSVK1dSWFgY9b7X1tbGhKBOlB/88raZ/8Ja7hqv5a69o1rcw+TtXLjldQXXjHngtdz93Ot+4v7Pf/6T66+/nuuuu466urrACpG3zb2uri7qHXrooYd8PRveMtvPLZ9LcZ8qIv8WkdNE5DSc3vIfiUgbXLedD9OBfiLSxw1beTwQ02YnIu1xmhRfM5a1EZF2+jcwHPjau2+yKKUYP358pFPJxIkTOfLII32nRU2Hn376iSeeeCLQ/Z5M9CFv7V5nvEyLe5DgBxUGZro6duwYM1zGbGdu7G75H3/8kSeffDLi3j7qqKPYaaedIuuDOt28+eabTJs2LaFr0k/cC4ETgS9xZmDquWgRvwJX4oj63wCvU8+MUAfOuNiJEyfGzDOdIf4C7IDjoXsBWEsj7S0PG61Bs3AvKyuLstaKi4spLCyMvJs6f/p1ovPzAup8W19fH2jFm00ufuKuK5CwMQ91796dsrIyCgoKYsTd60rWk84899xzMccG/3xs5r8w4m7mbb8IdUAkfyTyWplpymRveW+e0waaOZrAaznrfKOHwZlpMn/r57xq1SoaGhoCI3r6ueUXLFgQ+f/GG29w5ZUxg8RCueUz0eYeaspX4HzgaGAIjrt9PPCyckr0ff12UErVicgFwBScsuxJpdQ3InKOu36cu+kfgLeVUubVdAMmuhm2CHheKfUWafLyyy9z2mmn6fTxySeOIZKJG2myww47sGHDBoqKiiLn++WXX3juuec4++yzk7Lcve1u3owRJO6tW7cO7Ajit0+QAAdlQLMA8Lru6urqou5pspZ7mzZtIhkgF+K+7bbbRhWKHTt2DBw3qwuItWvXcsghznQLQW1yGrOQKa6rYxQwho0N2L8An/7ud1w5fz4/+MznrfFa7tlEKVWB0yowNusnywB+BbCfR6NVq1Yxz9bP8+JXMTfz7fr162nZsmVMfwdT3P1GpZjr/dzyYcS9TZs2gZO2ZNpy9/aW1wwbNozu3bszadKkhEPxcuGWX7zY6d5lVu68z1nn3d/97ncxy8zf5uQticTddMvX1dVx5plnRm3jjZCotzOpqKiIdNIsKSmJWO5KqbSCeIWy3JXD/ymlRiulLnZ/J/SpKKUmK6W2UUptpZS6xV02zhB2lFJPK6WO9+y3wB1ut4tSage9b7pMnx4dGtt749566y3uueeetM+jM5M57OSAAw7giiuuYMyYMUlZ7t4XS/+/8cYb+fTTT+Na7kF4C4ANGzZwySWX+G4blAHNAqBjx45R291www1RBWE+LfepU6dyyy23xHUBeu9Hx44do1x65j32qzB5Xe0tWrTg6aefjlgRa9eupQNwNbAQZ3xoH+B74KbevekLvLXddnTo1Yt4aCsh3lCsdBGR10VkUtAnaydOE/2+mM/Kb16CVq1axURV9AtH61cBN/OtfhZmJ96ffvqJ66+/PiZNJonE3XyXampqfMUd/DuH6X28JCvuOl0lJSW0bNnSNw+2adOGbbbZhuXLl8esC0pTNt3y2iNiWu7ebfzyjZ9XLp64m8/Xa7n7vTN+9y5em3txcTFt2rTJyJzuoUwAETkKuB3oimO5C47mN6n48t6b5c18Ov76/vvvHzgJSyLMyR1My+G7774DnDZBv97SQXgrIDrNr7/+Oq+//joAXYDe7mdzoAPQ6pprYN06njL2rQPKgeIlS+C++6BzZ9hiCx6bOJHxT5lbbiSoU4/Xco+XUZMV91atWkV+pyvue+/t9MPccccdGTky3kjMjXTq1CnK2jYzY2FhISISE9jDRCnFaaedxrhx41j82Wf84ZNPeBDQxc50HLf7Hd9/T+9PP6Xm9NOpqamhR48ekR7bfuhCMsuWu44GchSwGfCs+/8EnLpJo8RP3IMsd+/z8gtOE6/NHTY+c3MI4ymnRA8cKigo4JRTTonquBdP3P3a3IMi2JlDT00y4ZbXFXfdrOeXt3U/mzB52+wsBtnpLa8xLXev696vYu43FE7jJ+7XXXcdZ555JjvssAN1dXVR75Jf85z33imloppm9H5etzw4zy2daYrDlhJ3AIcrpeamfKZGQDxxj1dYJ4PZS9zvOO3bt09K3KOoqGD3DRvYA9jF/WwP+HZ5c8fdnu63btUquPjiyN+LgQuARcBXOO3As4FPcTpt+eF13cXLqGHd8vr5tGzZMuNt7joMaRi8k9WYgiEilJSURL1L3rY9pRTMnMmN8+ezL1Dsdi58B0fU9USd/9p6a75wxbympiZ0JL9sWu5KqQ8BRORmpZQ5QuV1Efko3r4i8iRwGLBCKbWjz3rBiVV/CFABnJ6pePW6EmxWxIIsd90cp1m2bFnMdoksd52358yZE1nmfVcLCgoYP358lLibYuhnub/55ps89thjLF26NCoeu/cc5tA+E6+4z5s3jzvvvDPyP8y7o9OlxX2vvfbilVdeidpGN/t5O63FS5PX7Z0NcTfvV6qWuxbp6upq6uvro3SioKCAXr16RUJsm5a7n7h736MhQ4bw6aefRi0zO9Tp3vLgeIc6derke51hCCvuy5u6sEPswzatYu+QhlQxH7Bfu21paWmMuLdo0cK3MGkJDFy1Cq6+Gj78EKZP5yEfN/xqYEXLlnxXVcXuI0fSa6edoH17KC3lnY8+inS+KQFKgV7t2nHRaafBypXw00+Uz5lD+w0b6Av0BY40D37UUbD33rD//jBihHNcYjvUxbtnYS13fQ9atGiRcXG/4IILWL9+fcx8935WiVfcvW604uLiqOeln3MBjrJdWlsLAwcyHMdbMqVDB8auWYNpkxcUFFBQUBApjGpqakK/d7locwe6iEhfpdQCABHpg+MkisfTwD9w+uT4MQLo5372AB52v9NGvy/mszKtOI1fTILly5fTu3fvqPjefuJhPnP92+xQ5vUUJGov9RN3nb4bb7wRiBWknXfeGQgO6ewV94MPPjiq3VffH1Pwvehja9f/M888Q0VFRdTkU61atYqZJyGIXLjlNebz94qtn7ib99EcCgfx29z9xN0vTdqzM3HiRH799dcYYdfpNN3yZvyKLbbYwvc6wxC2lJghIi8Cr+L0ngVAKfVK4B6NkHiWu+leS8dyTyTudXV1kSE5mpkzZ0bmMO8CHAocgTNEoM2XX4JuEywoYF6bNny4YQNf4ljYc3Bc7T/Pn8+OlZX0cucV1hxw1lkU/OlPkfGpAF1bteKiBx5AKcWpp57Ks599RgmwNbAzjkdgN2Dfli0pnjcP5s2Dxx+H4mLYbz848kjaGfeyQ4cO+AUQatu2LevXr2fevHnU1tYmtBqyKe4AV155JS1btmTy5MlMmjSJFi1a+Na227Vrxw033MANN9wAxHZA9Lr3imtrOQu4rrSUbvqZl5byUvv2jFm8mKKOHfnRY+Hoe6GPZQ6vuu+++7jooosCryNH4j4aZ7IY3f13S5y5JgJRSn1kzgHvw0hgvNtf5zMR6SAi3ZVSS9NNrNctP2LEiNCdkZYtW8bAgQMj4l5UVJTQctfnMdvrveOogzpiafzEXaOjVJp55uOPP2bw4Pgjgr1i661YV1dXs//++zNmzJiE6dKWe+vWrRk8eHCUuLds2ZLi4uJQAbGyHVtes8cee0SJu3eboA7GGn2vtafxs88+i6T3gQceiOpDpafFNcsPv7JE68pRRx0VeF6vuOvOkmH6M8Qj7FC4Uhw32nCcgDOH4xgpTYp4Q5aWLt1YvmRa3M0XbsqUKTH7lIpwughvA0uBp3CGELQB/te2LVx2Gfz737B6NaMGDmQUTqesj3GEHZwMuLVH2MGxHnTFQaMz28qVK3n2WadJtQb4FidG8FU4s4S88vjj8PnncPvtMGwY1NfDlClw7rmMfegh/oVTEelcWupbC992223ZbrvtKC8vDwyoY5JtcQe4+OKLefvtt3njjTcAYrwoxcXFFBQUcN1110WWBYl7D5xx6Itxnke3tWup69UL/v53WLyYx7fdlsX4B7PwirtpuZtDMy+77DImTZrku282cUen9AMucj/93Wlg0yGZqJVJRZ7UQq6fVVDlyDs8tKKigrVr17LVVltFlrVs2TKwzV13VNXnMdtPvc85kbh71/tZ4wUFBfTt25fjjjuOIUOGRD17P9e8V9y93oSKioqE74+3zd2b1latWkWap9Kx3DMl7pdccgkLFiyIqWyEsdxNCgsLKSgoiIi7LrcLCwu54IILuO+++6K21ePctYdIn69NmzZMmTKFrbbaKlTn6YqKiqj+NDkVd6XUn3w+Z6R15hzzyCOPRKY61Ji1c9N1deKJJwbOAFZeXk6/fv248sorfQXNfJha3P3CgwpwIPAc0HPgQJ5SigOBeuBN4FycqD9nDxoEd9wBhx4K7dsHFhjxrDnvOn3diV68opYtYfBguPxy+OADWL4cnnoKDj6YAqX4I/BvYNRf/8pthYUxpXTr1q0jQTjMoDZBZFrc47n99D3xiru3xyzENtMMbGjgGZzeZVcBnXCiuyy9/36KFixw+jOUlkYKST8Pjp+468LEfF6lpaUMHz48ysWcI8sdYHecse67AMeJyKkJtk9E6KiVyUae9Lrlg9zWZhs5bCxATXFv0aIFv/zyS0yFtLq6OtIbW4vI2rVrI52eVq9ezXbbbce//vWvqDQFEdRZ1pu+H374gQkTJvhey8MPPxy1TIvE+vXrOfnkk2Pe3fXr1ye0YPX75TeVLmwciZOquGeizd2sSA0YMIA+ffpQVFQU13IPUykuLi6O6SOUyC2vmy/0+caNG8fw4cM56qijQvV415Z7cXExIpJbcReRbUTkPRH52v2/s4hck9aZc4xf+5tZs9Pj0TV6Iggv//73v5k/fz6333677zzcfpb73Lkbuyu0wRHub4G3cQKZSGUlHwFn4QzwPwQYhzP+2UtQoeV3fUH76AzgrXScfXa01zWmECgrg9NPhzff5N5LLuFy9zpar11Lp4cfZlFBAS/ihE4FpwarC74whUCmxT2ey1AXXEHiDp77VlUF48fD4MG8vmIFJ+NknpeAvXACQFQeeigYwqv39xszHU/cvc+rRYsWUSEwc2G5i8gzOD3nhwKD3E+6szMmE7UyKbxu+bD5RHe09FruL730UmSkhaaqqiqyf21tLQ0NDWzYsCFiHa9evTrQ2k3mGkzM0TdeOnXqxPbbR020GclnL730Es8991xklI4mGcvdHE5rvsM6T6frlk+nzd1sRh00aJBveuL1lg+qMJaUlMQ0ZcQT93Xr1kWeuT6fvr8tWrQIVe7pDnV6vzZt2tC6deucueUfwzFSagGUUl/hRJxrMvj1nE1lXmezJvbmm2/GrDdri7p2OWPGDHoDd+KUbg8B2+L4J68BKr/9lmE4M/OsSXB+vxftySefjNu+6LX06urqWLlyJbvvvnvUcu89ilcIVHbsyJ04Zt30e+6BY48F4FicSU9mA0csX047I+Z3POrq6iKdV4qKijIi7vE68umCxdsEYxYARUVF9MSJ606vXnDaaTB9OuUFBdwBbAUcB3zmbu8VlHi9380CAKLd8n7zk5thgHNkuQ/Emd/hPKXUX9zPhWkecxJwqjjsCZRnor0dwou7t8K6cOFCAPr02Tgnjtnj2nz/qqqqoix33ZnKFPc2bdpw6KGHctxxxyUdM8Mvbwf1itd4r1PnM1OYu3fvzi23OKFCNmzYEFrczXfO9ADoe5gJt/yDDz4Yt3NfECtWrGDgwIH88ssvbLvttgBJWe7ffvst3377bcxx/SosyVruZt5uaGigrq4ubvmsh8KZ72a3bt1yJu6tlVJfeJaFnze0EeA35jWeW1qHqTTjzr/00ksxEYi8tc8oy728HD78kGH3388POFHJOgDTgGNwApncAhT36xf6OvxetESFvbcAUEpF2pxNkhF385w1gwfDiy/yxkMPcROwHMePe86sWVz/+OPcDbSJY4FAtNUOmWmXiyfuOgP71u4bGuD993mxro6FOMFn+PVXGDAAnniCg3bYgSuAn6IPGfNswjSVmB3q/Cx3Pc7ZLGhzYbnjhHv2n1YwABF5AWcEZX8R+VlEzhSRc3RUSmAysACYj2MwnJepxHqHwgWJu3do2aJFiwCiZlA0xxabBb3XLa8rhuYEPm3btqVVq1ZMmDCBXgmCEnkx09y6dWsKCwsjohyE9x3zCik4Edn09SUj7mYFwRR3vX9xcXHabvkLLriAyy+/POExvKxcuZJu3bpFVX5MYV6+fDkVFRVRI1/M6y4rK2O77baLOa73/YDgMlePc9firssSfZ36WNXV1XFDnJtuec1ee+1F9+7dA/cJQ1hx/1VEtsJtHxORP+L0/WoyJGu519fX06NHD3r27BlxXx933HEx23lf7srKSlrgjC//95IlsM8+DP75Z+qBZ3DMoaHAzjfdhM4uYcc3Q2ri7rfeb5l3TGW8QsBbEAHUd+vG9cAWwMnAgm7daF1dzSXAqLvugoMPhtdfdzrmeciGuMd7vvq5mRWAzYGLN2yAfv1g//0ZWV9PA/A8wLRpMGsWnHEG9T4FgJlmTRjL3a9DXVFRES+88AJHHnkko0Y5sx3nwXIvA74VkSlhI9QppU5QSnVXShUrpXoqpZ4wI1K6kS7PdyNW7qSUShyYPCTeNvewfVN0D/muXbsyfPhwHnrooagC3hR3r1veK+46NGwQifK5mebq6moOOOCAhEFM/Lxyb731Fn/84x8jy9q1axd5zxoaGhKKu85zQW55891Nxi3vnfI1Xbe8N5BPcXExdXV1LFiwgM0224yPP/44StwT9TUA/yA/YS13r1verLgnGirsFffnnnuOu+66K3CfMCQTW/5RYFsR+QX4EWde9yaDn7gn6lCmO1bMmTOHHXbYwXebysrKjYXBkiXs+/77jMYJ5UddHXTtyqOFhVy/dClmqIzOnTtz8803U1JSEtdl413nV0AkKjTC7pOq5a4LAb2sBqejYNcTT2S7ykoKx43jlKIiiqdMcXrb9+4Np5wCJ50ErkstX5Z7zZo1/BE4A2coSOHq1bB6NfTsyZ2rV3NPRQXLgBONeNRBhUQicS8tLY30w0jUoe7444/n+OM3tnyZBW3QTH0Z5oZcnCRThHXLe/npp58oKyujuLg4MpLFDDrjdfNqy72mpibyLE2vYLx3LtHQPPP9qa+vD3UNXnGvra3lySefjFpmijsk9vz4ufb9LHftlk8UAz0oQp15zGTiqCulfMW9qKiI2traKHd7p06dIpO5hPF4pSLuus3dzy0PG71yJ5xwAjfddBP9PJ5a7ZbPtEcubG/5BUqpA3CGYW+rlBqKM1qryWD2/NR4LbugWnJFRUVgWNDKykr44gtHqHr3ZvgXX9AVmAWc3aIFLFrEXW3bRgk7OB17rrnmmqRdUqlY7n77+NUk/WrCQfhZ7t50tGjRgtVbbsmZwC3nnAN33gl9+8JPP8Ff/wrbbQeDBsHf/069O4ZUP4NsinsroOvUqXDccZwyZgz/womuUg+83b49vPUWLFzIxwccwDKIyYxB70kicTc7WyXToQ6iBd3vXc40SqkP/T5ZP3GKpCruixYtinLJA76Wu1KKysrKuG558J8oJCzJNOto/DrLeueVaNeunW8ktiD0NQe1uZtueaVUwuBL3rDJWsT1NK2wsSyura3l6quvjlrn5eeff6a2tjbQcjdHpwS55YPQedu8r0HiXl1dTVVVVdw2d9iYt1u2bBkzJ0D79u0jbvkwnoVkSKo7p1Jqg1JK90Dyn2mkkeJXK/SK+80338w118QOAqisrIyZXKIIpzNVx0MPhT32gOefh4YGpm+xBb/HGUP0tFLQooXvUKh4vdvjEfSiJYsZWUlEePTRR2MKubCWuy4EvNuXlJREXvA1hYUwZgz873/w3ntwxhlQWgozZsAll9Bz2DC+Aa5duxbeeosi12uSCbe84ATnuRR4C2e+9KH33gsvvURJTQ1f4ITg7QFcs802cNBBUFjIE088wVVXXcXbb78dddygSXniibuIxEw/Cok71GlyJe4isk5E1vp81olI7IvcSAjb5u7ll19+iemP4yfuv/76K1VVVfTt2xdw4iV8/vnnQLTHK53JPrxpDiPufpa79/2sqqrKqOXu7S+SyDWvrVL9jHQ+MfszaTGfOHEit912G1dddVXg8e69916Ki4s54ogjopZryz1I3MPcTy3u5v0KMqh06N0gt7zXci8qKorKx/PmzeMvf/lLZJx7pi33dBrvUp+LrpHgdcuffPLJbLbZZrz++utRYl5RURHpeNMZGIXTE6gnwH//Cx06wFlnwfnnc9fll/Oxu612WWVb3FNpgzXF/fDDD+ess86KCuQD4S33ILErLi6OskwBKChwotzttx/84x9OcJ5//Yv6N99k+/Xr2f6332DECPqL8CXw3ZIlcM89jvu+f3/o3h2C3NINDc5Y/AUL4Icf2OLVV/kPTrQ97wxHK/v0oct553HXwoVc9uCDkeXbGpm6rKyMW2+9NeY0QZZ7vN7ybdu2jXpOyVru5j3OprgrpbLvFsgCqVru69evj3nPTXHXz0RPLmN2who71pkN1xT3l19+OfBcybjlIdw1+Im7+X7+/ve/Z+TIkVGVjlTE3Wye8Ip7TU1N3Fkoq6uro+6pvk5zmN/q1avp2bNnJDyreb758+ez1VZbRe7frFmzGDRoUEzQLm25m2PgTXEP4/bX11FcXBwR66BmTX0e71A4czSBvn4t7uZ96tevH/3796ehoYFp06bFGFfpktxAzGgS9oYQkYNF5HsRmS8iMbPWi8g+IlIuIrPdz3Vh900FHT6xe/fuPPvssxEBv/3225kxY0bk5nqFt6KigsJvv+VRnOFrt+II+7fAfdtuy7dvv+0EmundO8YbUFVV5duxK9/ibgZqMEMfmiQr7l73nCnuvhZNq1ZwzDHw0kvMmjKFfYDx3brBnntCURE7A8eWl8OllzpBfLbeGtq0cT49e0KfPrDVVk4bfocOzhjzHj1g6FA47TT6TpzIPjjCvgj4euBAHh46lG7Ay5dfDmPGsMTjCgvjGkvFcm/Tpk1ccTc73eTTcm+qpCruSqm42+rj+Ym7RgvXHnvsETPuPBlSccv7dagz38+PPvqIvffe23fe8iC0uAe55bVI6uMk6jFfVVUVVeHQ+5vl4urVq3n66acj8UX09tOmTaNfv348/vjjkW0XLlwYNXRRU1RURHl5eVQo7GTzijmGXxPkLdWWe2lpKSKSsM29qKgopoJx6KGHUlhYyPLly3Prlo/nosPxYsbbtxAnKucInMnLThARvzd/qlJqgPu5Kcl9k0IHAqmvr4+anvGcc86JGvOthbcAJ87uwXfdxQMffshZOO21b+B0vtoBuPi779jdCHbh9QYEtR2l6oJJpUOdH6blrmvJyYi7WbP2m7QDHOGKsdwDqKqv50Pg0a23hk8/ZcF//8tQ4MayMjjvPGfiml69oKQEKirgl19g4ULHSl+0CMrLQSkn0M6gQXDccfz3iCM4FGc8V29gx+nT+XbAAFaQYChcAsKKu1nwtm3b1neSCrOA1Gmy4p48Xrd8MgFkvPnnpptuigkzu2DBAkQk4pY30QFwvG7iZMlEm3ttba1veZCMW15fsynI1157beS3vtdh83aQ5W6681etWhUVxVLf/2+++QaAUaNGsf3221NTU8PixYvZcsstY86jp6DVcfnBf2hbPJIRd225t2vXjsLCwlBueS8dO3aM9B3IqVs+TRfdYGC+MavUBJyJI2IjB2R230D8emlCbGG5fskSLgL+ghOohB9+YAPwJPAA8D+iMQXdKxa6FqknUdGkOttPNtzyQaIS72Xzs8T9LHezTTke3t7y0qoV04Bf2rblesNtjlKwYQP89pszpK6+3nH1d+jgtOEbBdvkW25hshuXXY+H1ddUW1vLXXfdxbhx46LSEaaiFLZDnXk/vFO6+lmYixcvDkxDrtzyTZWw4Wf98G67yy67MH78eI455pjI8crLy2nbtm2MWLRo0YJddtmF+fPn+wp/MmSizb2urs43b6ZiuZsVgr59+3LnnXdy2WWXRe512Db3MOJeXl7uO67b7HMzd+5c5s6dS319faDl7iVZwyeZNnft/dQV9yBx101uOn1vvPFGVEREbUzmpbd8ioSdJGIvEflSRN4UET3eLCsTTOgH7RWaiKvkf/+DCy/kzTlzuBdH2H8EJgwaxObApcXFMcLuxSvuegY4s2fniy++GIkfnAjvWNBsdKg799xzAf8OcUH4ibXf1KjJ1O7BfyjcJ598wkEHHeS4RkWgbVvHit9yS8ct36cPdOwYJeywcTKgM888k6+//jrqGquqqrjssssSXoMfYS13cwrRVatWRYl9vMmJ/Aop052XoyA2TYpU3fLmvib6GejjeQVKoztTmW3CQeSqzd1viK+5XSLvlJ+4m8cI45b/9ddfufvuu1FKhRL3tWvXRnmndPnkNRj0lLh+kfsSTekahrCWu1l+tmvXjqKiosh9j9fmDnDIIYdEBbXRHW3z2ls+ScJMEjEL6K2U2gXHKH41iX2dhUlMMKEfUszL+M47cNhhToetBx6gHfAfnHnNtwb+LkI5sPnmvvWLKLwVDC0qZtrM6VeTJdOW+4knnsixbujYZCx3vwz9O2MsOES75RP1IvaKu86UDQ0NDBkyhLfffjtSCQmL7rBz0EEHRTrW6PQEVQQzKe66nRacPg7ewiwIvwIp7FzvmyrpiLvftqaHB5zKoJ+4mx22gpg8eXLUdKlBZKLNPUjc07XczXOFccufddZZjBkzhs8++4zq6mrfNnczr61duzbqOLry6x0to0OyJjMePRnCivuMGRvjL7Vt25aCgoJIG3wybnnYKO7JNiEkIpvinnCSCKXUWqXUevf3ZKBYRMrC7JsK+kFXV1fTCqfX+9cAw4fDG2847blnnIH673/ZD3gNaIBIUISePXtywgknAP4CXVlZyaJFiygqKoqZmKBTp05ss802bLbZZr4Fwl//+lcgscvV72VNp0OdOR1sQUFB1IucrLh369aNp59+Omr/TFjumniTaPiht/eGqARnDm8/woh7WLe8d/SBeWy/aWA1fs/Tint8Uh0KF7Stfk/q6upYtGhRQss9HiNGjOCggw5KuF26be46JKrOS//97399jxW2zd0r7vpcYdzyeircmpqamIpRkOVulhGzZ8/m3nvvjRF3PWGM37Pwq9RkS9xNj2rbtm2jPHFeca+srEQpFfg8tVs+zLuUDNkU9+lAPxHpIyIlOBPNRIWvFJHNxM2VIjLYTc+qMPumQkFBAb2Av+HUHh7B6RRHjx5OUJXFi+GJJxBjBi7YaOX27NmT5557joqKipjAJgD/cwOx9O3bN+aF6NSpE3PmzGHRokW+7rmxY8eyYcMGDjzwwKjlYaaFTMct780kYQuBIEvcrNRkWtxNi7mhoSHuGPj6+vqIW9xP3L3Cq0nHcvc+h2effTbw2Mla7pb4ZNpy1/lg0qRJ9O7dm5dfftm3UpfJAjndNncdW72qqortttsucCbBROK+zTbbANFBl8xzhXHL623iueWDLPcBAwYwd+5cRo8eHTM5l7bc/cTdL2hVtsTdxGuQecVdpyuR5e693+mSNXFXStUBFwBTgLnAS0qpbzwTSfwR+FpEvgTuB45340/77ptWgqZPp+Upp7AAuAJnDu7phYVO8Jkff4SxYyGBW79nz56ICK1atfLt4DRv3jwA+vfvHyMSHTt2pKSkJG7G8gsr6n2JM+2WT1Xcw8TuNoPYhBV3b4Q6v6kmlVIMGjSIYcOGBR7vhRdeYNmyZfTs2TNqAg9d2TBd5iaZtNyPOuooZs6cSffu3Xn++eejLBXz90477RS1n9/zPOGEE9h66619gyxZMtuhDja++++99x4Q7JZPRtyz3eaux3n7pTUZy/3pp59mypQpMRPfBFnu8cS9vr4+Rty9XpYWLVqwZs2aiDfLNBx0SGCNFne/9ulMirv5rPzKOnMCMe98At42d71tUDmty/1MW+5ZnYHCdbVP9iwbZ/z+B/CPsPumxaefUjhxIrXAC8B9wMKyMpa5bvYwmG3ufkOT9AQzm222ma+4J8uOO+7I/fffH7Us05Z7vIkp4hVGo0eP5o033ohpB/cWImHb3HVHRF1p0tdpzjmvmxK+++47Zs2aBRCZcKG8vJyioqJIRps6dSrgRBLzK9jM6Fgm6Vjufvdrt912izQPXHHFFb77Pfroo+y1116R/36FQGlpacQzZInFa7knMxTOb1v9nuh2VPC3FlMpkF999VXf8fLptrnrCG3eNm5IznIvLS1l+PDhgefytrn7ueXNseze9HifVceOHfm///u/yPq5c+cGpi2eWz4T4q7ztukV9DvG448/zrx585g6dWrMc/Na7t7lXvS9ajKWe6PjT3+iYexYtgROBD4neYvXvPlHHnlk5LcOX6nbfFq1ahXTRpqKuM+ZMycmClOm2tyDLPewlJWVMXv2bM4+++zA9IVxyy9YsIDKysqIuHstd5Ply5ezatWqqEAh5eXl1NbW0qFDB8rKyvjxxx+prq6OeFG8E/4kKtjSEfdEmIWgWRHwPj/rlk+eTLe562eSSNxTKZB32223iOvbJBVx9/aR0W55r7gn01s+iGTc8pqKioqEveW9ZaOen33o0KExx4sn7mZgLk1hYSGrVq2K7JcIfd/M8juoovjWW29Fhq96z+mXxqDnqe9DU2pzb1y0a4fcfHNUr7xkRdHcfvfdd48EWDB71ILzgnjF3Tudaqpk2y2fzjSM3rQkCmIzZ84cttpqKwYOHBhVMQL/61y5ciVz5syJWlZeXh4JFKRjf1977bWRITPeeZQTFWzpuOUTYYr7xx9/HPntrXAkY3VaHJJpc9ez7el3NZ5b3vQc+QlKvClegwiqUKfiljcxO9TFsxrTDaDldcv7eeV0BWDDhg0xzQTeipi3bHz//ff573//GzMxDKTmlu/UqVNMB+cg9DthhhQOyo+tW7emZ8+egccKGm3gRd+H0lJvkOz02KRKERGJazGZhHF/mzXX6dOnR4THT9xTsdxTTVcYvJayJpPiniiIje4s8+233wa65U3q6upi7uuaNWtiCpc777yTpUuXUlJSEhMsKJ+Wu3lsc9igec8KCwtDT31p2Ugy4v7CCy+glIoZdmni9574iXIyFT39XIPEPZUOdSZhLfdUxd1ruevmSHPMt0Zvk4rl3r17dwYMGOBrEGnr3O8enuDTxJps2ahH0Rx22GEx6U2WVq1aRYUZTyTuTWmce6PEfFDxMk8Y97d+GL/88guDBw/m+eefB9IT92Q73filKxmyabkncsub1xrGLQ+xvdzLy8t9Cxdw3FxBFbIgwoi7mQmT8cgEHdvbbmpJHv0uJdNbPp64+z0HPyFPxYsTVIin4pY3MTvUpdPmHoS+T15x9wvI5BX3eG3u3qYzTby85SfuZ599dkwfoGTF/bzzzuPKK6/k/PPPj0lvsogIDxrRNROJe6bzvhX3ENtpgoTCO77ST9zDtqfoGPdBL2WmLHdNNi33REFsTHEP45aHWHG/4447Yqbj1fhZ2EHPXLvt/Nr5vJjus6CCyY+gMJ1W3NMnld7yubbcp06dykUXXRR6tEUqzYa6Q106veWD0GWDTqfOB95hnUuWLOHdd98FHEs7UW/58847z/d8XnE3j+FXQRKRmBFHyZaNXbt25bbbbvP1NIQh3syaQc9T9yHyC7+bDptcSVJYWBiqdh/GQg6qgfuJSti2uUsuuYSWLVtGuYVMMtWhTpPpdp4gt7xfgIlULHdv8JkpU6bEDJfR+BWiQb323333Xd5++23OOuss3/UmAwYM4J///Cc777wzF110UcLtNWHE3XamSw2vuIcpkPV9j9db3sRP3JPpkDpw4EAGDhwYuD7dNvd4Q+H8Ji1KFi3uOt+2bt2agoKCGMvdrCDfeOONAAnd8nr2OhOvuHfo0IHly5cjIoFlXlDgnXRIRty9ZX+Yivtf//pXDjnkkLjvRipscuKejls+rIvXT1TCttO2aNGC0aNHB65P1S1fUlJCTU0NHTt25Lfffoss93oUMu2Wb926NSJCZWVl3BCMujNMIsv9nnvuCZ0Wv+cQ5MLv1asXY8aMCX1sPWdAMngtH02Y2r0lPumIe6IKc8uWLQPHuafaudKPdNvcteW+du3amEq7WZFOtW3X+/6KSEx0NoAff/wxZt94QWwKCwt9y8fevXtH/W/fvj3Lly+nRYsWgc2X+Rb3eM0hQc+zuLg4bsyOVNnk3PLecI1htgvaPiiTZKptzo9U3fILFizgtdde46ijjopanvHACR63fEFBQaD7zrTmdbjKROKeDMmIey5F1Xsua7mnjzfoSJhOiWF6y8NGYfJz42dS3DPR5l5RUUFFRUXcfJ2q5a7Hfpv3trS0NCpfX3311b77mhNq+XV+9BP3Aw88MDIiCTYOO4znLfE+y1yLe7we8rmuuG9y4p6NNncv6VjuiUjVct9888054ogjYtLsDZ2YacsdNmZKbzx1c1yqHnKUyC2vCWN9+D2HffbZx3fbVAuBVHq2e59Bc2pzF5GDReR7EZkvIlf6rN9HRMpFZLb7uS6D5wbCP8uw4q7fIy0q5pjpxiDuU6dO5YcffqCoqCiSj7Ih7n5lQ7t27aIs99tuu813XzNolF9MAr/yUUSiYlrobeLlfW8aMyHuyRzDWx7k0yu3yYl7Ji33oIfu96JmasafMM0F8TCvobS0NGbfdMXdr23PT9xXrlwZVRDoWdrCWu6nn346s2bNirTp+eFX8A4cONC3A09jsdybsriLSCHwIDAC2B44QUS299l0qlJqgPu5KVPn1+9MJsTdL+iLfp/MtuBsinvY6xg6dCh9+/aluLg4ko+yKe5mOtu1axdluQ8aNMh3X7NCFNZy9+L1oMRLoybXlrsXK+45JKzlfscdd8Qs874oQVabX4bP1NjldIfCmS9bpsMdetOiC0U/cfcOWdGZ3y+2sx8tW7Zk1113ZbPNNou7jR96RIJJY7Hcm7hbfjAwXym1QClVA0wARubq5MmKu94ukeWuj9vY29yLi4tzYrl73fKm5b5q1SpOPPHEmH3vvffeyG9T3HXskTDirsuTZAylfIu7dcvnkLCW+5/+9CdWrlyZMOa3Hy1btuSRRx5JPZFx8HvRknn5zGvwKwCy4Zb3trl//PHHvPzyy777m5ncvK6DDz44KhSvLlT9olj5HcvEr3DIZVQ4b+HajDrUbQ6Y8Th/dpd52UtEvhSRN0XEdyyhiIwSkRkiMkNbo4lI1i3vjbhmYj6HeMFnMjkHdyaGwmlXdy4td6+4l5WV8d1337HzzjsDcOihh0bF0jfd8voZxBP3e++9l2OPPTZyr3PtlreWexMhrOUOTvx0M/MmI+6jRo1iv/32Sy2RcfB70ZKxHs1ryLblHuSW/8c/fOcKAoLFvaSkhGnTpkX+6+fSrVu3wGMFWVV+BXIuosK98MILtGjRgmeeeSZquVkANXHL3e8memuLs4DeSqldgAeAV/0OpJR6VCk1UCk1MGzoUP2+hC2M41UG/N6HbFvumRgKp4kn7qn2ltfXah7b7FBXW1tLeXk5nTt3pn///pGKd1B45dra2sg1xkvTRRddxIsvvmjd8kmyyYl7WMtdYz6csC+KzgSZDicI6VuYidzyuWhzj3ff/SJZ6eOaw3v0djvvvHNkool4xzLJpLWVDMcffzwVFRXsv//+Ucu919mE+Rkw5wntCVHTOaCUWquUWu/+ngwUi0hZJk6erFs+rKWvXd1+XqLG0KHOb/tsWO4jR47kjjvuiGqyNC13PeJFx2X3Tn2q8RP3MJXrMOLuJd/inongQamSVXEP0XP2JBH5yv18IiK7GOsWisgct0ftjEylKRnLHVKreWnrM0wo02RJ92U1r8EvsE664m7eX/3bK+7mZBxegsS9qKgoKlPr+9CmTRvmzp3rW1HJhbgna/FnYhRAI2Y60E9E+ohICXA8MMncQEQ2E/emichgnDJoVSZOnqxbPsz2O+20U2T45C677BKzvrG1uWvieeVSFZmCggIuu+yyqBE2WtyVUpEJnLzi7j2f6ZZPZZhZY3TL//jjj3z33Xcxy/NpuWftbEbP2QNxavTTRWSSUupbY7MfgWFKqd9EZATwKLCHsX5fpVSwEqRAOuKerOXuDUGbCTJpuWejJtmmTRtGjRoVVXHQFrcWd9157vTTT+fpp5+ObFdQUBBlcXgtWlNIvffWnH9Z09gs9zDkunafSZRSdSJyATAFKASeVEp9IyLnuOvHAX8EzhWROqASOF6lW6N0ybTlPn/+fLp06RIRyr59+8Zsk0lx977T6Yi7Nwxr0HbpUlpaGomK5xX3oDZyM4hNMuLbmN3yW265pe/yfHaWzWZVItJzFkBEdM/ZiLgrpT4xtv8Mx42XVdJxyyfT5g6NX9yzZSV6OxPqwlG3zWlxv/HGG2nVqhUPP/wwQGTiHU28ipjXK9K/f39mzIh28DRGyz0RTbxDnXa1T/YsG2f8/gcQ3OkiDTIt7ltttRUAf/vb35g5c6bvdpkUd2+ApVSmfAXnPsTbN5Pibk4eE9ZyD2qG+vjjj+OOftH51hubw28bv+OnSqba3DP5roQhmyWJX8/ZPQK2BTgTeNP4r4C3RUQBjyilHs1EonJhueuXLxvinq6RYwp6rqxE0y2vlIqIe9euXeNOBpGMuL/00ktcd911VFdX869//QsI7oHbmNu1m7Llnm9SFfdEhfcVV1wRuC6TFWSvuCdb0QvjtobMjgwxR8IEibs3PWaF2HxWQ4YMiXsufRxzrnUvo0ePZs2aNdx9990xx0+VdI4R1puSDbLZ5h6m56yzoci+OOJu5qIhSqndcAJinC8iewfsm9SQmVxY7vrlzYa4m1HdUiHf4l5eXk5tbS2lpaW0bNkyqjbrrXXH62jmFfc+ffrwzDPPsOuuu0aWBdWUM+QFzgpW3FMnrFh7t0+n8M6k5yZT4p7Ldyie5a7zc1jLPRH6ePH6E7Rp04a77rorpeMHkakOdWEnD8sU2RT3hD1nAURkZ+BxYKRSKtKxRim1xP1eAUzEcfPHkOyQmUxb7lOnTuW2227jmGOOAZx4yJpsiHtQbPSwhHXLZ7LQMsXdtNoh/jSOyVjuGlPQm6K4N/EOdXklW73l/YhnzaeKN28na+mFtdwziVfcW7RoERGxRL3lIbl7r/N8MiKZb3HPp+WeTbd8pOcs8AtOz9mo0EUisgXwCnCKUmqesbwNUKCUWuf+Hg5kJExlpi33oUOHMnToUFasWMGgQYM488wzI+tyIe7JinA+LHezQ93y5csBf3FPxnI3LXQTU9CD3PKZnDc5023u1nJPnVyK+9/+9jf+9re/Jb1fPLyzq/Xo0SOp/fNhuXvd8p07d47c12Tb3BOhy762bduG3qcxiXuu29yzZrkrpeoA3XN2LvCS7jmre88C1wGdgYc8Q966AR+LyJfAF8AbSqm3MpGubLW5d+3alcsuuywq7vTIkU7kzURtScngFfd4Edr8CCvu2bDc165dG2O5my98GMv9hx9+YPz48Rx33HG+5zKPF+TJ2WKLLXj99dcbZec1K+6pk0txzwbevB2vc5kfjcEtb7aH6/wVNBQOkrv3ukmyKYm7WcbkMgomZHk+9xA9Z/8M/NlnvwVA7KDSDJCLNnfNlVdeyU477RQ4E1kqeNvc40Vo88MU0Fy57/zc8jrdyVruffv29R2SpDHFPV7F57DDDmO33Xbjiy++CHsZvtje8o2HZMU62Yh22cYr7smKtM7PuYi2qNGW+2233UaHDh2ixD2oD4T5P5lYILrsa6pu+VyzyZUkuegtrykpKeEPf/hDUvskwlsAJCvuYce5Z7KAMF13y5YtA8K1uSdbEYPw4t5YsZZ76jR1y92c8zwV8tFfo6zMCS44Z84c2rVrFxVyO6gMMcvgsPMGwMbnFC/6XtA+6ZApyz3XNI4qaw7JpeWeDUaNGhX1f/To0Untn8gtf8MNNwBw000Zm4mToqIiWrdujVKKv//970DybvmwmdSsLISNSd6YsOKeOvp9CStyjU3c991337T219cd1GE0G+JfUlISicy2bt26KKta319velI1HO6++26uvfZaDj300ND75Fvc8+kVyr9a5ZhcWu7Z4Oijj2bBggVsvvnmLFmyJDAyUhCJ3PLXXXcdp5xyCn369Ek3qVH07NmTefPmRToNeYfLeH8DrFmzJvI7bMWqqqoq8HhNASvuqaNFI2zHpcYm7pMmTWLZsmXU1dWl1LM6kXj/8ssvaQ+l9WObbbahc+fOrFq1Kqo9PEjczTJYz+kehrKysqSNjnyLez6x4p4AM8M0BssdiAhvssIOiS13EYnbpp0q06dPjxqfqjvixLPczd7DYTNpMkMFMzEkzvaWbzzovB1mbnBofOLetm3bqGmNkyWR5V5WVhZxo2cSEaFDhw6sWrUqacs9GyOKTPIdxCafNM0qSRrkYla4xky2Y8sHUVpayu9///vIfy3u8Sx3k7AVqyOOOIIePXpw4YUXppjS/GLFPXW0uDdVyz1d8hkjQefnbExGlQ7Wct+ESLYd19ymqT5kk3z0ltd07Ngx8ttP3OOlJ6y4d+jQgcWLF4d6Vo3Rcs91FKvmRLKWe2PrLZ8uiSz3bKIrpWHc8gCvvPIKRx11VNbTlYln21Tfj6aZ6jQwxTpMIZDLYSW5IB9BbDRmL1c/t3w8yz2ZGnhTzIzjxo1j4MCBXHrppflOSpOlqbe5p0s+LXdzCmZNvLIz2QA9qbIpW+5NM9VpYD6oMMEQmuqDDSJfbnnAt8093pSIl1xySeR3Nvo7NKYwtGeffTbTp0+P8m5YkiPVNvfmksfzKe76HoZpc4fcRWtrDOI+cuRI7rzzzrTTkSybnFvefNhhxL05W+65Lgz8LPd4jB07lnvuuQdoPtaVJXuk2ubemCp56ZBPt7wV92BeffXVtNOQCs2jypoEm7rlnk+3vHm/9VCfeJUnczhQY7Xcm1vlrymjhSVZy725iXs+0CJq5vHDDjsM2BiG22RTEvd8YS33BDS3wjuf4m7ee31fzVj8XpriOHVL/tD52Vruub8enbfNMmXAgAGBabHinn02OXE3LcBN0XIPO+VrNvDLaL179+aRRx5h8803j1lnVqySCXaRS5pb5a8poyuDyVruDQ0NWUtTLmkMbe5h76UV9+yzyYm7ObGBtdzzZ7mbeEPq+lFdXZ3p5FiaGVrck7Xcmwv5tNx79uwJhK9YNSVxb6r9fTY5cTcnE9nULfdcR9wbNGhQyvvW1NRkMCWW5kiqlntzc8vngwceeIAhQ4ZEBaqKR67Suilb7k0z1WmQrLg3t9q9eT25vrY999yTKVOmsHDhwqT3zYa4N5dC3eKgxT1spbW5ins+rqdt27b8+c9/Dl2m5KrsycR5rLj7ICIHi8j3IjJfRK70WS8icr+7/isR2S3svqlixlYOMzlDU32wYchHITB8+HB69+6d9H6N1XJvbpW/dEknz6eLFvewTTjNVdwtmaWpakDWUi0ihcCDwAhge+AEEdnes9kIoJ/7GQU8nMS+KWGOrw7jsrGFd+PAWu6Nn3TyfCZIVtx1od1c3gNdnjWX62ksWHGPZTAwXym1QClVA0wAvAMeRwLjlcNnQAcR6R5y35RIdirFpvpgmxvWcm8SpJPn0yZVy7259Ja3ZIemqgHZTPXmwGLj/8/usjDbhNkXABEZJSIzRGTGypUrEyZqr732omPHjowYMSLxFQCHHHII4B+IoakyZMgQWrduzY477pjvpCTkoosuAuD888/P+LHvuusugLRCQ1533XUAXHvttRlJUxMnnTwfRbL5GuDiiy9m0KBBnHLKKaG2v+mmm9h1110ZPnx4qO0bO126dGHffffl+eefz3dSQnH22WfzwAMPZOXYL7zwAn/4wx/SOsZrr73G8OHDm2wFXrLlwhGRY4CDlFJ/dv+fAgxWSv3F2OYN4Dal1Mfu//eAy4G+ifb1Y+DAgWrGjBkJ01ZTU0NRUVHoGll1dTUlJSVN9iF7aWhooK6ursm00VVXV2ctoE0mjp3N9GUCEZmplBqYg/OknOeVUjODjhs2X1ssmxrx8nY2x0L9DPQy/vcEloTcpiTEvimTrKg15oI7FQoKCpqMsEN2738mjt3c3o80SCfPWyyWDJJNt/x0oJ+I9BGREuB4YJJnm0nAqW4P2j2BcqXU0pD7WiyWxkU6ed5isWSQrFnuSqk6EbkAmAIUAk8qpb4RkXPc9eOAycAhwHygAvhTvH2zlVaLxZI+6eR5i8WSWbLW5p4PbNucxRJLrtrcs4XN1xaLP/HydtPs42+xWCwWiyWQZmW5i8hK4Kccn7YM+DXH58wlzf36oPlfY2+lVJd8JyJVbL7OGvYamz6BebtZiXs+EJEZTdnlmYjmfn2waVyjJTk2hXfCXmPzxrrlLRaLxWJpZlhxt1gsFoulmWHFPX0ezXcCskxzvz7YNK7Rkhybwjthr7EZY9vcLRaLxWJpZljL3WKxWCyWZoYVd4vFYrFYmhlW3D2IyJMiskJEvjaWvSgis93PQhGZbay7SkTmi8j3InKQsXx3EZnjrrtfGtGUcgHXOEBEPnOvcYaIDDbWNZdr3EVEPnXT/LqIlBrrmtw1WsJj87XN103lGjOGUsp+jA+wN7Ab8HXA+ruB69zf2wNfAi2APsAPQKG77gtgL0CAN4ER+b62eNcIvK3TiBP7+4NmeI3TgWHu7zOAm5vyNdpPeu+DZ73N1033Gm2+9vlYy92DUuojYLXfOrd2dyzwgrtoJDBBKVWtlPoRZzKMwSLSHShVSn2qnDdpPHBk1hMfkoBrVICu8bZn4zSczeka+wMfub/fAY52fzfJa7SEx+ZrwObrJnGNmSKb87k3R34PLFdK/c/9vznwmbH+Z3dZrfvbu7wxczEwRUTuwmmu+Z27vDld49fAEcBrwDFsnFe8OV2jJXlsvm7a12jztQ/Wck+OE9hYuwfHpeNFxVnemDkXGK2U6gWMBp5wlzenazwDOF9EZgLtgBp3eXO6Rkvy2Hzt0FSv0eZrH6zlHhIRKQKOAnY3Fv/MxloiQE8ct9fP7m/v8sbMacBF7u9/AY+7v5vNNSqlvgOGA4jINsCh7qpmc42W5LD5OkKTvUabr/2xlnt4DgC+U0qZ7pxJwPEi0kJE+gD9gC+UUkuBdSKyp9uedyqOy6gxswQY5v7eD9AuymZzjSLS1f0uAK4Bxrmrms01WpLG5usmfo02XweQ7x59je2D455bysZ2mTPd5U8D5/hsPxanF+b3GD0ugYE4bUE/AP/AjQbYGD5+1wgMBWbi9C79HNi9GV7jRcA89/M3M71N8RrtJ733wV1u83XTv0abr30+NvysxWKxWCzNDOuWt1gsFoulmWHF3WKxWCyWZoYVd4vFYrFYmhlW3C0Wi8ViaWZYcbdYLBaLpZlhxd0SGnH4WERGGMuOFZG38pkui8WSHjZvNz/sUDhLUojIjjiRrnYFCoHZwMFKqR9SOFahUqo+sym0WCypYPN288KKuyVpROQOYAPQxv3uDeyEE874BqXUayKyJfCMuw3ABUqpT0RkH+B6nEAUA5RS2+c29RaLJQibt5sPVtwtSSMibYBZOBM0/Bv4Rin1rIh0wJkneVeciRgalFJVItIPeEEpNdAtAN4AdlTONIwWi6WRYPN288FOHGNJGqXUBhF5EViPMw/24SIyxl3dEtgCJ6b1P0RkAFAPbGMc4gub+S2WxofN280HK+6WVGlwPwIcrZT63lwpIjcAy4FdcDpuVhmrN+QojRaLJXls3m4G2N7ylnSZAvzFnV0JEdnVXd4eWKqUagBOwemgY7FYmg42bzdhrLhb0uVmoBj4SkS+dv8DPAScJiKf4bjtbI3eYmla2LzdhLEd6iwWi8ViaWZYy91isVgslmaGFXeLxWKxWJoZVtwtFovFYmlmWHG3WCwWi6WZYcXdYrFYLJZmhhV3i8VisViaGVbcLRaLxWJpZvw/FZJxv5ThVOsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfYAAADQCAYAAAD1aUMjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABnBElEQVR4nO2dd7gVxfn4P+8tVOlNQIoEUFHBglgxWIKgYokVC2pMEAuJYjcGUSSWr+VnL1ED2AhqrCCKWMBYEA2CqBQFAakBRHq5d35/7O5hzp6tp9/LfJ7nPvec3dmd2T0z8877zjvviFIKg8FgMBgM1YOSQhfAYDAYDAZD9jCC3WAwGAyGaoQR7AaDwWAwVCOMYDcYDAaDoRphBLvBYDAYDNUII9gNBoPBYKhGGMFuKAgi0kJEJovIOhG5V0RuEpGnCl2uMERkpIjcbn/uKSKzC10mQ/VDRJSIdCx0ObwQkWEi8ly2rxWRXiKyOLPSZRcRaSsi60Wk1Od82u/C415Z+82NYHchIueIyDT7x1wqIm+LyBGuNBfaP8KZruO97OP/dh3vZh//UDs2XERmish2ERnmSt9SRN4QkSX2de1d588UkU9EZKN+zyrGQOB/QH2l1NVKqb8rpf4IICLt7ecu87s4mw0qXZRSU5RSexSyDDsjpo2mPE9RCcPqhFJqoVJqF6VURaHLEgcj2DVEZAjw/4C/Ay2AtsCjwMmupBcAq+3/blYCh4lIE1f6Oa5084DrgHEe96gEJgCn+RR1tV3OO33OZ50gIZsm7YBvlYmQZIiBaaPxyUHbrXL4adzVFqWU+bNkSwNgPXBGSLp2WI36NGA70EI71wtYDDwOXG4fK7WPDQU+9Ljfc8Awn7zKAAW09zn/R697eqQ7GZgO/Ar8APSxjy8AjtXSDQOesz+3t/O+GFgITMbqyK5w3ftr4Pf25z2BiVid2mzgTJ/yjAS2AVvtd36sK++Fdt7r7b9DXdf3sa/dZp//2j7eCnjDzn8e8KeAd3I88C2wDvgZuMb1G96EZVFYAJzrKvvtelrt3ALgGmAGsBb4F1BLO3+i/Tv8AnwCdC10va9Kf1TvNnotsBRYAvzBvmdH+1xN4B67XSy3y14bqAtssp/VaSut7Lb0sl3uX+0yNACetvP4GbgdKLXvfyHwsZ3HGmA+0Fcr2+7AR3ZbmQg8jN1W7fOH2PX5F6z+oFfUa13vwLftAQfZz16mpT8NmO5zr5HAY8B4YANWH9MKeAVrYDcf+LOWvgcwzX5fy4H77OPt7d+iLOx5cPUH9rEF2H2sncen9ntaal9bQ0ub+M0z/TMa+w4OBWoBr4akGwBMU0q9AnwHnOuRZrSdDuA4YBZWg807ItLDLs+1QEPgSKzKFpXfAnthPccLQH/t3l2wOtFxIlIXq6K/ADS30z0qInu7b6iUuhB4HrhbWWau91xJjrT/N7TPf+q6fgKWxvYv+3w3+9SLWB1DK+B04O8icozPcz0NXKKUqgfsA7yvndsVaAq0xtLknhSRqCb3M7EGHrsDXbE6TUTkAOAZ4BKgCfAE8IaI1Ix4X0P1baN9sAaEvwM6YQkhnbuAzsB+QEesejlUKbUB6AsssdvBLkop5xlOxhLuDbHa2iisQU5HYH+gN5bAdzgYazDeFLgbeFpExD73AvClfW44mhVERFpjWTRuBxrbz/GKiDQLu9YHz7anlPoCWGW/I4fzgGcD7nUOMAKohzXweBNr4NEaOAa4UkSOs9M+ADyglKoP/AYY63PPuM+jUwFcZV97qF2Gy2JcHxkj2HfQBPifUmp7SLoBWD8u9v+UH1Yp9QnQ2BYGA7A6kUJxMfCMUmqiUqpSKfWzUur7GNcPU0ptUEptwupQ9xORdva5c4F/K6W2YGmjC5RS/1RKbVdKfYU1Oj49mw/jh4i0AY4ArldKbVZKTQeeAs73uWQb0EVE6iul1tjl1fmbUmqLUuojrI7rzNRbePKgUmqJUmo1Vkeyn338T8ATSqnPlVIVSqlRwBYsbccQjeraRs8E/qmU+sYW1sOcE7Zw/RNwlVJqtVJqHdag9uyQe36qlHpNKVUJ1McaAFxpt+UVwP2ue/yklPqHsuaSRwEtgRYi0hZLW3baw2Sseu1wHjBeKTXe7l8mYmm+x0e41g+/tjfKzg8RacwOZcOP15VS/7Hfwb5AM6XUbUqprUqpH4F/aO9gG9BRRJoqpdYrpT5z3yyD5wFAKfWlUuozu39cgDW4/23U6+NgBPsOVgFNQxy2DsfSxMbYh14A9hWR/TySPwtcARxFuIaRS9pgmd/TZZHzwe5UxrGjMZyNpQ2ApbkfLCK/OH9Ygn/XDPKOQyvA6fgcfsIanXtxGpY5/icR+UhEDtXOrbE7WP0+rSKWY5n2eSOwi/25HXC16/20iXFfQ/Vto63Q2hlWfXNoBtQBvtTqzQT7eBD6/doB5cBS7R5PYFnWHBL1Vim10f64i102r/ag3/sMV70+AmtgEHatF0Ft7zmgn4jsgiXspyillgbcy/0OWrnKeROWnwZYClBn4HsR+UJETvS4XzrPk0BEOovIWyKyTER+xRqgNY16fRx2eqcKjU+BzcApWCYsLy4ABJi+w0oFWCP+6a60z2LN845WSm10pc8ni7BMS15swOo0HLyEsNu57UXgFhGZjDXP94GWz0dKqd+ROVEc6txplmBpYPU04d4Waz4x9WLLtHeyiJRjde5jsQQtQCMRqas14LbAN3EewINFwAil1IgM77MzU13b6FJ21D2w6pvD/7Dm0fdWSnnVZb+2oh9fhGUdahrB2uFVNq/24Nx/EfCsUupP7gtty17QtV74tj2l1M8i8ilwKpYl7rGQsrvfwXylVCfPhErNBfqLSAnwe+Bll3MlhL+LpP7UdtjTB2CPAf8F+iul1onIleTIomk0dhul1Fos55lHROQUEakjIuUi0ldE7haRWlijxIFY5lXnbzBwrluLUErNxzKz/NUrP/vetbB+gzIRqaV7btrnnPnXmvZ351yp/b0MKLGvLfd5tKeBi0TkGBEpEZHWIrKnfW46cLZdlu5Eq2TjsUa/t2HNcVfax98COovI+fb9ykXkIBHZK8I93azEcgjqEJBmOdDebogopRZhzaPdYb+Prlij8OfdF4pIDRE5V0QaKKW2YTnMuJez3Gqn64k1zfBSGs+h8w9gkIgcLBZ1ReQEEamX4X13GqpxGx0LXCgiXUSkDnCLVsZKrLpzv4g0t+/dWnbMDS8HmohIg4D3thR4F7hXROrb/cBvRCTUDKyU+gnLtO60hyOAfloSR4s+znlmsZbg7RbhWj+C2t5orJUK+xLPyjIV+FVErheR2nZZ9xGRgwBE5DwRaWa/71/sa5L6hAjPMweoZbfrcuBmdtQPsOb6fwXW233wpTHKHw+3N93O/odlPp6GNfpahmV6PgzL7LwUKHelr4U1qj4RD69ILV2SdyyW16Zy/V2onXefU9q5Cz3Ojwx4plOxPLXXYWkox9nHOwCfY3nTjgMeJNUrvszjfk/b5w5yHd/Dvs9KLLPp+8B+PmUaie1dbn8fRrKn7W32fX4BDvG4vgmWJ+8a4Cv72G5YA4zVWNMPg3zyroFlzlyD1dC+AI6wz/XCcsD7q/27LgTO9yq3+/cmYJWB/b2Pndcvdl16CahX6Dpf1f6onm30BvtZvLzia2GZbX+06+t3JHt0P2O3t1/Y4RX/nOv+DbA0xsVYKzb+C5ytlfVjV3o9/w7AFKx+wssr/mAsT/HVWG12HNA2yrWuPHsR0PbsNHXsdzAqpI6MROtf7GOtsCyOy7Da/mfs8Fh/Dlhhl3MWcIp9vD3JXvFh7+JCrDq4AsuRcIGWx5HA9/a1U7D6uI+93nmmf2Lf0GAwYAX8wGqouxW4KAaDwQMR+QFrRYt7NY3BxpjiDQaDwVAlEJHTsDTb98PS7swY5zmDwWAwFD1ihebtgmWerwxJvlNjTPEGg8FgMFQjjCneYDAYDIZqRLUyxTdt2lS1b9++0MUwGPLGl19++T+lVFiwkiqNadeGnY1M23W1Euzt27dn2rRphS6GwZA3RCRy5KuqimnXhp2NTNu1McUbDAaDwVCNMILdYDAYDIZqhBHsBoPBYDBUI4xgNxgMBoOhGmEEu8GQA1588UUOPvhgli9fXuiiGKooGzZs4MYbb2Tz5s2FLoqhimEEu8GQA8455xymTp3K0KFDY1/73HPP0blzZ3744YcclKx6M3LkSNasWVPoYmSFESNGcOedd/L0008XuiiGKoYR7AZDDklH2zr//POZO3cuV199dQ5KVH2ZOXMmF110ERdeeGGhi5IVVq1aBUBpaWlISoMhGSPYDYYioqJixxbQ27dvL2BJ4iMibUTkAxH5TkRmichfPNKIiDwoIvNEZIaIHJCt/Ddu3AjA0qVLs3XLguI8T926dQtcEkNVo1oFqDEYqjp77rln4rOIFLAkabEduFop9ZWI1AO+FJGJSqlvtTR9gU7238FYe4QfnM1CVMH35smGDRsAqFOnToFLYqhqGI3dYCgi5s2bl/hc1QSUUmqpUuor+/M64DugtSvZycBoZfEZ0FBEWua5qFUCR7Abjd0QF6OxGwxZZMWKFYkOGTITzlVNsOuISHtgf+Bz16nWwCLt+2L7WJL9XEQGAgMB2rZtGyvv6rJjpVOPyspMN22Ih6kxBkMWadGiRdbuVVUFu4jsArwCXKmU+tV92uOSFEmslHoSeBKge/fu1UNSx8SZY68uAxVD/jCmeIOhSKmKgl1EyrGE+vNKqX97JFkMtNG+7wYsyXIZsnm7guE4T1ZWVha4JIaqhhHsBkORUtUElFgFfhr4Til1n0+yN4ABtnf8IcBapVRW3dirm4Zb3Z7HkHuMYDcYcsisWbN4+umn0+qcq5pgBw4HzgeOFpHp9t/xIjJIRAbZacYDPwLzgH8Al2Ur8yr4vgJx6ozR2A1xMXPsBkMOmTZtGn/84x9p1qwZJ510Uqxrq5qgUkp9jPccup5GAZfnKP9c3LYgbNu2jW+++QaoXs9lyA9GYzcY8sDcuXNjX1PVBHuh+eSTTwpdhKzx5JNPJj4bjd0QFyPYDYY8ECUsqLsDN4I9HkOGDCl0EbKG4xEPRmM3xCdngl1EnhGRFSLyjc/5c+2QkjNE5BMR6aadWyAiM+05umm5KqPBkC+irEU2gt3ghdHYDXHJpcY+EugTcH4+8FulVFdgOPaaVY2jlFL7KaW656h8BkPeMILdkC5GYzfEJWeCXSk1GVgdcP4TpZSzv+JnWOtZDYZqSRRTvL4BDBjBXki++eYblizJ6vL6tDEauyEuxTLHfjHwtvZdAe+KyJd2aElfRGSgiEwTkWkrV67MaSENhnQxGnvVYt9996V1a3eY+/ywfft21q1bl/heTBr7ihUreOONNwpdDEMIBV/uJiJHYQn2I7TDhyullohIc2CiiHxvWwBSMKEnDVWBdAS7YefkD3/4A88++2ziezHViz59+vDf//6XdevWscsuuxS6OAYfCqqxi0hX4CngZKXUKue4UmqJ/X8F8CrQozAlNBiiE6RZRRHsxhSfHYpJw00HXahDcT2Ps/tgMQ02DKkUTLCLSFvg38D5Sqk52vG69l7OiEhdoDfg6VlvMBQTQZ2d0dgN6VJM9cIZZOzMg84nn3yS8ePHF7oYgeTMFC8iLwK9gKYishi4BSgHUEo9DgwFmgCP2pVku+0B3wJ41T5WBryglJqQq3IaDJnwyy+/ULNmTWrXrh2oWaWzjr2YOvSqRDaFzttvv03fvn2zdr90KCaN3SlLMZUp31xyySVAcb+DnAl2pVT/kPN/BP7ocfxHoFvqFQY/Fi9eTP369alfv36hi7JTsX79eho1asQuu+zCunXrAgVxkGBXSjFnzhwaNGiQdNwI9vTIZof7wQcf5E2wb9y40bPsxVQPjGCvGhSLV7whTVasWEGbNm1o1apVoYuy0zF//nzAEvAQ3AEHdYTDhw9nzz335JZbbol8jSE/5NPk3KxZM0+HtGKqB0awVw2MYK/i/Pe//wVgw4YNBS7Jzoe70w/q7ILOOQJdjw8OxaWp7ayUlJTw+eefs3q1b0iOrKGHkdUpJiG6s+44V1lZyV/+8hdmz55d6KJEwgj2Ko6+3rVYqKys5PXXX2fFihWFLkpeCers0ukI3V7yhmhkU8uurKzkkEMO4cQTT8zaPdMpQ7Gws2rs8+bN48EHH4y9Q2OhMIK9ilOMgv2f//wnp5xyCgcccEChi5JXMhXs7nn47du3Z1ymnZFsCp1Vq6xVuN9++23W7hmXQgvR999/P2WQXkyDjXxSVZ7bCPYqTjEK9kmTJgHw888/F7gk+SVdU7yD2/nRCPbC4wi0Zs2apXX91q1bMxYGhRQmSimOOeYYevXqlfhe6DIVgqq2vM8I9iqO47hVTBRaw8gX7sYe1NktXryY4cOHExT2uG7duknfjSk+N8ycOTPh+OiFXn//97//AdC0adO08qpZsyYDBgxI61qv8uSbrVu3AvDdd98llSVOmc4991w6duyY/cIVgKrStxnBXsXxc7gpJFWl8meboOe++uqrGTp0aGAnb0zx+aFr16506NDB97w+QHOcUt2Drig4v9/zzz8f+1q/8uSbLVu2AFBeXg74a+zvvfceTZs29VQ0XnjhBX744YcclzS3OIP4qtK3GcFexSlGk1hVqfzZJspv8cknn0S+n9HYC4P+3p26XFISv6v85ZdfslKeQrYnP8HuLtMNN9zAqlWrEpp90L2qIl6m+Lfeeos5c+Z4pC48RrBXcYpRiBZjmfJBFMEeR0AYjT23dO7cmfvvvz/luC7YZ86cCaQ3x5qtJXKFHLxv3rwZgBo1aiQdd5fJqatlZWUsW7aMiRMnAiRtfbvffvvlsKT5Qe/b+vXrxx577BHr+rVr1+Zl+tQI9iqMUoo777yz0MUw2EQZ0IRFoNMxgj23zJ07lyFDhqQc97KUuAX71q1bGTZsWOBUWLYEezFq7LpgHzNmDF9//TVgCfaePXvSu3dvXn/99aStb7///vt8FTtnZPpbNGzYkJYtW2apNP4YwV6F+fHHHwtdBE/SqfyfffYZhx56aCLgTlUgjvOcQxyN3Zjic8/uu++eciyKYH/yySe59dZbAwfW2VqxUoxz7D179kykeeqppxKfS0tLEzvAffzxx7HzW79+fVFa/DIt09atWxMWC6OxGwJxPFaLjXQ6ot///vd89tlnHHfccTkoUX4wpvjC8c036W0A6RXC1Uuwu383x0QdFPExWwOzxYsXJ/LLN25TvCPgFi1axJw5cxg+fHjSslZ9F8M4wnDbtm2888471KtXj//3//5fFkqeGUopXn755USbdv6nK+B//PHHhFUjHxjBbsgK11xzDV27dg3sgFavXk2nTp08tRyngwxaDpZPlFIce+yx9O8fuJdRgsrKykiN3i0gRowY4Zu2qmnsIvKMiKwQEU8pKyK9RGStiEy3/4ZmI9/Nmzez7777pnVtVMHu1tid3zHoN9cHepn8lnfddRdnnHFGrGumT5+OiDB58uS084VUjV1njz32YOjQoUkmdv09/fTTT5Hzue666+jTpw8Ar7zySrrFzRqjRo3ijDPO4JFHHgEyF+z5tkIYwW7ICvfeey8zZ87k3Xff9a3EDz/8MPPmzePGG28Edlgctm7dmrSzWaadUSZUVlaybds2VqxYwaRJkxgzZkxgWoc2bdoktnMMwi3Yb775Zt+0VVBjHwn0CUkzRSm1n/13WzYydVuu4nSi6Qp253vUaIPbtm2LXCYv3nrrrVjpP/jgAwD+/e9/Z5RvkGD3Qn/ml19+OeW83wAnHbN9Llm6dCmwI8hWpqF0jWA3RObXX38tdBFSKC8v963ETnhOsObUa9asyXXXXUfNmjVZtGhR4tw555wTmMfWrVvZtGlTdgrs4tBDD6VZs2aRpjn051yyZAnjxo0LvaY6m+KVUpOB3O+Wkppv2tfWqlUr5VgUU3yUdc36ffI9bVazZs2s5OvnFe9HZWVlYB2vChvdgL//TLrlzLefRM4EewSznIjIgyIyT0RmiMgB2rk+IjLbPndDrspYlXn//fc55JBDCl2MFGrUqOFZ+RctWsSDDz6Y+D5s2DAA/u///i8lbZA5f9myZTRp0oQ6depkXfAppZg6dSpr166NFFAjncYa1Om531tVM8VH5FAR+VpE3haRvbNxQ/d7i7M0zesdR9HYR44cCUTX2KOs4dbnpzPFEeyZrh13BgZlZWWBa9QdlFKBddzPcUx/V8UYvjVTwVydNPaRBJvl+gKd7L+BwGMAIlIKPGKf7wL0F5EuOSxnleSuu+4qdBE88RPsr776atL3oMbvp41/8803tGzZMtE5rF27NoOSpnLdddclPsfV2KNSnTX2CHwFtFNKdQMeAl7zSygiA0VkmohMC/O7cP8OUee9wfsdRxHsjiNU1Lyi1KeoWnEUHMGeqdOd835KSkoCw/A6VFZWBgpmv4FGsWnsbswcu00Es9zJwGhl8RnQUERaAj2AeUqpH5VSW4ExdlqDhldFKYbG4Z6Le+ONNxg3bhxTp05NOh4k4Pw6I/d8YbZH9vfcc0/is94B+b3XdEbxQevY3VQ3jV0p9atSar39eTxQLiKeQdiVUk8qpborpbqnuwGLF25BHkewL1y4MGWuPKgOxDXFZ1OwO1MMmWrsumCPMpAOM8X7+RoUq8buXre/0wv2CLQGFmnfF9vH/I57EmdkX50oJsGud44lJSVJ5Tj55JM58cQTU+JlBwk4v84yl/NUbiuB/t0vX6Oxx0NEdhW71xaRHlj9z6rgq8KJu6wq6Dt4C/bVq1fTrl07rrzyysh5x9HYt2zZEtlBLQrZMsU770JEIvn0VFZWBrZtv/eQa8G+detWunXrxnvvvce8efMQET766CPf9FHn2KMO1Hcmwe7166mA457kamRfrKxevZqxY8d6arWFCmTh1m6zvZ7bwX3fbDaWP/7xj0nfowj2bM+xRzETFzMi8iLwKbCHiCwWkYtFZJCIDLKTnA58IyJfAw8CZ6ss/Ihxfod0NfY1a9YA8M477yQd9yv+smXLkmLFBwn2999/n1q1amV1qacjcDI1xeuCPUpgFaVUoGD209hzLfg++OADZsyYwcCBAxMrBp599tnI17vXsztE9YvIt2DPnrdGfBYDbbTvuwFLgBo+xw1YgVz8RpqF0tj1ziNqJ5uOYHc/XzYHMi+88ELSd12wV1RUeGpTmWrsbqHiFihVzRSvlApc9K+Uehh4ONv5xqkHbsESVbA7uOutXx1whw0NEuzffvut77l0cZ4hqq/IokWLaNu2bco53RQfRfsPM8X7lUd/j7nQ2J018lu2bIl1f7cpfvny5Unni1WwF1JjfwMYYHvHHwKsVUotBb4AOonI7iJSAzjbTmuAQPNRoTR2XbBXVFQwYcKE0GvSaby5FOxu8qGxuztKt0Cpahp7ochEY/fSIL2OzZgxA0gvjDAEd+y5CDHqlCtsWei0adM49NBDadeunWcsd11jj7JFdDbm2LON/g6iTk24lzP6lc9ruaQX1Wm5W5hZbjzwIzAP+AdwGYBSajtwBfAO8B0wVik1K1flrE4Ui2CPomlmwxSfS41WDxXql0+6znPfffcdt956a9K6fohmJjakkm2NPUiAlZSUJOUXVRMLKmMuBfsXX3yRiN3uxUEHHcTnn38OeEd9jCvYw5a7RdHYs42+A5uef1CeUQdwji9DGPm2vuXMFB/BLKeAy33OjccS/Dlh9OjRrF27lsGDB+cqi5xRVlbm2+EXwxx71CVo2RDs2Xred999N+VYFMGerim+Sxdr9aYelAd2zOOG5WtIJttz7EHx30UkaXCQrmCfPXs2DRs2pEWLFlnbLMYvvw8//JCOHTuGXlO/fv2UY7opPl8ae7ZN8Xo727p1a1ashQ61atVi27ZtVFZWegr5yZMns2DBgkjvP5sUco69YFxwwQUAnHfeeTRq1KjApYlHo0aNfJ1sCiXY9c5x2bJlka7Jxhx7tgSf18Yzejz7iooKhgwZwqGHHsrmzZtZvHgxN9xwQ8am+Fmzgg1RRmOPRiYa++rVq1m6dGnSnHiQYC8pKYms9em40+25557UqFGDLVu2ZD0eAyS/k1133TXSNV7Pkm1TfKHm2B3SXSUQpLHvvffezJ071/P9/fa3vwXyHyZ7pw4pm2m4xXHjxtG/f/+8bMPnEDSnk44GOWTIkIx3U9IFrNu5xI9i0tjDmDBhAvfffz9nnnkmAwYM4KabbuKjjz7K2Hmudu3agWnHjh1bFLEJip1MNPYVK1bQqlWrpGNBAsytsUfN2yud0/+4LTXZQG+T9erVi32N+1i2TPH51tidmO9eRGlbS5cu5cILL/Qd7NWqVYu5c+eG3sf9bnPdrndKjT1bnHjiiQDstddeDB2alY2qQgma04kr6H766Sfuv/9+gJT1uXHQO8uoS3aKzSs+iBUrVqQcmz59emJ/5Tjoz12nTp3AtGecfjoUUbCOYiXOMsgom7HE0dgzEewOUa1ccdD9XqIKES/Brpvig96LQzY09mziHrRBtDj/Thon/obXZkEQ3XnO/W7D1vtnyk6tsWerMq1endm+F48++ignnHBCpLm2oIoUV9Bl6/l1wR51Y5pid57T8eqM3IF4oqI/t1/DbgrcD3DmmbHvvzOSicbudY9czLHffvvtSSGLdaIK9n/+85+ISKiAfeihh7joootilzFMY9fX5fsRFlL27LPP9jyeC1O833Onc/8mTZp4Hk/XeS7T3f7C2KkFe7Z44IEHMrr+8ssvZ/z48dx9992haYMq0sEHHxxrDklfm51JRdMrbdRpiapkio8SLSsqQcvddgGGYi0VuRLglVdgzpzYeexsuK1E6QRI0ettmCk+nTn2d99913PDI4g+fTVixAggeSAwdepURCTJQcy9xWvUehom2GfPnh16jzCNPei6bOPXbtPxXfEL9xt1kGAEexUm08rp9pL2Ikiwz5s3j/Hjoy8miKqleKXX0RtKFKtDs2bNisp5LozRo0enHKuoqEhLY9ffoSNAamCt7/wBuBWoB4wDmD4dOneOX+CdjMMOOyzpe9Dv4tep6w5sQWu/S0pK0tLY/VBKxXbo0oXJY489BsB7772XOOYWGtkwxa9evZo1a9bQpk2blDTuvLLRtrOB3+84cODA2HkuWeIdIy3dQVOuHWN3OsGu/5jZrEwXXHAB7dq1i+1Ip//AfvM4OmGmnziDC72yhTnG/PzzzzRv3py//OUvgfeJIthr165d0Dn2ioqKROcXpYF5rQOuqKhIK399ALXx11+5AJiNtdVZc6zAD0cCJwJ07Rr7/oZg/DQlXbAHOdWKCG+8sSNeVqZ7NsQZnAbd9+233+Z///sfkPqMQfVUHyQEReFzrCJeK0jceXm9v5NPDt7HKxfOc2HBeYJwl+HRRx/1TBd1296i1NhFpJmI3CQiT9r7rD8jIs/ktGQ5Ql/GlE3BPnr0aBYvXsynn34a6zo9SEmUHzvqnE4Uomrsr7zyCrvtthurVq1K2lPdIe4cexRzndfykGzNsXfq1IkWLVpQUVHBm2++mdY9tm/fnlb9mTFjBoIVNP1f337LSKA9MAs4BTgMmJJWiQxR8BvI6Vpz0IYsJSUlSXXcSwjFqZdxLGxOfdPzdI699NJL9OvXD4insev3CjLFO9MFTZt6bsaXoLKykg4dOqQcP+GEE+jUqZOvSTsbgl0pxd13351wdo0i2P/zn/+kTGXEIUiw679DUQp24HWgAfAelpXQ+aty3HTTTYnPuZjXibsRja4pR9mwIWps4ijolS1IsLs3SHET1xQfRbBfc801ntcFfY/K/PnzWbNmDRs2bGDIkCFp3WPBggVpNc6+wJfAS8Bvtm3jB+A8oCtWIzNkTlSv+BYtWiQ+u7dY9XNSFZFQIRTHzBqmyep4CXYdZw48F6Z4p2/ycyLT89Lfq4OIcOqpp/qWPRtK1ueff87111/PH/7wByC8L1JKJaYy3n//ffr3788XX3wRK8+gPuiZZ3bovsVqiq+jlLpeKTVWKfWK85fTkuWBfDhfLVy4MGEi80L/waMI9mxaGfTnDxqxNmjQIPA++jNE3bM5bKlH3bp1U45lwxSvl7WkpITOac5hP/HEE5x++umR0x8JfIwVTnF/4GfgLzVrsifwPFCY0ELVk6B64XSo//nPfxKBqiC6YHeHlI2rsce1MoUJUj1/Z7AcxxQfVjb3Ma+AXqeccgrjxo1L5OWVn4iwyy67sGXLFk+hlg2N3VFOHE39hBNOCEyvlEq8q9WrVzNmzBh69OgRK8+gd3vZZZclPherxv6WiByf05IUgFwIdv2e69ato127doFafFzBns0y63mfdNJJvum8Qk3q6A01qmAP09gbN27seZ1OOqZ49xazvXr1in0Pr3v50R2YAHwEHA78DxgCdAQe2b6d7eBpuixG7E2Zip4oGvsuu+ySNLjU69KWLVt8p7zcGrsXQdrY5s2bYw3ODz/88MRn5zq/653nceefrim+srIy5V5e7+Wwww5LmOjDBDt4r5zJxnI3Z27fmUb5+eefA9M/++yziedzv6OoZUh30FRQwS4i60TkV+AvWMJ9k4j8qh2v0uRasAdFPXKII9gnTZrExx9/HJgmTqOIKhjjCPYoKKV8pxT22WcfwDuwRDY0drdgd+6Z7VjOB2CZ1r8AjgPWAn8Ddsdao76ZHe/fb96xkIjIhyLSXvveA+txip4oXvHl5eVJg0u9Lrk19q4uJ8awehfUrjZu3BhrQKqX0WunMf1ZnbTu9piu8CktLU1Zyhvke+CUx0+wO4N1r7gf2bBEOoI9Tnty3pX72TMV7G7BXVSmeKVUPaVUfft/iVKqtvY9uLevAuRCsLtNvXHSBwn2efPmceyxx2Z1w4iozx8WkjKu5uy3YQLAVVddBXiP6rOhseujeD/tIhMOxNpj+EvgJGAjcBfQAbgd8FozUYyCHbgDmCAil4nICOBx4KKQa4qCKA5NZWVlvhq7W7DrnXxlZWVSWi+BFNRpZ0Ow+12fqcauTxn6rQzwG5A75aysrPTMT0QSWr1XdMogU/yBBx7Iiy++6PcICZzQvE57cqZavKx/Ds4Kh3Qdcf3qmnuVUVFp7A4iMinKsapGUAewYMECnnjiibSElkNcwR5k2v3pp59ilSMKUZ8tzGEv7ugzSKA6g4gwc51zn7gcddRRSfdz7pGpxtAdeBOYBvQDNgB3Y3m83wAExSYsRsGulHoHGAQ8APwBOF4p9VVhSxWNKHPsbo3d3Q795tjdyxz1z2PHjqW8vDxwyeu2bdtitRevPsTJc9myZUkCxBHs6XrFX3LJJSxevBjwd+qLIti93v9ee+2VmJL08jnyK2NlZSVfffUV55xzju8zODjR9pz2VFlZSfv27SM5KKY7wK+Sgl1EaolIE6CpiDQSkcb2X3sg1Vaaen0fEZktIvNE5AaP89eKyHT77xsRqRCRxva5BSIy0z43Lc3nCySowh999NEMGjSIiy66iCeeeCKt7Rn13bv8KkBUjT3TsLVuNm3axG233ZaVe7krrd8I+ZZbbgGiCXavufogr/j//Oc//OMf/wgtq96p6OVIV7AfBLyFZaM+EUug34Vlcu/w0ksc2KdP6D2yuYQxW4jI37CW1x8JDAM+FJFgb6QiIWgQnI7GruOuu/rn66+/nu3bt7Nw4cLA/NPV2N15tmzZkpdeeiklbbqmeLAUGrA2PvLCT7A7AwSvtr1gwQIOPvjghMbuJdijBL+Kii7YS0tLI71vd/6ZmuLdq4yKyhQPXIKlhOwJfIVlYfwSa/rwkaALRaTUTtMX6AL0F5Euehql1P8ppfZTSu0H3Ah8pJTSJdhR9vnu0R8pOkEVfv78+YDlYDFo0KDI2+75OaR5jdC+/PLLpM1jggR7tneAevXVV3n99R0LrJo3b+6bNqySuyupn7OgE/EpSLDHGdXr7/qII45g4MCBTJsWfQyolErbBHcUllPcVOAELBP7XezQ0FcCp59+eqhnLvjPWxaYpkAPpdSnSqknsFwFrixskaKxceNGX+vXJZdcAnjPsc+ePZsrr7ySzZs3Jw223A5mep3R67HTDoLWT2/dujWrc+w6mZriva51p/UaaOjR5rzm2Nu1awfsELhefaGf30BUAai/U6c9OU66Ud53uhq0+1lHjRrF66+/Xtwau1LqAaXU7sA1Sqndtb9uSqmHQ+7dA5inlPpRKbUVGAME2UT6A+ETKVkkzkg2SsjVoHt6/ZDdu3dPClDhvvbjjz9myJAhbNmyJbJg37p1K0OGDElyslNKMXTo0KSIWW7BGTU6lRfuxue3a5kz2vdzsIEdgt1rR7Uo69jDPGHd18epAyXA74HPgfexJN164E4sDf0GLK93nSg7OBWpKf4vACKyh/39J6XU7wpbquj4dZyO0CgrK0sxxffr148HHniA77//Puk3cc+x+2nsTjsIaqtbt26Npa3p9Sdsjt05H0djd7ftoAiU5eXlvoOEMFO8O43DY489xqBBg5Luqy+vjfqu9Heua+xRBbs+GAuLib/77rsnPruf9cILL+SUU04J1dhzLdijRjv5WUR+7zq2FpiplErtgS1aA/ri6MXAwV4JRaQO0AcrZLaDAt4VEQU8oZR60ufagcBAgLZt24Y9RxJxOvWoaZ944gnee+89br/99qTjUfZ+d//4PXv2BCwP8ajboT7yyCN8/PHH3H///YnGMmXKFIYPHw7saPxuJ7x055jGjRvHpZdemnTMz7TsCPYoGvuKFStQSqV0qjpeDTbOqoCoc+w1gAHAtYCz6n0l8CCWSSpoyBUloFA2gw5lCxHpB9yD9fi7i8h+wG1KKf91kUVEmEAoLy9PMcU7nXtlZaXvYMuZY2/ZsiVNmzb1FOxBu6BlorE7+Dmo/fjjj0nlcIgzzRS0XDVotzTdFK+n06fHnDQ//vgjIsKUKVMSa711ZSAszO2qVauoUaNGklOvns757SoqKiILdn2Dnj333JO77rrLN61eb/wsDWEae65N8VF7lIuBQ4EP7O+9gM+AziJym1LqWY9rvHpYvxrWD/iPywx/uFJqiYg0ByaKyPdKqRR7uC3wnwTo3r17rInSOMIsimAGGDNmDEAi+pFDlBGaX3kWLFgQWbA7c2Q6unY+cOBAnnjiiZTQr3HMdTrOnvQ6fp2i0yD8BPuKFSuoXbs2tWrVYvPmzWzatCmpwUdxnosj2MM09lbApVijRmeiYj6WtPsnECUSdRSNvRgFO9a8eg/gQwCl1HQR2T3ogmIirDP3cp5z2uiWLVt863Dr1q0TAsMdrMbJM0hjz2SOXTfF+wmGFStW5Eywb9u2LVRjd1vjdF8FJ83EiRMBGDlypGcZ9eu9+rOmTZvSrFmzJKueVzuOM8fuJqi/1qfO9HLrv7tbY586dWrk+2eDqAFqKoG9lFKnKaVOw5oz34KlgV/vc81iQN8KaDfAe4scOBuXGV4ptcT+vwJ4FauTySqZCPawxuKe44syMAhysIsayzhMi/3HP/7Bl19+mdKA0zHFO34Ibvwcj8I0dkdbd5vsZsyYwVFHHZUS7jFIsL/22mv87ne/C4z6p8+x65tbHAH8C/gJuBlLqP8XOAfoBDxKNKEO0YS2l/CPMjefY7Yrpdy9fPa34MoRfp15s2bNaNy4MbVr107RvJzOdvPmzUnn9PrfqlWrhMBwC3anw8+mKd7Zyrljx45Jpng/H4JNmzalvQkMhMfSiGuK1wcmTl7Ob6Of003hkyZNYsaMGbz88ssceOCBnvm5FR3993ZM+XFM8W6C+ms9rod+b91S4xbs7uV6xSLY2yul9E2DVwCdbQ3br4RfAJ1EZHc7YtXZWEt8kxCRBsBv0UJli0hdEannfAZ6A99ELGtkMhHsYde6TWhRfsiFCxdy4IEHMmPGjJS8onrFR+k0tm7dmiLY44zqnZ2OLr74Ys/zfqb4II3d8ZiHHe+uf//+DB48mOOPP54PP/yQuXPnJl0T1GBPPfVU3nvvvRTPf10T08uxb4sW/DpsGL+0bcsU4Ew7zVjgjr59OQBr5Bm3i0hHY2/RokWSY2OB+EZEzgFKRaSTiDwEfFLoQkXFqx38+OOPrFy5kuOPt4JoujV2/Rr9N/GaY/fS2B3rUtD+6nFN8c2bN+eMM86grKwsSWP3E+xu5z5Ibdt33nln4pniOM8F4ecVr79jt9e+3yqW1atX061bNz777LOU+/uhP7PzOziWlXSmGYP6a78pAP03Cdsts9Be8Q5TROQtEblARC7AEsKTbaH7i9cFSqntWHPm7wDfAWOVUrNEZJCIDNKSngq8q5TShzgtgI9F5Gssx+NxSinv9RcZkIlgD/th0hHsAF999VWKGV83E4bhVS53wy4tLU2peHFG9ZdffjngH18+zBTv5Tx38803p+T31ltv8fDDD/s6xDmdsR52011Wty9BUnCRTZvYe84cXgMuGT6cesOG0WDhQlYAw7E83M8CTrn3Xs/8o5DOHPuuu+4aaUCQYwYDe2NZ5l4EfiXEK16sXR9XiIjnIFwsHrSXv84QkQOyXWhnSZWX8HSmjZz65J5j19uY3+/mBJjxEuy1a9cGdjhfnXTSSSmbGcUV7GANlHWhESTYvTRNd/u/8cYbPY9D+BRGNjT2qEJNb8txBLs+ACotLU3qH9z47VYX1N/q22vrv8Ozz+6YkQ5ytj777LPZd999fc9ng6iC/XJgJLAf1h4Wo4HLlVIblFJH+V2klBqvlOqslPqNUmqEfexxpdTjWpqRSqmzXdf9aHved1NK7e1cmynOciuHOILd3ZDCRmRuwR51jh5SK8V7772XcIwJI0qj8RoopDOq9XsHfqb4II3da2QfxmmnncaYMWP45JMdiqS7A3Dfq1ZFBadjSarW++/PxePGcTK2Q0i/fvz3b39jN2Ao1kYtAHvssUek8ngRRUC706TryJhNlFIblVJ/VUodpJTqbn8O28xgJJYTrB99sWYzOmG5LjyWndLuwHHG8moHjvnWqZ/u5W56m/D73V555RWef/55T8HutHFnymj48OEMHjw46fpt27aFel27cQR7FI3d67hffaqsrPTU2IOsd7/97W89j/vNsQdp7GG4f58lS/xmcpMFu5O/Y1m59tprmTNnjqdDnBPC2k2QYNffmd6v33HHHYnPQfLhr3/9K126dPE9nw0iee0o65d+2f6rsrhNP5lo7GH7jrsbR5w5FfdysbCoc+Xl5Yn7R2k0W7ZsSTs6lY7fet0g71nnfJBgj+MAd+uttwbmXa4UfPIJTJqEmjSJVUBiomDDBr7C2l1t7+HD+cNNN/G/iRNT5pbilMdNOhp7IQW7iLxJwFx6kFe8UmqyHl/eg5OB0XZ/8pmINBSRlkqp8E0VIuJMA3lpnk5n69QRt8YexRTv4DXH7haqXjuhffnll0ke2FFwnEmdMgXNsUfR2B38dnML6qvq16+fKI+O036vv/76pPcaNMcehvu9T58+3XMPCfc9lVJs3bqVt99+m27dulFSUkKnTp082+J+++3Hhx9+mHI8SBHT36dfuiCNParikglRQ8r+XkTmisha2Uk3gXH/gGG7mLnvHUdjd0x6UdEbkluwV1RUpKwJ37x5c6y1rl4dQ2Vlpa9gd/sIOOjLYoIad5yK7zgsCdb6yvtOOgmefJLHsOZwHho1Cg4/HIYORT76iHLgP1g7rD1z880cCNwHbG7YMFFGr3KnSzoaexx/hxxwD3Av1gKATcA/7L/1ZO7n4rUEtrVXQhEZKCLTRGRa2IqQ3r17Jz7rS53cuAW7X0hZCBfsXhq7l2B31+U5c+YEPosXbo39m2++Yd68eZ5p42jsFRUVnhp72K6FTjkOO+ywxDHnPsuXL0/SrLOlsXt913Fr7A8/bIVZ+frrrxPHvdrihRde6Hk/Z592L/SpRr93FaSx52OaLeo6m7uBfkqp73JZmHwTR7B/++23CdMOhGvs7sqbSy/IIMHeu3dv3n///aRjcTV2r05y3bp1vg00KJKaiKCU8m/cmzezK9AMaBjhr9VPP1ETa/lFHYDKSrjkEhJOHJWVsOeecPTRbDvySFqcffaOdedarAHnHWZ7NO2lJVxyySU88cQTvmnSjYaXDZRSHwGIyHCl1JHaqTdFJFr4RX8iL4GNs4xV/80cjT1IeHi1+yDB7penW7Bv3rw5SZutW7duio9HOv2AI9idAf8VV1zhm9ZL0Pi1bbcpvqysjIqKisie8XqESb92k02NvaSkJJL1YfPmzZ5Tl+4yPvzww2kJ2f79+9O+fXt++ukn/vWvf3mmCRocFY3GDiyvbkId4gn20aNHJzl4hWnskyYl75ETxwsyyr7sOl7RqRzcQt25f5w5dq+GqGsQbtyCvR6wD8Bbb3EZMAI4feJEXsZaJD0TYNddoVYtqF2bWatX8z1WoIQJWCELH8eK8HYD1s4kZ2NN5nbduJE9sIT6cixtnAEDuBor2MLVF1/M2s8+4/vBg9nWr59vMBmnsUVpdE6wnyh4dRzu3fKKcY4daCYiiY3i7TXs3rGCoxNnCWxkdAEQpLE7OO/XLzQs4LvcTT/vpbE3tC0/p556qmcI1jDLnZd/Ss2aNdm+fXukeuEIlOuvv55HHrGifkc1xZeWlrJ9+3bf/ufJJ5NjhEXxi/FKk4lgd/dbRx99NCNHjky654gRI/jnP/8ZWBawfK7SEbI1atTgrrvuokmTJr5ptm3bxq677priPOlVjlwQVWOfJiL/Al7D8pIFQCn171wUKl8EOZV4cccdd/D3v/8dCNfY3fPicTrruII9boCTn3/+OVSwV1ZWMmXKFA488EDPhujV0ZRibSpw3IoVnIXlZdkNSGwJ068fDzmf3UuCnO81arBi+3ZWV1byC4T+td13X6bMnMkSLLdtADVqFPeNHg3APrVq0aFDB1avXs3nn3/u/ULwF+xTpkxJSRsntrvXb1OzZk1q166dmMooMlO8w1VYG784qk97rL0jMuEN4AoRGYMVA2NtNubX4wp2r9CsboEbVWN3BuzOvG6jRo1YtmyZp7kfvAf4ZWVlgQN/xwoRZiLXn6Njx4707t2byy+/PNAU7y6Hl8Z+xx13cMQRR3DEEUcA3lMZftNVcTX21q1bJ1YteJni3b/TBx98wAcffJASACasLM73dDR25zmC6sjWrVupUaOGZ1suJlN8faytpXtrxxRQLQV7FHNZmFe8+x5xzKtx1zjGHQFec801Kcst3BXwqaee4pJLLqFnz56eWkTF+vV0V4r9gQOwhPi+QG0AV7SojVjBXvY67jiefu89FlRUsAJYhRVbfRUw8+efoXFjqFWLbi1bsmzZskjP0rNhQ74POF9SUpKIAfDRRx8FpoPkDsrp0NzEGUh5NeLS0lIaN27s24H5eermE6XUBBHphDVWA/heKRUoWUTkRSxDSVMRWQzcApTb93scGA8cD8zDqhZZ2d/dS7BHMcXrbfLPf/5zUhrdhB5ljt0ROM5SKD/B7tXn9O3blzfffNM3L6f9RRnwO8Jfj6znN1BcuXJl0jlHY3cGnI5Tbu3atZPagdv5UGmbwLiJM8e+22670a5du0S7cDugeQl2hyiKk5dgT0d7dq4JE+x+sfWLRmNXSmWlARYbfpUhysg4aAcn8A9oo5RizJgxHHroob7Xxp1jTaeieM2x67HZnUhJU6ZMoV/PnvTCEt7O325duuA1Rv4RmFu3Lqvbt+e5WbP4L+CoZGrCBC6vVYstXs+nebvGeZ4wx7YgB6mw9H7lyFRjLy0tpVGjRp6C/eqrr+b66/2COeadA7E09TKgm+0fMdovsVKqf9DNbG/4y7NaQpLfn5/G7hWyNJMgIW5TvNNnOPPgTn7u+ulVB0tKSjj22GP5+eefPVfABHn6u3HKUVpamhQ0xos99tgj8e6mTZtG7969qaioYNWqVYA1h75kyZKUuBReg5Y4c+x637PLLrsk9q+vrKxMesb77rsv6V6rVq3yFexR3o37t/CaKomCc5+gfsDR2L3efdHMsYtIZxGZ5ASeEJGuInJz2HXFjl+Fj+LBHjZ69tPYx44dyznnnBMYoMBJq4cuDELfbSgK++yzj6dVQlVWwvz58NprnPvDD7wM/AC8MWUKH2B5j5+PPV+uFN8Az2J5mPfCcmb7DTD2rLN4Zc89Gc8Ooe4QpTONU/HDttPV7xVFi4vSWenCesSI4BALfhq7vhRKz+eee+7x3fY2n4jIs1ge8kdgbTt/EJCT7ZMzRZ/H9NPYdQublynejT4QiKKxOwLV0a79NHY/wT5x4kS+/fZbz7L4RXL0wgmh3KhRo6TlpX5UVlZy5513cuCBB1JaWsrDDz/M0UcfDezYVMstwNzPFiQg9aW7Thq9f9UdAb2i5umcfvrpjB07NqUczrVh6GVs3759yrGoZGqKLxrBjrXc5Ubs8LFKqRlY/ktVmlxq7O57OBXPmbN1RqleOGmjzst3796dNm3ahCe0qVujBq02buQ4rNCADwNTAGnUCDp0gFNP5Y+LFnEa0AHYIsJU4Aksx7UewPdffMGhu+zCAOB+4COs7f4A7r///tBnCyJMC+/Vq1fg+dGjdyiVuRDsekfXuHFjzzRBzJs3L+FkFZRPgemOtRHTZUqpwfbfn0OvKgBHHrnDed9Pu9XjeHuZ4t04dcXZYdFNNgV72JxrHMHuWIFatmwZaop3cJw53YLK6VPc7dHr2fyeQQ/u5BV5Ts/TrbF7oQf30dPGEewNGjRI7HPh/n3cUzJeRBHs69evL+gce9QepY5Sym15zW2w2zyQicaerik+yvy9kyaO96g7ql4NgO+/5wTgL8BDwNvAXODjr75i8tKlTLCPX46llsm6ddCiBfzud4xs2pTzsebNj+3Rg4OxhPoTWJsAbCsrS3kH9913H99++y3169fPyAEsTNCFnb/gggs800bxlI4r2L2CkOh4vYfZs2cn3aNIBfs3wK6FLkRc/Ezx+sYsUQR7RUUFv/76K++9914kjf3pp58GrEE2WEuinHTu+3rdy8HPAz8qixcvBizB7mWK91JaHMGu51NaWprYTMVvWkNP7yXkysrKQpfEuaPLhfV5uuUlXcHud6x+/fqRNl+KItjXrFlT/HPswP9E5DfYa05F5HRSraxFzQ8//JByLIpgv/baaz0jRaVrio8aGc7rHm7KgN2BvefPZ48FC3gU6Gj/tQXYay/e8riuElhYUsKcykrmYQn7GcC4hQupYY/S79xzT2bbZr0eHpVz8+bNKY3pvPPOSzTkTAR7nHnzMKKa67zmRLMh2L3q2OrVq9ltt91C8ykwTYFvRWQqySthfCPPFQN+pnhdY3d+66C2WFFRkbIsUcc9xz5s2DAAOnfunIglD6labZhg98srKo4pvkmTJokluXobcAergh0WAV1QlZWVJfL1azd6ud1C7rbbbuNvf/tb0rGwQUurVq1CBbS+1av++2VDsLvL40dUwd6gQYOMt5ZOl6iC/XKsYBF7isjPWFGpzs1ZqXJAnz6pIazDTPH77rsv3bp180wTV2N3Kl4UgeesEXcqbi2sfXK7YmnQne2/Dtg/4LhxAOhB+yuAZXXr8vWGDcyDxN9coPZee7Fg6dKkzg6gUhtd6yN7r0bjONjo6CbDbGrsuoMNxGsYURt/HIegOKZ4rzr2pz/9iWnTpiW+O1pePhp8DIYVugDpoIdd1dE1dmcwFqaxO0SNPAdWG/CrQ1EEu55Xu3btUs6H4Sgc5eXlnhq7l2B32nJcwe749rRu3TpFyHkNivzeI1i/yYQJEzj22GN9niyVbGvsIhJpxYvXCho3a9asoXPnzr77xOeaqF7xPwLH2ru5lSil1onIlcD/y2HZsopXCMYwjb1GjRopI7j169dz/vnnewZ+8bqHO68wM39r4IBNm3inVy9exBLme2CtEU8pP9YIa3PbtqiOHXn8/feZiyXAfwK2+cQr3lOphDVg0qRJHHvssSnx2/Vy6lvGtmnThkWLFiW2vtTRvWfjCPbzzz8/6bu7wbidd9JdOpgtU7ze+MMc3bzq2FVXXcWAAQMS3zt16sSsWbNo0aJF4L3yiROBrqrh/DZ+GvvgwYMTmmSuBLuOfq2znMzrXu708+bNS9SHOIJ906ZN1KhRIyl8c5jGftZZZyXK5xBFsA8ePJgDDzyQvn37ppzzc/x1Ik86OM927rnnRtLYdbIt2JVSsTR2r7bdtm1bFi5cyNq1az3n2J9//nmaN28emkemxLIBKms3N2eB55AclCevhGnsNWvWTPmh7733Xl577bXQADV+pnhd02+Gtah3+aBBjMPa5H4x8EZlJX0mT+ZsLE0d4FusHcluwtrndm+saGsdgMdOPpnpF1/MQ1iR2uZBykYm7rI45TvssMNSlujo7wBIOJp8+OGHgR74cZaBObz11luJ+UkHdwN0j6I7d+4c+f767xDXec5vRK4/p25SHz9+PCedlGyp9lvu4tbkunTpEhjJKl84+0B4/FWJ/SH8hJFTn6+77rrEYCyqYPfCCS/t/n3dMR/cv7PXwN5LmDRr1iyxJj6OKd4R7HreYYLdsTrp7ay0tDSRr1+7KSsr4/jjj08aRDi4N7Jy8FpL7uQHuRm0OwRZDByccnTr1o0777wz8D5ebfupp55KfPaaYz/nnHNCy5kN4oUsS6ao7Ibp4CfYnTXcixcvThEqUQOnuBtw6YYN8P77nPDNN/THWjvUzjn5+OM4+u9q4GvtbwaWUA8LTRFn4xh9Jys/k507xjVYy+Tc76N+/fqJQU5QaFs/DjrooJQBQZBgnzBhQkq43iD0xj9hwgTfdHHm2EtKSvj1118RkaRnXr9+Pa1bJ+9pcuCBB3rew+2oVCwopfwnlqsAzrt0+8A4Hb/+m5566qm+nbeXoBg7diwzZ85k+PDhiXn0MI3dLdi9fHO86pmXVhsFXbBHNcXr5XMoKyuja9eugBXFzougcvl58uvtq379+imCPY6Z+vvvd4Smuummm0LTe5nQ3QN551yNGjV8Byd+gr1+/fpJPjd+XvH5IBOvndASi0gfEZktIvNE5AaP873sHeOm239Do16bDfwqkRNjeeHChSmdbpSlcDWBik8+4QpgFJZgPmvQIDjmGP4wZw6nYwn19VjLxLjmGs7EcoRrAhyNFc9zJPAV4UJdRHz3QPfil19+obKyktq1ayecgCB8O8L69eunvA+/AYV+rzp16nDMMcd4pvMy2blH1rpgb9GiRaxR/aeffpr4HLQPdtygG/Xq1UtoVP3796dhw4Yce+yxKWWvX78+GzZsSNksolgFe1XHqSv9+/dPRHMDb4tMjx49fDtefUCoO0vp9dVLsLuDubgdzLz2FNfrjGN+Dxtg3nLLLZ7l3rx5c0Koutv1smXLuO666zyvg+RdGUtLS7nwwgv54osvOPnkkz3TBwl2P+udc029evWSNmpxjsdp2/oyR78YAF55Bx1zLHxO2GeAgw8+OCmNn2B3+gUHP6/4fBAo2IPMcoD3xrg7ri0FHgH6YlmU+4uI1+7yU5RS+9l/t8W8NiPuvffe0DRuDdVT4GFtSDICmIy1nvszrKVkA4C9gMqSEjjoIF5u3pwLsUzpDYCnzz8f/u//eAlYkP6jxNLYnTlzZ52qU7nDRsvl5eUp78NvZK5X6F9++YWJEyd6pvO63t3Y9DTl5eWxGn+UBg/x5tjdx1944QVWrFjh6yFfp06dFHOmEey5Qa+f77zzTuKz8/tGfde6gHY6cj0Qi/M5rM2459h1/vSnPyWVDSyflyeffDJpAOFV5q5du9KpU6eU434a+6JFi3y3U/airKwMEUk4dnqRjmB3+s9169bRpEmTRFsOMsXvv//+kcsdhFd53e/WKV/NmjUTGrt7WtWvvywtLU2aTisvLy/Yhk6Bgl0pVU8pVd/jr55SKsyM3wOYp5T6USm1FWuTLu+hX3avjcwXX3zhedyZR+7Tp4+nxt4cOA14AEujXo21RvwmoCeWxj4L+CdwGZbZfeSDD8LUqdzWokVCi6/ECiEalQEDBtC+fXt+85vfJB2Pq7E7uANQRFlr7xbsfvnqgl0397vxOu4+podYLS8vzygUqB9xBLtXmcP8C9yWHiPYc4MeqKlhw4YMHjwYEUmEJ41q1nasdjruCGslJSXMnTuX6dOnJ475DTrPO++8lN/ZGbDqnX/btm0TAl/Px03NmjU9hYaXYF+7di1t27blsssu8yybF1HqZFAat+XCjyiC/d133410rzCiaOxOO9VN8W5lzt1fOlaWLVu20Lhx48Q9y8rKCqaxZzLHHkZrYJH2fTHWjk5uDhWRr7G2b7xGKTUrxrWIyEBgIOwIgZgJs2bNSjiL/fnPf6astJQOWAK7J9Dn7bdp7bpmGzAVK3rbFKytQ93bg26zf2z3Mrm6detGLlu/fv0YNWoU/fv3T1mXH7Uh6ThOM26T3XL3zmsaUZa16PdKB11w3nPPPbRs2TLxPa7GHpVMNPYouN+bEey5QbdcNWzYMBHy1zH7Rv3tvDyXvQQ7JGuUXlabX3/9ldq1a6c4njqD4jCtzqvMfnHIt23bluI858xFe8Xy8CPOsi8vojrSRhHs2WofYXPsAHvuae151L9//8RUm3uLbj9FaP369ZSUlNCkSRNWrlwZumtfLsmlYPdS0dy9/VdAO6XUehE5Hmtb2E4Rr7UOKvUk1hp7unfvHkuaeJmyHnrgAbpiCfED7r6bhjNnktQcNmxgPfApOwT550DwqnZvr3iIJ9idCh7FuzMKjsbgrqhLl6bGHnK0ZneDP/zww2nfvj0HHHBA0vFsjVS3b9+e9Gy5EuxxnOfSWW9+5pln8sILLyTmK41gzz1O5DSdTLbpdK9m0D83b96cpk2beq7Y8IrsBtEFu1eZa9as6dsO3O1an8sO4oQTTmCcHRMjSn8S1A6iKhruKRL3Mw0bNiyt9ta9e/ekWBEQTWPv0KFDwk/B8clZv3493bp14+uvvwZS+0u3Q2Tjxo1ZuXIlpaWliX7l2muv5bzzzov9HOmSS8G+GNADmO+GpZUnUEr9qn0eLyKPikjTKNdmg1133RW2boVp02DyZJgyhXsnTiQhaj/8EICVwMdYQnzN3nvz3KxZsePpOpUgF4K9efPmaXVYfk42X375pW/eujMaWA345ZdfTkmfiWDXr92wYUPSs/kJ9tGjRyetDU83zyjL3dIdRL399tuJ7/ozFWnkuSrLlClT6NmzJyUlJdSoUSPJlJrOuw6aY9fTeG3xqxPFFO9FHI3dOadf5/jUhGmQl1xySUKwB7XfE088kbfe8oppuYOoGrvbUuZ+ptq1a8fqIx322GOPFMEeVSFyfhfHArxmzRpWr15Nu3btWLhwYcq+8m5TvfPsuim+S5cuiVUG+SCXgv0LoJOI7A78jLVpTNIiPhHZFViulFIi0gNrzn8V8EvYtemyC3AolkZ+wvTp0KABaCOuulhObFOAI264gbVdu7K/vvZw1izP+/pFlXKoqKhg06ZNScFewH+9pxdelfCCCy7gyiuvZIFrD/QouAW706guvfRS37ydWNQOfia7bAr2KBp70Da4UXBMr35hMkeNGpWIQZ8NQWw09tzh+KBs376d3r17JwmhTH47P1M8WObYMGHmp7GHWaDCBPsjjzxCvXr1EgNb9xy7sxw17NndG7L48dJLL3lGnnSXLwruZYht27ZNiohZu3bthHd5HM3dq01FMcXr1K5dmyFDhqTEj3f3l85gydkVz3mPpaWliTT5jiqZM8GulNouIlcA72AFTntGKTVLRAbZ5x8HTgcuFZHtWNbss+09mz2vzaAw3AP8FtgP7aGdtdpdukDPntCzJ6fedx+vffUVAP8966xIm7aA9WN7NdDy8nK2bdtGZWUlF154YeL4gw8+CESby3LwqqxO7OR0hIPTsTiV7ttvv+W7777zTBslClu2CBLsNWrU8HzPderU4cUXX0xsvhGVG264gc2bNyei37nXHTucf/75CcGejUZqBHvucOrkoEGD6NGjR9K5MOH2wAMP+EYAzFSw+zmehtUnP1O8IzS6du2aFD/BLdgdZSIs6qVevqDBRq1atVLiNbgJexfO8k/3HPuECRNo1WrHgqs4is8NN9zA6NGjWbJkSeJZunTZsZjKa1lvWH3wWjnlvNfDDz+ce++9ly5duvDtt99y6qmnJj1LWVkZHTp0AGzrcB7JqQ1QKTVeKdVZKfUbpdQI+9jjtlBHKfWwUmpvpVQ3pdQhSqlPgq5NGxGOE0lsJv051kbTf2nXDlautLTwxx+Hc89ljqa9e4WU9cMvGpq+25S+l/DgwYMZPHhwrMcImmPPhin+mGOOSYw6o97fT7Dvt99+QHpOfXrD69y5c4opfp999km5pk6dOpx99tlJ20R6UatWraRn7NOnD/fff3/iOfR3qz+bfjwbgt1vAGHIHP13mzo1eVPKsHc9cODARIhVhyim+HQ0dqecYUtV/TR2Z/8Ed3wJpxxxrRNRBXsUwtq9e+c4p/y6oyx4v5tzz/XepuTwww9PCnizcOFCPvvss8R555zfdFvUdu2kO/XUU1m2bFnCWujeTKesrIybb76Zt956i+OOOy7SvbPFTjO5t+CSSzgGa+34IcC1wMQ6daBp06R0eqjYmjVrhmqkr776Kvfcc4+vpui3jWQ6OJXfWVsaRThcddVVvvdzO9kE4eTlXo/u936GDh3KHXfcwSyfqYsgdMF++eWXJ5WvvLycK6+8MuUar7C4XjRo0CDwveVL4BqNPXcEtdkwYef1W0Rxntu+fXtswe6YcMP2W/cqky7Y9SVWevq4A9BsCvawd+EOSOPXBrwEu6MFu2nQoEHimUtLS2nTpk3Sqh0vU7xE3PhFxx1QyHGecywwzrOUlpZSVlYWaSvYbLPTCPbF3brxPrBRO+ZlmtKXNtSoUSO0Izj44IO5+uqrfdM5FTwbgQqcPC6//HIeffRR5s6dm3LOTVADdWvsUfLWTVvg34nWqVOHG264wTccZRC6cK5Zs2aK6axmzZopm9BEtQzUr18/MGiI3xx7tjGCPXcEvc90BLtDkCl++/btofXFT7CHxaAIcvACa4vWbAh2PT5Gpv1VWHt0h5CNI9j9LBxeIWp1vDR2IFbgHkh9r45gd5crl/1HGDuNYPdqHO7588rKyqQY6VGWVoWNTHOhsZeXl3PppZcmjVz9GkZQA40j2B3cc165nmOHaJ1M1E7MrbG7yx9FYzdz7MVNUJ0M++282oKfKd59r7gau77ZVNwy6YLTCQ3tTh+3nrZq1YpRo0YB+dfY/fogr7gAfoJd19i96oCfYI87ZeFO7zyr470fVIZ8sdMIdrcTDaQKdrenZ0lJSajznPOj6o3o9NNPTzkfdQSsO464CRIAmQj2OB1APkalbsHu1cn4mdzDTPG51tijvksj2HNHLjvUTIKyOL/zBRdcwNq1a1NMuGHX6ZSVlXHbbbd5+vZEEVSOAHfjnvtOl7A67V637pfea1vkdDV2fUrF63hU3Okfeughhg4dmjKPXsh2vdMIdseZS8cttN0R1+rXrx8aOchLsDve07BjZD1s2LDA+yxZsoQvvviCvffe2zdNUIP1q0R6A3XvIe90KHFGrG4TW7EJ9jDtp169eoFaeZDQzyZR1ssb0iPbcQGiLo+K6hVfXl5O/fr1Exp7HFP8Oeecw5lnnskuu+zC3/72t0QQlbi+IX369PE87rSfdAT7gw8+SN++fTn88MND1567l4z5vVddsDvv16+Np2uKj2vhcKdr2rQpt956a8p9jcZeINyCfc0aKxBshw4dmD9/PrVq1Qrd+9urMbuXZ0WhZcuWdO/ePbAypKOx61GRjjrqqKRz6XjPBu28li2imOL9BLs7jr6bqVOnZqyxFyr+s8GfJ554gjvuuCPn+WRDY3fucdVVV9GvXz8GDRoUOc+jjz6af/3rXynlaNasmadTbZR76jj9VTpz7IMHD2b8+PF8/PHHkX0ZwjR2J6wrWOvn99hjjyRhrwd9cTau8bufnwD3WgYXRNgAwLmP0dgLhFuwO9p5mzZtaN++PWB5nC5ZsiRp1x4dr2VS+g/qJdj1CGR+9/MiaJDg15CCAkl4lT0KkydPTrlHVIYMGZL4fM453jGHMtHYnX2Zf/e73yWO6Q5/W7ZsyXiO3eCPZLBVcyYMHDiQG27Iye7OifahlAqcY4/qPOfco1mzZrzxxhuJPRvCroPgwYNjCs5kA5ds+gQFEcUr/s0330x6xyeffDLff/99kp+P2/zt3DfOHHtcTT1qeqOxF4iNGzdy8cUXJ747gt39g7Rs2dIzUMKRRx7p+WOHCXa/jVO88tbxin3tlaeOO9Kdjl9FD0MP4BG38t5zzz2sWLGCFStW8Nxzz3mmiSLYdW6//fbE5x49erB8+XKefvrpxDFdiy8pKclYYzemc28kg62aqwK6YPcirsYeFXfkRT+ixp4PKkO+BLvzLg4//HAAzylIv2ViervcsGFD4P11MjXFe4Wd9sI4zxUI/YU/88wzTJkyBRGhd+/egHel8GosuhOH3zycV0MM0ryDRtv6Hs1Rr3PWugZd41eh/YLV6HNc6awBbdasGc2aNfPNN67G/te//jXpXPPmzZPKqOczevToophjd2/jWk3Iy3bL+SZbc+zZEOxB7c0R7GER5oLK4PRNXk5r2cTJ/+KLL+ann37i4IN3bN7p+EP59Q/6O3DiuTvbXweZwcNM8VExpvgixd04rrjiiqTvUQW73pDjaOxBDl5BDTcdwf7444/TrFkzXnrpJd9rwhq5m0wEexTcgr1v37507tw5KVJfnPCdJ5xwAp06deLSSy+lb9++RbGO3b0VZDXBa7tlr9ijh4rI1yLytoh4eouKyEARmSYi01auXJmLssbGbYp3kyvBHtUU77TXKFuF+pXB8cnxcjbOJrpS4d5ue9KkSUkR49zokd2uvvpqJkyYwD333ANEE+zZ9ooPK2chKFzOBaS0tJQePXokwk26TeNeP4hbsHfq1In77rvP8/5hznNBGrs77+uvv5677roLCG7U7orcsmVLhg8fzqGHHsry5csDw9DG7Wh0wZ6LUalbsNeuXZvvv/8+6RkeeOAB5s6dy6233up5D/1dNW7cmNmzZ3sudylU5Dk9wmE1IpOtmpMvymA75mzjp7FnOscelaiDTedcFCcwvzL06NGDESNGhDr0ZUrQO2jcuHGSBu/GsSY4QYH0eXann/Z6T37L3aL+HmaOvcgpKSlJbEIAJBzlHMI09jp16jBnzpyk/dz9tMC4pni9MkyaNIkzzjjDN62Ou3LOnz8/4T+gl01fv5puhCpdsOdicwMv64i7jB07dmTOnDm+oXx1b9rNmzcnXf/5558nPhfKea6aauyRtmpWSq23P48HysXaqrlKkI3lbrmaY3fqayaCvaSkhJtuuinUoS9TMmlb7du3Z5999uHvf/97yrkffvjB9/7ZClCTTqyKfLNTauwlJSW0b9+ekpISKisref7555POe/0g+jxvUHQq9/WZaOwlJSXsv//+nHXWWey///6+13iVya8D0J0A03We0wV70Lr7dMnGcjIRYcyYMTz33HOJXZcc9K1ng+bYczniDppWqcJkslVz0VMMpvhca+z5ItP8Z86cGXh+48aNKceMKb6a445T7CbMFB8nLGUmc+ylpaWUlJQwZsyYwPy8yuTXcHSHvzCN3e94aWkpN910EyLiGfIxU7K1Tvyss85K2anLTaFM8SNGjGD16tX8+c9/zlke+SbDrZqzygsvvECrVq3o1atXxvfyWu6mH3eIKtjj1qt8auz5ItfabJADYbZDyvpRbTV2EekDPIDVyJ9SSt3pOn8ucL39dT1wqVLqa/vcAmAdUAFsV0p1J0tEDZ6gEybYc2GKT7fxBQ089LzDNAi9g3B3FiNGZLaTbhD5DABTKOe5Fi1a8O9//ztn9y8Utnl9vOvY49rnh4GHc12O/v37Z60e+Ql2N4X2iq9Kgj3X+euBuRyc95Jrr3hHVoTVh1ySs7cbcU3rfOC3SqmuwHBsZxmNo+y1rlkT6hA9jrFOuoI9E1N8uiO+oIbtdf9Cmoy8yLVg1/0M3M8eZblbUMM2a9yLh1z8FkEOVLlynovqFR/HFF/oeporbfbkk63VlV7LSaOuQ8+UX375BbBCzRaKXD5h6JpWpdQnSqk19tfPsJxtck7YD5tNU3wmGnsuKr8R7NCzZ8/E56A59kJrNYaqRaED1MTR2AtNrtpW3759AW+NPSwufdTBTtj7dYKCNW/ePNL9ckEue66oa1odLgb0WKsKeFdEvhSRgdkokLOEwh2G0E0uNfaSkpJAgZ0NU3wQXvcvpMnIi1x3TLoDYSZ7dxuqBn4rJ6Kim+K9jjvkQ7BH2S/Cr/20bNkyVr65JFcauxOkJx3BHtbvRBX81V2wR1nTaiUUOQpLsF+vHT5cKXUAlin/chE50ufayIEs3nzzTR577DEeeuihwHS5FOxhu48VQmMvNgGWa8Gu7zyVjmDfbbe8GJYMWWDr1q2+oYujogv2oLoZdQ/yTAR7ULjYIFP8a6+9xpIlS1KOF4pc9TlO/5qOYA8jar908803A8lLbvNNLnv00DWtACLSFXgKOFkplVj2opRaYv9fAbyKZdpPQSn1pFKqu1Kqe1gYxGbNmjFo0KDQF+5lmo6z3C3IdBa225sR7PnV2IOe3T2AmzlzJu+88w7t2rXLWdkM2aW8vDzj+h02kNfzinKfTObYg6LKBWnsxdbGc6Wxd+zYEfCOnJctU3xYultuuQWlVEH9GHI5uRplTWtb4N/A+UqpOdrxukCJUmqd/bk3kLfNIrwaRrY09jiCPdem+HQD1OSaXAv2kpISvv7669B07gHgPvvswz777JOrYhkKxEcffcTDDz+ctCNgOkQN6hK3XdeqVYtmzZqxcuXKSNN4Xu2n2HYqzNVAo3v37kyfPt2znTp9uLu/c9q5E28+jKrgw5AzwR5xTetQoAnwqP2ynWVtLYBX7WNlwAtKqQm5KqubTZs2pRzTf8xMnOeKXWOfPHkyRx7pOeuRN/LRcPR9nN3Mnz+fLVu2hE6bGKoHRx55ZKQ67zbF6/1Aq1atQqMwpquxA8yePZuxY8fSrVs33zRGY7fwe0dOpNDLLrss6XjNmjWrxEqCOOTUHTrCmtY/An/0uO5HwL8GZ4nf/e53TJw4MeW41/yMTr409lwLdq8oWrrHeKEo9IjYHWLYsHPjNcfu7gOi7IbmXJNOu27UqBGXXHJJ5HK62Vk09iCaNWtW8L4lXxTXMC7PjB8/noULF6Yc99LYdfLlPJcvU3yxjebDBj8GQz6JoqlFCRGcicYehaok2IutPFGoSoOC4urR80xZWRlt2rRJOZ6Oxq5TKFP83LlzARgwYECs+xebYG/VqlWhi2AwpBDkFR9FsKfrFR8VL8Ge68FEuhRbeaob5u0CgwYNokGDBonvYYLdS+BG1djdew+7yURj79ixI5s2bWLkyJGR7l+sznOtWweFOyhurrrqKkpLS7nxxhsLXRSDxvLly5M2/4mD4xTnrJEGq83o7SbKEsi4237GJUiwe/VZvXr18t16Olc8+uij1KpVq0pa5YqtnwzCCHbgscceY9WqHRtMeZni33nnncTnl156KeV8VMF+9NFHB5Yl0zn2WrVqBVbAdDX2fJrOHnzwQVq1asUjjzyStzyzRYcOHdiyZYvnlpKGwtG8efO0B4wPPvgg999/P717904cc7exSy+9NPQ+uRYMXoI9yErwwQcfcNVVV+W0TG4uvfRSNm3aVCVN8VWJ4oolWkD0iualsffu3TvyHEuQKT5sDXShnefc3H///YwcOTJSx5UtOnTowM8//5y3/LKN6bSqF/Xr1+fKK6/0PX/PPfcEeqs7BM2BZ4Mg3x+nTl588cU0adIkJ/lXd6655hquuOKKgkaUi4rR2D0Ic57zIurubl5z+jr6tYV2nmvUqBFXXnkl06dPT5qqMBh2VryEclRBnS/BHmSKf+qpp7jrrrtykn915/LLL0cplRS5slgxgl3DEXph61G90AVfUGznvffeO1IZvK7NBlHm2CdMmEDv3r255557sp6/wVAdcM+xxyHXgl0PppVrhz1DcWJ+bY2pU6dy2mmnBTqf+XHaaacxYMAAnn/++SSBrAvSZ555JimcqReFDlAD1iY577zzjvFONxiyyIYNG4DcbbrkNdBwphWjRsUzVA+MYNfYf//9efnll9l9991jX1tWVsaoUaM455xzkgSy/vmiiy6KdB+HXIyyvUz9GzduzHo+BkN15KijjuKYY47h3nvvjX1t7dq1AXIW2dHLFH/ZZZdRWlqaVp9mqLoYwZ4Dom6z6MW2bdsSn3MxsvcaLDgbJxgN3WAIpk6dOrz33nvsueeeiWNRTeu33347H3zwgecGJdnAS7A/8sgjSX2KYefAeMXngEwEe7169RKfnRF+rnA6gKFDh9KkSZOUGMoGg8GfuHPs9erVo1evXrkpDCS08rPOOivpeFVaf23IDkaw5wAR4Y033kApFducftxxx/H444+HrnfPBs7AoUmTJgwdOjTn+RkMhtzRsmVLNm3aZDYvMhjBniv69esHWFtCxkFEQjd7yJTJkyezcePG0H3pDQZD1UKPjmfYeTGCfSekGHZwMxiqC1VpcxDDzoFxnssxZn7LYKiemLZtKFZyKthFpI+IzBaReSJyg8d5EZEH7fMzROSAqNcaDIbiI5M2bzAYskPOBLuIlAKPAH2BLkB/EeniStYX6GT/DQQei3GtwWAoIjJp8waDIXvkUmPvAcxTSv2olNoKjAFOdqU5GRitLD4DGopIy4jXVgmMuc6wE5FJm6+ymDl2Q7GRS8HeGlikfV9sH4uSJsq1AIjIQBGZJiLTVq5cmXGhs80BBxxAeXk5RxxxRKGLYjDkmkzafBLF3q4BrrjiCrp27coFF1xQ6KIYDEnk0iveS1V1D2390kS51jqo1JPAkwDdu3cvuqFz3bp1Wb9+fc7iQxsMRUQmbT75QJG3a4C2bdvy9ddfF7oYBkMKuRTsiwF9j9LdgCUR09SIcG2VoUaNGoUugsGQDzJp8waDIUvk0hT/BdBJRHYXkRrA2cAbrjRvAANsT9lDgLVKqaURrzUYDMVFJm3eYDBkiZxp7Eqp7SJyBfAOUAo8o5SaJSKD7POPA+OB44F5wEbgoqBrc1VWg8GQOZm0eYPBkD2kOnl0du/eXU2bNq3QxTAY8oaIfKmU6l7ocuQS064NOxuZtmsTec5gMBgMhmpEtdLYRWQl8FOOs2kK/C/HeZj8Tf5R82+nlGpWqMLkgzy1ayi+39bkv/Pmn1G7rlaCPR+IyLRCmj5N/ib/6m56LxSFfrcmf5N/tvI3pniDwWAwGKoRRrAbDAaDwVCNMII9Pk+a/E3+O3H+1ZlCv1uTv8k/K5g5doPBYDAYqhFGYzcYDAaDoRphBLvBYDAYDNUII9gBEXlGRFaIyDfasWEi8rOITLf/jtfO3Sgi80Rktogcpx0/UERm2ucelIibsXvlbx8fbOcxS0Tuzmf+IvIv7dkXiMj0POe/n4h8Zuc/TUR65Dn/biLyqX2/N0Wkfi7yF5E2IvKBiHxn/85/sY83FpGJIjLX/t8oV89fXTHt2rTrQrVr+7rCtW2l1E7/BxwJHAB8ox0bBlzjkbYL8DVQE9gd+AEotc9NBQ7F2prybaBvBvkfBbwH1LS/N89n/q7z9wJD8/z87zrXY8UW/zDP+X8B/Nb+/AdgeC7yB1oCB9if6wFz7DzuBm6wj98A3JWr56+ufz6/6zBMuzbtWuW2XdvXFaxtG40dUEpNBlZHTH4yMEYptUUpNR9rM4seItISqK+U+lRZv8Ro4JQM8r8UuFMptcVOsyLP+QNgjwzPBF7Mc/4KcEbTDdixtWe+8t8DmGx/ngiclov8lVJLlVJf2Z/XAd8Bre18RtnJRmn3yvrzV1dMuzbt2iP/vLRrO/+CtW0j2IO5QkRm2CYdx1zSGlikpVlsH2ttf3YfT5fOQE8R+VxEPhKRg/Kcv0NPYLlSam6e878S+D8RWQTcA9yY5/y/AU6yP5/Bjj3Ec5a/iLQH9gc+B1ooeztT+3/zXOe/E2HatWnXkKd2Dflv20aw+/MY8BtgP2ApltkKLFOIGxVwPF3KgEbAIcC1wFh7lJ2v/B36s2NUTx7zvxS4SinVBrgKeDrP+f8BuFxEvsQyo23NZf4isgvwCnClUurXoKS5yH8nwrRrC9Ou89CuoTBt2wh2H5RSy5VSFUqpSuAfgOPksZgdozyA3bDMSYvtz+7j6bIY+LeymApUYm0SkK/8EZEy4PfAv1zlykf+FwD/tj+/RJ7fv1Lqe6VUb6XUgVgd4A+5yl9EyrEa/vNKKeeZl9smOOz/jsk2b79/dcS0a9Ou89WuoXBt2wh2H5wXb3MqlgkH4A3gbBGpKSK7A52AqbZJZZ2IHGKPwAcAr2dQhNeAo+2ydAZqYO38k6/8AY4FvldK6WagfOW/BPit/flowDEZ5iV/EWlu/y8BbgYez0X+dtqnge+UUvdpp97A6gSx/7+uHc/X71/tMO0aMO065+3azqNwbVsV0Gu1WP6wRm5LgW1Yo6OLgWeBmcAM+4W31NL/FWukNxvNOxHojtVR/AA8jB3ZL838awDP2ff7Cjg6n/nbx0cCgzzS5+P5jwC+xPIS/Rw4MM/5/wXLi3UOcKd+r2zmbz+nsuvZdPvveKAJMAmr45sENM7V81fXP5/f1bRr065z3q7t6wrWtk1IWYPBYDAYqhHGFG8wGAwGQzXCCHaDwWAwGKoRRrAbDAaDwVCNMILdYDAYDIZqhBHsBoPBYDBUI4xgN/giFh+LSF/t2JkiMqGQ5TIYDOlj2nX1xyx3MwQiIvtgRYjaHyjFWovZRyn1Q9B1PvcqVUpVZLeEBoMhLqZdV2+MYDeEItae0RuAuvb/dsC+WHGvhymlXrc3OXjWTgNwhVLqExHpBdyCFShiP6VUl/yW3mAweGHadfXFCHZDKCJSFytK1lbgLWCWUuo5EWmItU/w/lgRliqVUptFpBPwolKqu90BjAP2UdZWhAaDoQgw7br6UlboAhiKH6XUBhH5F7Aeaw/nfiJyjX26FtAWKwb0wyKyH1CBtT2lw1TT+A2G4sK06+qLEeyGqFTafwKcppSarZ8UkWHAcqAbllPmZu30hjyV0WAwxMO062qI8Yo3xOUdYLC9yxAisr99vAGwVFnbYZ6P5ZBjMBiqBqZdVyOMYDfEZThQDswQkW/s7wCPAheIyGdY5jozmjcYqg6mXVcjjPOcwWAwGAzVCKOxGwwGg8FQjTCC3WAwGAyGaoQR7AaDwWAwVCOMYDcYDAaDoRphBLvBYDAYDNUII9gNBoPBYKhGGMFuMBgMBkM14v8DHyF51ZIz+BEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABkZ0lEQVR4nO2dZ5gVRdaA38MwZBQQRQmKImBAQUXMiroqBta065rDpyIruuqadg2IYFpzWBVzWAPGVVRM6yqoqAQXRBQDijKAoGRBYGao70d336nbtzrdPEO9z3OfudNd3V23uqpOnVOnTolSCovFYrFYLPWLRqXOgMVisVgsluRYAW6xWCwWSz3ECnCLxWKxWOohVoBbLBaLxVIPsQLcYrFYLJZ6iBXgFovFYrHUQ6wAtxQMEekgIuNEZLmI3CIil4nIg6XOVxQi8qiIXON+30tEvip1niwNDxFRIrJlqfNhQkSGicgT+b5WRPqLSFVuucsvIrKpiPwqIhUB57MuC8O98vrO10kBLiLHi8gk96XNE5HXRWRPX5pT3cI+xne8v3v8Rd/x3u7x97RjI0RkmojUiMgwX/pNRGS0iMx1r+vqO3+ziHzjCr8ZInJynn5+MRkE/AKsp5S6UCl1nVLqDAAR6er+7sZBF+ez4WSLUup9pVTPUuZhXcS20YzfU1ZCryGhlPpRKdVKKVVb6rwkZZ0T4CLyV+B24DqgA7ApcA9wuC/pKcAi96+fn4HdRWQDX/qvfem+BS4BXjPcYy3wBnB0QFZXAAOB9d173yEiuwekzQthwjRLNgO+UDZakCUBto0mpwBtt94RpEE3aJRS68wHp6H9CvwxIt1mOI33aKAG6KCd6w9UASOBIe6xCvfYUOA9w/2eAIYFPKsxoICuEXkaDVwYcv5wYAqwDJgJDHCPzwJ+p6UbBjzhfu/qPvt04EdgHE6HdY7v3lOBo9zvWwFv43ScXwHHBOTnUaAaWOOW+e98z/7Rffav7mc33/UD3Gur3fNT3eMd3bJYhNP5nhlSJocAXwDLgTnARb53eBmOhWAWcIIv79foabVzs4CLgM+ApcAzQDPt/GHue1gCjAe2L3W9r08fGnYbvRiYB8wF/s+955buuabAzW67mO/mvTnQEvjN/a1eW+notqXn3XwvA85wy+4h9xlzgGuACvf+pwIfuM9YDHwPHKzlbXNgrNtW3gb+idtW3fO7uvV5CU5/0D/utb4yCGx7wM7ub2+spT8amBJwr0eBe4ExOIOp37ll8wLOAO574C9a+n7AJLe85gO3use7uu+icdTvwdcfuMdm4fax7jM+cstpnnttEy1t6p3n47OuaeC7Ac2Af0ekOxmYpJR6AfgSOMGQ5nE3HcBBwHSchpl3RKQ5TuWeHnC+n5ufi4E2wN44lSou+wBb4/yOp4DjtHtvg9NZviYiLXEq9FPARm66e0RkW/8NlVKnAk8CNyrHPPUfX5K93b9t3PMf+a5/A0cDe8Y939s99TROB9AR+ANwnYjsH/C7HgLOUkq1BnoB/9XObQy0BzrhaE/3i0hcU/kxOAOMzYHtcTpHRGRH4GHgLGAD4D5gtIg0jXlfS8NtowNwBn4HAN1xhI3OP4AeQB9gS5x6OVQptQI4GJjrtoNWSinvNxyOI8Tb4LS1x3AGM1sCOwAH4gh2j11wBt3tgRuBh0RE3HNPAZPdcyPQrBoi0gnHQnEN0M79HS+IyIZR1wZgbHtKqYnAQreMPE4E/hVyr+OBa4HWOAOMV3AGGJ2A/YHzReQgN+0dwB1KqfWAbsCzAfdM+nt0aoEL3Gt3c/NwdoLrE7GuCfANgF+UUjUR6U7GeYm4fzNeoFJqPNDO7fRPxuksCsVInEr5ZsD504GHlVJvK6XWKqXmKKVmJLj/MKXUCqXUbzgdZx8R2cw9dwLwolJqNY52OUsp9YhSqkYp9SnOaPcPWf2qhIhIF2BP4FKl1Cql1BTgQeCkgEuqgW1EZD2l1GI3vzpXKqVWK6XG4nRQx2TewsidSqm5SqlFOB1GH/f4mcB9SqlPlFK1SqnHgNU42oslHg21jR4DPKKU+twVysO8E64QPRO4QCm1SCm1HGfwemzEMz9SSr2klFoLrIcj6M932/IC4DbfPX5QSj2gnLnex4BNgA4isinO4MNrD+Nw6rXHicAYpdQYt395G0eTPSTGtUEEtb3H3OchIu2oUyqCeFkp9aFbBtsBGyqlhiul1iilvgMe0MqgGthSRNorpX5VSn3sv1kOvwcApdRkpdTHbv84C2cQv0/c65OyrgnwhUD7CMepPXA0q1HuoaeA7USkjyH5v4BzgH2J1hiyQkRuwtEej1GuDcZAFxyzebbM9r64ncdr1FX6Y3FG9+Bo4ruIyBLvgyPgN87h2UnoCHgdnMcPOKNtE0fjmNF/EJGxIrKbdm6x25Hq9+kYMx8/ad9XAq3c75sBF/rKp0uC+1oabhvtiNbOcOqbx4ZAC2CyVm/ecI+Hod9vM6ASmKfd4z4cS5lHqt4qpVa6X1u5eTO1B/3ef/TV6z1xBgBR15oIa3tPAANFpBWOUH9fKTUv5F7+Mujoy+dlOH4U4Cg6PYAZIjJRRA4z3C+b35NCRHqIyKsi8pOILMMZiLWPe31S1jXHh4+AVcAROKYnE6cAAkypsy4Bzgh+ii/tv3DmYR9XSq30pc8ZEbkaZ1S9j1JqWUjS2TgmIRMrcDoHD5Ow9Xc6TwNXicg4nHm4d7XnjFVKHUDuxHFs86eZi6NRtdaE+KY4832ZFzsmucNFpBKnE38WR6ACtBWRllpD3RT4PMkPMDAbuFYpdW2O91mXaahtdB51dQ+c+ubxC84897ZKKVNdDmor+vHZONae9jGsF6a8mdqDd//ZwL+UUmf6L3QtdWHXmghse0qpOSLyEXAkjmXt3oi8+8vge6VUd2NCpb4BjhORRsBRwPM+J0eILou0/tR1nNMHWvcC/wOOU0otF5HzKaCFcp3SwJVSS3GcWO4WkSNEpIWIVIrIwSJyo4g0wxn1DcIxi3qfc4ET/FqBUup7HPPI5abnufduhlPOjUWkme4p6Z7z5kebuv975/6OM79zgFJqYcRPewg4TUT2F5FGItJJRLZyz00BjnXz0pd4lWkMzmh2OM4c9Fr3+KtADxE5yb1fpYjsLCJbx7inn59xHHO2CEkzH+jqNjiUUrNx5rmud8tye5xR9ZP+C0WkiYicICLrK6WqcRxX/MtErnbT7YUzPfBcFr9D5wFgsIjsIg4tReRQEWmd433XGRpwG30WOFVEthGRFsBVWh7X4tSd20RkI/fenaRu7nY+sIGIrB90c1dLfQu4RUTWc/uBbiISab5VSv2AYxL32sOeON71Hp5WfJCIVLhl1F9EOse4Noiwtvc4zsqA7UhmNZkALBORS0WkuZvXXiKyM4CInCgiG7rlvcS9Jq1PiPF7vgaaue26EriCuvoBzlz8MuBXtw/+c4L8J0eVgedpsT84Zt9JOKOpn3BMxrvjmIvnAZW+9M1wRsmHYfBC1NKdgebhiuMlqXyfU7Xz/nPKd241dZ6nvwKXhfymI3E8o5fjaBwHuce3AD5xr38NuJNML/TGhvs95J7b2Xe8p3ufn3HMnf8F+gTk6VFcb273/2Gke7YOd++zBNjVcP0GOJ6zi4FP3WOdcQYSi3CmDQYHPLsJjhlyMU6Dmgjs6Z7rj+MId7n7Xn8ETjLl2/++CfHqd/8f4D5riVuXngNal7rO17cPDbON/s39LSYv9GY45tbv3Pr6Jeke1A+77W0JdV7oT/juvz6OBliFs0Lif8Cx7rlTgQ986fXnbwG87/4Gkxf6Ljie2Ytw2uxrwKZxrvU9sz8hbc9N08Itg8ci6sijaP2Le6wjjgXxJ5y2/zF1HuJPAAvcfE4HjnCPdyXdCz2qLE7FqYMLcBz6ZmnP2BuY4V77Pk4f94GpzPPxEfemFss6g4j0x2mQnUucFYvFYkBEZuKsIPGvXrForFMmdIvFYrGUNyJyNI6m+t+otOs665oTm8VisVjKFHHC3G6DY1ZfG5F8ncea0C0Wi8ViqYdYE7rFYrFYLPWQemdCb9++veratWups2GxFI3Jkyf/opSKCupR77Ft27KukWvbrncCvGvXrkyaNKnU2bBYioaIxI4EVZ+xbduyrpFr27YmdIvFYrFY6iFWgFssFovFUg+xAtxisVgslnqIFeAWi8VisdRDrAC3BPLggw9y4IEHsmTJklJnxWKx5JH77ruPjz76qNTZsORIvfNCtxSPM890dg+86KKLePDBB0ucG4vFki8GDx4MgA3kVb+xGrglkmnTppU6CxaLxWLxYQW4JZJGjWw1sVgslnLD9syWSKwAt+iISBcReVdEvhSR6SJyniGNiMidIvKtiHwmIjuWIq8WS0OmYD2ziDwsIgtE5POA8ye4DfszERkvIr0LlRdLblRUVJQ6C5byoga4UCm1NbArMEREtvGlORjo7n4GAfcWN4sWS8OnkKrVo8CAkPPfA/sopbYHRgD3FzAvlhwQkVJnwVJGKKXmKaU+db8vB74EOvmSHQ48rhw+BtqIyCZFzqrF0qApmABXSo0DFoWcH6+UWuz++zHQuVB5seSGNaFbghCRrsAOwCe+U52A2dr/VWQKeURkkIhMEpFJP//8c8HyaanDep43HMqlZz4deD3opG3kpcWa0C0mRKQV8AJwvlJqmf+04ZIMyaGUul8p1Vcp1XfDDRv8hmtlQW1tbamzYMkTJRfgIrIvjgC/NCiNbeSlxWrgFj8iUokjvJ9USr1oSFIFdNH+7wzMLUbeLOHU1NSUOguWPFHSnllEtgceBA5XSi0sZV4swYQJ8CVLljB+/HhrlluHEMcp4iHgS6XUrQHJRgMnu97ouwJLlVLzipZJSyBWA284lCwSm4hsCrwInKSU+rpU+bBEEybAd9hhB2bNmsUrr7zCYYcdVsRcWUrIHsBJwDQRmeIeuwzYFEApNRIYAxwCfAusBE4rfjYtJqwAbzgUTICLyNNAf6C9iFQBVwGVkGrgQ4ENgHtcL+capVTfQuXHkj1hAnzWrFkAvPXWW+u8AK+pqaGqqoquXbuWOisFRSn1AeY5bj2NAoYUJ0eWJFgTesOhkF7oxymlNlFKVSqlOiulHlJKjXSFN0qpM5RSbZVSfdyPFd5lip0Dj8ehhx7K5ptvzn/+85/QdEoprDNmcXjppZe49tprAXjvvfeYM2dOiXNUeuJq4A8//DBjx44tcG4suWB7ZkskQQJ81apVRc5JefPWW28B8PTTT4emO/vss9loo4149dVXi5GtdZojjzySK664AoB9992X3r1tvKi4Gvjpp59O//79C5sZS05YAW6JxLSMrLq6mlatWpUgN+VPs2bNQs+PHDkSgMsvv5xFixaxdu3aYmTLAixcaH1l7Rx4w8EKcEskpkhs8+bNsx1BAE2bNo2V7rPPPmODDTbg3nttlFFL8bDttuFgBbglEpMJ3QZ3CSauAPewsQ0sxSTKhL569WouuuiiIuXGkgtWgFuM6Ou6rQBPRlIB3r59+wLlxGLJJEoDf/zxx7nllluKlBtLLlgBbjESNS9rBXgwTZo0SZTeCvDCY/0M6tA1cFMAJltW9QcrwC1G9EZuatD+hm8jsdVhNfDyw8771qGXhand2sF5/cEKcIuRqEZuR+nBJBXg6623XoFyYvGwArwOvSxM7dgK8PqDFeAWI1FmNquBBxO1jMyP7TALjxXgdUS1bVsf6w9WgFuMWA08GXoZJZ0DNy3Ts+QXK8DriGrbNvJi/cG+KYuRKDOb1bjTqa6uTn1PKpBth1l4rACvI8q/xWrgmbz77rt89tlnpc5GBiXbjcxS3lhP1WTo5ZF0cGMFeOGxArwO68SWnP322w8oP8WlYD2HiDwsIgtE5POA8yIid4rItyLymYjsWKi8WJIT1cjLrSKXGr08Vq1axT333JPaqS0KK8Dzz8qVK9P+twPOOqwAbzgUsud4FBgQcv5goLv7GQTYeJJlhN7hmTo/2yGmo5fHLbfcwpAhQ9h+++1Tx2pra3nqqaeoqqrKuNbOgeeX5557jpYtW6aZPK0GXkeUtcgK8PpDwUzoSqlxItI1JMnhwOPuvsEfi0gbEdlEKTWvUHmyxCeqkc+bZ1+Tjl5GX3/9NQDLly9PHXvooYc466yzaN26dca1VoDnl9GjRwMwderU1DErwOuwy8gaDqW03XUCZmv/V7nHLGVAlADfY489ipmdsifKIjF+/HggXahbCoPnv9G4cZ1+MmLEiFJlp+yIatt2Siedcp4uLOWbMqkdxpISkUEiMklEJv38888FzpYFokfpfsq5kheDqN9vteziYRLg999/f6myU3ZECfC5c+cWMztlz5o1a0qdhUBKKcCrgC7a/50BY81RSt2vlOqrlOprd24qDrl4Va+LWJ+A8sFb0qcL8IbCnDlz+Oabb3K6R5R/y6BBg3K6f0Pjt99+K3UWAimlAB8NnOx6o+8KLLXz3+WD3rAXL15c1pW4HLAaePlg0sAbCp07d6ZHjx453cMOzpPhX9FQThRyGdnTwEdATxGpEpHTRWSwiAx2k4wBvgO+BR4Azi5UXuLw66+/lvLxZYfeyCdMmEDXrl1Ll5l6QJQGbgV48fAEeGVlZYlzUp7o02Pvv/++FeIRJFFeBg8ezCWXXFLA3KRTMAGulDpOKbWJUqpSKdVZKfWQUmqkUmqke14ppYYopboppbZTSk0qVF6iePzxx2ndujV33303kB5Va13FL5AWLFgQOhJd1zuBsN9fXV1tBXiBWLt2LV999VXasUJq4KtWrcr7PYuN3raPOOII7rvvvhLmpvxJ8s7vu+8+brrppgLmJh3rbogzagI455xzOOWUU2jevDkLFiwoca5Ki2nZTc+ePQv+3Po6EAjSwEeMGEGTJk2YMmVKcTO0jnD77bez1VZbMWlS3fjfE+BBy6FEJC19XD7++GOaN2/O22+/nV1mywR/Xf3Pf/5T8Ge+/vrrbLnllqxevbrgz8o35ezfYgU46ULj8ccfp7a2lhdeeKGEOSo9pkpbVVUVWJnzIXirqqrYeOONueGGG3K+V7EJ+v1Dhw4FYPLkycXMTkGJEWWxv4gsFZEp7mdoofIyYcIEoG7tPdQJ8LA6OXbsWMDxML755ptjeRp7nuxffPFF1vktB/xt+IUXXmDmzJkFfeZZZ53FzJkz+emnnwr6nEKQjQC/5JJLuPLKKwuQm3SsAMfc0PVY4OsiQZU2aBnfyJEjefrpp3N65vXXX8+CBQv4+9//ntN9SkE5j9ILwKOER1kEeF8p1cf9DC9URry913UB7LXdsHfirXW+8847ufjiizn55JMjnzVu3DjAcSSrz5jK5Y033gAKZwHz5pG991WfyKZtv/HGG0ybNq0AuUnHCvAA1vXITUGVds6cOYHXHH/88Tk9s5y9PaNI0vF16NChgDkpPEqpccCiYj939erVGeXsbd2qC3DPhyWOAF+8eDEAzzzzTOTzPS21vg/WTH2bZ9ouVL/XUNr2L7/8EmvKYe7cuXTs2LGQ2QKsAAfMna8V4OZOasmSJQV7Zn1eqpakU6/vGlxMdhORqSLyuohsG5QobpCmJUuW0KxZM2655Za04yYBHseE7jkVZiOM67sAN+XfG5ibHHgvvfTSnJ73yy+/pAR4oTR8pRQ//PBDQe6tl9eBBx7IAQccEGmhXbhwoRXgxcIK8EyCfn9Uufz0008MHDiQd955J9Hzhg8fHksLKjVVVVUMHDgwZU71SNIx1VdHvQR8CmymlOoN3AW8FJQwbpCm9957D6gz9Xp4AlwXPElM6EkjDiZJV66Y8r906VLALMBvvPHGrJ/1008/ob/XQpXd888/T9euXQvikKfn2YuvH2elUjGCjlkBTsObA58+fTrHHXcc3333Xdb3CGpoJ510UuiyiksvvZRXX32V3/3ud4med9VVVyVKXyrOO+88Xn31VfbZZ5+040k6pvouAKJQSi1TSv3qfh8DVIpI+1zu6c2d7rLLLmnHPQGuezfHEeDnnntuRpq4y4Xq+wDMXy5NmzZNDWTyvYTWGxgEPTtfeNMb/gFePtDft/c9TjkVIw6BFeAB1GcNvH///owaNYo//vGPWd8jqKHNnz8/NK60N6dYjiil+Pvf/85zzz2X9T0WLlwYeO+4NPQlZSKysbg2ahHph9PPmAsuJgceeCAAzZo1SztuMqF7dTeOsNDTxJ2nLfYATCmVSLB++OGHiEigZ7k//82bN2fatGn8/PPPoYrLpEmTUqsq4uIXYtmW3dVXX50xaNbxAk0VwpveFLkuzvsoxqYwVoDT8Ezov/zyC0BOc0JhDS1oHrxVq1apDtVj9erVXHnllXz55ZdZ5yVffPbZZ9xwww0cc8wxWd9D/326131D16p1YkRZ/APwuYhMBe4EjlU5qq0mkzeYvdA9kgrwMB8MPfvZvusPPviAAQMGJLbuPf744zRp0oRZs2bFSv/QQw8BddMOfvxl2KJFCyZPnszWW28dKJjWrl3LLrvswogRIxL1jf7fmm3ZDRs2jHHjxqX6Nj9e0J5C+NGY8qyX0/DhwxGRDAuOFeAF5u6772bcuHENToB75GLCCWtoQQEyNt544wwB/uijj3LNNdewzTbbZPWsfKJH5vKb9qJ49NFHGTNmTNrv073u67tZNQkxoiz+Uym1rVKqt1JqV6XU+FyfKSKISEZd8TpJXVB47yJOvdLbeVjnr98/2/p67LHH8uabbzJvXrItH1588UUA7rjjjljpPUHit1Z4+PPfokULwLEu6YLpiiuuSH2vra1NOf7pgiqq3udLgHsE7ZTm3bcQEQ9Nv1EvJ++9+MNxWwFeQMaPH88555wTaJZpCAI8KpTkE088wSeffGI8l83v32STTTIGDbpmFNTY81XWixYt4p577ollCk1inViyZAmnnXYahx56aEaZJjHXWnKjUaNGGeXs1R1T3cqnCV2fY8/2XWcbo90TsLfffnus9J6ADdLY/fnXBb0umNZbb720a7x8ewOdBx98kEaNGoWWW74FeFAkt3z0IWPHjuXiiy/OOB6lgXuDBn8dtAK8gOgdeENzYvMIE+BTpkzhpJNOYtdddzWeD2toQaNckwldD9wQZJ7LV1lffvnlDBkyhEMOOcR4Xm/kSZ6pD0L8IXbfffddYN3SwEtFo0aNMjpq7z3qxwuhgZvm2OPw66+/svXWW/PRRx9FhngNwhPgcfEE+BVXXGHMq/+Y3k/obVRvu7W1tam27d3/wQcfBOragAn/+8pVgAc5GuZjAN2/f39uvvnmWPdeJwS4iAwQka9E5FsR+Zvh/Poi8oq7XnS6iJxWyPzoRDkhNAQNPGyk/+2334ZeG9YgZs+enfb/hRdemLrGH2lJ7/jGjzdbUv3CNNuK//HHHwN1YTL9RO2DHIReF/y/3fO2txp44amoqMgoZ6/umNqzv16ZpnH0jTzCBLiu+SUZrE2cOJEZM2bw97//PZXHpIO9li1bJkqv/47PP8+Mdhs0DQHp5bh8+fK0azwB7t2/S5cuAIHz0pA/DdzLYyEEuL8v9NelIBP60qVL+fXXX1MC3C8zkg7UsqGQ24lWAHcDBwPbAMeJiL8FDQG+cNeL9gduEZEmFAH9JTVUDTxMgOsNwfRbwxrEyJEj0/73PIR1M5uH3vHtu+++scpaN90lYaONNgo9rzewbB1xgq6zGnjh8Wvgv/76a0p4mAS439zaq1ev0PuHvcNsNXDvurFjx7Js2bLI55jIVgMH+PHHHzPO++twkGVKn17UNXBPgHu/I2yDknwJcE8YmgT4XnvtxWOPPZZ2bPLkyYwaNSryvh988AHdu3dPOf5B5kAuSANv06YNXbp0SQnwfCkiSSjkE/oB3yqlvlNKrQFGAYf70iigtbvkpBVOeMaCSM7PP/+cRYvqoj9GaeANYfvHMBO6XklPOOGEtHNr164NnBs3oXsIm7zQdUzewv6K37p169jP1oka8fo18NraWiZMmJAXa4zVwAuPfw588803Ty1pNPla+Dv7qDjcYe8wVwEe9zkmchHgfoe5yZMn8+ijj6Yd0+v33/5WZyjt2rVrat7dJMA9zjrrrMAgTP627b2b//73v2y55ZaxvcbDBPgHH3yQChzl9dt9+/bluOOOi7yvtyxU37xq/fXXT7MWhpnQlyxZknqmvx+p7wK8E6DbG6vcYzr/BLYG5gLTgPOUUnnvCWfMmMF2222XMvmAuWHpNHQBrjeEZ599Nu3cDTfcwIgRI2I/x2tcupnNIxsBrjvVfPfdd7EDbIT93hUrVvD999+n/l+7di3XX389u+yyC0OGDAm9r2l+1Y/VwAuP34Sum25Ng7B8CXClVNZObKZ8Ja0rSTcA0X+3f/evvn37ZmyyoddvPYKiiBjbtqk9Pvnkk8a8BGng559/PjNnzkzbRS4Mr23nez/2Nm3aAPD999+n9R+6Rm56X3o/ZloJoR8vJIV8gkkC+kviIGAK0BHoA/xTRDLsp3HjJYPjSep35/f2/tW9JaNM5A1Bo4prQof0Suo3kUeRbw3ca0gTJ06kW7du7L777rHyESbAt9hiC/70pz+l/l+7di133303AA888EDoffUOLkijagj1pdwxObF5mKbEogS4f8AZJFgbNWqUmibyrotLEg38q6++Yvr06RnH/e0jKkSn/rt1q2MQQX1ho0aNjG3bpDUHWb+CBLhX1nEVJa9t+/uTpMvYgs7/9ttvaXUhyuJicmJraAK8Cuii/d8ZR9PWOQ14UTl8C3wPbOW/Udx4yeDMc2222WZpwto0go0ymy5fvrzeObItX748rbLF1cCB1PwcJLc+6KN0/drq6uqMoC/6czyCzGwvv/wyAP/73/9i5SPs9/q9x2trawPXyfrR64FJA6ipqbEaeBEwObF5mASlv7P39wP62mYIF8y6KTrJu04iwLfaaivjPH1Q+whCF7BxNNag/ARp4P45cIgvwKurq1mwYEFiAR5kQo8qi6gle17b9isfzz77bOiuduuCAJ8IdBeRzV3HtGOB0b40PwL7A4hIB6AnkHUA7y+//JLvv/+eRYsWMX/+/NRxkwCPMqE/8sgj7LDDDtlmpejMmTOH9dZbLy0GeRINPGyb0Cj0Ubpe2ceOHZvm5QuOJuxvdKalJmvWrEms1eoNJqph+z3mTctHTPkzOez4f7elMJjWgXuYNHC/pmgS4KY41zpxlmGFsWLFioxjSQd7/vYRdb3etqPmmBs3bhyoqARp4N79TWbkqLxfdtlldOjQITWgzlWA59ruggT4mjVruP7664HoQC7e+VII8PBIHy4isiFwJtBVv0Yp9X9B1yilakTkHOBNoAJ4WCk13Qu36EZtGgE8KiLTcEzulyqlgtckRKDPiemFrjdcpRQiEiuWrT5X5F1XrowZMwZIX5MZ14kN8qeB6w322GOPNaZftWoVzZs3T/3vr/jffvtt4nk/yBS0YRq2X4BffPHFXHTRRZH3NXV2VgMvDnFN6B5xTOhRSwv903FB6YIwBTnxX//WW2+F3jOpBp5EgFdWVgaWqa6B+03o3333Ha+++moq7XPPPcerr77KYYcdFpp3b7cwbypU/90LFy6ktrbWuJokKFSqv9yS9l36xjf+6b+qqirjMyC9vnnR4WpqaqioqEiVZ9kIcOBl4H3gP0Bsu7K7E9EY37GR2ve5wIH+67Jlr732olu3bsycOTOwQXgde5LNAaqrq9l+++3p06dPWvzroLT77rsvG2+8Mc8//3yi/OeCaa1oEg1c72iSVjx9lB5nqdbKlStDBXi2o2r9na5atSqRAA8jairFauDFIakJPUqA+9+b6d6muP9J3nWcJZoHHXRQontEPV+3EkWZ0Bs3bhw6Bx5kQu/Xr19G+kcffTRSgPvRz7dv72xYZxqgeILZv5lQrtOcugau90lQN2gwlfeRRx6ZcaympoZmzZqlrC7lZEJvoZS6VCn1rFLqBe9T0JxliT5i9NAriTeiTiLAp0yZwowZMxg1ahQvvfRSaNo333yTDz/8MG1ZQjFo1apVxrEkc+D6yDZbDdzfIQZpCt5g4dRTT+Wwww4LXUeaBP09R3Vc2c6BB53PVgNvm9VV6yZhJvSFCxemzLJxndji1NdcBbgpbdK6klQD14mjgQdNJ4pIoBObaVe+tm3bpvJ39dVXM3fu3EgBHrcf9tL5Y6Hn04Tuv5fXr8Ut70suuSRtyqScArm8KiLm+JRlhkmA65XEK+BsI3GZRl46o0f7p/mLg0mbbNeuXWB6f8POhwD3m9CDNgzxBPhjjz3Ga6+9xn//+9/Yz3rrrbfYfvvt+eyzzzLO+TXwMNauXRt7hBxHi0jakbQDbgLmAMR00isWxQqmlJQwE/qUKVPo0KFD2rEoAe4XHqZ3aJrDzlWAJ60rhRbgQW0lSAMPSq8vyRo2bBh77bVXZNuJu0uhd59CCvCgSGpxn/Hhhx+m/V9yDVxElovIMuA8HCH+m4gs046XHV6h6YWuVyJPeMRtBB9++GEiM80333wTO20+MTUUb0Rswt8x5SLAg0zoHl6oVQ//vOBXX30V+1kHHXQQ06ZNM86v62UQtXzGP9gIIyrdeeedF7s+NQMuAWYCFwHNAdx5wVIgIu+JSFft/344DqhlR5gJXSdIA/dPKcUNmRl0/yh+/PFH4+5ZhdTA/XU1aiBbWVkZKOT9GrjXL/z222/G6TlvgOS9o++++y5SgJ92Wrzo2d59/O06VwHu3XfZsmUZjrxJBbifkgtwpVRrpdR67t9GSqnm2v/ZxbssMFEauGcuituI9txzz0QCPIlp3sSyZcv4/e9/z7///e9E15kaSthvzKcA98p8+vTp3HLLLRnnr7nmmrT/V65cmdYo9KAJQfh3VjJ1OnrZR3nVJ5m3jnr/zzzzTOS9KoD/A74B/gG0Ad4CdgAw7IBURK4H3hCRs0XkWmAkzvLOsiPMhG7CL7z8Jk2vvngRu6KclTzi5mGzzTbjnnvuyfp6jyQbgujxyyGeBh50P10D1wfn3rajN9xwAxdccEHGs/S+yL93QLYExZH3l42p7worr7C2ndSE7qfkAtxDRN6Jc6wciJoDj1o+ZiJJXPRsNz3w+Mc//sErr7zCUUcdlei6pPHM/d61+dDATTRu3DhjrnnFihWJnU/OPPPMtP9NedTLwPMgDSKfGjiEv+uBwFTgIZxgCJ8CB1AXxaiUKKXeBAYDd+CMMQ5RSn1a2lyZCTOh6wRp4P566gkFz1ckrgZ+xRVXcNlll4XmQV/G6ueiiy4K3OrTRBIN3D9tFUeAB+FfB+71J96a+LZt23Lrrbem0ntKgf6Ohg4dGvp8CO6T16xZk3qHXhn4f3ucwVBY/x1Wn8Kc2OJQcgEuIs1EZAOgvYi0FZF27qcrTvS0skM3+YBj0tbNNEk1cEimVee6b7A/4EhckmrgYQI8acULc9YwdRArV65MLMCjIvBB+nsqpgndu5+fPXCWbowGtsUJcHAc0BdnOUc5ICJXAncBewPDgPdE5NCSZiqAIBO6v/7FFeBeX+DVUdO9gzp/b41wEKaARR5jxoxJiwoYRRIB7n/u4sWLU99NzqJhAlxfB967d+/UUlVvcOLfdMibGjOV2eWXXx74nPPOO894vHv37jRv3pw1a9YEBlUppACv9yZ04CxgEk50tE+Bye7nZZydxsoOf6EfeOCBxkAcSQR4kvi7etokL/7xxx9n5MiRWZvgk87VBY3U58+fz4wZMzLSh20MEFZRvXzpoShXrVqVWIBPnTo1Mo1eBlFlbwp/evPNN/Piiy9mpI2TV72T2Al4HfgA2BP4GVg4dChb4+zoU2YrxtsD/ZRSHyml7sMxDJxf2iyZCTKhB622iKuBh3XU2bbHKKtd3E08TPdK0q4XL16cEuL+JV4QvlJF18Chrny8Z/idAk0auMcuu+wS+JwgJ1ZvJ7Vtt902dSxKAzeVzeLFi/nLX/5idEgMe09effHfMyq6m//6QhI1B36HUmpz4CKl1Obap7dS6p8Fz10W+E3oflNVNhp40P7SJrIR4EopTjnlFP785z9nbIvnZ9asWQwfPjxjeUtSE7q/oXsj94sD5mP/9re/GZeqQbgG7uXr5ZdfZquttkrly5TfzTffPPA+YN4asaqqiuHDh7Nw4cK0e0a9X5PD3cUXX8zRRx9tTBtFdXU1vYAXcUa8A4BlwNVAN2D1WWeRfPKm8CilzgMQkZ7u/z8opQ4oba7MBJnQ/UKo0Cb0IKqrqxkyZEjg8ik9UEgua8nDrjVp/ocf7mwC+R+Ds2SrVq0Cl8bqGriOp2l75Xb88ccDdX2r6R2FLdkMG0RA+n7d/t8exz9g2LBh3HXXXTzyyCMZ58LatjdN57+nP+BLECUX4BpzROQo32d/EQnfgLkEmObAdcIqWRC33XZb7LR6pxH3GUnWQe+5555cddVVnH/++WnHk5jQa2trM0zo3raBQXNz66+/fmBo2TgVtVmzZuy4446pfJnKJqphmCwhAwYM4KqrrmLgwIFpG0HE0cDzZULvCfS67jqmAkcCK3Ec1bbAsUkvpziNORtEZCDOVPwb7v99RKQ0ayEjCDKh9+3b15g+qQBPqoH7d/V6++23ueeeexg8eLCxPeqa2/Tp00MHmUopLrzwQqZNm5aTBg51O5KZhGjr1q1TAt6PXwP38AbS3u958skn2WmnnQJDigY92yOuRgvRGvjatWtTpn4Pz5HOpICEte2rr76a0aNHNwgBfjrwIHCC+3kA+CvwoYicVKC8ZYVpGZmOJ8ALFTlLN43FfUbYfJkfz7v600/T/YySaOBBz5s6dSpdu3Y1nmvdunVgxxE3YIE+ojXlN+o+ekP37uUJ7Y8++igtbZQGvnTpUj7//PPoTBPcyHcCnge+ADqNG0c1cCeOxv03QA91Ua4CHGeM0Q9YAqCUmgKEm0JKhN+E3qxZMy655JI0y41SKvXuvYHxhx9+yDvvvJN3Ddxbw7xkyRImTpyYylvQckr/gOKHH37ISOOtpf7pp5+49dZbGTBgQKxY6N6UkKltDxgwAHAG4X6CrGqQ7oVuwt8e9d/vJyzqYZQG7tG6devIOfDa2loOPTTdhcMbwGywwQYZ94ya6hg9enRGeccV4OUUyGUtsLVS6mil1NHANsBqYBfg0kJlLhuiNHCvURdqp7FsTOj+pR8mFi9enBbdzV/pk8yBBwnwlStXBo6UwwR4XOGkzymZyj+JkIvylI8q+7/85S+xn+XPa3+cAP+TgKOBamDm735Hd5yACT+RSTEac5bUKKX8aluZTdM7eCb0GTNmMGjQIFatWhXaDrzB9Pbbb89+++2Xdw3cOzdo0CD69euXik4mIrFWrvg1z/bt20euogFzu953332pqKjI0MA32GCD1L1MgrJ169aB+dPXgZvQ79eoUaNUvkxtO6mja9Dz4mjgfjynuxYtWmSci5IDjRs3LmsNPG4s9K5KKX1dxAKgh1JqkYjktvA5zxTChN69e/fIAC2//PILU6ZMSWtscZ8RRwM/7LDDGD9+fOp/fyVKYkIPipCmlAocDYc1smw08KSNHJK9sygBnuReNTU1NMcxPZ0D9HaPLwfuBW4Dbj71VGaHBGQpYw38cxE5HqgQke7AX4DxEdeUBM+EvvXWW6eO+evlmjVrMubAvbZSKAHuaXjvv/9+6lwcAe6v73pUNF3oxpkDHzduHOD0JbqlQt9cw9S2C6GBm3573IFAGCYnxjhz4N6KFFN/GNUPmNbJl5MAj/uE90XkVRE5RUROwfFCHyciLXFNb+WCfxmZn3HjxlFTU5OoA/cHuTexww47cMAB6b4/+TSh68IbMjuuJCb0IAEeFV7UuMkAULFiBevjBCdpCwRVb10Dz8aEnmQ9fr52B1v+8cd0uPlm5uDMG/UG5gNXApvimJ9+Ijq+QBkL8HNxVrmtBp7G8b07P+wCEXlYRBaIiHEOQhzuFJFvReQzEdkxHxlt1KhRhr+IKbqa34TupQlaRhZkQn/vvfe45JJLAvPjXd+7d+9UeoivgZsEw+LFi9lvv/1SoYIrKioSzYFPmjQpbXlXRUUF8+bNY/r06cb21blz58B75VMDD7OYffDBB6Htx7v2gAMOyEoDD9vXO44Az9aEXk4a+BAca+EeOH3248ALyvll+wZdJCIDcAJEVAAPKqVuMKTpD9wOVAK/KKX2iZ/9TKLW7j366KNsvPHGiQR4nLSmwCH5NKH7iSPATZV9xowZxg0awHHK8c/TdenShXuvvx7eeos/zp3L8UB3YDOc9UdtgUZbbJExiluFIwkWA+y/P3TuzNFTp9IYaDZhAjMMnUlUhTdt7RhETj4O8+fDqFHw+OO0/vTTVAX/CPgnzry3v7uJ8lYuVwGulFoJXO5+4vIoTlE8HnD+YJxq0h1nmu1e929ONGrUKG1dMziDa72e6wIcnHbiCYCky8j23Tewa0u73rv/999/H3ptlPDx2vS7776b2hY4bLcwE2+++SabbropS5Ys4corr+SRRx5h9OjRjB49mh49eqSl/ec//8mgQYNC75evOXBT/d90001TDnGmvQ30dPvssw9NmjSJFNhhm8eYBj5RZdsgTOiuoH7e/cRCRCpw1oofAFQBE0VktFLqCy1NG+AeYIBS6sd8eLVHmdAB7rrrLgYOHBj7ntnOl8e9Lpu1plFxnSGzwg4bNowRI0awxRZbGO959tlnA45QPtD9HLFmDe1OPBEIVstUy5YsW7ECr5q3won53QzYCMBd53mY+2HkSBg5koXADPfzJVC7dCkLgVmYJ2F33nnn1PeoOfCkGngvnIhpAwE22QTc65cAzwL34wRACCLqHZo6wvPOO48//vGPifKZL0TkFULmupVSvw85N06Pn27gcOBxt9/4WETaiMgmSql5WWcYpwz9g0+/AF+zZk1au9Odp7JxYgvD0xrjOsb662wcwWDSwAFef/11DjnkEKqqqujUqVPGfbzfoi9L9dfBIUOGhObXdI2O3gd5/glDhw5lxIgRGWlNwkzX4MOes3r1apo2bYqIRA6Cwvpc/7Vjx45NW6JmIkqAX3fddYFR+cpGgIvIUTgrYzbC0cAFR66HxUPvB3yrlPrOvcconIb9hZbmeOBFpdSPODfMLgyZRpQJHZxGnW8N3ES+Ym2byMaE7jWs7777LiNtN+BPwCHArjgmE8DRRps0gZ124oWZM/lgwQK+Br4HfgEWAUt++ok2PmeYZsB6wAbAF2++CbNn88o997Do00/pCWyNsyPX7u4HgG++4VacZVhf4VSUL3CE+xc4G4DE1UXCtolsieOFuRtOoJU9gU30BJWVcNBBqBNPZOM//Yk4i/yy0cC9pXsl4mb371HAxsAT7v/H4YyhcqEToAfBrnKPZQhwERkEDAJH0wqjUaNGRgGuU11dnfbu9c7W/w48a1O2ITO9d+43/wYNLqPieAcJ8NraWlq0aJG2CdA//vEPAL744osMAa4/XxeM2ThSJjGhf/3116lphDj30Y+FPccT4P53C5llGBZ73X9t//79A9N6mBzn9PcUVqZlI8CBG4GBSql4e785mBqx34zWA6gUkfeA1sAdSqkMs1ySRh4n/F2zZs3yKsCDIrXF3TkpyIxTXV0d6DzmHVdKUV1dnTiUKkCPjTbikq5d2eWrr+ilzYuvAd7DiSa2+6WXctTVV0PTpty06658Ygj1aqqoq9zPAgA3CturEyZwv7b8bWOcEH9bu393X399Oi5dSkecTT78q87X4GwG8i2wcsECGDaMs3AGEb+5z+u9885MnjiRnjNnwgsvwNKlqKoq7gG64Ez2mtZIzQdeA14B9r7iCi648kqOP+64WMIb6p8JXSk1FkBERiil9tZOvSIi43K8vUmCGSujUup+HAMHffv2Da2wjRo1yvDf8K+aqK6uTmuvYQLcW8blCaKpU6eilIq9F4D3zv3z8lFx+D3iaOCeCb1ly5ZpAtxznDNtGaz/Tl3AJDHFm6734zehh/WTpvp/5plncumll6au9/C/g1WrVtG0aVNqamrS+rT33nsvY6rCW2bbrFmzjH750EMPTWxlMWngfsvDjz/+aJRL5STA5ycU3hCvETfGWU67P87Oih+JyMdKqa/TLkrQyOOY0Js2bZrznr46phB9UXnwuPHGG/nb3/5mPNexY0fmzZtn9NL0ju29997873//49RTT81IY6qsFTim8VOAoxYupNIVyL/iRBF7EXjH/R9gi003BdcMmes6cH+F/sn9vOf+v9f22/P++++zPo5Q3xpHU/b+bo4jgLcFWLYMrr6akf6HTHR3wvz3v50Pjqfmn7Uka3DM9p/ixCr/ANAr3EtDh3LBlVcyatSo0N+z/vrrpwRKfRPgGhuKyBaapWxzYMMc71mFM17y6Axk7quZEFM9a9asWcYcuO4UGibAb7zxRqCuLY0cOZK99torFVksCr8J3eN/Mfd3T2JC9y+B8gS4qU0GabZJAkaZrvfj18DD2oDpPueee25KgOtR0mpra9PuvXr1apo1a8Zvv/2WVmZPPPEEQfTo0cM4r/7NN9/QvXv3lAUjCpMXun+A1KVLF/9lGekKRdwnTBKRZ0TkOD0aW8Q1cRpxFfCGUmqFUuoXYBx1q3SyotAmdFMnEuRBGWeQECS8wVmaZtpPGOoExgcffMCKFSuYMmVK+POnTuVmnAIfg2Mur6ithf3249bevdkYR6i/TJ3whvTfnq9ALlHnlwIfA48Ar++3H4fhRDVriTPaOwoY1r49XHEFDwAvAK/ibBDyVfv2jAW+3GwzOOIIqo8/nutwln8dhTMYaIlTyU4DHiZdeCfhT3/6E7169QLMAvykk+piHJXxOvALcDYwec+1hL1L7rHQRwMnu97ouwJLc53/BnOHWFFRkVYv/YOusDlwT6PV303c4D7gvHM91nhSkmjgfgHuDRxNWnXQzoKrV68OjLoWRBINPMyT3PTu9Ov16STT0rAmTZpkzIGHbUMctJ2wF2kyrN/V8dcvP2FCupwE+Ho4U5MHUufrkxkZP52JQHcR2VxEmgDH4jRsnZeBvUSksYi0wDGxJ9X00/Br4N27d89Ik4sJ3SSUg0a2W2yxReicTBxzTlA+N9tss8hrG/38M//o0IG5HTpAnz5ciGO2ngH8Hbjj/PPhnXcYu9lmmG0IwXPJ++yzD927d+f5559PHMglCJOA102EK3G05n8DT7VtCyNGMAj4A06FPAC48fe/pz8w8vDD4d//Zswxx3A5jjflv3F+e3JDYjBefTMJcL3zS7pFa7FQSr0BqRg05wE9lbPFaCAi8jSOU35PEakSkdNFZLCIDHaTjMHZfO1bnNV3Z+cjr3HqmT8in74Jj3693oHr2p4pHKh/jtljzZo1tGvXjnfeyW5n5TDTrEeQBu5RW1ub0Y/oW5nqv+O3336jQ4cOifKYxIktqQYedO+gOPJJ9oMPGkwkWckCTvmGbZhS6oF5XC/006JTZVxTIyLn4AStqgAeVkpN9xq5UmqkUupLEXkD+Awn2tuDSqn4Q2ADXoH+97//5UTXexrg5JNP5vHHnen1uPsKe/i1UP8cTdjI87LLLuNf//qX8Vycynj33Xdz8803ZxwPEv7NcITZKcBBb79d94LbtuXuxYt5DGdkBTDcFY5hlTBIgG+zzTaBDitBZCPAg4I8BAlEz6nJy3dcU5kff2f0xhtvpEJSmvJ37bXXZpwrdeNOwE5AV5z+oLer6QQtEUMpFbw1HalVK9Euzgkx1QU9dCrAhAkTAq/R65++VlpP49UbvaPv2LGjUaNLunrE32b32GOPtG1vTRq4t6a8ZcuWxnvW1tZmLEPVNXA9j4sXLzaGU/Xz+uuv8/LLLwPxTejZaOBBbThowxpdA49SfoLm+4OmO8Pu4++n9d+ZNG5GvomlOolIDxF5xwvcICLbi8gVUdcppcYopXoopboppa51j41USo3U0tyklNpGKdVLKXV7lr8jhVegDz/8cNpx3Vs1bCML025cUbGIwyquN1elc/bZZzN48OBYHcAtt9xiPH7XXXdxzDHHAI6zQZ/Fi3kQZ075WeBQHIeDl3BMx8ybxznUCW+oK6u4AlwnG40y6hqTsE0qBJv65uv9Gllc/A09aOldWP78vzfbwUQhEZF/4Xik7wns7H7Mu4OUmDjrb/3CzK8leughRE0a+Ndf102sBAm9bLca9Vi8eHHGmnU/y5cvT3mhm6ipqQk14fvz6O0IGMaAAQO49957gWQaeJDAev/99xP1F7/88gt33XVX2rHGjRunaeCmfkl3aAuyivo18H79+nHGGWdkpPMsNH7HOUh3Wi71ID2uCf0BHKtrNYBS6jMck3h5UVvLegGNSm8AJgF++OGHU11dnaa11902PFxfmHOIfwu/tWvXcu+993Lfffdl5VSi89Vzz3ED8APwzy++4HRgfZwY3ecCHXF2x/o3pBzRdLwOzT+KrKio4IgjjgBIW6esV+RsBHjYaHWjjTaiX79+GceTPscT4LluVvP222+n/d+sWTM++OCDjHRR+ynrXHLJJXTr1i2nfBWAvsAeSqmzlVLnup/4geKLiEmA77nnnqGaTpAA173XTQJcFwZBA4eo6Ht+Lr88M1aO3reY6lL37t2pqakJ3KOgtrY2TYv349dEt9xyS+6//34mTpwYcEU6STTwIHbfffdE88EHHnhgxl4FugZ+1113GX0V9IFWUPufPHly2rmBAweyzTbbZKS7/vrrU0v4/PfSLRxhArxsNHCghVJqgu9YPqcS88M333DX008zH8ez+V6cwM6/AzpphWkS4E2bNk2N8vxERfuJ05CXL1/OiSeemIqwBOkVIQ6NcELh3YSznGoqTijPLkBVZSUjcJZj7YwTJuuXqPsFaOCdOnXixRdfZMWKFWnLI7IR4ProNuyaoN2Kgq75+uuvue+++zKOe51tro3Hs254NG7cOKMTDdpu0SNq7WuZ8DmOa0TZ468jY8aMMS6j0gkS4Pp6cr8A33TTTdOWbAUt5UyigSulOOywTLchvR8y1Y2WLVuGmtBramr4+eefA5/rz2PLli0588wzA7dg9ZNEAw8iaF/xIGbOnJlxzOuba2tr+ctf/mLMf5yQ1w8++GBaf924cWN23XVXY1rPgdDf3+saeKnbc9xlZL+ISDfcZWAi8gcMQRlKzty5rKqsZKPqajYC0mKy3n47Z+I4Mc2bPZt5y5ezPo7H3PfUjchNLyRKA48S4GvXruX+++/nySef5Mknn0wdjyPAOwL86188ghNkRQ9VtwBn2de/gAWbbsq3hoofRpAG3rx5c0Qkw2yXjQC///77M55nIqijCHvO4MGDM455ncozzzwTulFDUho3bmzUxPQ9yP2Y8l6MUXlC2gNfiMgEqFv2HhaJrVT4yz/OfGiQkNGnRPwC3O94GiTAk2rgpvq/++6pMEbGNlBbW0tNTQ2tW7fmpZde4sMPP+Smm25KnX/kkUd47rnnAp/pF+Bh23rGzbMpv1GCLFdTs6eBe1bLpBum6Gy0UV0v2rhxY3bbbTeuuuoqrr766oxnmkzoffr0SQXDMv0uL+hOPvufIJLEQr8f2EpE5uDIvBMKlqts2W8//nr66bwycmRqHbG3hnjnVq1Y79df6QewdCksXYrX/a8GfnnlFTjmGDbacEOOwRHsX7vnwgT4okWLIkMSeusY/Xz88cdp/zdy87szThi7fXE0ak4+mVPdNN/hmMRfwtkyystJ5whzfNgGA/5zQea6bAS4ni7smnzNJXmd/OLFi43Of9lSWVlpFOBh5ksTZSjAh5U6A3FJKnwg2IntyCOPTH3X657J9Gp67926dUscQdEkYD7VAhuZTOieAG/cuDGHH354hnYaJrwhdwEe1C7feOONtP+j+oMgC0Jc/HPgJvzlu2TJktT+6jqmvSd0p0aPiooKRo8enbETZbt27ejatSuzZs0yvtOHHnqI7bff3rj/eL6J64X+HfA7d/exRkqp5SJyPs4mJGVFRePGVOGsd9ZnMR+64w4uOf10tgb6b7QR24rQdv58tsbZVarT4sXw3HO0B55xr6kFZjduzLerVvE98KMI3ysF778PPXtC+/acM2RIqBYGzkjde9GCE150Y+DZ44/nEpxwdFsBfXDWKOssB1ofcgh/HTOGt3HsnSaCosF5mHYg8/KUTSPP9xx4Nhq4ibgbDXjceeedsfYGb9y4cextD8FZhzp8+PCM4+UmwL2IbPUB/7v16kY2Grher0xz4EH3GDp0KD179uT6669PHNksqi6HaeBeHpOabP1tO2hwniRPkLm3tp6vjTfeOMN5N4kA1wMkeeib0pi4+uqr0zaTufXWW2N53HsDgqAVMKZtpKPigrRs2dI4r14I4vdIgFJKd839K+UowAMqXEVFBQtxom7NbdUqLR54S+DaE0/kvAMOYPFHHzHW1eC7AV1raujqJfQat7ac6BEcF14vnOca7dMIJ7xci7335pj58zkcxwQeVujf4zihTcKJEjYRqH7tNW6LaPxRDnF33313xrGkAjxXJzb9mu22246RI0eyxx57AMHOYEkFXlIBvvvuu9O+fXt++SXcY8DkHyEi9O7dm6lTp2ak79ixozHv5SLARWQ55vCmcfY5KAlBJvQw4szTJhHgnpn1pptuyosGrhMkwPXIZEnbnf/35MuE7hfger5ef/11OnfuzIYb1gX0SzLw0P0PPIL8kzy22WabVGjcXXfdlQsuuCDWs7zySbKEVTerR23SUmhymYEvy8gUQQJcL1T/Zh4rgLkdO8LJJ7P00ks5Ekcj9ja9OAQnEsVtlZU8AyzZaivo1AmaNaMpzjx1LxzT9x44pu+DcAKL7AlUfvYZG8yfT0cc4b0Ix0T/GnAbTpjP/XHiV24BHIMTfP4j4nsKRmngQ4cOzTgWJMDjmNCzQa/slZWVkfN/kDx+c5QA18vh97//PTvttFOsHcG8OTg/b731VqL85eodny+UUq2VUusZPq3LUXhDvIGln1wEuOfA2b59ezp27Jh2TdAuYTrHHpu+UCdbAa5r4GECPM6UUb5M6H6N2u/h3759+0TP0e9jcg4Man8etbW1Rp+ep556KvR53iDMdO8Fhn0f9GvAXD7FFOC5PKk8VAkfQRU0ao71D3/4Q0a6NTiCNhUazqtYM2akGnoLETbA2VmrKdDE/TTFMcGvAp568UVefvNN/nHffcwncy/pKOI4y2SzJtWr6P6OKKgM+/fvz7Rp09KuzeZ5kOkYlA8BHuUVDqQ5lvzud78DnI7PW/caREVFhdEkpzvExKFcBHh9xD84i2MiTSrA9c758ssvZ9myZQwZMoRzzz2XL7+sCxJZUVERuoc1ZA4s8mFCD7vHLrtEb7me1ISejQaeiwBr0aKFMVpalAZeU1NjFOBRO46FmdDDnhWmgRdzbXhoLywiy0VkmeGzHNdButxIuhzJw3M4CNrJJ6jy/IYz3/4Zjrn7Q5xg0m/gzMG/D/yw0UY8PHEis0kuvMFZkxiXm2++mVNOOSVW2qQa+A033JD6nqsJ3d/Iw8xVcYlq5GB+v0FBMnREhLZt2/LKK6/Ezk85m9DrI17b3nHHHXnqqadS0y/51MD1wXK/fv246KKLaN68OR07dmT//fdPuyZq1zF/vqLqpj9ka2VlJa+99hpr165N1dVs/Eh0gixU99xzT6J7hs2B5yLAgzy3ozRwXYAn8Y7PRoCLSOo671nz5tUtyiobE3qEma14uUyASfh88sknkR2nV7H1F77XXnulvucyqtpzzz3TvE2TMmbMmNhpd9ttt4w1zEF4v9Wv4QcNgvRGm6sTm7+Se+Xrb8DV1dWxtYYoRxd/HrKxIpjW8gZhBXh+8dpokyZN0mKcm/DebZAXuk6a1c1tC9dccw19+vQJvH82/UFY3Rw1ahSdO3dOO6YPrONo4HHqc9D1f/7zn43HszGhBwkwL5S1zqRJk0Lvq9/T9PuGDRvGkUceydFHH20c5ES9J08Qm7zQN988c+Ph0047jTvuuCP1v/esjTeuC6VQNhp4fcQkfEwRvvx4nYNe+HqQCJOJulidsR7WMYqokeqZZ56Z+u6li2tC14kSlFdccUWGd36YBu6V++TJk9OO19TUxA6HmlQDzzUIQzaDGCvAs8dro/76GralZhwNXD/uCfAor+k4WlYSDXzzzTcPPe/9jlwFeFKC7mkKauQRVDb67nwefmEXJsBNv71Lly68+OKLtGrVymhCjyvATzzxREaMGJF2zrS66O6776ZDhw6pd1vqOfB1QoDHwaSBh0V5qq6uTtvDNl8MGzYs45geNSqKKCGma9FJTehJGDFiRMZSirBRuvd/jx490o7X1NQYd5QzEfbbL7zwQl566aW0BhfVuKPW2Pq54IILOO+881KDEJNgsXPg2eO17TjTKrkK8KDgLR5hdcdzzkzyrlu2bBl6T8+ju9gC3J+np556iqqqqox8hPm3hOHPc1IN3GQujyPAvT0vdFP4hRdemJbG1A+awk6H5anQFFSAi8gAEflKRL4VkcANWEVkZxGpdSO85US2HtRepdMLP2wUfvDBB3P66aenHdM3SMiGU089NfbyhyCizMimDq1Y68DDRul+L1+P6urq2A0izPpwzTXXcPjhhyfSwHfYYYdYz3333Xf5v//7P4YPH87tt9/OjjvuCFhtO994dTdse0ePJALcZELPRYCfe+65xnyFCfRWrVqF3nOTTTYBokOW5hv/PVu1amXcXjVbJ7a4GnhQv2Zqz1GD9CuvvDIV4CUslG3Y8xrCMrJQRKQCZxvmg3FWYx0nIhmr2910/8DZdjRnsllqAmYNPGwxvmkPYNM8ShL0pRDZEmVCjyPA42jguc6Bew1r7NixHHXUUdx+++3Ga3TnlCjCNHDT/FjUfbt168Zf/vIXbr311tB0/fv356GHHooVOjGO57TFjNcx+tvyUUcdlZHWs54VSgMP66SDBHGYAG/btm2odufNsZZaAw9ygjNZ16ZNm8aMGTMS3T/fGnhQmXhOy23btk0di9OnxdHAG4QAx4kG+q1S6jul1BpgFHC4Id25wAs4ob1zJlvzr1fo/tFbr169Yt8jVw187dq1eRHgYfcwOfX4BXicYCi5CnCvoe6999688MILdOjQwXhNTU1NbA187ty5gflK6uDi7e99xx13ZG0VMQ0aPU3KkpwgAX7cccdlBDK68847Ofroo9O2zyykCV2PL+DX0jzClIj11lsv7Z7vvPNOmjDzNMZSz4EHlYueL6//6NWrFz179gy9f65z4Kb2HNbGd955ZwYPHswZZ5zByJEj09p2EgFeL5aR5UgnQN8VoMo9lkJEOuHseDmSEERkkIhMEpFJYTvvQKYG7ml2URq49/JycXLSNfBdd901cg2in3wJ8Fw18DgVMMk8l4eer7iDnYqKikRlEpTWe3acJSYjRozgsssui3xWNoOYLl26JL7G4hBkQofMQefRRx/N888/n2YVKaQGrgcu8Yd49fIWNSeu100RSctDvrzQcyVKA2/WrFmsvsGbfvTnOez++ZgDnzBhAh07dqSiooKzzjorLa9BZdunTx8ee+wxunfvnpGmIWvgptLwS9HbgUuVUqExCZVS9yul+iql+urh+UzoAvzpp5/mvPPOi5dbF/3le/vPxkWvfB999FFibSuOCT1q+UybNm1ia+BeZfQL8LDr77zzTnr16sX5558fmg8T+n3jTjfcd999iddohh3Ppxd6Ntxwww1stdVWabu0WeLh1d1sHQELOQeu12ddgC9evDgVptfLt56PK6+8MrXKxN/36PeMsw48H/U5aoAZVC7es6Pa9SabbELHjh158MEHgcxyDPoNv/76a1Zz4LkO/leuXMknn3zCySefnLYaaF3QwKtwtqr26AzM9aXpC4wSkVnAH4B7ROSIXB6qm9D1gowriLN5+X369OFPf/oT9957L5tssklqvWPSkViUBt65c+cMT0k/bdq0CRV4+iAjSAMPy8O5557LtGnTIvdhNqHnK6yhP/XUU2yyySZMmTKFbbfdNtEzkiwjy9cGKkGY6lzHjh358ssv05bzWeLhCY9snQMLqYHrioUuwNu0aZOyNnkCXL/3VlttlVpl4dfAdX+JbDXw0aNHx9qsB+DHH39MRVoMIkhD9vIVJcDnzJmTFgDH+80VFRU88MADKQdQP0GKSZQGnuvgv3nz5sbfvC4sI5sIdBeRzUWkCXAsMFpPoJTaXCnVVSnVFXgeOFsp9VIuD9ULO5uRUFINbZtttuHTTz9l1KhR9OrVizlz5qTWOyZ9kVEaeGVlZeRvEpHEJvQnn3wy7ZpCaab6fcNM6Mcddxxz5syhd+/exvNhATaKuQ48CuuFnl8KpYHrx7259KQaeJzY39489k477ZQ6pj/HL8D33XffjHN6Oz3ooIO46qqrjL/DY+DAgVxzzTWReQNH+45ysozSwKOmxvz9k/e72rVrxxlnnJHqv5s3b84zzzyTSterV6/YGni27TqJsG/wXuhKqRrgHBzv8i+BZ5VS00VksIgMDr86e4IaRNzONK4J3dP033nnncA9r7PRwMMq0Zo1a0IFuOcAktSJ7aCDDkrTwgsl2OJq4P60OuPHj+e2224znuvQoUOieNNR8+VR5EtTt8SjGALc2wYzSiD726Fp5y1/39GtWzc+/PDDtJ0Bw7Y7vfHGG1P/mzTwN954I21f86Dfl42/ShC5auBBeOXp3b9169bsvffeqe9g/n0mi1ox2mWYBt5QTOgopcYopXoopboppa51j41USmU4rSmlTlVKPZ/rM4MEuB7HOAz/yw8S4N7uX2FrppM2nNra2tDKt3r16ozKceKJJ6a+e5U57B6mOXDIft4oCfp948QfN1FZWZlWrjfddFPq+6hRo/JiQs8XVgPPL4Uyoev1wNuH2hRGU8c/OPeWJUFduzINNHbfffc0IRimgevPCJoDj9NuiyHAvWfHWUqp49dk9bx69/LK1tSv6XWhFD4tDVYDLxVBDaJjx44sXrzYOKeqm6p04nQUYUuuwl6kKXBJlGbRunXrDKHjmeV0wgR4HKFVDAGebSWvqKhIK/PmzZunviulCh4LPQlWgOeXYmjg4NSpKB8PfzvSBZffC92PfjyovwoS1GER0OIMUHIlahlZNkoL1OVdb9utWrXirrvu4j//+U9aGp1SCfB1QgMvBWFz4G3atMkwWU2bNo3XXnstL8/zEyakTNtQRnVMl19+ecZv0gMReOgV+dRTT2XWrFnGc0EUw4SerQBv1KhRhgbjvdNtttmmrObAGypRERZFpL+ILBWRKe4nczP6LAhbRhaHuAK8VatWkQNBr/52796d6urqrB2ngkzofgtVkBNbsetzlAaetF17A6VBgwYBmVaWc845h27dugHmctXrQinas94f33LLLUC6UlFoGlwPFjSiDTrWq1evwAJXSkVqUWEVNm60Jk8b9/YkNzFp0iT+7//+LyP/hx56aOq7V8H1it6yZcs0bT+OX0A5a+BdunRJe8dNmjRh/vz5zJw5M/EcuP491yA8JhqiBh43wiLwvlKqj/sZno9nBwVyiUtcDTVOKGHdezqoLueigfsdNYNM6MUW4FEaeNJ23apVK6qrq7niiitC7w/m3xdHgA8cODBRnuJgcmL761//ilIq6/04sqEstwTNBVPwA50klTxKgDdt2jS2x7cfvbG+9dZbLF26lF133TUwvee56u9sdtlll9R3kwD3B0LRvwf9tp133jkwH7mQiwY+e/Zsli1bRrt27Vi0aFHqeGVlJW3btk1ZIrLVwGfNmhU612ZiHXViS0VYBBARL8LiF4V+cLFM6HEiEYaty44yoev5N81zm0I4m0zM/ueH1f3nn3+e7bbbLvB8XPKtgfuv8e5valtRGniQ6frpp59OPDcfl2Kay000aAFuKtykAjyMqIYeVztv3bp17PXOYfcMClYS13GrqqqKb775JnQgkQu5aOD6Xsn6O/YPkrKdA89mXXsUDVEDxxxhcRdDut1EZCpO7IeLlFKZezPiRFkEBgFsuummoQ8ulgk9jgZlCr3skWQO3FQfw+pNtgL86KOPDjyXhKhlZLk6cIU5KmY7B14Iy0TYMrJiss6b0KMIa0xRcdfjCnB/JZg0aRLjxo0zXpfUCa2ioiJwmZufTp06JQ7/akIXtjr5mAOH9E4srEMzYb3QcyZOhMVPgc2UUr2Bu4CXgm6WJMpioUzohdLAg9D9Vkz1Mez3+QVosU3oQe02WxO6n7Cy18vVm26MY0IvhKUszImtmKzTGnhURxB13nOuiJOXsHz486kHevATVmG8ipprMJtc6N27d6BTYL6EZ9AyHP8zTORzHfg6SmSERaXUMu37GBG5R0TaK6V+yeXBxQilCrlr4B5B/YduaTD5ZCTRwIux/NPjwAMPDGwb+dbAw56hf7caeAMjnxp4lACP2mknrhNbkjzpaR9++OG0c6UU4F988QW33XYbkyZNMu4XDPlxYgMynNh0ymkZWQMlMsKiiGws7osQkX44/czCXB8cJcCjwgwXSwP3joUNNLz56GKZ0HPhyCOP5Oqrr+bNN4N3fC62Bm4q41IMyK0Gnmf8wRD8JK3kYY3JtIRLx1+Zp0+fnprrNjmvxEFPu8MOOxjThAnwQlXmrbfemq233jo0TSFM6GEaeGVlZWic91wbX1RZNkQTulKqRkS8CIsVwMNehEX3/EicfQ3+LCI1wG/AsSoPheG9ryDBePPNN/Pee+8xefJk4/lCzIGb8DYxCorrDXW/IakGXgoT+osvvhiZptgauMnPoNB7G+iUiwbe4AS4jhckIIg4JvR8zYEPHz48zbs0Hxq4v/KYNPCwClZsAVMIDTzMiS1KgNtALtmhlBoDjPEdG6l9/yfwz3w/N8o5DODjjz8OFPBR5l+POMFIwoTtdtttx4QJEwIH2GDemSxOfSyFBh6HfGngYU5s+vvz4mjo6+VLYUK3GngBMTXkOXPmxL7eX4kaNWqUds8oAR5mzs927irOdboGkc0cXaHIlwYeVgZ+z/KVK1fGvtaUT0v54C0FuuiiiwLTxFml4cffRrwNTcIwtauPPvooFQs8ailmly5d+PLLL40xKMrNhB6HfGngYSZ0/fddd9119OjRgyOOOCLjvP89WxN6PcUkwKOEro6/IfkrQlTEnTAzeRwNvEWLFhkCKMx7Pc4ceCmFU7408DD03zdw4EBWr16d2hTBnwergdcvKisrC1Km/nrgb3MmTB7xSZZfPv3007z11ltpMdfjWBhK7YUehPfsXAVamPVDb9stWrTg7LPPNuahGAK8XEzoBX16jJCLJ4jIZ+5nvIiY94/MEpMAf/TRR1PfTXHE/eiNyV8RkpjQ/RU7zhz4+eefn3Esao4fCIwVXmqCNk/JJ/458IceeohTTjnFeD7XiElWU28YZCPA48xXh9GuXTuOPfbYtGNxBHi5auAexZoDN2FSYApNqTXwgr3xmCEXvwf2UUptD4wA7i9Ufjx22GEHJkyYQL9+/Xjrrbci0+dLgPsrtskhw49pDj9sTbdpQ4Fsd/0qBMXQwKOeoZ8Pen/5Esz53AXKUjj8nbBpnwI/ua5JN5GNAC/mMrIwPGUp13Yd1vai2qXXXxaj3ZWLBl5IE3pkyEWl1Hgt/cc4a0pz5qKLLmLixImBJq2dd96ZTz75JPI+pjlwnVzmwAFOOOEEVq9eHagJJl2nborEVsy4vFEU24Rueob+HpJMp2TDddddx//+9z8uvfTSgj7Hkht6nbnmmmtC9yTwyFUDD8tHfTShm7zqs2G99dajsrIybZtgj6jft2bNGqA4Gvi6IMDjhlz0OB143XQiSbhFwPjys8HvhZ4PE/r999/PiBEjuO666yIDwfz1r3/lmWee4ZxzzgnMn45phJp0nXQhyZcTGzi7F02aNIm+ffumHY9aJhZHA88XXbp04fPPPy/oMyz55YILLohltSqV6bRcTej5EuCVlZUpQewnqu8qhQAvNYUU4HFCLjoJRfbFEeB7ms4rpe7HNa/37du3aCXnF+BJNXCTAD/zzDM588wzYz2/Q4cOaVuBmvIXRZg5qb4uIwO47777jMejBgnFFOCW8iTsvccVgoUwoecayKWUg3P/vt6FIEowewK8GCb0HXfckQ8++KBglsS4FPLpkSEXAURke+BB4GClVM7RmgqJv3Im8UIvxIuOo4GXkwDPpwYeRMuWLUOfkc85cOvEVv8YM2YMW221VeD5uO+0ECZ0r+6GrR/32rNn5i+1CdcjXxp4GF6AnCCKqYG/8sorfP755yVXAgopwFMhF4E5OCEXj9cTiMimwIvASUqprwuYl6wIE5CNGzemR48eoddHzYHnSjYCvJRCRx/wFEqA63ufm/b4DtrK0bJucPDBB4eeL6UGvuGGGzJ+/Pi0bT+vvPJK5s+fn/q/oqKC2bNn4238Ui4C3Ovf/IGT8onetk14zy6GAG/Tpg177mk0GBeVgvVgMUMuDgU2AO5xBUuNUqpv0D2LTdgc+Lx582jfvn3o9dmGS41LWKzlLl26MHv27ILt7Z0Neoz0Qo3U9X1/TbtbBc2vWSxQWg0cYLfddkv7f/jw4Rlp9N3+TAI8X1uHJsHz3F+wYEHBnuFp4HvttZfxfDE18HKhoMM3pdQYpVQPpVQ3pdS17rGRXthFpdQZSqm2Sqk+7qcshLdXUfbZZ5+043rjjhLeUHgBvtlmmwHw5z//GUhfN/7VV18xf/58OnTokHGdF8O9UPt+B6EL8EJqv1tssQVAWgAXjzgC3JrG112SCvBS4xfgS5Ys4emnny56Prx+5qeffirYM5o0acKkSZN45ZVXjOeLOQdeLlgbooGvv/6an376iS233DLWdnVB6BUpnwJr4cKF/Prrr6lANHfddRdDhgxJi7XevHnzwDn6H374gQULFkR6wecbfdBTyEY2efJkFi5caFyxkE8N3Ar6hkdSE3q5TMMMGjQIgPXXX78kz+/Xrx8Au+++e0GfE7bVsmdCtwJ8HadVq1ZsueWWGceTdtiF0sDbtWtHu3bt0u7t7XIWxbbbbkvr1q2N88OFRkT47rvvqK2tLejcXZs2bQKj7OVj0LLhhhvy888/Z1hoLPWfpBp4OQjw1atXlzwfW2+9NfPnzzdOWxWLoUOHsnTpUs4444yS5aHYlL72lTm5aOCF9kJPwo8//sjs2bMjt/wsNHrs51I9f/z48aEOMVGd+BdffMHUqVPZb7/98p09Sz2hnDTwcpnzjRPBrpC0b9+exx57LKd7HHHEEUWfWsyF0te+ekQuArzUyw26dOlCly5dohOuA/gdhfzoUxEm2rdvz/7775/PLFlKwMEHH8zrrxtjR0VSThq4JR5xvMb//e9/FyEn+cPWvgjCIrFFoc/FlNOmIhYzM2bMYNKkSQwYMKDUWbEUgVdeecW430AcPMFdLs5slnAWLVpUVvtC5AsrwCPo168fVVVVdOvWjRUrViS6Vh+dN8TK09Do2bMnPXv2LHU2LEWioqIiawHsDeytBl4/8FbeNDTKIwpAGfPAAw9w1VVX8c477+TkxGY1cIul4VBTUwNYAW4pLbb2RdCuXTuGDRsG5DYHbgW4xdJwsALcUg5YDTwBdg7cYrFA3eYdVoBbSokV4AmwJnSLxQJ1Grh1YrOUEivAE2BN6BaLBawJ3VIeWAGegKQCXE9fLsEWLBZL7hx44IH07NmToUOHljorlnWYggpwERkgIl+JyLci8jfDeRGRO93zn4nIjoXMT64kNaG3aNGCP/zhD5xyyik2bralwdDQ2nU2tG3blhkzZtCrV69SZ8WyDlMw+4+IVAB3AwcAVcBEERmtlPpCS3Yw0N397ALc6/4tS5IKYRHhueeeK1BuLJbi0xDbtcVSXymkBt4P+FYp9Z1Sag0wCjjcl+Zw4HHl8DHQRkQ2KWCecqKQG3BYLPWEBteuLZb6SiElUidgtvZ/lXssaRpEZJCITBKRST///HPeMxqXO++8E4A77rijZHmwWEpM3to1lE/bfuyxxzjmmGNK9nyLJRsK6UJpsjerLNKglLofuB+gb9++GeeLxYABA1i1ahVNmzYtVRYsllKTt3YN5dO2Tz75ZE4++eRSPd5iyYpCauBVgL79VWdgbhZpygorvC3rOA2yXVss9ZFCCvCJQHcR2VxEmgDHAqN9aUYDJ7teq7sCS5VS8wqYJ4vFkhu2XVssZULBTOhKqRoROQd4E6gAHlZKTReRwe75kcAY4BDgW2AlcFqh8mOxWHLHtmuLpXwoaBghpdQYnMasHxupfVfAkELmwWKx5Bfbri2W8sCui7JYLBaLpR4i3sb09QUR+Rn4IQ+3ag/8kof75IrNR3nlAcojH3oeNlNKbVjKzBQD27YbbB6gPPJRDnmAPLbteifA84WITFJK9bX5KJ98lEMeyiUf5ZCH+kq5lF055KMc8lAu+SiHPOQ7H9aEbrFYLBZLPcQKcIvFYrFY6iHrsgC/v9QZcLH5qKMc8gDlkY9yyEN9pVzKrhzyUQ55gPLIRznkAfKYj3V2DtxisVgslvrMuqyBWywWi8VSb7EC3GKxWCyWekiDEuAi8rCILBCRz7Vjw0RkjohMcT+HaOf+LiLfishXInKQdnwnEZnmnrtTREy7K8XOg3v8XPc500XkxkLmIaQsntHKYZaITCl2WYhIHxH52M3DJBHpV6Ky6C0iH7n3fUVE1itwWXQRkXdF5Eu3DpznHm8nIm+LyDfu37aFLo/6Rjm066B8uMdt28a27ZK0baVUg/kAewM7Ap9rx4YBFxnSbgNMBZoCmwMzgQr33ARgN5xtEV8HDs4xD/sC/wGauv9vVMg8BOXDd/4WYGgJyuIt7x448bLfK0VZ4GzKsY/7/f+AEQUui02AHd3vrYGv3WfdCPzNPf434B+FLo/69gl4f8MoYrsOyYdt23XHbNsucttuUBq4UmocsChm8sOBUUqp1Uqp73E2XugnIpsA6ymlPlJOiT4OHJFjHv4M3KCUWu2mWVDIPITkAwB3VHcM8HQh8xGQBwV4I+L1qdtmsthl0RMY535/Gzi6kPlQSs1TSn3qfl8OfAl0cp/3mJvsMe2eBSuP+kY5tOuQfNi2rR3Gtu2itu0GJcBDOEdEPnPNLZ4ZoxMwW0tT5R7r5H73H8+FHsBeIvKJiIwVkZ1LkAedvYD5SqlvSpCP84GbRGQ2cDPw9xLkAeBz4Pfu9z9St391wfMhIl2BHYBPgA7K3WrT/btRsfLRACh1uwbbtnXOx7btrhSxba8LAvxeoBvQB5iHY14Cx0ThR4Ucz4XGQFtgV+Bi4Fl3pFzMPOgcR90InSLn48/ABUqpLsAFwEMlyAM4prUhIjIZx+y1phj5EJFWwAvA+UqpZWFJC5mPBkA5tGuwbVvHtu0it+0GL8CVUvOVUrVKqbXAA4DnWFFF3cgMoDOOyafK/e4/ngtVwIvKYQKwFiegfTHzAICINAaOAp7x5a9Y+TgFeNH9/hyleR8opWYopQ5USu2E0+HNLHQ+RKQSp4E/qZTyymC+azrD/euZYIteN+oTZdKuvefZtu1g23aR23aDF+BeAbociWNeARgNHCsiTUVkc6A7MME1dSwXkV3dkfTJwMs5ZuMlYD83Pz2AJji70RQzDx6/A2YopXRTTTHzMRfYx/2+H+CZ+opaFiKykfu3EXAF4O1nXZB8uNc8BHyplLpVOzUap+PD/fuydrzYdaPeUCbtGmzb1rFtu9htWxXQe7TYH5zR1jygGmc0czrwL2Aa8JlbcJto6S/HGZ19hebtB/TF6RBmAv/EjViXQx6aAE+49/wU2K+QeQjKh3v8UWCwIX2xymJPYDKOF+YnwE6lKAvgPBxv0a+BG/R7Fqgs9sQxh30GTHE/hwAbAO/gdHbvAO0KXR717RPw/orarkPyYdu2bdsla9s2lKrFYrFYLPWQBm9Ct1gsFoulIWIFuMVisVgs9RArwC0Wi8ViqYdYAW6xWCwWSz3ECnCLxWKxWOohVoCv44jDByJysHbsGBF5o5T5slgsuWHbdsPHLiOzICK9cCIn7QBU4KxjHKCUmhl2XcC9KpRStfnNocViyQbbths2VoBbABBnH+MVQEv372bAdjixnocppV52A/X/y00DcI5SaryI9Aeuwgmo0EcptU1xc2+xWIKwbbvhYgW4BQARaYkTSWoN8CowXSn1hIi0wdmjdgecaENrlVKrRKQ78LRSqq/byF8DeilnezyLxVIm2LbdcGlc6gxYygOl1AoReQb4FWc/4YEicpF7uhmwKU6s43+KSB+gFmcrRY8JtoFbLOWHbdsNFyvALTpr3Y8ARyulvtJPisgwYD7QG8cBcpV2ekWR8mixWJJj23YDxHqhW0y8CZzr7oiDiOzgHl8fmKecLRxPwnGKsVgs9QfbthsQVoBbTIwAKoHPRORz93+Ae4BTRORjHBObHZlbLPUL27YbENaJzWKxWCyWeojVwC0Wi8ViqYdYAW6xWCwWSz3ECnCLxWKxWOohVoBbLBaLxVIPsQLcYrFYLJZ6iBXgFovFYrHUQ6wAt1gsFoulHvL/SjwU+Af/s10AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABelklEQVR4nO2dZ5gVRdaA3zNDUBEUEZWkICoKBgRkZdeA66pgwpwwYEYXTGvg08VVXFzDuoo5B0zI6qqoKCbMCTALqCiiIKIkBYkzU9+P6h769nS+3TfM1Ps895m5HarqdlfVqXPq1ClRSmEwGAwGg6G8qCh2AQwGg8FgMMTHCHCDwWAwGMoQI8ANBoPBYChDjAA3GAwGg6EMMQLcYDAYDIYyxAhwg8FgMBjKECPADZkiIhuLyBsiskRErhORi0Xk7mKXKwwRuV9E/mn9v6uIfFnsMhnqHyKiRGSLYpfDCxG5TEQeSvteEekrIrPzK126iMimIrJURCp9zid+Fh5ppfbOG6wAF5FjRGSy9dLmisjzIrKL65pB1sM+wnW8r3X8f67jO1jHX3Mcu0JEPhORKhG5zHX9fiLylogsFpGfROQuEWnuOH+EiLwjIsucaZYZpwHzgRZKqb8ppa5USp0CICIdrefVyO/mNBtOUpRSbyqluhSzDA0R00br/J6SEnr1CaXU90qpdZVS1cUuSxwapAAXkfOAG4ArgY2BTYFbgQGuS08AFlp/3fwC/FFEWrmu/8p13QzgQuA5jzTWA/4JtAW2AdoD1zrOL7TKeVXIT0qNIGGakM2AqcpEDDLEwLTR+GTQdssOPw263qKUalAfdINcChwect1mQA1wKFAFbOw41xeYDdwO/NU6VmkduxR4zSO9h4DLQvI8BPjM4/gpXml6XDcA+Bj4DfgG6Gcd/w74i+O6y4CHrP87Ago4GfgeeAN4ARjiSvsT4BDr/62Bl9Cd15fAET7luR9YDayynvlfXHl/b+W91Pr0cd3fz7p3tXX+E+t4W2Cclf8M4NSAZ7IvMBVYAswBzne9w4vRFoLvgIGusv/Tea3j3HfA+cCnwK/AY8BajvP7W+9hMfAOsH2x6305fajfbfQCYC7wI3CSVf+3sM41Bf5ttYt5VtnXBpoBy63fareVtlZbetwq929WGdYD7rHymIMefFRa6Q8C3rLyWATMBPo7ytYJeN1qKy8BN2O1Vev8zlZ9XozuD/pGvdf1DHzbHrCT9dsbOa4/FPjYJ637gduA8cDv6D6mLfAEegA3EzjLcX1vYLL1vOYB/7GOd7TeRaOw34OrP7COfYfVx1p5vGs9p7nWvU0c19a+83w/DVED7wOsBTwZct3xwGSl1BPANGCgxzWjresA9gG+QDfMpOxmpREbEeltlecCYH0rre9iJLE7WsPYB3gEONqRdld0Z/mciDRDV+hHgI2s624VkW7uBJVSg4CHgWuUNk+97LpkN+vv+tb5d133v4DWwB6zzu9gnXoU3QG0BQ4DrhSRPX1+1z3A6Uqp5sC2wKuOc5sAGwLt0JrZnSIS1VR+BHqA0QnYHt05IiI9gHuB04FWwB3AOBFpGjFdQ/1to/3QA7+9gC3RwsbJ1cBWQHdgC3S9vFQp9TvQH/jRagfrKqXs3zAALcTXR7e1B9CDmS2AHYG90YLd5g/oQfeGwDXAPSIi1rlHgCnWuStwWDVEpB3aQvFPYAPrdzwhIq3D7vXBs+0ppSYBC6xnZHMs8GBAWscAI4Hm6AHGM+gBRjtgT+AcEdnHunYUMEop1QLoDIz1STPu73FSDZxr3dvHKsOZMe6PTEMU4K2A+UqpqpDrjke/RKy/dV6gUuodYAOr0z8e3VkkQkT2svK4NGESJwP3KqVeUkrVKKXmKKWmx7j/MqXU70qp5eiOs7uIbGadGwj8Tym1Eq1dfqeUuk8pVaWU+hA92j0sYbljISIdgF2Ai5RSK5RSHwN3A8f53LIa6CoiLZRSi6zyOhmulFqplHod3UEdUTcJT25USv2olFqI7jC6W8dPBe5QSr2vlKpWSj0ArERrL4Zo1Nc2egRwn1Lqc0soX+ZIW9B151yl1EKl1BL04PWokDTfVUo9pZSqAVqgBf05Vlv+GbjelcYspdRdSs/1PgC0ATYWkU3R2q/dHt5A12ubY4HxSqnxVv/yElqT3TfCvX74tb0HrPwQkQ1Yo1T48bRS6m3rGWwHtFZKjVBKrVJKfQvc5XgGq4EtRGRDpdRSpdR77sTy+D0AKKWmKKXes/rH79CD+N2j3h+HhijAFwAbhjhO/QmtWY2xDj0CbCci3T0ufxAYAuxBuMbgl9/OVh6HKaXc83NR6YA2myflB/sfq/N4jjWV/ij06B60Jv4Hy6lnsYgsRgv4TfLIOw5tAbuDs5mFHm17cSjajD5LRF4XkT6Oc4usjtSZTtuI5fjJ8f8yYF3r/82Av7meT4cY6Rrqbxtti6OdoeubTWtgHWCKo968YB0PwpneZkBjYK4jjTvQljKb2nqrlFpm/buuVTav9uBM+3BXvd4FPQAIu9eLoLb3EHCAiKyLFupvKqXmBqTlfgZtXeW8GO1HAVrR2QqYLiKTRGR/j/SS/J5aRGQrEXnWcnr8DT0Q2zDq/XFoiE4P7wIrgIPQpicvTgAE+HiNdQnQI/iPXdc+iJ6HHa2UWua6PhQR2RE9n3uSUuqVWDfn8gPaJOTF7+jOwcZL2LqdzB4F/iEib6Dn4SY68nldKbUX+RPFsc19zY9ojaq5Q4hvip7vq3uzNskNEJHG6E58LFqgArQUkWaOhrop8HmcH+DBD8BIpdTIPNNpyNTXNjqXNXUPdH2zmY+e5+6mlPKqy35txXn8B7S1Z8MI1guvsnm1Bzv9H4AHlVKnum+0LHVB93rh2/aUUnNE5F3gYLRl7baQsrufwUyl1JaeFyr1NXC0iFSg/Rkedzk5QvizyOlPLcc550DrNuAj4Gil1BIROYeMLJQNTgNXSv2KNoHdIiIHicg6ItJYRPqLyDUishZ61Hca2ixqf4YCA91agVJqJto8colXflbaa6GfdSMRWcv2lBSRbdGj7KFKqTomGhGptO5tBFRY9zb2+Wn3ACeKyJ4iUiEi7URka+vcx8BRVll6Ea0yjUePZkeg56BrrOPPAluJyHFWeo1FZCcR2SZCmm5+QTvmbB5wzTygo9XgUEr9gJ7n+pf1PLZHj6ofdt8oIk1EZKCIrKeUWo12XHEvE7ncum5X9PTAfxP8Did3AYNF5A+iaSZ6KVLz0DsNQL1uo2OBQSLSVUTWAf7hKGMNuu5cLyIbWWm3kzVzt/OAViKyXsBzmwu8CFwnIi2sfqCziISab5VSs9Amcbs97AIc4LjE1or3sX+z6KVt7SPc60dQ2xuNXhmwHfGsJh8Av4nIRSKytlXWbUVkJwAROVZEWlvPe7F1T06fEOH3fAWsZbXrxsDf0Q6INs3Rfc1Sqw8+I0b546FKwOu0GB+02XcyejT1E9pk/Ee0uXgu0Nh1/VroUfL+eHghOq7L8UZFe0kq12eQde4+cj1LlwJfOO4d5HHv/QG/6WC0Z/QStMaxj3V8c+B9K/3ngBup64XeyCO9e6xzO7mOd7HS+QVt7nwV6O5TpvuxvLmt75eR69k6wkpnMbCzx/2t0J6zi4APrWPt0QOJhehpg8E+eTdBd76L0A1qErCLda4v2hHuEuu9fg8c51Vu9/smwKvf+t7PymuxVZf+CzQvdp0vtw/1s40Os36Llxf6Wmhz67dWfZ1Grgf1vVZ7W8waL/SHXOmvh9YAZ6NXSHwEHOUo61uu6535bw68af1GLy/0P6A9sxei2+xzwKZR7nXl2ZeAtmdds471DB4IqSP34+hfrGNt0RbEn9Bt/z3WeIg/BPxsv0fgIOt4R3K90MOexSB0HfwZ7dD3nSOP3YDp1r1vovu4t7yeeb4fsRI0GBoUItIX3SDbF7koBoPBAxH5Br2CxL16xWDR4EzoBoPBYChtRORQtKb6ati1DZmG6MRmMBgMhhJFdEjarmizek3I5Q0aY0I3GAwGg6EMMSZ0g8FgMBjKkLIzoW+44YaqY8eOxS6GwVAUpkyZMl8pFRbcoywxbdvQUEnarstOgHfs2JHJkycXuxgGQ1EQkcgRocoN07YNDZWk7TpTE7qI9BORL0VkhogM87mmr4h8LCJfiMjrWZbHYDAYDIb6QmYauBXJ6Bb0rjKzgUkiMk4pNdVxzfroPX77KaW+tyMQGQwGg8FgCCZLDbw3MEMp9a1SahV604EBrmuOQe9y9T2A0rvnGAwGg8FgCCFLAd6O3F1iZlN3x6it0EHjXxORKSJyPB6IyGkiMllEJv/yyy8ZFddgMBgMhvIhSwHuteWPe9F5I6AnsB96z9fhIrJVnZuUulMp1Usp1at163rpgGvImHHjxrHTTjsxc+bMYhfFkDHffPMN1157bbGLYTBkTpYCfDa5W+e1Rwfwd1/zgtKbz88H3gB2yLBMhgbKgAEDmDx5Mmeckd3GQIbSYK+99uLCCy9k/vz5xS5KZixfvpzdd9+dTz/9tNhFKTofffQRn3+e7y7A5UmWAnwSsKWIdBKRJugdhMa5rnka2FVEGlnb6/0BvQOPwZAJv/76a7GLYMiYZcuWAVBVFXdL7PLhnXfe4Y033uDcc8/NJP25c+fy88/l4ZLUo0cPtttuu2IXoyhkJsCV3lB+CDABLZTHKqW+EJHBIjLYumYaervHT9H7uN6tlGqYQylDQVi9enWxi2DImMrKSqB0BHi/fv247rrril2MWLRt25aNN9642MUwhJBpIBel1HhgvOvY7a7v1wJmwspQEIwAL1++/fZbqqqq2GqrOm4yOdgCvLq6uhDFCmXChAlMmDCBv/3tb8UuiqGeUXaR2AyGfDACvHzp3LkzAGEbMDVqpLu1UtHAs8BsQmUAs5mJoYGxatWqYhfBkDGlpoFniYjXYh9DQ8EIcEODwgjw+k9DEuClTFVVFQcddBBTpkwpdlHqLcaEbmhQGNNj/achmNCzZMAAd8DMZHz11Vc8/fTTfPnll0ybZhYXZYHRwA0NGqUUG264ISLCkiVLil0cQwoYDTw/xo1bs9q3pqYm7/SMmT87jAA3NCjcGvjMmTNZsGABAKNGjSpGkQwpY2vgRoDnz1133ZX4XmPtyh4jwA31GqUUd9xxh+95p4ZhNPD6ga2Bp7HiYPTo0cybNy/RvW+99VYqGmwxmTNnTuJ7bQFuNPDsMALcUK957rnnGDx4sO95u7N3/28oXyoqdLeWrwb+448/csIJJySaE54wYQK77ror//nPf/Iqgx/lpN0GCfDZs2cnTvedd96hQ4cOvudramo488wz+eabbxLnUeoYAW6o13z11Vc5390dn21uhTUdv83s2bNr42kvXryYWbNmZVRKQ5qkNQdua/A//ujewiGcH37QGzFOnz49rzKEUcrabdgg46GHHqJDhw68+eabidIfPnx44ADgvvvu47bbbmOLLbZIlH45YAS4oUHj1LqdneGyZcvo0KED9u53LVu2pGPHjmUTH7ohk5YGXsrCsRxwm9CVUgwaNIg33ngDgLfffhsg8UYkYQOEhrDvgRHghnpNWCN3nnfOVy5cuNDz+qw1KkP+lJIXelambjvdfEzQUchnEOMW4KtXr+aBBx5gzz339LwubZzWtfpKvRPgTzzxBG3btmXSpEnFLoqhBHF3Fs7vzg7f2fidgr2c5h4bElOnTq2d4khLA0+DrOvL9OnT+eWXXzLNI1+cGrjze74Wjqghdesz9U6AH3bYYcydO5fjjjuu2EUxlABJNXDn/8uXL4+cnqE4dOvWjY4dOwKlJcCzCmDiFH6LFy/OJA93PnHxGyy7fU3SSt+NnwBXSvHyyy/XtvHPP/+8dgvaciNTAS4i/UTkSxGZISLDPM73FZFfReRj63NpluUxGNz4aeDO//Nt3EuXLuXkk0/mtddeyysdQzTCBPgpp5xCnz59Mi2DLfjee++9TPOB0tU03Rq3LTDdg4Ks4i/4PZdx48ax1157ceONN7J8+XK22247jjzyyEzKkDWZCXARqQRuAfoDXYGjRaSrx6VvKqW6W58RaeWf1ijPUN7E0cA33XTT2v+dYTjz1cCvvPJK7r33XvbYY4/Y9xriEybA77nnnliCNS2ry4UXXpjIo90LZ5nsQESlSpgJ3b1SJCph78VvWehPP/0EaOuIvdLg9ddfT1SGYpOllOsNzFBKfauUWgWMAdIJshuBMNNPdXU1Y8aMyStQgaH0CZrzXrJkCQ8++GDt92effbZWcDs7f+c9STrzuXPnxr7HkJxS9UK/9tprOfHEE1NNE+DQQw9NPc00cLYVEWHYsGG1/xeTpk2bArBixYraY0kHacuXL0/sRZ8GWQrwdsAPju+zrWNu+ojIJyLyvIh0SyvzMA38/vvv5+ijj2abbbZJK0tDmXHSSScxfPjw2u8vv/wyt912G5Db+RsntvIiLQE+YcKExPf6Caks9qP30uqTarVu0vRCv/nmm/NO0yv9uOebNGkCwMqVK+tYB+Jy7LHHst122xUtimOWAtzrLbmf0ofAZkqpHYCbgKc8ExI5TUQmi8jkqB6XYZXENqGZ8Jmlz6JFixJvAxrUMB9//PE6x9555x0g14RuBHh5ka8AX716Na1bt+bUU09Ns1ip4vTLcO+6Nn78eLp06cKYMWPyzicNYetO4/fff887zShstNFGnsdtDXzlypW17Tlpu7bXtDu1+UKSpQCfDTjj3LUHcoaKSqnflFJLrf/HA41FZEN3QkqpO5VSvZRSvezAGmGEaeCl6vhhyOWXX35hgw02SM1SEtZQGzduDPg7tBlKn3wF+MUXX1wbgS8pfoIvLe3ziCOO8D332WefAfDRRx+lkldSgmKhL1u2LNNlZBMmTODuu+/Oyc/GKRvKfUCepRSbBGwpIp2AOcBRwDHOC0RkE2CeUkqJSG/0gCIVj4ywymEEeHnwwQcfAPDtt98muj9uA/Xaycpo4OVFUgH+3nvvMXjwYNZff/2c40uXLk2raKkJcD9T/PLly5k6dWoqeeRLkABPY1Ds5d9i59WvX7+cc507d671RXF6w9v/l2u7zkwDV0pVAUOACcA0YKxS6gsRGSwi9u4ShwGfi8gnwI3AUSqlJxmmgZuNK0qHs88+mwEDBng2orQdXubNm5ez37GbuAL80ksvZc8996xjxqzPiMi9IvKziHh67xR7eajd9sPeiftd9unTh08++aSOR7J7nfWcOXMSR0CbNm1a4t3NonDMMccwevTozNJPiyysWkGiw/Y8d15XUVGRtwm92GSqhlpm8fGuY7c7/r8ZuDmLvMM6fiPAS4cbb7wR0Htzb7755qmm7dUw/QYLsEaAR50Dv+KKKwB47bXX+Mtf/pJ3ecuE+9HtNkhSvKmU2r8wxcklaijVqqqq2imTOLRv3x4I7vT9+p8ff/yRzTffPHAeeNCgQXz99de1scLj8Oqrr8a+J4g0A7k4qampSd2EPnPmTDp37hz5PqOBlzBmDrx8ee6557j66qvrHE8z4pRfcBa7XkycOLH2mFOA33PPPZ73JXWyA5g0aRLDhg0rmiNMXJRSbwDeweJLgKgm9JUrVxaiOHUICwz0wAMP1DpT5kOxhZKd/+TJk+ucy0IDj7rrWH2aEqu3AjwMI8BLD3tEvv/++zNs2LA6Df9vf/tb7DT9Guh1113nedyuFxdffHHtMWeD/+9//+vZ+QR1SGGdRO/evbn66qu5/vrrA68rMyItD02ywiSMqAI8n0FXGMVe65wWzohy3333Xc65mTNncs4559S2j2nTpkWOmZDFHHiUfJ15V1RUBGrgd911V6jvTVhen376Kd9//33gNflQbwW4CXRf/ixcuDCnI7S9a9PA3RnZeJlUnQLc6ztorWrFihWMGzeORYsWRSrDr7/+yssvv1z7/Ztvvol0XxkQaXkoJFthEobbhL5q1SpPgRFHA2+oKxHGjRvHjz/+SJ8+fejUqVPOucMPP5xRo0bxySef8NJLL9G1a1fuv//+2vNBfXBWPiO33HJLaNr2eRHxnQNftWoVp512GrvuumukfP0GbDvssAObbbZZpDSSYAS4oWRwNwL3NEiSRu9XD/zmPr3qhVtge3XmF1xwAVdffTUDBgzgzDPPjFS2PfbYg7322ss3n3Il6vLQrHBr4E2bNuWggw6qc93cuXMj7+T14osv8uqrr/Lkk0+mVs5S5Pnnn8/5PmnSJHbfffc61z322GNMmTIF0M/X9nz/+OOPI+VTXV2dyTKyIUOGhA627CWCTg3c7dVvp+F0fitF6q0U8+sMV65cSdOmTY0TWwnibtAiknMszVG7nwC3ozQ5iSLAf/jhh9qwrGPGjOHRRx8FdMfgjKXuxL1Ot75oeVkuD42Qd+3/zuf57LPP1rm2Z8+egH6/Yf4HVVVV7LvvvimVMjvyndP1ElgzZsyoc8w5SG3atKnnRiVxNHDnErCo+KUf1o6cU3HONO69915OOumknDSSDqqPOuooNt5440T3xqHeauBeD/6iiy5irbXW4sMPPzSbnZQgXgLcSZIwlGlo4O4Owa+DcAvqlStX0qRJE8aOHRulqGWx/AdARB4F3gW6iMhsETm5UMtD4xB1QHTVVVexzjrrBF5TLs5OcdvI2LFjueCCC2q/RxWizv61cePGnmu+w+bAX3rppdrvYeV+/fXXeeKJJyKVLc5A3/k7nOm70/j888955JFHfNNx/9bHHnusdnVNltRbKeZVea655prav0YDL30qKioy08C9NG2/41E08COOOKKOAK9Hc9o5KKWOVkq1UUo1Vkq1V0rdo5S63V4iqpS6WSnVTSm1g1JqZ6VU/i7VCYgqwB977LHQa+IK8DSc2AYMiL/3U1zHvCOPPJJ///vfsfNxP9ugoC1eVFVV5Vg9wsrdt29fDjvsMJYsWVJr3UqqgdvU1NTU2XDFWT4ne+21FwMHDvQtZ9K47PlSbwV4kOlDKWU08BLk7rvv5uCDD679/txzz+WcDxulT548mb322osPP/yQAw88kNGjR8fWwOM4sTlH5JtsskkdAe6Vd7ksFSs1kiz5cnfkfmm0aNEiNK1iaOBBAYe8UErlvUQqigCeN29ezh4Sznyjhimtrq6mY8eOtd+jWg4GDx7MMcccw+TJk1MR4M7nFSTA7akF+/qlS5ey8847127lagR4yoQFETACvPS44ooreOqpp2q/uzWDMA18t9124+WXX6Znz54888wznHDCCb7Xtm3b1vN4FAFudxADBw6sPaaUqjM696qDDzzwgP8PMPiSJKiJuyO35zfdrLvuuqFphXXAhx12WI4AKIZD4umnn16QfDbZZJM6x7wEeBCrV6/OeV5RLQc//KA3uPz9999930lUS51SylcD9xsE2NffdtttvP/++3WO+5FVfai3UixoJKmUMib0MiSsYXo5i/k1LL9O20uAR5kDr66urtNIvfIu1E5M9Y0kJmn3e/LzIE+jL3DOn77++uupbSTy7rvv8ttvv+Uc81pXXFNTw1133VXneCHiojsFYdQ5cHdbiTt3H1QfomrgQQLcr6+xy+0u/zPPPBOYlxHgKWIEeOkQx/SUZuANvwaVVIB7Nfj6siysFEhiMXO/J7/VAFEGB1FNoLfddht9+/aN7cD04Ycf1onBDvDHP/6RQw45pPb7+++/77mu2EsAjh49mm7duvHCCy9ELkeSgdKHH36YE1/cJuiZub3OowrwN998MzT9OBq4s406y/6f//zH9x6o27ZPO+20wLyMAI9JUEU0JvR0WLVqFZ988kle8ztxTE9J5o/90vfrMKLsnOSlbTs7DXuTBKeXbVh5DMGkoYHnk3bU9xY1BoCbnj170rdvX89zzoiEfgGIXnnllTrHfv75ZwC++OILz3vSqouHHnpo7eDD+SyDnDjdsdDjDs7T0MCDnNj8BmBJNz8xAjwmYaM/o4HnzyGHHEL37t3zmtcNq9jOxpjEkSnuKN3reve1NTU1/Otf//K9pqKigmeeeSZneY4hP5II8KiaWJoCPGv82kuQv4efQPMS+kmZMGECkKvF+vkcQF0BnuYS0TgmdD8ntrA8jQAvIm7zjd/DLZVGW6rYXuIPPfRQ4jTCKrbzfJqNII4A99LA3SN0Z3qVlZW+a79NnUpGEgHut/FMWMQ/L0rlvfmVI8g65SfQslgREdWy6aWBP/nkkxx++OGRBPCCBQvyNqG7NfAo+TYoAS4i/UTkSxGZISLDAq7bSUSqReSwFPP2PRflxT333HO0bt069e356iP5hKUNawhOT88kXH755Z7H/RrrySefzHvvvZdzzN0hTJs2rdY8aePUIJwhGg3pkGTKq02bNnz11Vd1jrutb1EGB0cccUTs/AuJ3/w++As09+/+/fffGTlyZF7liDrQcrf71atXc8EFF/D4448zd+7c0PsPPvhgT0fB3XffPfLGQm4N3N7DYOnSpYH333LLLQwfPjy0jE7KToCLSCVwC9Af6AocLSJdfa67GpiQVVncuNf/eVXw/fffnwULFrDffvsVqlhlSz4CPKxiJ9mvOQpBo/Q+ffoEXnveeefVucf5OyorK41VJ2WSaOCtW7fmjjvuqP1uh7ZMIsBLhSRm4yjWphUrVjBx4kTPAU8c4kRyc2vgtuBOYk63CRs8uy16zmdgR+Pr1auX7/1KKYYMGRK7XGUnwIHewAyl1LdKqVXAGMArtNBQ4AngZ49zsYi6MYF7+UBQZx7FueKOO+7goosuipR3feHLL7+s/d8dcCUOhV4/aXuLxok77q4fXnPx7rm0JOU2fhn+ODt7d7xuPyuZ+x3bg8FyE+BurTEuUer6zTffHKjFRyWOAHf+ltWrV9cqAvkIcLdW7WTZsmV1At04v9sDd2ffZl/nLHcSylGAtwN+cHyfbR2rRUTaAQcDtwclFHXPYKewzdeEbt8f5cEPHjyYa665ps6Lr8/069cvlXTizIGngf1e44RljRLRy70cJYkGbrRzf5wm9DZt2uS8kz333NPzHvc7sAV4WMz9qEQJAJMG+QqQkSNHsmzZssBr0lqiGWcO3K1E2evd3WVxbrnrx6OPPsruu+9ex7rqpEWLFnzwwQe1392KXHV1Ndddd12d+5x9RdI2Wo4C3KtVuH/9DcBFSqnAIaKKuGdw1IY4ZcoUxo8fX/vdqzP3i5UdREMKk+m3nCUucTXwZcuWceeddyaOM26n5xUMww+3APfSEKKa0IMwAtwfd9uOMgBzC4mZM2d63pd0SWkxgvIk1U6nTZtW55jfEqp8iPosg8K+un+jcxmdHyJSu3zTr+1VV1fXxlH3KkN1dbXnypF8LSBQngJ8NtDB8b098KPrml7AGBH5Dr2D0a0iclDSDJ2VJ6hCzp8/P8fs69WomzZtGjt/0wHHJ64Gfsstt3D66adz6KGH5hxfvHhxpPzsaFXOudEw3PXDqxN1vnu7I4mLqT/+uNtzFLOw1zVPP/10neecz8D76quv5rXXXkt8f1ziWI6czyxMQKclwP/+979H2kPbrSk738nbb7/NoEGDas//3//9X2h69sZHQRq4fZ2zDG4N3KsN5htf3p1GmmQpwCcBW4pIJxFpAhwF5ETnV0p1Ukp1VEp1BB4HzlRKPZU0w6SVsLq6mtWrVzNv3rzaY0k08Hyoqqoq+c3j02DRokU5mktcAW6bwD755JOc487NFfLFPUcaVwOvqKgIjaVsiEcSAV5TU8P111+fc8zr+T/99NOJyzVs2DD22GOPxPe7CRscxhHgcTXstOrmGWecEXpNdXV1zsDH+T6HDh3KAw88wMKFCyPnKSK8+uqrvP3224HPyL18OMoyVWfZGowAV0pVAUPQ3uXTgLFKqS9c+wanSlJTWFVVFXvvvTebbLJJbezgQgvwv/zlL7Rp06aOYCpVkgyWVqxYwQYbbMB6661XeyyuCd3PK93LMzwpbgEeRQOPOgduSIeoAtxNZWVlSTmt/fTTTzkD2rB+J58tdV9//fW8hHSXLl0iXRfl3bgtZl5z9BUVFZGFuLPvD1oG5g71GsU83lA1cJRS45VSWymlOiulRlrHavcNdl07SCn1eD75xTEZOXGOBseMGQMkM6Hngx2KMOqm9cUmyWDJtjA4G3hcDdxPgD/+eF5VJxB3h+RV5qhe6EYDT0ZaJvTKysqSegdt2rThuOOOi3x90rLfeeed9O3b17d/iZJu1Lyj9L1uZ2Qvf4Lq6mpmzpwZKU+3aTxK2YLmy500WAFeaPLRwG3sEZ/fSPjVV19FRNhll10QkZIazXsxaNCgTIJQRH3WixcvpkePHtx4442elTiuBj569Oja/7fffnvuu+++SOWIQ5TNS9z4bTlqyIZvvvkGEQmcf/aylJTSUj277vvtkhZ0T1xsp0+n82lc56yoeUfpG9w7rHlp4FVVVZEFX1Bc9c6dO3te554Dj7LG3gjwDEkqTJ0C3B4J+glwe8lKkv2Jo5D2gOCBBx7gv//9byprPJ1ELeeoUaP46KOPOPvss0M1Vy+Czn/22WeB8ZaT4ha+UT2ebYJG9qWk/ZUT7vpmr/0OGsCVugCP2qkvXbqUm2++mWXLlqU6VeQkzXopIoGx2aFuG/PSwMeMGRP5GTkHDW4B7jznNqFH0a7jWAz9MAI8As5G/vHHHzNlypRI9zlf0P333w/kmtDPOeecSEFikjSCm266KUerLJcOPsooe/ny5Vx22WW1371+25w5cwLTKIW5ZLtOBOFeK2o08HRJYkL3GniVowAH7djltd1oXPwG3mmb0J19mhdRBPh5552XigYeJMCj/KZS1sCTx8AsQdxC5ZhjjokUXMXd0D/77LOcudZRo0Yxe/bs1OdZFy9ezFlnnZVqmk7SWL/oRxQBfs011+R896rExxxzTGAapSDAvdbQunnjjTdq/w8S4OUyQCt1ogjwUtbAf/vtt9h+Nvm0Bbu9+tW/Qs+Bu1eN+AWaSaKBu9+7UwY444gELWXzK0OpCfBIGriItBaRi0XkThG51/5kUqI8cFccZ1zfIDOoex3o3Llz68T3njZtmuf+zvngFdErTRN6oQX4zz//zEsvvVSb14wZM3LOe1XisAFWlIAtv/76a+g1hcZPwNiOfFHD/hq8sZ9vUISxUhbgr7zySuxOPR+rTli/opQK3cs8zTlw9/I+v6A4STTwE0880fe6TTfdNCftKL/JWY/KUoADTwPrAS8Dzzk+JUVQxRk1apTvuUmTJuV8X7ZsWZ2GPnXqVPbee+/8ChiBNAVtVltxgvez7tatG3vvvTfPPvssEM17O4wog6YDDjggdrpZEqSB33TTTYB2wDNExy8S24IFC3zv8RPgpWAFqa6uLqgAj+IsGvQso6Rhk0QJ8QvlmkQDD+Lkk0+u/X/ZsmXstttutd/9fp9zR8MozyCJr09SoprQ11FKlfxuHUEVJyhYg9th7bfffks0Une/3GXLltXucONF1h7saZh+/HA3mOXLlzN//nxAaxcHHHBAnfWYTktHTU1N7FUDzZs39wzY8uabb8ZKpxAENVillGfQnn333TfLItUrbGEW1IZKeQ58/vz5BRXgdl5+Vjm/bXedZCnA/Z5F2gLc2ScFbVrixOl7EPQMqqqqaNSokWcdK7YG/qyIlHzvEvQSgx682wS7YMGCRFtkOjXBf/7znzRr1owXXnghdjppkaUG7m6kzoHKqlWruOmmm3jmmWdyrnFu05ekPGl70mdFmBPbUUcd5Xl8xIgRWRUpFlbkxJIm6Rx4qSz9POOMM2IL5HzasLP/++yzzxCR2FuHOtNo1aqV73VJnq/fs4j6jJLk6ZYJjzzyiOd1UTcz8QvCtdZaa7HtttvGLl8UAgW4iCwRkd+As9FCfLmI/OY4XlIEvcSg3Xbef//9nO/Lly9PNFL/8cc1od7tDd8vueQS3+uzdtAqtAndZtWqVaHOeUnKk08UqkIT1PGMHTvW83gxBIuIvCYiHR3fe6PDIJc09vMNqhNOAd6/f38guudxIYjbBvLZ7dCZ18MPPwzEDxqllKqd0goyt8exrB144IF1yuck6uYtSWKAuPP8+WfvHa2jCvDGjRvzj3/8o87xZs2aJY5REkZgqkqp5kqpFtbfCqXU2o7vLTIpUR54dYCDBw/moosuCmzo7pdSXV2d2NT27rvv5sRGDnpxXpX2iiuu4K9//WuivIPStxttWgQ1YC/nPDel4F2eFfPnz09k7iySZvgv4AUROVNERqK39vX3AioSfnPgUQd1Bx98MFBaqwDitoFLL700lbzsPilu/kqpSFp7nHpsz0H7lSXqNqdpaOB+OOtY0DNr3LixpxUtK+ENEefAReQVpdSeYceKjdeDsnedCnIacr9Iey4jCX/84x9zvgdVLL9O/tZbb+Xaa68NnD+PgrOynXXWWQwdOjSv9GzC4hPHDXxSSC644AKuvfbaOsebAG2BNkALYF3r0ww9ylWOTxWwFPjd9XchsABYBTkb45QySqkJ1t4ELwHzgR2VUiW3q467Hb377rtAdAFuD8hLaeBYyLK4d8tLkr9SKtIeEXFW64SVJYoy4EwnDlF/f1QN3G/FTJYD80ApJSJrofuwDUWkJWv2+G6B7u9KiqAHFWSKcTtBvfnmm4FzPGmVqZAmdC8eeOABNt54Y/r16xcr3TDtMkpjGjt2LIMGDYqVbxqcddRRfHHttXQDugFdgY6A/y7z8VkCzP/5Z+ZDzmeex+dnwK6ZxdAORWQ4cASwG7A98JqI/E0p5bvKxFpCuj/ws1KqzuSe6Eo/CtgXWAYMUkp9mGa57T2i4wrwctbA08rLfhZJrEQtW7YMvcbPFO2F3Vc49+l24hTge+65J6+88orndSJCs2bNYu3RnkQDD4rN7rcappga+OnAOWhh7WyAvwG3ZFSmxAQ9qKCG7tYoJ06cyOGHH55KmZJo4GH3RcXdQfzwww906KC3aP/xxx9rBWjcTi2sbFGmH0488cSCCPCNgP5o6bQL0L5nT8/1j1XAXPSG9YvRGvVStPSpRo9c7V/dGD2qbcYaTb050BLY0Pq/OdApYhkXooX5JhdeCC+/HOv3pcCGQG+l1HLgXRF5Abib4GWi9wM3A37htvoDW1qfPwC3WX8T41fnPvzQe1zg3hEuLJBJMchKgPfv35/nn38+55j9u5VStc8yiQZu7yQ4bNgwrrrqqrzLGibcnCtXXnzxRd++paKigieffDLWUt+odcGp/B155JGR03eWLSsCBbhSahQwSkSGKqVuyqwUKREkWMJCdrpJq6En1cA/+eQTdt5557zydg8Qfv75Zzp06IBSiokTJ8ZK58MPP6R79+6+u4E5iTr4iOqgEpdtgEPQKmJvch091Npr89ry5XwGfGF9vkFrwml1py3QUtH5aQ1s7PFpDWxgfZb98ENKJYiOUupsEVlbRLoopb5USs0C9gq55w2n45sHA4DRSjei90RkfRFpo5Sam2LRcxg3blytQxRAo0aNcuZPwzTwxo0bZ1Yf/chsaZGHwEjLhG73Keuuu24eJVxDHAEedG1FRUVmgtK5+iVJ0KgsB41RJ3rniMghrmO/Ap8ppXztJSLSD21KqwTuVkpd5To/ALgC3XdWAecopd6KWvg4BEVs8qLYArxPnz5MnDiRvn37Js77sccey/luN4annnqKY489NnI6I0aMYMSIEZx66qnceeedkaI6ReHss8+OXIYwNgKOBo4HejiOrwBeQUcgehOY8O23/LlNm9Ty9eI36/NthGsFaIUW5o9deindsiyYV/4iBwD/RrsBdBKR7sAIpdSBgTcG0w5wjkZmW8fqCHAROQ04DXKjZMXFHZa0cePGOQI8TAMvxtx4VvHyvQRZGiZ05+YfSX2E3MQR4EGUyvLAQhN1yHIy2qw20PrcBZwHvC0inpvZikgl2szeHz3VeLSIdHVd9gqwg1KqO3CSlUdJkFaDdlcqZwcS1oDC1pCHCUq3ALdHkv/73/8C73Nzyy16tuSuu+6KdH3UZ3fbbbfFKocXewJPAnOAG9DCezFwD1oNbIXWxG8ApgCN1l477zzTRKHnx78Aft9yy2IU4TK0oWIxgFLqY6Jb//3w6kk9K6tS6k6lVC+lVC9nnOo6CYZ0zm7nKrelKEwDjxIYJm2KoYErpVLRwAslwOM4sZWqAM9SA48qwGuAbZRShyqlDkUL5JXoeS2/CG29gRlKqW+VUquAMeg+tRal1FK15tc1w6eRF4MsBPjEiRPZYIMNagVoPltpPv7446yzzjq8HDBn6r4/aSAUdyMLq5BZ78S1LnAmMBWtWR+ErjjjgMOADo0acYr13W13KZVIXCVElVLKbRfMtx3OBjo4vrdHuxdkxtqugZlbwESdA3enkyWFFOBp+ANkIcDDhG4cDbxUKQUB3lEp5VwX8zOwlVJqIWucaN34mdFyEJGDRWQ62mnGc3NnETlNRCaLyORCbQKRhQn92GOPZfHixRx66KFAuKALauCHH344K1asCHSqcN+fdI4vyIoQJd+0aAWMQFeqW9Bz3bOBv6MlxADgCWB1gJBOq+PJgiI5WH0uIscAlSKypYjcBLyTZ5rjgONFszPwa5bz36CjXTlxv+eoXuj5Lt2MQzEEuIgwbNgwoDxM6FkuIysUpSDA3xSRZ0XkBBE5Ab25yRsi0gzL9OZBJDOaUupJpdTWaEXqCq+EoprZQLu9pjEWy0IDb968ee3/5557bqine5QyxAkUk7QiOZeFKKUyibIWRFvgOmAWMBxYH3gDrW13AkaiR5Q2Qc+klDXwIgnwoegVdSuBR9HT9+cE3SAijwLvAl1EZLaInCwig6315ADj0S4AM9DTbcHbXEUgTMNya87uWPNJNPApU6bEKWJsCinAbR8g5+/Px4QexZk1CmnOgZcqpeDE9lfgUOBPaPk4GnjCMn/v4XNPLDOa5dnaWUQ2VErNj1iuXJYsYRLaU+Ym4AF0kI0kpNW4Fi1aVPu/03PzhhtuCL03youPs0zNOQ+WlJ9++okxY8YEXtOxY8fE6TvZCLgUOAWwXZSeBa5ESw8/ylWAFwOl1DLgEusT9Z6jQ84rdJ+RGmEddJggiKqBOwX4lhn7JBTSiW3q1Kl5518MDTwsaJSNEeDBBVDA49YnKpOALUWkE9rH6CjgGOcFIrIF8I1SSolID7QnbPCedkF8/TW/AVujTawj0c5MtwD+y++9Seuhf/7558yZM4d27drFrmRRBhG//PILCxcuZIMNNgi9f+7cuaxcubJOWNUnn3ySzTbbjB49euDGK0pdGE5LQxKaoT0kL0TPd9cAY9GC23u7gFzClpuUKoXUwEXkGQLmuvP0Qk+dTTbZJPB8WICRqBq40xkua6EQNUxoXKLW8SQCvNBObPY6fzuiph+NGjUqaSGeFZHetIgcIiJfi8ivUTczUUpVAUOACcA0YKxS6guXqe1Q9Bzcx2g5e6TKpxfr0YPNgcOBt9Cm1r+h7XhP4m8q8CJN85ZzF644RC3DEUccEen+s846i5EjR9a57pBDDqFnz56R0ojS6JM+u0r0eqKv0XPd66InU7cDjiSa8N5mm21KWkgHUWAT+r/RMxMzgeVoU/dd6Pg1nxeyIFFo2bIl++yzj+/5sMiJTg086DkX0kIT1Twcl9NOOy3SdXFjYwAF18CnT58OhP+mUraslcIc+DXAgUqp9VSMzUyUUuOVUlsppTorpUZax25XSt1u/X+1UqqbUqq7UqpPGmvAq9Bmgl2Bnmgz+mr0BPuraCFwMrCWz/2gK0OaAvynn37K2aksKl5z2LNmzapz3SuvvFInfOG8efM8t7fz2zIvahmiPJckFfZA4DPgDnQ88g+A3dGOaXWNf/68+uqrZTsSL6QAV0q9rpR6HR37/Eil1DPW5xh00LqSI595V3udeFj9dQqCrOtRVAetqNx2220opQJjR+RTx5waeFoC0y8de/OZIJxTeZWVlbTJOL5DUkpBgM9TSk3LrBQZ8SEwCNgUPZc6T4Tt0YvNZ6NNsu097mvXrl3qD71du3Z8/nk8xcZdhmHDhtGxY0duuqluULyNN964dr5o2bJlviZHv4D7fmQtwP+Adkh7Gu1VPgNtQbGPx2HQoEFssskmtG/v9VYNPrQWkc3tL9aUV5qh4UsC20tdOUKJelFITS5tAR5lwJHvnuJpC3A/Ddzvtzin+bp1WxP2qFGjRnTp0iWVMpUTUQX4ZBF5TESOtszph3hEZitZfka7t/dp25aBaO2uFfB/aPvhY4BzDzGns0aaxDWZuctwzTXXAHiawWGNo0qczQTiliGqAG/Xrs6KwRy2QM9rv4e2lvyCdofuSjxHCye2hhY14EypUSQv9HPRG5i8JiKvARMJ8UIvB9xR/myBEMeEXm4aeBTiRqR0smjRotpd9rIW4H7HnVstO68xJvRgWqBjYuwNHGB99s+qUFkxc84cHkFrd33Qa2YUeiumt4HJwHFA45qakth20O/Fh1XWpB2Dl2d8EgFeXV3tO7/WGrgRbRY/HF2pRqIF+s34BxWIgi3Ay1UDL4YAV0q9gF59ebb16aKUmlDwgqSMvekGwPHHH58jwIPqcNicrD2IToOs5sCDiLNblxcXX3wxEN1RLiwUdFwB7neNEeDBBTjR4+MZdKVceA/tEt8R+CdaA+yJXh/33ty5nDBzJsF+r9nj19GEVdak3q3nnntuaBmiOLF5zdOvg16n9A1a065AT2VsiQ7EEugRGRFbgJs58Nj0RK8F3wE4UkSOL1ZBgojzfJzz5aecckpiDbx///455+NuvRtEMQT40qVLU0knqsBUSgUGx0lLgJdygKYsieqFvpWIvCIin1vftxeRv2dbtGTcfvvtsa7/ER0cZFPgROBjoHVNDYNmzWIW8CCQzIc8f+IKcLtjysc0N2LECB5/fI0R212G2bNnh6bhbEyVwKloz/J/orfZfBYtKU4l3fiaaQWXKBbFEOAi8iDaI30XYCfrU6wqnxrOulBZWZlIgINeYpkV9h4DaZH1HLiTqBp4WJ2OOwfuxPmuGqoGHnXYchdwAdpJGKXUpyLyCLpPLimSal8r0Jsc3w8c1LIlZ1dUsOuCBRwLHIueN78dHdA9WUTx+MQ1oachwP/xj3/kpOVu8FF2MbO19IPRjoJbW8cnodd2v5a4dMHYnsblqoFvtdVWxci2F9A1r+WbBSJOEZ3ruZ0bXcQxoYtInV3O0uT999/PLG0/0mobUQXmF198Efje4i75dKZVLiZ0rxgdaRH16a2jlPrAdSw8okcRCKos//nPfyKl8U7jxlzSpQud0evnFqF3ZrkXrTHegPaYzhq7o/n2229zNIEwT/I0nWPcnd38+eFB8jr/+CPvAP9DC+8ZaD+D3mQnvAE23HBDoDQFuN86e5udd965WMtgPoeizxaljlOA56OB1zfmzk0nJH1UwbtgwZq4XF59h186znfk156dx4tpQg/zuXn11VczyzuqAJ8vIp2xIjeJyGF47O1b6jgdW4KwR+mz0FuttQVOQIfvXB/t6TMV7a57JDp8XBbYlXifffbhkEPCnf7t69OM8BTH5PYHdBDsyydOpA8wDx1Psyvw39RK5I8dzCNMgOcbKS4J22+/feD5rl3dO+0WjA2BqSIyQUTG2Z9iFSYtnB26UwNfuXJlyXihp02U8o4fPz6VvJIMdLzKF3eu268MxRx43XPPPYHn0wot7UVUAf5XtPl8axGZg15mMjjwjiIR1DijmuBqXF7oK9DObX8EdkSb0pcCfdEm9R+Af5H/JspubE16xowZka63PUzTco5ZtmxZpB3M+gAvoB0D+wPLKyu5DOjRvDm3kp9neRy85sC9YkDb4RkLSVjnWkRhcRk6ztGV6Mhs9qfkiGNCd3boTgF+1FFHAXqw9/HHHwfel28ZssaO1f63v/0N0FEIC0UcgWk/s6QC3Cuvk046KefeYkZfLObgIaoX+rdKqb+gVwFtrZTaBT3FWS8JMrN9DJyB1srPAD5Fb7oxDG0qfhEYCKSxq/Bjjz0W6/r99tuPefPmRYpiFMaSJUto1qxZoOb4Z3Sc3HeAfYAlaClwYt++XA6sbJKVbcIbrw7Cq1PbYostClGcHErVNGtHZHN/il2ufLjxxhvraGfuujF06FB22GGHOve658DdBAnwc845J0Fpk9OtWzeUUlx77bV8++237LJL4QLoJRGYaWjgfqZ1+xp7nXohKeagLtZbUEr9rpRaYn09L4PyZErUBx0lkMsStCa+A1oDfQBYBewFPAT8hPb8K3RMygkT0lnC++mnnwK5c1igpwuORw9kXkEHBvgN7c3YEb1UbIHVsJoUWICHdQYnnnhigUpSl7DNNgqtgdv7GXh8Qvc5KBZR2+/QoUPraGfu5+s3zZTPQOv6668vaJ23f5OI0KlTrv0vn4AtUUjLhB6l3nu1axHJudd2Ntxoo41ilytfsnR0DCMfu0NJThBlYUIP4z10yNY26HmFd9GRb04B3kQvofoHei44LnH3JE7Lgc3dQDsBlwPfoQcrO6AHKcPRgns4YG/8Z5vd4yzrSkNDdToqeTFgwIC888iHI4880vdcoQW4vZ+BxyfSPgeljttD2S0ErrzySs/78p0D33bbbWPfk5Sg8uUjVMI2hoF4GniQCT1KXAm/vsFLAy8Gffr0KVre+fzq0pkMSgm7UYd5qvqxGO0o8Ee09/WV6JjrW6AnGr9Ab8t2BVoARuHPf/5zrDKkNf9dWVnJuuhgNy8D36LjybdBbwgzCNgMrXkvct1rbzkaR4Cn0QBLeJ7ZkCKbb7556DVhGniU+5Lw4osv8tprr+WVhpMWLfzHUkFlzaeuP/roo6HXpGVC91OUovS/WbTnMIc0L4rpAR/4FoLMbOhp4EBEpJ+IfCkiM0RkmMf5gSLyqfV5R0SiyrXUadmyZW2c3bix0Hfcccc6x75Em5M3Q5uZ70ZvdL41OvLYx+g47LehPYj8/KJ/+y2eNXPx4sWxrnfTEh1OdssLLuAX4GFgT/Ta9wfRjnvdWTNl4IWtgccxJ6bRGEtdQAd1SqVe9lLAfn4bb7xxznGv4E1hc+A248aNy1mPna8G3qpVK3bffffY9/kR1IaCyhe17GeffTbnn39+rHuTDnKc6a6//voAkZZOOttNlOVl+eBes929e/fU80iTwKGDUirxehsRqUTv8b0XWhGdJCLjlFJOt+CZwO5KqUUi0h+4E70aKTFJTegtWrSorRBxTejrrruu77ka4CXrcwZ6i8xDgUPQpufB1mc12vT+Btop7D3qarZR8DMN+tES/cD/bH12xBrVvf46Neh91R9Ce9v/GjHNJBp4GoR1LMUWkkF1qthlKyfc7/mEE04IvMZLA3/rLb1z8QEHHJBzvNTeg92WvAir7xtssEHtDoV+dOrUqU6/GDadlTT4ivPZ2nlEed5e/bZ7Djwt3Gm+/fbbNGvWLPS+Jk2apLp8NypZThz0BmZYHuyr0DIgZxJSKfWOUsqWU+/hvbtnQYgT7CEpVWjHrzPR5ove6Lnjt9AOBbuhtfPx6PnkqcAjaE3+YLT2HlaV/Ezo66MDXh9hpfdftFl8IfA8OsxeT/RA4iVg9sUX0w69U9gdRBfesCbQTBwBnsbzLpXOd/To0Z7Hg35jQ43lHAf7+bkFiJdAcc+BO+eEO3XqxJ/+9CfPPJx1qBTqU9DmKVnN++6+++4MG1bHYFpLZWVlovrqNWedzzPO4v24n6kzjrttNShUWaKQpQBvh14ibTPbOubHyWhZUhScji5ZbSfqpAYdWvSfaCHZCj26uRqthS9HR3s72rrmf+j586XoufYv0FHNnkNvy3kf2qz9CFo4Pwe8j9485Fe0Nj8ZvXXqP4HD0I5py9Aa/0i0qXx9tMl/yBdf8FPC3/brr1rcxzGhpynA/dIqVCPzEw4NOQJYmjjf44gRIzzrmVsDt/cDh+Bn7SUUv/vuOzbZRAerK8SSIefvC9uWN4gooXn9lnb961//8r2nurqaHXfcMXaIUBHhkEMO4eKLL85bA496r5NRo0ZFKqMfBx54YO1ubHvuuWfOOWfQrUKS5bDf60l4vgkR2QMtwD1XXYnIacBpAJtuumlgpnEa2M0338yQIUOAXA28pqYm0HTlUb7I1/rxGzDO+gA0BrYHtkVvE9UV6IIeAa1nfeLwO1qY259PgU8qK/miuhovP9Cnn3467k+oQ7lq4LfccguLFi3ixhtv9N1b/aOPPvL0fQBvARFm1TEaeHRsIXvEEUcwfPhwz2vcc+BOAR7V+cv+f7PNNmPjjTfmp59+Kvia33zmuZ999lmeeuopTjnllMA04rabqqoqRITLLruMs846K/R6pwn9iSeeAOD++++vPRb1fndazmV0UYgyGApLy15l0Lp1a88yFnognmWvMRvo4PjeHo/Np0Rke7SPV3+l1AL3eQCl1J3o+XF69eqVuAU5G2779u3p0aNH7XenAF+5ciVff/115HSzWPu5Gphifdy0RJvgN0Sb1O1PjXXfanT0uF+A+dbHywTeuKIi0jKOpMQR4GlYPNKaAz/zzDMB6Ny5M0cffbTnNd27d2fHHXfko48+qnMubLMZL4wGHk7QciQ3zgF4RUUFa6+9JrRS0LP2S7uQJtKojlph9b1Vq1Z15vjd5PO74g5m4syB+zmueQnwqBxwwAGcfPLJ/OEPf+C0007zvKaiooI777zT83zQILxYAjxLE/okYEsR6SQiTYCjWKNgAiAim6Ktw8cppb5KI9OgSuXujN2jdK8GESV+etrbAoaxCG1Cfx09X/5f9C5qo4FHgcfRW3Y6TeheZL12slw1cJuwMsXt7IMGKUaARyfKe160aI0LqHsOPKoJvRjzmieffHLO9zQ8zbMiSwEeJZ+4GniTJk24++67OfXUUxk4cKBvmqeeemqk9JzYbbveCHClVBUwBB1tcxowVin1hYgMFhE7jvql6OnfW0XkYxGZnFV5gBxvQhGp4+jiVREmTw4vktdcU9u2oavsik6au5Z5UWgv9LTnwAtpLjUm9OhEcYBybzspIrX1MWjgWsyAIFBXgAeRj/CLk0bStIOuc05pxMG+b5111smk7EnX1rsdLAcPLsxWIZnWVqXUeKXUVkqpzkqpkdax25VSt1v/n6KUaqmU6m59emVVFq+5mihrRZNWkqAADA2FpKNR2+zXuXPnWPfZ78reVjQOdlkvv/zy2mNxOr9DDz209n+vZScNfRvLNLE7yaDO1vms3dpeVBO68/+TTjoJgA4dOtS5J03c/U0+JvQk+UXh9NNPB/LTwG2LSBQlwpnPwIEDufzyy7niiitia+B+afqVMUl6dt3Kx/kwDsUdbmaA14u58cYbPfcCj2JCX758eaJyFDoOeBxmz55d6ymeJUmF0pNPPskPP/zAXnvtFes++/01bdqUBQsWsGTJkpzzXo3z+OOPZ9asWaxevZpZs2blOEU569KsWbPo1ct/fHnddWs28GrUqBELFy6s84yNAE8H+z0GTW+5NXDnfUnmwIcMGUJNTU2iwWEcvAS4nza39957p5JfXKFlB6o56aSTIoUntpdiOd+JrUkHRY4844wz6tzXqFEjLr30UtZdd93Qco8YMYKePXsyYMCAOv1xUgG+9957s9FGG3HhhRd6nk9jeVwcGoQA33rrrT0bbRQTevPmzROZgou5Q00Y7dq1K4iFIKlZuLKykvbt20e6368z3mCDDQID7NiICJtuumnOXxt7u0bQqx/c79ReSrLVVlvVqTstW7as84yD6oTXzlilioRHWOwrIr9a02Ifi8ilaeRrPz+70w9al+slwKNo7kF+Dfa5LPeT98r/tttu85yz9XOwzDe/MOznt9566/HUU0+FXv/uu+9y1VVX5QjRKALc3iY16Rz48OHDmTx5Mk899VQdTd9O884778wZaHvVDdtjHrR1b968eaErUIwATxG/tY5eJnTn3EyjRo3YbLPN+Oqrr7j//vvp3bt35DxLWYAXiny1yijzZF988UXt/0nm+4Ia2h/+8AfGjh3LZ5995pn+5Zdfzj333MPrr78eGgDEL7bASy+9xIMPPhjqLVwqyJoIi/3RqxuPFhGvfXredEyNjUizDPZOW0ERspyrK+KY0KMwffp0Lrvsslj3PPbYY54hX92k3fFvtNFGnHvuuammGdd037VrVy666KKcY/bWp34WDaVUTlwOL/J5VvaWwltssUXOQNtOM2gb5SCcde3ee+/lgw8+SFzGKNQ7Ae4Xds+NW4Db5lZn5B170X7Hjh054YQTjJkzJvk+L+e78MO5sUWSQVNYJ3D44YfXrv10p7/WWmtx0kkn1Qb5CMOrfFtttRXHHnts0T2KYxAaYTEr7OcXJVSvexkZpCfA27ZtS8+ePQOv+eyzzzjooIMArQkeccQRkWKkx5kDj4KIeE4f2kyfPj12HmnMvV9++eV89NFHbLfddonzyWcO/B//+AfPP/88e+yxh2eab7zxBlOnTs05F6V/cda1E088kZ122il22eJQ7wS4F15zZSKS05BnzZoF5AqNfBq60cC1BcMOlJME59pdP+I03nydFKNuRhJlbatNoT31UyBqhMU+IvKJiDwvIt38EhOR00RksohM/uWXXyIVwNauoy4Hc2vgUZ3fgghzZtt22219zaxO3O9fRJg0aVLt96yVBudyu6ikIcArKyvrbBRy1VVX1W4o5cwnrWVkTho3bky/fv1801xvvfXYZpttYqeb1iAxKg1CgHuZaSoqKnIqou0VGSTAnebaMPwq3XbbbcfBBx8cOZ1SJWjkbPP777/nZb6LK8Cz0MCd5BNsxs8LPZ99m4tElAiLHwKbKaV2AG4CnvJLTCl1p1Kql1Kqlzu6lW8BQpYLAjnRx+Jo4FEDGyXxWfCqa999912da3r16sUf//hHIHtn2HzmwKPgtdGMHxdddBG77bZbnXwKGRo5X8FrW34K1a7rnQD3etleDltuE7rdUJwNxu1EFbS15/XXXx9aDjvfK6+8klatWvmmlTZt27Zlv/32Y7PNNstZZzpy5MjEaYpIHfOTm/fffz+yUL3kkkto0aIFN9xwQ+2x448/njZt2nDBBRcElsMm7TlwN1F3E/NL87rrrqNFixY5g58yFOChERaVUr8ppZZa/48HGotI3u7b9vu122WQsHUO/mxBYE+TTZw40fe+OCGUw4hS991bo9p1x97ZKi0LzTvvvMO4cePCL4xAFAHevXt3Vq1axb333pt3PlmuZffLMy72nH6SrZTzod4JcC+8Okl3IBf7gTsrQ5zR2DnnnFM7Zx5ERUUFW2+9NVHNhWnw9ddf8+yzzzJz5kzuvvvu2uNRymszfvz4nO8VFRW88sorgfcsWbIkstbapUsXFi9ezNlnn117rGXLlsyZMydnR6b27duzdOlSzzSKKcCjsO2227J48eLaUK1Q2ssNfYgSYXETsR6siPRG9zOeYZLjYC/js9fYZhEGOItNjIJMve4+xi3A06offfr0YaONNvItWxyiCDmlFI0bN87L3B52bxbTlEk18PHjxzN16tTa92Y08IR4vVS/3YqcjdXL/T/uy4yiDeYzb5OUNJY2eHU0YemdeeaZsRy8ogpYv3CXYQ26a9e6ztJZz4F36dIFgH333bf2nHtdazkRMcLiYcDnIvIJcCNwlEqhtx05ciRTpkyp9RDOQoBnuTdAFPwEeBr9hZdATLIOvFDR6sLysa0TfmFRk+DV50d5Ps2bN2ebbbap1cALJcDLq/dIiFcnWeHayMNej+isNOXWufoRNBA58MADI5nWouzB7Gb48OE0adKEb775JjSqWpz+3U9Y+qUxf/585s+f7xkdKWsNfMqUKcyYMSNnztRppi0j7/NaLLP4eNex2x3/3wzcnHa+jRo1okePHnz66adA+M6ESUhTgLvrY5R3bV9jC4I0nRz9BLgfN910E7/99huXXHJJaDpp41xG5ocdMCnNdflxftvtt99eJ4x2oU3o9UNCOXAuK7Lx0+yc60htL/R8NHBb24LS8kIP+h277bZbZgLcrsRe78RNnBCVcby8Qe/KlIbPQZI58GbNmtVxeLIbuSEZJ5xwAm3atEklEpmbNE3o7vjYUSi0Bh6EvYLkyCOPZJ999uGbb74JTGfatGmJPLedOH9nlPK2bNkyr/zcxOnz7ZCyTgptQq93AvzAAw/khhtuCF3CVFFRETonFFeADxw4kF9++YU99tgjlShJaRHU+IcOHUpNTY1vaEAbv7m6fBk1ahQVFRWhDnFRKGUvdCelNLgrR0SEffbZJ5O0s9DAk7SVUaNGMWTIENq0aZNaeeJq4DadO3fOcQT2E6xbb7118sJZ2NMjBx10UFE2lsnXC92uP4Wy3ta7OXAR4eyzz85ZjuCFX+X4/fffa/+P+zIrKio477zz2HHHHdlggw08r8mq8w6K0x1EkyZNAr28bdzPIq3Gtc8++zBkyJDInZzfXLl9Li6F9EI3lD7FFuD2VN7BBx/MnDlzUjXFJhXgUdJJiy5durBixQoGDhxYlMBZaf22gvkJFCSXIrDtttsycOBArrjiCs/z7oprb//55Zdf1h7LZxQ1evRo/vSnPyW+Pwz38hM7vGRWuCtkWkIqSTpNmjRhyJAhnHfeeQXNP6oAD8No4KVLlsvIotQRpwKRNvk4sUU1beezbMzGNj+XigaetWKQD5nq+SLSDxgFVAJ3K6Wucp3fGrgP6AFcopT6d4p589BDD/med1cO20vYST4d7RZbbMHEiRMzc2bo0aMHzz//fO33JBGV4lBKAhy0g42bUjGhGw28OEyZMiVvrS2LOfA49SHLgXhaS7qC0okSfS5JnoXCaOAWEm3Tg4XAWUBqgjsq7gfs1fDzbUxhGvy1116bOG23sLr11lsTpwV6QBBEEie2KKQp7LIW4FGXkRmKQ48ePfLe1S1LE3pYHRk6dGikLXSnTZvGww8/HLs8hdDA06RUNPAkbbtQ/UGWTyh00wOl1M9KqUlAwd1y3Q/Yq7Lka+oMe4nnn38+r776au33FStWRB40uMt20EEHcfPNyVfuOOMve5GWBu7cojNJOkHvpFw0cGNCLwzvv/8+3377bax7TjzxxNTy9/NCd09/2dx4442Rlo1tvfXWHHPMMbHL4yfA49bHtAXr3Llz+f777zPPJwr5WnCSrDzIhyxzibrpQSiSYMMDP+x56UMOOSTneBYCPArOkI8iEin+N8D+++9f51jQ9ophhFU4Pye2/fbbL3GecRgwQI/90vbuL8YcuKEw9O7dm06dOsW6J2rgoSj4aeBRdtnLgnyc2OJq4HH6zk022cRzGWk5m9DrgwYeZdODSCTZ8MCP8ePH8/zzz9duFm/j9eKyCKuY1AzrDhhwxhln1PG0z7fyff/99zzzzDOe5/xM6I899hjjx49n5syZHHbYYaF5KKVytKKoFf3hhx9m/PjxXHnllYFpx8XMgRucpDlo95sDL5YFJooJ3W9/hKgCPM26X4x2lJbne31wYgvd9KAYtGjRwnMbuY4dO9Y5loUAd5N0+VFlZSW77rorb7zxRqL7vejQoYPn1qvgb0Jv1qwZ/fv3B2D33Xfn8ccfj5SPO50wnPn4kXXHaDTw+k+nTp145513ePHFF/NOyy3AN910U/r378/f//53pk+fHmvpZ6ECufiZ96MK8DTbYDHaVLlp4FkK8NpND4A56E0P4k/cZMw777zDk08+6Rn0JQuB4H6x+TSM5cuX53xPa59eL9KaA3ev4y4nJzYzB14/+Mtf/lLn2OLFi1mwYAGbb745m2++OX369Mk7H7cAb9SoUe2mQPZ2oYUkq1joO+20U+bLWAtFWnPghSIzAa6UqhIRe9ODSuBee9MD6/ztIrIJMBloAdSIyDlAV6WU/76dKdOnTx/fxloIE7rze77CrJACvBRHqknKFCf/hQsXRkrHaOOljXtnPYD11lvP1/rkx7Rp05g1a5anRQ/yi8SWBfk4sQVFqHzzzTcje9on4dxzz009TT+MCd1BhE0PfkKb1kuSQuxMFEWAH3TQQUydOrXO8QsvvJBXX32VoUOHBt4fB78KHKViR8k/Cw18xIgRvPDCCxxwwAGx7y32enZD4Ulrg5Ctt946MHxoVAE+YsSIwJgVaZGPE1vQOvAs434XWqNda621fM+VouWs3kZiS4MgDXznnXdOJY8olWKvvfbyvG7jjTfmo48+4qSTTgKy1cDdx5NW5iQmuzCGDx/O22+/nagjSVKWMPOnEeYGiC7Ahw8fnhMBMiv8+ocoA+osvdBLiXxXCBT6dxsBHoC9dMnmoIMOqv3//PPPB7x3pAnC/YKTmOl79+7tedyr8Z1xxhmx0vZrnO7jttYfFXuzlPPPP7+kzM1x8h88WG93PWzYsLzyLNfOzRCPUnvP5RAL3RCPercbWVq0atWKrl1zA8f973//49NPP6Vbt240atSIH3/8Me91o1EauVIq57q33nor9J7111+fqVOnprau1d1oDzzwwFj3/+tf/+L000+PvS43a+J0YLfeeiuXXnpp3jtElVrHbsiGNIN6ZOWFnlUktmIPzOPy6aefFmwL0DQxAtwHr05aRHJCNUbpyNu0acPcuXNz0nASRQPv1q1bzveoc3hpbkWYhoNdlH3BC02c3yUiqT5TQ/2mXJzY4t5bH03o2223Xarp1YdALmVNWmaiyZMn5yxRi2JCnzx5Mi+88ALTp09n7Nix9O3bN1JeWVaauKP0cqEcy2woD0pNgOfjYV2MQC6lQin/JqOB+5CWAG/bti033XRTbZzyoGVkNj179qz9v0uXLoAONDNjxozIW5yWywi42OXMN7KfweBHmgK8UIFcCplOuVDsPiqIhvUmYpDVZvJujTuqE9t9993HscceG7rpSFaU8ig0CePHj+fEE0/kr3/9a7GLYqinpCnA04hJkdbcdaEisSXlpptu4pVXXilK3vUmkEu5UygBHvWFt2/fngcffDByPsVoSOUk5Pv37x8amtVgyIc0BXgaMSn8+rRS3U40KV5RNesrpf0mikhWlTSpBm6oP5SClmLInlIT4F7Tb1HrYkOeAy9ljAD3ISsB7m6I9UmAN+TG25B/u8Ebu22XigD30sCTCHBT1/0ptOOiEeA+ZGVCdzfELLYvTDtdyK5CGm3UUF8pNQ08H+IKcNOuC4MR4D4USgNPs6KvXr06tbQM2WE6t4ZBQxbg9YlS/r1GgPtQjnPgTgFeLhq4wVBfKQcBHnVzobgCvKH3F8aEXmSMBh6fht5oDQYnaQrwqqqqvNPwIqs58IZqZapXm5mISD8R+VJEZohInR0gRHOjdf5TEemRZXniUKg58HLRwA0Gm3Ju18WglDXwqEQV4GYQX1gyE+AiUgncAvQHugJHi0hX12X9gS2tz2nAbVmVJy7l6IXuHKUbAV66lPO7Kfd2XUjKwYQO8bcTNUK6dMhSA+8NzFBKfauUWgWMAQa4rhkAjFaa94D1RaQkdoswJnSDwZOybteFpNSWkXlhlpFlQ8Gekb1VZdof4DDgbsf344CbXdc8C+zi+P4K0MsjrdOAycDkTTfdVGXJpZdeqgD13nvvpZruXXfdpQD1+OOP5xxftGiRAtQ+++yTdx6zZ89WgALUmDFjEqfTq1ev2nTsz+rVq2v/79+/v+d9P/30U+01/fr1C8yjW7duqnnz5mrVqlWJy1lKVFdXq1atWqnOnTuHXjtr1iwFqOOOOy52PsBklVGbjfJJs12rArft8847T40cOTL1dK+55ho1ZMiQOse/+uortcMOO6gFCxbknceUKVMUoE444YS80mndunVOu/7mm2/U/Pnz1dprr62aNWvmW9ZPPvmk9p6qqirf9FesWKF23nln9dZbb+VVzlJi4cKFaocddlDTp08PvfaDDz5QvXv3VsuWLYuVR9J2LSojc56IHA7so5Q6xfp+HNBbKTXUcc1zwL+UUm9Z318BLlRKTfFLt1evXmry5MmZlNlm5cqVmewN65fuqlWraNy4cSqjtpUrVwLkXf4lS5bQpEkTqqqqWHvttamoqGD16tVUV1fTtGlT37KuXLmSZcuW0bJly8D0a2pqqK6ujrw1ajlQVVWFiETyn0hax0RkilKqV5LypUFW7RoK07YNhlIkabvOMhb6bKCD43t74McE1xScrDZ290u3SZMmmecRl+bNm9dJr3HjxqECt2nTppHKUFFRUfIxleMSdac4yK6OFYCybdcGQ30jyx50ErCliHQSkSbAUcA41zXjgOMtr9WdgV+VUnMzLJPBYMgP064NhhIhMw1cKVUlIkOACUAlcK9S6gsRGWydvx0YD+wLzACWASdmVR6DwZA/pl0bDKVDptuJKqXGoxuz89jtjv8VYDZkNhjKCNOuDYbSoH5NQhoMBoPB0EDIzAs9K0TkF2BWyGUbAvMLUJwolFJZoLTKY8rij195NlNKtS50YQpBhLZdLu+oGJRSWaC0ylMOZUnUrstOgEdBRCYXc6mNk1IqC5RWeUxZ/Cm18pQCpfZMSqk8pVQWKK3y1OeyGBO6wWAwGAxliBHgBoPBYDCUIfVVgN9Z7AI4KKWyQGmVx5TFn1IrTylQas+klMpTSmWB0ipPvS1LvZwDNxgMBoOhvlNfNXCDwWAwGOo1RoAbDAaDwVCGlIUAF5F7ReRnEfnccWwDEXlJRL62/rZ0nPs/EZkhIl+KyD6O4z1F5DPr3I2ScPsvn/JcKyLTReRTEXlSRNYvRHm8yuI4d76IKBHZsJhlEZGhVn5fiMg1hSiLX3lEpLuIvCciH4vIZBHpXYjyiEgHEZkoItOs53C2dbxo9bgUKKW2XUrt2q88jnMNtm2bdu0gyR6khf4AuwE9gM8dx64Bhln/DwOutv7vCnwCNAU6Ad8Alda5D4A+gADPA/1TLM/eQCPr/6sLVR6vsljHO6DjVc8CNixWWYA9gJeBptb3jYr8nl6000PH636tQM+mDdDD+r858JWVZ9HqcSl8fN5RUZ6JT1mK0q79ymMdb9Bt26csDbJdl4UGrpR6A1joOjwAeMD6/wHgIMfxMUqplUqpmegNFXqLSBughVLqXaWf1mjHPXmXRyn1olKqyvr6HnoLxczL4/NsAK4HLgScXorFKMsZwFVKqZXWNT8XoiwB5VFAC+v/9VizzWXWz2auUupD6/8lwDSgHUWsx6VAKbXtUmrXfuWxaNBt27TrNZSFAPdhY2VtUWj93cg63g74wXHdbOtYO+t/9/EsOAk9gipKeUTkQGCOUuoT16liPJutgF1F5H0ReV1EdipiWQDOAa4VkR+AfwP/V+jyiEhHYEfgfUq7HheLUn0mRW3XYNp2AOfQANt1OQtwP7zmDVTA8XQzF7kEqAIeLkZ5RGQd4BLgUq/ThSyLRSOgJbAzcAEw1prbKdZ7OgM4VynVATgXuMc6XpDyiMi6wBPAOUqp34IuLUR5yoyiPZNit2urDKZt+9Mg23U5C/B5ltkB669tvpmNniOyaY82p8xmjfnLeTw1ROQEYH9goGUGKUZ5OqPnVj4Rke+sdD8UkU2KUBastP+nNB8ANeiA/sV6TycA/7P+/y9gO7tkXh4RaYxu5A8rpewylFw9LgFK6pmUSLsG07aDaJjtOmySvFQ+QEdynRauJddJ4Brr/27kOgl8yxongUno0aLtJLBviuXpB0wFWruuy7w87rK4zn3HGkeXgpcFGAyMsP7fCm0+kiK+p2lAX+v/PYEphXg21r2jgRtcx4taj0vh4/GOivZMPMpStHbtVR7Xue9ooG3boywNsl0XvfFGfEiPAnOB1eiRyslAK+AV4Gvr7waO6y9Be/d9icOTD+gFfG6duxkrEl1K5ZlhVeCPrc/thSiPV1lc57/DauTFKAvQBHjISvtD4M9Ffk+7AFOsRvQ+0LNAz2YXtEnsU0cd2beY9bgUPj7vqCjPxKcsRWnXfuVxnf+OBti2fcrSINu1CaVqMBgMBkMZUs5z4AaDwWAwNFiMADcYDAaDoQwxAtxgMBgMhjLECHCDwWAwGMoQI8ANBoPBYChDjAA3IJq3RKS/49gRIvJCMctlMBjyw7Tt+o1ZRmYAQES2RUcw2hGoRK9n7KeU+iZBWpVKqep0S2gwGJJg2nb9xQhwQy3Wfr6/A82sv5sB26FjHl+mlHraCtj/oHUNwBCl1Dsi0hf4BzrAQnelVNfClt5gMPhh2nb9xAhwQy0i0gwdUWkV8CzwhVLqIRFZH71X7Y7oqEM1SqkVIrIl8KhSqpfVyJ8DtlV6mzyDwVAimLZdP2lU7AIYSgel1O8i8hiwFDgCOEBEzrdOrwVsig6wf7OIdAeq0TGQbT4wDdxgKD1M266fGAFucFNjfQQ4VCn1pfOkiFwGzAN2QDtBrnCc/r1AZTQYDPExbbueYbzQDX5MAIZa+/siIjtax9cD5iqlaoDj0E4xBoOhfDBtu55gBLjBjyuAxsCnIvK59R3gVuAEEXkPbWIzI3ODobwwbbueYJzYDAaDwWAoQ4wGbjAYDAZDGWIEuMFgMBgMZYgR4AaDwWAwlCFGgBsMBoPBUIYYAW4wGAwGQxliBLjBYDAYDGWIEeAGg8FgMJQh/w8+CR0U3nEOGwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABZjklEQVR4nO2dZ7gURdaA33O5IIKAKBhAggEXcVfFBQyrLp8JZFERWRfEgJhdccG0xg3GVcyKIoqCiOgqZhERXRFFomJCUVSQIKJiApF0z/ejuy89fbt7ume6Z+beW+/zzDMz3dXVZ3qq6tSpOnVKVBWDwWAwGAzVi7JiC2AwGAwGgyE+RoEbDAaDwVANMQrcYDAYDIZqiFHgBoPBYDBUQ4wCNxgMBoOhGmIUuMFgMBgM1RCjwA2pIiLbisjrIvKziNwsIpeJyP3FlisbIjJKRK6xPx8oIvOLLZOh5iEiKiK7FFsOP0TkXyLycNLXikhXEVmSn3TJIiKtRWSViNQJOJ/zs/DJK7H/vNYqcBE5XkRm23/aVyLyoogc4EkzwH7Yx3mOd7WPP+k5vqd9/DXXsatF5H0R2SAi//Kk/5OIvCEiP4jIchG5T0Qauc7fJCKf2srvYxE5KclnUCDOAL4FGqvqBap6naqeBiAibe3nVR50cZIVJ1dUdaqq/qaYMtRGTB2t8ntKSunVJFT1S1XdQlU3FluWONRKBS4i5wO3AdcB2wKtgbuBoz1JTwZW2u9evgH2F5GtPek/8aRbAFwMvOCTRxPgGqAFsBuwAzDUdX41cKSd7mTgdhHZP/zX5UeYMs2RNsA8NRGDDDEwdTQ+KdTdakeQBV1jUdVa9cKqaKuAP2dJ1waoAI4FNgDbus51BZYAw4G/2sfq2Mf+Abzmk9/DwL+y3LM38H7I+WeBC0LOHw3MBX4CPgO628cXAoe60v0LeNj+3BZQ4FTgS+B1YCJwrifvd4He9uf2wMtYDed84LgAeUYB64F19jM/1HPvL+17r7Jf+3mu725fu94+/659vIX9LFZiNb6nhzyTHsA84GdgKXCh5z+8DGuEYCHQ3yP7Ne60rnMLgQuB94AfgceA+q7zPe3/4QdgGrBHsct9dXpRs+voRcBXwDJgoF3+d7HPbQbcZNeLr23ZNwcaAmvs3+rUlRZ2XXrClvsn4DT72Y2077EUq/NRx85/APCGfY/vgS+AI1yy7QhMsevKy8Bd2HXVPr+vXZ5/wGoPuka91vMMAuse0Nn+7eWu9McCcwPyGgXcA0zA6kwdaj+b8VgduC+A81zpuwCz7ef1NXCLfbyt/V+UZ/s9eNoD+9hC7DbWvsdb9nP6yr62nitt5X+e76s2WuD7AfWBp7KkOwmYrarjgY+A/j5pHrLTAXQDPsSqmLlykJ1HFURkc6zCHXS+iy3PRcCWdl4LY9z7j1gWRjfgEaCfK+8OWI3lCyLSEKtAPwJsY6e7W0R292aoqgOAscCNag1PTfYkOch+39I+/5bn+olYFthj9vk97VPjsBqAFkAf4DoROSTgd40EzlTVRsBvgVdd57YDmgEtsaynESISdaj8OKwOxo7AHliNIyKyN/AAcCawNXAv8KyIbBYxX0PNraPdsTp+hwHtsJSNmxuAXYG9gF2wyuU/VHU1cASwzK4HW6iq8xuOxlLiW2LVtdFYnZldgI7A4ViK3WEfrE53M+BGYKSIiH3uEWCOfe5qXKMaItISa4TiGmAr+3eMF5Hm2a4NwLfuqeos4Dv7GTmcAIwJyet44FqgEVYH4zmsDkZL4BBgsIh0s9PeDtyuqo2BnYH/BuQZ9/e42QgMsa/dz5bhnBjXR6Y2KvCtgW9VdUOWdCdh/YnY71X+QFWdBmxlN/onYTUWOSEih9n3+EdAkuFYhfKlgPOnAg+o6suqWqGqS1X14xgi/EtVV6vqGqyGcy8RaWOf6w88qaprsazLhar6oKpuUNW3sXq7fWLcK2dEpBVwAPB3Vf1VVecC9wMnBlyyHuggIo1V9XtbXjdXqupaVZ2C1UAdVzULX+5Q1WWquhKrwdjLPn46cK+qzlDVjao6GliLZb0YolFT6+hxwIOq+oGtlP/lyluwys4QVV2pqj9jdV77ZhHrLVV9WlUrgMZYin6wXZdXALd68likqvepNdc7Gtge2FZEWmN1Ppz68DpWuXY4AZigqhPs9uVlLEu2R4Rrgwiqe6Pt+yEiW7HJqAjiGVV9034GvwOaq+pVqrpOVT8H7nM9g/XALiLSTFVXqep0b2Z5/B4AVHWOqk6328eFWJ34P0a9Pg61UYF/BzTL4jj1ByzL6lH70CPA70RkL5/kY4Bzgf8ju8UQdL997Xv0UVXv/BwiMhTLejxO7TEYH1phDZvnymLng914vMCmQt8Xq3cPliW+j+3U84OI/ICl4LfL495xaAE4DZzDIqzeth/HYg2jLxKRKSKyn+vc93ZD6s6nRUQ5lrs+/wJsYX9uA1zgeT6tYuRrqLl1tAWueoZV3hyaAw2AOa5yM9E+HoY7vzZAXeArVx73Yo2UOVSWW1X9xf64hS2bX31w5/1nT7k+AKsDkO1aP8Lq3sPAkSKyBZZSn6qqX4Xk5X0GLTxyXoblRwGWobMr8LGIzBKRnj755fJ7KhGRXUXkedvp8SesjlizqNfHoTY6PbwF/Ar0whp68uNkQIC5m0aXAKsHP9eTdgzWPOxDqvqLJ31WRKQj1rzZQFV9xef8v7F61X9U1Z9CslqMNSTkx2qsxsHBT9l6G51xwD9F5HWsebj/ue4zRVUPI3+iOLZ50yzDsqgauZR4a6z5vqoXW0NyR4tIXaxG/L9YChWgqYg0dFXU1sAHcX6AD4uBa1X12jzzqc3U1Dr6FZvKHljlzeFbrHnu3VXVrywH1RX38cVYoz3NIoxe+MnmVx+c/BcDY1T1dO+F9khd2LV+BNY9VV0qIm8Bx2CNrN2TRXbvM/hCVdv5JlT9FOgnImVY/gxPeJwcIfuzyGhPbcc5d0frHuAdoJ+q/iwig0lphLLWWeCq+iPWENgwEeklIg1EpK6IHCEiN4pIfaxe3xlYw6LOaxDQ32sVqOoXWMMjl/vdz867PtazLheR+o6npIj8FquXPUhVqwzRiMilWPM7h6nqd1l+2kjgFBE5RETKRKSliLS3z80F+tqydCJaYZqA1Zu9CmsOusI+/jywq4icaOdXV0Q6i8huEfL08g2WY85OIWm+BtraFQ5VXYw1z3W9/Sz3wOpVj/VeKCL1RKS/iDRR1fVYjiveZSL/ttMdiDU98HgOv8PNfcBZIrKPWDQUaylSo6xXGoAaXUf/CwwQkQ4i0gD4p0vGCqyyc6uIbGPn3VI2zd1+DWwtIk2CMret1EnAzSLS2G4HdhaRrMO3qroIa0jcqQ8HYHnXOzhWcTcRqWM/o64iskOEa4MIq3sPYa0M+B3xRk1mAj+JyN9FZHNb1t+KSGcAETlBRJrbz/sH+5qMNiHC7/kEqG/X67rAFVgOiA6NsNqaVXYbfHYM+eOhJeB1WowX1rDvbKze1HKsIeP9sYaLvwLqetLXx+ol98THC9GV7jRcHq5YXpLqeQ2wzz1IpmfpKuBD17WK1aN2n78s5Dcdg+UZ/TOWxdHNPr4TMMO+/gXgDqp6oZf75DfSPtfZc/w3dj7fYA13vgrsFSDTKGxvbvv7v8j0bL3KzucHYF+f67fG8pz9HnjbPrYDVkdiJda0wVkB966H1fh+j1WhZgEH2Oe6YjnCXW7/r18CJ/rJ7f2/CfHqt793t+/1g12WHgcaFbvMV7cXNbOOXmL/Fj8v9PpYw62f2+X1IzI9qB+w69sPbPJCf9iTfxMsC3AJ1gqJd4C+9rkBwBue9O777wRMtX+Dnxf6Plie2Sux6uwLQOso13ru2ZWQumenaWA/g9FZysgoXO2LfawF1gjicqy6P51NHuIPAyuc/xHoZR9vS6YXerZnMQCrDK7Acuhb6LrHQcDH9rVTsdq4N/yeeb4vsTM0GGoVItIVq0LuUGRRDAaDDyLyGdYKEu/qFYNNrRtCNxgMBkNpIyLHYlmqr2ZLW5upjU5sBoPBYChRxApz2wFrWL0iS/JajRlCNxgMBoOhGmKG0A0Gg8FgqIZUuyH0Zs2aadu2bYsthsFQFObMmfOtqmYL7lEtMXXbUFvJtV5XOwXetm1bZs+eXWwxDIaiICKRI0JVN0zdNtRWcq3XZgjdYDAYDIZqiFHgBoPBYDBUQ4wCNxgMBoOhGmIUuMFgMBgM1RCjwA2GIvPwww+z7777smLFimKLYqimLF68mGuvvRYT16N2YRS4wVBkTjzxRGbMmMG115odSA250adPH6644go+/vjjYotiKCBGgRsMJcKvv/5abBFqJLfffjvTpk0rthipsnq1tW31xo3e3XINNRmjwA0GQ41m8ODB/OEPfyi2GAXhd7/7HTfffDMffPBBsUUxFACjwA0Gg6GaIyKVny+88EJ+97vfFVEaQ6EwCtxgKBGMA5IhV9wK3FB7MArcYDAYqjl+CnzKlClFkMRQSIwCNxhKBGNFGXLFr+xMnjy5CJIYColR4AaDwVDN8VPg9evXL4IkhkJiFLjBYDBUc/wU+Oabb14ESQrPiy++yLhx44othi+PPPIIr7/+emr5V7vtRA0GQ3ERkVbAQ8B2QAUwQlVv96QR4HagB/ALMEBV3y60rLWZ2mKB9+jRA4B+/foVWZKq9O/fH0jPQdUocIPBEJcNwAWq+raINALmiMjLqjrPleYIoJ392ge4x343pIAZQq+dmCF0g8EQC1X9yrGmVfVn4COgpSfZ0cBDajEd2FJEti+wqLUGo8Bh/PjxTJ06tdhiFBRjgRsMhpwRkbZAR2CG51RLYLHr+xL72Fee688AzgBo3bp1anLWdIwCt+LBQ+2Kp2AscIPBkBMisgUwHhisqj95T/tcUqVlVdURqtpJVTs1b948DTFrBX4K3CxLrPkYBW4wGGIjInWxlPdYVX3SJ8kSoJXr+w7AskLIZrCoTZZobcUocIOhRHjqqaeKLUIkbA/zkcBHqnpLQLJngZPEYl/gR1X9KiCtIU/8rO2KiooiSGIoJGYO3GAoEb755ptiixCVPwAnAu+LyFz72GVAawBVHQ5MwFpCtgBrGdkphRez+rB27VoqKipyXrvtp8CNBV7zMQrcYCgAkyZNYtWqVfTu3bvYouSNqr6B/xy3O40Cfy2MRNWfnXfemaVLl8ZWukuWLOHNN9/0PWcs8JqPUeAGQwHo1q0bAD/88ANNmjQpsjSGUmPp0qU5XTd48GDGjx/P9ttXXaFnLPCaj5kDN9QK5syZwwknnMDHH39cVDlWr15d1PsbahZvvPEGABs2bKhyrl+/fqxcuTKR+7z//vt89VVpuTBUVFSwYMGCYotRVIwCN9QKTjnlFMaOHcugQYOKKocZ1jQUkqQCm+yxxx60atUqe8ICctVVV9GuXbtii1FUUlXgItJdROaLyAIRuSQgTVcRmSsiH4qI2cDWkArvv/8+YG2xeNBBB7FixYqiyGEUuCFJnGHyQgyXb9y4MfV7xOG1114rtggArFq1qmjTFakpcBGpAwzDioncAegnIh08abYE7gaOUtXdgT+nJY/B4DB16lT+8Y9/FOXepdYIGmo2NTmYSynUpeXLl9OoUSOGDh1alPunaYF3ARao6uequg54FCs+spvjgSdV9UsAVS2OWWSodRRrLtpY4Olw77338vTTT1c5XtsduWry7y8FBe44Hz722GNFuX+aCjwoFrKbXYGmIvKaiMwRkZP8MhKRM0RktojMrkZrZQ2GKhgFng5nnXUWxxxzTJXjNVmBRWH9+vXFFiE1SkGBl5VZKjSbLO+99146908lV4sosZDLgd8DfwK6AVeKyK5VLjLxkg01hFJodGoTteV5B3VUSr3D+MknnzBhwoScrp05c2bC0sSnTp06QPbnnNZURprrwKPEQl4CfKuqq4HVIvI6sCfwSYpyGQwFxd24lnqDWtO46667Kj+/99577LHHHkWUJj2CFHipj0D85je/AUpfziCiWuBpKfA0LfBZQDsR2VFE6gF9seIju3kGOFBEykWkAbAP1t7CBkONwd041RaLsFT44osvKj9///33RZQkHbIpvuqqGKsLjgLP1jF30iV+/1RyBVR1A3Au8BKWUv6vqn4oImeJyFl2mo+AicB7wEzgflX9IC2ZajsVFRUMHz6cjz4yfaRC4m5E/QJuGJJl8eLFXHfddaxbt44777yz8nix5oOvu+46XnzxxVTvEfTbJk6cWCOVeKmMZEVV4NVxCB1VnYC1qYH72HDP96FAcXzwaxljx47l7LPPBmpfz1xEivab3ZXbKPD0ufTSSxk7diwHHHBAxvG1a9cWRZ7LL78cSLfO/fzzz77HR48eTc+ePenTp09q947LqlWraNSoETfccEPOefzyyy8JSpQ7NdYCN5QeH3ywaXBj0KBBnH/++TV+SHfjxo0MGTKkqB2WMAvcKPTkWbbMcrXxWqXr1q0rhjipEqVcL168OGuaQuKsJLrnnntyzmPNmjVJiZMXzvPP1o6mpcDNZia1CPcwjuPc06VLF/r27VsskVJn3Lhx3HbbbUWVwd0791b0MWPGFFqcGs2ZZ57J3LlzgapWUU1eUhVGqY22JSFPqQyhO7+lWEPoxgKvRfgVojPPPLMIkhSOUtiAIcwCz3UXKoM/I0aMqHRW8z7rQlrgqspTTz2V+ghLFGWYq8JMK+aGI08+Si2tTskTTzwRuD2rH47iLpYFbhR4LcKvwvz0009FkKRwpDVFEKcBMUPoxcH73xdSgT/zzDP07t2b//znP5XH3PO2v/zyCyLC7bffnrosuVirkyZNYptttkFEGDJkSKLyJKHAw35TPsr9z3/+cxXfiTCMBW4oGGn1AkuZNBT4rbfeyrbbbpuxRCmMMCc2o8DTo5gWuDPys2TJkspjbkey7777DoCbbropr/s4+YSRiwKfMWNG5eckp6BWrVpVWSfTssALOVXiPFvjxGZInZq8sUEQQY12Pr30888/n2+++YZLL700UvqwdeDffvttznIYwimmBe7c24nUBfDKK69USVeI+elSmQOvqKigUaNGnHPOOYnklcu5pImqwI0Fbsib2qjAr7rqKt/jSVi+UZVvkAX+448/cu+99+Yth8GfH374IeN7sRV4sepfGgp8+vTp9O/fP5aydMr+q6++CqQ3hF7IlTVRh9CNBW7Im9qowIP49ddf884jauMVNAfuHqY0JM95552X8b3YCrxYU1hpWKQ9e/bkkUceiTSE75BkRyIsryi/d/ny5ZGnwMIIc2L79NNPKz+bZWSGvDEKfBNJKHB34xxG0DKybt265S2DIRhvsI9Czo1ms8ALWRfTsMBzcUTzypGWBR5FgW+//fa+MsUlzAI/+eSTKz+bIXRD3hgFvolCKnC34qgJTmsi8oCIrBAR37DHItJVRH4Ukbn26x+FltGPQkZiq+4W+LRp0xKXo1AWeCFj3odZ4O4RHzOEbsgbo8A3kcS2tOXl0Qawhg/fFD24JihwYBTQPUuaqaq6l/3yd0QoMDVtCD2qQsxFcU6cODFSnnHmm70dibQs8H79+uWcb1zCLHB3eTMWuCFv0lbgU6ZMYciQIYk3lMuXL+fcc89l/vz5ieW51VZbZU2zYMEC/vrXv2YsBXIT1QKfM2dO5eeaoMBV9XVgZbHliEuxQ6n61b98rNLevXtnfO/Ro4dvujTmwJNQ4Enc34/p06fnlGcu8oV5oRfCAjdz4LWItBV4165dAWjbti1/+9vfEsv35JNPZtKkSTz++ON8/fXXieQZxfnmsMMOY+HChbz33ntMnTq1yvmoCtz93Gt67HkX+4nIu8Ay4EJV/dAvkYicAZwB0Lp169g3ueCCC2jYsGGktIWcA3cabLeiKSsrY++996Z79+789a9/9b1ORFi7di316tXLeo+nn34643vdunV906W5jCxKeQ6yUtOywHMll8510G975513MgwOY4GnzIMPPkiPHj1KJkh+kixatIgDDzyQkSNH+p53D/EmQZDFmivvvvsuACtWrEgszygNz8KFC4HMTWDcRB1Cd/e+a4IFHoG3gTaquidwJ/B0UEJVHaGqnVS1Uy7TGrfccgtXX311pLSFnAP326WqrKyMd955h+uvvz7vOdxVq1ZVORZUHtNQ4M4SvSjleb/99qOsrKxgTmy5kstzcnZU847uXHjhhRnfzRx4ygwcOJAXX3yR++67r9iiJM6wYcN44403KhWSF2eL0aRI2lklDcspiQYgagPkTlcbFLiq/qSqq+zPE4C6ItKsyGIVdAjdT4G7R33C6kiU+jNz5swqx8aPH59zfm7OP//8yGmjdISd5ZJRLfDly5czduzY0DzT6JTk0iY888wzvsedte4ORoEXiEJ6MBaKQv+mpHrHJ554Ip07d07EY9xLnKHsfIe/apsFLiLbif3QRKQLVjsTfcFwShTy2WfbJ9pRQLkqojgKIW59vPXWWyOn9Q7jJyFHr169OOGEEwJH3FQ1r61I3Xz55ZcZ+aaFGUIvEIUcZsuF6hB6M6mK8PDDDzNnzpwq63mTIK2dlvyoaXPgIjIOeAv4jYgsEZFTReQsETnLTtIH+MCeA78D6KslEM8zDREuuOACXyssqgKPe84hjkJIM7ToRRddlLMcYRY4wOrVq33Pv/HGGwwbNizyfcNo06ZN5ec0i6ixwAtEsT1Vw7jmmmto3rw5DzzwQLFFCaUE2uqszJw5M7JDnLHAM1HVfqq6varWVdUdVHWkqg5X1eH2+btUdXdV3VNV91XVRBYV//jjj3mtRHArkF69eiViFd1yyy306tWrynFnuiqow5avUo2jEEqlPkaVo379+kBwrIY0OvSQ+Z8k/cyMBV4gStkCv/LKKwEib6LhUOgKXCoNRjY+//zzSOlWrlzp2+B+/PHHvnORXqLOgT///POR5KmtHHjggbRv3z7n693/YdDcZRTuuusuLrvsssDh4+eee4477rgDCFbgTh3x268+Sv1JSoGPHj2azp07V1q9aRLVAs+mwNPCu2Lg73//e2J5Gwu8QJSyAneI25urKQo8qtd3VOJUqtGjR1c59t5777HPPvswZcqU0Gu33nrrys9hCjxoHa/B4v3338/r+qSmLwYNGsT111/PMccc43veLWc2BR73HFjztrnuR+/l+uuvZ/bs2cybNy9yfrkSddTBUeBBK4LSal+8+d54442J5W0UuKGSNIZj3MFG8iXfCjZnzhwef/zxKseLFckK4Iknngg8l02Bd+zYsfJzmBIxkfKis2bNGvr37x/rmiQUeBSH0AYNGmS9Z9TNOJYtW5axCmPFihW0adOGiy++uMp1QctEoyjOQkwdRl1G5qxnL/R0Zpq+AmYIvUBUh+HfNApDp06dEssr34rQqVMnjjvuuLzlyPZfxpEzLG1QAA2/a2vCHHgp8Pjjj/PII4/EusZPmcb9P37zm99kTRNlxCXKZhxr1qyhZcuWnHHGGZXnHCfWt956q8p1QR3csHs5AWPSGnm86667IsnhxqlPackUZKwYJzZDQSglS+3GG2+kf//+Gftup9mTjUM2OeJUWKPAS4uoUfDcVFRUMGnSJCZMmFB5LK6SiLJ6wV2ugizwn3/+OfB65xpHtqeeeiqSbCLCsccey4svvhgoj5dPPvkESMfa/fjjjxk0aFDl96hz4M5UWVoK/M0338z4vmbNGo488kg+/vjj2HltscUWkdKl1WZHmlQUkebA6UBb9zWqOjAVqYpIKSnHIEplDvyzzz7zdfQolVGMJC3wsLyyzc0HbSdqyJ1cLJqNGzdW2cJ13bp1kUOxRsWteMaMGeObxj0E/uGHmVFmveXSXfayzZ37TfUEXfPuu+9WypqGsvR2Ury/66effqr8rKqV7VraFri3/Zw8eTLPP/98Tk6kZ511FjfddBM77bRTrHsmRdRa8AzQBJgMvOB6GYpAqShwdwX0u9/KlSvp3r17rGAPSeINZ+gl7hD6RRdd5BvD2ljghSdXBe4lqbqxYMECFi9eDERTPO66s+eee2acc8qLU8+T2rPaizuISRwL/PLLL/fN36uwvV7kXjkWLVrke85tgc+YMQMR4b333gvMx0uXLl18jx9yyCHssMMOVdrPfDrVzn8VVq+33Xbbom9m0kBVk/OpN+RFqY8SOBXsqquu4qWXXuKll14qilV+++23h54Pk8lpjB02btzITTfd5JvWKPDCE2cjmbCds5Iql+3atav8HGX5UVhwH+e7n2y5yBvUUT3qqKMqP8exdq+77rqM7/PmzeP999+nX79+vP766xx44IFAVS/yXObAn3zySQAmTJjAHnvskfXanXfeOeO/cOOEN01DgYflceSRR+acfzaidgueFxGzxqVEiKvAR40alY4gATiFOs0QrosXL6ZNmzbceeedvuejNHRhDYq3QobFYz/zzDM57LDDAu8ZRYG7G9NiIyLZt8IqMlEVuNvySVOBu3nnnXfyut67ReXPP/+c134F06Zlj6OTzxx4WVlZpXJ0L0fzWuBh9U1VWb16NZMnT85Q4I41HlXJiggVFRWsXbuWYcOG+d7T236GrYEXkdCh9SgWeJoGV6gCF5GfReQn4G9YSnyNiPzkOh6KiHQXkfkiskBELglJ11lENopIn/g/ITqqWrmLTqlRUVERWbZSscBzWSITRpz/5vrrr+fLL7/kvPPOy1mGoAbl+++/r/KMs1kokydPZunSpb55+s2Be+XLZsWnhYi8JiJtXd+7ALOKIkwMog5Jup+r37pi7/yye1g5V/Ld0dBvj+koOwYGlfl33nmHzz77LPTafOab69ev7zvc75UnmwJ3OsLO0LpbgUcduVqzZg3Lli3juuuu49xzz/XdFMVbt7N1BoNG3qDEFbiqNlLVxvZ7mapu7vreOOxaEakDDAOOADoA/USkQ0C6G4CXcv8Z0TjttNNo2rQpb7zxRtq3ik2vXr1o2rRppIAKac2nxOXggw/2PZ7LRg233347TZs2jby16WabbRZ6PlcFfuONN7LVVltVCdwye/bsrPm1atXK95n4WeDeNcxFdG67HpgoIueIyLXAcOCUYgkTlagWuNvB8O23365y3v3fjBo1ijZt2jBt2jS6d+9OvXr1+OCDD9h33319t+8Mwm/v+Dj4KXCHtDrH+VrgUebrs5376KOPgE0x0NeuXVv5P0dR4BMmTGDp0qVMmTKlcvTP73fHHUL/9ttvue2223zlj6LA0ySSJhCRV6Ic89AFWKCqn6vqOuBR4GifdIOA8UBymz0H4MQQDwuEXywL/bnnngOosrZ12bJlVZY3lIoFHrYUBvz3LA5i8ODBAPztb3+LlN4dLMOPKPNtfhXSmb/85z//GUkOL+6gLl9++SULFizg008/rTzmVPRx48bFljcNVPUl4CzgdmAg0ENVq2q6EiNqJzaboneXAadjP2/ePF566SXWr1/PJZdcwowZM3jttddyljUuYXPguXLKKadUcT5zk48F3r59e+69917AClHr5OVtp7JZ4E565z2uBX7EEUdUfnb+dz/l7JUr23bFH374IUOGDOH111+vcq6kLXARqS8iWwPNRKSpiGxlv9oCLbLk3RJwewItsY+5828JHIPV6y8Y3ge6bNmyys9+EcAKibfStmzZkt122y1jL+FSUeBBOPJFXb+aC5tvvnno+SgKMW2l2aZNG9q1a8eIESMqj+US2CNNRORK4E7gIOBfwGsi8qeiCBODqAo8W7qKigqGDh3KypUrfeuV4y1eyP+noqKCyy+/nH322SexPN9///0qzmduoljgQUFs3HPdL730EhdddBFvvfUWRx+daa9lU+DOf+Uo3V9//bVSEX/77bex4rU7Ha4oCjyq9eyn6KMocO9zSJJsteBMYDbQHngbmGO/nsEaHg/DT8t4u5S3AX9X1dAxDBE5Q0Rmi8jspLaB3LBhA/fffz/vvPNOUZX2pEmTMob0Ha9LL0uWLKn8HEeBx7GC4xB3pCLfeUEvTgSpIKIq8Keeeoq5c+cmJJVFWGVOa3eqPGgGdFHVt1T1XqAbMLhYwkQlalz8OnXqcMopwTMCU6ZM4eKLL+bMM8/0Pe8MhxdyiqOiooLrrrsuY5mV+1wQUSz2H3/80TefKBZ41BGBL774wne/7mxl3Dtc7h5Cv//++9l+++0j3R+orNNJKnB3Z/CVV15hzZo1kRS4e2QgabLNgd+uqjsCF6rqjq7Xnqp6V9i1WBZ3K9f3HYBlnjSdgEdFZCHWHsJ3i0gvHzlGqGonVe3UvHnzLLfNjuNZePrpp3PwwQdXDt8Wmp9//plu3bpVLrsAK3qRMxcURBwFPmTIkJzlC+OEE04IPOcnX9Qh6ai/LZvTV5TGZt68efTu3TsjVnkS+DVeDkEVvVhz4Kr6NwAR+Y39fZGqHlYUYWIQtZyUlZXxwAMPBG484liP7g5p2FxnUoTJH1YW8lXgAwYMAKpak1ECukRV4GVlZb4jH9nmwN1D5867X0ct3wiK5557bsb3qArcMa7mzZvHoYceysCBA7n//vsB6z9z5Io6DZgEUb2hlopIb8/rEBHZJuSaWUA7EdnRXpbSF3jWncDuDLRV1bbAE8A5qvp0Dr8jFuPHj6/8E4vple70hr141yBDZqGNo8CdAhaFOBXjhReC4/j45fPKK9lcJuLhVeA33HBDRsCYKA1u0jI5BHnGQ0kOoR8JzAUm2t/3EpFnQy8qMr/++mvk5xV1Dnzy5Mmh9WrFitRddCqJutFJLjhti/ceTqfBGxUuF0TE97lHHUJ39vt2W+C54kTfcy/D804XRFXgju+U4yD36KOPZpx3fp+zlWwhiBrI5VRgP+B/9veuwHRgVxG5SlWrxAtU1Q0ici6Wd3kd4AFV/VBEzrLPF3Te283atWtZunRpsW5fSVBP26/Q5qrA41BRUZF3hQH/Bihpmd0K/P333+eSSy7JuHeUhu6ll9Jb+OB40nopwSH0f2E5nL4GoKpzRWTHYgkTheOPP56zzjorUlpHKeT7fM8555y81mLHIUyB57vpkIiwevVqGjfOXETklMt8LXwHv1Ub2fJ28k8yvOvGjRuZNGlSaJo4HuSLFi0KbMs2bNiQSPsZh6gWeAWwm6oeq6rHYi0LWwvsAwSGHVLVCaq6q6rurKrX2seG+ylvVR2gqsF7NtZAghxHsjnezJ8/n2efTd5IClIuH3/8MQcddBA333xzpHycitiixSY/xzAFfu2110ZK53cP8N9gIqixuOiiiyLlny9Bnq2lNoQObFBV71BQaQSzD+CFF16IbYHHcWosdiz/NDtzZWVlLFiwoMo9nPIXVg69z2Xo0KG+6byhTx2iKnBnVHTt2rV5d/yj1Ct3+5ONk08+OfBcMZaSRVXgbVX1a9f3FcCuqroSCPfBr4YUyhryRipyiFJo0/BsDCrso0ePZurUqVljizs4z8/taBb2m6644ooYUlq4ZY0TYeuQQw6Jfa9cCCpDpTaEDnwgIscDdUSknYjcCWQP3VVE1q1bl5gCd5dLZ1lksRV40P2feeaZyNc1adLEN01QPVy0aBErV66MVQ7jWptR58AdkrLAkyQsv1JW4FNF5HkROVlETsbyQn9dRBoCP6QmXZEIUqyFus9NN91Eu3btMizLXBqVuNcEFc64lSBK+MKgtNk6L9999x3t2rXj+uuvrzzmV3GCGqKg4yNHjmTHHZMbOQ569q+99lpGR0iwxq8HfP45/Oc/id0/BoOA3bFG1MYBP1ENvNCjNu7ZhtDd/1O29cCFIqjs3HLLLZHzcLYJ9eKODe/mtddeo3Xr1lktcPe1QSsBguqwE4cjCG+HwK99nDNnDjNmzAjNx03SCtyvo+FQDAUedQ78r8CxwB+w2pyHgPFq/Zv/l5JsRWP16tVZA4UkQVCD4TiIRR2yDso7bg82KSvQqeR+gV5++OEHGjZsWDmHHXd52bBhw1iwYEHGMXfF+emnn2jcuHHgbwmq0KeddlosObIR1nm67+ab6QP0xApTuA3AkiVw113w979DAdf5q+ovwOX2q9oQtWHOpsA///zzWHn26NEjYz/xXNl6660DzwXJGicCY9OmTX2Pz5oVHCV39erVWdsAd2yHuAr8vvvuC8zX7cTm4DeEHtcHIOmRrbD8SlaB24r6CftV41m9ejVJLFfLRrbClU+B2GmnnTLWjkchqAFzz3WF9UAdnOAY7uAzM2fOZPHixbRr14699tqL6dOnA1XXqWcbNfA77/YlaNKkCaNGjaJ79+6BshUC733aA3+yXwcAbh/6hcDsbbahz4gRoFoQBS4izxEy162qpbO7CvDmm29mfI9aN7INobvnP6PMgSc1vB6mjJ2ojHGuiUq2Tsof//jHwHOqysKFCyu/Bw2h5zJvrapV8ktCIRbSt6QYfixRQ6n2FpFPReTHOJuZlAq//vpraM/Ti7OMIW2yKZNs87wOK1asYP78+RnHwpT3zTff7Lsu1u8eXgUbxaqvqKjg4osvrnJ87ty5lXv8Ongd+bI9E79GzGvFn3feeYENbaEq2YYVK+gD3At8DnwE3IQ1XCXAFOBirLHrHYEb27SBHj2gcHHubwJuBr4A1gD32a9VwAdhF4rIAyKyQkR804nFHfYmRu+JyN75CusdrYqrwKP872F5Dhw4EEiuA/jtt98C/vEMbr31Vt9rghS44yy62267VR5LY6WKqmZY3Wkr8I0bNxbEiS0OYR24gw46qMroYNpEbS1uBI5S1SZRNzMpJY499tjATd79CFoClDTZevPuBiXMU3Lbbbelffv2kUMNnn/++b4R3/wK+7777pvxPYp/QNDv8muAvA1itmfil4ff/xV3CD1f6gF/BK4FZgLb77EHjwNnYCnob4ExwF+A5ljrMIcCztY1he69q+oUVZ0CdFTVv6jqc/breKxBgjBGAf5DHBZHAO3s1xlAcGSbiHj/d79YCWHXRVG8Yf+Bo2iTssAdT+stt9wy8jVB8g0YMIBFixbxhz/8ofJYWktN3Uq2EAo8Ll7v96TrVUVFReDv++yzzwL3Ik+LqAr8a1UNDw9WwsSds0raAv/000959NFHq1T+oKEyB3fhy+aB6twnH/wcX7yBHaIo8KDG0t1pcDb9GD9+fKRrHaJY4GLvCexHUhW6HpZDyKXAi8BKrIXUlwGdAS0v51X7fCdgW+Ak4L/4e30W0Qu9uYjs5Hyx14CHzh+p6utYPzmIo4GH1GI6sKWIRI+D6YP3f7/ssstiXRdHgYfFMUhKgTud7Wy76rkJWnYqIrRu3brKsaTxTp8lrcC9//HGjRtZuTKsmG3CWVbrDbFcSAu8GER1YpstIo8BT2N5qwKgqv6Bu6s5SVvgu+66K2DNzzpxcZcuXZrVSS1u4cu3cB100EFZ84iiwLfaaivf424v1K5duzJnzhwuuOCCjDTZGlq/xsH7f4Up8FwVZUOsSEYH2a99gPqeNO8DL9uvdzbbjK9dw77ZnJ+KqMCHYG1g4nhztcXaAyEfgjYy+sqbUETOwLLSqyghN3GXLO2222589NFHsdaBR6lvSTXgThTGOPvAB01f+dWJtBR4FC/0XPGzwK+88spI1zojGX6dgCSZNWtWSW0mFdUCbwz8AhwOHGm/eqYlVD58//33/P3vf68yJxwHZ+h6+fLlXHTRRRmOG1GZP38+55xzTsYmCe+++27l5yg9y1GjRsW659VXX513A3PJJZeEboASxWvcHcAlDL/5olyc2LwjJj/88ENgwJaoFbo5cBTWMPd0LKv5ZeBKrKHy+lgKexjWsPj2wB7ABVgxSb/2PMNsCqiI24lOxBrq/pv9+o1aW4zmQ5SNjJz7R9rnIK4Dl1NOnD3AvVvy+lFIBe4QR4GHWeBRjiVBPsvIsuWbzxC6Uz685cTZ5jRJvIGj0rhHVKJ6oQdv51NiDB48mIceeohhw4blvBOXo8AHDhzIiy++yDPPPBO4rjKIjh07VlF27kY6SuGMssWfm8mTJ/Pyyy9z+OGHx7rOzQ033ICqcsMNN/ieT3KNfK4V3YvflMd///tf3+srKio44IADMnaAE6zQgvvbrz9gaTQ3G7Dmtl8HpgJvED6G7CWbtdK3b98YuSXO77Es73JgT3ut8EN55BdlI6NYZOsAjRo1qnKjDoCvv/4643yUclvIIXSHbLvquUkisEk+qGrG8reg/yRKZ8kv7zQUeBp42/Vtt9029XsGEdULfVcRecXxOhWRPUQkfvisAuBYuc6wqneINgqOAne2pIs7tzxv3jxfS9WtwJPeXtNh6dKleVtzN954Y+C5fJzYvPiFW8yGX6MRx2dh48aNTHjsMQ4GrgAmYCniD4ARwAAs5b0aK/D/NVjDTk2xhs0vwtqRJ47yhnAFPn78eP7+98CIxKkiImOwPNIPwJq+74w1bZ8PzwIn2d7o+wI/qmqV4fM4ZGuYvXtne8tplDK5bFn2PkbSCjzOSGEpKPAoTmzukcY4eXv/42y7MrpJUoHfeeedoee9hlXSUwlxiPpr78Pyx1kPoKrvYe0uVnJ4g3rEiV7kzSNO79hN0NaF7h5lWkvVNmzYkMj6yaB919euXZtV9qiN3DXXXBNLJr9eOmTvDLUB+gF3AsfffDONWrXiFeBqLHfpLYEvscKQDcIyR7cEDsYaMn8Za21VPoRV8t69exezEegE/EFVz1HVQfYreDs1QETGAW8BvxGRJSJyqoic5WxUhNUv+hxYgNV2nJOvkFF3FXPwlokoZfLLL78ErJgFXpwtYpNW4HGivwUp8KD2JiiYSz6427AkN+6YOnVqZIc1B/coYZIK3LvdqBfvf1ZMBR71zg1UdaZnyLPwYWci4FZeuVa2xx9/nCuuuIJFixbldH3Qcq4HH3yQO+64g59//pnOnTvnlLebadOmVdmXe/369Yk4blRUVGQMSTps3Lgxa6OTlqfmxo0bfSuoW566QEc2DYfvj+U9VcmHH0KdOswC3sQK+v0W1phvXP70pz+FbqvqptC7FMXgA2A7fBzMglDVflnOK1b0xsTw/u/ekKBJlrmwEbdieiH7KfBRo0Ylvp99EKqa0bYkOc/eu3fv2Nfsvfem8AKOLEkNoTdp0iRwu+dSssCj3vlbEdkZ2xFFRPoQo8IXkiSsT/e+0rkQtDTE3SGYNi3//SJ69uxZuTetQ1IKXEQYPXp0leM//vhj1vzTauQqKiqq5N0S2OuLL9gTS1l3Bjb3XPcdlqKeBlz/2mvQqRNdttgib3nirOEN8swvAZoB80RkJpkrTEoqEpu3YY5bxuKkD1MCpabAO3ToUFAZTjzxxMrPhZhvDsPtALiFXZ8LIZP3fwhT4P/85z9TlSVOLPQRQHsRWYoVval/alLlQdToZWkSZ21nPvg5uW3YsCHyrmFhBPWujz322Kz7aKc1V7c10Pbjj7mCTZO12wN4NjeYxyaFPQ34hE0u0NeHhIpMkzp16nDLLbdw/vnnF+X+Ifyr2AJEIdsIhteD3bGgnOHlOIo3zLIspgL31vfGjRvnNJI3bty4nO7v/u233XZb0ZdTuRV4+/btgeQUeNj/7P0fgsrm5MmTU9/9MKoX+ufAofbuY2Wq+rOIDAZuS1G2nHAr7bSW5syfP5/mzZvTpEkT5s6dy1577cUnn3xCixYtaNKkSc5z50nw1VdfRV7WMGbMmIwetZuwAjxkyJDQfHOdenBohOUV/lvPazuA++/nWFfa74FZ9msa1pKvuA5mhaIUh9HtaGwlT1jDvHTp0ioK/OCDD84IHFQTLHDv1NVOO+0UkDKcMCfVMNy/vU+fPnzwQWjE3dTxs3wLYYF7/4dWrVr5pitEByfWr1XV1arqbDFVcqYEZA6hp2GBL1q0iPbt29OsWTMuueQSOnXqxFFHHUWHDh0qK1Qxh5bi7GDmnT93E+aJOW/evMBzkF1R1ccKL3oAVnSyf2OFGZ0GfI21n+V04H6sfS0PxVLeq4AlbdtyK3A8sAuwFdCNTI/yUqXQcZLDcPYz8HmV5D4HYXXKb3rCq2jjKF4nSqCXzz77jPfffz9yPnE455z4fn7F7BBuscUWJWWBOxSi7XXC4Dq0adMmI96HQyGeTz6z76UTjsaFW4EnaYFPmzYtI7SfqnLTTTcBm0K1OueKXbCTYMSIEZHS1QWaYC2z2tJ+7ffllzSyP2+NNczdwn7f3k4bxq9Ym398YL8+tN+/BP5z9tlFW3KVL3E21EkbVW1UbBniEKSA9957b98Rr3wUeBC77LJL3nkEcdttt3HWWWexxx57RL4mLeephg0b+kajdD/Dxo0bF72dK5YC94uR4XffQsiSTwkoraCwNmlZ4M5GAd7Y3X4U27kjLvWxLFn3q9Xq1ZSTqZjdn53vDf0y9Gz96GUdsBwrssfn9usz1+srggtXKcUijitLMadWaiLDhw/3tXygtMpJFMrLy2O3G2lZ4A8//LDv0jT3MxWRVHdtPPTQQ5k8eXJoGr8OTLE6FX7ThkW3wEXkZ/zbUqGqs29JkKsFfs455/Dggw9mXVP82WefZc2rUAo8Ssz2BsBvgF2BC//yF2tJVZ8+sGQJLFnCGqrG9LYzjyTDBqwwo9/b7z8ADVq04MNly/gBa0h7OZZSXma/ryT33l+u83dgbTNaTIwCzx0/hRxWz9q0aZP1+lJCRGI3+NkU+O23385JJ50UK89WrVrRoEED33Pe9jRNBR4kgxs/CzwppRm3vPjtc1CIMheqwKvbMBtkKvA4Q5ZNmzZlyJAhXHfddaHp/Pa5dlOsYPfbALsB7V3v7bGCmFTy2GNVrquPtXboOyzFuhJLGa+qW5cV69dXKuXvqaqov8eKWOblTx078kKEqFa5EDfYg5s4W8pGIe7/bBR47sRV4Ndff33W60uNuOUp2xD6iSeeGFuBh3UkvCOa2eTt2rUr//vf/9huu+2qhLbNRhQjKA0F/qc//Snje4cOHbL6/ARRiP0NircCPSXcCnzMmDGRr6tXr16sqEhB/PTTT6lZ4HWwnL+8Sno3gueV1wGfAvOB3oMHww47bHq1bEmDHXfEb8xh8/Jy1uT4PJJ4jmmQZMdq+PDhvP7667GuKWbAh+pOXAUexYIrNUphCD1MBm+MjWwKyjkfpsAPPPBApk6dmlUO71amEH0I/cgjj8y6dbP3euf9wQcfrBKmNypGgeeAu5BF2UPboW7duonMmTdo0ICOHTvmtcTCGfb2Kul2QNAK8x+wHL8+Aj62Xx9hLdh3fpXeemuV64ImDPIJiFMbFHijRvEHp4q4ZWi1p3HjxlWOhSkb739dEy3wNBR4mAzeNiFbG+E8c3e532abbVixYkXl99122y2SAo8qq9+x+++/P/KGI95Na/IxxowCj8nSpUtzrqj16tWLvfuXH/Xr148cdWs7LEXttqh3A4J3RYZFZCpo531FyDVh/OUvf+Exn6H1fJTw//73v5yvTZMkFXguFTuJKIG1lRYtWrD77rvz4YcfVh4L+g9++qnqKrhSVeBXX301M+xARKWiwKMOoXvL84UXXli5Mgf8FfiUKVPYbbfdKr8Hbaca5VlEVeCOpd6/f39effVVvvoqOIio9/p8FHghAolVL3fpLOTTQNetWzfRKD5lWAq6I9bG6edhRb15FmtJ1Gosh67XgOFYGzF3w1Le6+w0T2BtuNEfa4ONLbD2fOyOtT76XmAK0ZT3kUce6Xu8fn1fF7bEyBb0pZAkqcC9eWXznQD/5SeG6Oy5554Z34Pqq9/oSKkq8CuuuKJyeDdu+xNlSibbzlpewmTwduq9Cnzo0KEZ351n7lZk3vzz2VM8qgKvU6cOqsrDDz+ctRx4p8VEhGbNmmWVxQ9jgcek7o8/8jbWkPFGLA/pjT4vv+O/f+QRfl23ju1jXL8Z0Nh+NbLfd+3Xj6sWL+YWrDnrML7F2q7JPfTtHfZOijjTCUkyaNAgbvUZui8GSSpwb+PVv39/LrvsstBr4qzxNVTF2yDm0+FOasQtKp988gm77rpraBq/8tmtW7fA0MVRLPBevXoxaNCgaEIGyODgPP/f//73QHYL01GW7roSZR47KnEtcLCG7JcvX87hhx/OpEmTqqT1BmkpKytj2LBh/OUvf4ktn1HgMSnfsIGc9+Wxh7H2zJIsK679fVdQdb2z8/oCK+JYIWjTpk3R1keW0pr4bM/g7rvv5vHHH6dly5Y8/PDDoWmXLVtWZV1sFIYOHcpFF10UKa0hE6/1lE/Z2nzzzTnssMMi7Sa333778dZbb+V8L4B27dplTRNkPQYR5ffHfUZlZWVZleqpp54KRJ8ScqfzyhM0hB6FOBa4w/jx45k1axYPPvhgpHuUlZVFGr2ZPn06++67b8Yxo8BjUrbdduyNZfk6r3LP96DjJx1/PCtXrODVyZOzpnWOrcVSwu7XTfffz6NTpjB0zJiS2W/1iSeeKNq9C9lxGDt2LP37577Hztlnn83ZZ5/Nv//976xpvQ1r1N954YUX0rJlS44//vicZKzNJKnAncBMUchHycTBrwyFKYE0FLiIcNBBB3H55Zdz7bXX+qZxyr6zgUg2whR4PvP4uVjgTZs25fDDD+eBBx4IzTuuE5vfEtVqr8BFpDtwO5bOu19V/+M53x9w4mKuAs5W1XdzvV95gwa8k+O1bdq04YuKCh7N9eY2y1q25PuGDUtGeUN4JUlTwZaVlUWqAE2bNq2yLWou+P3OsrKyyooUR8k6FvZ9993nm6asrCwjvzjPsZRGJaoTSSnwuXPnsssuu9C3b98q5xo0aFAlQIl3d8GtttqKJk2a8MUXX+R0/yCy7XXvJUqZy0WBl5WVcc0112RV4IcddhivvPJK4I5bjnzu31AMBZ70PYLSjR8/nrvvvptXXnkFKIwCT60lEZE6wDDgCKzNpfqJiHfz2i+AP6rqHlj+WtECcAeQzx/lODrky4ABA0puuVDYkFiu87JRtizdbLPNIlWAESNGcMUVV+Qkh5tsuxNFrYwNGzbk3nvv5aCDDgpMk095KcVdyaoDSc2B77nnnjRs2NA36qIzv+vGrcCHDx/Od999x+eff87WW2/tm/8555zDYYcdFlsuv/IZNk+fRuc7yjN1l9+DDz44a/owBR70G/zq1uTJkznllFNCr416LCpxyljv3r1p3XrTGqJqrcCBLsACVf1cVdcBjwJHuxOo6jRVdUyv6cAO+dwwH4eItWvXJvLAv/7661Q9Xo877rjY14Q9l3PPPTcnOaIooc022yzyMF8Szz5bYIc0vdDj5O1OO8Ozl7khmHwscL992B1LyY1fGXIrcHe59xta33333Rk2bBiTJk3innvuiSwflIYCjzISFrUD6sgXNoQe5z885JBDMuaZk1bWfkSdA3dwp63uCrwlsNj1fYl9LIhTgRf9TojIGSIyW0Rmf/PNN4EZZCtYW265ZeC5Aw88MDHFm+YfN3bs2NjXhCnwXOf3olS8qBZ4WVlZImsm/f7/fBR4WHnwnouTt/vapMO71mTyUeBRt9n1qyvuELjuez7++ONVQm+6idsO+N17m222AaBJkyZVzqUxFbMsQgjkYinwoPyzHfPDu398EHHl8+7YljZpKnC/J+nbIorI/2EpcN99IlV1hKp2UtVOYQ8+25833+Uh7jBu3DjGjBlDz549E1PgI0eOTCQfP3Ip8GmE8IxqgXuf6QEHHFAlXVlZWSLR24LmwB2S7J0npcAN0UnSiS0Ivw5tkAV+wAEH8PzzzwfmFfd/9gv/es011zB69GiOPvroKumilLlsMowcOTLQzyOIuArc6YRA6SjwG264geHDh+d0jygcfvjhdOvWLadr45CmAl8CtHJ93wFrRVUGIrIHcD9wtKp+l5Ywxx9/fEZBcujbty8nnHACIlItGtZcClS2Cnf66afHzjNKxbv44ourLDUJ2jc3CQWuqlUck/KxwMPmwFW15Hwdajr5zoHfcsstjBo1KjRNnCH0bGQrH96tUDffvOoGjw0bNuSkk07KuK8zNB+lPDdtGrRLApHz8BL2DGbPnl3l2JQpUyo/qyo9e/as/J6EAs+ljjdo0CBwK1rYNGrgHn058MADs+br6JB+/foVZAVOmgp8FtBORHYUkXpAX6xAZJWISGvgSeBEVf0kLUHmzZvHQw89lDVdTVXg2SzwKD1RL1Eq3gknnFBFMfs947p16yYSVKOiooKxY8cGrtmN++zatGkTOKRYUVHB2rVrc8q7OpSzMESku4jMF5EFInKJz/muIvKjiMy1X/9I4r75WuBDhgzh5JNPDk0TxwL3w10Osv3Pu+++e9Z7O/dzd4TjLHGqV69eqBxRyq03mlvUVS3O59atW1du77pmzRqee+65SiWe6xD16aef7nut+/75DGE77VH9+vVjPW8nbaGWz6amwFV1A3Au8BJWgLH/quqHInKWiJxlJ/sHsDVwt13Rq3bfEqBt27aRes6l3LCWl5fnvJ47mwLPpRcsIr4eu977ur0yw9IlYYFXVFRQVlaWcc98ndi233573+OqmtHpiJN3qW72EoWIq0sApqrqXvbrqiTuXYgh9Gxz4Ela4HGWgfk5RxVKSZx77rl07LgpRFYuwWVGjhzJ3nvvTcuWLSOlj4KfBe7mo48+YubMmTnl7Txjd6jpUlTgqa4DV9UJwATPseGuz6cBp6UpA0SvdKU6JDpu3Dj+/Oc/57z8KI058LKyMmbNmhVaqMvLyykvL2fjxo2Vsvt1kpJU4F4aN25cua436TnwbBb4qFGjGDBgQJXj3nXG1YzK1SUAIuKsLslt0+QYlMIceLZ7ujfqyGYQ+JWZLbbYglWrVlV+d5aq+Vn2Sfz+sDpx2WWXsXLlSiCzDcklrsQhhxzCnDlzKr/H+Q3uZ+p3r6B7tmjRghYtWmTNP4wgBR4UGrfQRmCNiyjRqlWrKseCCtzo0aMzvpeqBa6qea0dTkuBZ1OIzn3dBd9PyaapwN1ORn7ydu3alU6dOvkuKQrDq8D9CPrPqrkCj7q6ZD8ReVdEXhSR3X3OxybJWOhBZFuKGFYPJ02alBHhK1t70rBhwyrHnFUmPXr0YMOGDb5pjjzySFq3bh0pFkMUguS89tprK+fb3c8lanuSVKAZ9wYjf/zjHwHLdymbAk8C9291yxoUGtc99F4IapwC99vxya+QtG/fnpNOOinjWKkq8HyXWKUROGTBggVZ00SNLFVeXs52222Xt0xOA+/+H93D/H4Vfffdd2fWrFmRAlJ477XDDpvCFvjl7edVDLntJV5CRFld8jbQRlX3BO4Eng7MLOISUSiMBe4eLu/VqxdgWcUOYXXpsMMOy0ibbUTvxBNPrHLMsfbXrVsXeK/mzZuzaNEiOnTwm7mIR1Tl5372SbQncSxw925g7du3R1U5+OCDU1XczvJAt3NzFFlXr14NBNf9pKlxCtyv0kRdblCqCjzffaSTsMC9893Tpk3Lek1QYArv7krl5eX885//zDiWy9xVLnOOuTYCqsptt93GySefzOzZszPyGTZsGAMGDKBHjx6+155wwgmcccYZoUuQSpisq0tU9SdVXWV/ngDUFRHfPRmjLhG102Z8T0OBb7XVVpWfb7nlFj7//POMYdg4yitbe+KXl1uBF4I0Fbi7MxSUX5pz4Pnw5JNP8u2332Yca9y4MZ06dWLYsGGB1zkK3G/kJA1qhQL3w6/g+FW4oEa4kJSCAvdON+Ra8davX19lI4ny8nK23HLLDG/4zp07x45k5VjEcSpPPgp82223ZdSoUfz+97/PyOf000/nwQcfDBxGq1evHvfee29oEJASJsrqku3EfiAi0gWrncl7iWghFLg72FO9evXYcccdM+6TjxPbMcccw7hx40KvcRS4d3qmlIyLqM/A3RkKIug/jPJ703QYq1evXpVQueXl5cyaNYtzzjkn8LrzzjsPKNzWwbVWgWezwLfYYgtGjhwZeccdL0ceeST//ve/2WWXXQLPv/rqq5E6CFEU+D333MNRRx1V+d2ZK4JoDV22OeAoARj8/A+8rF+/vsq1TgfjtNNO4+abb+a9997Lmo8f+++/P2A1wo8++igTJmT4T6YayCWt+5QaEVeX9AE+EJF3gTuAvpqABso2B37ooYfm3eH2m/N0K6w4nQbvT37yySd9N1BxE2SBp+Vgm6YFHraHdpIW+M4775xzHknTu3dvVDUwTn7S1KjtRCE/Bd6jRw9efNGK5tq1a1cGDhwYqICz8eijj9KgQQPatWvnu3XkHXfcUbm8zatovOy1115Z73fWWWfx888/8+yzljG0cOHCynNRKunBBx9cxQPWjbfSOhWve/fuTJw4kYsvvpimTZty6aWXht4nTIHXqVMnI2Z1nDbfu42oX+ORq2Lt2rUrr732WsYxbznLd7ladSLC6pK7gLtSuG/Gd285evnll/O+hztP53NSFngUnGHnbA6SSbFq1apIv8n9W6I+A8eHwI877riD888/P7bviZvNNtuMp556in322SfnPFauXJlV4ZbS6IeXWmuB+/X8zj777CrHlixZkpMcjlLq27dvqIKO0th7N4rPdk+A5cuXR7omKl45nef33//+l+eee46rr746UkHfsGFDoAL3EqfiRGlUclWszzzzDM8991yGo11YKNWarsBLhTSG0N0Oo87/6C5bucyBX3DBBZGvCbLA01IizjKxOPhFjHOIWvbbtWvHc889l7ezV69evQJjNUShadOmkYb6S5Uap8CjFnS/glanTh169+4NwKmnngqEO2KE4SglEeGII47IKY+o/N///V/GPSG3KERhzy5oG8BGjRrRs2fPrBGfHPws8KAGISkF7jyLPffcs8q5KA1O48aN6dmzZ4bc7nCQ3nyMAk+HBx54ICPsbxoK3D0C5TeEnosFHmdJUZAFntYQetQ65k6X5PBwqdUV95I1L6UmK9RABZ6PBQ6WRfn5559XDv+ktVtXPh6UH3zwQeXniRMnVnp1exuaFStW8MMPP8TO348oc+C5KnC/GPVxCWtYly1bxrJly9h2222rnIvz/N1lK2xaI0lvd8MmWrduzYgRIyq/p6HA3fgNoedSXvzkdEc2c+Mo8CghiJMgFwXuXtaVL2H/4bBhw5g4cWJi94qCE/K1ulDjFHg+FjhYimDHHXes/J6rBR5Gy5YtK0MK5tKwuzco2GmnnSo7GW4lVlFRQfPmzX23IQwijgXuV/GidJ7Wr19f5TcHDaEfd9xx1K1bl1NOOSVrvmEKvGHDhnkNszmUaqS+2kqhFHg+KxXc+Ths3LjRd9MPgO22244hQ4ZUWWqZpgKPE3Bl4sSJiQYpCbr3FltswTnnnFOQHb3cpBH0Kk2ql7QRyNcC95K0Am/Xrh0fffRRpcLJVnm8zlmQuUzKz+kGklc2SW0D6J3bC+tgNG/enF9++YXy8nIefPDB0HxznUuL0ziHBdTJ1sCm0RGs7aQxquHO0ynjv/3tb3O6Z1DM8rC6IyLccsstVY475evuu++OfP8oRO0YODJnMwji/id+6a+66ioGDRoUK5+k8FPgxomtgOTjhe5Htoa3Q4cOdOnSpXLOPApua9Erx8033+y7Z7Ybt7Lya3Ag/+htXqI0QlGH0ONck61H/OCDD9K5c2cuu+yyrPf2IykFHsTIkSPp3LkzF110UexrDeGkPS3hlPG4G1o4JLlO2ckryeFrJ98o9db5DX5pZ8yYwaOPPhp4Pgy/53nllVdmrMcvJHHjvPvFQy8ktVaBR9klC7Ir8GbNmjFjxgxfD3Y/wgq4s4xq6tSpoXm45+Xda8TzVeC5OLFFvd7B+//k27sdMGAAM2fOTLxh8yMXf4KBAwcyc+bMau3pWlvJdw48yU1H8u0MBEW5i2uB+7WvXbp0CV3zHUap+YbECXP83Xff8c4776QoTXZqnQKfMWMGJ5xwAnfdFW2ZajYnNqfHFnXuJGz5UdA+1mGsWbOmiixQnCF097Enn3wy41wSS8W8DB06NOdrHUqtATFEp1AWeL5ObEla4Ll2Bj755BMWL15c5bi3/gUZImEK3I3bfygKafsxxCXOVNdWW21VsJjnQdS4OfC2bduGnu/SpQtjxoyJnF82BT59+nQgGQXut8xp993DN3Jy9xjdeR100EGR5AmTLYxsCvyYY47JOHfwwQczadKkyGvas7H//vsnthtTVJo3b84333zDkCFDqpwr5XkyQzhNmzbl+++/r3Lcbx14dbXAt9xyS99haa9CDgoBGjaE7qZRo0ax6kKpdKAHDRoUqIxLuW7XOAV+1FFHceutt/o2srmQbd2nYwEnocDd95o3bx7PPvssgwcP9s1n8uTJLFy4kJ122sk371GjRkWSJ1f8nktYQzV27FhGjBhRxaO8lCuHlzfffJPHH388sbJlyI+kGv833njDt6PsZ4HHIQ0LPGmFF9YeuYlqgcelVBT4HXfckTVNqcjqpsYpcBFh8ODBiTWyURWMe2lXrvm5G4rddtstcCN7gEMOOSQ072w7O/nRv39/Ro4c6XvOK7ffRhxhDV2zZs18Hc2iLBFLkziVsl27doHOcmHRqQylTZAjUinNgSfZGXCTxBx4PhR7CDoKzn4Y2ZyLi0GNU+DFImowEm+FcX/Pt3LmW7nuvPNOevbsWWX42w+/kYE4DdWbb77Jc889x7///e84IlZSapZ7/fr1mTlzplkuVkCSUmbZrM5SmAPP5f5RiGuBJ13vqkN96dy5M4sWLYq0WVOhMQo8C0kXWK+STbJHm6+sm2++eegGBG78pgziKPD999+/cvewXEjqf0myQezcuXNieRkKR1AZcI7na4FXpyH0INKywKsLUVctFZrScgEsQZJW4N78kqwQxa5cpeZRGoVSnNcyhOMMaaZtgTvUpiH0Qs+BG/Kj+rW41Zw0FXixh5XjbPSQL8X+rYbikfR/H0eB77DDDpHzLWUnNifwVNzAV0aBlxZGgRcYb+OTZMS0YlcuY4EbCkmh/jt3uY6z8U4pLSPz4nbcizIPbSzw0qT6tbgR2XnnnRPJpzoNoRfbKq2OCtxQ/Sh0Oa9Jy8iefvppZs2albGu+/jjj688H5T/vffey8CBAznssMPyur8hWWpsixvVGavQhHmh50vSveN+/fpVfo6yrWohw4W2aNGiYPcylBZjx47lqKOOYpdddkk87yS3gi1FC/zoo4+mU6dOGUPidevWZeDAgaHXtWrVipEjR6bqNf7VV1+xfPny1PKvidRYBZ6UYswln65du0bOrxQt8IkTJ3LCCSdkRDpr1qwZHTp0CL2uT58+nHrqqTz22GOJyBFE3759E9uVyQyhVz86derEM888k+rWj1deeWXl51zLSCla4A5BkdWKWR+22247tt1226LdvzpSY5eRFWqXGD+r88gjjwxM71XYpTgH3q1bN7p168ann36acfzqq6/m2GOPDbyuvLyc+++/PxEZgthtt90YN25cYvmlYcUZDJDOMrKkpqm8CrzY029JcsQRR4QaUTWJGqvATz31VFauXEn37t1Tvc+MGTOqHAursNXBAnfw/o5SqORJdXjefvttXnrppaJHgjPUXEp5GVmQAq8JI1ITJkwotggFo8Yq8PLyci699NK888mmtPwsuGIp8LR3ICsFklLgHTt2pGPHjonkZTD4UcqR2GqyAq9NpNpCi0h3EZkvIgtE5BKf8yIid9jn3xORvdOUp1DUFAVeky1wQ+7U1nodl1J0YnMICo1qFHj1IjUFLiJ1gGHAEUAHoJ+IeL2gjgDa2a8zgHvSkidXavMyslKszGYdanGpKfU6G0nUpSQt8LSG0J18S6FzbohPmhZ4F2CBqn6uquuAR4GjPWmOBh5Si+nAliKyfYoyFYSaYoF7LYdSqOTGAi86NbpeJ9lpLWULvBS90A05oKqpvIA+wP2u7ycCd3nSPA8c4Pr+CtDJJ68zgNnA7NatW2shmTx5sgJ644036h133KGAPvnkk7r55ptrly5dMtL27dtXAV22bFmVfO677z4F9Iknnsg4/v333yug3bp1y1vWxYsXK6D9+/fPOy9V1fXr12uTJk109913V1XVlStXKqBHHHFEIvnH4e6771ZAn3nmmYLfu5QAZmtKdTbKK8l6rUWu24888oj26tVLVVWvuuoqveiii3Tp0qX6u9/9ThcvXpyRtk+fPjpmzBjffIYOHarnnntuleOffPKJ7rnnnvrdd9/lLevs2bO1U6dOunr16rzzUlVdsWKF7rHHHvrZZ5+pqur8+fMTkzUu1113nQ4ZMqTg9y0lcq3XoilZVSLyZ6Cbqp5mfz8R6KKqg1xpXgCuV9U37O+vABer6pygfDt16qSzZ89OReYg1q5dy2abbZbxed26dZSXl2f0rlWVdevWVaYNy8fNunXrqFu3biK937Vr11KvXr3EetLr16+nTp06lb8zSVnjEvT8ahMiMkdVOxXx/qnUayhO3TYYSoFc63WaXuhLAPcGqjsAy3JIU3TcSsP57BeRSERCFUzQuSSjGyWt4LwR2Iq5f29tV94lQo2p1wZDdSfNOfBZQDsR2VFE6gF9gWc9aZ4FTrK9VvcFflTVr1KUyWAw5Iep1wZDiZCaBa6qG0TkXOAloA7wgKp+KCJn2eeHAxOAHsAC4BfARNUwGEoYU68NhtIh1UAuqjoBqzK7jw13fVbgr2nKYDAYksXUa4OhNCi9UFsGg8FgMBiykpoXelqIyDfAoizJmgHfFkCcKJSSLFBa8hhZggmSp42qNi+0MIUgQt2uLv9RMSglWaC05KkOsuRUr6udAo+CiMwu5lIbN6UkC5SWPEaWYEpNnlKg1J5JKclTSrJAaclTk2UxQ+gGg8FgMFRDjAI3GAwGg6EaUlMV+IhiC+CilGSB0pLHyBJMqclTCpTaMykleUpJFigteWqsLDVyDtxgMBgMhppOTbXADQaDwWCo0RgFbjAYDAZDNaRaKHAReUBEVojIB65jW4nIyyLyqf3e1HXuUhFZICLzRaSb6/jvReR9+9wdkuOWWgHyDBWRj0XkPRF5SkS2LIQ8frK4zl0oIioizYopi4gMsu/3oYjcWAhZguQRkb1EZLqIzBWR2SLSpRDyiEgrEfmfiHxkP4e/2ceLVo5LgVKq26VUr4PkcZ2rtXXb1GsXuexBWugXcBCwN/CB69iNwCX250uAG+zPHYB3gc2AHYHPgDr2uZnAfoAALwJHJCjP4UC5/fmGQsnjJ4t9vBVWvOpFQLNiyQL8HzAZ2Mz+vk2R/6dJTn5Y8bpfK9Cz2R7Y2/7cCPjEvmfRynEpvAL+o6I8kwBZilKvg+Sxj9fquh0gS62s19XCAlfV14GVnsNHA6Ptz6OBXq7jj6rqWlX9AmtDhS4isj3QWFXfUutpPeS6Jm95VHWSqm6wv07H2kIxdXkCng3ArcDFgNtLsRiynA38R1XX2mlWFEKWEHkUaGx/bsKmbS7TfjZfqerb9uefgY+AlhSxHJcCpVS3S6leB8ljU6vrtqnXm6gWCjyAbdXeotB+38Y+3hJY7Eq3xD7W0v7sPZ4GA7F6UEWRR0SOApaq6rueU8V4NrsCB4rIDBGZIiKdiygLwGBgqIgsBm4CLi20PCLSFugIzKC0y3GxKNVnUtR6DaZuhzCYWlivq7MCD8Jv3kBDjid7c5HLgQ3A2GLIIyINgMuBf/idLqQsNuVAU2Bf4CLgv/bcTrH+p7OBIaraChgCjLSPF0QeEdkCGA8MVtWfwpIWQp5qRtGeSbHrtS2DqdvB1Mp6XZ0V+Nf2sAP2uzN8swRrjshhB6zhlCVsGv5yH08METkZ6An0t4dBiiHPzlhzK++KyEI737dFZLsiyIKd95NqMROowAroX6z/6WTgSfvz44Dj7JK6PCJSF6uSj1VVR4aSK8clQEk9kxKp12Dqdhi1s15nmyQvlRfQlkynhaFkOgncaH/enUwngc/Z5CQwC6u36DgJ9EhQnu7APKC5J13q8nhl8ZxbyCZHl4LLApwFXGV/3hVr+EiK+D99BHS1Px8CzCnEs7GvfQi4zXO8qOW4FF4+/1HRnomPLEWr137yeM4tpJbWbR9ZamW9LnrljfiQxgFfAeuxeiqnAlsDrwCf2u9budJfjuXdNx+XJx/QCfjAPncXdiS6hORZYBfgufZreCHk8ZPFc34hdiUvhixAPeBhO++3gYOL/D8dAMyxK9EM4PcFejYHYA2JvecqIz2KWY5L4RXwHxXlmQTIUpR6HSSP5/xCamHdDpClVtZrE0rVYDAYDIZqSHWeAzcYDAaDodZiFLjBYDAYDNUQo8ANBoPBYKiGGAVuMBgMBkM1xChwg8FgMBiqIUaBGxCLN0TkCNex40RkYjHlMhgM+WHqds3GLCMzACAiv8WKYNQRqIO1nrG7qn6WQ151VHVjshIaDIZcMHW75mIUuKESez/f1UBD+70N8DusmMf/UtVn7ID9Y+w0AOeq6jQR6Qr8EyvAwl6q2qGw0hsMhiBM3a6ZGAVuqEREGmJFVFoHPA98qKoPi8iWWHvVdsSKOlShqr+KSDtgnKp2siv5C8Bv1domz2AwlAimbtdMyostgKF0UNXVIvIYsAo4DjhSRC60T9cHWmMF2L9LRPYCNmLFQHaYaSq4wVB6mLpdMzEK3OClwn4JcKyqznefFJF/AV8De2I5Qf7qOr26QDIaDIb4mLpdwzBe6IYgXgIG2fv7IiId7eNNgK9UtQI4EcspxmAwVB9M3a4hGAVuCOJqoC7wnoh8YH8HuBs4WUSmYw2xmZ65wVC9MHW7hmCc2AwGg8FgqIYYC9xgMBgMhmqIUeAGg8FgMFRDjAI3GAwGg6EaYhS4wWAwGAzVEKPADQaDwWCohhgFbjAYDAZDNcQocIPBYDAYqiH/D+fkQAjQ8ipRAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABdhElEQVR4nO2dd9gURdLAf0UyIXICp0iQIMopBgQxp09RMKCiIoiKZ8QsnunQM5ynnjmeeHoioIhiTojxDJyiAqISDAgGJImSRCXW90fPrLOzMzszu7O7b+jf87zPuzvT09M7093VXV1dJaqKxWKxWCyW6kWdShfAYrFYLBZLcqwAt1gsFoulGmIFuMVisVgs1RArwC0Wi8ViqYZYAW6xWCwWSzXECnCLxWKxWKohVoBbSoqIbCIib4vIMhG5RUQGi8h/Kl2uKERkmIj8w/m8p4h8XukyWWoeIqIiskWlyxGEiFwlIg+nfa2I7CMis4srXbqISGsR+VlE6oacL/hZBOSV2juvtQJcRI4VkQnOS5srIi+JyB6+NCc6D7uP7/g+zvGnfMe3d46/6Tl2jYh8KiKrReQqX/p9nXOLReRHEXlaRFp4zvcRkXdF5BdvntWM04CFQCNV/YuqXqeqpwCISBvnedULuzjNhlMoqvqOqm5VyTLURmwbzfk9VUro1SRU9VtVbaiqaypdliTUSgEuIhcAtwPXAZsArYF7gMN8SQcAPzn//fwA7CYiTXzpv/ClmwFcDLwYkMc04EBVbQxsBnwJDPGc/8kp5z8jflJq5BOmBbI5ME2txyBLAmwbTU4J2m61I2wGXVOpdQJcRDYC/g6cpapPqepyVV2lqs+r6kWedJsDe2NmkAeKyCa+rFYCzwB9nfR1gT7ASG8iVR2uqi8By/xlUdX5qjrHc2gNsIXn/GuqOhqY47825LcdJiKTRWSpiHwlIj2c41+LyP6edJlZrWcWfLKIfAu8ISJjReRsX94fi0hv53NHEXlVRH4Skc/9sx/PNcMwHebFzixqf9+M+m3n/2Ln/K6+63sAg4FjnPMfO8c3E5HnnPvPEJFT8zyTg0RkmhgV/vcicqFzfB8RmS1Gpb/QeUb9Q/LImv04aS8UkU9EZImIPCYi63rOH+K8h8XO7Gy7sPJZcqnhbfQiR5swR0RO8p1bR0RuFpFvRWS+iNwrIuuJyAbAS8BmTjv42WkDV4nIEyLysIgsBU4UkY1E5AHnHt+LyD9coeZoK8Y591gkIrNEpKfn/m1F5C2nrbwKNPWVbxenPi92+oN94l4b8ixy2p6I7OT89nqedEeKyOSQPIaJyBARGSMiy4F9nWfzpIj84PzGcz3pu4nR6ix17nOrczxLG5jv9/j7A+dYpo917vGe85zmisjdItIg6nkUQq0T4MCuwLrA0xHpTgAmqOqTwHQgqHMf4aQDOBCYSsyG7CJm7WUx8CtwIXBjkus9+XRzynMR0BjYC/g6QRZ7A3/C/I5HgH6evLfGzKRfdDqTV500f3TS3SMi2/gzVNUTMZ3ljY566jVfkr2c/42d8+/5rh+LmYE95pzf3jk1CpiNmREdBVwnIvuF/K4HgNNVdUOgE/CG59ymmIbZAjPQuE9E4qrK+wA9gLbAdsCJACKyIzAUOB1oAvwbeE5E1omZr6XmttEezvXdgQ7A/r4kNwBbAjtgBgktgCtUdTnQE5jjtIOGnkHFYcATmDY/EhgOrHau7wwcAJziucfOwOeYen8j8ICIiHPuEWCic+4aPFoNMcsGLwL/ADZ2fseTItIs6toQAtueqn4I/Og8I5fjgIfy5HUscC2wIfAu8DzwsZP3fsD5InKgk/YO4A5VbQS0B0aH5Jn093hZAwxyrt3VKcOZCa6PTW0U4E2Ahaq6OiLdCZiXiPM/5wWq6rvAxk6nfwKms0iEs/bSGPOyLwc+S5qHw8nAUFV9VVXXqur3qpokr6ucmc6vmI5zB2eGA6ZjfEpVVwCHAF+r6oOqulpVJwFPYgRpyRGRVsAewCWq+puqTgb+AxwfcskqYGsRaaSqi5zyevmbqq5Q1bcwHVSgNiGAO1V1jqr+hOkwdnCOnwr8W1XfV9U1qjocWAHsEvc3WmpsG+0DPKiqUxyhfJV7whGipwKDVPUnVV2GGbz2jcjzPVV9RlXXAo0wgv58py0vAG7z5fGNqt7vrPUOB5oDm4hIa2Anfm8Pb2PqtctxwBhVHeP0L68CE4CDYlwbRljbG+7cDxHZmN8nFWE8q6r/c57BtkAzVf27qq5U1ZnA/Z5nsArYQkSaqurPqjren1kRvwcAVZ2oquOd/vFrzCB+77jXJ6E2CvAfgaaS33Bqd8zM6lHn0CPAtiKyQ0Dyh4CzgX2JnjGE4giC4cCz+cqWh1bAV4XeH/jOU5ZlmAblVvq+/K523BzY2VEPLXZmJv0xI+pysBngdnAu32BG20EcCRwEfOOoxLxq+kVOR+rNZ7OY5Zjn+fwL0ND5vDnwF9/zaZUgX0vNbaOb4WlnmPrm0gxYH5joqTdjneP58Oa3OVAfmOvJ498YTZlLpt6q6i/Ox4ZO2YLagzfvo331eg/MACDq2iDytb2HgUNFpCFGqL+jqnPz5OV/Bpv5yjkYY0cBZqKzJfCZiHwoIocE5FfI78kgIluKyAsiMk/M0sZ1xFhSKITaaPTwHvAbcDhG9RTEAECAyb9rlwAzgp/sS/sQxghmhKr+4kuflHqYxtYIYxyThO8wKqEglmM6B5cgYes3MhsFXCkibwPrAf/13OctVe1O8cQxbPOnmYOZUW3oEeKtge8DLzYqucNEpD6mEx+NEagAfxCRDTwNtTUwJckPCOA74FpVvbbIfGozNbWNzuX3ugemvrksxKjot1HVoLoc1la8x7/DaHuaxtBeBJUtqD24+X8HPKSqOfYmjqYu37VBhLY9Vf1eRN4DjsBo1oaE5OHifwazVLVDYELVL4F+IlIH6A08IdlGjhD9LLL6UzE2Bt6B1hDgI6Cfqi4TkfMpkYay1s3AVXUJcAXwLxE5XETWF5H6ItJTRG4UY4zUB2MYs4Pn7xygv3/kraqzMOqRy4Lu5+S9LuZZ1xORdeV3o5LeIrKViNRx1pJuBT5yRvqISF3n2npAHefa+iE/7QHgzyKyn5NfCxHp6JybDPR1ytKVeJVpDGY0+3fMGvRa5/gLwJYicryTX30xhid/ipGnnx+AtUC7PGnmA22cBoeqfodZ57reeR7bYUbVI/0XikgDEekvIhup6ipgKWZ9ysvVTro9McsDjxfwO7zcDwwUkZ3FsIGIHCwiGxaZb62hBrfR0RhDs61FZH3gSk8Z12Lqzm0i8kcn7xby+9rtfKCJGAO/sOc2F3gFuEVEGjllbi8ikepbVf0GoxJ328MewKGeJO6s+ED3N4sx5moZ49ow8rW9EZidAduSTGvyAbBURC4RYwBYV0Q6ichOACJynIg0c573YuearD4hxu/5AljXadf1McsqXhuXDTF9zc9OH3xGgvInotYJcABVvRW4APPgf8CM2s7GWKwejhkJj1DVee4fRkDWxRgu+fMbp9mWql7ud/Lrh+lAfuX39doWGDXZMuBTjDA7wnPt8U76IcCezuf7Q37TB8CfMWteS4C3MAIY4G+Y2fki4Gryrye5+a0AnsIY2jziOb4MYxjTFzMbnocxvklspOWo8K4F/idG3RW0Tuw26h9FxF2/7ge0ce7/NHClsyYXxPHA12JUWQNx1tYc5mGeyRzMAGBgQruBHFR1AmYt824n7xk4Bm6W+NTQNvoSZsvZG5h68YYvySXO8fFOfX0N2Mq59jOMVmym01bClmROABpgtr8twmgwmoek9XMsxsjtJ8zgImMv4AycD8Ooo933cRG/y5DQa0OIantPY/qvp32q7Lw4a/uHYgZ0szCajf8A7sCnBzBVRH7GGLT1VdXfArLK9yyWYIzS/oPR/C3HGNW6XOhcvwxTFx6LW/6kiNrtuZZaiJgtMA+rassKF8VisQQgIl9hdpD4d69YHGrlDNxisVgsVRcRORKz5uzXUlg8WAFusVgSISKtROS/IjJdRKaKyHkBafYR4+RmsvN3RSXKaql+iHFJOwTjyGdtRPJajVWhWyyWRIhIc6C5qk5yjPMmAoer6jRPmn2AC1U1aJuOxWJJATsDt1gsiVDVueo4xHGMGqcTvg/fYrGUiGq3D7xp06bapk2bShfDYik7EydOXKiqUY49yoqItMG47Hw/4PSuYvzXz8HMxqcGXH8aZjsYG2ywQZeOHTv6k1gsNZpi2nW1E+Bt2rRhwoQJlS6GxVJ2RCS2N6hyIMZT1pMY151LfacnAZur6s8ichBm+1eOcw1VvQ+4D6Br165q27altlFMu7YqdIvFkhjHgcWTwEhVfcp/XlWXqurPzucxQH0RKYk7SYultmIFuMViSYSICMZpynTH4UpQmk2ddG6kvDoYH+cWiyUlSqZCF5GhGPd4C1S1U8D5/hjPQwA/A2eo6selKo/FYkmN3TEeyD6V3+M0D8bx7a2q92Lc9Z4hIqsx3sn6qt3yYrGkSinXwIdh3EmGudSbBeytqovEBJW/D+O6zmKxVGFUdRwmkEi+NHdj2r/FYikRJVOhOzFUQ6P1qOq7qrrI+ToesC4tLSxdupTdd9+de++9t9JFsVgsKTJnzhyuueYarCImParKGvjJwEthJ0XkNBGZICITfvjhhzIWy1JuhgwZwrvvvssZZ5QsgI/FYqkA/fv354orrmDSpEnRiS2xqLgAF5F9MQL8krA0qnqfqnZV1a7NmlWpbbCWlFmxYkWli2CxWErA8uUmqNiaNf6IvpZCqeg+cCeW83+AnqpqLVQtFovFYolJxWbgItIaE2/6eFX9olLlsFQtnJ1HFoulhuG2bbsGnh6l3EY2CtgHaCoiszFB0etDZpvJFUAT4B7nxa5W1a6lKo+lemAFuMVSM7ECPH1KJsBVtV/E+VOAU0p1f4vFYrFYajIVN2KzWCwWi8WSHCvALVUKq0K3WGomVoWePjVagC9btoxtt92Wa6+9ttJFscTECnCLpWZiBXj61FgBPnr0aBo1asSUKVO4/PLLU8t31KhRdO/enSVLlqSWp8VisVgsSamRAnzBggUcc8wxedM8+uijnHvuuYlHg8ceeyyvvfYaN998czFFtIRgZ+AWS83GzsDTo6KOXErF+eefH5mmXz9jJH/ooYfSvXv3xPdwvQpZ0sUKcIulZmJV6OlTI2fg3333Xey0VhVu+eKLLxg+fLjtWCyWEmIH5+lTI2fgdevWjZ220E7bdvY1h6222gqAhg0bcuSRR5b0XrNmzWLBggXsvLONnGupndi+Mz1q5Ay8Tp3wn/X111+zYMGCMpbGkgTvKH3lypVlvfenn35a8nu0a9eOXXbZhdmzZ5f8XhZLVWLhwoUAPPnkkxUuSc2hRgrwsBn4okWLaNu2LZ06dcocszPwqoGqsnTp0iwB/ssvv1SwRKVl1qxZlS6CxVIWdtppJ0477TQ+//xzAO64444Kl6jmUKsE+Lx58wBII6a4FeDpctJJJ7HRRhvx/vvvZ46tXbu2rGUo5xqdXQ+01BYmTJjA/fffX+li1EhqpAAP6xyD4tBaQVw1GDZsGABPPfVU5tjq1asrVJrSYwW4xWIpFivArQCvsqxataqs9yunUL3lllvKdq+0EZFWIvJfEZkuIlNF5LyANCIid4rIDBH5RER2rERZLZaaTMkEuIgMFZEFIjIl5HzZG3iaMzor+EtPTRbgTz/9dNnuVQJWA39R1T8BuwBnicjWvjQ9gQ7O32nAkPIWsfqwcuXKshtsWmoGpZyBDwN65Dlf9gYeJMCtIK661DQB/p///Kek+ZcLVZ2rqpOcz8uA6UALX7LDgBFqGA80FpHmZS5qtaBt27aRniMtliBKJsBV9W3gpzxJStbAwzriNAW4Ffylp9yzEhFh5syZ/POf/yyJBfypp56aep6VRkTaAJ2B932nWgBej0qzyRXyFmDOnDk888wzlS6GpRpSyTXw2A1cRE4TkQkiMqEYC3IrwKsX5Z6BA+y///789a9/5eKLLy46rx9++IFHH320Ir+jHIhIQ+BJ4HxVXeo/HXBJTqNJq21bLLWRSgrwWA0cQFXvU9Wuqtq1WbNmkRn/9FPwxN+q0KsXxQq+5cuX895778V+xyKS2Z/90ksvFXVvgN13351+/fpx0003FZ1XVUNE6mOE90hVfSogyWygled7S2COP1HStm2xWH6nkgI8VgMvhPHjxwcer84z8NWrV9c65x/FCvBtt92W3XbbjREjRsRK7116ScPg8csvvwTgtddeq1EDRTEP6gFguqreGpLsOeAEx1h1F2CJqs4tWyEtllpAJQV4WRv4ihUrAjvl6rIf95RTTqFdu3a88MILlS5K2ShGgM+cOTMz4HniiSdiXeOtC2k6kVHVwC2M1ZjdgeOB/xORyc7fQSIyUEQGOmnGADOBGcD9wJkVKqvFUmMpWTATERkF7AM0FZHZwJVAfQBVvRfTwA/CNPBfgD+XqiwA6667bqAqs7oI8OHDhwPG4ckhhxxS4dKUh2IE+BtvvJH5XIgwTnPGXNMEuKqOI3gJzJtGgbPKUyKLpXZSMgGuqv0izpe9gd9zzz1B5Yi87sILL+S1117LUs3XJJVoVaUYK3RvQJska+BJr4lDmABftmwZG264YWr3sViqA4ceemjZ7tWzZ08OOOAABg0aVLZ7lpMa6YktjKCZWJzZ2S233MLHH3/M2LFjM8cqJcCri8YgDYqZgRerDnff75o1a+jVq1dRhmhhAnzkyJEF52mxVFfq169ftnuNHTuWCy64oGz3Kze1SoAHdaLrrbde3mu8gtrOustLWgI833vz1olLL70089kV+q+//jrPP/98UdvKwgR4vrC3FktVQEQ477wcT7lFUZNjHJSbWtWDFDIT+/jjjwOvr5Qwr02DiGIEuFc45nvvYWvT7nMupLP59ttvswYDYQK8NmlTqgOLFi3i119/rXQxqhx33nlnqvlZAZ4etUqAFxLMZPny5ZnP5Q5vWdtJS4Dne8dh79Q9XsgsuUePHtxwww1Z9w+qe6NGjWLSpEmJ87eUho033pjOnTtXuhg1njQcG/3yyy/89ttvKZSmelPrBXiUUHaD0MdJa0mXtIzY8r23MOHuHi9EgE+fPj0nr6C699///pcuXbokzt9SOrzt3ZLNmDFjeO+994rOp9gZ+KpVq9hggw1o165d0WWp7pTMCr0qEtSR+zvwRYsWsWjRokzlOPnkkzPnvP6xa5Mqu1KUw4gt7Jz7fuvWrVtwGbzUpG1kltrJwQcfDBTf9xU7A7/ssssAmDs3v9uQ2jDhqvUzcH9l3HjjjWnfvj1z5uQ6hTvppJNKVra41KZ103IYsZViBh6UlxXglkK58cYbue6660qS9xNPPMHtt99ekrzDKFaAx9WS1Ia19lovwMNGaVOnTs2blzViy6YUo91i8oyrQo9aA09jBh4lwGvDTMFSOJdccklm1pk2Rx99dNn3SBdb3+NOYmpqECEvtUqAB1WcYcOGFZRXVRWkleAvf/kLzZo1I+1oUsU847gq9KowA994441L1kFbLIVSqj6u2Hzjtkm/AJ89ezbz5s0r6t5VjVolwINiPL/++usVKEnN4tZbb+Wnn37KuHtNi2IaerEzcJewGfjgwYPZc889Y43yowT4kiVLSqYitVgKpapOUuIKcL8KvVWrVjRv3rwURaoYtUqAJ0FEqmwFrqosXbqUsWPHcsghh6QyGy+HAE8yA//2228zn6+//nrGjRvHxIkTI8ti18At1ZFS1dlKzcBrIlaAhzBw4EB+/PHH0PN2DTyXX3/9lZ49e/Liiy/yt7/9rej80lKhF7IP3MXbWZxxxhk5+TVq1CiyLFaAW6ojpbLNsAI8PawAD+Grr77i+uuvr3Qxqi1LliwpOo+qMAN/7LHHMsfcAV3Sjs0KcEt1JKyeb7PNNrz44oux8liwYEHOsWIFuDVi+x0rwPMQVPlcqlowk4ULF/LQQw9VGe9ESYy/li5dGni8KszAb7nllpxjXmEcR5hPmjQpsjPZbLPNIvOxWMpJWN2eNm0ap59+eqw8Ntlkk5xj5ZqB221kRSIiPUTkcxGZISKXBpzfSESeF5GPRWSqiJQ0JngUSbwwvfXWW/z8888lLE0yunfvzgknnMAVV1yRet4rVqzgzTffTDSiTbL9avfddw88XhVm4EF4O4a4s/EhQ4bkPd+9e/dY+VhqLrNmzSpZ3nvttRe33XZbomvyaY3izILHjBkTeLxcM3BvO3377beLumdVpWQCXETqAv8CegJbA/1EZGtfsrOAaaq6PbAPcIuINChVmcJwG47XSAnyV+CvvvqKnj17lrRcQYRV/smTJwPwyiuvpH7Ps846i3333TdRRK64AvzXX39lypQpgeeK6dC8jbeQGXjcCGbuZ1Vl5syZode9+eab+Ypb1hCLlqrJF198UbK833nnncRhNfMNTuPMgsO2bJVrBu4t/957713UPasqpZyBdwNmqOpMVV0JPAoc5kujwIZihlQNgZ+Asus92rVrx8svv5xTMaLWLceNG1fKYhVEKTy1PfDAAwDce++9se8tIqxYsSIy73xajH//+9+MGjUqZimzOfzwwzOf05qBe2OE+/O+8sorad++fajdRNgygYsNLZoeCxcuLMqPfqXYcMMNU8vrww8/5J133gGIvV7tJ1+7idPPhNXpTz75hGnTphVUJog/OYijHUtrX/jatWvp06dP2Wf6pew1WgDfeb7Pdo55uRv4EzAH+BQ4T1VznrqInCYiE0RkQtrOQlweeeSRnIpRHT1kldLVahJDrAcffJB11103MjxjlOC65557Yt8zjHzvsVWrVoHHkwrwa665BoCrr746ML+ffvopbxlrk4vcUtOsWTOOPfbYShcjMQ0apKd87NatG3vttReqyiGHHBKZPqiNFKtCz9e2t9lmm8jri7k3RPffjzzyCM2bN+fdd98tuCwuS5cu5fHHH+fQQw8tOq8klFKABz1lf694IDAZ2AzYAbhbRHL25ajqfaraVVW7NmvWLPLG6667buLCbrjhhjkC/IknnkicT6l56qmn8p6vKgLcJcquIO7M8/nnny+4sYU15AEDBoTOwPPVoULWwKOoytsDqyNPPvlkpYtQJYhbr4IMvrx1++ijj846V6wAL4ZCVOhBuBoKd/mxGNL03JiEUt5tNuCd3rTEzLS9/Bl4Sg0zgFlAx4LvqAoXXMCeBVgfrrPOOiV7+D/++CN77rknI0eODDx/yy23cMABB6Si9iulAC9EWEWVJ+q82zB69erFvHnzOOKIIxKXIWzgMWLEiNBrgvZ355uBF8v333+fSj7lQESGisgCEQk0XhCRfURkiYhMdv7St6wMoapqzVatWpXK1sqkxBXgQX2P91n6JzNR7XbVqlUlG5TG7eOi7u9O2NKoM5UagJdSgH8IdBCRto5hWl/gOV+ab4H9AERkE2ArYGbBd3z+ebjtNsauXs0/SBYrVURSCx3px/XaddxxxwWev/DCC3n11Vdp0qQJIlJUzN2qpoqNK6DD8Hs6K2RrSCEDo6AZuNvQg4zYiqWqvbcIhgE9ItK8o6o7OH9/T7sAs2fP5qyzzsqpD0nfx0UXXcT48ePTLFoWHTt25IYbbqBBgwY0btw4b9pSCIG4wummm25KdG3UZKdBgwaccMIJse795z//mf/7v/+LlTbOvV3iukkupA0PHTqURx99NPP9jTfeAGDx4sV88803ifMrlJIJcFVdDZwNvAxMB0ar6lQRGSgiA51k1wC7icinwOvAJaq6sOCbHnQQXHEFClwGvAO0jXlpqQT4mjVrAvcSB+EadO22224F368UgqAYzUS+aydNmhRp2e5vXFFryUEU4tAh33MsxQy8OqGqb2MMTivGKaecwj333MN///tft0x89NFHiQZrqsrNN9/MrrvuWqpi8vnnn3PppTk7aDN4wxaXoi7FHRS8+uqrOceKXQOPy7BhwzLvMQ7FCnD3mRQjwE8++WT69esHGEM47xJDMQZ6SSmpwl5Vx6jqlqraXlWvdY7dq6r3Op/nqOoBqrqtqnZS1YeLumG9enD11eyLsZ7bBbPA3i/m5aVQoT/yyCOp55mPYhrWlClT+Pe//53T6IsZ2OQrT5cuXfjPf/5T8PVxcX/PnDlzuPPOO4vev59vDbw6Wj+XiF0d/w4viUioxVIhBqrHHXccL7/8ctaxMWPGsOOOO/LnP8d3JVHIYLBYRo8ezVVXXZX5Hne3hJeff/6Zjh078v7770emDRPgq1atympb6623Xk6aYreRlYqo3TAucQV4sQMnf5CsUmlyg6hxe1dUlXeA7YEngUbAIxidX8M814lISSrl3LlzC7ru6aefZvny5YmvK0bgbbvttgwcOJCnn34663jc5+KqkdIqT5J758NtsPvuuy/nnXceF110UVH5eEfskydPjtWR1jImAZs7/h3uAp4JS5jUQHXKlCmBtiTTp08H4PHHH49dyGuvvTZ22kIIEgzHHHNM1k4Fb7yFOILkyy+/5P333887s//oo48yn8ME+Keffpr1/YADDshJU+g2sjPPPDP0XD7Sdjcc9tvd3+X2LcXe17+MYwV4EbgvZxFwFHAa8AswANOrdMlzbSnWoArdGtK7d29OOumkxNclEZirVq1i4sSJrF27Nms24rccjytEgyJzhV0bt9GkKcBdRxmu9Wmh+XjLPmjQIHbZZZciS1jt1sDzoqpLVfVn5/MYoL6INE0j72233TbweCHPLw2V9erVq0MNEOPUcW8Zosrz0UcfseWWW3LzzTcD4W3DHcxAeJ924403Zn1ff/318+bjp06dOrz//vt8/fXXOeeivA6GEWbkWyhhz9N9L8Wo0L1UeQEuIs1EZLCI3OdYoA4VkaGlLlwh+F/a/UBX4GOgA/AecCG5e9xEhIULC19+D6MYD1ujR48Ggme2YSTpyE455RS6du3KTTfdRJMmTULzKIUK/bLLLivq+iT4O7Fi8yxFYJKatI1MRDZ1nDMhIt0w/Ux4aL8K8dprr2U+F/pOzzvvPFq2bMnixYtzzsXJ0/veowS465nQHYCGCXCvQDn77LMj7xtU1pUrV+bdPy4i7LLLLrRtG9fKKJq0XVOHPU/3uNuveTUWUTz//PM5y35+AV7O5YW4d3oW2Ah4DXjR81flCHpp04GdgTuA+sBNwFhgU0+aWbNmceCBB6ZenjScM7zwwgux0yYRTu42qqgRcykqZFzDviCS7vGtVy97P0Kc35PPkUuxQRKC3DpWJwEuIqMwY+GtRGS2iJzsM049CpgiIh8DdwJ9tYr9wNmzZzN16tTM9/nz5xeUz3PPmY01QZ720p6Bu23bTRfW1r3Hhw7NnWctXLgwx02xv05Hva5SaIzSzjNKgLueIv1b5PJtgevVqxennnpq1jH/syunHUzcnVbrq+olJS1JSoTNolcA5wOvAg8CBwCfACcCY4CXXnqpJOVJQ/glUfWVQpXo/Q2qmugexaopg57fNddcw5FHHhk7D7+3tUI7iiAVeiF4f9OmGI3QZp99VlSe5URV89qFqurdGC+LVRa/h8BC6umSJUuYPXs2EFxP0xbgr7/+ela+hfYtm222Wc7OjKQCvBSD+kLa5Zo1awI1hJ999hm9evUKvQaCt86tWrWKBg0acPnll2e8K0bhf3Y9e/YsWyjTuG/hBRE5qKQlSYmo2dmLwHYYQd7M+X470LRhPhO3cMJccbqkMfEotQCPUjF77580XOldd91Fp06dcgZWxbhDTCpA/Y2p0M4nTQHeCiPhZgF/AQ7/+muI8JdeLioRUKjcpOE22TsTC6rPaavQ//Wvf2WlizMDDyJIuPjLGlcbkCZnnHFG4muCfssPP/zAn/70p1CVfL7f9t13xvv3sGHDYpfBL8DLGcY0b08mIstEZClwHkaI/yoiSz3Hqxxx3KjOw/hwvRhYhflxT8+bV5ALuNmzZ+d9YWkI8CR5eBvWpZdeyrnnnps4f28eN998c5Z6MKnwGjJkCFOnTs0xmolL0P3yjW6vu+66HBW1P72IJI7M5KUYRzvtgL989hlfYULxrQs8AQzq0gUCvL+VGhF5U0TaeL53wzhhqnGMHj061ODM26nHXbJasGBB5nM5BLg/XaECPIiqMAMvhKC+IGotPd97cdXq66yzTuwyVDLueN63oKobqmoj538dVV3P8738vU0Mgh587969c44pZi18N2AGxhH7ROCUAu6ZL2BHJWbgN998M3fccQc33HADd911V84+xbj5q2rOlit/5Y9rORpVhjCCGls+/+qXXXZZTkSgoM4pKjZyUCfovstBgwblvTaIjsAI4Aug5/ffUwcYCWwDHA18WaAGKAWuB8aKyJkici1wL8bFcbUiqo389ttvHHPMMRmPX/6O33t93IAUXvuWNFToPXr0iOUVzr8NKg2qwhp4Ibjv8cEHH8zsD496Lvnqivsckvy+IAFeLre5ca3QX49zrCrQooU/4Fl+i+cJQGdgOLA+xmr9caBxgnsuX76chx9+OHAParkF+Jo1a7jooos4//zzM8eCKqO3AwtTiweFS/VX1jD3sH78oUWLUaFvueWWsa518XfWcd5J0CChkHe5HfAYMBU4HlgLvNqyJR2B4wDXZ1OlbLxU9WVgIMbG8yTgIFWdVJHCFMCYMWP49NNPc95xt27dsr679ejbb78FcutxISp07w6TQmfg/vu669xxSHMG7q9/5ZqBF1vv3fd+0kknZVTwcQR42H3depHk9wUJ8MaNG/Pxxx/HzqNQolTo64pIE6CpiPxBRDZ2/tpgIohVOYL2M0Ztg/oZY8x2LLAUY0L7MbBHzHvOnz+f448/nj59+uScK7cAj5vW6/Vq0aJFWefcDiBoa0yh6qI4scGD8HfEAHvssQdPP/00n3zySaw88s228vHss89mfW/Tpk2s6wC6YbyXfAz0wSzV3IPZynj3jjsyw5e+Ui5ZReRvGGcrewFXAW+KyMEVKUwB3H777Wy33XY59dK/fdNth6tWrWLNmjU56QtxxuPd3RDUzpOq0CHZls0wIZNPgLtGd3789S+q35owYUJE6eJRbL0PUqFHCd81a9aUXIADWbscSkVUKU/HTFI7YvygTHT+ngX+VdqiFUbQi/FW6Hzel0ZhVOnvA62BNzE9WlSTcg0fCiHOeqr/NwU5T3CZNCl38pS0cxERVqxYkbVP1qXcAny//fbLOfbZZ5/Ru3dvtt9++6zjYWvjhczAIdvNJUQbLApwEKbevA8chnEidBtm7fss4BuCO4cK+lRvCnRT1fdU9d8Y85DzK1WYQolypuHW9zVr1tClS5ecOuEXbEkH3mkJ8CSCo5CZdlgd9te/ctXHJDY1S5YsySlXIdbecWbgxarQoTgfIHGJWgO/Q1XbAheqalvP3/bOVpEqR5QAD5qhe5mFmXlfi+mQr8R0yK3zXOPd9+evkPnWx6dNmxYrcIm/0uZznhAkKIMaY1QDPfvss7nzzjtzjhcqwP33S6JC98cAD5tFXH755YHHk6oHwwjrbOoDJ2C2Jb4I7A0sxiwutwUuIDuOblUS4Kp6HoCIbOV8/0ZVu1ekMEUQtdPA+3w//vjjSMvhOHUkagtYHOHkT5NkBp6mCj3pDDwpjRo14v77789832CDDYD4/cmSJUto3LhxzoA+SIBHtaWkKvS33nqLxx57LDS/sPfs9z9RCuIO974Xkd6+v/1E5I8lLV0BRAnwOJvsVwOXY+Kcfo8R6B9jjI2C8Obpr5D5rJ2nTAkMp5xDsY0pn1OSMMKCjBS6hSrOda1ateKWW27JaqRr166NbfU9fPjwwONpCXB/x9AYswXsK4wNRSdgtnOsNTAYWEAuQZ10BVXoh2Ji/ox1vu8gIv6wv1Uef7t78803856PCkITp45467Q//fTp00PdvuYrRxoq9ELwt8+0BfiSJUs45ZTfTYTdPtnvBW3mzJl069YtJ9CM+93/XoMEeFTZ16xZE9regmbg++yzD3379g1MP3bs2NBByOjRoxGRwKXItIhbA04G/gP0d/7ux0ws/icix4ddJCI9RORzEZkhIoGe90VkHxGZLCJTReSthOXPwX0xnTt35thjj+Xhhx/OehlJGsibGCOkZzCd9WiMJfEffOm8lSjJDDVKG+BSbOceVKGjAhWEjeILdVAQZwbes2dPLrjggpyZjT9tWAMNK7M/fdhvj5q5uNdtB/wbM7i7GWiFMVIbgFGV3wosy5NPVZqBY1aJumGUBqjqZOJH4a0yRLU7vzbJL7AKsZPIJ8CvvfbavNq3zxzHPcUI8Oo0A/fjltEf+OT666/nww8/zPHnEVaeoAlZGjPwuM+wZ8+eoXXPjRfu93qXJnEF+FrgT6p6pKoeCWyNcW62MxDooU1E6mLWyXs66fuJyNa+NI0xtj29VNXdUVMU7ovZcMMNGTlyJP379896GUcccQQHHnggd911V6z8fgKOAM7ErGcej7EcPsyTJt8M3I9372hQCL8gSiHAoxpoWEdSaFniXOduNfM+zyABnlQAxxXgf/iDf2j2O/WALjNnwl578TEmSM76mGD3BwPbYgZ3cYY3VWkGDqxWVf+elyrl9jQOUTOxL7/8Mutc2HJL0LVh5BPgUYPzGTNm5OQBuXUjXzmC6tHnn3+eKHaCS7nXwIMCiXjjMfh/d1i/6n/vK1euzJrpB1EuIzaXQu1/4hC3lG1U1esseAGwpar+RHif1Q2YoaozVXUl8CjZcg+M4fdTqvotgKoGaRwT4b6YsM58nXXWYezYsaFO/sMYgglR+jbG/eUzmH28TciuRN7PQZXE9aYE8RtJsaPhpGvgIhK6flNKFbrrMCZKgAc9j0WLFoWGbo2rQg+qM9tgZtmzgbPeegveeYdf69fnToxlZw+MK94kb6jQPcMlYoqIHAvUFZEOInIX8G7URZUgjgctL15bCf+79fsKeOihh2LfKyhNUgHu9hP++9SpU4cvv/wyU/akbb9jx47cd999ia4JKkeaM/DNN98855hr4OWt9/meec+ePQOP+wX4mDFjIrfirV27NpEKPYoorWQptRlxBfg7IvKCiAwQkQEYK/S3RWQDHNVbAC0Ab6ua7RzzsiXwB8cb1EQROSEoIxE5TUQmiMgE7/anINyH5e0kvS+jGAcEM4B9gHOA5ZjRx1Rg8w8+yKTxjsYGDhxIPuI6vS/3DPy5554L3RteaFn8AiroPbj79b0j1igBftxxx7Fq1aq8wVH8v3XevHmB6dw6sxFmY/T7wBTMmvYmwOyNNoJ//YsL+/blPCDcnUxyKjgDPwczTlmB2YixlCpqhZ5vkOMGFfHy8MMP592x4cVvGBnH8VA+IzbXSCuMMAFet25dttxyS1q1asUjjzySE2jDixutMA1KKcCDyum2tbi+4GfOnBl4PM7a/TPPPJP1Pa4K/bnnnosVIS1sjbtly5bUr1+fXXfdNTKPQokrwM8ChmF2WXXGaAvPUtXlqrpvyDVBktL/1OphQnQfjNm+8jcRyfHSoar3qWpXVe3arFmzvAUNcjOYlgAH8wPuxqyD/hfTsfd88EHGAO35vQKsXbs2cCTsraRx15NLYcSWr7G89Va4KUIpVejunu8oAe7Na+TIkTz++OMsWxa+6uz//UGRo+oB+61cyUhgLkbj0g1YgnFNtjNwUY8ecOaZ/FJkvN+gOlhBK/RfVPUyVd3JaWOXqWoyh/dlIqmWYvDgwZkdG0nbfZMmTTJeBsPaqbed+OtYVBRCbz/hxasW79+/P8ccc0ys8g4ZMoSNN944VtogSinA89V3/zJE0vcUR7vWsWO2k+w4RmwfffQRhx12GKeddlrmXJivgLBIdj///HMq0SjzEUuAq+EJVR2kquc7n6Pe8GyMfY9LS7J307hpxjoDgYUYDfX2FEGQCj1NAe4yE2OlfgZGBdETM1treNNN8OuvoZ3Nhx/+7ma6XDPwoOvT3kpVSBnCGDBgQN7r/MeWLVuW13+1qgbvTgD2xBhhzAVGLVnCscB6mLi5/YHmmHf8AbDGuW+x76MqCHAReV5Engv7K2thYlLMMkMh7f7ZZ59lypQpNGjQIMepjx//Doiosvbv35+///3vOeniOifyc+aZZ+Y4ZEpCuQS467thbUBbCpsZ5ytLHAHuf/erV6+OnIG7eGf+u+yyS+A1YXEeVqxYUXKf8XFdqfYWkS9FZInED2byIdBBRNqKiW7UF/B3DM8Ce4pIPRFZHzPRmZ70R3gplwAHMxu/F9gKs41oXaDxnXeyvG1bNET19fLLL/PKK68A8QT40KFDAzv3BQsW8OSTTxbkLAJKO5OOc12+93DxxRdntm0ErVcF/Z4wFZub3ptHF4wf/G8xI8YzMN5MvqhXj78BbYDuwCOA1444qNMpBBFh1qxZtGzZMquMZeZm4BaM64NfMTtL7sc4Joy3v7HMlNtOoG7durz66qtAtIvTv//971nf45T1yiuvzDl2xx13JChhes+kXEZs48aNo3fv3oFtydsGTj/9dC65xNhHX3fddaH5xRHgfiF69dVXxxbgxciLX3/9Na9mMA3iDg9uxFiKb6Qxg5mo6mrgbIyh7nRgtKpOFZGBIjLQSTMds//0E8wk5z+qWlTnUco18DAWYFyx7gl8Cmwwfz4Njj2Wdwl2x3rggQcybdq0WCr0k08+OdAlX7du3TjqqKO4/fbb+cCzBh+Ev7KuWbMmVtCEIApt2EkaRt26ddlzzz0z9yu2c6m3di28+ip3YYT2BEwM7pbA18A/MWqffZs14x8Yb2lBpCnA27RpQ/v27XPyLheq+paqvgV0VtVjVPV55+9Y4nsRLivFCCs3iEkSVq5cmRlk+6McRr2vcg02XCFXLKXcB+5t6w0bNqRVq1aBKnT/cpk7sx06dGho3oXMwJ999tlQ3xInn3xy3murGnEF+HxH2CZCVceo6paq2l5Vr3WO3auq93rS3KSqW6tqJ1W9Pek9/EStgZdSpTEO2BFjMLB03XXZFXgHo2bo5Ev71Vdf8eOPP8bKN0iAf/ONETMXXnghO++8c97r/Z3NVVddFbnVIoxCO6akHtzc96SqkZ2L34IYTKz3vpidAl8sXkzdnj05G7Om8z3G+fdumA3Pf8WMILfp5H9L2aQpwKGwUJIloJmItHO/iEhbzOOrchQjFOP6XPDiXZP1v5+gwEVeyiXAn3/++VTyKecaeJ06dSJn4F7yRfby9w9B7ShICF9zzTWB+QWFHq7KxJVmE0TkMRHp5/XGVtKSFUjUNrJSv5DVmDXVC3r14iqMPrIXZmb+NNDVSVenTp2cUJ2lwhucftWqVdxzzz0F55XWDDyqg/BaqUYJ8P/973+sC+wP3IBx2r8AY1J9LMaqfO3WW3MtsBNGiJ8L+Mfgw4cPz3Es4WXNmjWsWrWqaGHrGhvFtcAtMYMwAUzeFJE3MbaZ51eqMPkoVCiuWLEiUZQvL0GDrXnz5gV65ho7dmxmUF4uAf7FF1+kkk8xAnzQoEF5jbXyCfAo4Tt//vy8Ex1V5X//+1/icnvv1TBPKF+/G+coRo0alSh9scQV4I0wfkwOAA51/g4pVaGKIckauH8vaJosA64GtgDuxCwyHo4xDBgLNC3QWKUQrrrqKgAmTpxIgwYNctwUJiGtbWRRzg28AjxIhd4COBKztvM2xuHOq8DFmG0SvwKvYLaAdW7YkJUTJ3I5Rn0e1sSbN2+etU/fzwsvvECDBg2YPr1wM43DDz880IlIBa3Qx2KCpJ3n/G2lJsRolSOuUPTPri677LJQ18BRBAnwsCWrnj170r17d1S1qEFyUtKYCBQjwG+//fa8y4HFCPCoQFGqmqVdmThxYuT9/fdKs+157VrKQSxv66r651IXJC2SrIHvueeeDB48OK+RRKG4FWk+ple8DuN79gzMfjkGD2YKxlXdQ5iZeqlw1/GCjGaSUujMYtKkSbRv357bbruNXr16RebjFeDy66/sAezi/i1bluNQAOAjjNB+FfgfkNkL9fPPHHjggQWVO4hPP/204GuffvrpzGdvJ1lBRy5g7PraYPqD7UUEVR0RllhEhmIG8AtUNWfdQUwjuwMTnO0X4ERNIcZ43Gf0xz9mh2go1JWlV4XufVf5luE++ugj3nrrrZJ63/Jz8803F51HKY3YilGhhznc2nTTTZk3bx5r167N2nMf91l4NYJptr1SW537iSXAnb3ZQ4BNVLWTiGyHMWr7R0lLVwBJ94Gfc845JRHgX331Vdb3+Rifs//ErJGfgfGecY9zbCRmc31hpmXRqGpidVAQxTTsmTNncthhh+Uf3a9dC19+SYd33+VfwEHPPkvrxYv5qzeNKoswVo/jMQ5X3sfMwsOI0rb84x/lr8rff/995nOlZuAi8hDGhcFkwO3JFFMdwxiGcYcQlqYnZlbfAbOzZIjzvyjidrT++lWo//6wPPMtw4kIy5cvL/p+5aZSa+BRM/CoOO1hW0Tz3R+ywy5XZwEe9273Y2x9VgGo6icYG6EqR9JtZJtuummO4/xSsgj4B7A5xvH7W5j1iTMwa7JfAFdggmKkyWeffVbUPlGXtAXNHzFTuasBevSApk2hY0f2fOABzgTa/PQTgpldD8FY+3fEuLDtgYnE8RL5hXcUa9euzXiBKydeL2EVXAPvCuyuqmeq6jnO37n5LlBVd9UijMOAEY7/iPFAYxFpXmxBCxXghRp6qSoXXnhh5vvLL7/MlClT8nbSqsohh1TJ1cW8+Ovfvfdm7Iw59NBDY+Xht3Np0cLoyfIJcNfnQ58+fQp25OJ93/369Ut0PZRW21Bq4grw9VXVv/BTWGDoElPIPvByBF73sxp4AuOatRNmX/IczJTlakyIyo+Bv2P0m8WS1qygmNHqhpjfy4038jhmu9Z84HnMoIWXX4ZFi6B5c77t2pWLgX/svz/PDBvGjpiAMsMxLkzT3DVdFSxNKyjAp2Dc+6dJHDfKQDI3yYUK8ELxOm9RVXr06MG2225b9llWOfDXv5tuuinzOcyBiZ/69etnLVess846QH4Bvummpuq5HjaT+nH3+3gIMkiLat9eBzJ77bVXovsH5VVO4tbEhSLSHqffFJGjMM6rqhyF7AMvZItJmkzFGF+1wjgQGYFxSL0d8DeM4dV3wFBMNLRCzCRcN6XFEreCNgb2xqz/P4iREosxJs5ccglHYWJmL3OO3QDw+OPwzTfw/feMGzSIm4BpzZqxyukIahpe15cVFOBNgWki8nKKntjiuFE2BxO4SU5L1VmIPURcFXp1Jd+z3XffMG/ZuUyZ8rsbD7dO+wMj1alTJzNzdp9r3C21fhYvXpzVdor1FFmKuBOlJNYaOGbZ9j6go4h8j/He1L9kpSqCQvaBV1qAu6zFuPB8DaiPma0e5vy1BP7s/IEJrPI/zJapiZgFzHxz7LQqlr+Cr4extN8KM+DYHuMwv3XAtSsxWoUPMevXH2Bm026Olxx1VCat14jNOygrh6C78cYbufjii0t+nyqyD/yqEuQZx41yYvyd89lnn83dd9+d+d6uXTtmzpwZWde33357Xn45maG9N89ijBjbt2+fYx9TFchX/1q1+v1VTp48mR122CE0bVCd9ms4vT4e3DRJ4qB76d+/f1a0szBHLuuss05ew8I1a9ZQt27dogeJ5RbgcX2hz1TV/TEOHjqq6h6YMNlVjkL2gZdDgPs9OXnp3r17zrFVGGtq1/lIZ4wV+/OYABtbAAMwpr7jMDP2GZj14Lsw+5x7YSyH2mAEbeIyY4K1dMJYzv8ZaD9qFAwcCPvvz6rNNuMXjBOUxzHagl4Y4f0LxrDsPszob2fMWn835/twjHu+sG4jaBtZoY08H82b5y7N/uUvfykqz4MPPpjBgwdnvoepXOM4sSg1rkc2/1+R2T4HnCCGXYAlqlq0xs6/DHTQQQdlfXdn1lHP0jtLjIs3T++6eBT+MJgHH3xw4nuXg3wC3Ft/W7cOGpoH5+MKw6AZuJvWfa5J27b3fbhOrfz39/LVV18FGvFut912WddVNwEedwYOgKp6W9AFwO2pliYFClkDD4t97WW99dbj119/zTrWtm3b2FtU8lXQE088MeNzOYzJzt9tQF3MLHcnjOe3Lhgh2975C+MXzCz9V+ez+2vqev4aYATtRhgtQA6PPJL5WB8z0PgKY3w31Snjx8CXhAvnOIQJ8DQsir14Zxf+exfK8ccfn9UR7LjjjkyYMCHvNW7UrHIhIssIVmsLJn5RqKtkERmFURA1FZHZwJU41cXxsjgGs4VsBqaqpbIN9a9/zdqLQKNGjbK2gUYN3l323ntvxowZk+jehXbM//73v7OEXpy+phJECXBX+xVnPdn/OZ8AD0sTRVgEsDAbp+bNm7PZZpvlnNttt9345JNPMu21FIGjSkkxtalKLgQVIsDjjP6CrmvSpEkqAjypwFiDUZt7XRY0wLgF7eD5a4WZQbt/6zt/cfkNM9v/EeN+dA6w8xFH0HHffaF9e7Y4+GC+5ve9R2lSrhl4KVh//fWzghiENWqvUHjsscdKXi7fvTcs4tq8pr5qfthZheYfxpw5uVr4bbbZBjADMXeGHhWL+5hjjknsQzxM/Tp16tRMGYLw19n99tuPW2+9NdG9gzjssMMiI6QlIZ/g8f6GKAEe5NvA/wyC2nZahoFeS/hXXnmF+fPnZ7RsQWV3De3cshY7A69OArwyOr8IgtQ2UQI8TuUJslT/wx/+ELtc+UaYaQimlZj15M/zpNkAo0p3Bfl6mJe4FiOE1zj5LHX+gmKlPda3Lx379AHMzNvL+uuvzy+//FL4j/DgbeQLFiwAjKVq2nts01B57bPPPrz55puZ7z179mT06NGZ72Gdgrext2nTpuhy1HR23313Pv88u4a772+PPfbICO6mTZvmzaeQXScPPPBA4PH11su/OOVv23vsUVicmJEjR9K//+9mR2kPZuOq0AuZgfv7V7+bZBFJTYB7IzzutttukYM5V4APGDCAvffeu9oZseV9am7Y0IC/ZUCuPqIK4Bq1/Pzz777NCpmBjx07Nut7kMrNH0IwH0lm4L17l8bN/HJgISYi12eYvdWTMWvYU51jM500YYFO81XwoLX8QvE28sWLFwNG45E2cRpsjx49YuenqtSrVy+rnlVqfbum4Uaoc2dUfsvwG2+8kbvuuitnbdxPlLo2iZV5VF7+dl+o4HX3VLuISOz92V7B78c1SEsiwJ955pnQtH2cwb03z3wCfO7cuWyyySah+SUlqQc81zbpmWeeYdCgQdVuDTyvAFcnbGjA34aqGjl7F5EeIvK5iMwQkUvzpNtJRNY429OKwjVUeOGFF7z5B352CRr9ebeaXHbZZey22245aXbZZRf+9Kc/xSpXvobuv3+Qr+yqQrlcfrrP5Pnnn8+se5div36cBpcv2AHkj5aU7x5WsCfDFQi77rorYDpf7zPccMMNOfvssyMFcFKhW0xa7/kJEybkpN92221j3adt27Z8++23me8iwtFHHx2a/oADDsh83n///UPTffTRR+yxxx6JBHiQ4WcQ7kTEbyTsFeDLli2jcePGqbUFrwDPZzjsso5vi2ocG5t8mtctt9wy8vo0KZlHAhGpi3H13RPYGugnIluHpLsBEze8VGUJ/OwSpr5x9z8GNRS3csYdredr6N5zb7zxBp07d46VZyXI19C9jdBvcBSFX+vgtSy94YYbgNIYAMUJBBHVuUTtYQ27voJbx6ol7nO88soreeKJJ9hxxx0LyieqHiVR58adzTdq1IguXbrk9ANRg0NvPl6Dyyi18/Dhw+nSpQtXX311ZB9Vp06dvANz/xp43AHOPffcw7x583IEuBs97JlnnmHlypU0aNAgtbbgFeBxyum3IyjWSLZly5ZljWtQSpdC3YAZzha0lcCjmC3Nfs4BnsREgCwJUfvAw170q6++yvz589l+++2zjnfr1i0TDziuAI87Ay9mbatjx44FXxuXuA0tboSkc889l7lz5+bEVw5qSGnPwP/yl78EhoVMStAz6dq1a97zluS4z7FJkyYceeSRBa+bRgndJAPoqPbqD4biTx935un/reuss07evqdOnTpMmDCBK664Iq+RnVumJDPwOH3eNttsQ/369QPV4x9++CFg1p2fffZZGjRokNoM/L///W/e814f6JA7+Pa7gw0izoCoXJTyTpHuFEWkBWY/+b3kIYm7xSiSzMDr1q2bE9kIYLPNNstck4YA9zbqqH2W+fB69nJp3z7fxrLkxB1dxh2InH766Wy66aah62Re0p6B+9cVwyikc+nQoUPmcxwrdEs0+SyW01y3fsSzVbLYvFw1rrv/21/2uIM7/++7+uqr8woKb/vr2rUrc+eGb8OPcpCUxIjNZeHChbHyA1IV4FH4B2f+ssSZgQeV9eijj04lWFRSSinA47hTvB24RFXzSoUk7hYDC5LCNjIvhVTofPdo0aIF06dP57XXXivKGllEckaYcX0LB+2RdNl5550zaztxO5y4zzQsXaH79ZMQd6Qc1blEnd9iiy0Kus6STZItRxdccEHouah6tOGG8XfYRdXzddZZh2+++YZhw4bFzjMItz24v32jjTbK+xz851yf4y59+/bNROhL4uEwbn+XJD54/fr1K+nIKOt7voGOS9Az6N27d8Y2o5yUUoDHcafYFXhURL4GjgLuEZHDS1imQJKqPJLsiwy6xs92221Hx44d2W+//RKVw0+dOnXo3LkzjRs3zhyL2xmde254AKpOnTqx9957A/EFeNxnGpYu6HiDBg1i5RmXUgvwyZMnc/fdd3PGGWcEnnctgOMaQtZ2ggR42LO/5ZZbQqOQ+d+7f3+5iMQygIL87do1dmrdunWOsZRLUhW6299ErYFH1e0+ffpkrPrzCfAHHngg61nE7e+827n8+PMo5wzcTyH3DXPXWglKKcA/BDqISFsRaYAJP5oVJEFV26pqG1VtgwnOdaaqPlPCMgWSVIB71eppCPC0cH+Hd8YX9dvefPNNLrroIk455ZRYeaetQg8rX9BzTWuPuUvcMkY18rDOb/vtt+ess86iZ8+eXH755bz00ktZ55944gnOPffcxF7BaitJVeiHHHII//znPyPz9VtViwj3339/5vtxxx0Xem0+u4yHHnoo8t5xBYhfILre0cKI6pd22mmnrLzC6vBJJ52Uk2+cMicR4F6HLmmRb0LiJYm2BcxugErMtMMomQBX1dUYV94vY9xej1bVqSIyUEQGluq+aeBXN7m88sorHHXUUVxzzTWZY2msgaeFWxbv2m6UAN9777258cYbadKkSah3qnXXXTcj7NJWoSfxWZ92EIhijE3q1avHxRdfzPXXXx+ZVkS45pprcvaTt2zZkjvuuMM6cYlJkhm4S6FxDrxCO5+tRNzdJV5uvfXWzCA7rtVz0CAjX9+T75yq0rLl7zEN/QI8jdlwvt/lb3evv/56qjPwLl26cMcdd8RK6w2G42frrXM2TTFz5kwaNcr1MlwTZ+Co6hhV3VJV26vqtc6xex1/yf60J6rqE2ndu5gZb9CebzCOSh5//PGsfYClEuC33HJLovRAxhtYlNV9GEGzlZ133pkrrrgia+9mEH5XoHHvm2+k7idtNVsxKvS6detyww03cOmll9q17DIRFGkwikIEuD//jTbaKHZaL2FCbNCgQXTp0gUgy+VuPtz+w7sWnq/+Jtmx4Rfg7uerr746J23cGXi+NEHPLM02lKTvz+e1z2+7ct555wHZ5c+3F78c1LzI9A7eNaeklSOJ0CtWhX7qqacGHr/gggtiqeCiKHZLw/jx4/njH/8YqUL3emCC+M/FHyDGJWigUCkBHlQW73q8FeDloRC/2VGCzG9ctsMOO+QI7EK1Z1EOfqBwF7pRa+Bx1/Ahdx+4O/AI+t1x23W+GXChAjzunvkk9SOuHcG0adO4/fbbY+dbLmqsAE9SgRs3bpzV0NPex3f33XeHCvC4VuJJKHQG7sdrVJdPhX788ccXfI+tttoq8HhQg05bUBazBu5dO7P7vMuDNy68/1ihKswBAwZkff/oo49y6kWh/gfiuEQ+5ZRTGD9+PKqayKVo1Aw8Cf594K53ONfhipe4M/Ajjzwy9FzQu4rThkphbxT0DF0HQd5tud4ljCA3yTVShV5JBg0alPkcVeHq1q2bpcpKewZ+1llnlWUN3FXxeCm0kTdr1iwrxGmQCt3dY37FFVcUdA8IV3EGWeQn8Ukeh2JU6EmNXyzFU8g+cP+7c9v5nnvuybXXXhvrvnFm0n7OOeecWOp7EWHnnXcGTFjhuORbAw9SfefDr0KfMWMGQFb7HzJkSGbrWpwgTvna1j777JNzLM6gIK6QLHYGHuT4xtvek0wkXnnlldhpC6HGCXB3n7jfejIKr8q9WAG+6aabZgT20KFDgcLUcN68v/vuO3744Ye8AUPckWcaM/BGjRoF5uOq2n777beMUVkpBidBW6v8HvH8dO/enR9++IGffvop1j2KmcEU2qAthZNG6ElXDfv2228zePDgWNfEXaf2Usjg8LrrrouMnhVnG1nSAXWYFbr32GmnncbixYsREbbYYguef/55jjzyyCwh788zDH+sh379+sVqQ8VuTY1L0HZVb55eA8CoGXiaAZ6CqHEC3H2ghQgVt3En2SYQ9uJ++OEH3njjjcyoupBK5a3ULVu2pGnTpvTrFx6KOSjUZr5Raz4vbWFRlNxGffbZZ2fOuc/aDZUYFc6xUKKe4eDBg2natGnsMK9JOtnDDsv2AuwV4IcccggA//d//xcrP0thFCLA0xhcha29en2T+4kqY5hHyLjhckWE3377LVbaKOrUqcNnn32WtXUO8m8ZPeSQQ3jiiSdCA5vkU2P7lyQ6deoU6z3deOONkWmi7u0n6L5Be/a978u7C6nS1DgBHhREPu56+LRp0xg2bBgDB8bf5RYmIBs3bsy+++6b40GpWAYMGBAag9j97XFn4EGqLBd/I/Cr0F988cXMOVeAn3/++QwbNozJkycDMG7cOLbffntuvvnm0PskIUqF5i3zpEmTePbZZ/nkk09ipffj3bLWqVOnHGMnb526++67eeCBB3jiidQ2UVgCCLJCT0v70a1bt5z1cJewycBHH30Uml9UXXW3KOXzgBiFG2a3WNy2fdpppyW+NmztOq6bV5c4zpJOPfVUPvjgg8j8ix3gbbfddgCZpQ0/roDfaqut7Bp4mqxYsYJFixYB2ZVko402Yvjw4Tz11FN5r2/VqhUDBgxINHsvxbqMS5Bv8zp16mS2oPiJUv34ybdVzf8M3HxcX/Tee7lp69evz4ABAzL7ZnfffXcmT56cZY9QDFHP2nu+c+fO9OrVK2+4xnzPpl27dnz22WdcffXVXHnllTRu3DhL9bf55ptnPjds2JCTTjop9szfUhiff/45UJx1dBjvv/9+qLtTbz2ZPXt25nO++PRxtEVvvfVWxsNhXEaMGMFWW21F/fr1YwXeiENYWfMN8F0KMeAMCuiSLx/vrgB34NOuXbvY+ecj6L777rsvX375ZegOIYCvv/6aDz74IGd7X7kpvWVVGfHOmvwv8YQTTijJPeNaVBbygnv06MGgQYMyqmmXcePGBaYPaohhjXPjjTfOu781TIV+xx130L179yw1WNyITMUSd30wH3369GH06NFArgtNP1tttVXWeuJf//pXXnzxRZYuXVql1Gi1hYcffhgof2fpbUMtWrTgm2++CdWCuUTFzK5bty577bVX4rL07ds3E0GvFALcOyO98sorI68NU7PHDU/q3jPuvvENNtiAkSNHsvfee2etRa+33nqZLalJJktB5WzUqFGoMy8XdwB/1113sckmm3DooYfGvmea1KgZuFetWQ6rb4gvwIMq1XfffZdzzH/NrbfemrMdJcr9qHd2nMRVqZcwFTrkrkVFjcLT6nCPOuoojjjiiKLuc/jhh2c+v/7664nuv/766zNp0iRmzJhRsnX+6oCI9BCRz0VkhohcGnB+HxFZIiKTnb/CtylEUGygmTj421Dr1q2JCqoUtCMkbYIEeCF+9b2/77XXXst8jjOTDWv7+bRRQfkGeT0L49hjj6VFixZZoUBnzZqVN/8wguwYgjSfYfzxj3/kzjvvzFnXv+222/K64E2LGivAy+F7HOI7JQhK5x1BJiFsX6p7j+uvv54//elPDB8+PFGwEC9hKnQwFrzehpukwhdDgwYNIpdBovAaqFx44YXFFqnWISJ1gX8BPYGtgX4iEtT7vqOqOzh/fy9DuUqWd9Llr2OOOaYs/Y9fgA8dOpRp06YlzscbwfDZZ5/NfI4z+AmbaccNn+ze56qrruKtt94KTB/H3bLX0DDJ+wrS6qURNOn8889PxRFXFFaAF0kxM/BCCfPe5JZl8803Z9q0aZxwwgmhjTCqPGEqdBfvb6zU+o+fsN/kWolDtgBPO1Z6LaEbMENVZ6rqSuBR4LCIa0pGlJBJQ1OStO1661sp8VtLF9rHeA094wYrKjQ9BAvwevXqhS4phP0ubx9Ut27djPFZ1N5r/77+v/71r5FlrqrUKAEeR3WcNhdffDGQvd8vKMDFOeeck/W9U6dOBd8zTGAG/eawdbIoJxb+EXRQBKGqRthzcSMTnXjiiVmdXliIR0teWgDetZ/ZzjE/u4rIxyLykojkesZwEJHTRGSCiExwDSTT5JBDDsnx05+UqjJA9XPKKafwj3/8g6OOOgpIp5zz5s3LfI6TX6dOnTLBPVq3bh3rHkECPB9h5fDOnuvUqZNZaozaXteoUSO++eabjA3MddddFxigBMLjYlQVapQA9xqWlKvR9erViwULFmRFtTn99NNz0nk9i33wwQdZaqukhI164wrwBQsWcPLJJ+e9h7+R+deLq5Pzku7du7NgwQKGDh1qBXjxBDUsf2WYBGyuqtsDdwHPhGWmqvepaldV7Rq1rlwIIpLjp7+QPJKc33333Yu6X1zq16/PZZddlqnHhU5a9t9//8znZ555JtG1jRo1YsmSJagq06dPj3WNv5yFTgb8Gld30uHOxPPRunXrLEPD2267Dcj1wvbmm2/G3ptfCWqUAK9bty7ffPNN1laPcpC049liiy0K9q8M4QI8qKMJWp+OU15/I/v++++zvidtdN9//z1ffPEFEydOTHRdEvJ1tM2aNUNErAAvntmA1/KnJZBlzq+qS1X1Z+fzGKC+iBSlyw6r83H34T755JO88847Bd07arD6xhtvAMaATFVp27ZtQffx8vLLLzNhwoRYaQuJ0uYlLVuQQu9fiNMbFzcamDePgw8+OHEZTjrpJNasWcOnn36adbx+/foFh6QtByUV4DGsVfuLyCfO37sikt9XZgxat26dN35vJZkyZQr/+9//it4vHKYWD2oITZo0Ydy4cbG2hHjxq9C7deuW9T1qC5afzTbbjA4dOmQCBSTFdQ6TjzgDE+/AKQ1jlVrIh0AHEWkrIg2AvsBz3gQisqk4va6IdMP0Mz/m5JSAqLjZUcKjd+/eOdsx08JVHcdVIcfhgAMOiDWThOAgL0kIsxdKml8hAvyOO+7goosuypsmXzkefvhh5syZk4rGtU6dOlV2uSSMkgnwmNaqs4C9VXU74Bog/dBcVYhtttkmlTUV7+zXq7oPq3y777574u0l/kZ9wQUXJLo+TUaMGJHlB/2LL77gX//6V1Yks1GjRsWa+XifUXVrrFUBVV0NnA28DEwHRqvqVBEZKCKuC8OjgCki8jFwJ9BXi1xzcQW4uwfaxVWjRvkIKIR3332Xv/3tbxkBef755wema9euHY8++iijRo1K9f5x66c7cCjUYC9MgCdxKQ2Ftadzzz03a4bbpEmTHLfFnTt3Dr2+QYMGkXvuazKl3CydsVYFEBHXWjWzz0FV3/WkH49Rx1VLyrkm7FUnnnXWWRm/5PkaUFKVt38G3rhx40TXp8Frr73GO++8k7OfskOHDnTo0IFXX301453L37FbSoejFh/jO3av5/PdwN3+64rBFeC77LJL1vG+ffsya9asUOFaDLvuuiu77rort956K5C/fR1zzDGp3z/uDPiaa65h5513zlrLTkKQAN98881LOgMfNmwYO+20U87xhQsXZuX1zjvvxNZEFFKO6k4pBXiQtWqwc1nDycBLQSdE5DTgNEhXTZUm5dq2BslU6C5J19yjtpG5dOjQIVG+Sdhvv/0Cw4q63HPPPdSvXz+Rq9ZyOfixpIvbsftV6XXr1s2JblVTiCuIGjRoECv2eBhJPDjmI4ngDPM779K+fXu++uqrRMse7iSqOhnYFkspe7M41qomoci+GAEe+LZU9T4c9XrXrl2r5Ntp3749ffr0ScWAJYokRmwuvXr1onv37rFjascV4K4RSSVo3rx5xi1qXLbZZht69+5Nx44dS1QqSylwd0F43SWXi0oJhLRnkkcffXTggDuobZdagEcxfvx4Zs6cmVp+NZVSCvBIa1UAEdkO+A/QU1WLMnSpJCJS9H7TuBQiwBs0aJAouLx/pho2cy1mv30lHCiICE8++WTZ72spDtfgcMWKFRUrQ3VXzYYNdoMEeCE7edJ8Pk2bNk28pu/2UbVJy1ZKK/Q41qqtgaeA41X1ixKWpUaRZB94Ulx1tH9rSVqWql6C1sAsliDcLX+VEOB77rknAAceeGDJ7zVkyBBOPPHEkt/HS1B/UshzrvQA5+yzz2bgwIG1ykVyyQR4TGvVK4AmwD1O0IN4Gx9rOW6ErMGDB2cdT6MB3Xrrrfzyyy85IUtLIcAr3eAt1QfXkClp+M006NatGytXruSAAw4o+b0GDhzIgw8+WPL7eEnLA16l23PDhg0ZMmRIqFe1mkhJdQ0xrFVPAU4pZRlqIhdeeCFHHnlkznp7WoZ0QaESw/KuTeoqS+XYbrvtmDt3LptssklF7l+M46WqTvfu3enfvz8jR44sKp9KC/DaSI3yxFZbEBHatWuX02BKOfIMc3pSjAC3wUQsSdh0001rpZDo1atXSfNfb731MrHWi+Xiiy9m/PjxqeRlicZOn2oQpbSsrl+/Pm+88QY9evRg5cqVmeOFCPApU6Ywc+ZMtt122zSLaLHUOBYvXlylXXn6ueGGGypdhFqFFeA1gHHjxjFx4sSSr9Htu+++dOvWjXHjxmWOFSLAt9lmm5ygARaLJZeNNtqo0kWwVGGsAK8B7L777mWLgOS3WLVr4BaLxVIZ7Bq4JRHvvfde1ncrwC0Wi6UyWAFuKYpyupC1WCylw+9n3lL1sQLckog77rgj67udgVssNYP33nuP999/v9LFsCTACnBLIs4991x+/PF3j7dWgFssNYeavN+9JmIFuCUxDRs2zHyujftyLZaaSqUc5VgKwwpwS2K8Tl0WLVpUwZJYLJY0qU1uSGsCVoBbimLt2rWVLoLFYkkJq0KvXlgBbimKSsVKtlgs6WNtWqoXVoBbisIKcIul5mC3hVYvSirARaSHiHwuIjNE5NKA8yIidzrnPxGRHUtZHkv6WBV67cO2a4ulalAyAS4idYF/AT2BrYF+IrK1L1lPoIPzdxowpFTlsZQGK8BrF7ZdWyxVh1LOwLsBM1R1pqquBB4FDvOlOQwYoYbxQGMRaV7CMllSxqrQax22XVssVYRSCvAWwHee77OdY0nTICKnicgEEZnwww8/pF5QS3KOO+44APr161fhkljKTGrtGmzbroocc8wxjBgxotLFsMSglAI8yMOHf7oWJw2qep+qdlXVrs2aNUulcJbiGDFiBL/99hstW7asdFEs5SW1dg22bVdFHn30UY4//vhKF8MSg1IK8NlAK8/3lsCcAtJYqiAiwjrrrFPpYljKj23XFksVoZQC/EOgg4i0FZEGQF/gOV+a54ATHKvVXYAlqjq3hGWyWCzFYdu1xVJFKNmufVVdLSJnAy8DdYGhqjpVRAY65+8FxgAHATOAX4A/l6o8FouleGy7tliqDiV1u6OqYzCN2XvsXs9nBc4qZRksFku62HZtsVQNrCc2i8VisViqIVLd9vGKyA/AN0Vk0RRYmFJxisGWIxtbjmyCyrG5qtZYU23btlPHliObqlqOgtt1tRPgxSIiE1S1qy2HLYctR82iqjwzWw5bjnKVw6rQLRaLxWKphlgBbrFYLBZLNaQ2CvD7Kl0AB1uObGw5sqkq5ahOVJVnZsuRjS1HNqmVo9atgVssFovFUhOojTNwi8VisViqPVaAWywWi8VSDalxAlxEthKRyZ6/pSJyvohcJSLfe44f5LnmryIyQ0Q+F5EDi7j3UBFZICJTPMc2FpFXReRL5/8fou4rIl1E5FPn3J0iEhTdKWk5bhKRz0TkExF5WkQaO8fbiMivnudyr+eagssRUobE76BEz+IxTxm+FpHJpXwWzvWtROS/IjJdRKaKyHnO8bLXj+qIbddVo13nKYdt25Vo26paY/8wvprnAZsDVwEXBqTZGvgYWAdoC3wF1C3wfnsBOwJTPMduBC51Pl8K3BB1X+ADYFdMWMaXgJ4plOMAoJ7z+QZPOdp40/nyKbgcIWVI/A5K8Sx8528Brijls3Cubw7s6HzeEPjC+d1lrx/V/c+268q16zzlsG1by9+2a9wM3Md+wFeqms+702HAo6q6QlVnYQIwdCvkZqr6NvBTQP7Dnc/DgcPz3VdEmgONVPU9NW90hOeagsuhqq+o6mrn63hMiMdQii1HyLMIo6zPwsUZ3fYBRuXLI6VyzFXVSc7nZcB0oAUVqB81ANuufz9W1nYdVo482LZtKEkdqekCvC/ZL/BsR9U01KPOaAF850kz2zmWFpuoE0rR+f/HiPu2cD6XqjwAJ2FGdy5tReQjEXlLRPb0lK8U5UjyDkr9LPYE5qvql55jJX8WItIG6Ay8T9WsH1Ud266DqWS7Btu2y962a6wAFxOruBfwuHNoCNAe2AGYi1GvgFFV+CnH3rqw+5a0PCJyGbAaGOkcmgu0VtXOwAXAIyLSqETlSPoOSv1u+pEtCEr+LESkIfAkcL6qLs2XNOSelaqvVQLbrkNuWtl2DbZtV6Rt11gBDvQEJqnqfABVna+qa1R1LXA/v6vTZgOtPNe1BOakWI75jmrEVdcsiLjvbLLVYKmVR0QGAIcA/R0VDY4a50fn80TMesyWpShHAe+glM+iHtAbeMxTvpI+CxGpj2ngI1X1Kedwlakf1QTbrn1Uul0797BtuwJtuyYL8KwRmPsgHY4AXMvF54C+IrKOiLQFOmAMCdLiOWCA83kA8Gy++zqqlmUisouzjnOC55qCEZEewCVAL1X9xXO8mYjUdT63c8oxsxTlSPoOSvUsHPYHPlPVjMqqlM/Cue4BYLqq3uo5VSXqRzXCtmsPVaFdO/ewbbsSbVsLsMqs6n/A+sCPwEaeYw8BnwKfOA+wuefcZZgR2ecUYdGL6VjmAqswo6mTgSbA68CXzv+No+4LdMU0gK+Au3E85hVZjhmYdZfJzt+9TtojgakYq8hJwKFplCOkDInfQSmehXN8GDDQl7Ykz8K5fg+MOuwTzzs4qBL1o7r+Ydt1xdt1nnLYtl2Btm1dqVosFovFUg2pySp0i8VisVhqLFaAWywWi8VSDbEC3GKxWCyWaogV4BaLxWKxVEOsALdYLBaLpRpiBbgFMYwTkZ6eY31EZGwly2WxWArHtuuaj91GZgFARDph3FN2xkR7mgz0UNWvCsirrqquSbeEFoslKbZd12ysALdkEJEbgeXABs7/zYFtgXrAVar6rOOs/yEnDcDZqvquiOwDXIlxrLCDqm5d3tJbLJYgbLuuuVgBbskgIhtgvBStBF4ApqrqwyLSGOOGsjPG49BaVf1NRDoAo1S1q9PQXwQ6qQmRZ7FYqgC2Xddc6lW6AJaqg6ouF5HHgJ8xsXQPFZELndPrAq0xzvXvFpEdgDWYgAAuH9hGbrFULWy7rrlYAW7xs9b5E+BIVf3ce1JErgLmA9tjjCB/85xeXqYyWiyWZNh2XQOxVuiWMF4GznGi4iAinZ3jGwFz1YQNPB5jGGOxWKoHtl3XIKwAt4RxDVAf+EREpjjfAe4BBojIeIyazY7OLZbqg23XNQhrxGaxWCwWSzXEzsAtFovFYqmGWAFusVgsFks1xApwi8VisViqIVaAWywWi8VSDbEC3GKxWCyWaogV4BaLxWKxVEOsALdYLBaLpRry/43CVigm9tPwAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABksElEQVR4nO2dd7gURdaH33MTl6BkxLAEE6IYEEQERVwMGDBhDph2lRVddNXPsCou6uqa1pxAFF3RNaAYMAdYFVFUVEARECRIVFDyDdT3R3cNNT3dPT35DtT7PPe5Mx2qa7q76lfnVNUpUUphsVgsFouluCgpdAYsFovFYrGkjhVwi8VisViKECvgFovFYrEUIVbALRaLxWIpQqyAWywWi8VShFgBt1gsFoulCLECbskrIrKViIwXkZUicqeIXCMiwwudr2SIyBMicpP7+QARmV7oPFk2PUREiciOhc6HHyJyg4j8J9vnikhvEZmfWe6yi4i0EZFVIlIasD/te+GTVtrP3Aq4i4icJiKT3Ie2UETeEJH9Pcec7d7skzzbe7vbR3u27+lu/9DYdqOIfCsiNSJyg+f4g9x9K0TkFxF5SUS2NfbfISIzXPH7XkQGZPMe5InzgWXAlkqpy5RS/1RK/QlARNq596ss6ORsFpx0UUr9TynVoZB52ByxZTTh99Qp0duUUErNVUo1UkrVFjovYVgBB0Tkb8DdwD+BrYA2wIPAMZ5DzwJ+df97WQr0EJHmnuN/8Bw3E/g/4HWfNKYBhymlmgDbADOAh4z9q4F+QGM37XtEpEf4r8uMMDFNk7bANGUjCFlSwJbR1MlB2S06gizoTQal1Gb9h1PQVgEnJjmuLbAB6A/UAFsZ+3oD84GHgUHutlJ32/XAhz7p/Qe4IeR69YBbcMQu6JhXgMtC9h8DTAZ+B2YBfd3tc4CDjeNuAP7jfm4HKOA8YC4wHngTuMiT9tfA8e7nXYB3cCrO6cBJAfl5AqgGqtx7frDn2nPda69y//bznN/XPbfa3f+1u30b9178ilP5/jnknhyBUwmvBBYAl3ue4TU4HoI5wOmevN9kHmvsmwNcDnwD/Ab8F6g09h/lPocVwCfAHoV+74vpj027jF4BLAR+Bs513/8djfTvcMvFYjfv9YGGwFr3t+qyso1bll5w8/078Cf33j3mXmMBcBNQ6qZ/NvCRe43lwGzgcCNv7YFxbll5B7gft6y6+7u77/MKnPqgd9RzPfcgsOwB+7i/vcw4vj8wOSCtJ3AaVGNxGlMHu/fmRZwG3Gzgr8bx3YBJ7v1aDNzlbm/nPouyZL8HT33gbpuDW8e615jg3qeF7rkVxrGxZ55y2Sh04Sz0H44o1JgvSMBx1wGfuZ+/Bf7m8wL2ACa6244A3nILUeTKAceyWIFTOKuBswPyU999GfoG7O+GIyaH4HhatgV28b5c7vcbSBTwJ3EqivrAAOBj4/hd3TzWc4+ZB5wDlAF74xTC3UIK2E1Jrh34LMzjjW3jcKyxSmAvnILaJ+D8hcAB7uemwN7GM6wB7nJ/14E4FUAHb77xF/DPcCqKZsB3wEB3397AEmBfHME4yz2+XqHf/WL5Y9Mto31xRKOTW45GES/gd+M0AJoBWwCvArf4vYNG2agGjsUp8/WBl4FH3PRbue/pBe7xZ7vH/9l9N/+C05AQd/8Eozz0whEvXVa3BX5x72EJTj3zC9Ay2bk+96E34WVvGvENi5cIaBThlNPfgJ5uvhoAX+A00iqA7YEfcbwoOp9nup8bAd3dz+2IF/Cwe+H3LOawUcC74DR2ytx0vwMuMY5NW8CtCx2aA8uUUjVJjhuAU8Bw/ye46JRSnwDNRKSDe/yTqWZGOX0vTYAWwLXA9wGHPozT6n0rYP95wAil1DtKqQ1KqQVKqaC0/LhBKbVaKbUWp8DsJSJt3X2nA6OVUutxrMs5SqnHlVI1SqkvcVq7J6RwrbQRkT8A+wNXKqXWKaUmA8OBMwNOqQZ2FZEtlVLL3fyaXKeUWq+UGofjQj0pMQlf7lVK/ayU+hWnot3L3f5n4BGl1ESlVK1SaiSwHqdAW6KxqZbRk4DHlVJTlFKrcQQYABERnHfnUqXUr0qplTjdB6ckyd4EpdTLSqkNwJbA4ThisVoptQT4tyeNn5RSw5TT1zsS2BrYSkTa4Fi/ujyMx3mvNWcAY5VSY9365R0cS/aICOcGEVT2RrrXQ0SaAYex8Tn7MUYp9bF7D3bHaVQMVUpVKaV+BIYZ96Aa2FFEWiilVimlPvUmlsHvAUAp9YVS6lO3fpyD06A6MOr5YVgBd1qNLZIMnOqJ40J51t00CthdRPbyOfwp4CLgIBzhSwtXCEYCY7x5E5HbcVrtJym3CefDH3Dc5ukyz8jLSpwCpV/6U4Cn3c9tgX3dQT0rRGQFjsC3zuDaqbANoCs4zU84FoIf/XGshp9EZJyI7GfsW+5WpGY620TMxyLj8xqc1jw49+cyz/35QwrpWjbdMroNRjnDed80LXGtR+O9edPdHoaZXlugHFhopPEIjiWuib23Sqk17sdGbt78yoOZ9ome93p/nAZAsnP9CCt7/wH6iUgjHFH/n1JqYUha3nuwjSef1+CMowDH0NkZ+F5EPheRo3zSS+f3xBCRnUXkNRFZJCK/4zTEWkQ9P4zNfpADjmtkHY7b6YWAY84CBJjsNIxjDMDp2zR5Cqcf9kml1BrP8alShlPYtsTp30VE/oHTqj5QKfV7yLnzgB0C9q3GqRw0fmLrrXSeAYaIyHgc19wHxnXGKaUOCclLVIIqurBjfsaxqLYwRLwNTn9f4slKfQ4cIyLlOJX4cziCCtBURBoaBbUNMCWVH+DDPOBmpdTNGaazObOpltGFbHz3wHnfNMtw+rl3U0r5vctBZcXcPg/H29MigvfCL29+5UGnPw94Sin1Z++Jrqcu7Fw/AsueUmqBiEwAjsPxrD0UkIbGew9mK6V28j1QqRnAqSJSAhwPvOAZ5AjJ70VcfeoOnDMbWg8BXwGnKqVWisglZMlDudlb4Eqp33D6Rx4QkWNFpIGIlIvI4SJym4hU4rT6zsdxi+q/i4HTvS1vpdRsHPfI3/2u56ZdiXPvy0SkUo+UFJHjRaSDiJSISEucPpev3JY+InI1cBpwiFLqlyQ/7THgHBHp46a3rYjs4u6bDJzi5qUr0V6msTit2aHAf133FMBrwM4icqabXrmI7CMiHSOk6WUpTr/i9iHHLAbauQUOpdQ8nIE0t7j3cg+cVvXT3hNFpEJETheRxkqpapyBK95pIv9wjzsAp3vg+TR+h8kwYKCI7CsODUXkSBHZIsN0Nxs24TL6HHC2iOwqIg2AIUYeN+C8O/8WkVZu2tuKyGHuIYuB5iLSOOS+LQTeBu4UkS3dPO8gIkndt0qpn3Bc4ro87I8zul6jreLDRKTUvUe9RWS7COcGEVb2nsSZGbA7qXlNPgN+F5ErRaS+m9dOIrIPgIicISIt3fu9wj0nrk6I8Ht+ACrdcl2O061Sz9i/BU5ds8qtg/+SQv5D2ewFHEApdRfwN5wbvxSn1XYRzgCQY3Fawk8qpRbpPxyBLMUZiOJN7yOl1M8BlxvmpncqTgWylo39tdviuMlW4gzC2YDT6tT8E6flN0OcubCrROSagN/0Gc7Asn/jDOoYhyPA4Az22QFn5Ok/CO9P0umtB0bjjOocZWxfCRyK41b/Gccl9y/iX+BIuC68m4GPxXF3+fUT60L9i4jo/utTcQaH/IxTuIe4fXJ+nAnMEceVNRC3b81lEc49+RmnATBQpTZuIAGl1CScvsz73bRn4gwesqTAJlpG38AZqPY+znvxvueQK93tn7rv67tAB/fc73G8Yj+6ZSWoS2YAzuCtaTjv3ws4bu4onIYz+PJXnMZFbLyA23A+BscdrZ/HFWzUlMBzA0hW9l7Cqb9e8riyQ3H79vvhNOhm43g2huOMzgfn3ZgqIquAe4BTlFLrfJIKuxe/ARe66S7AscjNOfqXu+evxHm3/hs1/8nQow0tls0aEemNM6p0uwJnxWKx+CAis3BG0L9b6LzUFawFbrFYLJY6jYj0x+lz9nopNmvsIDaLxWKx1FnECXO7K8587Q1JDt+ssC50i8VisViKEOtCt1gsFoulCCk6F3qLFi1Uu3btCp0Ni6XO8cUXXyxTSiUL9FFnsWXbYvEnqGwXnYC3a9eOSZMmFTobFkudQ0QiR4eqi9iybbH4E1S2c+ZCF5ERIrJERHwjWblBLe4VkZki8o2I7J2rvFgsFovFsqmRyz7wJ/AJoGBwOLCT+3c+ycPjWSwWi8ViccmZgLsrtvwacsgxOJGTlLsCTBMRiRohyGKxWCyWzZpCjkLflvhVY+YTvIKUxWKxWCwWg0IKuN8SQL6T0kXkfBGZJCKTli5dmuNsFQ9r1qzhgAMO4N577y10ViwWSxZZsmQJQ4YMYcMGG7fEEkwhBXw+8UvpbYcTyD4BpdSjSqmuSqmuLVsW7SyZrPPUU0/x0UcfMXjw4EJnxWKxZJGBAwcydOhQ3n/fRg61BFNIAX8FGOCORu8O/JZkkXaLh9pa70qYFotlU2Dt2rUArF+/vsA5sdRlcjYPXESeAXoDLURkPs4SbOUASqmHcdaXPgJnubw1OEtfWlKgrKzopvFbLJYI6LJtG+mWMHKmAEqpU5PsV8CgXF1/c8AKuMWyaWIF3BIFGwu9iCktLS10FiybISLyBxH5QES+E5GpIpIwCMMGasoMLeA1NTUFzomlLmNNuCLGWuCWAlEDXKaU+lJEtgC+EJF3lFLTjGPMQE374gRq2jf/WS1OdOPcCrglDGuBFzFWwC2FQCm1UCn1pft5JfAdiTEcbKCmDLAudEsUrIAXMdaFbik0ItIO6AxM9OyKFKjJxnjwx1rglihYAS9irAVuKSQi0gh4EbhEKfW7d7fPKQmBmmyMB39sH7glClbAi5iSko2Pz0ZssuQTESnHEe+nlVKjfQ6JHKjJkoi2wK0L3RKGFfAixhTt6urqAubEsjkhIgI8BnynlLor4DAbqCkDbB+4JQrWB1vEmAK+fv166tWrV8DcWDYjegJnAt+KyGR32zVAG7CBmrKBdaFbomAFvIgxBbyqqqqAObFsTiilPsK/j9s8xgZqygAr4JYoWBe6D7W1tSxfvrzQ2QhEKcWyZcusgFssmyh2FLolClbAfejZsyfNmjVj7ty5hc6KL4MHD6Zly5a8/vrrsW1WwC2WTQc7iM0SBSvgPkyc6ExpfeuttwqcE3/uu+8+AJ588snYthdeeKFQ2bFYLFniqaee4qWXXrIWuCUSVsA3Ea644opCZ8FisWTIgAEDOP7443EG+sP111/P7NmzC5wrSzY5+uijY883U6yAWyyWzYYJEyawePHiQmcjJbRH0LJp8Oqrr2YtLSvgFotls6FHjx506dKl0NlIitn3nS1rzbLpYQU8BFtwLJZNjwULFhQ6C0kxZ5iYERctFhP7ZlgsFksdwxRwa0hYgrACXoTYFrnFsmlTiOljSik+/fTTvF/Xkj5WCYqQhg0bFjoLFoslh6xatSr2OV8N9mHDhrHffvvxyiuv5OV6lsyxAh5CXXVdWQG3WFLHie5aHPz222+xz/mqh7777jsAZs6cmZfrWTLHCngEXn31VQ444IA6M/glSMA/++yzPOfEYikeimnJ3RUrVsQ+58sC19cppvu0uZPTN0NE+orIdBGZKSJX+exvLCKvisjXIjJVROrkikVHH300H330EYMHDy50VoBgAT/ooIPynBOLpXgoJmEyLfBjjz02L9e04VuLj5wJuIiUAg8AhwO7AqeKyK6ewwYB05RSewK9gTtFpCJXecqUpUuXFjoLQLCAr1mzJs85sViKh2ISJlPA84W1wIuPXFrg3YCZSqkflVJVwLPAMZ5jFLCFOJ08jYBfgToT/Nfb97Ru3boC5SSe8vLyQmfBYik6ikmYvv/++7xf01rgxUcuBXxbYJ7xfb67zeR+oCPwM/AtMFgplVDKROR8EZkkIpMKaQWvX7++YNc2KabBOBZLXcFPmO655x5GjBhRgNzUPbQFbgW8eMilgPsNnfQqz2HAZGAbYC/gfhHZMuEkpR5VSnVVSnVt2bJltvMZSF21wMMsifHjx+cxJxZL8eBXbi655BLOO++8AuQmNaZPn57za1gXevGRSwGfD/zB+L4djqVtcg4wWjnMBGYDu+QwTxlRDAL+zTff5DEnFkvxUMyW5S675L5a1C50K+DFQy4F/HNgJxFp7w5MOwXwRgiYC/QBEJGtgA7AjznMU0bUFRd6WEX0+OOPWxe7xeKDFaZwrAVefORMwJVSNcBFwFvAd8BzSqmpIjJQRAa6h90I9BCRb4H3gCuVUstyladMqSsCHlbAvvzyS0aPHp3T69sGgqUYKWYLHMhbuc7FfRo7dixr167NerqbOzmdB66UGquU2lkptYNS6mZ328NKqYfdzz8rpQ5VSu2ulOqklPpPLvOTKnU1EluyFvLUqVNzdu3169fToUMHzjmnTk7Zt1gCKXbLsn///jlNv7q6GoCamuxOBJo0aRJHHnkkV1xxRVbTLUY++uij2OdsGEI2ElsK5EvQN2zYwD333BPYn13Iiujjjz9mxowZPPHEEwXLg8WSDsVugecaLeDZjicxd+5coDiWcQ1i4sSJvPzyyxmnc8ABB8Q+Z6MeL8s4hU2Mqqqq2GdvCylfAj5q1CguueQS3zxAYSsiuxKapVgJqzBra2tjg7g2V3Tdt3Llyqymq4PSNG7cOKvp5pPu3bsD2e0+tBZ4lhk5ciT16tWLffcW+HwJ+LRp00L3J2u5DRkyJJvZiWNzr+QsxUtYw7dY+mdz6X3TFniQgE+fPp3OnTuzfPnylNLVcd2LWcBzQTaepRVwg7PPPjvue6EEPJmFHeXB52qgmWmB28FslmIirNxku983iHXr1vHxxx+nff69996bxdxspLq6mueffx4IFvChQ4cyefJkXn/99ZTS1i75Ro0aZZbJTYxseDqsgIdQKFd1MoGOIuC5mrNuXjtflZ7Fkg3CynO+3uW//OUv7L///syePdt3fzIjYfLkyTnIFdx4440sWrQICBYWff9S9cLphn6xDyLMNi1atOCNN97IKA0r4CEUswWeq8UQzDECxeJ2tFggeR94Ppg0aRIQLJLJvFqrV6/Oep4A5s+fH/ucbQHX59kGfyLvv/9+RudbAQ+hrgp4lMrGCrglV4jICBFZIiJTAvb3FpHfRGSy+3d9vvPo5cILL+SPf/xj4P58iYuuU9IdS5IrATfH/vz+++++x6Qr4Po36z72YuPWW2/NWdqZaoodhR5CXRXwumKB15XQspa88wTOQkRPhhzzP6XUUfnJTnIeeuihhG2mtZsvC1xfx68uiTKmJFdLBldUbFzFOahhrvNeVpaabOjz6kogrFS5+uqrc5Z2pppiLfAQiqEPfM899/Q9xlrgllyhlBqPs/RvUWNa3fmywHWd4lfGozTM82GBBwltpi70YhXwXGIFPIcUgwUetDZ4rgq6FXBLRPYTka9F5A0R2a3QmfHDFO18NdbD3Mne+sbPa5APAQ/yrFkBr3tYAQ/BW6AWLlyYl6lT2XCh50pcTQHPVWViKXq+BNoqpfYE7gNeDjpQRM4XkUkiMmnp0qX5yh9QWAs8ioAfc8wxCcfkqh/ZG//C735k2gdu1h11mbVr1zJnzpy8XMta4Dlkw4YNCYL95JNh3X7ZIRuD2PIh4EGDXSybN0qp35VSq9zPY4FyEWkRcOyjSqmuSqmuLVu2zGs+TTHMtwXuJ5BeAfeLepgrATf7wMHfCg/rvw+j2CzwE044gfbt2+fFWLMCnkNqa2sThPDBBx/M+XWzMQ88F4NdamtrGThwYOx7rvrZLcWNiLQWt2YSkW449cwvhc1VInXNAvc2Ivws3XwJuJ/YhvXfh1FsAj527FjAf1BhtkXdjkLPIbW1tbz33ntx2/LRD15XXejvvPNO3Hcr4JsnIvIM0BtoISLzgSFAOTirDQInAH8RkRpgLXCKqoNh+wrRB56KCz2fFrjpQodwCzxVAdfHF9tiMrW1tQnPYMOGDVkNJ20FPIcMGzaMefPmxW3Lh4BnwwLPhYB7+7CsgG+eKKVOTbL/fpxpZnWaQljgmbrQc9WP7G1fhVngqQpxtgK53HLLLVxzzTWsX78+wWOQC/zq2Zqamjq1HoR1oYfgFW/Ij4An65sztwUZNrlwoXtb6X4CXlNTQ//+/XnggQeyfn2LJZuY5WzkyJF5uWamFniuGhr62vff77S7smmBRxX+xYsXM2zYsMD9t912GwCrVq1K2LdixYqsx6VIVvdmA9sHvglivohRWup+vPHGG1nvr6msrIz77leQXnvtNUaPHs1FF12U1WtbLNnG9FL5TdnKBXXVha6v3aBBAyB7Fnh1dXXMa+Cty6ZMmYKI8OWXXwJw1FFHcf7557Nw4ULftLTY+dVrTZs2Zb/99oucrygEWeDZxAp4nsnHetimgCcr6EEvwDfffMOzzz6b1Xx53VZ+bno/UbdY6iKF6ALKhgs92+t1m9fWAq6XADVJxwKvqKiIeTe8v/nll18G4MUXXwTg+++/B4LrtDABh+wv9FJbW5vwW60FXuTkw4Vutn6TCXiYlf3mm29mNV/ea/m5rOyCBZZi4OOPP2bQoEF5v26mFjhAu3btsp4vfW29Zrd2pZuk2wfuPT8I3fgPqkPyFUhLs2HDhgRPhF/ebrnlFoYOHZqvbMURaRCbiLQE/gy0M89RSp2bm2xtetTW1vLaa6/Ro0cPks13TcUCDyMoSlu6eK/rZ4FnIuCTJ0+mqqqKbt26pZ2GxRKF/fffvyDXzYaA//pr9qPY6nz17NkTgPr16ycco/MXtf7R64trvHVDkCAnq0OmTJlC7969I+UhE2praxME3K8Rcs011wBw/fWpr9mTLwt8DNAYeBd43fgLRUT6ish0EZkpIlcFHNPbXbFoqoiMi5rxYmP48OEce+yx7LvvvkmPDbPA169fH7kfLNVFB5LhfXn9BDzd1vmGDRvo3Lkz++67b9GuWmSxJCPMhR5lHniu0PkqKytjp512YsmSJQndYdoDF7WMn3TSSXHfvecFeQ+DIjxqsTvooINYtmxZpDxkwgknnMBpp50Wt+25557ju+++y9o18jWNrIFS6spUEhaRUuAB4BBgPvC5iLyilJpmHNMEeBDoq5SaKyKtUrlGIUh3Ufq3334bgNmzZyc9NmwQ2xdffBF5cFq2LXBvAcymC90Mo7lmzZqYK89iyTbt27ePVA5zQTYs8Fygr11SUkJ5eTnvvPMOnTp1igspquuddOtAXTcsXryYa6+9llatnOreK2KdOnVi4cKFtG7dOjCtfKyEOG5coj05ePBgIHsBXfJlgb8mIkekmHY3YKZS6kelVBXwLOAN7nsaMFopNRdAKbUkxWtkjV9+iRYoKhMLUzN37tzQY8MscL9zBwwYQNOmTWnfvn3c9mJyoZu/yy5TWlhEJPeTbAtEZWVl2gKUDVJZzCSffb7mOuV6sOpPP/3ke0y6daCuG4YMGcLw4cN5+umnA4/1m8Jrsql46XIq4CKyUkR+BwbjiPhaEfnd2B7GtoD5FOa720x2BpqKyIci8oWIDEj1B2SLY489NtJx6QYQMAvnmWeeGXpsWB+43/SOkSNHsmzZMrbYYou47dkOdqALbtOmTRPyqUlXwBcsWBD7bFc5yx9u2WtnfO8GfF64HOWWkpKSrAv4hg0bUo674FdOChkYSZftkpKSwHojUwtcX0NPRw0bTe/XfWCKnVkPFjLIX6EXaAkVcKXUFkqpLd3/JUqp+sb3LZOk7de08N7pMqALcCRwGHCdiOyckFCWVix677332HrrrWPubJOPPvoo9rlXr14J+5s1awYkzoWOivmSjR8/PvTYMAs86IUpKSlJaM3lygLXDYVs9oGbv8ta4HnlFuBNEblQRG4GHgbOKXCeckZpaWnWpwJdfPHFNGzYMKXGq58F+fnnie2mxo0bc9ddd2WUv2R8++23fPrpp4AjkkH1Rqp94F70/dH1R9hiSH6WqVfAJ06cyJgxYwrqUcl0Qae8uNBF5L0o2zzMB/5gfN8O+NnnmDeVUquVUsuA8cCe3oRSXbFo9OjRfPjhh3Hbli5dysEHH8yiRYuSWtt6JKbJGWecAZDW4ImXXnqJd999N/LxpoDpIAcarwVuNgwef/zxuH256gNv2LAh4Mzb9LZ+07XAzfOsBZ4/lFJvAQOBe4BzgSOUUl+Gn1W8lJeXZ939+uijjwKprSLol4eff/ZWj8587EsvvTTDHIazxx578MYbbyAiiEjOLXAt4LrM+4mYn6fRK+Ddu3fn2GOPLWiMdbOuSicGRq5d6JUi0hxn0YKmItLM/WsHbJMk7c+BnUSkvdundgrwiueYMcABIlImIg2AfYGMhvgtXbqU/v37c9BBB8VtP/nkk83fFZqG3xSKrl27Asn7r738+OOPHH/88ZFFSSkV9/Kec068MRS2ok/nzp3jBoPlSsBbtNi4MuRnn30Wd0y6Am4WQivg+UNErsNZs7sXcAPwoYgcWdBM5ZCKiorAUc7pCoEWtqAIYhqz7PqVk/Xr1weOPG/UqFFaeUsFfe1kAp4tCzyMZF64ZPcy21x22WW+2818RvldXnJtgV8ATAJ2Ab4EvnD/xuCMMA9EKVUDXAS8hSPKzymlporIQBEZ6B7zHfAm8A3wGTBcKTUl/Z8T7NL44IMPYp91tCGNt+XrFfDHHnuMU089lXr16vHLL78EVgB+eD0Byaiurg7t00nW52K6+LM9ilW3vJs3bx6borZ8+fK4YzIt3GBd6HmmBdBNKTVBKfUITlfWJYXNUnYxw/o2bNgwsL863eUudblo37596LubLEBTVVVVwnoDmilTpjBgQG6HCOkymK8+cM1NN93Ev/71r7htUSxwTapGVTrocT9evM979erVgQ0Kv/uWUwFXSt2jlGoPXK6Uam/87emuOBSKUmqsUmpnpdQOSqmb3W0Pu0sO6mNuV0rtqpTqpJS6O6NfQzTR8gr4fffdF7i/efPmnHvuuZSVlcX6wVMZbHLrrbdGPhaSVyLJ9mv3NqRf0IIwB7ocfvjhANx4441xlZG1wIsLpdRgABHp4H7/SSl1SGFzlTr33Xdf3Fr1JubCOieccEJgGukOSDIb3GFu1CgCHiSebdu25bDDDksrf6li1qErVqzgggsuYMCAAVmbRuZ3/lVXxYcJSSbg5rPq2LFj7POgQYOSekLSYeutt/bd7hXwRo0aJcwd1+TC1R/VRFsgIsd7/vrUxXnb5kMOihluipwfpoCbwVB069ivle23bdasWcyYMSNCrsPTMUkm4CLC3//+dyD7riXteTCnmnzyySexPsBMrmkt8MIgIv2AyTieMERkLxHxdnXVCZYtW0aPHj0Sphj9+OOP/PWvf+WRRx4JPf/yyy/37R7TC5mks4JflGU4NeZ7ffvttycI2fr16wMtcIAOHTqknL9Madq0KY8++ihPPfVU1lzoURoAfnVAkAVu8uCDD+YkRK6es+7FL5/eCHQav/uWr3ng5wHDgdPdv2HA34CPRSR8TlSeMYXAfMimEGtLOgizkJv9yNr1431ol112GfXr1+err76K257OgLdULXC/vjH9W7Mp4E888QRnn3024Ai4WdFMnz499tms0FKZ3mEt8IJxA07MhhUASqnJQPvgwwvHk08+yYQJExJGZe+www6Rzve+t+D0W2rrypzKGIXPP/88weMXZsV7y64580WfGzb1s0uXLnTp0iXO4swnujzfdNNNaZ2fSiz1TDyRYfs+//xzZs2aFbg/KG9t2rSJ+67vRSp1VSEFfAPQUSnVXynVH9gVWI8z6CylCG25xhQtXZhefPHFOJdVspvWtm3b2GdTwHXh974gukLxVizpzE9MZn3q33TkkUfSrVs3hg8fnnCMFvBsumzMwXQlJSVxFaHZODLvfyquNr/nZskLNUopb59Q4SbWhqDFMpX3ynRpm54jzQMPPBCrnJMFD/Hit+BHusKi94dZ4AA77rhjzkddB9WPuj5LNxa7LuNR8p+uBW5ex49u3bqx4447AjBz5kzOO++8uOP9xjd16tSJ3XbbLW6bfgejeAtHjx4d2DeeLwFvp5RabHxfAuyslPoVqFMhcUyh1g/Z2+/ldZV5XygzjKcpTkEWuMYr2GECHlQIorY8jz76aCZOnMhOO+2UcIweTZpNC9zsdvBWhObIWfOaUSsapVSct8KuaJZXpojIaUCpiOwkIvcBnxQ6U37o9yzsvfKWuT/96U9x55vv7dixYznzzDPZbrvtAJg/f35K+fnxxx8TtoU1Pr31hnfEeTILXJ+TawEPqrfMutXP8pw6dWqoRbphwwaUUpEaYKkMYvMStf4444wzGDFiRNxMGr8xDO3bt6e0tDTO26mfQTIB/+GHH+jfvz/nnHNOwjTcbBBVwP8nIq+JyFkichbOKPTxItIQ1/VWVwhyoZt4BdyMCPTRRx/FFaIoFrjG++KHvajNmzfnueeeS9getQ88rKWeCwt8m202zhr0WuCZCvjpp58e55bbVMIkFgkXA7vheNSeAX6njo5Cj2KBe8vmlCkbJ7V4o4zpz7pCTcUd+tVXXyW4wP2uH7bPu9hQFAEvKysr2Lxnc8aJd6DYb7/9RqdOnWLdbEHU1tZmxQIPe1ZBAh50XTNdPwtcPyczVHVUC1zXZZ988kns+uZgxHxZ4IOAJ4C9gM7Ak8AgNwDLQSHn5Z0orlhvQTIfQo8ePQIFPJkF7iWZK1gvQxeUl7A0wwQ8Fxa46ZXw9iWaFZEpvlEK6rJly3jmmWfitlkBzx9KqTVKqb8rpfZxgyX9XSlVJ0cRagEPe6+8jXOzUV1dXR1XtvV7GzY4de7cufhFf3zxxRd9r59KH7hXwLULffTo0YwePdo3jdLS0px7qILmM5v3Z/HixXH79H1PFmWypqYmUr3wzjvvhO4PC8MadH+8s4f0u5FMwLUGmF2rUS1w3dBYsGABY8aMAeCQQzZO8sjLamTK+aUvuH91Gj8Xetgx5vennnoKEQkUJ9MCX79+PcuWLWPbbb3h3TeS7OH6tbaTudB1yzdsta5cWOBmQ8Yr4AsXLqS6upqFCxembIFfcsklCdu8BXDZsmXUr18/q66nzR0ReZWQvm6l1NF5zE4k/CzwN954I+6YMMvMW7b1O11aWkpZWZlv2Wvbti0lJSWRl8JMxQL3pqEt8OOOOy4wjVy40L3R6aJEu/TWbX73o3fv3glxMGprayO50N9++22mTJlCp06dYttMsQsLYRok4Ga3pbnSmJmun/HgbejBxrotmdfGbBDowb6mxzJfoVSPF5EZIvJbCouZFIQoLnRvK1mfox9UFAv8xBNPZLvttotz/aYypcSbtiYsSExtbW2sv2afffYJPC4XFriZV68rcsSIEVRUVNC2bVueeOKJuPwmw29EqFmIVq1aRcuWLZPOHLCkzB3AncBsYC3OzJJhwCogo2BKuUK/11oAFi5cyBFHxC+S6LXATbHYc889fS1wcCrnoPKayqC5VPrAveUzyiC2XLjQvZ6AKAIeJFymIJmftaET1QKHRJE207v99tsDz/MT4dmzZ8eNF7rnnnt8Gx1+z1rfH3PGQVQL3KzP9buRzXXeo7rQbwOOVko1TmExk4JgFooJEyb4PpAlS5bERm+vWrWK//73v8BGkQor5OAUtFdffRWA6667Lrbf+0KkY4F7p6KZVFVVsW7dOiorK+PCmXrJhQXuHbSWrKKJen2/l9ksgHqgkH7516xZw4ABA3jzzTeTpm0JRik1Tik1DuislDpZKfWq+3casH+h8+eH1wI3xVrHbvA2gE1RPu6440Ib56lEYguywF955ZVA97c3fW/5iDqILdsudK8hcfrppyc9J0o3Ym1tLT179uTXX3/lyiudyUpVVVWBDaLS0tI4j1wqES9N/ATcO96opKTE14XuV2dlIuDmO6rrMFNTMg22FVXAF7thT+s85sMbNGhQ4Mv+5z//GYDbbrstts3PVeJngUed352qBf7zzz+H9iHp35KsBRdkga9atYrJkyfzww8/hJ6fLK9RBTxKheht/cPGfP/4448J/Va33norTz31VCwSnCVjWorI9vqLiLQHkptgBSCsD1xPBfO+c7o/97bbbqOsrCy0cZ5KAKEgAX/ooYfo37+/7z5v3rzlc+3atQUZxOYtg23atAn8DRqvBe4VorVr1zJ+/Hhqa2tp2rRprIG1du3awPzX1tayxRZbxAKheMt+Ju5m77lBbmy/vOm6zxTwqIPYklngmS6FGlXAJ4nIf0XkVDMaW0ZXzhHeQpGstbpkyZLYZ7NPTBN7aEpR6e7/97//HSkvqVjgNTU1bLvttrz3nrPI24gRI4D4uMFeV38QQYFc9ttvPzp37kyHDh344osvIv0GjdeFHkXAdas7Sl5NqqurmTdvHjvssEPC0q7ffvtthNxaUuBSnAVMPhSRD4EPqKOj0L2hPM2Kd8stHYeg1/qqX78+ffr04fLLLweCu8fCXOhheUkFb31gisW6deuYMWNG0mhrQRb4hAkTuPzyy2P1h2batGkcfPDBoVHm/LrygoyEE088MZZfE/1b9DPRIaT1MqV6/MqaNWtCGyClpaWx7kGvgEe1VqOE0zYtcPNZ5sMCN+9tphZ4pEFswJbAGuBQY5sC/H1FBWTD6tW0ArYA9tt1V9SHH3KU+31Lz3/OPZfzx4/nOPf7HhdeCBs2wKpV/IZzc8refx/KyqC2lvtwlm2qmT+faqAG4v5XvPIK7LgjVFaydOVKOs2dy3vAOvdvvedz6zlz4IYboF49akUYaByz85QpHAqsrK6GmTOhaVNq3MopqoDrl6ympoYBAwbETal5//336dKlC+C8WGeeeSb9+vWLLZvqxXx5lVKR+slGjRrF008/HSmvJtXV1YFCvWjRotD0li9fzjnnnMP555+f0D9aTPzwww/87W9/Y+jQoey99945u45S6k0R2QlnwSKA75VS6a3qkWO8oTjNyk9b2n4DVCsrK2PCEjRA1XShL168mCZNmqQ03zwKYX3gM2fOpLq6mj33TFhNOY6gQWw9evQA4M4774zL26WXXsp7773H+PHj6du3r2+aqQi4ngsd1hhRSvHss8/G7Te7OMJEq7S0NDZA19sHrq+x1VZbccopp3DPPff4ppFsLXF9HX2fzIZCmID7WeqZCnimFnjUUejnJD+qbtDzmmuITXCYNg2OPJJXgw5+/HHiqsaffop9jHXwKwXuw1IiiFKOsPult2YNuIOyWhLBD/nTT/CPfwBQD3jI3HfXXbwFzrXdwRctgeXAshUr4JBDoE0b569tW+jYEXbbDRo1ir0g77zzDtOnT/edqqUtFoBnnnmG5557jueeey5QwM0Xu6qqKjC4f6r4VRQ1NTU0adLE93izsC1fvjxhlaChQ4cyZswYxowZk3HhKCTHH388U6dOZfz48aEjbrNEF6Adzmu9p4iglHoy1xdNFS14zzzzDKNGjYp7J/X7vGLFioRzTIEKs8B1Zdy6dWt69uyZsGpWpkydOpVmzZrFRkP7rQ/uF6vdxOtCX79+Pa+//nrg8Vp0wsqC374gK1YLuNeFbubp5ZdfTuimMwX8xhtvDMxLaWlprDHmfe/182/Xrh37779/oID75T1MwA899NDQOO9hFnjQYL5ff/2VZs2axTUo/frA8yLgIrIzjr5spZTqJCJ74AxqSy8obg5Zt8UWLAFWAusqKthp7715+9NPWYkTocL8/+/hw3nixRd59o03WAnc98QT7H3ggdCoEY1btqQG6LH//rzzwQdQWoqI0HqrrfhlyRLKgHKI+3/ckUdy/7//DevX03X33anEEeZK98/7eZd27bhgwABYv57Vv/7KU8OGxY7p06MHX3/yCU2BLu3bI8uXw4oVNAGa1NbCu+/634D27endogXXAhOWLGGfXXbhJZ9jzbmeYXMqNd759d7YwOkSZIEHrWVuFqK99tqLn4xGF8Avv/ySlXwVGr1EYpRnkwki8hSwA86CJrr2UjixHuoUZmWolIr7rgX8+OOPZ9y4cfTq1YvnnnuOb775Ji4AR1AfuHcQ28cffxyal3Qq3m+//ZbOnTszadIkfvvtt7gyFbV7zOtCf+CBBwLXqgb/qXcrVqxg1qxZMQ+cn2ila4GLSFy3pEa70JN50EpLS2PT+swR/WYAGBGJM0C8RBHwoAZKWB94Khb4lClT6NWrV4LhA4VxoQ8DrgAeAVBKfSMio4A6J+DvX3YZZ57prK/StGFDvn3hBfq5oRK9/Pu88/h22jTecueSVnXoAO3aAY7Ig+POxihUzVu0YPGSJdTofQZLGjSIWcuRepjnzKGqRQsuvvhifp03j78MGxbb9cHNN3PEIYdQU1ND1fTplJeXM2fWLLrsuCOdW7fm3REjYO5c52/2bJg6Fb77DmbPZuvZs9Ft3A3Ab+ecw0PAOJwOzsXEVxRR+oy8L+J2222Xcr8hOMuPTps2jVGjRiEigQIeJWqS3zrAmc6rrCvkMdpWV2BXlYIiicgI4ChgiVKqk89+Ae4BjsDpejtbKfVlphn1xqw2v5sN0k8++YRevXrFRjSb83/DLPA5c+ZErlBTEfC1a9dy1llnMWPGDHr16sUHH3zA3nvvHfeM9ecoAq6UYuXKlTRq1Chp2fWzwPv06cOXX34ZanUGCXi9evUoLS0NtMAXLFjgG1NeW+Bz5swJza++bkVFRUzwvv32W/bYY4+43xQUbEbvT4ZSyneUe1QLPNkgtlmzZsUJuIjEGpzmvX3iiSe49tprk+Y3iKiD2BoopT7zbKuTAas/+OCD2OdVq1aFRvX69ddf4wZ9+Fl93gIdFkDlm2++SSWrAPz1r38FEuePVlRUJMR+rlGKX4HZDRrA4YfDBRfAzTfDqFHw9dewerUj5KNG8XSLFkzEeUhN581jIE6czEXANGDPRx+FF16AZct8K4Ha2lreeuutmMvarCy1m/KKK65I+fdef/31PPvss7F7FTQK3W+gzjvvvJO0cJr7vRG0lixZwvvvv58z1/q6det44403srIcah6j0U0BWqd4zhOAf4eqw+HATu7f+Xh6h9LFfCe8FqxpkXkHo5oVZpAFDs64A69HJ4hkz8fc/9prr/H888+zfPlyysvLfad5pjrDZMstt+S2225LGtxIl23znf/yS6ctpeu22tpazjjjjDjrOCgfzZs3p7KyMibga9euZfr06XG/5eabb044L6qAm7E4dJ04YcKEhN8UZoGbYyT0cs7e5aQXLFjgOxsnW4PYzj333LjjysvLY8ZOWVlZbMzCrFmzMqqPogr4MhHZATdyk4icAGR/1fQsoEdvg1OIwgraPvvsw9dffx377ifg3psbJuDTp09Pu+L1CrhZ0L2r+AS20svLYddd4dRTeWz33ekONAaGn302V+Is+LwK6Ah0eO89OPFEaNmSE2+6iX/jmFS4LtsHH3yQvn37xga+mC/2zz//DGQWkCBsdkCQBX7ooYcmHYVuFtSePXvG7dt5553p06cPb731Voq5jcagQYM44ogj0mrYeMnjgi4tgGki8paIvKL/wk5QSo0HwpakOgZ4Ujl8CjQRkYwHTZj35Pfffw8UcG+Fa1a8QRa4juEdZZbDXnvt5bsKoIlpoZp96eXl5b7TPKNa4H369Il9fuaZZxIEZP/946fw6/Lg51kwl/ds1qwZW221VWxfUNlu27YtFRUVsXpuwIAB7LLLLknnbOuGxsMPPxx6nE6noqIiJnheAyOZC13f19tvv52dd96Zr7/+OmHGQtDSsakI+JQpU0Lrkg0bNlBbW0tJSQmlpaVxLnTTcPRbQCUqqcRCfwTYRUQW4EwzGZj2VfNImDXkXU3Ir/CkYoGDI27JKt/zzjsvYVskCzxiKx02Fph1wBeVldyGYxY1A3oCn/XrB3/8I9SrR/MFC7gEnMF+zZrBAQfQ4I476A587k4DSVfAkzVo/ApMdXV12gJmFlTd+tZob4LfIhTZQDceR44cmXFaeRyAdwNwLPBPnMhs+i8TtgVMP+p8d1sCInK+iEwSkUl+McdNolrguhzr99N8J4JGoXfv3h1IfGe81NbW8vXXXycVLFPAzYFpFRUVGVng++23X9x3b/3mNULCBrGZhoH3ukH5OOKII+JCy77rjq9JNlZDW+DJ3msdY8O0wL3u+saNG4e60PXv0uMYvFZ//fr10+oDN8/p06cPu+++e9hPYeXKlbF7W1JSEudCNxt13oGXqRBJwJVSPyqlDsYZCL2LUmp/IDhgbwF5++234wpm2PxHL34WuFewkwn43LlzQ+Pjtm3bljvuuCNhexQLPOpAF4ivNMyKsRpnrcj/+/131LvvwooVvH755dwITABnGt1HH3He3LlMAJYBHHccR8+fz45uGsPcvvoo+Qi6/7pi8ZuOlkq4xaB0w4jS558q5uj4MOsgVbIZdtEPHZHN+5dhsn4PwbfmVko96i6i0jXZ1ESvBe43iA384zlogixwvaSoX2hfk6jdI6bAm+9bkAUetWyb77dSKiE/3gZz2ApuF110EZdffrmvgPsdr42K0tLS2H6d32RWpBbwZOhBqKaAewNnPf7446ECru+B2X1g3rf69euHBpMBOPLIIznllFMA/2lkyQbjgTNLRt/b0tLSOBe6iXe+eyqkVJO5q4/pptbf0r5qDjnkkENYvXp1bBpSKuH4zAKtH5Z3LfFkAj5z5szAQl5aWsqsWbMSXmalVCQLPKqbDeItDT/LZty4cU54wcpKFnfsyPVAD4BffoHRo/lvs2bMAJoAvPwyV8yZwwxgbevWHDVmDDz3HA0jVGbJBNyPVCxwb4u+UAJuhp8sBgHX6xn4/GVjnYP5wB+M79sBP2eYZlxFt3LlysBBbF6XpylGQevYN2zYkPLy8qQVs1m227kDXv3YYYcdYotXmKIa1AeeStkOyk9paSmffvppXD9+mAU+YsQI7rzzTl8B9/Oc6bTMueg6v8ks8GQR5jR+Frj53Pfff39atmxJaWkp/fr1801jxowZLFmyJK77wHwHwsLm6uPuvPPOWLhqfW9SrTdWrFgRJ+BBsdBzboEHUGeH+1ZUVMReGFNAogZAAZg0aRJ33303f/rTn+KOSSbgEyZMCLTAy8rKKC0tTbD0q6qq8maBm0ycOJGzzz473qXfpAkcdxzXNW/OzjiTg69u3pzRpaX8AlQuWgTDh8PJJ3PxjTfyOXAj0A3/FyLMA1JVVRXrE2vXrl2szzoVAffeN6+Af/jhh2y//fb873//i23LhoDPmjWLHXfckSefdGZbmXNxMxVwc6WkVCv0qOj1DHz+srHOwSvAAHHoDvymlMpozExtbS333ntv7Lv3HfG60D///PNYF5kpXqaQeBfeaNy4se8UKPAfdZyscfX5558D8e+o2TD3s8CjNNjM+sPMz5ZbbklNTU2sYTFs2LCYRRvmus6GgHtXHUuHVq1axZZYrlevXuy+BXkzWrcOHnt53nnnxVng5r02Gwde9O8yLWbt7g4yDoYOHeq73bTAvS50k0IJeNJOOhHpKyLTRWSmiFwVctw+IlLrDo7LCrqg3n333bFtTZo04W9/C3YcmAVj7733ZvDgwQkPLZmAL1iwIOlKPd4016xZ42uB+0VUg2iF3Jya8N13/mHsKyoqAvtrdcXwE3DrL7/Qv7aWVsD0//wH/vlPOOggaktK6ApcC0zEMbGGAUcDO22zTey3BTFw4MZhFNdffz3/cIPahMVL9uJN33tvDzroIGbPnh0XOz0bU80uvfRSZs2axVlnnZWwL6q7MIiDDz449jloPnwhEZFncHpcOojIfBE5T0QGioh+oGOBH4GZOK/EhZle0/vOV1VVhQp4t27dYvtN8QorO40bNw5s7OrgI2bZTta40hW2WbZNF7pfH3iUBpvZf2oKuLnA0Q8//MD5558fW1sh1wJurkKoKS8v55xzosUAe+ihh1i8eHGsEW+KrFnGoza+165dG+eBMX+PKc4aPX7FFHD9rLUxFHTtoKBWVVVVcRb47NmzY2mbbL/99n6nRyL0boS52YBtkpxbCjyAM3ZqV+BUEdk14Lh/AVkdGqwF3Bztd9xxx3HnnXcGRliKUrEnE/Da2trA/qAgq3LNmjUJL1R5eXms8tb7Uinkbdq04bXXXgs9Jsyt5edi2gBU7bEHXH01vP8+w//1Lw4H7scR+tbAn4AxwDcLF/Iq0Ojpp2HBApRScW6sn376iccffzz2vaysLOYG9bpHwwhbctDETC8bFniqsaVTwcxrrvvA00EpdapSamulVLlSajul1GNKqYeVUg+7+5VSapBSagel1O5KqUnZuO4NN9wQs7rCBNwnv5HS33LLLVm8eLHvvrFjxwLhFvhZZ50VN0BS588r4H5rFaTiQtf1l1IqrpyaFmnU9cuDfktUAQ97P6uqquJmBYXhjQAZRcDDflN5eXmcC938PSUlJQn1m/ZC6mulIuBB9ah23etR6BrvM9511wRZjExoTZbEzZbsTesGzHQHwFUBz+JML/FyMfAi4O+7ShO/m6oXIQlaiCNKQTcF/JZbbknYX1tby/z5833PDRKl1atX+7rQdZhQb+jFqG7VZOFOwwQ8qB8/7toNG/ImzgNsB+yJY43P23prKpXiKKD9v/4F223H1xUVfHTUUegVeY87Ln4MpDk1RI/ejILXAg4ScLPAZkPAw9Z9zqbb+9dff+Wkk07KWnrFzJAhQ5g8eTLg3H+zUm7VqlXsc6ripWncuHHggCK9PUjAb731Vu6///64ris/C9xvbAuk5l3T43JWrlwZlx/zHnjfwWT3wFsm/EZY62P8LPB0MH+rt9GbqQVuCrjXhW72R3sZNGhQ7JioAh40F19PI9MudHN7tsj+aJ6NJJ1KIiLb4oxmD50cmMpUE41XnA499NDYjQ566cwCEIQp4M2bN0/YX1tb6xuJKIwlS5bE+lI1FRUVMZfY1VdfzdKlS1OywL151Rx11FGxz2ErigXF3zYLnbey+Qa4Gfjozjs5bt99+ROwrGdP1peWsldNDb3eeIMf3ONuAMwqoqqqKi4GctiyqiZmfzFE86K8+uqrSb0TyQgT8GxbzXp5RcvGcu3tAzcHsXkF3K/C3HbbxFltYd413TduutDN53zeeefRqFGjpAIeZIGnUrbvvfdezj33XObOnRvnMfAu+WtiBm3xw3v8lVdeyYwZM9hxxx1j28Jc6F6irNioXcrevEO8gJt94FOnTo19DmuUVFRUxPWB62ex9957+1rgXtIVcHMuvSng5v3NZpCmXAp4lKkkdwNXKqVCza1UpppovAJu3mS/Cnbo0KEpu9D9Fh6oqalJiPCj44Z369bNN81p06bx6qvxS66YAv7+++9z4oknptRK9+YVnNGZxx57bOx7Oq3nMAE30/2tQQMeA7698Ub+euqpHIsTXHsFjnAPwRHyH4BbgSbTp7Ol4UJ/6KHw4F1mxWIS5RlOmDCBfv36ZdQSNitlr2clj2FQNzt0ufa60P3iVGu8Ff2PP/4YJwQaXV78ukCWL19OTU1NoAWuy1K6FngqFm1ZWRkHHnggGzZs4Kuvvkq4njdt2HgPggZMectyvXr12HHHHX3XzY4i4CeffHLCNm/d/Yc/bJyo4BVHM5CLaYEvXBhtLOT69evjXOjm3PAo9aefgAfVLTo+fPfu3eMCgz311FMMHz6ckpKSuN8XpAPpkEsBjzKVpCvwrIjMAU4AHhSRY7NxcT2FQ5NMwNMRRbMv3Rxw9sknn8Sdc9111zFq1KgEkdZ8//33sc/bbLMNH330EaWlpXGDUsaNG5exBd6qVSt222232Hc/K9JvSpuJee2ge+ad67qhspIxwFlAK+Aw4FGcPpOdgCuB42+7jUa77cY9wN6rVyed4mAuV2hWVqkMUMtkoRDv1CCTsPtnyQwt4EOHDo0boArEvFjJBLx9+/a+1rbuwgmaHrZq1apAC1y/A+YAxnQs8Kj1kM7rL7/8wj777MPYsWMTFv8w0Y1V75xqv99iYpb3VATcz7s3f/581q9fHxO8MLwCfswxib2vYRb4a6+9FluBUfeBN2nShMrKykhueFPAdT1/2GGH+R6rtWXt2rVx90N7ztatWxe7vz169Mjqeg25FPDPgZ1EpL2IVACn4EwviaGUaq+UaqeUage8AFyolHo5Gxf3Vs5mwfJ7WdMRRbO1rVtVtbW1sUhlmsrKSk499dRAF/1nn20MM//VV1/FRmJ6gxWk2u9k9gPp9PbZZ5/Yd7+BWBs2bAgciQvx965Xr1506NDB97pmJWXmtxp4G7gA2Bo4EGfVi98bN0bmz+evwHicQXG3Q/xyrwYtW7aMzfVfvnx5bHsqhSOTAAphIv3hhx9yyy23xFn4s2fPZsiQIXF5taSOGThEW5//93//BzgxICCzPnBwynXHjh0T9m/YsCFugGo6Fnh5eXlsholZR2XSOO/bty+HH354pHEAQav1BV03zAI/8cQT+eIL/2Wb/ARcT++dN29ezJLefffdfYOy1K9fn7Vr1zJu3DimT5+esGxwKmgXeliAHy+lpaWx1dr0fT344IOZOHGib17BEXC/tFeuXOkblz8b5EzAlVI1wEU4o8u/A55TSk31TDfJG6aA+wlUqi1fcF5I3Q/eu3dvwOm/9aafLG29uMDWW28dVwi9o+V1hZCK61sXXBFBRCgtLeX6668H/NeyrampCWylQ/xvad++Pd9//31cvzokTpUJGpW9AUesLwHuu/xymDiRfwGzcVw3l+Os6jYdp898F881mjVrBsSvNpUNAVdKJY0sFSbgNTU1XHPNNbGIdeC414YOHRqb52pJDxFJeJ/0cpp+rmlIvsa2RotibW2t73Ki3gGqfha4eS1tQZremoqKCkSEFi1axIlpqo1zsx7Srmm9CqOZniaZBR5FwL2D2F544YXA/IUNkG3SpElsxPxnn33mWx83bNiQNWvWxOpVvwZB1IbZhg0bqKqqiqUR1QJ/4IEH+OKLL2JR+sB/nISup9etW+d7H6uqqnzj8meDXFrgKKXGKqV2dqeT3Oxui0038Rx7tlIq+I3IEFPA/QYwRBVw8wHV1tYybdo03nzzTY4//njAmXPt7RNNlrYWUu/D9760eg77lClTIuXVxHzxdOFKR8D9xNib7zALPDDdigro1o2rgO2B/YB7cVZP2xmnz/w74Cvg/4CKhQtjz9T8HdkQ8IsuuogtttiCadOmBZ4bxU3+8ssvxz7rQVDerh1L6njFQb8HQQL+1FNPRUpXl5GqqqqYd8ektrY2bglbP3Ez3/VFixZRXV3NkCFDYtv0/ubNmzNs2LDYIirputCBWEP2wAMP5JBDDqFjx44J90Cnn6oFnsyFHkTUhkhlZaWvODds2DBu8Fp5eTmPPPIIL730UqR0TbSA6/cmSES98QIqKyvZe+94H6BfY1ALeHV1ddKGUNFY4IXGO8UrWXCNdAZ0rV+/nlatWnHYYYeFPpioD817nNcC163/dETALCR+Ueo0++23X1wgES9RBFxHnAOn0kt2b3v37h0X1AXgU2AwzsCJg4HHcAbA7YUTNKB5ly78Z84cBgE17spC9957b+TKGoIF/MEHHwTgkUceoba2lquvvjoh0lSUFYT80k82tc+SnCAL20/AO3bs6Dvi3A8tiuYAKNg4paq2tpaZM2fGtpeWlvKXv/wlML158+bx1ltvxazfLl260LVrV2Bj0BUdSCkTC9ycDdOyZctYABETHZ9izJgxvukFXdcvcp0W8LB6LdN+Xm2Ba8rLyzn//PPjBuF6ueGGG3wDyuj58vq3BOXbvGdBx/jFENlqq63429/+xhtvvBF4XrrhWJOxyQq4NwRqMjdaOi0jc0BYLgQ8aJrXNtuExtDxxSxQYRZ4suUU/Qq6d5uIxLZVVVWFxpe+8MIL+eCDDwIDcdQC7+EEiNkKJ5DAs4CqX589V63ifmDvfv2o6t2byYMHo4xRtmZ4Uz/8BrGZoluvXj2efvppbr31Vg466KC444Km2Zlkc0WxPK5OVufxxijwWjemhy2Vcm1a4CaDBw8GHCv2U3d1PnDelQceeCBwNsPs2bPjLPlJkybFGgPaatak2gduGiRmWnr6lVfAL7jgArbYYotAAQ/q5jLrzVQEPFMaNmwY985HCY40ZMgQ38iINTU1gRa42QAzn3vQb/PTERHhzjvvZM899ww8ryhd6IXE21eRLJh+Ki/jwoUL+fLLL+OmMoWd7/fQ/AZueAuvt7WnB7c99thjkfPqR5iAJyOKBa772gEuvvjiUKv4rrvuinztKpxRkKcC6+fO5dbdd+dVQJWUUDFuHCOAxcDLwMnAdkkGvni7UtasWRNX4d5+++1xLtN0MSv4UaNG8eijj6achp2alhz9Ho4aNSq2LRsCrtP4/fff4xp4X3zxRWxsiR8zZ86MdUd5LUNv2U7VhW6WOXOAV3l5OdXV1Sm/L0ENBzOfpoBXV1dTVVXFDTfckNJ1ouL1mPrdl6iN2oEDBwb2gZu/z6wPg4Q2KIpnsvOsCz1FysvLueoqJ/z6H//4R99pCCapuNBbt25N586d47aFPRi/Fvq4cePi4nP7Hed9WXShTBbONRn6RU5lqVWN333y5rOkpCR2XFCfmzcvUenWrRuXXHIJlS1a8On223M0MPaxx/hq0CDeA8rZaKV36tOHUUA/wK/55hVwM7CExq+RE1RxHHbYYXFzXfVxXkv/ggsuYPDgwSnNQ7cCnhxdBs0xIqmUa12uzPdi6623jqWbzrRDPY7COzXNW2Z0CNao+TWP83aPeefIp5qeiWlxmlak7p9OJmjp4l1FMswlf/rppwcuKKKZNWtWzHDRi8xA/L2LMpbGa8BEDYNqXehpcMstt6CU4r333osLGuBHMqFJRpiA+xWmzp07M3bs2DgxnjFjRtwxXnFLZxS6xnwhdbqpLLWq8XsBva1l0wJPFT8XmKZ169ZMnDgxFuVJVx4ry8v5dLfdOBgn1N9fcVbaKFm7llNxrPZFwHCgD6BzlmwlM/APfBF03/70pz+xww47JGz36wu/9957A+MC+JHN8IubKpnEd4BEC3zevHlMmzYtlob2gKWCfleSdY+98cYbQPQKPii2drYtcDOfusuwtLQ01viPOsI/Vbyrwvk1mvW2Pn36cN1114Wm98MPP8RmFpj1sfm7U/VI9ujRI2mXo8YcwZ9NNmkBT4V0rFGTsAcTVpjCWrBBbrZMF8vQgRQymQdt4hVw0wJPlWHDhjFp0sa1L8wWrjdNc/6lFtpFwH3Aa9dcAz/+yFXA10BT4DzgXRw3+xPAHyZNAkOM/SoJPwEPCoVYr149unfvnpBe0H02p78lw1rgG3nggQd8t/uJXyoVph6HoZ/vdtttR5MmTTKqdPVgx2QzTDRRB3+Zv9VMO6gPPBnJBHz//fePTRsrLS3NuQV+xRVXRD421QFz5r0zp7ClOrunrKwscoNL1wHWAs8RF16Y2YqHqVrgmrAWrLeQpzrQJQgt4JmsQ2uSTQu8vLycLl26MG3aNE4++eS4aSNBAr5u3boEkWzbti20b8+0fv3YC2c5vKE4c8qb40SFO2bkSFSLFnzVpg0TL7iAWp8wjWbgFb2+dJCAV1ZWxnl6kgm4WfHce++9DB06NNA9bwV8I2a86WSkUlZ0uejVq1fc9mwIeJgFrp95uuvIe93pyVzofjNyko1C79u3b2x8SDIBz4a3aOutt+bFF18MPSbdgZ2miC5wZ7AAsanA6aSTDL2kc9DSzumyWQq4d0QxJMbpTZV8WOA6wlu2BDxXFvhOO+2UkMdU72/Hjh159tln2XnnnTn99NOB+EAVsPH+rF27NuG36Oehlwn8Dmcu+S7u31XArBYtkHXr6DxvHvs++ih7HHIIX+JMUzsYqCR+yt5pp50GhFvgfpZVMgFXSjF48GCGDBnCu+++63usFfCNmN0Ufl0WJqmIb0lJCd9++21C10YmAh7kQjfLdnV1NS1atEhYUjMqpkeuQYMGKKVCu8f85lIns8BNsUom4NkKFdqvX79Ia2Wnej3zeD3DwOThh0PX1uK2224D0rOms93lsFkK+JtvvulYaFkkXQEPe6DewqGtwXRc6OZLq2P3JhuUM2fOnEhpmwL+6aef+rodMwmF+Pjjj/PVV18ljHg1XehekQybtjEdR6R3XLaMJ26+mQuAN4AN5eV0xgkU8w6wHHjEdcMfACz56Scg3AL3q9CCBFynY+4/9NBDfRsBtg98I3vttRdTpkzhnXfe4e233w49NtXKvVOnTgmWcKoV9aRJk2IzRXRjIMwC1yurpdswN8/TjfOwaY49e/ZMGPSVzAL3BjnR725lZWXst33++eehYZhTpby8nHPPPTdw///93//Rtm1bjjjiiJTSNd+J/fbbj+eeey5uf7IGm47MFvRe/OTWE8m4+eabA6f1RSV7CxcXERUVFbRp0ybyjY5Cui70MGELWmc2Wxa4FxGJK6g63GEyTAHX53jz6Pc7o1o25eXl7LXXXgnb9VS8r776itGjR8ft04MSk7nZVjRowKM4i6u89fzz3HbssRwCHIITh/1g9w+gatEi6N6dxh07cjxOsBkz6r03qlQyF7p2r3oj3/lFCrQWeDy77bZbXByGID744IOMr5WqBd6lS5dYV4oeWxPWB65d3tkQcF1neAV8zz33jK2UVa9evYQVsZJZ4Gaj1bwfLVq0oLy8nNraWpo3bx63AFM2CGuA7bbbbpGNDBPvAMCg2T7Jzg8ScL8GeN++fXnzzTfjGuLZCKu8WVrguSCskB966KGB+8Jcy0FCmysB33///eO+R7X0TQH3G20pIr5T3+65555I6Qeh0/SKN2zs20om4GZhXYsTNOYqoAvQEmc++QPAZNzW7sSJNH3iCV4EFgALgdeBG4Hm48fTLElwGBO9Cl1Q6Fpz6pEV8MKRjgvdKwr5ssC1gHvfOe9gUK/4JJtGFrQKW+vWrWNWeqb1UrYwI9P5YTYKysvLE4yLZOt1JwvK4rf9ggsuALLvSbMCniXCCnmYuz6sxZpNATdf2qB0t9xyy9gAnj/84Q+RXYd+K72ZeWzQoEFCq7Rr164MGjQoWuYD8ItXrYlqCZiF1RvhaxnwHM6KPJ2Bvdq2hbfeYtEFF8Rc7K2BI4BrgW0vvpgjLryQpTgr+Fw8dy6MHEnD6dPxG+kwYsQIwH8KoxnNDqwLPV3CQp1GJR0B93aNJesDD4ujnQy/7jGvBe4Nj+y1bIPKuu5OMBsE5m/ZaqutkoYozQapDFgbO3Ys++67b8J2LdTmby8pKUmIipdsnQN9r4K8A2GzIbIdUdEKeJYwX96zzjorsvUa1loMit+e6TSyoKh01dXVPP/881x22WUx1+PIkSNp06ZNaHpmAfCzwLfZZps4Ab/ssst47bXX0s6/xs+qf+yxx7jiiitig1OSFZirr7469tnPdW3y7U8/MalZM+addx6HAs2A07t35wTgFmD9gQdStcUWtAAOBQYsWQJnn83FTzzBKpy+9xdwVlY7Adi+upr33nrLd/6pXrVKYy3w9Dj11FMzTsN8l/XqWMnwinGYBf7jjz+GrtqXCkECfs4558R933nnneO+B4mRLmN+At6wYUMaNmwYy3cuGpnpDIjr1q0bJ554YsL2CRMmAIl1QlBY2yCSudC9208//fTY+2AFPAfo5QgzwSygV1xxRWwQi7mkpB9hVmTQC5Kpqyoo3erqalq1asUdd9wRG907YMAA/vznP4emZ1q7fqsytWnTJq7CuuOOO1KaChSE37Sb7t27c9tttwV6GcIwLfCgivqoo45i3rx5sWv1GzyYF4FrgKpXX+W9Z5+lDU40uGtxIsJNBRTOqmr9cUbDPw98D+zfty8HX3opz+FMczsVx9pv4qnMMw00tLngFZFkixhFwSzbyRp5Gu9UyrAwydrrlQ0XdNAgNhFhzJgxXHnllYBTJtetW5fQF+4lTMB13XXCCScAwWN2CoGfkaKF2vuOeAU8mQtdE0XATz/9dP7zn//kTMDrRqdFgbnjjjsyTsO7NvCZZ55J//79k1Yg6QhZpi70IIJe3GQvnSngfjF/U3HHp0LY2ryaVAqMFvBzzz2Xhg0bJqxABs5MgP79+wPOiHvTRduoUSNKy8qYB8zDiQCnqQA6AJ2A3Y3/7YB68+eTYC+sWsWyn39mEo7QP3XAAez966+QYujZzQ3ve56NaTvmu+ztZgmjsrIycBpZKnOxU0H/Xr/V8o4++miOPvro2Pd69erFykc6FrgeRHrXXXdx1VVXZTTTJAh9/TBDxw8/Adf31yvg3mOTCbi+Z1EE3NulaPvA6yh+re0orf9WrVqlfK1suNr8COr7SSaCZuHyCzbTokWLlGOeR2H33XePiakmynWuv/563+3aamnRokWk9ZEhvmILC2BTBXwLPINjrR8NtAcaAS9dey1nADcBL+JY7FVAi9Wr6QtcAty6Zg3UkUFCxUQuLfA+ffqEnmd6gbzvhZ+HKBsCrtOI6ilIJuB6waY//vGPsW36t2gPWFlZWVorJEbh/PPP59577+XSSy9N6bywBlIyEU0m4Pr8KAKuV8W0LvQ6jl+rKwrekd9eTjvttIR+8lwNFknXAhcRevXqRceOHWPWuJnHpk2bcvnll1NRUcG1116bvQyTfJUnb96HDx/OP/7xDzp27JiQlnaNN2jQILAy9d57bzS7oGcTVMGtBhZuvTVPA9fh9I13Atq3bAnTp3MMcCVwh5O4bxqWYHIp4MnGcaQq4Nko1/q9DQoIFESQgG+zzTb8/PPPDBkyJLZNGxDpRo5LhbKyMi6++OKkq0l6CVvtMZmAJxvnoM+PMojtgAMOSOnaqWKb9FnCO7IxKpWVlWy//faxMJ1enn76aWpra+MEJR13dCYudD+x8/Lhhx+yYcOGWCVkegmaNWvG9ttvz5o1a7Le+GjUqBH/+9//YgXFa4GbAl5TUxO7vl9B0st8NmjQINCC8ebfGykqSKhbtGgRi6Tnxe++/7x0Key8M6+w0RV/jVJZi3K1uZBtF/qLL74Yi0mQLA64KSLeBmE6YzSikGr5imIRbr311nHfdaMoHwKeLukK+KOPPsohhxwSmnYqFngq104Ha4HngFQr2WSus2yIXiYCfuKJJ/Lggw+GrrzjdR+bA1p031iuPAfmtcIqVfP6YaO6wyxw7/ZTTjmF+++/n6lTpwLO6F49PczEnO8/cODAuH2XXHJJYF5Mog6usWwkmwK+6667sueeeyZd2VBjCpz33fcb8JXqEqB+pOqG1w3OVDwV+thcNUKyQZiHI6zs+wm/l2QC7lfXWhd6EZHJ6jhBeOOAR2X06NG0atWKZ5991nf/scceG/sc1AcuIvzlL3+hU6dOka9rFqBcDG4xMSstbwV2xBFH0KFDB/7617/GbU+22ENUF3ppaSmDBg2KC5ThnbID8RV2lPnvXpfhiSeemLIbcXNnzJgxWelX1s9cl+upU6eyePHipOeZjbYoLvRsCHiqjeSRI0cycuTISFHtNFrA6/L76CfEup4Ns4Kj/KbNxgIXkb4iMl1EZorIVT77TxeRb9y/T0Rkz1zmJ19EacWZRBHwu+++O628HHfccSxatIj99tsv8JgePXoA4RHjUiWfAh5G/fr1+e677xKivoW1wsMGwqU7GM9s1PmNnvfizW9diXIFkcp1bxH5TUQmu3/+owZzTNRQwFHRz3CLLbaINPjUPMb7/Pws8Gx4WFJ9T5o2bcqAAQNSOkd7NerSO+klrA4OE9EoA4RTGYWuKToLXERKcaJQHo6zmuOpIrKr57DZwIFKqT1wolE+mqv85IOPP/6Yt956K+W+oSii0KxZM958800++eSTlPMV5hEQEV555RUee+wx7rzzzpTTDiKfAp7M4+G3P8z9F7ae8ty5c1PLnEtFRQWTJk1izJgxkVyw3soxVzMPUiViuQb4n1JqL/dvqM/+nJOtLptkI7WDMIOJePNSXl5O69at49Y2z7YLPdliRdm8Vl1DC3j79u0T9mUq4MkGsYW50IvJAu8GzFRK/aiUqsKJaXGMeYBS6hOllF5w+VNguxzmJ45cDAbq0aNHWlbsyJEj2WmnnXyX+TM57LDDQi3pdGnevHls7nO2MAXSGygh2+y666707t07oW85DO/KZiZr1qyJE3Bv1CrN8OHDI1/v1ltvpUuXLnHzcMPwViR1RcCJUK7rCtkS8GQVdhDmssV+eVm4cCEXXnhh7Hu2Xei56qP2mypa12jSpAn333+/72I2YYNyUxHwutAHnssnsC1OPAvNfCAxQO1GzsNZ1TEBETkfOB9IGtazGNl999354YcfCnLtXI1qNgcPRXEZZ0JJSUnKq06ddNJJNGzYkKOOOiphX6dOneIs7UaNGjF9+nQ6dOgQd5xepzwZ7777bqR1jU3qsIBHLdf7icjXOAu2Xa6UmuqXWC7LdrYFPJNgRJkMIg1i5MiRCYuWeEW1TZs2sYV9soUW8Dr0TvoSNNbk5ZdfDgxhnYqAp/J+FaMF7vfG+jY/ROQgHAG/0m+/UupRpVRXpVTXsNW7LKmTKwFPd158PgkaedurV684C1xE2HbbbROOCxvwYq7zm06/ubcirkPWTpRy/SXQVim1J3Af8HJQYrks29l2oecimqBJqhb4gAEDuPjii+O2ed+TWbNm+cbaz4RisMDDCPMIRhnEpstzKmOdinExk/mA2dm3HfHLJwMgInsAw4FjlFI24PMmwi677EK/fv244oorCp2VQPw8A0cccQQQX5mKCA0bNkxotYdV6OZSoH5T2+6///7QvNVhCzxpuVZK/a6UWuV+HguUi0h2F4qOQKH7wKPy/PPPA0SenhaG9zeXlZVl/d057bTT2HrrrTnvvPOymm5dIMq0w5NPPpmbbrqJf/7zn5HTDYs/kQm5bEJ9DuwkIu1xlk4+BTjNPEBE2gCjgTOVUoXxIW/m5NICf+WVV5IfWED8lhzVwu0VcHDmzEZdVMS0TvwEfNCgQVx00UVJz2/dujWLFi1KGrYzj0Qp162BxUopJSLdcAyFvDfOsyXge+yxB7169crKmgl+9O/fn1dffZXDDz8847Ry7SUAZ3nkoKBEdZGxY8cyZcqUSMdGEfDS0lL+/ve/p5QHXYcUjYArpWpE5CKcpZFLgRFKqakiMtDd/zBwPdAceND9gTVKqa65ypPFYuIn4EuWLAHip5npSjGVYBemgEd1oXfu3JmvvvoK2Ghxf/vtt0yZMoUDDzww8rVzScRyfQLwFxGpAdYCp6hs+w4jkC0Br1evHuPGjUvr3H79+vHqq6+GHiMivmMx0sFG6kvk8MMP920c+Yl1NgL/+KHrkGIaxKbdZ2M92x42Pv8J+FMu82AJZ3Mu8H6CrGOb+1ngphBfd911oWmbbstkITcBevbsyW233UbPnj3jzm/RokXkNajzRYRyfT8Q3keQB+rC2IvRo0dHXljEkj9WrVrlW/dFKavpoGf4eBdfypTiHIVgsWSJbbfdNm6Url6RzDuIzfwPMHRo+NTmVC3wjz76iIULF/qeb0mPuiDgZWVl9lnWQYKmzObKAq9fvz6LFy/O+pRaG0rVslnzxRdfMHPmzNh3HfzCLGhauFNxfyXrAzfp27cvEC/0dWjQWtFSFwTcUlzkSsDBicyX7cacFfDNnM3ZhQ6w1VZbscMOO8QKlp6Le80118SOSUfATQFOZoHrEeum0FurLXOsgFtSpdjeGSvgFgsbXeJXXeWE9jbDv2oBD4uf7sUcDZxsbqlfH7sV8MwptsrYYkkVW0ts5vgFKNkcufLKKzn66KN9wyy2bdsWIKXBSKZ4JPNyaLG3gpNd7P20bOpYAd9MGTduHCNGjGDIkCGFzkqdoKSkJGFJxYkTJ3L//ffHFnlZt25d5PQaN27MP/7xj0hhZP0EPhVr3+KPFXBLVK6++mpef/31QmcjZTZbAR88eDDjx4/n3HPPLXRWCkKvXr3o1atXobNRp+nWrRtPPvlk7HsqAg5w/fXRVtH0C75hBTxz8hHUxLJp8M9//jOlyGp1hc1WwI8//njmz5/PNttsU+isWIqEVAU8Kn4WeDZXhttcsRa4ZVNnsxVwsP2/ltTIVUAOU8D/+9//8v3337P77rvn5FqbE1bALYWivLyc448/PufX2awF3GJJhbvvvpszzjiDu+66K6vpmq7ek046Katpb85srgLeokUL9tprr0JnY7OmqqoqL9exAm6xROT000/nyCOPpEmTJllNd3Ofi58rNtf7unTp0kJnwZIn7CgPiyUFsi3eYAdbWSyW9LA1h8VSIAYOHAjA+eefX+CcbFq88MILWVvdy2Kpy0gBVvnLiK5du6pJkyYVOhsWS1ZYv3595OVGkyEiXxTzcry2bFss/gSVbWuBWywFJFvibbFYNj+sgFssFovFUoRYAbdYLBaLpQixAm6xWCwWSxFiBdxisVgsliKk6Eahi8hS4CefXS2AZXnOjh91JR9g8+JHXckHZD8vbZVSLbOYXl4JKNub8vPKhLqSl7qSD6g7eclFPnzLdtEJeBAiMqkuTKGpK/kAm5e6nA+oW3mpq9Sle2TzUnfzAXUnL/nMh3WhWywWi8VShFgBt1gsFoulCNmUBPzRQmfApa7kA2xe/Kgr+YC6lZe6Sl26RzYvidSVfEDdyUve8rHJ9IFbLBaLxbI5sSlZ4BaLxWKxbDZYAbdYLBaLpQgpCgEXkQ4iMtn4+11ELhGRZiLyjojMcP83Nc65WkRmish0ETksi3m5VESmisgUEXlGRCoLkQ837cFuPqaKyCXutrzkRURGiMgSEZlibEv52iLSRUS+dffdKyKSpbyc6N6XDSLS1XN8TvISkI/bReR7EflGRF4SkSa5zkcxYct2YF42+7JdV8p1SF4KX7aVUkX1B5QCi4C2wG3AVe72q4B/uZ93Bb4G6gHtgVlAaRauvS0wG6jvfn8OODvf+XDT7gRMARoAZcC7wE75ygvQC9gbmGJsS/nawGfAfoAAbwCHZykvHYEOwIdAV2N7zvISkI9DgTL387/ydU+K8c+WbVu2I+Qj7+U6JC8FL9tFYYF76APMUkr9BBwDjHS3jwSOdT8fAzyrlFqvlJoNzAS6Zen6ZUB9ESnDKWA/FygfHYFPlVJrlFI1wDjguHzlRSk1HvjVszmla4vI1sCWSqkJynm7nzTOySgvSqnvlFLTfQ7PWV4C8vG2+3wAPgW2y3U+ihhbth1s2Q7IRyHKdUheCl62i1HATwGecT9vpZRaCOD+b+Vu3xaYZ5wz392WEUqpBcAdwFxgIfCbUurtfOfDZQrQS0Sai0gD4AjgDwXKiybVa2/rfs5lnrwUMi/n4rS6C52Puoot2w62bKdOofNRkLJdVAIuIhXA0cDzyQ712ZbxfDm33+cYHLfINkBDETkj3/kApyWK47Z5B3gTx2VTE3JKzvISgaBrFyJPBcmLiPwd5/k8Xch81FVs2TYSsWW7qPJRyLJdVAIOHA58qZRa7H5f7LolcP8vcbfPx2mxarbDcYdlysHAbKXUUqVUNTAa6FGAfACglHpMKbW3UqoXjntnRqHy4pLqteez0e2Uqzx5yXteROQs4CjgdNd1VpB81HFs2TawZTtlCpKPQpftYhPwU9noYgN4BTjL/XwWMMbYfoqI1BOR9jgDQD7LwvXnAt1FpIE7erAP8F0B8gGAiLRy/7cBjse5NwXJi3GNyNd2XXErRaS7ez8HGOfkirzmRUT6AlcCRyul1hQqH0WALdsGtmynlb+85qNOlO1MRsDl8w9nUMkvQGNjW3PgPZzW6XtAM2Pf33FG/00ni6N4gX8A3+P0Uz2FM9Iw7/lw0/4fMA3HxdYnn/cEp0JZCFTjtCzPS+faQFf3Xs4C7seNDpiFvBznfl4PLAbeynVeAvIxE6c/bLL793A+7kkx/dmy7ZuXzb5s15VyHZKXgpdtG0rVYrFYLJYipNhc6BaLxWKxWLACbrFYLBZLUWIF3GKxWCyWIsQKuMVisVgsRYgVcIvFYrFYihAr4JYExOEjETnc2HaSiLxZyHxZLJbMsGV708JOI7P4IiKdcMJadsZZJWoy0FcpNSuNtEqVUrXZzaHFYkkHW7Y3HayAWwIRkduA1UBD939bYHecVZtuUEqNEZF2OEEvGrqnXaSU+kREegNDcIIf7KWU2jW/ubdYLEHYsr1pYAXcEoiINAS+BKqA14CpSqn/iLNw/Wc4LXgFbFBKrRORnYBnlFJd3UL+OtBJOUvqWSyWOoIt25sGZYXOgKXuopRaLSL/BVYBJwH9RORyd3cl0AYnGP/9IrIXUAvsbCTxmS3gFkvdw5btTQMr4JZkbHD/BOivlJpu7hSRG3BiEu+JMyhynbF7dZ7yaLFYUseW7SLHjkK3ROUt4GJ3FR1EpLO7vTGwUCm1ATgTZ1CMxWIpHmzZLlKsgFuiciNQDnwjIlPc7wAPAmeJyKc4LjbbMrdYigtbtosUO4jNYrFYLJYixFrgFovFYrEUIVbALRaLxWIpQqyAWywWi8VShFgBt1gsFoulCLECbrFYLBZLEWIF3GKxWCyWIsQKuMVisVgsRcj/A31RWydlsslnAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfcAAADQCAYAAAAaqygdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABYqUlEQVR4nO2dZ5gUxdaA37MEySDJAAqYMeGVIF4xYgJFVEyoiF4D5pwxYA7o9btGBMWcvSoIiIoZQRQUMHtRUAEDUQUk7Z7vR3cvPb3dPd0zPWFn632eeXa2Q9WZ7qo6dapOnRJVxWAwGAwGQ+lQVmgBDAaDwWAwJItR7gaDwWAwlBhGuRsMBoPBUGIY5W4wGAwGQ4lhlLvBYDAYDCWGUe4Gg8FgMJQYRrkb8oqIbCAi74vIXyJyp4hcKSIPFVqudIjIoyJyo/19dxH5ttAyGUobEVER2aLQcvghIkNE5Mmk7xWRvURkbnbSJYuIbCoiy0SkVsD5jJ+FT1qJvXOj3G1E5FgRmWq/xF9E5DUR6eG55kT74R/lOb6Xffwlz/FO9vF3XcduEJHPRWStiAwJkecR74sWkaNEZJKIrHCnWc04DVgINFHVi1T1ZlU9BUBE2tu/uXbQzUlWpExR1Q9UdetCylDTMfU1Je+iU4ilhKr+pKqNVLW80LLEwSh3QEQuBP4PuBnYANgUuB/o67l0ILDY/utlAfBPEWnhuf47z3WzgEuBsSHy9AA29zm12Jbz1qB7kyZM0WZIO+ArNdGTDBli6mt8clCPqx1BlnfJoqo1+gM0BZYBR6a5rh1QAfQD1gIbuM7tBcwFhgFn2cdq2ceuAd71Se9JYIjP8drAZ8COgAJb+Fxzil+aPtf1BaYDfwLfAwfax+cA+7quGwI8aX9vb+d7MvAT8D4wHjjbk/YM4HD7+zbAm1iN2bfAUQHyPAqsAVbbz3xfT94/2Xkvsz+7eu4/0L53jX1+hn18Y2C0nf8s4NSQZ9Ib+Ar4C5gHXOx5h1dijSzMAY7zyH6j+1rXuTnAxcBM4A/gOaCe6/zB9ntYCkwCdix0ua+uH0q7vl4C/ALMB/7lTg9YD7jDriO/2bLXBxoCf9u/1ak3G9v16kVb7j9tGZoCD9t5zANuBGrZ6Z8ITLTzWALMBnq5ZOsAvGfXmzeBe7HrrX2+u122l2K1DXtFvdfzDALrIdDV/u21Xdf3A6YHpPUo8AAwDliO1d5sDPwXq3M3GzjXdX03YKr9vH4D/m0fb2+/i9rpfg+etsE+Nge7vbXzmGw/p1/se+u6rvUtQ5l8jOUOuwL1gJfTXHcCMFVV/wt8DRznc83j9nUABwBfYlXUOFwAvK+qM2Pel4KIdLPluQRoBuyBVciisifQEet3PA30d6W9LVbjOVZEGmIV8KeB1vZ194vIdt4EVfVE4CngdrWGuSZ4LtnD/tvMPj/Zc/94LGvtOft8J/vUM1gNwsbAEcDNItIz4Hc9DAxS1cbA9sDbrnMbAi2BNlhW3HARiTr8fhRW56MDVkN/IoCI7AyMBAYBLYAHgdEisl7EdA2plGp9PRCrg7gfsCWWInJzG7AVsBOwBVYZvUZVlwO9gPl2nWikqs5v6Iul4Jth1bvHsDo6WwD/APbHUvoOu2B1zlsCtwMPi4jY554GptnnbsA1GiIibbBGNm4Emtu/478i0irdvQH41kNV/QRYZD8jh+OBJ0LSOha4CWiM1fl4Favz0QboCZwvIgfY1/4H+I+qNsEaiXk+IM24v8dNOVaZaYlVlnsCZ8a4PzJGuVsN7kJVXZvmuhOwXir23yovVFUnAc1thXACVuMRGRHZBEsJXBPnvgBOBkaq6puqWqGq81T1mxj3D1HV5ar6N1ZDupOItLPPHQe8pKqrsKzSOar6iKquVdVPsXrGRyTwG9JiP7MewGWqulJVpwMPAQMCblkDbCsiTVR1iS2vm6tVdZWqvofVYB1VNQlf7lbV+aq6GKsB2ck+firwoKpOUdVyVX0MWIVl6RjiU6r19SjgEVX9wlbYQ1z5CFY5ukBVF6vqX1id3GPSpDlZVV9R1QqgCVYn4Hy7Xv8O3OVJ40dVHaHW3PJjwEbABiKyKZbV7NSN97HKuMPxwDhVHWe3NW9iWcC9I9wbRFA9fMzODxFpzjrjI4hRqvqh/Qx2AFqp6vWqulpVfwBGuJ7BGmALEWmpqstU9SNvYln8HgBUdZqqfmS3lXOwOvt7Rr0/Dka5Wz3BlmmcuHbDssietQ89DewgIjv5XP4EcDawN+mtCy//B1yvqn/EvM+PTbCG4jPlZ+eL3ZiMZV0lOAbLEgDLgt9FRJY6Hyzlv2EWecdhY8Bp8Bx+xOqZ+9EPa2j+RxF5T0R2dZ1bYjes7nQ2jijHr67vK4BG9vd2wEWe57NJjHQNqZRqfd0YV53DKnsOrYAGwDRXGRpvHw/DnV47oA7wiyuNB7FG2xwqy7CqrrC/NrJl86sb7rSP9JTxHlidg3T3+hFWD58E+ohIIyyF/4Gq/hKSlvcZbOyR80osvw2wDKKtgG9E5BMROdgnvUx+TyUispWIjBGRX0XkT6xOWsuo98fBKHdr/mMlcGjINQMBAaaLyK/AFPv4CT7XPoE1zDLOVUGi0hMYar94p6JNFpFjY6YDVqH2c/IBa/6pget/P0XsdXh7BuhvK8P6wDuufN5T1WauTyNVPSMDmaM42XmvmY9lfTV2HdsUa06x6s2qn6hqX6xG7RVSh97Wt6cZ3OnEHab18jNwk+f5NFDVZ7JMt6ZSqvX1F6xOn8Omru8LsebVt3OVoaaq6nQgg+qN+/jPWCNGLV1pNFHVKtNnAbL51Q132k94ynhDVb01wr1+BNZDVZ2HVQYOwxqdCxuSh6rPYLZHzsaq2ttO+3+q2h+rbbgNeNEjBxF+T0rbajvxuTthDwDfAFvaw/9XYpXVxKnxyt3udV8D3Ccih4pIAxGpIyK9ROR2EamH1UM8DWuo1fmcAxzntSBUdTbWMMtgv/zstOthPfvaIlLP5cW5FdDJlQdAH2yLQkRq2ffWBsrse+sE/LSHgZNEpKeIlIlIGxHZxj43HTjGlqUL0YbQx2H1fK/HmvOusI+PAbYSkQF2enVEpKuIdIyQppcFWI5Bm4Vc8xvQXkTKAFT1Z6y5tFvs57EjVg/8Ke+NIlJXRI4TkaaqugbLcca7vOU6+7rdsaYcXsjgd7gZAZwuIruIRUMROcjTGTFEpITr6/PAiSKyrYg0AK51yViBVY7uEpHWdtptZN1c8W9ACxFpGvLcfgHeAO4UkSZ2m7C5iKQdElbVH7GG2Z260cP+nQ6ONX2A85vFWp7XNsK9QYTVw8exVjDsQLzRlo+BP0XkMhGpb8u6vYh0BRCR40Wklf28l9r3pLQPEX7Pd0A9u47XAa7CcoZ0aIzV7iyz2+NMjKBoaBF4wBbDB2soeSpWz+tXrGHof2INQf8C1PFcXw+rR30wPh6SrutSPGWxPDjV8zkx4N4Uz0ksJy3vvY+G/KbDsDy4/8LyIj/APr4ZljWzzP6dd1PVW762T3oP2+e6eo5vbaezAGvY9G1gpwCZHsX2Orf/H0Kq1+31djpLge4+97fA8updAnxqH2uL1clYjDUVcXpA3nWxhjOXYFWwT4Ae9rm9sJzyBtvv9SdggJ/c3vdNyOoD+/8D7byW2mXpBaBxoct8df5QmvX1cvu3+HnL18Mawv3BLrtfk+rpPdKue0tZ5y3/pCf9pliW41ysVR2fAce4ZJ0Y9Huw2owPsNoMP2/5XbA8yBdj1d+xwKZR7vXkuRch9dC+poH9DB5LU0YexdXW2Mc2xhqF/BWrHfiIdZ7sTwK/23J+CRxqH29Pqrd8umdxIlYZ/B3LuXCOK489sCz3ZXYa17ufu7cMZfMRO0GDoUYjInthVdC2BRbFYDCkQUS+x1r14l1xY7Cp8cPyBoPBYKg+iEg/LAv37XTX1mRqfNQig8FgMFQPxArjuy3WUH1FmstrNGZY3mAwGAyGEsMMyxsMBoPBUGKU1LB8y5YttX379oUWw2DIGdOmTVuoqumCl5Qspo4bagJJ1POSUu7t27dn6tSphRbDYMgZIhI5GlYpYuq4oSaQRD03w/IGg8FgMJQYRrkbDAaDwVBiGOVuMBgMBkOJYZS7wWAwGAwlhlHuAagq/fv355xzzim0KAaDwZAIX331Fe3bt2fJkiWFFsWQY4xyD2DhwoU8++yz3HvvvYUWxWAwGBJhu+2248cff+T8888vtCiGHFOjlfuPP/7IwQcfzIcffljlXEWFiWxoMBhKk8WLFxdaBEOOqdHKfdCgQYwdO5YePXoUWhSDwWDIG8uXLy+0CIYcU6OV+6JFiwotgsFgMOSdFStWFFoEQ46p0cp9vfXWCzxnNtQxGAylysqVKwstgiHH1BjlvnDhQgYPHsycOXMqj4Upd4PBYChVjPFS+tQY5X7GGWdw8803s9dee1Ueq1evXuD148ePz4NUBoPBkH+Mci99aoxynz59OmB5yDvUrVs38PqTTjop1yIZDAZDQTDKvfSpMcrdz0oXkQJIYjAYDAZDbqnRyt1gMBhqIsZyL31qjHI3znMGg8FgYZR7Yfjpp59o1aoV//vf/3KeV41R7mVlNeanGgwGg6EIefrpp1m4cCEPPfRQzvPKmcYTkZEi8ruIfBFw/jgRmWl/JolIJ9e5OSLyuYhMF5GpCckT6ZjBYDCUOsZyL31yac4+ChwYcn42sKeq7gjcAAz3nN9bVXdS1S5JCzZ37tykkzQYDIZqw9dff11oEUqav/76i2+++abK8XwalDlT7qr6PhC4O4GqTlJVZ9/Bj4C2uZIFUh/qJptskrIkzmAwGGoar7zySqFFKFkOOOAAOnbsWFAZimUi+mTgNdf/CrwhItNE5LSwG0XkNBGZKiJTFyxYEDnDSZMmRe5FmSEsg8FQKGbMmMFTTz2VeLqzZ89OPE2DxeTJk32P51OX1M5bTgGIyN5Yyt29NdtuqjpfRFoDb4rIN/ZIQBVUdTj2kH6XLl0iP7k4wyOqaubnDQZDQdhpp50AOO644xJN17RphSMfz76glruI7Ag8BPRV1cot2lR1vv33d+BloFsCeYX+78ZY6gaDodQxyr20KZhyF5FNgZeAAar6net4QxFp7HwH9gd8Pe7j8O6773rzDyzcXuVulL3BULr8/fffVFRUFFoMQw0gn7okl0vhngEmA1uLyFwROVlETheR0+1LrgFaAPd7lrxtAEwUkRnAx8BYVU18F5c4lrtR7gZDaVJRUUGDBg04++yzCy2KoQZRrYflVbW/qm6kqnVUta2qPqyqw1R1mH3+FFVd317uVrnkTVV/UNVO9mc7Vb0pF/J5H26fPn0qlbi3Fz9y5MhciGAwGApMeXk5ACNGjCiwJPnHDMuXNsXiLZ93HnnkkZT/x4wZw7JlywC4/vrrU84NGjQob3IZDAZD0qxevZrevXunHDPKPfcEjfrmYzS4xij3pk2bpvw/bty4QCe7G2+8MW9yGQyGwlFTptxeffVVXnvttZRjRrnnnkKWrxqj3GvXrrrqz1u4H3roIY488sh8iWQwGAqM0/hWB0WXjaJYsWJFgpKEM2XKFObPn59y7JdffuGvv/7KmwzFQtA7y0d5K/g693wRZcvXCy64IA+SGAyGYqE6We4VFRXUqlUro3uzVe7l5eXMmDGDnXfeOeXYsmXLqoyKdu/enaZNm7J06dLKYxtvvDFbbLFFXnZDKyaM5Z4HMq0UBoMhPhE2jtpLRP6wV8pMF5Fr8i0jVD/lnil///13lWNxrMebbrqJzp07M3Xqun28Bg0aRLNmzSqdEt388ccfVY7NmjXLN+0//viDoUOHluRyRKPc84BfATQYDDnjUcI3jgL4wLVa5vo01+aEr776qhDZZkQ2bdiqVauqHIuj3D/66CMA9t1338pjTzzxBABr167NWC6Af/3rX1x66aW88cYbWaUTxE8//cS0adNyknY6CrmsusYMyxvlbjDkD1V9X0TaF1qOdHTpYm06WR0s+GzasGyt4tWrVwOpFnlZWVnWcgG89NJLAKxZsyardIJo164dUJh3XMg59xptuT///POR7y9Uz89gKGF2FZEZIvKaiGxXaGGKnaSVexwF46d4/ZR7Np0IJ71SwgzL54Fse5dOD99gMCTCp0A7Ve0E3AO8EnRhpjs/5pMBAwYgIqxZs4YffvghJ3lk04Zlq2Qcy92N0zlwD8v7dQK+++67Ksf8qA4rFqoTRrkbDIa8o6p/quoy+/s4oI6ItAy4driqdlHVLq1atcqrnFF58sknATj//PPZfPPNyUUnJBur2E+5x1GmfnP2fpa7Xydg6623jpRH0pb7xIkTUxwAC0Eh59yNcjcYDHlHRDYUW7uISDestmhR+F2Z8c4771C/fn2WLFkSJk8ieY0dOxagMtplkmTTho0bNy6rvN1K21FQjjJOZ7lHJWnlvvvuu9O1a9dE04yLGZbPA96KYZbGGYoJVeX111/n119/LbQoiRBh46gjgC/sDaLuBo7RHLWEt956KytXruSTTz7JRfIpOBZu3bp1E087G+XueLu7idOhcSv38vJyWrRoUelc58i1bNkyDjjggIxlrAlz7vmceqix3vLGkjcUE6+++ip9+/alcePG/Pnnn4UWJ2tUtX+a8/cC9+ZDlvr16wP+a72TxskjF2u2k26zMnWoO+uss1i8eHHl/47lPmrUqLTD4OXl5YGGVSnOuRvLPQ8USpmvXLmSqVOnVoulNobC8cEHHwDUyBCduSbXyt0dic0Zjs9Fe1NIg8RtuQ8fPjzlnCOXWzkHKfDu3bsH5lETLHcz554D+vcPNSRyxlFHHUXXrl156KGHCpK/wVDTybVyv+yyyyq/O4quOljucRRN2LPzC2ITNC0xdepUPvjgA99lyDVBuTuYde4J8sQTT1RGVMqUt99+O/Y9r776amX+xYyqMm3aNF9vV4OhOuNsGhUWSW3NmjUZK2SvJQu5sbKjyjdv3rxII0Bxfm+YM6Kf5V6nTp3A6/fYYw+OPvroKsfNsHyy1BjlDtCwYcOs7n/22WczvldVU+apio2+ffvSpUsX1ltvvUKLUvL4NZRm2qbwPPXUU4mlVchh+bZt29K5c+fK/7///nvf65IaXXA6TVGVexDpLPclS5bw5ptvxk43iA8//JDx48cnlp4fJTksH2HjCBGRu0VklojMFJGdXecOFJFv7XOXJyVTnz592GOPPTK+f/Xq1axZsyajWMoTJ06kRYsW3HHHHRnnn0ucEQZDbrnhhhto3rx50Y/k1EQWLUpuJZ6fIj7qqKM44YQTMk7TWUsfBffua/369fO95uyzz+bRRx/NWB4HP+WeyWqBdMq9T58+7L///inLDJs3b87QoUNj5wXQo0cPevXqldG9USnVYflHCd84ohewpf05DXgAQERqAffZ57cF+ovItllLU15O7TVrsuqdr1q1itatW9O2bdtI10+ZMqXKsUsuuSTj/A3Vn2uusTY/u/LKK1OOG8s9dzgNabpnnO0GKG78lPsLL7wQu1M3ZsyYyu833nhjRrL4BaBxOOusszJK043fc41qubvvTafcnRDg7nuWLFnCpZdeGimvmkbOlLuqvg+EjUP3BR5Xi4+AZiKyEdANmKWqP6jqauBZ+9rMWbUKjj4a+vWjVhZDUcuWLWPp0qX89ttvka4P8ww11GxKcX6xGPjzzz955ZVXUo4FKXfvFqRJDqUnlZbf3HRcwobfo3Qqv/nmm9DzThqZDMu7809XJ1auXAlkPp0Q1HlbuHAhH3/8cUZp+uHeXCfo+eajM1/IOfc2wM+u/+fax4KO+xIp7vS8efDee/DaazS78EIybVbdvehMX45p1A2G3DFo0CAOO+ywSFu5brnllin/F6NyzxZVjRzbPYiOHTumzQMyG5Z3Pye35f7YY48xd+7ctPf48dhjj/nuJ3/VVVf5Xt+9e3d22WWXKOJGIopyzweFVO5+Wk5DjvsSKe70ZpvBa69Bo0bU/+9/+XdG4lbJN6P7jMOaAUwnL1fMmzcPIKPY7m+99VZiTmZJpDN37lxWrFiR8f2nnnoqDz74YNZypCObYXn3c3KU+9KlSznxxBMD58PDnu20adM48cQTOfXUU6ucc2JJeAlyOEyCSZMm0bp1a5YsWZIyPVLd59zTMRfYxPV/W2B+yPHs6NIFXn4ZrVuX84Erskwu08qbZNjbl19+mR122CHrnrkh/xjlnhucFTHLly+vPBZ1zv3tt9/m3nuTCZoX1XJftmwZRx99tO9U3yabbOJzR3Qeeugh37CzbpKwLP3SyMRyd96TM/weNP3p3OOXr9MZmj+/qspo3rx5JJmyxV23b7jhBhYsWMA999xDvXr1uPrqq/MiAxRWuY8GTrC95rsDf6jqL8AnwJYi0kFE6gLH2Ndmz777smL4cCqAm4FTskgqU+We5DDN4YcfzhdffJGIU4whvxjlnhvCAtb89ttv/P3336xatSownoN3Hj5TwpT7mjVrGD58OJ9++inNmzfn+eefZ8iQIYnkWwicNs3dJkax3D/++GNfhesoaCc+gRcnn7htab6Uu3t6wSmP1157bV7yTpEjVwlH2DhiHPADMAsYAZwJoKprgbOB14GvgedV9cuk5NJ+/ayMgGHAYRmmk6lyz0XkqjBvWIOhJuE0rP/5z3945JFHUs4NGTKE/fbbj3r16tGuXTvf+5PqdIUp91tvvZVBgwbRuXPnrHZRKxYcJev+zVGU+1VXXZXSdjnppFPuUaIA+r3HDTfcMK1MSVOvXr285+mQs41jImwcoYCvyWnv75zdHoUBlJWV8SDQCrgBeAZrvd67MdMpJuWeNKpqLEtDtcQptx988AEffPABJ510UkpZ/vDDDwECd99LKgRq2LK6zz//PJE8kmDlypXMmTOH9u3bZ5yGo5TdvznKsHyQX0QSlrvfuQ022ACw9m9o0KBBlfNjxoxh++23p1GjRrRs2TJc+BDceQcp91Kfcy8Izpz3jcA9wHrAKOAfMdMphmF5h6QLyltvvZVoeoaqeN+ZWeeeO+LUj6TqUlgs9nx60qebcwfo0KFDVnn4We7OcHQY3ufg7SQEPSen7Y3bBqsqK1eupEmTJr4dhz59+tChQwc22mijWOl6eeeddyq/FzJefo1V7gDnYVnuTYDxwBYx0sm0Mc6F5Z60ct9vv/0STc9QFTMykhuyfa5OZLe77747Kwt7+fLlXH755cyePbvKuXy++2+//TbnefhZ7lGG5YOUu9NGBo1+hDnUhVFRUZHiaBlEnGBGf/zxR5U9R9xRCAs5UlvjlLu7J6XAQKzJ/dbAG0DUPlumL61Y1r8aigtjuSdDtorTiWVx3nnn0alTp4zT+fTTT7nttts49NBDq5zLVMa+fbOL5ZUr/Cz3N998M21bF3TeOR7Hcv/pp5/4/fffQ/OrqKhINAohwJFHHknPnj0D9w1xW/H5pkYrd4A1QD/gI6ADlqJvFiEdP+X+zDPP8Nxzz2UtY1yMFVj9MO8sN3gt1VWrVmX8rLPpcDnLufzWqWc6VFusW6L6We5//fVX2jX2XkXrpHPdddcBwXXEz6GuXbt2lXPqYXIm7Xw8c+ZMAAYOHOjbcYiyO1+uKM7SkmeWAwcBXwE7AK8C6WaMvMq9oqKCY489lmOOOSZ2/h9//DHDhg0zUe9qEOad5YYZM2ak/H/ffffFTuPxxx8PPf+///0vbaPtRFfza/D93r2IsGbNmtBdyqK0D97Qu/nAz3IHfKPEuQkKHuNYu0F1xGl7wza9cRwnvfc5na4oqCpjx46N9NzHjBnDxIkTI6edD4xyt1kMHIAV97YH8DzhSwn8lLtDXCW9yy67cMYZZ2TsyJatokjXmBmSxyj3/JCJ5T5w4MDQ81tttRX7779/6DVLly4F8F3q5qd4VJXrrruOXr168c477/i2IVHalULEvPCz3CH+Ftve35fOch87dmyVc44l7UdFRUUsy/2RRx7h4IMPrrKkEqwRotq1a6cE2slkm9tcEkm5i0grEblSRIbbW7mOFJGRuRYu38wF9gcWAgcDD+MfCxfClXum8/FR4mH7kY2iePfdd9M2ZgZDdcEbAbJu3bo56Uil80J32oB58+bRokWLlHNBMdOdSJO///67bxsSRbknPaccpS1z5PIGBsr2uaez3P2ex9lnnx2YXtxheSfKnZ9T5MiRI6uMVAQt3SsUUS33UUBTYAIw1vUpOb4BegPLgBOAoJ2CvYXeXdAyVe6FmJ/xDmPmkpkzZ1bZBvfLL79k8uTJeZPBzcKFCxk9erRxciwhvJucrFy5knvuuSfvcrgt9iBnqzAyaUMWLlyY1qksLlGC7Dhtn3cb47jKParl7sgUt97GHZZ3LHG/Z+A35fDZZ58FRj70Ukzr3Buo6mWq+ryq/tf55FSyAvIJcDiwGrgIuNLnGm/lc/eYM1UWmSr3bApKth2K8vJyJkyYkJLOypUrefPNN6sU9E6dOtG9e/eUNcDbb789//znP30bwPLyct56662cdXp22WUX+vbty4gRI3KSfhhmWD4/LFq0qCD5xrWg3eVBRHzbkCix8ZMmyu9IJ9cOO+wQKa+oyv3666+PlK+XuMPyYcrdr00644wzuOiii2LJlEuiKvcxItI7p5IUGW8CA4AK4CbgQs95r3J/4IEHAs95+eqrr3w3Rci0U5CNoli2bFnG9wLcc8897Lfffmy00UaVle3UU09l//3359JLL/W9x6+C+TXCl19+Ofvuuy+9e+em6P3www8ATJgwISfph1Hdlbu970PR4VVG66+/fk7zC6qzmQyPpxv9S6fMkh6Sh3iWuxenjHunJaLiTtf9/dVXXw3NNyy9OXPmRL4+TLkH5T1t2rRYMuWSUOUuIn+JyJ9Y8V7GiMjfIvKn63hJ8zxwsv39TqiMSQ9VK99//7tuICOdkt5uu+184xwXYq1ztkPSTz31FGAF7Xj66acBePLJJwFrVyoHd8PjtzOen7K74447ABL3Qv3rr79SPHWLYY15McgQhIi8KyLtXf93wxrgKjq8Ci7p2N5//pna7N1yyy2R5IhDppb7bbfdFjmPcePGcfzxx6e9LgnlHrVse69zt7Fug+C4446rcj4KX3zxBaecEn27MGcO3fsuV65cyTPPPON7T9TfWvBheVVtrKpN7L9lqlrf9X+TnEtXBDwKODvd3Mc6Ze8tWO7KmE3c+Tlz5sTeTCKbgpJtBCX3HJa3wAdVTue433aP+aBdu3ZsscW6eISFiCJVzSz3W4DxInKmiNyEtefSSQWWyZe1a9ey6aabVv6f9MYsF1xwQcr/n376aaAccUlnuXv9VbyEeYqny8+P8847j9atW2ecjlPGkwj45Y4X4OQXt0P88ssvx7o+yHJ/9913A+8ppk56VG/5Kmu0/I6VKg8C59vfhwPHE+4tX15eXmnFxuGtt96iQ4cOnHTSSSxYsIBFixZFsqyzURRxHEzS3e8dbnfL7r7OqQD9+6/bWyifym7JkiUp/+erQrqtPhFhwYIFqCqLFi0q6p39VPV1rD7uf4B/Ab1V1V+rFZi1a9emBHuJ6uAUFWeJm0PQNqLZKHcR4ZtvvqlyfuHChbHTDCOdjHfffXekdFTVd32+43SWhOXuDhv79NNPM27cON57771I6WZKkOUetuQt09+aC9INy9cTkRZASxFZX0Sa25/2wMY5ly6P+A0Vu/kPcBnWA3sUaGDP+zh4LfeoFcON0/N+6qmnaN26NS1btky7nhbCN6lIx/3335/xvVBVubt7ue5n4naYcyrtCy+8kFXeSZEv5e6eCvj6669p3bo1vXv3pmXLlgwbNiwvMmSCiFyNtc/SHsAQ4F0ROaigQgVQXl6eU+Xu7dQHtRvZDssHlYcky2pSoxpTpkyhV69egOUg63DFFVcAmcvsbj+8MeEPOij3xS/I4Ajb8e7jjz/OlTixSWe5DwKmAtsAnwLT7M8orFHqkiHoRZ522mmV328HrgVqARtedBE88UTluenTp1d+r6ioiOREEqXhCfKAdTvwvf/++75hLvOBW7kvX76cVq1aVf7vVM6ff/6ZrbbaqvK4X2Uv5L7W+ZLHL3xoWESyIqIl0E1VJ6vqg1jxns4vrEj+5Npyj+qjku2wfJB1mO0UUtOmTSu/J/Vs3MvvvCOB/fr1i7w8L8xyz3aE0WHHHXeMfG2Qz0ASwWqS+j1hpJtz/4+qdgAuVtUOrk8nVb0359LlkcaNG/se9zbI1wPXAVJRAQMHgk/85PLy8khbHjZu3DijXZtUlTPPPDPlWFAoR+99SVup7lGDTz/91Hf950svvVRFDi/bbLMNy5YtK8iclTfPs88+m7p161Z60ydFNZtnr0RVzwMQka3t/39U1aLcOjDXyt2rXIPeqVe5x1HK33zzTeASvmyUe506ddh1110r/0/Ku979DLzt5UsvvVS50146vPXQ3ZFKStY4fglBPgNJBKvJ9SoOiL4Ubp6IHO759BSR9N4WRU7Tpk3p1KkT48eP962oftbWEODXCy8EVTj9dLjrrpTzUSvg6tWreeyxx2LLfPDBB1c5FiXUY+/evdl+++0TDdoSpQfqfa5Bz2fAgAE0btyYWbNm5VXJe+Vx4pEPHz480XyKdeOPdIhIH2A61s7IiMhOIjK6oEIFsHbt2pTylrRy9wt56od35CfdtJ+bq666KqVDfOCBB1Z+z7Tu1q9fv0pdTWp0yl2us+l8PPnkkynvzjGQpk6dyoABAzIXMEOCLPckHHCDjMkkidranAw8BBxnf0ZgLf3+UEQCn7qIHCgi34rILBG53Of8JSIy3f58ISLlItLcPjdHRD63z02N/csi0r17d6ZPn063bt18H3hQz3zBiSeCE/nqwgu5ynXuzjvvjJx/Jj24cePGVTkWZaho/PjxfPXVV/z8889A+hCaUcjE4S9Icb/yyissX76cm266KVYFeuutt2jTpk1lbH5VpXfv3vTp0yfS/UHyvPjii7Rt2zaxtavV1XLH6s92A5YCqOp0rE0Ui47nnnsupf4lrdyjEtfSXLVqVWA5vPbaayu/B9WL1157LTT92rVrV+lcJmUNu9PNpsPw8MMPp/y/7bbbArDPPvv4OhjmktWrVwcq9+oS0TKqcq8AOqpqP1XtB2wLrAJ2wfIzq4KI1MKal+9lX99fRLZ1X6OqQ1V1J1XdCbgCeE9V3aHK9rbPd4nzo+LgflFjx45lgw02YPTo0Vx//fW0a9cuZc7dTUVFBZx9Njz8MIhwA3A/1nz8XR5LPoykLNQ46TgNRL9+/QKvOfXUU7OWySGqcncoLy+PVYH23Xdf5s+fX7nf9dq1a3nttdcYM2ZMpE5CUMP4/fffM2/ePE444YTIsoRx4403JpJOAVirqt75ltCXaO8/8buIfBFwXkTkbrvjP1NEdk5C0F69enHQQQdVepbn0pfDbwMYh7iKc+TI4K06ooS2ThfoyW/UKBeWe9DvjtKxDVqBVMhtU/3417/+lXUaBfeWd9FeVd0h1X4HtrIVcVAJ6QbMUtUfVHU18CzQNySP/oB/ZIAc4lYiPXr04JdffqFPnz5cffXVzJ49O9CyriyI//oXr55wAiuBM4CXgQYx8k/qJcexdJ08wyq3OwBNtkQdlncoLy/PyKpwRi/cz9T5jWvWrGG//fbj5ptvjp1uUjz77LMFyztLvhCRY4FaIrKliNwDTEpzz6PAgSHnewFb2p/TgAdCro3NeuutB+TWch81alTgOW+wmygE1Ysk9q3wI+zZxNk61i1TUL1t37592nRyMfydKX67fK5evZr+/fsnMopQTMr9AxEZIyIDRWQglrf8+yLSEHuozoc2WDuoOsy1j1VBRBpgNQTuePUKvCEi00TE33y27j1NRKaKyNQFCxZE/DnrCHOQEZHAAuY+fshjj9ETWAT0Ad4Fmkb0hswkhGK26WyxxRbMnDmTTJ6Xm3vvzcynMkoYzaAIXQMHDuSqq67yuWud34H73TgN2Ouvv86ECRMYPHhwbHkzmSufMWMGe+65J1On5mxGKZ+cA2yHNVr3DPAnabzlVfV9rJ2Ug+gLPK4WHwHNRGSjZMRdN8edS+WebehmL0GKMc6Ok0Fz+0671qhRI8Aapg/K7/XXX+ewww5LK6+D20gIMhjatWtX+T3qSFghA8JUVFRU2X2uf//+iXXQi0m5n4XVE98J+AfwOHCWqi5X1b0D7vEbhwn6RX2ADz1D8rup6s5YPfyzRGQPvxtVdbiqdlHVLu5lWFFJN/wb9BK8lWwS8E/gB6ArcMs779ApQv5RXrIzmvDOO+9E6t1HoVOnKNKFc84550S6zqsco1jufu9l9uzZPP7449x0002+9zkOOH6R8bIZgvziiy/4v//7P04++eTIz/mggw7i/fffp2vXrqHDt9UBVV2hqoNVtatd1wararZreSJ3/jPB8WiOY4HG5a+//krUjyKoLfIGyAojqCPqrGoZNmwY1113HT179gysE+ki4XlxpxPUYXA6FbBuVCUdhbbc3cr9888/r7Lqp9iJ5NOvVov2ov2JylxgE9f/bYH5Adceg2dIXlXn239/F5GXsYb534+RfyTSVZYolrvDd8CuWMMa3VesYBKWJ2JYXy+KsrjgggsYM2YMY8aMCYxkloueoKom0njFnXP/7bfffP0B0q3ld4JL+FnuUbjssssCN5Zwwo6eccYZdOmS3gXEPSrSo0ePogpLGRUReZWQuXVVPSSb5P2SDJDjNKyh+5TQsmHE8U6Pinv/CLAsd7fSyhZ3rAw3cYblg5R7hw6W/2OLFi245pprgGBFHHdKLIpy946IRiEp5T548OBAgyAsb7dyj7M+PgpFY7nbS9/+JyJ/xNg45hNgSxHpINYOUscAVZbPiEhTYE8snegcaygijZ3vwP6Ar2NOtqRT7n4bvEBwwfsd2At4s21bGmD1WIZiOdr5EeUlu4NABFWeXBSWpLxC4yr3iRMn+gbvca+p95PNmXN3n4uq3H/66Sduv/12nn/++dDr0qW3cuVKBg0aVDAv7YS5A2vPpNnA31irZEYAy8i+Pkbu/GcyOpfEskPvPPERRxyR8n/Sw/J+O0XWr18/ZZQtncILUpx+9SnIco9qWfulE6VjsNFG0WZfkmzTnOWtUamoqGD27NmJy+FQNModKzjbIaraVCNuHKOqa4GzgdeBr4HnVfVLETldRE53XXoY8IaquuMLbgBMFJEZwMfAWFXNSSivdJWlQYMG/Prrr1x88cWR71sF7D93LmdheRteDEzAP15v0PyxG3dBiDJ0lxSXXXZZTtLNNE13CEq/kLt+lnvUmO1xQviuXLmSiy++mEmTqvqUDR061Hd9/OjRRbksPBRVfU9V3wP+oapHq+qr9udYoEeWyY8GTrC95rsDf6jqL1kLnSAbbLBB6PkJEyZUseaTpF69eqxYsYJmzZpVHvvpp59C4y8E1S0/hRqk3KO0SW4++WTdBoFr1qxh/vz5KcFyYF2no06dOpHn3JNqe0SEvfbaK9Y9FRUV3HDDDUBxbQYTh6jK/TdV/Tpu4qo6TlW3UtXNVfUm+9gwVR3muuZRVT3Gc98PdhS8Tqq6nXNvLohSgDbYYIMqw29R7rsf6An8imXNz8RyLsiGIOWergBmUkD//e9/M2bMmNj3efE2InFlcYbo3VaBnzJ2LHf3uxk3bhz//ve/0w4FxhmluO+++7jzzjvZbbfdqpz74gt/g9ZZpldNaSUimzn/iEgHINSEFpFngMnA1iIyV0RO9nTsx2G5qMzCGg04MyCpRNlmm218j7vDI8chW6fUMPzKbLdu3Rg0aJBvxxLiKcSkRubc9VJV2Wijjdhkk018rz3iiCNCY7O7SdKwiBtVzs9bPi6DBg0KPJePDkPUXzxVRJ4DXsEyTAFQ1erlYeBD1AIetgtcGB8AnYDHsJYDjAbuBi7F9SDTEMVyT1dYosZ3Tuo+N17lPnXqVDbbbLOAq4Nxh7H0i4znNBru4dILL7wQWLeJRRBRLXcRYd68eYHnM1kCVQ24AGuzGCceb3usfScCUdX+ac4rlqNuXmnQwH+h6kcffVRlh7e4/iadOnVixowZGcvmJaxMusPTzp+/bjYjU4Udxb9m3333ZcKECVWO+42OhaVVr169tPK0b98+UQUYNx78iBEjKr9nKkfY1FAxDcs3AVZgzX33sT9VY6BWQ6LOzXkrzahRoyojoqXjd6A3cBGwGjgX+AzoHkPOIDkc0hWW4447LoPckpm79Cr3o48+Otb9zm9zx9P361w5FdhxGHJzyy23hOYRdeMdEQm1PKrJRjCxsKfEtgTOsz9bq7UNbLUjKExzEo6jTZqEzlTmjM8//7zyexyl4b42yn0NGzb03aXSr6PtbTfc6UdR7g0bNiyo5X7llVdmnWdQ29mzZ8/IjqFZ5R/lIlU9yeeTfZieIuCYY45JfxFVlcldd93FvvvuGzkfBf6NtVzua6Aj8CGWt1K6LWbcFSPIUStdRYjaEfES1OjFsRCyjYTl1/CEKXf3HGBU4sy5BzkcTZ48OXa+1YjOWGvdOwFHi0gyYfvyTFCMcr9yHlfhqyqTJk1KLKJhPslGka5atSpltznI3nKvX79+FZm6d8/EHLLIZrOX99/PbJFWkHKfMGECRx55ZMbyRM4/ykUispWIvOWEkhSRHUUkntdFEeHsOdy4cWMuuuiiSPck1YuchhUo4CasmL4XAp9jWfZR8MZfdgizPD/44INYMroJqqRxvMEdr9Mk8etc/PTTT0Bm72ru3LmRrguz3J2Y/dmQ5NKqpBCRJ7A853tghXHoCuQsJHQucXu8u4eYk1qvvuuuu0ZaKpkt7g5vprLHsdzr1KnDueee63tu1apVKU5/fjK5/w9StO7liw0bNqxSx7MZRcxGuWfqV1HojaKi5j4CK/b7GgBVnYm1tK1a8uabb3Lvvfcyb968yOthM3W48WMVcBVWYP4ZwObAWGAM1tinF3fFczw4vTjrsP3IZoOYoAIa1QsdgjskUQmz3N3nHGe2TJT7ySefHPnaIOUedwmRH/nYCjIDumAFlTpTVc+xP/4tfZFTVlZWqWg6duxYeTwJy90hF2vsc0Ec5f7555+zzz77+J5btWoVP/74Y8qxoHYjLB/3xl3t2rXjl19+SRlRy6YTE6TcvQ6WG2/st6YpM6qLcm+gqh97jiWzpVAB2HDDDTnrrLNibbs3cOBA7rzzziovP5v1zJ9itZrnA38AB2EtHr6TVFdkt+UdNBweFgXt0ksvzVjGbCz3oMbAYcst/boyVQlT7t7h9JUrV+bUWUVEAittlOHGdBTpspsvAP+AD9UMEamcGy8rK+Ozzz7j448/TvS551u5u+toXMcxh0zXz7uZMGFCpdNrJorY7XXfpk0blixZwpAhQyqP+dW7Vq1aceyxx6ZN20+5z5w5s8pQvztMbrZE2YY7l0RV7gtFZHPsCFIicgRQVGtSc02tWrW48MILq4RtDbOY3bz99tu+Q65rgf9gWewPYS1fuBBrjdCNQKHtOL/OxOrVq/n4Y29fryrpGjnvUF4Qfg2vI5d3x6j58+cza9asSOlmSlDDlanlXgcr/OK5wJnF6W3fEvhKRF4XkdHOp9BCZYKIVAamWrlyJTvttBNdu3b1VW5xFb7jiZ8P5R4k20UXXcTNN9/MWWelX4jgTmPx4sWhvzeKsu7ZsydbbLEFEOxQF5aO22BwnqF7tU5QpzpdgBoR8VXuZWVliXTIgyj0KFyc2PIPAtuIyDwsY/P00DtKFG8Bu//++yPdt/fee4d6YC4ATsXyWnoVaAQMxgoNdhtW+K58ccABB1R+92v0jj766Eh7patq5Ty4H1GHz8Ms9z/+SN2JdPPNN4+UZqaELRmKugxuE+AIrEnsD7F2YZmC1ck746+/oIAxtQMYAhwK3Iw1sOR8qg2O0qlTpw7jxo3jiiuuSLHSGjVqROPGjencuXPlMVXluuuuCwwL62bIkCE89thjQHzlnkmZDXJSrVevHldccUXsOeY2bdqEtmVBe5s7uFeyuK+Pg/s3Oc/whRdeqDzmp9xFpIqR4P3tzZs3z4lydwc58nsuSY4CZEJUb/kfVHVfrNHibVS1B1ZkuRpHrp06pgOHYC2TewNoirUmfjZWKNvM/UWj455P91PAUTfjmDVrVmAB/+qrr7Lyonfkyve68ltuucW3DCxatMg3UM36wH5YHbVRWMNdPwEvYC2N/CdQD/gKeBi4sUkTyGC721ziRKrzfgotVxxefPFFvvzyS+rVq8dmm23GzTffXMXJ688//+T444+vPLZ27VqGDBlCt27d0qZ/7bXXVo4IeJV7OkXnHUoPCnntxm3lujsf2bRPo0ePDlTecX9DkEOdk757+Z6DO2+nrXRHpSwrK+PEE08MlQNSn/+VV17JOeec49vhKisrY+uttw6VOwy/IFZu2rZt6/s780WskqDWLnDOOOiFOZCn6IlbeVq3bs3jjz8OxOvRTwEOwHJLfto+dgxWyK+vgcuJtoVWJs5l6ZR7VII2YQHYbrvtmDlzZqR0VLWKEnfk8ovHnUtGjRpVpQGYPXs2LVu2pC3WqofLsd7Zt1h7nr6BNcVyCNbE9SJgPHAdVmCj9bHWmJ0CPFW/PkSM4JVrnD0kfD5R9pYoKho1asS2226b9jp3eXc6n3E7od56nq5T71aMbdu25eyzz06bh1smt09NnPbJq8jLy8urTHM5pFN63t/oyLHHHtZmnt7wr86KpSD8fkdZWRmPPPKIr1zffvutr6yDBg2idu3avhvXlJWVMWjQIMaOHVu5wiHJXf5EJFFH7Lhk486X3FOoRsRV7nfffXfl2tpM5uKmAscBHYBbsULZbgPcgmUBvg9cAmwN4NPr3nPPPdPmseeee6Z4jSal3JNizJgxVdbRlpeX8/DDD3PwwfmNpVQfaPHLLxyC1bstP+00ftpsMxZj7V86Fuvd9Ae2wtpt5UPgLvvY5lgT2L2wxrpfB5a60i8mhzpnDwmfT9q9JYqNqHXPXd7dDl5Lly7NOC9VDbXy3IqxrKwsUhuzYMEC7r333ipLYNMNn3vlclNeXh4YYCqucneu33XXXVHVtHH6o+QX9lyClKhzjzs955izcqJ3796VozNxlHuUZ5xkZyEumS/+C9kKspSJq9zdDUQ2ay3nYq1FvArLoh8I9AV2tz+3A2y5Jey5J/ToAbvvDptvzsSJE9OmPWrUqJSAPO4hv2JQ7n5UVFRwyimnJJpmU2AjrBGRjV0f5/9N7e/ceiuV8f5GjMDpPi3CWto40/5Mx4phEGeQvZiUeykRtd4GKfeo8TBgXYPeuXNnpk2bBlgd1O+++45ddtkFsJTep59+yqpVq1I6A6tXr44k65133smvv/5axUk3G8v93XffDbw202H5sPXuYWSyNLFFixYsWrSIjh078tlnnwHBIwDl5eUp59zWfBgdO3bk66+jbbMiIsWr3EXkL/yVuJA+sFpJko1yT8KLthxrx41xwISXXuKBww/nEKxldC2+/x6+/x5GjrQubtaM97EUzJdYHvg/Yln87i34vHKFKfdiUT5BnY4yLGfEJvanKdAcaIFlMXv/Ot9bYHmtp2MNsLxVKyYtWMD3WLuefIulzJNYPhJlvtUQn6h1zz1c7K67caZ//BRbs2bNUubuR40axT333MMNN9yQErb2119/jdTG/Prrr0DVEYVcra3OdFg+7nbPUfPz48svv2TEiBGcfvrpOFsDBznhec8FdUa8HH/88QwePDiSPG7lLiJ5bztDlbuqRl8IXkOIW3ncc2PZWO5e7rvvPnoedhj7Av/F2i9+7ccfwwcfwMSJ1mfBgkrL3stiLGW0CKh/7LEMnjOHb+zjdRcuZC7WZgKbfv45vPMO1K/Pkj//ZL8DDqAzVo/P+QhWQXI+tTz/+x2Lck1d+7Oez2fr88/nbaweZhPPJ1P+sp/JPKyNxb2fuVhD7+U52gnsoYceihVMxxCdqPW2d+/efPfdd1xxxRVMnTq18niUfcq9eYUpilq1anHFFVfQsGFDNt1005T91uO0MU8//XTK/95h+WuvvZbTTjstcnpBZDosH1VpRskv3f4PG2ywQZXtaoMsd++5qHK6z0dR1mVlZVx88cUceeSRlaM2+SI5bVNDyMZyT7JX7a1M5YB068b999/PGS+9ZM2///or+228MdtjOWy1xxpa3hTLmq3cA+vVVznUndjixeu+Dx9ufbAcv6ZSJEyZwt4Bp/70fBZjdWIWuv463+u1acOMefNYhLWpTyEp5BBeqRNn1GzLLbekrKwspWMeR7lHGeKtXbs29evX57LLLuPFF19MORennfDuo+C9d/311w+MuhbHkow7LB+lgxM3P/dujw5Dhw4NTSfsWbrz2GOPPbjnnnvo3Llz6PREHBzLPZ2MucIo95hko9yTbLyDGqszzzyTM844A0Rgo42YAFTdpBFaAxtgDUe//fzzyOLFsHAhLF7MyHvvpdbq1TQAOnfsyGatW8OKFfw4Zw4LFixAoPLjsAZrbrnc/rs24P8416zBCtXr97nhtts477LL+Bsrup+jyJcRzxlk6qhReYkFHgWj3HNH3HpbVlaWUneDvMj98Cp3v/caNornJ2vr1q0jbb8cx1LORLkH3ZPOco87JO0nv3tnyyZNmlSJceFH2Ht3nzviiCP47bffmDJlCnfeGS2EQxwrvxAY5R6TbIblc2m5p8vby+/2Z8CAAYhnh6Jzhg1jhT3vfsfJJ1c6E7XPsrD26tWL1157LfD8IYccwujR0QKfnde1K+9kJY1F2Pat+abQjUEpE9ffxavco0RkdPAqdz/F5pbH2y74tRPPPfcce+8dNFZV9d6k53ezHZZPIj8nGuj8+fOpXz+ay1dU5Q5WBypdG+3Itf766xeN/1EQOY1sLyIHisi3IjJLRC73Ob+XiPwhItPtzzVR7y0UcRV0v379Kr/7FdgHHnggIzmiNFZjxoxJe42fTO5GLUlv+REjRqREv/MStccM8bacDSPTWNy5wCj33JGt5R5G0LB6umF5B+9797svauckSMn6kc9h+STm3J1jG220UeTQ1X7P0vndYfPx6Tj11FPTXlPo+pwz5S4itYD7sJb0bgv0FxG/KBIfqOpO9uf6mPfmnagvv3bt2ixbtoxNN9009N7TTz891pCfQ5SCE2XnNr903JU+SeVeVlYWGn89zkYLSclVTJa7IXfEDTMaVbm/9dZbKR14iKbQgtqR3XffPSulk6RCccdsz4XlPtz25fEjqd8Rx3JPdz3Em2YoWeWOtRfGLDt07WrgWayl2bm+N6dErWT16tWroqyCXnYme3gnVXDSpRNViUaJj12rVq3Q51cI5Z5ry33EiBG+x8Ni7huSpXnz5rE39fE61HlxOgtt21bd9SGKQ51fxDSw1r9no9ydJXuZBLHx4t4ky5Hx1ltvZbvttqtybdA0YVj7cuqppwaez6Vyz8Zyj+stX0hyqdzbYK0ccpiLf8TUXUVkhoi8JiJOqYl6LyJymohMFZGpC3K0RMlN1H3MM51f79q1K7169fI957Y+cqnc/Sz3sIK83XbbVYkgF5RXUsr9hx9+iHxtGEGWe1KR75o3b+573K9DV+iefqnhjJotWrQo9r21atUKVe5OvfBTalEDonivd+4JioMeBW95zmZY3s8voHPnznzxxRdVro0axMbLypUrmTx5cpXjxWq5O9R0y93vl3mfyKdAO1XtBNwDvBLjXuug6nBV7aKqXZzABbnkySefjHRdpsq9WbNmgWud3b8v38o9zFJ27zcfRsOGDUOfSxynpyhbWkaZF/Oz3OvUqROps5INxRr5r5SYOnUqH374YUb3pqu/js9H0G5jcfBag9koHadcHXXUUQDss88+sWRx466PcYflo95Xt25d3w52dbTcRzrBw3yuLQS5VO5zsXa3dGiLFQukElX9U1WX2d/HAXVEpGWUe4sdP0UVNejB4YcfzieffFJlfaQ7GlVQwXFXsgkTUhfBffLJJxx22GEpx9Ip97vuuosPP/ww1IEt3b7F999/P9999x0NGjTIWQQtP4YNGxZ6vm3btr7KXUQ49NBDcySVRZxRCkNmtGrVin/+858Z3ZuunEax3J2/zj7vQXgVhl+djGtR7r777qiq7xC699og/IK8BJGpcg+6pliU+8477xw5r5NOOoljjz02poS5I5ct7SfAliLSQUTqYm1qlrLOSUQ2FPstikg3W55FUe4tdjJVYs4ORl26dKkydPv3339Xfg8q/GvXrmXo0KHMmDGDhx9+OOWcX5rplPuSJUvo0aNHVt7pJ5xwAltuuWWo3A5du3bNKI9dd921yrGysrLQPZWnT58e+J769evH22+/nbE86ahXrx4zZ87ku+++qzxW6J6+YR1h9ffEE0+srCN+Ss05V6dOHW6//XbfYWc3USx3x1hI11FIch44juWeblje2Thmiy22iJR3UkZA3GF57+9s3bq1771BzznOM8s1OVPuqroWOBtr46uvgedV9UsROV1ETrcvOwL4QkRmAHcDx6iF7725kjUXZGq5hxWOqNHuLr300siWZzrl7rDYHbXOh7Df5nZmSlfgX3/99dDzQYwbN873uDuEqJcWLVoEWg0iwt57781mm22WkTxR2GGHHSo7PU6+huIgrH516NCh8nuYchcRLrnkkrRbzbrfe5cuXUItSr96dtRRR3HFFVcEns+UJIfl99lnH8aPH8+1114beE26Y3EI28I1zHL3Xu/utMyYMSPFW97vWd9xxx2BaeWbnI6Rquo4Vd1KVTdX1ZvsY8NUdZj9/V5V3U5VO6lqd1WdFHZvdSLTnmfUCpWu4ATtpe4tkFHl9PMKjoKIBP6mp556iquvvjrl+nRD/EEErXtt2bJl6GYs6Sp4PqcRDMVD2Ht316GwYFJRG3f3dUcddVRlfenevXsVeVS1Svz0Dh06VHag4yj3fA/LH3DAAZH318hWMb7xxht89NFHGS1HdONW7m3atKFHjx4AKbtoumndunXazly+MC1XTIKGabyEzfWE4XYu8RbM9u3bB57LlB122CGRdIKoW7duoKzHHnts7H2eM+Gzzz6jT58+jB8/vsq5dMr9H//4R6Q8vL4MmVDonr5hHWG7wEVV7lFxyqAT4OnAAw9kq622SllG6Vbu3mV9derUibX+2iGOt3y2w/Jh5MJyX3/99QM3agmz3L3PxN0e16pVi+7du7NixYrAFU1uCl2fjXKPSdTKk67gvPDCC77Kxl2YvGkMHDiw8rtTcNzDQFHwOssNGjQo1v1xKYYgMRtuuCGjR4/2jY6XrmE577zz+Pe//80NN9wQmkfjxus2UHQ7cRW6ghsy44UXXgg8517pEDYs78fIkSO59dZbU455FXPz5s359ttvU7afDVPujp9OuryjynnYYYehqrGUe9BKl0I71PkRFtDI+0zcnRbnHTihb4t9nbuJLR+TqC803bKuI444wvd42Py0u6A557KxvM8///yM741KnHW3SbHjjjty8803R7o23dBc3bp1ueCCC6qEGPXift9x45gbqhfZDMufdNJJkdL14pSpiooKlixZknKuTp06lY526RzuouB0XuIMy3vrURzL3Y9cthMfffQRo0ePjjTq4lyzxx570KRJ6obSu+++e6QQ34XCKPeYpFPuTZs25Y8//qBjx46x74XwYXm/ylboOeF0G1VkEkAkLvfccw8Ar7zyCt999x2XXHJJ2nucuf2oVkM6hZ1EY2Ss/OKhTp06gUFs3GU90+k3N1Gsbnc+3hgJderU4cwzz2T58uVceOGFsfL2w0k/zHI/77zz+M9//uMrn5titNx32GGHyEaRI8d+++1X5dzFF1/MZZddlqhsSWKG5WOSruJOnjyZ008/vcoytKjEVe6FthKzCdiRFIcffjgAffv2jaTY3XJk4vSUDm8ZmT59euR7DcVB2HRS1ABEcctWFOXu56Vdu3Zt6taty+DBg2PF0A/KL4py/7//+z/+/PPPKvI5OGU+zHfBj7Zt2/LTTz9V5udeTZJvDjrooMpnlE3UwEJR3NIVIemUe8eOHXnggQd8PbSj9OjdDnveCuUXDjKuck96nsjJf6ONNop0fZQG76GHHoolQzYdhlxYDd5n3KlTJ0488cSs0jTkl0022STwnKry4osvcsghhwSej0O2yj3T/RGC8nOG/dMNy4etKnECaE2cODGtHO50WrZsySabbFJ5zB3fPh84z2SPPfZgzJgxvh2dqGkUGqPcYxL04tq0acPLL7+c0b0AL7/8MkceeSTnnXde5TF3oX/ggQdSCpjTQ4+r3KNulRg1DadSDx8+PLGobieffDKPPvpo5DXm+ehBx/Es9uP2229Pm0exWwJxkSy2fC40Ye9bVenXrx+jRo0KTSNflnumyv22227zPT5p0qSUPN0yuglT7rvtthtgtYtxCDNo8okjRybKvVgordYkDwRVwOeeey4r5XbooYfy/PPPpzjEuCvM6aefnhKydO+99wbiF7rrrruOAw44gNGjMw/4545W58jYtm3btJ0bqFp5g57nwIEDefzxxyPJk4mlnU0MAT/cW/v60apVq9D19lBayl2y2PK5GAhTtOmG5eNabo7TVpiSduq5qlaJBZHpcrxzzz03VFZ3PYir3M855xwgWvvk14kIGw7PJ8UiRyaUTmuSJ4IqQxSFkOlwncOAAQPYZ599uPfeeysLW9xC17JlS8aPH0+fPn1i3efG7WgUN/+wFQDprg0iE6UY5lUcNWqfO61zzz2X3XffnZEjR2Y8LFcdG5AQinbb5iiEvcOddtopUhpRy2+PHj24+OKLq2w84sZdxi+++GLuuuuuyqVy2W5b/OOPP/L111+H5hlXuadztHWz9dZbV353rg9bi55PikWOTKh+EheYoMIaFDAhG7wFqn79+rz11lspO6K5FYLfvK7Tg06S1atXB8oYlwEDBtCtWzffYetcOLu9/fbbbLfddpFGGeLQpEkT3n//fU466aSMlXR1bEBCyGbL54ITVM+/+eabtJuDxO3c1apVi6FDh4YOYbvLRt26dTn//PMrj2Wr3DfddFO22WabFHkgO8vdO6wdhru+FFq5e99ddR6WN0vhYuJXcXv27Bnp5WdrufvhztfPwzcXhdJdYbP1lm/QoAFTpkyJdG0QcWTYe++9ffejTpdv2Lt79dVXU/4fNmxY6G5cQZSYcvd7eUFbPi8Tkd5YWz5XcY8WkdOA0yD99EdSOO/7lVdeSZluc1uZ6UhyZYhf2QjbmS4b/Dzu0yn3li1bppyLY7m7ca4vtFI1c+41kFGjRrH++uvzxBNPVB5zNm0oBO5K//vvv1c5n4ulZ8OHD/fNv1Ak9RuPOOIImjVrFtuq9+6ZHRRbOk4s7xIgmy2f8Vw3XFW7qGqXVq1a5VJmd55AZkuxcuEtHabcs7XcHT7//HPAf545XZhm76hDHMvdTaEtdy/ZKPdCx60oqdYkH+yzzz4sWrQoJZZ43L2WoxIl3XQhIs8991xq166dWLCF33//PWfboHrJxbB8GH379mXx4sWVzoph5CKsbqEbsoTJZsvngpONVezU83xZ7kkpd8dRz0m3efPmlefiLhnNJByu+/pCKXcnuM0FF1wArAtDPHv27LzKkQQl1ZrkCxFJqfRRe3VxC7qz81DPnj0Dr/Gbr3LTvn17/v777yrxrDOlrKwstMLdeOONoffHCWrh13gMGDDAV6YkKCsrC2yw3M92zZo17L///onk6c2/VNAstnwujMT+uOvXfffdVxRyOCQ9LO/2yPcSV7k7ZTmu5d65c+cUGfI9HN6yZUtUtUoMg7lz5+ZVjiQondYkz6QbskqC5s2b8/fff/Pmm29GkiOIJOfkvArQ2xAMHjw4cLtZwHeznCC8jceKFSt8g1okZSFFfY+1a9eO3WhBejkLPYyXNH7bNmvELZ8LjZ/leMYZZxRKnLxY7n7z5GHBqXJhuT/wwAMp9xVLh9e9DLm6UBxPrhqSiXLPxCipV69eaCVyy3HKKafETt+P6667LvBcmHXrELbMzO2Vmw5vPvXr1/dVqkla7kEEedHGoYbNuVdrGjVqBMTb9tShug7LuzencZg0aRKPP/542jl3L5k61DnOfH6b1xSCFi1aFDT/bDCtSYa4C3YhPSndee++++7MmzePjTfeOKs0r776an7++We6d+9e5VwU5R52Ps7SPL+93qMOGWZCnHQyUe7pKHRDZljHmDFjuPXWW0PD0AaRL+Xu5JPLYfn27dv7ToVBNMs903qSi2eYCc50ZtAmQsVMTluTCOEnjxORmfZnkoh0cp2bIyKf22Epp+ZSzmxxO56EkYvpRK9lka1id9Jp27Yt77zzDrNmzUo5l25Y3rkmiDgKrG3btlWOFcpy9xJ1t7s4jVN1XG5TqrRv357LLrus4MrFwa9sOpEiczksH0YuLHeHYhmWdxxn3bE9qgs5W+fuCj+5H9aymE9EZLSqfuW6bDawp6ouEZFewHDAHQ1mb1VdmCsZkyJq/ORcL5HJ1IkliHr16rH55punHBORWJb7XnvtlXIuTmX1y8fvt+Vjzt071z9t2rRE8oyav6FmE+ZQl8th+UzJ1nJ37it05+qwww7jqaeeCp2qjIMz3ZMPchnEpjL8JICIOOEnK5W7x4HmI6y1sNWGWbNmsXr16tA55lzjNyfojv2eBJMnT2bXXXcFLAXkN1zuxq2kHn300cBzmVAoy32rrbZi6tSpsTfCSCp/Q/UhF0PKYYGVkhqWT7L8JWW5O7+7b9/CRC5u3Lgxr7/+eiJpzZ07N6+6IpfK3S/8ZFiM1pOB11z/K/CGiCjwoKoO97upENGrHLxWbTp23HHHxGXIh3J3b0NbVlaWdhrC3RB5C3MulHu+5tydZTq5wij30qBbt26AfzjoTAkbxUrack+CJC33BQsW0KRJk8RkKxS5NAz8yGVrEiX8pHWhyN5Yyt0daWU3Vd0Za1eps0RkD797CxG9KlN22203Ro8eXWUeOxv8vPaTdvbyy8MZbu/du3eV68NiUmeqwPr37w8Uz5x71KiEcToeSfhLGApPu3btUFUOPvjgnOZTzMo9ruU+Y8aMlDDOCxYsACxv9ZYtW+YkaFSpk0vLPW34SQAR2RF4COilqpVeSqo63/77u4i8jDXM/34O5c0L2ezG5kc+LHf3sJ9Taf/73//y0ksvcfTRR1e53s8PIOj/qDhL6IrFW75Hjx6x0w9q6D755BPmzZtHhw4dYqdpyD1XXnll5bRUMZF0EJskR47iWu477rhjyshm7969GTp0aEok0OpCscRhyqVyrww/CczDCj+Zsp2SiGwKvAQMUNXvXMcbAmWq+pf9fX+gaPZ6Lib8rOqklbtfB6J58+aB6+rDdovKtAFxGolcLEFziCNbr169ePDBByuHYLOhS5cudOnSJet0DLnhpptuKrQIlbgjpyVtuTv19sADD8w6Lccvxy/oVBT22muvxJXkCy+8kDLFWOrkTLmr6loRccJP1gJGOuEn7fPDgGuAFsD9dsFaq6pdgA2Al+1jtYGnVTV6aLMahJ/izeWwfBTrNmwf6EyV+6pVq4DiUe4iwmmnnRYr/UJ7/hqqN4sXL06JlJaLXeHmzJmTiALcdtttmTx5MjvvvHMCUiXDEUcckZd8iqWe53TLV3unp3GeY8Nc308Bqph/tod9Zl2+GkY+huWz2dY1KcvdcahxrzcdOXJkYlYLGIc2Q3HjbOzikIvtSNu1a5dYWn5BsGoCNWFY3pAH/KzkYlLu2VruU6ZM4cknn+Sss84CUr3vTzrppFhppSPXHrnFUukNpUF13mvckHuMcq/mlJWVcccdd6CqORuWj2sdhznUNW3aNFZa3bp1S5nXPu+88/j5558Ti6MP8MQTTzBjxoxE5s8NhnwxYsQILr/88mq5qUmp8N5779G4ceNCi+GLUe4lwEUXXZTT9Bs1asRVV10VOQBD2LD8fvvtxymnnMJuu+2WkSzNmzdn5MiRGd0bxPHHH8/xxx+faJoOzkYYBkPSHH300b6rVQz5Y489fFdoA4WfezfKvQRp1qwZS5cuTdQz9IYbboh8bTqHuhEjRiQmV7Fy3333MXHiRPbdd99Ci2Iw5JQkg/UYksN4EJUgb775JrvttlusvdOTJGzOvaZw5pln8vTTT5v5UENJU1FRkfhImiEZjOVegnTp0oWJEycWWgyDwVDi1NTOexQK7UBrlLshJxx99NGsXr3ahI00GAyGAmCUuyEnPPvss4UWwWAwGApGoUc1zJy7wWAwGAwlhlHuBkOeGDbMCs74wAMPFFgSg8GQK0aMGMGuu+4ae0vwpDHD8gZDnjjssMNYuXIl6623XqFFMRgMOaJHjx5MmjSp0GIYy91gyCdGsRsMhnxglLvBYDAYDCWGUe4Gg8FgMJQYRrkbDAaDwVBiGOVuMBgMBkOJIYUOkZckIrIA+NH+tyWwsIDieCkmeYpJFjDypMMtTztVbVVIYQqJqeOxMPKEU8zyZF3PS0q5uxGRqarapdByOBSTPMUkCxh50lFs8hQLxfZcjDzhGHnCSVoeMyxvMBgMBkOJYZS7wWAwGAwlRikr9+GFFsBDMclTTLKAkScdxSZPsVBsz8XIE46RJ5xE5SnZOXeDwWAwGGoqpWy5GwwGg8FQIzHK3WAwGAyGEqPaKHcRGSkiv4vIF65jzUXkTRH5n/13fde5K0Rkloh8KyIHuI53FpHP7XN3i4gkKM9QEflGRGaKyMsi0qyQ8rjOXSwiKiItCy2PiJxj5/mliNxeSHlEZCcR+UhEpovIVBHplg95RGQTEXlHRL62n8N59vGClediwdTz+PK4zpl6bur5OlS1WnyAPYCdgS9cx24HLre/Xw7cZn/fFpgBrAd0AL4HatnnPgZ2BQR4DeiVoDz7A7Xt77cVWh77+CbA61iBP1oW+PnsDUwA1rP/b11ged5w0gN6A+/mQx5gI2Bn+3tj4Ds7z4KV52L5BLwnU89D5LGPm3oeLE+NrOfVxnJX1feBxZ7DfYHH7O+PAYe6jj+rqqtUdTYwC+gmIhsBTVR1slpP7HHXPVnLo6pvqOpa+9+PgLaFlMfmLuBSwO05WSh5zgBuVdVV9jW/F1geBZrY35sC8/Mhj6r+oqqf2t//Ar4G2lDA8lwsmHoeXx4bU8+D5amR9bzaKPcANlDVX8B6kEBr+3gb4GfXdXPtY23s797jueBfWD2sgskjIocA81R1hudUoZ7PVsDuIjJFRN4Tka4Flud8YKiI/AzcAVyRb3lEpD3wD2AKxV2eC0kxPxdTz6ti6rmHQtTz6q7cg/Cbj9CQ48lmLjIYWAs8VSh5RKQBMBi4xu90vuWxqQ2sD3QHLgGet+eOCiXPGcAFqroJcAHwsH08L/KISCPgv8D5qvpn2KX5kKcaYuq5qedRqJH1vLor99/sIQvsv87wz1ysOSiHtlhDMXNZN4TmPp4YIjIQOBg4zh5CKZQ8m2PN28wQkTl22p+KyIYFkgc7/ZfU4mOgAmuzhELJMxB4yf7+AuA42uRcHhGpg1Xhn1JVR4aiK89FQtE9F1PPQzH13Kag9TzdpHwxfYD2pDpKDCXVMeF2+/t2pDom/MA6x4RPsHqUjmNC7wTlORD4Cmjlua4g8njOzWGdo02hns/pwPX2962whqCkgPJ8Dexlf+8JTMvH87HvfRz4P8/xgpbnYvn4vCdTz0Pk8Zybg6nnXnlqZD0veEWO8aCeAX4B1mD1ZE4GWgBvAf+z/zZ3XT8Yy9vwW1yehUAX4Av73L3YUfoSkmeWXZCn259hhZTHc34OdqUv4POpCzxpp/8psE+B5ekBTLMr1BSgcz7ksfNVYKarrPQuZHkulk/AezL1PEQez/k5mHpu6rmqCT9rMBgMBkOpUd3n3A0Gg8FgMHgwyt1gMBgMhhLDKHeDwWAwGEoMo9wNBoPBYCgxjHI3GAwGg6HEMMrdUAWxmCgivVzHjhKR8YWUy2AwJIep56WNWQpn8EVEtseK5vQPoBbWGs0DVfX7DNKqparlyUpoMBiyxdTz0sUod0Mg9j7My4GG9t92wA5YsaOHqOooe0OEJ+xrAM5W1UkishdwLVZAiZ1Uddv8Sm8wGKJg6nlpYpS7IRARaYgVYWo1MAb4UlWfFJFmWPsL/wMrAlOFqq4UkS2BZ1S1i13pxwLbq7V9ocFgKEJMPS9NahdaAEPxoqrLReQ5YBlwFNBHRC62T9cDNsXawOBeEdkJKMeKJe3wsanwBkNxY+p5aWKUuyEdFfZHgH6q+q37pIgMAX4DOmE5aK50nV6eJxkNBkN2mHpeYhhveUNUXgfOsfdlRkT+YR9vCvyiqhXAACynHIPBUD0x9bxEMMrdEJUbgDrATBH5wv4f4H5goIh8hDVUZ3rxBkP1xdTzEsE41BkMBoPBUGIYy91gMBgMhhLDKHeDwWAwGEoMo9wNBoPBYCgxjHI3GAwGg6HEMMrdYDAYDIYSwyh3g8FgMBhKDKPcDQaDwWAoMf4f1Z29aG8neY0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAADQCAYAAADI+yJFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABWYklEQVR4nO2dZ5gUVdaA38MMYSWqYCAImFAQAUUEI4qSVNTVRVgTRjDLt65iWMXsGta0q4grCphYVxdFQUUFE8qKiAiCCArCSlJEkjAwc74fVdVUV1d1V3WY7um57/PMM91Vt26dqq5b555zzz1XVBWDwWAwGAyFSY18C2AwGAwGgyEYo6gNBoPBYChgjKI2GAwGg6GAMYraYDAYDIYCxihqg8FgMBgKGKOoDQaDwWAoYIyiNmQdEdlVRD4QkfUi8oCI3CAi/8y3XKkQkWdE5A7785Ei8k2+ZTIUByKiIrJ3vuXwQ0SGi8iz2T5WRLqLyLLMpMsuIrKHiGwQkZKA/WnfC5+6svabVytFLSJ/FJEZ9g+1XEQmicgRnjKD7Bvc37O9u739Fc/2Dvb2qa5tt4vIVyKyTUSG+9RTYcvg/J3r2t9fRKaJyCZ3nVWMi4GfgAaq+idVvUtVLwQQkVb2/SoNOjibjSVdVPVDVW2TTxmqC6ZdJshRUMqtmFDVH1S1nqqW51uWKFQbRS0i/wc8BNwF7ArsATwGnOwpei6wxv7vZTVwmIjs7Cm/wFNuIXAt8EaAOD/aD4vzN9q1b40t5z2prilbJFOaadIS+FpNNh1DCky7jE4O2muVI8giLlaqhaIWkYbAbcBlqvqKqm5U1a2qOkFV/+wq1xI4Gssi7CUiu3qqKgPGAwPs8iVAf+A5dyFVHa2qk4D1UWVV1XdU9V/AjyGv7WQRmSUi60RkkYj0trcvFpHjXOViVqrLqr1ARH4A3hORN0Xkck/dX4rI7+3P+4nIZBFZIyLfeC0b1zHPYL0kr7WtkuM8FvIH9v+19v5unuN7AzcAZ9j7v7S3NxWR1+zzLxSRi5Lck74i8rVYrvf/icg19vbuIrJMLFf8T/Y9OjOgjjjLxi57jYjMFpFfRWSciNRx7T/R/h3W2pbXgUHyGSyKvF3+2fYO/Cgi53v21RaR+0XkBxFZKSIjROR3IlIXmAQ0dVn1Te32828ReVZE1gGDRKShiDxln+N/InKHo7xs78NH9jl+EZHvRaSP6/ytReR9u31MBhp75OtqP8Nr7XdA97DHBtyLhPYmIofY117qKneaiMwKqOMZEXlcRCaKyEbgGPvevCwiq+1rvNJVvotYXpp19nn+Zm+P8+glux7vO8DeFnuv2uf4xL5Py0Xk7yJSK9X9SIdqoaiBbkAd4D8pyp0DzFDVl4F5gN9LfIxdDqAXMJeQjdfFLvbD872IPGg30MiISBdbnj8DjYCjgMURqjga2B/rOp4HBrrqbotlGb9hyzfZLrOLXe4xEWnnrVBVB2G9IO+1rZJ3PEWOsv83svd/4jn+TSzrapy9v4O96wVgGdAUOB24S0R6BFzXU8BgVa0PHAC859q3G1ZjbIbVoRgpImFd3P2B3kBr4EBgEICIHASMAgYDOwNPAK+JSO2Q9VZXirVd9gauAY4H9gGO8xT5K7Av0BHYG+tZvFlVNwJ9iLfsnWs4Gfg3Vjt/DhgNbLOP7wT0BC50neNQ4BusZ/1e4CkREXvf88Dn9r7bcXkpRKQZlsfhDmAn+zpeFpEmqY4NwLe9qepnwM/2PXI4CxibpK4/AncC9YFpwATgS7vuHsDVItLLLvsw8LCqNgD2Av4VUGfU63FTDgy1j+1my3BphONDU10U9c7AT6q6LUW5c7B+OOz/CT+aqk4DdrJf7udgvSCiMB+rge4OHAscDPwtYh0OFwCjVHWyqlao6v9UdX6E44fbVsxvWC/Ljrb1AtbL8BVV3QKcCCxW1adVdZuqzgRexlKYOUdEWgBHANep6mZVnQX8Ezg74JCtQFsRaaCqv9jyuvmLqm5R1fexXkq+3gEfHlHVH1V1DdZLoqO9/SLgCVWdrqrltst0C9A17DVWU4q1XfYHnlbVObbyHe7ssJXlRcBQVV2jquuxOqYDUtT5iaqOV9UKoAGWQr/abr+rgAc9dSxR1SftsdjR9nXtKiJ7AIewvQ18gPUsO5wFTFTVifY7ZTIwA+gb4tgggtrbaPt8iMhObDcYgnhVVT+270F7oImq3qaqZar6HfCk6x5sBfYWkcaqukFVP/VWlsH1AKCqn6vqp/Y7cTFWB/3osMdHoboo6p+BxpI8gOlwLEvpRXvT80B7EenoU3wscDlwDKmtgThUdYWqfm03gu+xxszSVXgtgEVpHguw1CXXeqxG5DzoA9juOmwJHGq7eNaKyFosRb5bBueOQlPAeak5LMHqSftxGtAXWGK7tdzu9V/sl6e7nqYh5Vjh+rwJqGd/bgn8yXN/WkSot7pSrO2yKa62hfWMOTQBdgA+dz0rb9rbk+GuryVQE1juquMJLG+XQ+xZVdVN9sd6tmx+bcBd9x88z/IRWIo+1bF+JGtvzwIniUg9LOX9oaouT1KX9x409ch5A1acA1hGzL7AfBH5TERO9KkvneuJISL7isjrIrJCrCGJuwgxFJAO1SUo4RNgM3AKlvvIj3MBAWZt9xABVu98lqfsWKzAlDGquslTPipqnzcdlmK5dfzYiPVCcPBTqt5grxeAW0TkA+B3wBTXed5X1ePJnDABZt4yP2JZS/VdynoP4H++B1tutZNFpCbWi/tfWIoTYEcRqetqnHsAc6JcgA9LgTtV9c4M66luFGu7XM725w2sZ8zhJ+A3oJ2q+j2/Qe3DvX0plsemcQhvhJ9sfm3AqX8pMFZVE2JAbG9bsmP9CGxvqvo/EfkEOBXLO/Z4Ctm99+B7Vd3Ht6Dqt8BAEakB/B74t8QHG0LqexH3DhUrBsDdoXoc+AIYqKrrReRqcuRlrBYWtar+CtwM/ENEThGRHUSkpoj0EZF7xQoK6o8VrNLR9XcFcKa3x2/3uI8GbvQ7n113Haz7WyoidWR7oEd3sebyie3SvQd41XVsiX1sKVDDPrZmwKU9BZwnIj1EpIaINBOR/ex9s4ABtiydCfcATcTqqd6GNUZcYW9/HdhXRM6266spVjDI/iHq9LIaqAD2TFJmJdDKbmSo6lKsMam77ftxIFaP+TnvgSJSS0TOFJGGqroVWIc1luTmVrvckVhu/ZfSuA43TwJDRORQ+3etKyIniEj9DOstaoq4Xf4LK+CrrYjsANzikrEC63l5UER2setuJtvHVlcCO4sVaBd035YDbwMPiEgDu+3vJSIp3a6qugTLle20gSOAk1xFHCu3l3PN9r1pHuLYIJK1tzFY3ov2RPOC/BdYJyLXiRWIVyIiB4jIIQAicpaINLHv91r7mLj3QIjrWQDUsdtyTeAmwB13Uh/r/bLBfu9eEkH+aKhqtfnDctfOwOoprcBy9R6G5eZdDtT0lK+D1QM+EegOLAuo90Jgquv7M1i9MvffIHvf/2FZgpuweoWPAvVdxw7yOfaZJNd0KjAbK5J1IdDL3r4nMB3YYF/nI8Cz9r5Wdr2lPvU9Ze87xLO9jV3PaiyX5XtAxwCZngHucH0f7pzb/n6bXc9aoKvP8TsDHwG/ADPtbc2xOgxrsNz9QwLOXQvLlfgLViP6DDjC3tcdKyDtRvt3/QE4209u7++NFaR3XJJr6m2fa639LL3k/l3NX7Vrl8Psa/kRON8uv7dL/ruA7+xndB5wpevYUXYbW4vlno171uwyDbEsumXAr1iW3QCXrB95yrvPvyfwIda7YTLwd8+zfCjwPlZbW23/HnuEOdZzzu4kaW92mR3sezA6xTPyDK53ir2tKZYXcAVWe/8Uu41idThW2XLOBU6xt7fC9e4LcS8GYT2Dq7AC6xa7znEUVmzDBruO29z33X3PM/0Tu0KDoegRa5rJs6raPM+iGAwGGxFZhDVLwztDxGBTLVzfBoPBYCg8ROQ0LMvzvVRlqzPVJZjMYDAYDAWEWKlY22K5wytSFK/WGNe3wWAwGAwFjHF9GwwGg8FQwFQ513fjxo21VatW+RbDYMgZn3/++U+qmioBRlFg2rOhmMlWW65yirpVq1bMmDEj32IYDDlDREJnR6rqmPZsKGay1ZaN69tgMBgMhgLGKGqDwWAwGAoYo6gNBoPBYChgjKI2GAwGg6GAMYo6R3z11Vd07tyZKVOmpC5sMBgKmvHjx/Pmm2/mWwxDNaXKRX1XFQYOHMjcuXM59thjMUllDIaqzamnngpg2rIhLxiLOkds3LgxdSGDwWAwGFJgFHWOKC01zgqDwWAwZI5R1DmipKQk3yIYDAaDoQgwijpHGEVtMBgMhmxgFHWOMIraYDAYDNnAKOocYcaoDcWCiLQQkSkiMk9E5orIVT5luovIryIyy/67OR+yGgzFiNEmOcJY1IYiYhvwJ1WdKSL1gc9FZLKqfu0p96GqnpgH+QyGoiZnFrWIjBKRVSIyJ2B/UffAjaI2FAuqulxVZ9qf1wPzgGb5lcpgqD7k0vX9DNA7RZkPVbWj/XdbDmWpdIzr21CMiEgroBMw3Wd3NxH5UkQmiUi7JHVcLCIzRGTG6tWrcyWqwcM//vEPRISysrJ8i2KISM4Utap+AKzJVf2FjrGoDcWGiNQDXgauVtV1nt0zgZaq2gF4FBgfVI+qjlTVzqrauUmTJjmT1xDPzTdbTsv169fnWRJDVPIdTBaqB14VMRa1oZgQkZpYSvo5VX3Fu19V16nqBvvzRKCmiDSuZDENhqIkn4o6dA+8KrrKjEVtKBZERICngHmq+reAMrvZ5RCRLljvlp8rT0qDoXjJm6KO0gOviq4yo6gNRcThwNnAsa7gz74iMkREhthlTgfmiMiXwCPAADUrWBgMWSFv/lkR2Q1YqaqarR74vHnz+PTTT9lvv/3o1q1bVuRMF6OoDcWCqn4ESIoyfwf+XjkSGQzVi1xOz3oB+ARoIyLLROSCXPfA3333Xc4//3yeffbZzIT3Yfny5dx3332sXbs2VPkaNfI9/G8wGAyJGEdH1SNnFrWqDkyxP+s9cEc55uJB7NOnD19++SWfffYZ//rXv7Jev8FgMOQSO4TAUAUpKrPPeRArKiqyXveXX34JwIcffhhJFoPBYDAYMqEoFbVx7RgMBoOhWCgqRZ1L17dD2LqNRW0wGAoRY8hUPYpKUefS9W0wGAzFwC677MKSJUvyLYYhAkWpqFWVF198kd69e7NunTfTYXbOka1yBoPBUNlMnTo13yIYIlC0inrgwIG89dZbPP7441k9h3EbGQyGqs4vv/ySbxEMESgqRe03Rm0Uq8FgqE7MmTMnZb6HsPkgDIVBUSlqvzHqhg0b5lUWg8FgqEzat2/P0UcfnbDd/U7atGlTZYpkyJCiVNRuK7pevXr5EsdgMBjywuzZs5PuN57GqkVRKWrH9b1ly5bYtnwtN2ksaoPBkE1Gjx6NiLB8+fKM6zKKumpRVIraUY7uFJ9GYRoMhmJg1KhRACxYsCCwTFgFbBR11aIoFXWqbZmwcuXKULm+TQfBYCg+Cl3BlZeXhypX6NdhiKeoFLXfilW5eCDPOOMMtm7dmvV6DQZDYVPoCs4o6uKkqBS1nxUb9sGNSq7qNRgMhUuhKzijqIuTolfU2Ugn6vdQp3rQjevbUCyISAsRmSIi80Rkrohc5VNGROQREVkoIrNF5KB8yJprCkHBbdu2jc2bN/vuS6aozTup6pKfkOgckSuLesOGDQnbTD5xQzViG/AnVZ0pIvWBz0Vksqp+7SrTB9jH/jsUeNz+X1QUgqI+6aST+O2333xlMRZ1cVJUFrUf2VDUK1asSNiWSlGb3quhWFDV5ao60/68HpgHNPMUOxkYoxafAo1EZPdKFjXnFIKC++233wL3JXvfuWU3hkbVoqgUtV8jysYD+fPPP0eu1yhqQzEiIq2ATsB0z65mwFLX92UkKnOnjotFZIaIzFi9enVO5EzF1q1b0+rE51NRh3mnmNiZ4qToFXXYB7eioiIwrZ5fHUZRG6obIlIPeBm4WlW9y9L5PfC+Wk1VR6pqZ1Xt3KRJk2yLGYpatWpx/PHHRz4un4rae+6ysrKEMtu2bfM99vnnn+enn34KrMtQ2BSVovYjrEV95JFHUrduXdasWROqDuM6MlQnRKQmlpJ+TlVf8SmyDGjh+t4c+LEyZEuXKVOmRD6mkBTcDTfckLDNMSq8hsKYMWPivke9jueee44777wzooSGbFFUijoTi3ratGkAfPzxx6HqNYraUF0Q663/FDBPVf8WUOw14Bw7+rsr8KuqZp7rssAoJNf33LlzE8o47zu/nBJuol7HWWedxU033RTpGEP2KCpF7UdUhVqzZs1QdTjbtmzZwtChQ/nggw/i9hvXt6GIOBw4GzhWRGbZf31FZIiIDLHLTAS+AxYCTwKX5knWnJJPRf3+++/HffdTxkEWtVfuXBkaK1as4PPPP89J3dWZopqe5UfU4Ao/RZ3Mon788cd56KGHeOihhwrKLWYwZAtV/Qj/MWh3GQUuqxyJ8ke+2rjfzBM/131YizpXtGvXjjVr1ph3YZYpKos6Gy5qv9W2ktW7dOnShH1gLGqDoRjJlwLye5/4TdMKUtReuaNcR5R0yX4xPobMKXpFHdWi9lPUyVzfpudoMFQf8tXewy7XG+T69hLFgLnllltCl82U0aNHx+KFDNspetd3Nsaok1nUQQ3XWNQGQ/FRSBa1H2HHqKPw9ddfpy6UJlu3bo175w4aNAgwBpCXorKo/bjhhhv46KOPkpZxPxRRg8nMA2UwVF2iduTz1d6D5AwKEosa9b18+XLefPNNAN588804F3auAs+WLFlCrVq1ePrpp3NSfxhUlQkTJgTOPy8UikpRBzWiI488MvZ527ZtCbm7U/1IfmM0RlEbDFWfkpIS5s2bF7p8vtp70Hm949RhFbr3+5FHHkmfPn1Ys2YNffr04bTTTovty1W2swULFgDWHO18MXHiRPr168ddd92VNxnCUFSKOgydOnVir732ilt9xp3hx+9BP+mkkxK2mcxkBkNxEGU6kVfB/fjjj0yYMCHbIqU8r4P3PRRULpWiXrRoEUAsO+O3334b25crRe2Mu+fTml2+3Jrq/8MPP+RNhjAUlaJO1dtdvXo1c+bMYdWqVaxcuTK23a2oZ82aFepcxqI2GIoDt5t41apVScdkve39sMMOo1+/fjmTzSHIMPBuT9eidnC8h+7gtVy5vp1hxihR5dnGubZCN6yqlaJ2u7yDVpK58MIL444J6u05PTATTGYwVG1KSkpin/fcc0/atWsXWNbb3pcsWeK7PdsE1e+1dsPKEUVR58qizreiLisri+U/z9e887AUtnRZxv1wbty4keOPP55//OMfSd1Ha9eu9a3rjDPOSChrMBgKn19++SXuu7tTvXHjxqTHhrVYs01Y13eQhRjWona8i+7OS1W1qK+77joee+yxwP2nnXYaN954I1CNFbWIjBKRVSIyJ2C/iMgjIrJQRGaLyEG5ksXB/XCOHj2ad955h8svvzzhQezevXvsc1DDdRq7sagNhqrF4MGD475HeUmHHQPONmFd35la1I6iLgbX97333stllwUny3v99ddjn90dk0Ikl92IZ4DeSfb3Afax/y4GHs/0hEEPn/NAuB84twL2KmN33u5UD6mxqA2GqoUTOOVQyIr69ddf59VXX41sUXvJZIw6V65vx5gphKlR1daiVtUPgGT55E4GxqjFp0AjEdk9w3P6bq9Tp07CfvfDN3To0IRjnJ5lqgZoFLXBULXwprnMhqJOpiAnT56ctlV60kknccopp+RtjHrGjBm+KwpmA0eGVBa1qjJ8+PC4SPRsU+ge0Hx2I5oB7kTZy+xtCYjIxSIyQ0RmrF69OvKJateuDcQ/nO5e3GuvvZZwjGNlp9vACv2HNxgMFrmwqFWVvn37MnjwYHr27MlDDz2UiYiVFvXtDAs4ivq4445LKdvmzZt9846nIqyiXrZsGbfeeit9+/aNfI6wFLpFHSqFqIg0AS4CWrmPUdXzMzi3nybzfXpUdSQwEqBz586RTVg/Re2ekuXHhg0b2HHHHXNiUa9fv54ddtih4MdFDIbqQK4U9aRJk2LfFy5cmJ5wNp06dfLdHmaMetOmTQlJnoKuw5ma5ijqunXr8uuvvyaVrWnTpvzyyy+R34VhFbVjVOUyOrzQFXVY6V4FGgLvAG+4/jJhGdDC9b058GMmFdZav56JQBvPdj9FPXbs2KR1OQ92umPUQRb1qlWraNCgAd26dUtar8FgqBxypaizSdDsk2QW9YQJEygrK6NZs2bMnDkzknyOor7oootSyuaNog9Tv7uM8z+V1yCXyrTQjaawi3LsoKrXZfncrwGXi8iLwKHAr6q6PJMKO/3nP+wPdAPOAN62tzuKOoob2+m9ffnll0nLRW2Q7777LgCfffZZpOMMBkN28LbZKMNU6WYIy9VQWNAY9fr16+nXrx/Dhg3zVfJhFPWWLVvScmk79ae65mSKetasWXTs2DFuey4VdbFY1K+LSKQBAhF5AfgEaCMiy0TkAhEZIiJD7CITge+AhcCTwKVR6vfjs9NP52WgkV35Vfb22rVrc/311/Piiy+Grst5OJz50kFEVdT5zMJjMAQhIrVS7E813bK7iPwqIrPsv5tzI2nmBC1kkc6xYeuM8p5YvXo133//faiyqcaoFy9e7HtcKnlq1KhBz549uffeeyMdF6WcW1H/+uuvTJ48ObavU6dOsdk3Tmckl1ZvoSvqpBa1iKzHGjcW4AYR2QJstb+rqjYIOlZVByarW61fKXiSWxpsq1OHPwC32H8PAe2BS2fNCp0a1CHslISorm+jqA35RkSmAoNUdbH9vQtWZ7lDksOeAf4OjElS5kNVPTE7UlrR2arKzjvvnK0qfcmFos7E9b377rtTXl4eqo5UijpIAaWqW0Tipqm66w+jMP3Kbdy4kWnTpnH88cfHybB69WqaN2+eMI7+3Xff0apVK/bff38gt4q60IN/k3YjVLW+qjaw/9dQ1d+5vgcq6XyiwHCgP7AJuAB4F2gSsZ5UjfeUU06xzmcUtaHqcTfwpohcKiJ3AiOA85IdEGK6ZdY59dRTOf3007NebyYWtVt5uWegTJw4Mek5ohBl3nIqyz1IuYVR1GHOF4Rf/RdeeCE9e/aMBda5y3iVtMOHH34Y+2xc3ykQkXfDbMs3jRo1in1+CTgSK2LtCOAz4MAIdQU9kLfffjsALVu2BMIp6hUrVsQ+G0VtyDeq+hYwBHgYOB/oq6ozkx8Vim4i8qWITBKRwITZYadb1qhRI2dZsdzMnz8/dNlzzjkn9vncc8+NfR4wYABfffVV7HtlyA2JSj2bFrUfmSjquXPnAtunvkZxj0NqZfrjjz/SqFGjtKzjQg8mS3rlIlJHRHYGGovIjiKyk/3XCmhaKRJG4OSTT2aHHXaIfZ8JHAJ8CrQEpgGnhKyroqLCt2fboEGD2H4I97C5p1YYRW3INyLyF+BR4CgsB9RUETkhw2pnAi1VtYNd9/iggqo6UlU7q2rnJk2CfV2Oot6wYQMiwtNPPx1KkE2bNjFgwAB+/NF/Eom3czBs2LBQ9Tq8/bYVpuqdtuT+XlmJkFJZ1NlW1GGt/YqKCubPn4+IxBKmeIPCUslw3nnnxf2GqRR1//79U04lA5g2bVrS+6SqDB48OCHg94YbbuDll1+OlZkxY0bKc2WLVBb1YGAGsB9WQ/zc/nsV+EduRYtOSUkJI0eOjNu2AuiONbBWF/gPcFOIusrLy31T2zk/aCpFbSxqQwHTGOiiqp+o6hNAL+DqTCpU1XWqusH+PBGoKSKNM6nTUdQLFiwA4OGHHw513Lhx4xg3bhzXX399wr5p06bFrUWfDr169UJVE9Ywdr8LsqGoszFG7awOlU7dYc4XhKrGOjROEG9URQ3WwhoOqazedevWxZ3fYdy4cbF1p8ePH8/hhx/Ok08+GXesW1H/+uuvjBw5ki5dusR5Se6++25OP/10Jk+ezBNPPMEhhxySMOSRK1KNUT+sqq2Ba1S1teuvg6r+vVIkjIjfj7kFOBe4FqgAbgdeAH6XpJ4gi9qrqMPi1GUUtSHfqOpVACLSxv6+RFWPz6ROEdlN7N6pHZxWA/g5kzodRe1YwMmsbzdOMiNnWqabb775JhORYmzYsIFly5bFbXMrh2y4vsOMm6ZKITphwgTf4yrT9e3UlY6idjNz5kx+/jn4kQpaSGTAgAH06tULIBZN/89//jPuWCfNNMTrkD/96U9A/H3u2bNnTIGHjc7PlLDzqP8nIr/3bPsV+EpVV2VZpozwa5wO9wFfYynpAcDeWK7w//mUraio8HVtJLOoN2zYQL169XzP3aFDB+bMmWMUtSHviMhJwP1ALaC1iHQEblPVfkmOeQHLOdVYRJZhTayoCaCqI4DTgUtEZBvwGzBAMzQrHUXtjGnWr18/1HFOG6tVK3HGWbYWmLjlllsStiWzqHPlCg+bQtRLuoo67AIabjm886TTVdQAjRs3Djwu2dKcjvfDKeN1a7vf2+4OknMfvEldnOeosoLQwirqC7DyiEyxv3fHGvrdV0RuU9Xkab4qEfcYtR9vAF2xsq10xgoyOwX4r6fc999/z/nnJ2ZIdX4Y54dyPzQnnHAC77//PpD4oDuBFC+99FK4CzEYcsdwoAswFUBVZ4lI62QHhJhu+Xes6VtZw1HUzks3bMDPli1bAH9FHZThKyoPPvhgwjb3u8Bvfy7I9jKXDkEuXefeplO/W1EvXrw46wF37ucjyNMQ5hny8wZs2rQprkxlJGFxE/YsFcD+qnqaqp4GtMXyKB8KZDtjWUakUtRgWdWHYvU6dgfeB870lHEUqxfnh/azqP3mHbpZs2YN8+bNSymfwZBjtqmqN+qmcqKfIrBp0yZmzJgRG1MO+1J0XN+5tKj92Lp1K0uXLmXBggXceuutOTuPm1xZ1EE4v8XUqVMTlgd2M23atNhnr+t79uzZtG7dmttuuy0tGYJIZlGrKi+99FJs3NyL+364hzScZ87rCXXKF5qibqWqK13fVwH7quoarAQoBcPvfpds5Hk7PwM9sRbBrgM8izW51LkhQQ06nWAyB/fD667DYKhk5ojIH4ESEdlHRB7FmhRRUEydOhWAZ555BgiflCKZ6zuXba6srIw99tiDNm28qw3kjmwvc5mKLVu28MMPP3DMMcf4ehwd+vTpk7DNuffOPOogpZkuySzq9evX079/f9+VEgEuvfRSFi9ezNy5c2MJVgAmTZrE/fffHwtGcyhUi/pDEXldRM4VkXOxor4/EJG6wNqcSZcGQWPEfmzDylt6qf15GNackvoEN+iwitqPk046Ke57ly5d4r6XlZVFmtNpMKTJFUA7LK/YC8A6Moz6ziXO+tFhX4qOe3bRokUJ+3KpqMO6hbPJkUceGftcXl4eN7c7GZkoamf4wFlpK8w5Hn30UZYsWQLk7jdIZlGH4fXXX+e7775L2P7nP/857j7D9iCyQlPUl2GlEOwIdMKa7XSZqm5U1WNyI1p6pNObfRzLul4DnIRlWuzosyIMZGZRe/n888/jvvfr14/999+f8ePHhxPcYEgDVd2kqjeq6iH2fOYbVTWzOUs5xHGxhh2jdizq559/nk8//TRuX64t6nwyf/78hLHUIDJR1I616o6y9uPqq68GrHfhlVdemfG5U+F+Pu6///606gjrtZkyxQrXKihFrRb/VtWhqnq1/bngxrQg/ZytU7Cia74GDgCu+de/ONannFdRh12oPQh3ubfeeguwFgJ54IEHQkpuMIRDRCaIyGtBf/mWLwhnLnDYl6K7TXbr1i0uLsSvXbZrl5hEbe+9944qZt4VdRQyUdRO5HdJSUla9WSjs7RhwwaefPLJuPO7Ow533HFH5DpVNbLiLShFLSK/F5Fv7dVx1onIehFZl/rIqsUirND2N4B6W7bwFttX4HLwRn1n+tD5TdcqKyvjmmuuSbnEpsEQkfuBB4DvsaZQPWn/bQB8V8UqBKK6vr3KwwkO2rZtW9y0qq5du3LYYYex++67J9ThdZvXrVs35XmTub4rw67JxnKdqfBa1OnUk417MXToUC6++GLee++92LZspAGNWkdlLeYRtjtwL9BPVRtqgS/KkSnrgH7AXVhz1x7C8vk70+G9Ud+ZWtTJGneyyf1h2bBhQ9pryhr82bp1a9am+VQmqvq+qr4PdFLVM1R1gv33R6yU+AWNV1GrKpMmTUo5Rclxnbtf6gBnnXUWNWrUCBUJHuYFnm+LOooCTFdZ/vrrrzGLurS0NC1DJRuK2kkt6n63RbFua9as6StXVMVbUBY1sFJVq828ogrgRqwVuDZiZTX7AGhGeNd3WHIZgLJ161bq169Pw4YNc3aO6sgBBxzAjjvumJAzOhULFy6MS0mYR5qIyJ7OF3sOddQF5iod7wv+gQceoG/fvowfP54bb7wx9pINUtTuFJNgRfqWlJRkbdz68ssvD9xXGZZXlGRKUZXlO++8A8DSpUszdn1nQ1H7rVGdaszcTZCHJKrirazFPMJKNUNExonIQNsN/nufTGVFx0vAYVh+wkOwkp43tvMOV4ZFnSmO1WeyoWUXJ/f09OnTIx23zz77cOCBB4YO+MkhQ7EW4phqr009hQKO+nb4+uuv4zo6n3zyCWC5tO+66y7AmvLjbXuOYlm/fn3cdhEJbVFnqlxSHV9eXp5xDvIoFn3U6zn2WCti5+eff45zfYfp5Hg7KdnoGPklwYmiNP08Yqpa5V3fDbCWd+6JFRh9EpC1BeILmdlYSvpdYDfgqFtu4WKqhkVtyC1RevBuvJZdZaOqbwL7YIVgXAW0UWvpy4Jm+vTpHHjg9sVqnZeqW+k4C2a4cawkvw5SWIs612PMZ555ZugcEEHkUlE7nRpVjbOow9w7Zx58uuf2sueee8ZSerot4Gy4oStL8UYl1JtGVZMuKl/s/Iy1vNBbBxxAjzlzeAKYNGsWlJUF9sbDPoybN2+mrKzMNzlDIbB161ZKS0sL9gGubNwvw1S976lTpzJkyBCWLl3K8OHDQx9XSRwMtMJ6B3QQEVR1TH5FioZzH1Ml/XC++7XJsBZ1rhk3bhyQXse9rKwMEcmpogZLibkVddhgMu/Sk5kaN99//31sHrO7LWX6jlLVyPelsiY/hY363ldE3hWROfb3A0UkzGqRRUM50H3WLGZdfTWbgT5LlkCPHjQICNQK+wN+/PHH1K5dO+5FHrWOMHzzzTdJU/75sXHjRurVqxdze1V3Vq1aFbfoS6oe/DHHHMM333zDpk2buPbaa3MtXmhEZCxWBPgRWA6jQ7BS31cpHI9GKkXt7Pd7kVeWRR32ePeSuGGpV68ezZo1qzRFHdX17SWbc9ndv2mmivr666+P/K6rrE5eWF/Bk8D12OlCVXU21gJU1YqSkhKW9+zJUcBPtWvDRx/xyLRpHOwp9+233/LKK6+EqvOmm6z+Tq5zA++3334ccsghkY6ZMWMGZWVlsVSO1R1n0XiHdF3fBWDBdQYOV9VLVfUK++/KlEcVGI415V3oJoqiLhSL2uHGG2+MfMzWrVtZvXp1LA9DGNz3KKzS9nN95yuYzMGt9DN1facTI1BZaaDDXtkOqupdYCrcemdFRo0aNfgMuLxrVzZ17EiTLVv4CDjLVWbfffdNcPcEkUuXsjcrU9CCIHPnzuXaa68NLXN1xRuUl64LuwAUwxyskIsqjdNR8q657Keohw8fzmWXXZZQRxSL+uyzz05b1rDt/Lnnnkv7HA899FDosu57FNbTJiJUVFREHqNOdu5Mef/992Pz7PMxPFdoivonEdkLe4UdETkdWJ78kOLE6bX9XLMmzRYs4AmsOdZjsTJJaMQI61w+XP36JS4v7OceO+CAA7jvvvvS6s1XJ7z3zq2ox48fj4jQvXv3lC7IAliMpTHwtYi8VRUykwUR1FH6+OOP476Xl5cHppRMZVGvWLECEWHTpk2FEluQFdzKMopRoaoxxV5eXp53RX3bbbfRq1cvoPLmNLspNNf3ZcATwH4i8j+sqRxDciVUZbLvvvtGKu88DOvXr2ftpk0MAQZjjQn8H/BurVrsFKG+dMakMiHZetjffPNNJUpS9UimqE899VTA6uE7gUFBFIBFPRxrGfa7sPqXzl+VIkhxejP6JbvfqaxC98ITmSiCQsu47JYn7Nz+GjVqMHPmzNiqWePHj0/LC3fvvfdGPiYZX3zxBVA5FnXz5s3jvheURa2q36nqcVhJEfZT1SOAU3MqWQY8++yzoct6V0U54ogjuOSSSwLLO43VPYd2JHAMsBI4DvgMaB9e3Epl1apVgfuSWQxB63NXJ7yu76AXw+LFi3nwwQcD68m3onYylHn/kh0jIqNEZJUTUOqzX0TkERFZKCKzReSg3EgPDz74YMy6C0Oy+x1ljNpx+RYD7nvnRFCnQkR4991347Y5K2LlE+e9VRmK2r24CBSYonawV8tysgb8Xw7kyQpnnnkm69at4+STT458bPv27dl5550D9wf1qj/GitCZAewJfAKcFvnsuef//i/4Z/MqaveDf8ABBxTViyodvBZ1UCO9+eabk97nfClqJ0e/z1+Y3P3PAL2T7O+DNTd7H+BirEXpcsJf//pXgNhc2lQke5kms6h//fVXzjpre/TJmDFVavZaUtyKOqyy8VOE3bt3z5ZIaVOZitp7jkJzfftR0BNr69evz/jx45Om9YP4h/TGG2/knnvuSVo+mdW5DDgSaw3QusC/gTvI7CZHZcWKFZx11lkJS2iGIVUU89KlS9MVq0qwcOFCzjrrrMAhAK9FnW5vOl+K2snR7/OXMne/qn6AtRJsECcDY+yV9j4FGolI4moXWWDlypWAf3YpP9K1qBs1asTy5YUVivPiiy9mvc4oUd+FiPNOrgz5cpFlLQyZXFlhDboEcM899/DCCy8kuCIdpbTffvvFtt1xxx00aJB8rZFUD8NmrNzgQ7HmXt8IvIkVvROVKONaTqKESy65hOeee47OnaNPi02lqAvtpZVt+vXrx3PPPRcLTvES1EjvvvvuSOcpgGCyXNAMcPfkltnbEhCRi0VkhojMiJov3Y0T7ZuKa6+9NjCy2W1R33DDDaHP7R2rzIQoz0OYVbzCkC2LuhDIp0VdEIo6masMaFopEmZI3bp1GTBgQIIC/vnnn/nhhx+48MILqV27NmeeeWao+sL22h4CjgdW2f9nAodGkDsKs2bNok6dOgwdOjSjMaNUUa35HlvNNd9++y0QPO7mt3oTRHvBQ9HeR7+3pG9PU1VHqmpnVe3cpEn6a4Fk8qzXq1cP2G5Rq2qkDtdOO0UJGU1OlCGlbCnqiooKHn30Ud/c6EEU6vTNau/6TuEqSy/bQ4HQoEEDWrRowU477cSGDRviAtCSPbhR3CtTgE7ANKAF1gpcl6YrcBIeeMAK2I0yj9KPVBZ1dR2jnjVrFm+88UZCR2by5Mlp1VekinoZ1mPu0Bz4MZMK27Vrl3R/ssDIVDjuc8eiznXO/WTvlCies2wq6iuvvNI3N3pVI6rrO5MsgV5FncoDmy0Kc9ChkomSYSrqOMiPQHcsC7sW8A+sOdc7RKolOdlKo+e9D0888UTc9yJVMCnp1KkTJ554YmypP4fbbrstYUWmMBTpfXwNOMeO/u4K/KqqGY2VfPDBB9mRzIcddrBaYI0aNVizZg2XXpqLLnQ4orhPHbkzndPtVs7vv5804L8gca+NsHr1asaNGxfq3XfJJZdw0kknpX1e7znOO69ylsGoNoo6W4uqpxOwsBVrzPoMYANWFrPpQLQZ3MFkS1G7r23z5s08//zzcfurq0Xt4LesZdT86VA1FbWIvIA1maGNiCwTkQtEZIiIOPkUJgLfAQuxUg5nrPmy6V4OoqSkhE2bNvH000/n/FxBhH03Pfroo1kLnHJ3Dr777ruM6krG448/zt577x2q7JAhQ2IdkVTUqVMn7vuAAQNC3RMRyaiTk69x+mqjqDMd9B88eDCQWU/2X1irH8wDDsCab52NRb3dD0860d5+9fgp5aqoYKLgvv6wgXPpuA2rYjCZqg5U1d1VtaaqNlfVp1R1hKqOsPerql6mqnupantVnZGN89asWTMb1QSS7UjhoPnzyV7wYZ+Hzp07x+rJVGG4z5kt5ePXFurUqZOgVIPYeeedY2sfpMK9OI6DE2OSiqDrveKKK9I+NtfkVFGLSG8R+cZOgjDMZ393EflVRGbZfzfnSpYoL9Qdd9wx7vvDDz/M449b00IzbdjzgS7Ai1iLfL+MlRLK73WUz7EjP6VcnSzqpk2b8t577zFp0qSk5dL5jYq9w5NNcm1VZzst6B//+MdYp95NsuckStS1oygyfQ+55fFmcksXv+soKSkJLWtpaWnosn7lvMlY/HDfQy+PPPJIyoWLik5Ri0gJ1pBsH6AtMFBE2voU/VBVO9p/t+VKnigvVO94VaNGjbLWQMByfw8ErmR76tFpQDgHUSLZenjc9XjnDENxKmpV5bHHHmPatGkJ97FHjx707ds36fFhlW4pVqrZLwHWpcotYnC45pprclp/uu3ZSRnrpbS0lBEjRkSqK+y7ya1kMu1g5MKrs2nTpoRtJSUlod9PbqWe6ndJV/5M35VFp6ixDMeFdvrRMiwjMnqqsCwRRVF7x0ncP042XWWPYi0I/B1WVrMvgHOyVnt0qqLr+6uvvmLAgAGh0yB6Oeyww7jssss4/PDDI63n63DhhRemLHMq1nJVI4ADgSZvvhn5PNWVq666Kqf1R1V4qsrPP//MzTdvd/65O7XpKNCwSqd58+ZpGQyDBg0C4gOwcqGo1/l0QGvUqJGWRf2HP/yB004Lzu2Yq+GjVLIWo6IOmwChm4h8KSKTRMR3PkY2EiS4FbXfqlLJcP94URX16aefHvvcrVu3hP3/xZrC9QJQDxgNPAvUJ/XDuGnTJlQ18sMTRuH6KeqoFrVfDzvbHHnkkYwbN46BAwfGbVfVlOdfunRpwlKgUXn77bcD9x2OlVr2FaANsAA4HfjhxBMzOmd1ItdrDEep3ym70047xR3nni0RNIMkyFAoKyvznVbpTX+8884707Rp07QUhSPrHXfcEdsWdiGOKPgp6mSuZi+lpaVxHZ1kx6VrNATVefjhh6c8Z5j9uSKXijpMAoSZQEtV7YBlYI73qygbCRLcDeXll19OWd7dEH/3u9/5bg/DTjvtxObNm/n+++856CD/dQrWAX8EBmG5xc8EZgENZ88OrPfHH39k5513jvWWoxCkcNesWcP8+fMBf9e3t3HMmzcvMDvU559/Tt26dZPmvE6HtWvXxq1o5CRhWLx4cVy5iy66iLp168aV9ZIrD8EBWHOVPgIOA1YAlwDtsGISKqr4vNXKJFNF7Rd05CaKBZxMFmdfVIu6V69e3HbbbSnrd+brZqKoc02Qok53jDrZcZkMw3nv4eLFi3nrrbfSOrayyOUvmDIBgqquU9UN9ueJQE0RSSfbZkrcijrMvGm3NeuOWozaEMvLy6lduzatWrVKWXY0cDBW72VP4NDrroOrrwafKUAvvfQSmzdvZsyYMZEfnqCHfPz48ey///7Mnz+fJ598MulxCxcupG3btjRr1ozFixczZsyYOMV3om01JltFCqzf5fnnn2fBggWhZN93331p164dc+b4LuIU46mnngLwvQ6HbEcU74G1csWXwEnAeuAWrNiDEcA2rMVNevTokdXzFjNRnm1v1G6YxBZeZfDwww8Hlk32vHTt2hUIfj8EXcfUqVNjn93vpaA26tTjNh5S4VxjroNTg7wXM2aEmwDgDTyrLEXdsmXLWCKZQrWoc5ld7DNgHxFpDfwPGIBlOMYQkd2AlaqqItIFq+Pwcy6EyeQhzcSiDnJfH3jggcz2sZgXAF2BvwA3iiAPPwyvvw6jRsFRR8XKNWzYMPY5W4raYeDAgcyaNSthu1sR//e//wWsxtm6devY9nPOOYeKiorQ62y//vrrsfStYX4jZ+hjypQpHHDAAbHtQfcg19N7AHbGyul+KVAbKMNSzHcA3oGahg0bRkqwYwiP+xkoLy8P1Va9ijVZ20j2LL3xxhvMmzcvoUxJSQnl5eVUVFRw3XXXUVZWFth5LS0tjcVJBHl73Ne49957s3DhwkCZHCrLok4nxsONt10kkzvVkEYQmSriorOoVXUbcDnwFtbU4X+p6lxPkoTTgTki8iXwCDBAc9Ttixp84M797baos6Wo3fmhvXnGtwI3Ax/efz+0bw+LFsHRR8OQIfCz1Y9xj7861mNYPvzww6T7/ZQ0xL/E/K7LmeaxYcOG0LL4dVbC4JdoxHl03FZRspdrpgEpdYGbsIIBh2JNsXsW2A+4ikQlDYW7sEFVxhnjVdW4HN5h8JZL93lp1KiRbwyK43qvqKjg3nvvTZrmN5lF7Z0/raq+1vsRRxyRsM19TC7ZunUrHTp0SPv4mjVrxv0euWoryZKqVDtFDZY7W1X3tZMg3GlvcydJ+LuqtlPVDqraVVWn5VCWSOX/+c9/xj6nUtROIIIfQT1jdyNz5mh7WbvnnjBjBtx8M5SWwhNPQJs28OSTrPnpp5TXEES6KfRSKWrH8+A3VhVEur19b2dgxYoVdOvWDVXl6quvjm2fNWtW4As2XUVdE7gMWATcjjUffiJWUODZgDv+3Nuwq3pe5ULEUZC9evVi5syZjB07NrDsCSeckDRK229M+7HHHgPSi2lwFL/32PLycoYPHx63za2oveWdudnu58lPUbdv3z4h/3RlWdS//PJLRnOyvcFkjtyPPvpoxrI5iEjSHPKFqqirjQ8u6guyTp06DB48mHnz5nHggQfGtvs99B988EHg2FSQMnCXr1+/fvCxtWrBrbfCGWfA5ZfDlClw8cWcs+uuvAFkFrMcbelK98vD77qcnuoLL7wQus50H/z169czZcqUuG3Tp0/nH//4R9y2iRMn0q9fP15//fWEOqK+eAUrDewdwF72tk+B67AWXPGjtLTUNzDPkD26dOnCpk2bYh3FffbZJ7BsSUlJnEL0tmc/RX3eeedx6aWXptWxc6ZEjRkzJm77xIkTufXWW+O2BSlq97srVbrgGjVqJMhZWYr6/vvvz+h495KjsP36HC9JNjCu7wInHUtmxIgRvP/++769PDfJGkJQ427WzHep3uBj27aFd9+FF1+Epk3ZY+VKPgH+A+yfsqZg3OtxpyKMRb169epIq9Ok++A/8sgjHHvssQnb/dIAvvHGG4AVgOeO+A+dEQo4DZiNNY1uL6yxnFOBbgQraUgcdzOu7+h88cUXzJkzh1mzZnHnnXcycuTIhDLJgqteeeWV2Gfv/fd2sP3qcdp3Jha1F7/VupJZ1A5u+d3Pr+NVcJbtdFNZwWSZdkiDor4r0wv1l7/8Jel+o6hzTLZ+7CDLuUWLFnHf99hjDwCOOeYY3/JdunTh4YcfTliRyU2CzCKWZT1/Pi+1acNG4BTgK+ApoGW4S4gjips6qJe/XTzhlFNOSVnPypUr6d+/Px9//HGlPfhbt26lf//+nH766THZwyjqk7ES0fwba9rVEuACoD0Bcwk9mMCxzOnYsSPt2rWjQ4cO3HDDDVx00UWRjnc/k9726+1ke+cvw/bf0JulbujQoYFu1L59+/LQQw/Rpk2bhH2q6vvsRYn69tbhDL/5WdRR29iECRMilXfINObDrahVNfY53Xr//Oc/J2xLdS+OP/74wCQ7HTp0MIo612RLUbuz+7j5/e/jl9eYMWMGr776KhdccEFgXVdeeWXSqTqBD2j9+jzbpg17Y+VorQDOx1q26BmsYKZURAn4cnC/PPzu5+jRo5k2LXWYwaWXXspLL73EEUcckfTBV1V69+7NxRdfHFlWL+7gM6fnn+wF0BeYgaWMO2DNNRwC7AOMAsLaVkZR5x/3M+YNJPI+x7Vr1+aee+6J21ajRg2+//57xo0bF7f9b3/7W+A0wTfeeIOrrrrKN2dDRUWFr8WciUXtTr2Zqev7xBNPTFjvIAzpKNTdd9899jko4Um6itpddxSC3knvvfeeUdS5JluK2uvK2mWXXRK233bbbTRp0oR+/frFPXhRx1qSPaDl5eWswAqr3x9wRsDOBeZiWYDJ0svXr1+f++67L5I8qcao165dG6oed6S39yWyatUq5s2bB8D333/PW2+9lXQudFicOmG72zHhhYY1DWEG8AbWnPblwBVYc6GfwIrId/Pqq68mPW9Qx86QH7yK2u85dgcjOrRq1Sr0KlBu/BReeXm5rwJ3v0PCKGq/setkru8oVNaqcG7Zdthhh6y6vrM9Nr/TTjsZRZ1rcmVRv2nnbXZv92voANdddx3du3dPWOc5iGQPvnvfIiwFvQ/wOJYyOQ0rPeknWJnO/NRFlLFkSD1G7c0OFoQ7m5n3wd91111p27Yty5cvjxvHmz17Ni+++GIked0cdthhsc+PPfYYW7dujb3QagMXYa1s9hKWgl6JNeVqT+DvQOKIokWnTp2SnjdKYgpD7nESWzj4vRdSZTPLlOnTp/sqanenPhcWdTrvwBtuuIErr7wyVNmwy0y6ca7njDPOoGfPnrHtNWrU4IorrqB+/fqx5ElR8RumdM7n9YCmokuXLnHHVzbVxi+XrSTu3h/feVG7e8NBPbkdd9wxIVI5GStWrOCyyy7jkksuiUvuAQGKEivpxm1YSuYirOQpXbGW0nwC+CfxCdij4FbUYQNr/BpLmKxCCxYsiLNGMpmf6WXYsGHUqlWLnh07cj2Wxew4yRYB92FliXNSKowdO5azzz47oZ6jjjoqZa892QIvhsqjefPmLFu2LEFRp3ovRGmvYTnKlbjITSZj1E72L7+cCuk8c45Sv+aaa9Jyg4c9t7N/2LBh1KhRI3ZeEaF9+/aRYmi8+LVN53xPP/10XJBhMpnXr1+fd8+Ysagj4v4RX3rppdhn9w+ZLZfLn/70Jx577DEOPfTQ2LYNGzaw//77J81NuwJrylAzLGU9G9gVK4nKYuBtrBRxUW09t3IOu+CG8/IZPXo0PXr0SGh47nvldiOXlZVx/PHHR5QwHF2BQx5+mP179eIuLCX9BVbqvDZYHRp33qOgAMIzzzwz5W+djru0ECmkteXdvPfee6HKff3111x00UUJAUapfj+vYs8l7kC2IAUXZFE7Xiq/3PvpJDxxK8wwZLrKmdPGop7Xj9122y2uTjfexDF+ePfVq1fPKOrKIhch/u4FQtwWdToP2V//+lfAiiT14laKI0aMiC2ckYrfgCXHH08H4CisdUbLgOOB57AU+kjgWCBMBnN3L3/9+vWhZNiyZQu//fYbgwYN4r333mPEiBGB80Ld0bkTJkxg1apVoc4RhsZY4/mfYw0HHLFkCbJtG68BPYGDgHH4B4l5A8J69+7N9OnTueiii1L+1sWgqKXA1pZ3485xkIz69eszcuTIhGQg7pd5r169Eo6rTA/IXnvtFet4hFHU7nbkXNett96asK5AJhZ12GOnT5/uuz3ZnHZIXMzEOW8mxo7zvkxWRxRF7SZfCYuMos4Ad482jOs7Gddeey3r169PGiW+ePHilMFLXpwx9A+BgVjW4xCsRB0NsCzud9mutHthZd7yw21RO6tWhWHlypW+dUBwo8gk6b5Dbayx+vFYq8E8iqWQfwIea9CA90eN4mRgcop6vD3zOnXq0KVLl1BL+IVZjKUKUFBry7vJNKre/du+6bNOeGUlCwGrbTjXE9WidtrVUUcdxccffxzLHeAmnXdgWEUd9D7o2LFj3Hfv2LAjk/M7ONfkPW9QUigvp59+esxr517o56677oorF+a6OnXqlHSRlsrEKOoMcCsdt2sk3V54vXr1aNvWz1CxaN26NR999FGkOr0vmrVYrt1uWNHidwLfYFmcFwFvYgVSvQicBzR1HetWnr/88kvKczseh5kzZ8a2eYOrgu6Ve1ghCo2wguf+haWQ/42lUQQrkvsMrGXcLlu3jmPOOy9UncmUQbK8wQD33ntvqHMUOFlbWx6ys768Q9TV7LykUsSVaVFXVFSkXEQmaIzaeReVlJTQtGnTuDnfmVjU6eCXbxzgggsu4OWXX+a3335LOE8qizrM4iMQbzD98ssv7LrrrnH1u6PjUzFw4MDQgXS5xijqDMimRe0gIqGyloVh//2T5yybj7WoxH5YyTyGYyVP2RFLoY3CWvbsK+B+oN3ChWC/WJPlU3Zwxpjdrvsddtgh0PXt5qeQucxLsMy9YcA7wCqshTH+ANTDmmp1NZZWORFLgQdFcAeew6MM3PLXr18/MFf7brvtRuPGOVm1tbLx+5HSWlsesrO+vEO2LOqgMdZCtqjdOO+iZB0XVQ19v5zcBekM3aSa9umu0yt3kMt9l112SRi2SEV5eTlLliyJ6xg4pOv6zhfVRlH369cPgM6dO2dclzN32u3WyYZF7ZDKSgtLlGkNc4FbgQOx5gxfBrwGbMBS4n8Chrz5JuyyC+V7780o4GLgUKxVpPxwGp87uUqUpez82BFrjP16W741wHTgbqAHlkZ5FyuSuyXWXPKHsRR4upSUlARmmAN8I8LBSkfofRYK8SUQgoJaW95NthR10CyGbCjqm266KVS5ioqK2PnCPCfuRECO/MkinSHeHfzFF18E1n3fffexefPmtIKooiwtG1ZRQ7hOg/u4bdu2Ubt2berUqZNgqGWjHWYaQBeFajM968ADD2TZsmUxJZsJixcvZt26dXF1ZRpM5sZvHmeyFbqCSDeZ/SLgMfuvJnAYlhI8HFsxL1rEeViucfcxX2FlR/ve/mu+fj0NgEsuuSRWzjsG73evdgB2w9IG+9p/bbCimPb2kXcBMMX+extI7ZSPRmlpKU2bbh8E8DZ6v5fj4sWLadmyZUL+4yq6elZBrS3vJlPXdypFnY0Xet++fbnjjjtSlvNbkCIZt9xyS2xhD7fr22Hw4MFxSYhUldatW7PHHnvwww8/JO2E1KhRI+355FEUddgxakiMW9l1113p06cPzzzzjG/dfnEuUaK+/dqqs+3ss89OumRptqk2ihrCLYQRht/97ncJY61+qe/Sxe8BCZOa002PHj0CE69EYSvwvv0H1gNzIJbSPtj+3BZroYq9vAePH89ddh0/238b7O/O3wEPPshBWMq5LrALlss6iN+wplJ9Zv+9j2Xu5ZKSkpLAaFvwV9QtW7YM3FfVUNVtIuKsLV8CjHLWlrf3j8BK6naJiGzD+plytra8m0zbWmVY1GGt/vLy8tDR1qoaV8ZPUY8YMQKAr776ijvvvDMhkCubz+aJJ54Yy/7nKOrjjjsu5XFBFrWfbN7faPbs2SxcuDBOUZeVlcU++6U8jjJGnYzK9oxVK0WdS7KZ0zkbyVn8Fvtwkj5kwjaswciZrm2lWFZve6xMXq2BVkCHBg343bp11MeykHfzq/Dbb+MC1sB6y6/ASt/5LVaw2wL7/zzip1C1b9+eZV99ldE1paK0tJSuXbvy7LPP+u73Nnp3h7BIXN+OO3uiZ9sI1+e/YyVxq1L06dMHgPPPP993fzaUWdg6vIr65ptvTljdLtUYtd+52rdvH9e5dCvD+fPnR1pBD6z8Dg888EDCNmdsurS0lLlz58Y6q8lk9yrmKBb1LrvswqJFi+K2uaPP3UMOXkWdrkWdL6p+d79AKDRF7Uc6Lx136s0gtgFfY81Dvhtr7LoncOtZZ9EAa5pUUyzruytwJNbc7d7Aa1ddRVe2j403xLKu98Sy2gfZdb4MzCFxnvN1110X+5zN7GVuSkpKGDx4cOB+93294YYb4uaUel8IZ511VvYFNKRNy5YtUdW4pEJustGxCluHV1HfeuutDBw4MNSxYYLJ/OTyW90rFX7xGl6PYtu2bUMli/Eq5mQeBb/gWG85t6s/2Rx7o6irKdlU1FEWYI9y3iBFnWyubyZj+k7jLcOyjr/CCvz6CGs8+S1g6T77MN3etwhYR7T82O70hv37909b1mSISNx9Tub6vuCCCwIt6ptvvpkLL7wwJzIasovze2fDog6rqCsqKujUqRNnnnlmqFkVAIsWLeKLL77wdX2nkiebrm+/xTTC4LWok7m+J02axOTJk7niiitiWdy89/buu++OfU42XBXmNykkRW1c31lizz33zFpdUaK1P//88wRLMqihBG3v0KFD4IIaUQJDvIR5afiNDf7+97/nueeeC3UOt6LOVbrHsPmKU3HwwQdXWdd3daO0tJRt27ZVukVdWloaOMTixlEiznsniqLONPuXnwILo6j9ZPO67JO5vhs3bsxxxx0XN/btlOvSpUtgdjQ36aQQdWMyk1Vx9t9/f2666aaEDDi5xs+iDmqsQduTPXy5VtR+iVPC5hEHaNSoUeyzW1Gfdtppoetw49dIvduS3a9C6oUXM7keQnCmc2by/DtEsajTrWvYMCv9epSA2aiK2pkela6idr8bnYhyZzZFuilEnfafKmdEOhRSWzaKOovcfvvtXH/99ZV6Tr8HOughD2rkyRY2yGT6S5hjhw8fnrBt48aNoc/htqjd00nSHYo444wzgO3L2kH2FLWxprPH2LFjc/oiHTt2LO+8805CQFQuySQ25bzzzkNVI03J9D6P06dPj5tn7cVJYJRKUQc95zvttFPs8+rVq1m7di2TJ0/m2WefjSUzcVYJ7NatW6hr2HfffXnnnXd47LHHkpbba6+9YuVTkaydOsNyfklUcolxfVdx/JRhVNd3z549A5d8y4R0lXyUl41bUbutn5133jl0HQ0bNoxFi1522WWcc845dOvWLVZ3FAVbSL1wQ/rUqlWLHj16VOo5wywd6zyL2VjNyfs+cHdOk53br0PhbuveeidPnpwwtObk7m7YsCFnnnlmbHv37t1jOQjCEuZ36t+/P82bN08Ijg1acjQIp7MRJoVyNjEWdRXHT4k4+W29BFmZjzzyCK1btw5dv5eDDjrIN+lAulZt2LHmww47LM6KrlmzJuvXr2fNmjWB98APd9nffvuNPn36xLnUo1jUyTBKvHoS1La8hMlI2LBhQ4YPH87UqVMzlCq6hydZNHQy1/dxxx0XKYgyF14MEeHwww+Pu+Zvv/2WiRMn+pYF/+s0itqQFu6H6corr+SYY45hwoQJvmU7derku71x48YsWrSII488MmFfmMZcUVERl7mrR48evP7662lb1GGjvj/88MO47yUlJdSrV48dd9yRoUOH0rBhw1D1uC0Zv5dltixq71rchupBqhzVu+22G3fffXeolJQiwi233JLRmGy6az4nK59u1Hc+2XvvvSMHoHbs2JFBgwYxevToHEnlT9W4o4ZAysvLmTJlCsOGDeNvf/sb7733Xmycx0udOnViQTJuatWqhYjExqDcK3iFWe9327ZtcQrqnXfe4YQTTuDdd9+NejlAeEvc+0Jwdwzq16/vuySon3tvxYoVsc9h5o0nI5midi/3aTA4lJaWMmzYsLRTdmbK/PnzI1no6Y5RVxWSWdSlpaU8/fTTtGsXuDhcTjCKuoqzbds2unfvzt133x3KgnUWkNh9991j25wH89prr+Xpp5+OU7AXXHBBylSkv/32m++D+/XXX4e5hDjcASdgRW+//fbbodaj9V7/5s2bE8r4TeFwJ7vIRdT33ntbGcr9PBaG6skPP/zAyy+/DFT+kIj3eW7Tpg1HH310yuPcc50nTJjA559/nrDP+zkf/Pvf/w69EIofJuGJITRO9HEqokSKqiqnnXYas2bN8nWP165dm0GDBrHbbruxatUqFi1aRMOGDfnjH7evv+C3kPqGDRto1qwZCxYsiFue0rsgRRj69u0bd03nn38+xx9/fKigD+8Lolu3bohIbFrJjTfeGLf/5JNP5osvvkhY3N7h4IMPprS0NOZmdI6P+hKYOXMmc+bMSRmsY6g+tGjRgq5duwK5y0QYRLoKyB1MduKJJ3LQQQcl7IP8K+rTTjuN22+/Pe3jnWxwf/jDH7IlUsYYRV2ghIl87tmzZ6Cb249dd90VEaFDhw506tSJXr16BVrLTZo08U3icuWVV3LuuefGbXOmU+2zzz5x0dbJFLXX+h07dizt27fnrrvu8o1+dSfbD1tngwYN2LRpU+zPWcHowQcf5OCDD2bMmDF07Ngx8EX53//+lw0bNsTGzO+44w5+++23yCuZ1a9fv9JdZYbCx5vko9AJa2nmW1FnStu2bVHVyDnQc0nVvqNFjJ8LdtCgQbHPl19+OW+99VaoRvHOO+9wzjnnxOXFrlGjBm+++SYPPvhgyuO9DdObBOKII47wPS5ou1+dZ511FrNnz6ZFixZxLy4nSM3dew/CHdDmUKdOHUQkLkDt6quvZsaMGbEgn6AXj99Sf6nWxI26uL2h+pJsulNlnDfd41Ip6qo+Rl2IGEVdhXj66adjn6M07h49ejB69OhQ47xhcHcO7rnnHsaMGeNb7pFHHgmsI1ljd4LagJhb+i9/+Qv33nsv3333HU899RQffPBBrMzUqVMZNWpU2lars8jAbrv5ru8VismTJzN27FjfzoLB8L///Y+5c+fGTdXy5reuLDJ1faeiqlvUhYhJeFKgDBo0iH/+85+B+8MkR8gV5513HiNHjqRfv35xVrqXZElHkr0s+vfvT+PGjePGjuvWrcuf//xnIHFe6tFHHx0qGCaIfv368e6774aKcA8izNq7hupL06ZNadq0KV9++WVsqMjxvlx++eV5kSldy7fYXd+FiFHUBcrhhx/OihUrKCsro2vXrgwdOjRuf7as4zB4G2bXrl1ZsWIFTZo0SXqcO3vSiy++yBVXXMHq1atTnk9EKjUrlIhw7LHHVtr5DNWX+vXrx9pu7dq18xJZ/Pvf/55HHnkk8jCN35j6iBEjaN68eVblMySS066PiPQWkW9EZKGIDPPZLyLyiL1/toikHoisRuy66660aNGCZcuWcc011wDwn//8h969e1d6TnE/2VL1nN1j2X379jXziKswpi0XD3/7299YtWpV6IRADn5j1IMHD+aEE06IK1dI05qKhZwpahEpAf4B9AHaAgNFpK2nWB9gH/vvYuDxXMlTlXG7qE455RQmTZqUMN84l6Q77upW1CUlJYgIp59+OpD+6laGyse05eKipKQkpTfMj7DBZLlabrY6k0uLuguwUFW/U9Uy4EXgZE+Zk4ExavEp0EhEdvdWZMgvLVq0YNKkSXzxxReRjnNnGHMa+ahRoxgzZgyjRo3KqoyGnGLassFEfeeRXCrqZsBS1/dl9raoZRCRi0VkhojMCDPGacg+vXv3DkwMEoSI0Lp1a5o2bRqb5lS/fn3OPvtsGjRowEMPPQTAuHHjsiytIctkrS2Dac9Vlb/85S906NCBE0880Xf/GWec4bs4jyFzchlM5tet8nbFwpRBVUcCIwE6d+5sBkCqEN9++y2q6juefdVVVzFkyJC85Tg2hCZrbRlMe66qtGnThlmzZgXuf/HFFytPmGpGLhX1MqCF63tz4Mc0yhiqMKnyjxslXSUwbdlgyCO5dH1/BuwjIq1FpBYwAHjNU+Y14Bw7YrQr8KuqLs+hTAaDITqmLRsMeSRnFrWqbhORy4G3gBJglKrOFZEh9v4RwESgL7AQ2ASclyt5DAZDepi2bDDkl5wmPFHViVgN2L1thOuzApflUgaDwZA5pi0bDPnD5HozGAwGg6GAkaqWRUZEVgNLXJsaAz8FFC9Eqpq8YGSuLByZW6pq9IwUVRBPe67Kv1lVwsice7LalqucovYiIjNUtXO+5QhLVZMXjMyVRVWUOZtUxes3MlcOVU3mbMtrXN8Gg8FgMBQwRlEbDAaDwVDAFIOiHplvASJS1eQFI3NlURVlziZV8fqNzJVDVZM5q/JW+TFqg8FgMBiKmWKwqA0Gg8FgKFqMojYYDAaDoYApOEUtIqNEZJWIzHFtu09E5ovIbBH5j4g0cu27XkQWisg3ItLLtf1gEfnK3veI5HCRVD+ZXfuuEREVkcZVQWYRucKWa66I3FvoMotIRxH5VERm2UsndikUmUWkhYhMEZF59v28yt6+k4hMFpFv7f87ForM2cS0ZdOWo8hs2nISVLWg/oCjgIOAOa5tPYFS+/Nfgb/an9sCXwK1gdbAIqDE3vdfoBvW8nuTgD6VKbO9vQVWfuQlQONClxk4BngHqG1/36UKyPy2c06sXNNTC0VmYHfgIPtzfWCBLde9wDB7+7BCe55z/HuZtlw599m05ezKm9e2XHAWtap+AKzxbHtbVbfZXz/FWkIP4GTgRVXdoqrfYy0I0EVEdgcaqOonat2ZMcAplSmzzYPAtcSvy1vIMl8C3KOqW+wyq6qAzAo0sD83ZPvSinmXWVWXq+pM+/N6YB7QzJZttF1stOv8eZc5m5i2bNpyRJlNWw6g4BR1CM7H6oWAdaOWuvYts7c1sz97t1caItIP+J+qfunZVbAyA/sCR4rIdBF5X0QOsbcXssxXA/eJyFLgfuB6e3tBySwirYBOwHRgV7WXgLT/72IXKyiZKwHTlnOHacs5Ih9tuUopahG5EdgGPOds8immSbZXCiKyA3AjcLPfbp9teZfZphTYEegK/Bn4lz1+UsgyXwIMVdUWwFDgKXt7wcgsIvWAl4GrVXVdsqI+2wrlPmcV05ZzjmnLOSBfbbnKKGoRORc4ETjTdhmA1Rtp4SrWHMtdsoztLjX39spiL6xxiS9FZLF9/pkishuFKzO2DK+oxX+BCqzk8oUs87nAK/bnlwAnAKUgZBaRmlgN+zlVdeRcabvAsP87bsmCkDnXmLZcKZi2nGXy2pazNdiezT+gFfFBBr2Br4EmnnLtiB+w/47tA/afYfUmnQH7vpUps2ffYrYHoBSszMAQ4Db7875YrhspcJnnAd3tzz2AzwvlPtv1jwEe8my/j/gAlHsLReZK+L1MW66c+2zacnZlzWtbztmPkMENeQFYDmzF6n1cgDUQvxSYZf+NcJW/ESui7htc0XNAZ2COve/v2FnYKktmz/5Y4y5kmYFawLO2DDOBY6uAzEcAn9uNYjpwcKHIbMumwGzXs9sX2Bl4F/jW/r9TochcCb+XacuVc59NW86uvHltyyaFqMFgMBgMBUyVGaM2GAwGg6E6YhS1wWAwGAwFjFHUBoPBYDAUMEZRGwwGg8FQwBhFbTAYDAZDAWMUdTVFLD4SkT6ubf1F5M18ymUwGKJh2nLxY6ZnVWNE5ACsDECdgBKsuYG9VXVRGnWVqGp5diU0GAxhMG25uDGKuppjr1O7Eahr/28JtMfKFTxcVV+1k9CPtcsAXK6q00SkO3ALVuKCjqratnKlNxgMDqYtFy9GUVdzRKQuVuaiMuB1YK6qPisijbDWTe2ElZGnQlU3i8g+wAuq2tlu3G8AB6i1lJvBYMgTpi0XL6X5FsCQX1R1o4iMAzYA/YGTROQae3cdYA+spPF/F5GOQDlW7mCH/5qGbTDkH9OWixejqA1graxTgZUk/jRV/ca9U0SGAyuBDlgBiJtduzdWkowGgyE1pi0XISbq2+DmLeAKe91aRKSTvb0hsFxVK4CzsYJVDAZD4WLachFhFLXBze1ATWC2iMyxvwM8BpwrIp9iucpMz9tgKGxMWy4iTDCZwWAwGAwFjLGoDQaDwWAoYIyiNhgMBoOhgDGK2mAwGAyGAsYoaoPBYDAYChijqA0Gg8FgKGCMojYYDAaDoYAxitpgMBgMhgLm/wFUOsT67PJBWwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfUAAADQCAYAAAAeXvggAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABk/klEQVR4nO2deZwUxfn/3w/Lshc3C8qhHIIcKiIiaiJK4gUab4PgEdQYo1F/8UrwiIoa4228Yjwj32hUjDdqVDzwwgsVUcADOURukBsW9qjfH93V1PR0z/QcuzM7W+/Xa147293TXdPTVZ96nnrqKVFKYbFYLBaLpfHTLNcFsFgsFovFkh2sqFssFovFUiBYUbdYLBaLpUCwom6xWCwWS4FgRd1isVgslgLBirrFYrFYLAWCFXVLgyEi24nIOyKyXkRuFZHLROTBXJcrGSIyQUT+6r4fJiLf5LpMlsJGRJSI9M51OYIQkfEi8mi2Pysiw0Xkx8xKl11EZEcR2SAiRSH7074XAefKym9uRR0QkRNFZJr74y0Rkf+JyH6+Y051b/oo3/bh7vZnfNt3d7dPMbZdKyJfikiNiIwPOE+dWwb9Gmvsv0VEvnMF8WsR+U0270EDcSawEmitlLpIKfU3pdQZACLSw71fzcM+nM0KlC5KqXeVUn1zWYamjq2vceXIKyEsJJRSPyilWiqlanNdlqg0eVEXkQuB24G/AdsBOwL3AEf5Dh0L/OT+9bMC+JmIdPAd/63vuDnAn4GXQoqz2H2A9Ov/jH0bgSOANu657xCRnyX5ehmRSGDTpDswS9mMR5Y0sfU1deqhHjc6wiztgkQp1WRfOBVuA/DrJMd1B+qA44AaYDtj33DgR+Be4Bx3W5G77UpgSsD5HgXG+7YNB35MoewvABcl2H8UMB1YB3wPjHC3zwcOMo4bDzzqvu8BKOC3wA/AO8ArwLm+c38BHOu+7wdMxmlAvwFGhZRnAlANbHXv+UG+a//gXnuD+9rX9/kR7mer3f1fuNu7uPfiJ5xG+HcJ7slhwCxgPbAIuNj3G16G40mYD5zkK/tfg34n99iLgRnAWmAiUGrs/5X7O6wBpgIDc/3cN9YXhV1f/wQsARYDp7t1obe7rwS4xa0jy9yylwEVwGb3u+p608WtV0+55V4HnOHeu4fcaywC/goUuec/FXjPvcZqYB4w0ihbT+Btt95MBu7Grbfu/n3cZ3sNTtswPOpng+5pUD0E9nK/e3Pj+OOA6SHnmgD8E3gZp4N1kHtvnsbp1M0D/p9x/FBgmnu/lgG3udt7uL9F82TfJ+iZwGhv3Wt84N6nJe5nWxjHer95Jq+mbqnvC5QCzyY57jfANKXU08Bs4KSAY/7tHgdwKDATp4KmQicRWSYi80Tk7yJSEXSQiJThPOQzQ/YPdcvzJ6AtsD/OwxWVA4D+ON/jMWCMce4BOI3mS275JrvHdHKPu0dEdvGfUCl1KvAf4CblWDWv+w7Z3/3b1t3/ge/zr+BYZxPd/bu7ux7HaQi6AMcDfxORA0O+10PA75VSrYBdgTeNfdsDlUBXHMvqfhGJ6mYfhdPp6AkMxGkkEZHBwL+A3wMdgPuAF0SkJOJ5LbEUan0dgdMxPBjogyNAJjcCOwODgN44z+iVSqmNwEhiPQb6OxyFI+xtcerd/+F0cHoDewCH4Ii9Zm+cTnklcBPwkIiIu+8x4FN337UY3g8R6Yrjyfgr0N79Hk+LSMdknw0hsB4qpT4BVrn3SHMy8EiCc50IXAe0wul0TMLpdHQFDgTOF5FD3WPvAO5QSrUGdgKeDDlnqt/HpBa4wP3svm4Z/pDC5yPR1EW9A7BSKVWT5Ljf4PyYuH/jfkil1FSgvSsEv8FpNFLha5xK2xn4JbAncFvIsffiPJyvhuz/LfAvpdRkpVSdUmqRUurrFMoyXim1USm1GacBHSQi3d19JwHPKKW24Fih85VSDyulapRSn+H0hI9P4VppIyI7APsB45RSVUqp6cCDwCkhH6kGBohIa6XUare8JlcopbYopd7GaahGxZ8ikDuVUouVUj/hNByD3O2/A+5TSn2klKpVjnt2C45lY0mdQq2vo4CHlVJfuUI9Xu9whfV3wAVKqZ+UUutxOrejk5TvA6XUc0qpOqA1jvif79br5cDffedYoJR6QDljx//nfq/tRGRHnA6Jrhvv4DzjmpOBl5VSL7ttzWQci/ewCJ8NI6we/p97PUSkPduMjjCeV0q9796D3YCOSqlrlFJblVJzgQeMe1AN9BaRSqXUBqXUh/6TZfB9AFBKfaqU+tBtK+fjdPIPiPr5qDR1UV8FVCYJzvo5jgX2hLvpMWA3ERkUcPgjwLnAL0huTcSglFqqlJrlVox5OGN5ceIoIjfjWJmjlOuzCWAHHJd7uiw0yrUep2Lph380Ts8fHIt9bxFZo184or99BtdOhS6Abug0C3B64kEch+OCXyAib4vIvsa+1W6Dap6nS8RyLDXebwJauu+7Axf57s8OKZzXEkuh1tcuGHUO59nTdATKgU+NZ+gVd3sizPN1B4qBJcY57sPxrmm8Z1gptcl929ItW1DdMM/9a98zvh9OpyDZZ4NIVA8fBY4QkZY4Qv+uUmpJgnP570EXXzkvw4nLAMcQ2hn4WkQ+EZFfBZwvne/jISI7i8iLIrJURNbhdM4qo34+Kk09gOIDoAo4GsdVFcRYQIDp27xRgNO7n+479hGccd1/K6U2+Y5PFeVe10NErsbpcR+glFqX4LMLcVxIQWzEaSQ0QQLsb3weB64SkXdwxvLeMq7ztlLqYDInSvCc/5jFONZWK0PYd8QZM4z/sOPCO0pEinEa8ydxRBagnYhUGBV2R+CrVL5AAAuB65RS12V4HotDodbXJWx7DsF59jQrccbNd1FKBT3XYfXG3L4Qx0NUGcHLEVS2oLqhz78QeEQp9Tv/B13vXqLPBhFaD5VSi0TkA+AYHG/cP5OU3X8P5iml+gQeqNR3wBgRaQYcCzzlC6SE5Pcipm11g/PMztc/gc+BMUqp9SJyPvXg1WzSlrpSai1OcMw/RORoESkXkWIRGSkiN4lIKU6P8EwcV5t+nQec5LcY3B77AcDlQddzz12Kc9+bi0ipjsp0p6bsKA47ADcAzxufvRRnjOhgpdSqJF/tIeA0ETlQRJqJSFcR6efumw6MdssyhGgP1cs4Pd1rcMa069ztLwI7i8gp7vmKRWQvEekf4Zx+VuAE/PRKcMwyoIdb8VBKLcQZK7vevZcDcXrc//F/UERaiMhJItJGKVWNExDjn6ZytXvcMJyhhf+m8T1MHgDOEpG93d+1QkQOF5FWGZ63SVLA9fVJ4FQRGSAi5cBVRhnrcJ6jv4tIJ/fcXWXbWPAyoIOItElw35YArwG3ikhrt03YSUSSun6VUgtw3Om6buyHE9Wv0dbzoSJS5N6j4SLSLcJnw0hUD/+N4xXZjdS8Kx8D60RknIiUuWXdVUT2AhCRk0Wko3u/17ifiWkfInyfb4FSt44XA3/BCXLUtMJpdza47fHZKZQ/OioPolpz/cJxGU/D6WktxXE3/wzH1bwEKPYdX4rTg/4VCaJgcQJRphj/T8Dp1ZmvU919F+JYmJtwepV3Aa2Mzyqc3vYG43VZgu90DE5E9noca+RQd3sv4CP38y8BdxIf/d484HwPufv28m3v655nBY579E1gUEiZJuBGkbv/jyc2ivYa9zxrgH0CPt8BJ0p3NfCZu60bTufiJ5whh7NCrt0Cx225GqdifQLs5+4bjhNsd7n7u/4AnBJUbv/vTYLZBO7/I9xrrXGfpf+av6t92frqHn+J+12Cot9LcVy1c91ndzaxkdv/cuveGrZFvz/qO38bHEvxR5xZGp8Do919pwLv+Y43r98LeNf9DkHR73vjRIT/hFN/XwJ2jPJZ3zWHk6AeuseUu/fg/5I8IxMw2hp3Wxccr+NSnHbgQ7ZFpj8KLHfLORM42t3eg9jo92T34lScZ3A5TtDgfOMa++PEYmxwz3GNed/Ne57JS9yTWSxNFhEZjlMxu+W4KBaLJQki8j3OLBb/DBoLTdz9brFYLJbGg4gch2PRvpns2KZKUw+Us1gsFksjQJwUvgNwXPJ1SQ5vslj3u8VisVgsBYJ1v1ssFovFUiA0Ovd7ZWWl6tGjR66LYbHkBZ9++ulKpVSyRCSNDlvPLZZtpFLPG52o9+jRg2nTpuW6GBZLXiAikTNaNSZsPbdYtpFKPbfud4vFYrFYCgQr6haLxWKxFAhW1C0Wi8ViKRCsqFssFovFUiAUnKjX1tYycuRIxo8fn+uiWCwWS14xYcIE3n333VwXw1KPNLrkM0OGDFGJomLfe+89hg0bBkBj+24WS6qIyKdKqSG5Lke2SVbPLemhl5e1bWPjIpV6XnCWelFRUa6LYLFYLBZLTig4US8pKUl+kMVisTRhvv32W2bPnp3rYljqgXoTdRH5l4gsF5GvQvafJCIz3NdUEdk9G9dt0aKF976uzub8t1gsFj99+/ZlwIABuS6GpR6oT0t9AjAiwf55wAFKqYHAtcD92bioOVZUVVWVjVNaLBZLoyfIyLFj64VHvYm6Uuod4KcE+6cqpVa7/34IdMvGdWtra733mzZtysYpLRZLnlFbW8sZZ5xhXcgpsGXLlrht1dXVOSiJpT7JlzH13wL/C9spImeKyDQRmbZixYqEJzJ7o1bULZbCZPbs2Tz00EMcf/zxuS5KoyFI1K03s/DIuaiLyC9wRH1c2DFKqfuVUkOUUkM6dky8UI211C2WwkcHxFpRik6QqAdtszRucrpKm4gMBB4ERiqlVmXjnNZSt1gKHx0Qa0UpOkEdINspKjxyZqmLyI7AM8ApSqlvs3Vea6lbLIWP7rxbUYqOtdSbBvVmqYvI48BwoFJEfgSuAooBlFL3AlcCHYB73CxHNdnIjGVF3WIpfLSoW1GKjh1TbxrUm6grpcYk2X8GcEa2r2u63zdv3pzt01ssljxAd96tKEUn6F7ZTlHhkfNAuWxjLXWLpfDR9bympibHJWk8WEu9aVBwom4D5SyWwsdmi0ydsDH1t956y97PAqLgRN1a6hZL4WPW88bAvHnzcp69Lcgqf+aZZ/jlL3/J7bff3vAFstQLBSfq1lK3WAqfxmRZvvfee/Tq1YuHH344p+UIstRnzZoFwNy5cxu6OJZ6ouBE3VrqFkvh05gs9a++cta0+vjjj3NaDm2pt27d2tu2du1awK5uWUgUnKhbS91iKXwak6WuOyDNmuW2udWWeqtWrbxt69atAxqfqK9du9bmrQ+h4ETd7MHbKW0WS2HSmCx13QEpKirKaTm0qAdZ6qWlpTkpU7q0bduWUaNGxWzbsmULixYtylGJ8oeCFnVrqVsshUljEvV8sdSD3O+N1VIHeO6552L+HzNmDN26dct5QGKuKThRt+53i6XwaUzudz2XPh8tdb1N59JvDIR16J599lkAtm7d2pDFyTsKTtTNH9wmVrBYChOznuf72Go+uN/vvfdeLrnkEiB2TF2Tay9CKiTLgtfU2/3G80tGxOzB2xSIFkth0pg8croDkktR/+c//+m9Lysri9uf7x0jk2SWeFNv9wtO1K2lbrEUPo0pdiYfLPWOHTt674Nc7Y1J1E3RXrNmDQsXLozZ39Tb/YITdbMH39R/XIulUGmMlnouXdyVlZXe+6CguMYq6oMHD2bHHXcM3d8UqbenTET+JSLLReSrkP0iIneKyBwRmSEig7NxXbMH39R/XIulUGlMlno+uN9Ngiz1xrIwzvPPP89xxx3n/T9v3ry4Y5q6MVefXccJwIgE+0cCfdzXmcA/ExwbGet+t1gajgid9+EislZEpruvK7Nx3cZUz/NB1PV8dGjclvrRRx/NtGnT4rabHbtcG3N1dXX8/e9/Z+PGjTm5fr2JulLqHeCnBIccBfxbOXwItBWRzple17rfLZYGZQKJO+8A7yqlBrmva7Jx0cZUz/NhTF2Lerdu3Rr9mHoQq1at8t7n+nl46qmnuPDCC7niiitycv1cjql3BcwIhx/dbXGIyJkiMk1Epq1YsSLhSYN68MuXL+fSSy9l/vz5GRY5u9TV1XHttdfy/vvv57ooFktaROi81wuN0VLPZVKUdevWceyxx7Jw4cJG7X4PwxT1XFvqP/3kVIeCs9QjIAHbAp96pdT9SqkhSqkhZhRnEEFT2i6++GJuuOEGhg0bln5p64GJEydy5ZVXst9+++W6KEydOpVJkybluhiWwmRfEflCRP4nIrtk44SNyVLXop7LLHhr1671ks40Vvd7ojIuXbrUe5/r50FfP1epd5vn5KoOPwI7GP93AxZnetKgHvx3333nXPDHHzM9fVbJp+UOf/7znwPw7bff0qdPnxyXxlJAfAZ0V0ptEJHDgOdw4mjiEJEzceJr4iKa/TSmgFgtRrm0htetW0ebNm2AbYFybdq08dzyjUHUf/jhh9B9phc2189DrkU9l5b6C8Bv3Cj4fYC1SqklmZ40qAffvXv3TE9bL+Sjy+vtt9/OdREsBYRSap1SaoP7/mWgWEQqQ45NyyOXa8ssGVowc2Wp19XVsX79ek/UtaV+yy23eMc0BlH//vvvQ/eZUfC5fh4KVtRF5HHgA6CviPwoIr8VkbNE5Cz3kJeBucAc4AHgD9m4rllx6urqqKmpoVu3bt62fBLSfFmUwhzr+/zzz+3qdpasISLbi4i474fitDmrEn8qOUEeuRkzZnDcccfl3FLzozOgLVy4kJkzZzb49devX49SynO/a0t9p512Yv369fTs2ZPVq1ezfPnyBi9bKiS6d/lkqevrF5yoK6XGKKU6K6WKlVLdlFIPKaXuVUrd6+5XSqlzlFI7KaV2U0rFz1NIA79QVlVV0bz5tlEGf/ahXJIvHQyzEtxzzz2Ul5fz4osv5rBElsZChM778cBXIvIFcCcwWmUhYixI1M877zyeeeaZvAs81fXrkUceYdddd23w6+uV2Pzu95KSElq2bEmLFi14/vnnGTEi2SSG3DJjxozQfflqqSuluOmmm1iwYEGDXb+gM8qBc4NN8ZwzZ05DFymUfLHUg5J3XHDBBTkoiaWxEaHzfrdSahel1O5KqX2UUlOzcd0g97seh8+3WS65XjVMj5v7A+W0uGujZ/HijEOa6pUvv/wycDEaiP3Nly5dmtN7rp/HZs2a8cMPPzBu3DiOOuqoBrt+wYl6kKVujhfp6Qb5QD6LelNfk9iS3wQFyvXo0QOwou5n/fr1wLbV2XbaaSdKS0vp2tWZQVxcXAxkPzPf+eefH7h4TDrU1NQwc+ZMhg4dGrh/9erV3vtrrrmGY489NivXTQct6rW1tZ726N+gISg4Ufdb6lu2bIkR9XxxeUP+lCWoMjem9aotTY8gS12PYQalDs0luRZ1fX+0wA4ZMoTNmzfTubOT60uL+saNG7Pamb/jjjuy5gpfsWIFVVVV7LJL8IxIf1v60ksvZeW66aA7mTU1Nd5z2pB5/wtO1JNZ6vkipGAtdYslXYLG1HXdtqIeixaZoPnpsM39XldXl/OyhqETuXTq1CnHJUmO+Txq7bGingFBY+r5Kur5UpagaHcr6pZ8JshS1/U8H8aGly1b5pUxF9HYdXV1fP755zHXDxN1balD/WRBy0ZbsmHDBiB2tbl8xRR1fe+tqGeA3/rdsmVLjHjmi5CCtdQtlnTRdadFixZew1mfSV5eeukl3n333bjty5cv5+OPP47ZtmTJErbffnvGjx8P5MZSv+mmmxg8eDAfffRR0nnT9S3q2fg9dLmS5S/IB3R7WlNTExM011DkMqNcvWDd76ljx9QtjQ1ddyoqKuLc79mu43V1dfzqV78C4ju7gwcPZtGiRTHbly1bBjjLhB555JF89NFHGV8/VVHQVvr8+fNTstTrYxnbLVu2xFwjHbSod+jQIRtFqld0WU1Rd1M1NAgFZ6lb93vqhIl6VVWVtdgteYmu56ao63qe7exoWiCDWLRoUdw23YArpdhrr73i9qdSp/79739TVFSUcoprvSKcKSxhlrqZx6M+LPVsDD/ocum59ukiIpx99tkZlycReqjAut+zhLXUUydI1BcvXkxZWRm//e1vc1AiiyUxuu6Ul5fHiXq26/hrr70GEDlxjBb1MG9XKuV74oknAJg+fXrkz8A2oTaFJZeWeqZooayoqIj8Gf+wh+5M3XvvvRmXJxG6rLW1td6z2ZDL7hacqAdNaTMrUT7lOM6XDkaiivzwww83YEky58gjj+Twww+3HoYCR9dzU9Try/2uFxJp37596DHm86bLFvYMplI+nTBGZ4WLiinquR5Tz0ZMgS5Xy5YtvW1aKMOEfs2aNTH/a7Gtb0xL3brfs0BDW+p33HEHJ5xwQlpWt1mWAw44wBuLa2gKJdd7dXU1kyZN4uWXX46ZH/vBBx8wbNgwvvzyyxyWzpJNTEu9vgPlopzXrP9axLJhqWt3c6qibrrfk1nqpms4Xy11LeqmgOuMeP6c9hozIQ00XOIx3Z5a93uWaMgx9XXr1nH++efz5JNPJsxLHIb5sL/zzjtcccUVWStbVObOncuf/vSnBr9ufWAKuU6NCc6ysu+99x4nnXRSLoplqQcSjamnW8cXL17MqlXxa81okU7UcTfbGP0+TNRT8RZqwVq5ciXvvvtuZEtaW+raBSwiMWPnJub9yrcx9ZUrV/Lwww83KlHXz0muot8LTtT1DW3Xrh3gBLLUl6g///zz3nu/e2Xu3LlcddVVcS4gE3+2pYZMJaip76CRhsT0OJiWjXaD+iu5pfGSbEw9neGXrl27st1228Vtj9JZMPdl01LXLvMrrriC/fffn4ceeijS5/xj6qWlpaEuYLOzUh+Weibu95EjR3L66aczZ84cSkpKYsamtYjr9LclJSWMGTPGE35/fdf/+8U/myilYoaBrKhnAV2R9t13XwCmTp2asah/8cUXPPvss3Hb33nnndDz7rvvvlxzzTVxC6O88MILXtCLvwfbkOMumnzLk50JpqjPmjWLhx9+OOZ3ydVSiJbsU1tbi4hQVlYWN6YO6U/JDLLGU7XU9fFhAplKG+S36hMZCSZa1Ldu3cqWLVtCXe/+8uSbpT5tmrN459q1a2PG0yHYUn/ssce8vAGmtw62WeqmtV9VVcWVV14ZNwSplOKkk05iypQpKZXXfO5y5X6v13nqIjICuAMoAh5USt3g298GeBTY0S3LLUqpjCKzdMUbNmwYL7/8Mh999BE9e/b09qcj6oMGDQKc9XwHDBjgbTctbf959drEn332mbftu+++81brUUrFWeq5EPXOnTvz7bffNvh1s83mzZtj8j0fc8wxgOO+01hRLxzq6uooKiqipKQkzlIHpz5mGnHcuXNnxo4dm7alrj1vF154IW+//TaffvppXDmT4RfEqAKpv/vmzZupqqpK+Ozns6hr1qxZ44nxvvvuS3V1tVe3/e533YHxewi0qJeXl3vb7rrrLq699lrKysq49NJLve0bN27kscce4+mnn04pf73Z8Su4QDkRKQL+AYwEBgBjRGSA77BzgFlKqd2B4cCtIpKRb0Tf1O23357evXuzadMmZs6c6e3PxP2uo2A15sMadl7zxzTXcq+qquL7778PPbahyDQpRL4wduxYzjnnnLjtptAnslYsjYva2lqaNWtGaWlpXKAcZGeYbenSpdx4442eOCQ6Z5ClrkV9t91284Qn1bKlK+raYty0aVNKlnq23O/mOdMVdbMsq1ev9kR96tSpfPLJJ56I6+3+JWX9nacgUdfDdP7fRB/r9w4kw5+9NMiLVN/Up09gKDBHKTVXKbUVeALwLyqrgFbiqFlL4Ccgo2+vH+aioqLA5P+Z3Fzd+9VL6pk9wSiibr4/5JBD4gI3ciHqQYFBjZH//ve/gdtNF5y11AsHbamXlpYGNpyp1nO/8Jhj8locErnfgyx1TUVFRUyQWrqibqbETYYucy4s9WuuuSamM53umPp3333nvTdFXaPFW7u29f/6b5ilbraz+hj/OLtuF83OWBT8lrr+vRoyVXB9inpXYKHx/4/uNpO7gf7AYuBL4I9KqbjBMBE5U0Smici0FStWJLyovqnNmjULtEIzqez63IMGDWKHHXaI6UmGndccSzHfB+WRzqWo77333vzsZz9r8OvXN2awjBX1wkFb6q1bt2bDhg1s2rQpI0vdP2XMdLmmaqn7LcSWLVvGDAWkUjZ97YMPPpj27dunJeoNaanX1tZy1VVXcfTRR3vb0rXUzQ55kKiPGzcOgD59+gDbhFm3+2GibpZH3ye/Vuh2UQfhRSXMUi8UUQ9SKH9I6qHAdKALMAi4W0TiukZKqfuVUkOUUkOSJfQ3LfWgKMdUk8+YD5Zeb/irr75i2bJlMfPKU7XUkx3bUOhxqcmTJ4emYMz3PPCJpqqY6TXzJYOfJXO0pb7PPvtQW1vLBx98kJGo+2eemIlK0h1T11RUVMR06FMdU+/Xrx+vvfYaLVq0iCwO+riGttSDVsjLhvt948aNca7wk08+GaWUN2PB734PE/WgDtvy5cv5+uuvve1a1DNxv5sZ5Roy6VkkUReRjiJymYjcLyL/0q8kH/sR2MH4vxuORW5yGvCMcpgDzAP6RS18EKalHiTqmfTgN27cGPNApDqmnqxCNrSob968mU2bNtGiRYuED28+ZeEL4quvvgrdV9/TdSy5QVvqw4YNo6ioiLfeeisj97vfUjfFLd3od03Lli1j3Pmput+1WJWUlNSLpZ7NOhK0ln26Vqq/LGGZ4/xu9zBR1xHuQaJ+44030r9/f8/lrzsAqVrqjcn9/jzQBngdeMl4JeIToI+I9HSD30YDL/iO+QE4EEBEtgP6AnMjlikQ01LPhvvdb6mbPXjzfRRRz8W6yonQvdHKysqEHYpcLB2ZCnraSzKsqBcOtbW1FBUV0apVKwYNGsRHH32UtqVeV1cXF0ybbUvdP9XJZPbs2aHz6tMVdXNaXVT3e2lpacaWetAU2XTbPX9ZysrKAo/zi7lu9/3GiP4/yP2uuf3224Gm4X4vV0qNU0o9qZR6Wr8SfUApVQOcC7wKzAaeVErNFJGzROQs97BrgZ+JyJfAG8A4pdTK4DNGI5uW+po1a2LmmW/cuDHGTWc+dNkQ9VQs9TVr1nD11VcH9oyjol3vyZYzzLfOiJ/3338/0nFW1AsH7X4HaNu2bUZj6rfddhsnn3yy9/+mTZsCLfVUo981fkvdPHbatGkMGDCAv//974Hn3bp1a8aWelT3e+vWrbMm6maAWbIyf/PNN4GdGn99DeuYmPcHnHa0uLg47nfQ96SqqooJEyZw4oknxh2jY7bSCSB+7733uOiii7z/813UXxSRw1I9uVLqZaXUzkqpnZRS17nb7lVK3eu+X6yUOkQptZtSalel1KOpXsOPFvWwMfVUKvsVV1wRE9DmF3XzfUOL+mWXXcb48eMzCm7TLqaghSoWL17sNZoPPfRQ3o5HK6Uii/rcuXN566236rlEhUWmU0zrC+1+B7yx5nTd72YSKXDq/T777AM4xkE2ot/DLHW9dGtYkpMtW7bEzL+uD/f7wIEDASejXrbc72HDlH6+/PJL+vXrx4cffhi3L6qo+y11wBP1mpoaDjnkEKZMmRLTmTrttNN4/PHH434r7ZnVop6KGA8bNownn3zS+z8v3e8isl5E1gF/xBH2zSKyztiedyQLlEulsvvXUV69ejWTJk3y/vePnwSRbEzdHCJIRdT14iRLly6N/Blw7s+7777rRQzDtmAQnYWvQ4cOdO7cmW7dugFwySWXcN9996V0nYZi8eLFKS2E88tf/jLvPQ+5QkSmiEgP4/+hOMNoeYdpqWtRr66u9hr+VOp527ZtY/6/8847vfclJSUZR79XVFSEjqnrceIwC9kU5PoKlLvvvvt455136NevX8aWuk66ZZYzUZl17o+gWU2pWupme6/v1YIFC5g8eTInn3xyYGyQf5sWdW3wZCLGpqWeN4FySqlWSqnW7t9mSqky4//UJvA1ENmc0uaPBr/jjjtCF10J+9ESWep77rknQ4YMiVweE53bPlUeeOAB9t9/f4466iiv0uhkDH/+85+5++67vcxXZiV5++2307pefaMrX9hiFUEkmxbZhLkeeEVE/iAi1wH34gSz5h2mpV5cXEx1dTXV1dXeuGsqjWjYWC04dSCTMfWSkhKKi4tjLHWzbPraYcuCZsP9nsxSLy8vZ9iwYVRUVGRsqQdlX0tU5kTi6e9gJLPUzf0tWrRg4sSJHHfccYDTXgY9E/5ZD1rUtaGQLVHPG0tdIyJvRNmWD2TTUjczDyUjyjx1/8PdunXrtHMCm6K+bNmyyNPOdJKWN99806vAumEpKSnhnHPOoXv37t7/mmxPa8vWQ64rYdeu/hQI4WhrwhKLUupV4Cyc1M6nA4cppT5L/KncEGSp19TUeM9yKvXcnyPcxBR10zP3+uuvxyRHCRtT1wmwwtzv2oKPYqmnGyiXzFLXlJeXZ2yppyvqQcdk4n5v0aIFy5cv54svvgDCRd2/6MvatWupqanxZtRkKur6e9XV1TXYEGYy93upiHQAKkWknYi0d189cOaW5x3ZDpSLSjpj6q1atQoNoEmG6UXYfvvtGTlyZKTPmd4Lv6Xux7x/2Xwgb7nlFkpKSiKPhSfCinr2EJErgLuA/YHxwBQROTynhQohaEy9urraE69U6nmiPAemy9s858EHH8zOO+/s/R9mqWtRD3O/6/eJRL2+x9Q1+WapZ+p+N2nTpk1g++pv49euXcusWbMydps3b96cmpqamE5DQ1nryczE3wPTcOaOfwZ86r6ex8nrnneMmj+fs4GyNWsC3e+p/EjmYiDJSEfUW7duHeqWS4ZfZKOuJmTeEz1vM4qoZ9NS1+u3X3LJJRmfS88v7tIleh/TinoolcBQpdQHSqn7cJJDnZ/bIgWjp7TBNmvadL9nU9TNehlljXSz8dZBqGGWuq7HYe73TC31jRs3piTq+j6mS5CoJxKzZO53M39Gqu53f7mqq6vj2jr/b79p0yY++ugjwMlUl64Q64WGlixZ4sVN5IWoK6XuUEr1BC5WSvU0Xrsrpe5ukBKmwtatnLhgAfcAPxs1it8/9hjnEZubNpXKnsq0hnQt9XRFPWipwCiYY8/JLHWzktSH6ygbyxFqSz0ogj8MK+rBKKX+CCAifd3/FyilDs5tqYIx3e860jkTUT/ppJNCkxht3brVu1ZNTU2gsIdZ6nqYLMwjl8xSN8fU/YFyVVVVofXenL5l3pdE6HYgHRf85MmT+emnn+JEvV27dhlZ6mYQYyqWut+gW7t2LdXV1XHzzoOGXqZOnUpZWRm77LJLZCH2t90lJSX8+OOP1NXVsdNOOwUeU19EbVUXicixvteBIhK/YkouUYrbe/bkeUAVF9Pjhx+4Eye13VTgQqBjhAf2lVde4eyzz/ZSHr755ptJP6Mr5/33388111zjbU8U/Z6Jpe6vPNXV1ZGENxVRry9LXZONDHq6UoaluA0iKFr+nnvu4W9/+1vG5WnMiMgROGmbX3H/HyQi/oRReUHYlLZ03O+rV6+mQ4cOgRnLdOfZ7CwEuajDot+1qPstdf3c6jrr76Rrwiz1+fPnU1ZWxoQJEwI/529LotQP/f1TdcGvXLmSQw45hBNPPDEnoh42pm6iRT1R5kzdNi5cuJC2bdtSWloaWdT9Fr+5emCvXr2APLHUDX4LPAic5L4ewNHI90XklHoqW+qUlPByZSVHA5+8+CKTxozhaWATsC9wK/D8jBkwZAjccAPMmRN4mpEjR3LvvfdSW1tLSUmJl1s4EboR+f3vf89VV10VeEwq7nelFLfeemvg/E0IbgSirPubypi6eWx9LB2YiaX+008/MX78eC8TWCqrKfkt9bq6Os455xwuv/zyuHShTYzxOKsrrgFQSk0HeuauOOH4A+XScb+PGDGCAQMGsGbNGtq3bx9YD7TVqs9bUVHBG2/ExwiHWerag2Ra1E8//TRt27blk08+SVrOMFHXU1qfeuqpwM/5BSSKqKdrqS9ZsgRwpqeZbVBZWRllZWWR3O9hgXKpiHqQ+33kyJH87ne/Y926dYGWukllZSXgTJOtqKiIG3pJhN+ra5YlX0W9DuivlDpOKXUczvroW4C9gXH1Vbh08KzV1q35fuhQjgc6AsfjrP26qVkz+PRTuPRS6NMHdtsNxo2Dt9+GgB+wsrIyNOewSRS3nP/BbdOmTaiov/LKK1x88cXe3HE/uvLcdtttXka4sN6+SSqiblr+2ViS0U8mov7rX/+aq6++mkceeQRIzVL3i7oZO9HEs87VKKX8/siE4zruOhDLRSTQdy0Od4rIHBGZISKDs1FQ/5S2LVu2oJRKSdRfffVVZs+eDTgWZZAV5xd1gLvuuivuuLAx9SBLXS9L+sEHHyQsZ11dHTU1NTGitX79ekTEK1dYVHt1dXVMnahPS13Xp8rKyjhRN5fGDSLZmLpZ7nQC5crKymjTpk2o+91ELxa2ePFiysvLU8oL4Bd183fp2dPpF+ebqPdQSpk+y+XAzkqpn4C8Wu0jaErbJuBpYAzw8z594Nln4aSToHVr+OoruOkmGD4cKivh+OM5Dejsnq+ysjLSnPD333+fhQsXxm03f0i/qHfr1i1U1JON+2oBHzRokPcApWqpBzVYYWVPNO0nXTJxv/uHRJI1WjfddBNXX301ED9PXVsa0ORF/SsROREoEpE+InIXzshVIiYAIxLsHwn0cV9nAv/MRkH9lromHfc74FnqTzzxBIsXL+bAAw/0rgOxdSQoNXOYpd67d28gOOYl2ZCZPo8/DSpsSzoVJnRbt26NSf/cEJa6FnXtxi4uLvamyU2cODHwuyZzv5sGVdh3bdeuHX/4wx849NBDvW36mSgtLaVNmzbe4lWJ3O/aUl+7dq1nqfvL9eabb3LxxRd7/z/yyCP85S9/iXO/67KWl5d7MyDyTdTfFZEXRWSsiIzFiX5/R0QqcF11+ULYlDbdAGysq4Ojj4ZHH4Xly+H11+HCC6F/f1i3Dp5+mn/hLCc3E/jbunW0fv11Xvz3vwPdbppXX301ZoqLxhRqv6jvuOOOMZXd/NGTLSSgBby0tNRryKJY6mbjox/EMEvdLE99uKXTtdSDGuw2bdrwxRdfcN999wXmsu/duzfHHnssEH+fzOUi68Mj0Yg4D9gFxwv3OLCOJNHvSql3gPDwcTgK+Le7EuOHQFsR6Zzg+Ej4x9Q16QTKAeywg7Og5AknnEDnzp15/fXX+fOf/xx3XggWdb+lPnToUJ566ilvXXGz867r/Pr162PK6e+U6/YiyBLVmdjChK66ujqmHkQZnkrXUtf1p23bttTV1Xku8+bNm1NeXs7bb7/N6NGjuf/++2M+V1dX5035ykTUmzVrxj/+8Q922203b5s2XrSlrq+XaChVizo496K4uJgNGzbELFJz4IEHcuutt3pT4X7zm99w3XXXxbWPuk3u3LmzV+58C5Q7B6dHPgjYA/g3cI5SaqNS6hf1U7T0CFulLbCyl5TAgQfCrbfCrFkwbx5Vf/87k4ANOGMMh82bB8cdx+Fjx/LLP/2JhaNHMwIIcsgHPZiJRH2HHXYItdTNhzmoh2sG8OjvFsVSN8ugvQFhom6Wpz5EPV1LPShKuU2bNgwcOJAzzzyTvn37xu03Oz/+38Fa6g5KqU1KqcuVUnsppYa475M/VInpCpgurB+JnZCSFuaUtqT1PAI9evSI22ae16wjQVb3G2+8EZMvvKKiguOOO857xoNEfcmSJTF12+8N84u6KWpz586N22bSkJa6FnX9vfS1mjdvHtOO+acIr1271vuM2XYqpaitrWXjxo0x9z3KtDyN3/2u6dGjB9OnTw9c91273wHPUq+qqqJnz55xXthZs2bFJB+aNWtWzH7d1nTo0MEry2mnncaJJ54Y+TukSyRRd3vZTymlLlBKne++jzaHqoEJs9QjVfYePVhx3HEcCbQHfg58fMQRcMABUFwMn31Gtyee4H/AauBdnGXmDgLCcs8lEvUOHTokDJTTBLm+07XUzTJoN3RUSz0bP7l5jnRFPSh63ay4jz76KEcddRSjR4/2tunxPYjv/DR1UReRSSLyQtgr09MHbAt8kETkTBGZJiLTkqXyzdT97u+AByUvCmo/wnjuuefYe++9Aace+6Ovg+rO4sWLY8rpr7+6rgYFgn3//feh59VlSFXU07XUdf3RHX/TUk9kaZsua7NduuOOO+jbty+bNm3KiqibXori4mJ23313zyVuYlrqekxd8/rrr8fcl5kzZ8YsDvXxxx/HnEuXtX379t4z+cUXX/D4449H/g7pEjVN7LEi8p2IrE1lQRcRGSEi37hBMoGZRkRkuIhMF5GZIpJxgvGwVdqiVnb9oFXjDCauPe88mDIFVq+G116DSy7hh86daQbsB/wFmIwzBjEVJ3n2CEA7zxMtySgioaJuvg9KjpENSz0VUa+rq8uK4JllTNcdFeQ1MCtuz549ee655xg2bJi3rbS01KtoiURdWynLly+nf//+3H13/qVjqAduwZkcMg/YjDO75QEch1Xw5O3o/AjsYPzfDWd0Kw6l1P2uh2CIaTUFkan73Z9JLGjtgCAPQCK00G7dujVO1IOCaP2WulnfamtrvYQ0QZa6vlZQR14pRXV1dYxIpSLq6VrqOo+6aaknEmWzXTO/+4wZM/j++++pqqqKiWdKRdT1b1daWhon6rBtONakoqLC0wltqWsmT54c4yGcOXNmTLY4v6jr87Rv3z7Ss5NNorrfbwKOVEq1ibqgi4gU4WSdG4njyR4jIgN8x7QF7nHPvQvw61S/gB9defyWuh6jDhMSpRRnnHEGZ599dsx2nTiA8nI4+GC4/noe+O1vaQ8cidMSTsO5kfsCl4BnyX8MjFuxAiZNgtWrA6dtmJV90aJFHHLIIbzwwguBY98m2bDU9fso7nfIPFjusssu45RTts2AjFLeIPyLMEBwDIIZgWpa6v7fwXTF6Y7L9ddfz9dff815552XVhkbE0qpt5VSbwN7KKVOUEpNcl8n4vRdM+EF4DduFPw+wFql1JJkH0pGmKUeVdT9Ob+DSFXUwRGnIFGPYqmbz+VJJ53EgAFOc6nH+01R03UnqKOtz6mn05WUlEQSRB1ElupQmx520PUyqqVuRoybom564swx8FREXd9v0+iB+KQ05jWKi4u9DokeU9d88sknzHGnQJeVlfHNN9+wYcMGmjVrRmVlZVxGQNNSb2hRj7q01TKl1OwUzz0UmKOUmgsgIk/gBM2Ygw8nAs8opX4AUEplnOrLtNTNH0X3WsMq++LFi3nooYditrVt25Ydd9wx7tji4mLWAZPcF0BrHHf9/sABwBBgL2CvDRvgyCNBhPvKyvgf8DbQ+zRn8StT1NeuXcvkyZOZPHlyzLq8yUQ9FUs96Jioor5u3bqU0rGabNy4keuvvz5mW7qWf1CjE1RxTFE3Oz/+e2DeX22lBHUcMqWmpoYLL7yQQw89lMMPz8uU6h1FpJdRZ3vizAgNRUQeB4bjrA/xI3AVUAyglLoXeBk4DJiDMxElK6u+1dbWevXbrOdRPXJR1nVIR9RnzJjB1q1b48QjyFJftmxZqKhPnDgRcNqgAw44AAi2LoOsal1vS0tLqaioiDQlF7YtMJUobW4Q/jqjhbG4uDiS+7158+Yxom7O/DHd5KmIutaBKKJuBiK2adOGZcuWxVnqP/30k1eufv36sW7dOjZs2EDLli3p2rVrXLyA9vy0bds2b0V9mohMBJ7DiYwFQCn1TILPBAXI7O07ZmegWESm4His71BK/dt/IhE5E2c6TKDImoSt0qbHl9asWcPkyZM5+ODY7Jf+RnzMmDE88MADgW65oIVi1uFY6P9z/6/AsdwPcF/7NW/Ozps2sTPO4vQ8/DB8/DFXrVjBJByhN3s0pqAGWRWm+z1dS10Txf0OmQXL6fnAJonKW1tby6233spBBx3E4MGxU5ujirq5raysjObNmyMi1NTUUFNTw6OPPkqnTp1ivqfuaCTqID3++OOUl5dz1FFHhR4TxCOPPMJdd93FXXfdlZX4hHrgApxFXOa6//fAWf8hFKXUmCT7FU6gbVZJ11Kvrq5m0KBBnnU2evRozj///MBjUxlT18yfPz9mERbNoYce6iVKAkdA161bF/Ms6+dQ1/fddtuNiRMnerEnQQIe1DHW5ykuLqZ169aRRb1Zs2a0b98+pfTYZhmCxtQTrXSpRX277baLaZeyYamnIurmPt0h8Y+pr1mzhmXLllFUVESXLl1YvHgxGzZsoKKiInC2jW4/Wrdunbfu99Y4vexDgCPc16+SfCZKgExzYE/gcJzFI64Qkbh5YamOtUG8+9288Yccckjc5/zukzVr1oRWhiBR97MReB24Asd6f+PppzmtRw/GAxuGDIHSUpg5k1PWreNJYBkwG2cB6zFAsdFb9fectSiJCMXFxXEW6KRJk/j6668DyxUk6mEP3ahRo2L+z0TUgyLWE4n6u+++y7hx47j00kvj9vk7YMXFxYGdL7+lLiLetr/85S+cdtppHH744TH3ZP78+fznP/+JGWp49tlnvc7i6tWrOfHEE72pSqkwJySDYb6glHoFZz75H91XX3c51rwj3TH11atXM2vWLC/I6YorrvAC3PykY6mvXLmSDRs2xA0H3XjjjTFTo/r06eOVR/Paa6/x5ZdfetnibrzxRvr37+/tD1r0JVHKWi3qqSRm6tChQ8qi7rfU9Ri23/3u/010u7b99tt7HRGlVKilHmX5WP+1TE8mxP6mQ4YM4bDDDvM62H73uz9N9vfff09lZSXl5eVUVVV5C84Eibq+J23atMlPUVdKnRbwOj3Jx6IEyPwIvOJOjVsJvAPsHrXwQYRNaUu04MfGjRt5/fXXY7YNHDgw9PhEvb0w3p02jfeaN+dqYNGjj8KaNfDOO9zSpg2TcToB/XDMoseAX19wAd/h5Obd4fXX4dtvwX34tHiXlZUhIt5D8/rrr/PRRx9x5JFHxjQGJqmI+vXXX88zzzzDQQcdBGRf1BO53/UUkqBxfH85wspvbtcNgv574403evtMC+iWW27h5JNP5sUXX/S2HXvssfzxj38E4Mcff/S2p2pt10cCn3pgT5y56rsDJ4jIb3JcnkDCprRpyzBM1P3WrpmG1E86or5q1SrWr18fJ+rNmzene/fu3v977LEHECvqV199NQMHDmTGjBlAfBsU1O4kstRbtGhBu3btUlrsKFVRr6ur8zrnWtS1Re231P3DeT/99BOtW7emvLzcK/O6deti2qh03e9m0iCzM+AfJ3/ppZe8eqzd7xAv6gDffvstnTp1orS0lM2bN3vudy3qZlCfKeqpdEayQdTo951F5A2dClJEBorIX5J87BOgj4j0FJEWwGicoBmT54FhItJcRMpx3POpjt3HEMVS93PkkUd6FuHPfvYzbr/9di677LLQ46NY6n4++uij2AxRJSUwbBh3tm7NIUA7YgPtqoqL6Y2TdP/I556Dvn2hUyc46ijk5pv5OdDGfcj1Q/Of//wnqUvYL+otWrQItHL1eY855hhvuk8mou6fxwmJLXWdMSvIDe631MNcfP5AOf82jRn9Hsbdd9/Npk2bYkQ96jKYmnwXdRF5BCcSfj/ckBCc8JC8I8z9rhvWsIBYv7UbVdQTuZFNFi1axNatW5Mme9FDSkHj1++99x6dO3eOi18566yzuOWWW7z/Dz744EBRnzZtGuC4ru++++6YzySjQ4cOvPnmmzGd3kSYddiMZ4J4Sz1I1Nu3b+9lbjvssMM4+eSTvf2tWrWK6Uyl435PZKn7SRQoB/DNN9/QsWNHysrKPFE33e+mR0SLepD7vT7W0TCJOqb+APAn4D4ApdQMEXkM+GvYB5RSNSJyLvAqUAT8Syk1U0TOcvffq5SaLSKvADNw8ss/qJTKaApN2Ji6v/IqpbyxKjPlaNeuXT2rLAzzvCISyWJbtGhRXDIJs7zVwIfu60bgVwceyJJXXmF/4OSePRm8aRMsWwYvvEDFCy/wHrB19WrYd1+OravjB/ezSwLmcJv4hShKL143UJmIUlhcgPk7mGhRDxL+qJa6WSl1xyWoYYjaWVm6dKmXyQucDkcqvfAowVk5ZggwIF9zUJiEud/183zTTTdxyimn0K1bt5jP6cb2r3/9K1u3bk0o1mFj6i+//DIrVqxg6tSp3HfffTHH66QwyUS9X79+QHC9ePPNNxkxYkRcvWjRogUXXXQRgwcPZuXKlbzxxht88cUXcZ+/6aab6NmzJ4cffnhohz0MLVCXXHIJF110UdLPB43z63Hw/v37Rxb1pUuX8v7778fs988lT+W7aFFv3rx5UlEPs9R1W6nz11dVVdGpU6cYUe/QoYN3z8wMmbqz1bp1a89rrL//li1bUv5dUiHqmHq5Uupj37ak3Q2l1MtKqZ2VUjsppa5zt93rRsXqY25WSg1QSu2qlLo9cslDGDhwIIMHD6ZFixYxldI/rhRmZSXKDawxzxu1B798+XJPPEzXXJggzZk/n0+BvwN37r8/LFkC338P//43a8aMYQZuj+zDD9n/4495Bmds40fgWeAycObV+yyBoAQ4ydANVCaWelDlr6urC82HrK3nIEs9qqgHJbrJxBW2YsWKmMxSqU7JawSi/hWwfa4LEQX/euoabamvWbMmLnvXc889x0UXXQTAfvvt560FEEaY+33kyJH85je/4R//+EdMApKePXt6KWSTibpuj4JEfcWKFV7u+SB+8Ytf8Otf/5ry8vI4S33lypVMnTqV008/PS3hMNuDKDNAgjwF++23Hy+++CK33XZbTPsYNKbevn17SkpKYoIIwfkdt98+9lFMJVmV6bE170MiUfcHyunPde68LauxaanrMfWglfhuv/12Bg4c6A2zmM9PlFlKmRD1V18pIjvhBrqJyPFAxnNN64PXXnvNe282/n5R37x5c2ADH0XU/W45LVhDhw5l69atTJ8+Pe4zOvijqKgopvf65JNPMnbsWC84RmO6hKuqqkAEevXi5qef5s9uVqK9+/Xjw9tv5/2bb2bzG28wBGfKQVfgaAC9wEGvXrDXXrDXXgzZtIn3ccbwITaLUhj63mVb1MH5HYKs50SWur+xSSUQJVNR91vqqWB6OmpraznooIPYddddA1f9yhGVwCwR+ZjYWS5H5q5IwYRZ6mY99/8+xxxzjPc+SkS4Wc+D8iAUFRUxfPhw7//u3bt7Xr9koq73h82XN/OYh1FRUcGmTZtivF3vvPMOAL/85S+Tfj4I03O3bt26hItZKaVigv80paWl3pTNZJa6noOveeONN6ioqKCqqipwCl9UTEvdJBX3u44t6NKli9dZ69SpE3V1dVRXV7N27dqYMXVT1IcNGxbjRSkrK/Paz3wR9XOA+4F+IrIIJ/PUSfVWqixhVnZ/Jdu8eXPgA5uqpd6hQwcvM9t5553HySefzKeffsqIESPi5i6CMwxg9jj32GMPZsyYEdcLNQXAfAjMRSZ2GjwYDj2UT7/5hj++8QYC9GbbYOg5Q4dS/OWXMHeu85o4kVdxxjm+Az4Halatciz6PfaAkJkF6VrqSil+97vf0b1794SiHjSumWhM3V+O8vJyqKpyvBLV1VBbC3V1DOzYkd169aLP7ttiL80OxAEHHMDbb0dPYui31DMR9c8//5wpU6YwZcqUfBL18bkuQFTCxtTNep6oLqcq6n43fhAdO3b0rNGwBZmmTJlCx44dvf1hc8Kj5mrX3i79XE+ZMoXy8nKGDEkvFCJRLno/t912m7dimeleNjvOUdzvOs6hrKyMAw44ICMx1/jH9zWpuN+1QWHGNnTu3NkT+1WrVlFRUeF1hMxcBP7ORN5Z6m4yioPcVdmaKaXWi8j5wO31WLaMSeR+D3OdRqns5nl79erlTR/TFWvPPfdk+fLlgauQJQrMCeP555/nL3/5C2eeeaa3rVOnTl4AjH5QFY5Yf4cTQX/0xIn06NYNZs6ETz6h7uOPmf7AA+wK9HVffPXVNou+a1dH3M1X9+5pi/qMGTO8hD5hDWxYBHycpb56NXz3HXz7LWctWUI3oBewHbDd1KkQYK23wAnWUAsWQPfu0LMnVy5YwBvAp0Dfzp1JJS/xggUL+OSTT7z/M3G/13fFTgc3q1yjIMxSNwUl0UqHqdbzKJ190+sVZqnrRDL+iHE/UVZV067tTZs2eW3PnDlz6N+/f1rBvBBrbSar7y+8sC3uuW3btp5xY/4GYdHvSilP1PUQXJ8+fbIi6LAtC5+/3U/mfh8+fDjHHnssffr0YepUZ9Vh03sxcuRInn76acCpwy1btvS+oynq/u+Rd6KuUUqZ5taF5Lmomz9gVFFP1VLv2bOn9958mMPGf5Ktzd69e3cWLFgQt/26667zHob999+fSZMmeRU/rGHYsGEDNG8Ou+8Ou+9O1YknsucDD1CMM2dpD+B3e+7JvqWl8MUXsGiR8zKmc9GuHQfvsAO3ALWzZjmr2fXtCxEqn7lEZZilfvXVV3PxxRc703fWrIG5c6mePZuzV69mZ6BPTQ2qshIxptn8yX+S2lpnwZ327aFFC+c7i8DGjbBuHbJ5M/zwA/zwA4fhpDcD4IknOBcnd/9rOPMpE8n0hAkTYr5HKpWzrq4uppE0z1NXV5f2MrTZQETWE7zIiuDkj0muMA1M2JQ2s95l01KPMj6dylKnpaWlNG/enJqaGoqKiuJWYkxF1Ddu3Oi1K6tXr07axiTiwgsv5JNPPuHFF19MaqmbwtWmTRtP1E1vWNA89draWt566y1qa2tp3769560I84ace+65KXnUAO655x5+9atfxSWuSibqPXv29ERbpwjfZ599vIDILl26xAh0y5YtvamKZ599NpdffjnQiETdR3pLbDUgySz1Dz/8MC5QK9Ux9V69ennvo0y5SGap77333oGiDvDEE08AMGLEiJhKHzYu5xd7HSRXV1TE9NpapgO7nXQS+15wAdTVwZw58Pnnsa8VK6hcvZqLAGbMgF12cazigQNh0CDHAu7SBTp3hu22g4oKZ39pKcu++45KoBQoVYpWODlHOxmv7o88QtUjjziC7FbuYuA6s+CrVkF5ObPr6viyqorvgLlFRXxdW8tSYNBBB/H0a685Qh7Eli2wcCHMm8c/LryQZl99xRBgcPPm7FZTw244PdRNwIvAf3Fym/p9CP7fJRVL3f+cmUMzmzdvjpz1qz5QSoWbtHlKmPvdJFF9TFXUo1iQpps2mSiLCK1atWL16tWUl5fH1dUobYn2RKxdu9YTxNWrV8eNU6dCy5Ytufnmm3nxxReTWurmPdHtWklJSUwHKMhSv/XWWxk3bhyAF/0OwSvlAWkNT7Vq1YoTTjghbnsy97vJIYccwpdffskuu+xCt27dvHtsCnRFRQXt2rWjrq6OqqoqT9T9Rp1p8OWzqOf9tBfzR6qoqGDWrFneIgmbNm2KCXLRpGqpm6IeJQgrmaiPGDEiJu+7yaJFi4DYgB+A3r17Bx7vn5OrRb19+/Zer9r7vs2awc47Oy9dGZSCRYuY98wzPPzHP3JA69Yc2K4dLFgAH33kvBLwe5LkGDX56Sdn0ZxevfipfXseeucdvsUZSnjmyy9pv8suDDCs2Z477uh5Avq1aBEu6ODkBOjdG3r35sVu3XjFTYTz/GOP8fdRozgIGFlUxODaWkYBo4D1OEMY9wOfhZw2lcrpF3Uza9amTZtyKuqNkfPOO89bAz1M1BPlEYgimloA2rRpE8lS19PUIJql3bp1a1avXk1JSUmMqEf12ujvP2/ePHbZZRcgc0sdthlAySx1857oa/pnAwWNqX/zzTfetvbt23vfN911JVIhWaCcn1133RXAS8AFse28bj91ds8w8sZST+KWa9jcd2lQVFTEs88+S1FREc2aNaN///4cdNBBvP7664FrckM0UTddZWbvMqyhqKys9CyzMFF/8803+fHHH9l3330TXnv33XePaTwAxo4dy/r167ngggtitodZ6uZDmbABEYFu3ZAjj+TaP/6RCW3a8MP8+Y4AT58OX37puOuXLIHFi5159Js3O0FrVVVsXruWjbW1VAFVOJbvcpyUuNXt2vHN6tUsAr4H3l+yxLH0RXj3+ef5sxvFC7CpbVva+0R7R0PUU3Fdm79dyw4dmAJMAe7s0IFl06ax5T//4fNLL2UftnVKpuGk730UJyS8VatWrF+/PiNL3VwvfOPGjSRLf2yJ5cILL/TehzWmiX6fKNOjtCXasWPHhJb6k08+SUlJSUy9jDIjQwu//9xRn2fdmdfph5VSWRH1qDE05hi5GWBmUlRUhFKKzp07e8eb5TNzzYdZ6tkkmfs9Cn73uybRM5I3ot4Y3XJ+/Dm69c01l9s0iSLqZgNtCnmYqO+7775MmuSs5xYm6r/4xS8AAiPmTYLS1zZv3pzzzz+fPffck0mTJjFnzhyeffbZOFHX07FMUY8SZauTQCxbtsyZPtO+Pfzyl84rAXsPHBg3VU9z8JAhTJ48edsGY06qDpLTBDXOposxFVE3GyLzty4pKYEddqDFuHHse+ml9AN+B4zFycjyIHAtcAfweqdOfLp+fUqV0x8QaIp6Ntapb8qEWerm75NOPh3t6erWrVtCS/3Xv45fMTpKp0G7z/3njjq/vEOHDrRp04Y5c+bw6quv0rdvX6qrqzMW9fLycoqKipJa6mbkvm7XwjxOxcXF3pi62U6aXkNzPnh9kYr7PYwwUU/0mzekqOcuOidH6JurXdl+ooydHXDAAYwZM4b77rsvpgL63e//+te/GD16dEySi2Tu92QimygD3LBhw7jpppu8pA2m+10p5a1Gdfjhh/PQQw8xevToSCuNlZeX07p1a7Zu3RppHWqNKVx+zDzYfvyiXlVVFdfAmKv1pSLqZgKMOFFnW8X8GrgIZ87/yTjT/zoDNwBvz5/PDUBdgu9nMmHChLjva7rfw4IILdEIa4x1Z7Bfv37ccMMNKZ936NChXHDBBTz66KP1kgFMP3/+NidqBLiIsNNOOzFjxgxGjBjhRdZnKuoi4q0ilwhT1M2kLUE0b97c61Cb523fvr1nyETJmZEpqbrfgzAF2lxFLupn8nlMvVGSzFIPyxltUlRUxGOPPQY4Sf41fkv9tNNO47TTToux7JM9OHoN4rCGPkpaV20BmJb69OnT+eyzz6isrOSvf/0rFRUVnH56sjV5ttGlSxfWrVvHkiVLIi8QkahRSBTM4xf10047LSbpC8RWpnRFPdFaz5otwH+AJ5s3Z3hNDeOAA2trGQesu/BC5s2YQc877oAEY6innRa/hLh/TN2SPn7B/e677zj++OPZvHkzdXV1fPPNNwnXcgijqKiI2267DYhdyCcRN998c8ysj0RoI8Bf/lSmdfXu3duL1tZ1JFNRB0ekUxF1XX8SWepBot6uXTt23nlnpk2bllGAX1Sy7X6PGgdgLfV6JJGl3qNHD/bZZ5+UzpfIUteYlkSUxUMSWfNRKqwWddNS15Hzo0aNSisoS7vGBg8eHCewQVRXVycUq0Tfw3+PPv300zir3xTyVNJHJrPUAU4//fS46TUdKiuZDBwE3DpqFK/irEfcc8IE6NWLBeeey1GHHBI6c8GPdb9nD/376yGs3r17071790APT7pEtdQvvvhi/vGPf0Q6Nhui3rNnz7jpcNkQ9datWye8d9XV1TFGgxbEROswBIl6aWkp9913H++9917Ox9SjGgdmO5+PlroVdZfTTjuNOXPmpLz2rVkhE0XUnnLKKYAT1JaMRJUyipWsxcqsdB9/7KTu/9WvfpX080FoUd+6dSv/7//9v6THJ+vlJxpm0JZ6orz6Rx65LXNpNtzvZsfrwQcfZP78+TH7zedizc47MwLYH3gXYNUquv/jH9w5eTLPnnCCt0RuIqz7PbssWLAgZrlcnZ87leGiRNSH+12LQ7rudwie250tSz2RqOv7euyxx3Lrrbd69SdsKMQU9bVr19K7d2/ee+89wKmHP//5zzMucxSCRH2vvfYC0htTT8e6v+mmmzJKuZ2MJifquiL5Rb1du3ZpZTOKKuoTJkxg2bJlDBo0KOk5E02HiSLq+hgzwl+LSJR0l0GYQSxReppBDcJ+++0HOJU4iqibiX1OOeUUZs2axdatW1m5cmXMmHoqv5sp6v7V9sz3OmpXE7S4x7s4wv78WWcxHegOnP/RR7Dffsz/73+5+eabQwMfzQ6XtdQzZ8cdd4zpBOo1r7Ml6tnKdGain6NMLPUgl3U2RL20tDThlEDtej/uuOO48MILvfoRJnI60Q44Hf6+ffs2mJDDto5/UPmefPJJpk6dGmkaIqS21oTmkEMO4aSTnMzqP/zwA9dff33K54hKkxN1/YP4I6rTHc8xK2AiUW/WrFncUoJhJHKPRxF1PRffXPlIi3rUMvgxxTDZObZs2cL9998ft33gwIF89dVXLFiwIFTUlVKeqOt5uABHHXUU/fv3p7i42MvcpTsoqSxeoS38YcOGxQh5UCyFmfbRbAz8wyzXfvIJewJn4EzXY+pUeowaRac//5m7L700aZmspZ59ysrKqKqqihP18ePHe16rVGhISz1qzArUn6VuWtZB6E6pFkJdP6Ja6lEFNFvodj+ow9S6deukU4mDzpUKw4cP55FHHvH+37JlC5s3b2bnnXfmwQcfTPl8iajXQDkRGYEzC6gIZ630wBBUEdkLZznwE5RST9VnmcJ+kGwEaWSr4id6aKJU2P79+yMifP3118yePZvy8nJWrVqFiERaajWIvn37eu/DFqHQXH/99dx4441x2ysqKrwkGUGVWinF5MmT2bJlC61atYopa//+/eOO/+STT3j//ffjpi0m4sorr2T33Xfn4IMPjtnuXxZSl0cTtgwnOGP+AA8BTwITBw7klzNmMBbY8OCDbMCpBGFrFVtLPfto97t/udtRo0YFPkvJ0HU7lfiNZASNqV922WWcccYZkc8R1G5lQzBNyzoILep6iCqZpe4fU48ylTabvP/++zz55JMZrdKoSfcc5rOzbNkytm7dynfffZd1V3y9WeoiUgT8AxgJDADGiMiAkONuBF6tr7KYhAmm6c5NhfrowScaS47Si6+oqKBXr17U1NQwYMAAevTogVKKysrKtMt75plnMnr0aCD5XPqnngrul5keCH+lrq2tZeLEiRzqLi6z/fbbx5TVdMVrtt9+e4477riU3JUlJSWMGjUqrnMUZJWEiXqiSr0eGF9aygCcde1bArfgLCDzs5DPWFHPPmHu93QFT7tvs+mG122R2dhfddVVgc96GP5pYBUVFVkpY1RLXQflpiLqubDUd999d6677rqsdMp0u6SnCKfCueeeCzhZAPX9iDouH5X6dL8PBeYopeYqpbYCTwBBk6LPA57GSTZW72TbUu/QoQM333yztxpZNkgk6lFXeQtajzld1zs4jdn48eOB5KIe1nEwK7L/O27dupXH3XXiwRFsM0I8HZdXKvgzvkGsqJudPn+0sUZ3uObNm8dc4FicxWPmAgOB94EHAL+vxLrfs09ZWRm1tbUxz5CIpF0HWrRowejRo3n11ezZHrpzaFrEqTbw/iDRbIllqqKuh6rC3O/a8t+yZQtbtmxpcFHPNkopb7pjKtx1112cfvrpjVbUuwILjf9/dLd5iEhX4BicLJyhiMiZIjJNRKYlSmgShTBxyETwLr744pTmfCcjkahHtbRNd7kmk+8I26yCVcaKaUGEldG0zjt37sw555zj/b9ly5aY6SGdOnUKTRBUHySz1O+44w4OO+ww3nzzzdBV8fSKUOYz+j+cFfGuBbbijLt/DZwOdHGTBFlLPfvoem5Oj2zTpk3aDaiI8Pjjj6cUv5GMIFFPx5K89tprvfeJlptNhWTudz1dVl9Pd4qTjalrV3NDu9/rg3St/p49e7J06VLvXjQmUQ/6xv65PrcD45RSwaaP/pBS9yulhiilhmSaI1tPX/CTy6Uv/YSJunbdRCFokZdMRb1t27Y0a9aMNWvWJOzFh+3zV+S7777by3m+devWmEqio9wbimRj6l27duWll17iF7/4RaCot2zZ0luqUaOHG6qAK4HdgDeASpzx99dqa+mDtdTrAy2Ypqjnm3Woyxgl4VUi/vKXv3DqqacCDW+p6zH1ZFanX9Tz7bdoSHRwo8730ZhE/UfA9Gl3A/xp3IYAT4jIfOB44B4ROboey0Tv3r258847adGiBY899hiVlZUxFmM+ECTqhxxySEpLEPoFBjIX9aKiIs/FnChYzp8RThPUO9c9+y1btsR4AFatWsX9999PeXk5EydOzKTYkUhmqZucccYZtG3bNmZRkb333juuodpjjz1i/v8WJ3nNGJwo+V1WrGAGcPC0aZBhw26JJchSz5YVmy10GWtqajKOzdFtRrbEMmqgnO64RhV1PdW1ECz1dNG/kW5DG5OofwL0EZGeItICGA28YB6glOqplOqhlOoBPAX8QSn1XD2WCXCWbdy8eTNjxoxh6dKl3H333fV9yZQIGiJINfglSNSzsRKYjkgPs6Krq6tjEquYBFVkPQ3Qb5lffvnlHHrooaxbt45Ro0ZlWuykJJvSZtKlSxdWrlzJrbfeyt57702bNm249957k4q65gmgP7DgF7+gFBg9YwaLu3Sh5oMPMvwWFo2uQ2bK1nwTddNSnzdvnjeLIh20qGfrOyaz1Dds2EDLli09D2cy97vuJFhLfdtv1OhEXSlVA5yLE9U+G3hSKTVTRM4SkbPq67pRqY9o1mwRZKmnOjwQNH81lfmvYeiocf9UIY1/SVszkjeoIpuWuhb1V199lcMOOwxouN8nWaCcH12uKVOmMH/+fHr37h3XoCZKNLQa+OHqqzkIJ5Cuy8qVNPv5z+Gii8C64zPGdL/rJVHzTUhMUe/WrZsXk5EODS3q69evj8m4qINHk42pF7ql/sEHH/D+++8nPKbRijqAUuplpdTOSqmdlFLXudvuVUrFBcYppU6t7znqjYUgUffPq05GUCcgG6JuWtZBaNd73759+eijj2LS4iaz1LX7fdddd824nFE59thjgeDlM0888UQATjjhhNDPl5aWejMSTNFo27Zt0qUk27ZtyxvArsBNeuNtt8Guu0IWo6ybIuZcdO3pMdc7zweyNaYO2zwT2RKIKO53swNxwQUXMHbsWP74xz8GHt9UxtT32WcffvazsMmrDvUt6k1ulbbGgCnqb731FsuXL/fEJxVmz57N4MGDvex52cg0pUU4LIWkflB32GEHhg4dypQpU7x9icbUq6qqPEs93QQ56TBhwgR+/etfc8QRR8Ttu++++zjiiCMi58s3G6rKysqEy8v27t3b6wxsBsYB2593Hr955x2YPh1GjIBTToE774SI0xgt2+jfvz933XUXEydO5Morr6RXr14JO2e5wBxTz9a5spU3I4qlbop627ZtmTBhQtLzFVL0e7o0akvdkh6mqHft2pVRo0alVVn79esX05Blw1LXIhxmqesHNagDEZS0RXcSVq5cSU1NDS1btkyYbjfbtGrVitGjRwem5m3ZsiWjR4+OcTMmO5emsrKSAQMG8OCDD3rL9AL86U9/4m9/+xtvvfVWXM6Bld27w8cfww03QGkpvP8+RFxkwhLPueeey7vvvktRURFjx47NSjaxbJJNS10PB2VL1LWlXltby9y5c+P2b9iwISVXvz6fdr8XqqUeBSvqTZB0VgEKw6x4DeF+1xm89LVMiz5oXqc+n17f3p8hqzFhNlR6SuFvf/tbRo4c6W3v1KkTl156Kd26dYvrLGzatAmKi2HcOPjyS3jsMUiQsyBfEJERIvKNiMwRkUsC9g8XkbUiMt19XZmLcuYb2RR1be1nKwaluLiYuro6/vvf/9KvX7+42S7+MfUo59OWeklJSYN23PMN635vgpiWeqY972yLuhnYFoR+UINEPdH5dKKZQhF1M6OfaSGajZm/kxOTA7p3b+eV5xjpoA/Gmcb6iYi8oJSa5Tv0XaVUeuv+FihByWfSRQeqZdP9DrBw4UKqq6tZs2ZNTPvhd79HOZ8OlGvKVjo4v1FZWZm11JsS2RR181zZGMdK1f2ebJnWQrLUzUbODPYzhTxRBU60fnUeEzUdtMWH9siFpR1OhWxb6rrd0ZnjzM759OnTmTNnTlqinovFXPKRVq1aeYHBVtSbAKYQZ/qDmw1GNip8Mvd7upa6FvWGDJLLNqYFYoq6aZEnmibXSEU9aTpol31F5AsR+Z+I7NIwRctvsjnGr9cmT3WWTBi63dFJZszO+Z/+9CcgeH2JMJo3b45SitWrVzd5Sx0cUbeWehMim5Z6NsbrTJK53/1j6qeccgqwbR1zP4Vmqbdu3Zri4uLQBYIKUNSjpIP+DOiulNoduAt4LvBEWVzjoTGQTVHfb7/9WL9+vbfKYabodkeLulnfly5dyogRIzjvvPMin08L16pVq6yljtNWNMYFXSxpkk1RD7Oo00WLus6opsVY43e/Dx06lCVLlvDMM88kPF8hjKk3a9aMH374wVu7PogCFPWk6aCVUuuUUhvc9y8DxSIS90Nnc42HxkC2o/FTCVxLhhYa7X43LfUVK1YEJrdKhO68L1++3FrqxA7VWVFvAmQz+n3vvfcGyFq0qT7Ptddey8UXXxwT2Q3x7ndwllENc/3r82nLrDG738GJW0g01hiWehZ8gXKNh6TpoEVke3F7OSIyFKfdSbzUXxMgW0Ft9YHf/a4t9bq6OlauXJnyOhK6w7F48WIr6lhRb3KYPfhMK/4xxxzDk08+ybfffptpsYD4NJAzZszw3q9bt46ZM2cC0SPt/Z2NxmypR8Ev6kOHDvXez5w50xu+aCxETAd9PPCViHwB3AmMVolcFk2MSy6JmwWYc/yBctpSX7NmDbW1tSmvI2Eu0Wrd7/Ur6vnbVWzCNGvWjKeffpra2tqMl4QVkcAUqOkSltsZnDnZmqii7j9foYu6X8ueffZZbr/9dm6++WbASUn72muv5aJoaeO61F/2bbvXeH83kF+rJuUJ+dq3CQuU0x61dEUdmnbiGY211Jsgxx57bFbFOFskcuNPnz4dgNNPPz10Tfhk52vs7vdk+DPXdenSheuvv977f/LkyWzatIk1a9ZkPR7CYolKWKBcNkTdWurZneHkx4q6JSXCLHWlFAsXOjOb7rjjjsjn848/F6ql/vDDD3PEEUd4swFMioqKuOyyy7z/X3/9ddq1a5eVpXItlnQIC5Szlnp2aLSiHiF95EkiMsN9TRWR3euzPJbMCRP1FStWsGXLFtq1a5dSFK7fTV+olvqpp57KCy+8EBrxfN111/GHP/wBwHO/B+Wjt1gagrBAOS3qqQbKWUs9lkYp6kb6yJHAAGCMiAzwHTYPOEApNRC4Fri/vspjyQ5h7vcffvgBgB133DGl85mi3qpVqyadE1qvp/3ZZ58BwUvwWiwNQVig3Lx584DUPWpmR99a6rF1O1tZADX1aaknTR+plJqqlNLhvh/izHG15DFhlrp2vYclXQnDFPVCtdKj0qVLFwDmzJkDWEvdkjv81uOWLVt47rnnuPXWWxk5cmTKnW9rqcdiinpYTot0qU9Rj5o+UvNb4H9BO5papql8JkzU07XUzSVaC3U8PSqdO3cGtrk4raVuyRX+qbSLFi3imGOOobq6mquvvjrl85kdVGup12/drk9Rj5I+0jlQ5Bc4oj4uaH9TyzSVzwT10KdMmcKNN94IwE477ZTS+UxL3Yp655j/raVuyRV+S3327NkA/Oc//2GvvfZK+XzNmjXzXPDWUq9fUa/PeepJ00cCiMhA4EFgpFKqyWeZyneCLPWDDz6YmpoaunTpwqmnnprS+az7fRsdO3akqKjIW4THWuqWXOEX9a+//hqAXXZJfy2eVq1asWHDBmup03gt9SjpI3cEngFOUUplJ+WZpV4JEnW97OOkSZNSXrPdTInb1C3TZs2asf3223v/W1G35Aq/+33ZsmUAdO/ePe1z6nF1K+qx7V62qTdRj5g+8kqgA3CPiEwXkWn1VR5LdggLkDn77LO96O10yTR7XiFguuCbeifHkjuCplm1bduWtm3bpn3OVq1aUVFRkfVo78ZIY3W/R0kfeQZwRn2WwZJdwgLlzPXD08WKeqyoW0vdkiuC1pzo0aNHRuds2bKltdJdGqv73VKAhFnqVtSzw3bbbee9t5a6JVcEWeqZinqbNm0ysvQLCSvqlryhPiz1Sy+9lBYtWnD++eenfY5CwZwBYC11S64IEvVMxtMBLrvsMm655ZaMzlEoWFG35A1hop5qgJzJ3/72N9avX5/ydLhCxBR1a6lbckV9uN/33ntvDjvssIzOUShYUbfkDUHu90zXfIfES7o2JcxpfdZSt+SK+nC/W7ZhRd2SNwSJb69evXJQksLEut8t+UB9WOqWbWR7ERcTK+qWlAgS9SOOOCIHJSlMrPvdkg+YoqPnVFtRzx7ZzvduUq9T2iyFh+l+v/LKK2nWrBnjxgVm97WkgbXULfmAKeoDBw5k9uzZNnK9kWBF3ZISZmU/44wzUl6VzZIYa6lb8gHT/X7DDTd4Kwda8h8r6paUaNasGeeddx61tbVW0OsBc7GL+hx3s1gSYeaMGD58OMOHD89dYSwpYUXdkjJ33nlnrotQsJhjbVVVVTksicViqU8+/fTTmHXms4UVdYslzxg5ciRTp05l6NChuS6KpQkzduxYO6+8Hsl0rYwwrKhbLHnGSy+9RHV1tZ27b8kpEyZMyHURLGlgp7RZLHmGiFhBt1gsaWFF3WKxWCyWAsGKusVisVgsBYIVdYvFYrFYCgQr6haLxWKxFAiilMp1GVJCRFYAC3JYhEpgZQ6vnwhbtvRozGXrrpTq2FCFaShyXM8b8/OQS2zZ0iNK2SLX80Yn6rlGRKYppYbkuhxB2LKlhy2bxSSf77ktW3o0pbJZ97vFYrFYLAWCFXWLxWKxWAoEK+qpc3+uC5AAW7b0sGWzmOTzPbdlS48mUzY7pm6xWCwWS4FgLXWLxWKxWAoEK+oWi8VisRQITV7UReRfIrJcRL4ytt0sIl+LyAwReVZE2rrbe4jIZhGZ7r7uNT6zp4h8KSJzROROMRfGzm7ZrnXLNV1EXhORLsa+S93rfyMih+ZL2fLhvhn7LhYRJSKVxrac3rewsjX0fStkbD2v/7Llw30z9jXdeq6UatIvYH9gMPCVse0QoLn7/kbgRvd9D/M433k+BvYFBPgfMLKeytbaeP//gHvd9wOAL4ASoCfwPVCUJ2XL+X1zt+8AvIqT1KQyX+5bgrI16H0r5Jet5w1StpzfN3d7k67nTd5SV0q9A/zk2/aaUqrG/fdDoFuic4hIZ5wH/QPl/BL/Bo6up7KtM/6tAHSk41HAE0qpLUqpecAcYGielC2Qhiyby9+BP/vKlfP7lqBsgdRX2QoZW88bpGyB5Eldyvl9S1C2QNItW5MX9QicjtND0vQUkc9F5G0RGeZu6wr8aBzzo7utXhCR60RkIXAScKVRhoUBZciHskGO75uIHAksUkp94duV8/uWoGyQB89bE8HW88zLBraep1M2yOJ9s6KeABG5HKgB/uNuWgLsqJTaA7gQeExEWuO4RvzU21xBpdTlSqkd3HKdq4sbUoZ8KFtO75uIlAOXE9v4eLtDypAPZcuL563QsfU8a2Wz9TyEhqznVtRDEJGxwK+Ak1zXB67rZpX7/lOccZmdcXpQpuuuG7C4AYr5GHCc+/5HnPEafxlyXrY8uG874YyjfSEi893rfCYi25P7+xZatjy4bwWPrefZK1se3Ddbz7GiHoiIjADGAUcqpTYZ2zuKSJH7vhfQB5irlFoCrBeRfdzoxN8Az9dT2foY/x4JfO2+fwEYLSIlItLTLdvH+VC2XN83pdSXSqlOSqkeSqkeOJVlsFJqKTm+b4nKluv7VujYep7dsuX6vtl6vu1iTfoFPI7j/qh2b/RvcYIoFgLT3ZeO7jwOmIkTRfkZcIRxniHAVzi9rLtxs/XVQ9medq8zA5gEdDWOv9y9/jcYUZK5Lls+3Dff/vm4kaf5cN/CytbQ962QX7ae13/Z8uG++fY3yXpu08RaLBaLxVIgWPe7xWKxWCwFghV1i8VisVgKBCvqFovFYrEUCFbULRaLxWIpEKyoWywWi8VSIFhRt3iIw3siMtLYNkpEXslluSwWS/aw9bywsVPaLDGIyK7Af4E9gCKc+bsjlFLfp3GuIqVUbXZLaLFYMsXW88LFirolDhG5CdiIswLTRqA7sBvQHBivlHpeRHoAj7jHAJyrlJoqIsOBq3ASLwxSSg1o2NJbLJYo2HpemFhRt8QhIhU4mY22Ai8CM5VSj4pIW5z1fffAWVigTilV5aaNfFwpNcSt7C8BuypniUOLxZKH2HpemDTPdQEs+YdSaqOITAQ2AKOAI0TkYnd3KbAjzsICd4vIIKAWZwECzce2olss+Y2t54WJFXVLGHXuS4DjlFLfmDtFZDywDNgdJ+Cyyti9sYHKaLFYMsPW8wLDRr9bkvEqcJ67ShAisoe7vQ2wRClVB5yCE2xjsVgaJ7aeFwhW1C3JuBYoBmaIyFfu/wD3AGNF5EMcl5zttVssjRdbzwsEGyhnsVgsFkuBYC11i8VisVgKBCvqFovFYrEUCFbULRaLxWIpEKyoWywWi8VSIFhRt1gsFoulQLCibrFYLBZLgWBF3WKxWCyWAuH/Awf83JABvxB+AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe8AAADQCAYAAAAu0ukBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABh50lEQVR4nO2dd5wURfbAv28DuyxRBRURAUVUPBQRQUUUM6gHip4n+jsFPSPeqYee+UQMZzojhlNBxXymM8NhQFRARSQoGBBRQIKIBGXZWL8/unuo6enu6ZntSUt9P5/57GzHN9316tWrevVKlFIYDAaDwWAoHIpyLYDBYDAYDIbUMMbbYDAYDIYCwxhvg8FgMBgKDGO8DQaDwWAoMIzxNhgMBoOhwDDG22AwGAyGAsMYb0PWEJFtRGSKiKwXkX+JyBUi8nCu5UqGiDwqItfb3/uJyFe5lsnQ+BARJSJdci2HFyIySkSeiPpcEekvIksaJl20iMgOIvKriBT77E/7WXhcK+13bow3ICIni8gM+4UtE5E3ReQA1zHD7Ad9omt7f3v7i67te9rbJ2vbrhORuSJSKyKjPORoKyJPicgaEflFRJ7U9p0oIlNFZIN+zQLjLGAV0FIpNVIpdaNS6s8AItLJfl4lfidHqTTpopR6Xym1Sy5l2BwxOprwe/LK4DUmlFI/KKWaK6Xqci1LEJu98RaRvwF3AjcC2wA7APcBg12Hngastv+6+QnYX0S2ch3/teu4BcDfgdd9xHkRWA50BLYGbtP2rbblvCno90RJkCFNk47APGUyAxlSwOho6mRAdwsOP8+50aCU2mw/QCvgV+APSY7rCNQDxwO1wDbavv7AEuABYIS9rdje9g9gssf1ngBGubYdASwCipPI8meva3ocNxiYBawDvgUG2NsXAYdpx40CnrC/dwIUcAbwAzAFmACc77r2bGCI/X1XYBJWxfUVcKKPPI8CNUC1/cwPc937B/vev9qf/VznD7DPrbH3z7a3bwe8Yt9/AXBmwDM5CpgHrAeWAhe73uEVWD0Di4BTXLJfrx+r7VsEXAzMAdYCzwLl2v5j7PewBpgK7JHrcl9IHxq3jl4CLAN+BE63y38Xe18ZVsPgB2CFLXtToBlQaf9WR1e2s3XpeVvudbYMrYCx9j2WAtc7sgPDgA/se/wCfAcM1GTrDLxn68okYAy2rtr797XL8xqs+qB/2HNdz8BX94B97N9eoh1/PDDL51qPAvcDbwC/YdUx2wEvYDXevgP+qh3fG5hhP68VwO329k72uyhJ9ntw1Qf2tkXYdax9j2n2c1pmn9tEOzb2zlP9bO6e935AOfBSkuNOBWYopV4A5gOneBwz3j4O4EjgCyylDMu+WMbvMRH5WUQ+EZGDUjg/hoj0tuW5BGgNHIhVoMJyELAb1u94ChiqXbsbVkX5uog0wyrMT2F5IUOB+0Rkd/cFlVLDgCeBW5TVJfWW65AD7b+t7f3TXOdPwPK8nrX372nvehpL+bcDTgBuFJFDfX7XWOBspVQL4HfAO9q+bYE2QHssj+xBEQnbPX4iVuOiM7AHVsWIiPQExgFnA1sB/wZeEZGykNc1NF4dHYDV6Dsc2BnL0OjcDHQFegBdsMrlP5RSvwEDgR9tPWiulHJ+w2AsA94aS9cew2rIdAH2wmp8/Fm7Rx/797QBbgHGiojY+54CPrX3XYfWmyEi7bF6Jq4HtrR/xwsi0jbZuT546p5S6hPgZ/sZOfwf8HjAtU4GbgBaYDUuXsVqXLQHDgUuFJEj7WPvAu5SSrUEdgL+43PNVH+PTh1wkX3ufrYM56Vwvi+bu/HeClillKpNctypWC8Q+2/Cy1NKTQW2tCv8U7EqilTYHku53sUqzP8CXhaRNileByzPeZxSapJSql4ptVQp9WUK549SSv2mlKrEqjR7iEhHe98pwItKqSosr3KRUuoRpVStUmomViv3hDRkThkR6QAcAFyqlNqolJoFPAz8yeeUGqCbiLRUSv1iy6tztVKqSin1HlbldGLiJTy5Wyn1o1JqNVZl0cPefibwb6XUR0qpOqXUY0AVlhEwhKOx6uiJwCNKqc9tgzzK2WEb0DOBi5RSq5VS67EariclueY0pdR/lVL1QEssI3+hrcsrgTtc1/heKfWQssZ2HwPaAduIyA5YXq+jD1OwyrXD/wFvKKXesOuXSVge7FEhzvXDT/ces++HiGzJJofCj5eVUh/az6A70FYpNVopVa2UWgg8pD2DGqCLiLRRSv2qlJruvlgDfg8ASqlPlVLT7fpxEVYDPq0Gn5vN3Xj/DLRJEiTVF8ujesbe9BTQXUR6eBz+OHA+cDDJPQU3lViGcKxSqkYp9QywGOib4nUAOmB1lafLYueLXXG8zqYCfxJWqx4sD7yPHbyzRkTWYBn3bRtw71TYDnAqN4fvsVrZXhyP1XX+vYi8JyL7aft+sStR/TrbhZRjufZ9A9Dc/t4RGOl6Ph1SuK6h8erodmh6hlXeHNoCFcCnWrmZYG8PQr9eR6AUWKZd499YPWQOsXKrlNpgf21uy+alD/q1/+Aq1wdgGf9k53oRpHtPAL8XkeZYBv19pdSygGu5n8F2LjmvwIqbAMvJ6Qp8afeiHONxvXR+TwwR6Soir4nIchFZh9UIS6exl8DmbrynARuBYwOOOQ0QYJaILAc+sref6nHs41hdIm9oyhCWOVjjH1GwGKsbyIvfsCoGBy9D65bjaWCobeyaYnkezn3eU0q11j7NlVLnpiFzmN/uPuZHLE+qhbZtB6zxvcSTlfpEKTUYqwL7L/HdZFvYwwD6dVLpUvViMXCD6/lUKKWebuB1Nycaq44uw2rIOeygfV+F1VDYXSs3rZRSTqPQTwZ9+2KsXp422jVaKqUShrR8ZPPSB/3aj7vKdTOl1E0hzvXCV/eUUkuxysBxWD1qQV3mkPgMvnPJ2UIpdZR97W+UUkOx6oObgeddchDi98TVp3aQnN7Iuh/4EtjZ7p6/AqusNpjN2ngrpdZiBazcKyLHikiFiJSKyEARuUVEyrFae2dhdYU6n78Ap7i9AaXUd1hdIld63c++djnWcy8RkXItIvIlrEJymogUi8gJWB7kh/a5xfa5JUCRfW6pz08bCwwXkUNFpEhE2ovIrva+WcBJtiy9CNfF/QZWK3Y01phzvb39NaCriPzJvl6piOwjIruFuKabn7CCcHYMOGYF0ElEigCUUouxxrX+aT+PPbBa00+6TxSRJiJyioi0UkrVYAWpuKeCXGsf1w9rSOC5NH6HzkPAOSLSRyyaicjRrsaGIYBGrKP/AYaJSDcRqQCu0WSsxyo7d4jI1va128umsdoVwFYi0irguS0D/gf8S0Ra2vXAThJijF4p9T1WN7ijDwcAv9cOcbzhI53fLNb0te1DnOtHkO6Nx5oB0J3Ueks+BtaJyKUi0tSW9Xcisg+AiPyfiLS1n/ca+5y4OiHE7/kaKLf1uhS4CivY0KEFVl3zq10Hp+PYeKPyIKI01x+srt4ZWK2o5VjdxPtjdREvA0pdx5djtY6PwSPaUDsuLuoUKxpSuT7DtP39gLlYEaQzgH7avmEe5z4a8JuOw/IU1mNFYR9pb98RyzP51f6dd5MYbV7icb2x9r59XNt3sa/zE1YX5ztADx+ZHsWO2rb/H0V8BOto+zprgH09zt8KK0L2F2CmvW17rEbEaqyhgnN87t0Eq+vxFyxl+gQ4wN7XHyvo7Ur7vf4A/MlLbvf7JiB63/5/gH2vNXZZeg5okesyX2gfGqeOXmb/Fq9o83KsLtaFdnmdT3yk9Dhb39awKdr8Cdf1W2F5fkuwZkJ8BpykyfqB63j9/jsC79u/0yvavA9WBPZqLJ19HdghzLmue/YnQPfsYyrsZ/BYkjLyKFr9Ym/bDqvncDmW7k9nUyT4E8BKW84vgGPt7Z2IjzZP9iyGYZXBlVjBe4u0exyI5Xn/al9jtP7c9Wee6kfsCxgMmy0i0h9LGbfPsSgGg8EDEfkWa6aIe5bKZstm3W1uMBgMhvxGRI7H8lDfSXbs5sRmn4XHYDAYDPmJWGlmu2F1pdcnOXyzwnSbGwwGg8FQYJhuc4PBYDAYCoyC6zZv06aN6tSpU67FMBjyhk8//XSVUipZAo+8x+i2wRBPkG4XnPHu1KkTM2bMyLUYBkPeICKhMz7lM0a3DYZ4gnTbdJsbDAaDwVBgGONtMBgMBkOBYYy3wWAwGAwFhjHeBoPBYDAUGMZ4R8i1117LwIEDqatzr3dhMBgMhnymsrKSyy+/nMrKylyLEgpjvCNk1KhRTJgwgQ8++CDXohgMBoMhBe655x5uuukmbr/99lyLEgpjvDNAfb3J4mcwGAyFRHV1NQAbNqS6zHtuMMY7A4hEsta6wWAwGLJEcbG1bHuhOF/GeEfE7NmzY9+LisxjNRgM+UFdXR1mDYvkOPV2ocQsGSsTET169Ih9N563wWDIB2praykpKeHyyy/PtSh5j/G8DcZ4GwyGvGDjxo0A3HzzzSxatCi3wuQ5xvM2mG5zg8GQF1RVVcW+v/POOzmUJP9x6m3jeRsMBkMjYerUqaxZsybXYqSM43nDpm5hgzfG894McbfUCuXlGwyG5GzcuJG+ffsyaNCgXIuSMrrnbYx3MGbMezNk8eLFcf8b420wNB5qamoA+Oyzz3IsSeoYzzs8juddKJH5xnhHwF577RX3vzHeBkPjoba2FijMQFRjvMNjus03Q3755Ze4/x1lNxgaIyLSQUTeFZH5IvKFiFzgcYyIyN0iskBE5ohIz1zIGgVO13MhBqLq3eaF2PjIJqbbXENEBojIV7YCX+axv5WIvCois+1KYHgm5ckWhdJyMxjSpBYYqZTaDdgXGCEi3VzHDAR2tj9nAfdnV8RoWL16Ne3atQMK0/jpnreT/tPgjfG8bUSkGLgXS4m7AUM9FHwEME8ptSfQH/iXiDTJlEzZolBevsGQDkqpZUqpmfb39cB8oL3rsMHAeGUxHWgtIu2yLGqDWb58eex7IXrexniHx3jem+gNLFBKLVRKVQPPYCm0jgJaiNWkbQ6sxmrVFzTGeBs2F0SkE7AX8JFrV3tAj+RcQqKBR0TOEpEZIjLjp59+ypic6VJSUhL7Xoiet95tbox3MMbz3kQY5R0D7Ab8CMwFLlBKJTR78l3B3RTKyzcYGoKINAdeAC5USq1z7/Y4JSGMVyn1oFKql1KqV9u2bTMhZoPQvW3jeTduHM9b723JZzJZGsMo75HALGA7oAcwRkRaJpyU5wruxgSsGRo7IlKKZbifVEq96HHIEqCD9v/2WI30gkJviBei522Md3ic9/v222/nWJJwZNJ4h1He4cCL9rjYAuA7YNcMypQVjOdtaMzYw1xjgflKqdt9DnsFONWOOt8XWKuUWpY1ISNi2rRpse+F6Hk7c9TBGO9k6PO7C2GudyZL4yfAziLS2Q5COwlLoXV+AA4FEJFtgF2AhRmUKStMnTo11yKkzIcffsj48eNzLYahMOgL/Ak4RERm2Z+jROQcETnHPuYNLF1eADwEnJcjWRvE8OGbJsAUmuddWVnJWWedFfvfGO9g9EA1vdGTr5QkPyQ9lFK1InI+MBEoBsYppb5wlFsp9QBwHfCoiMzF6ma/VCm1KlMyZYt7772XMWPG5FqMlDjggAMA2Hvvvdl9991zLI0hn1FKfYD3sJh+jMKaTdJoKDTP+9tvv4373xjvYHRve+PGjTRpkt8TnzJmvAGUUm9gtcD1bQ9o338EjsikDIbUGDBgQEK6V4PBUHjG2y2vMd7B6J73ggUL6Nkzv/MKFVZpLCDeeuutXIuQFkuWLMm1CAZDXlJo3ea68W7SpIkx3knQPe+99947h5KEwxjvDHH44YfnWgSDwRAhhex5V1RUGOOdhEJJzuJQWKXRkBFMdLzBkJxC87x1ebNpvNeuXcu8efOycq8oKYQIcx1jvA1xc0ENBoM3heZ5643y8vLyrBnvww47rCCDXv0875qaGi699FLWrFmTXYGSUFil0ZARKisrcy2CwZD3uKO38x3deDdp0iQuVWommTFjBhDOk1VKcdtttyWszJgL/OR9+umnueWWW7jiiiuyLFEwxngbEox3oXUfGQzZ4t133821CKFxG+9sj3mHud+7777LJZdcwnnn5T4NgJ/n7fyOfIsZMMY7Ajp06JD8oDzG3W1u0rsaDN58//33uRYhNLk23mGG45xj1q5dm2lxklJoTosx3hGw1VZbAdCjR4/cCpImbs8731qYBkO+cNVVV7Fhw4ZcixGKQjDe+WQwTbT5ZoijJA888EDc9nwqmEG4jXe2xsYMhkJj6dKl3HHHHbkWIxS5Nt5h6hGnjsyHSH5HlnPOOYeioqK8r7+N8Y4Ap8XWrFmzuO2FMgXrySefjPvfGG+DwZ9C8dD0+qesrCxjxnvNmjWICE899VTc9lQ873ww3no9Xl9fn/c9kMZ4R4Dz0t1TSfJtaoEf99xzT9z/xngbDP7ke85rh2x53t988w0A//rXv+K2pzIFNR+Mt9OQKC8vBzYNH+arB26MdwT4Ge+2bdvy4Ycf5kKkBmGMt8HgT2lpaa5FCEW2jLdzn+Li4rjthTrmXVZWBiTG/uRDA0PHGO8IcApvUVER999/f9y+Qhkf08n37iKDIZcYzzseZ3ZKSUn8OleFMub91FNP8fjjj8dk8TPe+YYx3hHgtNiKi4s555xzaNWqVY4lahjG8zYYLIqKijj44IPjthnjHY/jYZeUlLBw4cKE7UHkg/E+5ZRTOPXUUxM8b2dN73zqHdAxxjsC3N3m7u6jQsMYb4PBoqysjF69ejFx4sTYtkIw3vX19dx0002x/zOZYe23334DrHrv3nvvjW1PZcz7lVde4eeff45ctlRI5nmbbvNGSJDxztdWm4NX5Kwx3gaDRV1dHUVFRfTv3z+2rRAa51OnTo3LBldeXp6xNQx+/fVXwHoueprTMIlX9Ppx7Nix0QuXAsnGvPMNY7wjQB/zhsSxn3zGK5uaMd4Gg0V9fT3FxcVxQWrZnAKqlErLiOjTVkeMGEHTpk0ztoaB43mXlJTEPZsVK1YkPVc33s51coU72tzpNl+9enXOZArCGO8I0Me89b+Q/563V0WU7y1OgyFbOJ633mU6fPhwDjnkkKzc/+6776asrCyUIdTR5T3zzDNp2rQpVVVVGZmjrneb687AsmXLkp6bT/Wjn+d9+eWXA/DQQw/l1Rz/zdJ4P/zww9x8882RXS8T3eaVlZWMGDGC9957r+ECBuBlvI3nbTBYuquUiunzsGHDYvuytUCJk0Ap1Zzqul4XFxfTtGlTIDMrCDpGrr6+nqqqKpo0aULLli1DGW+d0aNH59Q4+gWs6eS6d0Cn0Rrvuro6fvzxR899Z555JpdddlnKrdmge0G0AWv3338/9913X9xYWxDLli1La0ER021uMHjjNLwdvdYDwBp63bDjz05dkmpXva7XmTbejmy1tbVUVVWx++6707Vr11DdzW7nJpertoWZKjZ58uRsihRIozXexxxzDO3bt2fatGm+xziBFg0lE573qlWrQh87d+5ctttuO/r165fyfYznbUgVERknIitF5HOf/f1FZK2IzLI//8i2jFGQqViWG2+8kaZNm4YK6ErXeGfD877vvvsYOHBgrKFQU1NDVVUVZWVltG7dOuWANbfc2cbteVdVVSXIN2jQIEQk1pWeSzJqvEVkgIh8JSILROQyn2P62wr+hYhE1kc8YcIEIDFvt04qY7vLli1j+PDhzJ49O2Gfe8w7CiV350kP4r///S8A06dPT/k+Xp63GfM2JOFRYECSY95XSvWwP6OzIFPkBMWyNAQnB/iSJUuSHuvUJf369WPp0qWh7+H2vCsqKoBojfeIESOYMGFCzOBWV1fHGe/Zs2cnNcb5NObt9rwHDBjgOy0w1V6Y9957L/KlljNmvEWkGLgXGAh0A4aKSDfXMa2B+4BBSqndgT9ELYc7ZalOMiO1Zs0a5s+fD8C5557Lo48+Sq9evfjhhx/ixkMy4XmnYrwb0lgwnrchVZRSU4CcheD+9ttvvrr76quvsn79+kjukynPu3nz5kC4nj+9Lnn//fdDXb+kpISLLroo7hqO53399denImooHKNUVVUVM94///wzGzZsSBpblE+LNzn1uG6wozC4kydPpn///pENuzhk0vPuDSxQSi1USlUDzwCDXcecDLyolPoBQCm1MmohglrLXgEJOnvttRfdunVj0qRJfPvtt4D1Mjt27Mihhx4aOy4TY96pGO+G3M8Yb0OG2E9EZovImyKyu99BInKWiMwQkRk//fRTqAs3b96c3r17J2z/9ttvGTRoUFxgWUPIlOft6HaqxjusI1BXV8fMmTPjruGc+/jjj6ciauj7QbzxdnoVko0Ru+ufXCZCUUpRVFQUeRKet956CyBmQ6Iik8a7PbBY+3+JvU2nK7CFiEwWkU9F5FSvC6Wj4A5uz1tXgGRBI4sWLQLgyy+/TFBcvRWcCSXX55UmM6b6/Z555pmU7nPdddclbDPG29BAZgIdlVJ7AvcA//U7UCn1oFKql1KqV9u2bUPfwGv4yim38+bNS1FcbzKVOdEx3mF6CKLoxSsuLs5oFLfjnW7cuDFmvDt37gxAq1at+Oabb2jZsiXfffddwrn55nmLSKTG+7XXXuOGG24ANs0fj4pMGm+vJpS79JUAewNHA0cCV4tI14ST0lRwSDTeemEJGv9Zvnx57HtNTU1g93tDu82/+eabhF4AXc5kLXS9O2/o0KFJ7+dQX1/PQw89lLDdGO9gli5dGioYZ3NFKbVOKfWr/f0NoFRE2mT6vlFnxsp0t/m6deuSHqvfsyHG+/jjjwdSqx/C4mW8n3jiCQCef/55xo4dy/r16z0di3z0vKNcNe6zzz6LfXeGLqIik8Z7CdBB+397wD13awkwQSn1m1JqFTAF2DNKIdIx3lVVVbRr1y72/8aNGwNb3W7jnYqSv/rqq3Tt2pVBgwbFbdfHWpJ176frEfiN5xjj7c/atWvZfvvtad26da5FyVtEZFuxa2ER6Y1Vz2Q8cbVT8UdlvN09akEN+FRwgsfCGG9dt9P1nouKiigqKmKnnXbKiHF0nrduvNu2bUuHDlb1v2DBAt9zX3nllcjlSZdMeN66vSkk4/0JsLOIdBaRJsBJgPtNvQz0E5ESEakA+gDzoxQiHePt9qoqKysDDWTQmHey1vL48eOBTdHxDrkw3ldccQWQmbmgjYVUk2U0RkTkaWAasIuILBGRM0TkHBE5xz7kBOBzEZkN3A2cpLIQVqxHPafC+PHjGTzYHY6TqNcQjfftGNBkeg2p9+J5GXjnPkVFRRnpPneGH3XjDcR69YLyabz88stx/+eD5x3WeB955JFcdpnnJKoYmTTeGUvCrZSqFZHzgYlAMTBOKfWFo+BKqQeUUvNFZAIwB6gHHlZKec4dTRe3YdMfpt+Yt7sAbdy4kR9++MHzWKVUg9Kj+lUGumFNFvGYboXivu7OO+8MwIYNG9K63uZAISxKkWmUUoF9r0qpMcCYLIkTI6zxrq6u5qSTTmLgwIGceeaZnHbaaYDVaP3888/ZZ599gETP2/ne0AjkVIx3qt3m7m7ojh07ss022wCW8c5EG0o33kVFRTHjve222wKbhiDzaVqYFxs3bkREQneb/+9//+N///tfYBS53liKOhAuo/O8lVJvKKW6KqV2UkrdYG97QCn1gHbMrUqpbkqp3yml7oxaBrfnrT9MPw/TrZw//PCDb6q/d955J/bdUcpUWrd+xiAXnrfTnWeMtz+FtOhMYyTIAOhRz0EsXryYl156ibPOOitu++mnn07v3r1jut5Qz/uGG25ARBLqg0x63m6dnjhxYly3fyY977q6On777Tdf450qe++9N126dIlGyBDcfffdkUeb68+7YOZ55wu64v31r3/l1ltvjf3vF+noViqvyFYHZzzHKbAAnTp1in1PpnBehnflypVcfPHFvvKEuUYynn76aU488cS4bdk03j/++CPHHnts6Lmr+UIhLTrTGAmqAMN63n5676TmdKLA3bEskJqujR492lOedI13GMPr/m36+Zky3roTVF9fH6sLt9pqK8A/4NZLf3T5Z86cGfn0qmSk4nmHQX/eYd53KjQ6N+K9996Ly6nrKN63337LPffcE3esX0F2VxBBlYFTMEeMGBHbdvjhh4eeT+lVGbhT72Wi2/zkk09O2JZN433BBRfw8ssv8/LLLxesEaytrY1U0Q3JCaoAnYo/aPrRvHnz2H1372nnTrl3yqNft3lYSkpKqK6uTtBfR75UjXcY3PfKhvF2x+s4xrukpIRmzZr5Lubh1UOS66ljTnByKs9q1apVbLHFFp7vKpPGO5TnLSJtReQKEXnQzms8TkTGRSpJRPz5z39myJAhsf8d4+1VUPxejvsh//yzf6CsY7yd6R+Qmnfm9cLdc9kz1W3uxpl/mo2Vc1JdcShf0MuMSSObfYKeeZiK/6OPPvLd5x5Ga2i3uXOsLvMVV1zB2LFjgXDdqKmOebuvqZ+fKePtRu+F1GdluGOJvJyE1atXZ93b1nGeXypd523btuXKK6/03Jdz440VFd4KeAt4XfvkHY736OAYNq8oxrDGO2hKh5fxTmVKiVdl4DbGQ4cODVS6qMZhnWf38ccfR5ZiUue6667j/PPPB6KbdpNtdANhjHf28XrmSqnQuaODyp1zfpDnnU48i16f/POf/4x9byzd5m50492qVavYd3fjw8t4/9///V9Wx7n9SLVH7aWXXvLcrr+PXBnvCqXUpUqp/yilXnA+kUoSEW7jHUTYbvMgHCPn53n7sWrVKubOnet5rHvbggULApfKi3r+KcCLL74YyTV1/vGPf3DvvfeyYsWKnE4JaQjG884N9fX1bLHFFlx77bUJ+5577jn69+/Pgw8+mPQ6bl358ssvPe8Fm7Io6uekkgPBy3jr5f6OO+7g+eefD3UNKEzPWzfebvJpbWw3uufdp08fPvvss8Dy9fXXX8cyqenkg/F+TUSOivTOGcKdE9wpzF6FNqznHUQyz9tP4dq1a8cee+zhmTLQyxj/8ssvvjJENWas/4Ytt9wykms66JVeTU2NMd55jJ2XIa8oKiqisrLSc6lcR4e++uqrUNfReeSRRxKOcSpcZ1Givn37xvbtt99+oWX26jZ3N8z/8IfgtZga2m2ea887KJlRPsxq8YtN0o13WVkZPXr0SNojcNVVVyVsy1m3uYisF5F1wAVYBrxSRNZp2/MOt+cdFBwSpfFu0aJFbFsY4+0o2axZsxL2eXnjQa3UqBTSmQ/qJ0ND0BPfbNiwoVF0m7/55ps5lCQa7HUFOmn/98ZKsJR3VFRUeDZiHR0LM+btLte6oXFw9H/9+vW0bduWjh07xvbtu+++oeX18rxTLfdhPO+1a9fGFiJxP4Nce95OjnMv8iGT46mnei6n4dltHubdud9RJhv7gdIopVoopVraf4uUUk21/1tGKklEuI23vlC8myiMtzNVLErD53V+UCs1qMCExYk+P/roo9O+RhBr1qyJfd+wYQPffPNNSucvWLCAr7/+OlKZ0kF/LmeffXYOJYmMfwITROQ8EbkBeAAYnmOZPGnWrFlcOXITxngHLVTk4NQZ69ati2uUe50fhGM49fok1bohjPEeNGgQe++9N3V1dXnneffs2dP3uKg90YbQo0ePuP+9AtbCvDt3rFDOp4qJyNtKqUOTbcsH/Dxvr1ZPQ8e8165dyxdffEFZWVlcIQ3jeQftb6jxrqurS6mS2XHHHWMLCTjnRa3kuue9YMGC2JKBYXGyv6X626ImG5VfNlFKTbSzHk4CVgF7KaXSy6qRYSoqKjwXhHGGYMIYb/dwjVeiJkf/169fn2C8w1TgBx10EOecc45nt3mqwaVhus0//PBDwKojgsa8vRLGZALdeO+1116+x+WT8XbbDS/PO8y7/+mnn2jZcpNfm8tu83IR2QpoIyJbiMiW9qcTsF2kkkRENrvNnSVDd9ppp7gCm8y4TJs2LfY9rPFOpds81bmSbdu2jVVq2TDe7nmhychklqJUcT/boLzNhYCIXI21bOeBwChgsogcnVOhfGjWrFlg7EeYcu8uP17TQPVu81Q9b6UUU6ZM4eSTT/bsNm+I5+33+xwDvWHDhqTR5lHFxwTVD3pd6DenHoJ1Wb9+NuZ+u411ut3ms2bNQkR44QUrnvvhhx+O7ct2wNrZwAxgV6w1ej+1Py8D90YqSUSk0m0eNsOaH84iFTvssEPc9mRdXfvvv7/vNT/++GMWL16csL2qqoo1a9bw9ttvJyiO+x6pGjj3uBhEZ7xramp466234uauO4FADsnGvvTfk+skDu7noq+HPnfu3JSHA/KANkBvpdQ0pdS/sZbmvTC3InlTUVHhOW0zlTFvt26vXr06Ydy7IZ63XlZTGfP+7LPPPAPu9J4CP7127uPleWei27ympibwOejP0yumQL+OH/paEtnw0N3GOswUXi9mzJgBEOvJ1Il6jD/ZmPddSqnOwMVKqc7aZ0978YG8wx1tno7n7ack7lVhHCPrNt7pdusuX76cPn368NZbbyXsU0px5JFHcthhh/H0008n7NNJ1Xi7FRyiM5KjR4/m8MMPj8vo5o4Y9mqs6OSz8XaMSWVlJXvssQdduyYsR5/XKKUuABCRXez/v1dKHZ5bqbxp1qxZYAWYjvFetWoVbdu2jdvWkDFv/fqpjHn37NmTXXfdNWF7GA/UueaOO+4Yl/7ZLW+6xlspFTNKQNLYE78EJ9XV1Tz77LOxZUCDjLIe6JaNwDa38dYbTU79GsZ4O+/ohx9+4KKLLorbl1XjrbFURIa4PoeKyNaRShMB+ngDRBuw5jbeTvBMQ4JadFauXOm7r6amho8//hhIjHJ2/w4v47106VL69u3Lf//734R9eivTKaBRed7Okqc6buOdbJlN/X3k2ni77+8ovddYbCEgIr8HZgET7P97iEj+LLKs4ZfDwaloveZsu3Hr9nfffcd2222XcMz69etZuHBhwvSgZBX4559vWhTROba6upq6ujomTZrkeX5QV7a+z69Rruuv3rC/8MIL445L13j/+9//Zp999onVO1988UXg8X7v6dprr+Wkk06KLb963HHHhbp/NqZkuj1tr6msYep1p36YOXMmd955Z9y+qJdaDmtlzgAeBk6xPw8BfwM+FJE/RSpRA3EnBYhyzNtdKJ1x6PLy8rjtqSRW0PcHFVJdJvdvDON5X3HFFUydOtVTYTLZbe6FnnserEVKgkhledRM434ujSC3+SigN7AGQCk1C/Cf35ND3L1qDqmM47p1e9myZQnTmWpra5k5cyZ1dXX069cvbl+yCrxPnz6x77rn/cwzz3DEEUd4rrAVFEEfxnj7NSj+9re/xf2frvH+9NNPgU09ZEuXLk045rzzzot9D5rbnQ7ZMN5h9DiM5/3vf//bd5/fEtTpEtZ41wO7KaWOV0odD3QDqoA+wKWRStRAMmm83Z63M8fbbbxT8bz1rpSglKT6WJ+7EgtjvPWVfdzHZ9t4OziNIa/EGzr53G3uoMtVYBHptUopd7dBXq4UE5StKyxeuq3P4warvC1cuBDYNMvBIZWAM33MO6hMBMVJ6LqaLGDNjbu+Std4O0anadOm1NbWJjQKAO69d1MIVJj3NHfu3ND3z7Xxdp57mHcfFFicK+PdSSmlh9WuBLoqpVYD+RPvT2Krz6n4o5gq5ud5u4MyUpkqpre6DznkEN/j9KUz3dPGwkSbB0WtZtJ4B2VSc2IF/va3vwU+J73CHTx4cE5XIXM/O6dRpcuYT1NgQvC5iJwMFIvIziJyDzA110J5kSnj7W4M19TUsGjRIkSEDh06xO1LZ553dXV1oB4ELZaSbKbFnXfe6btedlTG2+nuLS8vj5tdMW/ePM/j/XpIdPbYY4/Q98/FmLeO41Q1dIpqroz3+yLymoicJiKnYUWbTxGRZtjdbflCFJ633/qzbuPtVNxhu80/+eQT5syZ4yd6IE4yGEgcXw3jeesG2r2Gtv57s+l5640evwoI4n/P9OnTE1Zdyybu5+IodgEb778Au2P1pD0NrCNPo839umNTGUrxejfuiru2tpYVK1bQpk2bhOCrVNL66p530Hin3g3tbhwm6zZ3B0XpZMLz1uXzC0xLNfXxtddey2233ea7P9eetzM90cvzTmX1saiNd9iMASOA44G+gADjgReUVbIOjlSiBuI23ukErPl14zYtL6ccaIL14EpWrWI7oFVNDfz2GzRtCkVFni20yspKevfuncpP8SUd460XPLeHr7f8o442D1Lkrl27Mnv2bMCKzmzXrp3nce7fk8txb6fMlJSUUFtbG1PIQjXeSqkNwJX2J6/x87xTqdy93o27Anbeq9v4QWqGyTEITz31VGDjVNe1devWscUWW8T+142+WydHjhwZeH93PdRQz7uoqCj2rC+//PLI4j3OPfdcWrRowcUXX+y5P9fG2+kd9TPeYeWLOmAtlPG2jfTz9ievcStiUs9bKVi3DhYvjn32ffNNxgHtgC30z+TJ8Q9s8mTr78iR1gegvJwerVszHVgOFH35Jdx4I1Vt2rAXsABo6GKb7gCXMNHmQeM1+jhN1NHmQV3c5513Hs899xwAN954I5WVley1117cfPPNcce5391NN93E3XffHYl8YXnjjTe47LLL+NOfrPjMZs2asXbt2phC6jLmOqguDCLyKgFj20qpQVkUJxR+nncqjaUwnndNTQ0bN25M6FGD1Iy3s2Z9shz4ute5Zs2amPEeP3489913X2yfu1zdfvvtoWWBhnvekydPZvr06YCVTtQ91n755Zf7dqUHUVpaGlg/ZarbXK+bgoy30zPp5ZSNGTOGYcOGhbpfTjxvERkC3AxsjeV5C5ZNz7v85m7jXbpxI8yfT7u5czkd6ABsb//dc/x4GDsWXN3kx/hdXCkqsQb5awCKi6mqq2Or5s0pq6uDykrYuJGy5cuJxZz++CNceSWtsbLcgBUwMA+YY39mA18A7nZZRUWFZ1pU3fOur6/nmWeeidvvVvKqqirf9WaBuCkN2ew2b968OZdeeik333xzbO7npEmTEoy3+/fcc889WTfeTs73v//970Ci8XYCnMDqBnXPHc5DHIsxBNgWcLJKDAUW5UKgZLingTo01Hj7ed5exjsVggxZly5d4obCHHTd1jMxOnKFxT3fG9JPj+qUcf2aTZo0STB4N954Y8rXBqsXK8h4Z8rz1p9FkPEeM8ZKaeIl43HHHZeS8VZKRbaiYtgx71uAQUqpVqksTCIiA0TkKxFZICKXBRy3j4jUicgJYQX3o/W11/IGllH8BXjilVegWzf+8PDDjMWaF/NnrDRS2/7yi2W4Kypgl13gsMNg+HAe22EHzgRmXncd+wK7YLVaqKqitKaGfXfbjTZAz/btaQ9MfPJJ2LAB6uvh11+Z99pr7AccB9yx885wySX8evjhzAE22NfqD/wVa/7dJ8CvWAZ8LHAm8DugzCeKVFfwyZMn884778Ttdyv59ddf75mZyuGCCy6Ifc9mwFrTpk09I1fd5KMn6wTlOBXbkCFDYvuC8jnnC0qp95RS72HlMv+jUupV+3MycEDQuSIyTkRWisjnPvtFRO629X6OiPivTpECbiPrlNFUKnevaVnuiru6ujolz3vp0qWISCwPQxjcuSEc3nnnHfbbbz/ef//9hG7yVPTAayw83fSoXs/Xy3inS2lpKUVFRXzzzTeejfJMGW/9efrNTf/4448ZMWIE4G28U8lVX19fH2ldFtZ4r1BKzU9+2CZEpBgrhepArKllQ0Wkm89xNwMTU7m+H00mT2Yg0B1oDVQVFUGXLnzbsSOPAdcD5wBHA0O7dWOfnXZi4gsvwJdfwqRJMG4c97drx8NA1aGH8hHwNfATQJMmlJSUxCpuxyDGAq9EoFkzajt0YDrwX+CV9u3hlltYdPvt7Ak0w/L8B2DNsXsSmAvU2Q/pdOBBe9sP69bxFnANVuJpp+r6/vvvERFExDPBia7006ZN4/rrrw/9/LI9Vaxt27ZJPZx8HEN2yoBfV1irVq3Yd999Q3eVKaUYMmQI//d//xeZjCFpKyI7Ov+ISGcgWbfBo1hF2I+BwM725yzg/gbKCHgHlkFq5cMrEZK7UeAY77Bj3k63uDspRxB+ZX7kyJFMnz6dAw88MKGiTyUOxcvQpNtt7nXfJnZdGAXOe+3SpYtnAFg2jPfWW3vnG9Pft1e3earPIMiJSpWwxnuGiDwrIkP1LGtJzukNLFBKLVRKVQPPAIM9jvsL8AJWb3KDqb3uOgYBe2ElbT728MPhm28Yc9xxDAOuBv4NvAE8M28eM779lgEDB8ZdwyksfpGEzvYw0eYOerDCUqyWyi3A/wF7AM2xHthfsUJ+v7O3HYrVW/AeVlj/W1iRRfsDpcCjjz6a+Ay0QjloUGpDl9kMWGvatCkikpDhyo2zAEw+4Rjv5cuXe+YxXrduHR999BETJ4Zrkz7//PO89NJLPPnkk9meCncR1mIkk0VkMvAuSaLNlVJTgNUBhwwGxiuL6UBrEfGORkwBt/F2yqg7ECiozHkZby/Pu7KyMrTn7TQeUnlv7iUovQgK1LzllltC38tBRPjiiy8CVygMIwdE63nrRtGrcZGpMW/9d4UZ5mqo5w3Jc1qkQljj3RKrx/cI4Pf2x3do2KY9oCetXmJviyEi7bF6lx8IKUdSio49llex8j3+DNTZhSGVSD/deD/wQKJojvF2ClpQkhZHoZPdvxqr+/we4GRgR+COv/+dz0eP5i6sYYCmWMb8euBDrNpz9GefMQLYSbuWXihTLfhRB6wF4Xg2yRTnj3/8Y8ZlSRW929wJYvMiTDfZ8uXLOfHEE2P/Z7OnQSk1ActDvsD+7KKUamgvWFLddxCRs0RkhojMSDYF0M/zTsV4//TTT/Tv3z/OS27SpAn/+9//Yv9XVVWF6jZ3dNt5X8nmATdv3jz2/Y477uCEE4JHCR9//PG4//WydOml/rmxPvjgA8/tzmp+TtxGWDLteet41TuZ8LzXrVvHt99+G/tfj/AH6N+/PxDvkTvvXn+Pqc79zrrxVkoN9/icnuQ0Lw1yN03vBC5VSgW6eakouLtAOQUvWfelE/Q1bdq0WO7eJk2aeFYEbo9cf5mQ3PMOy/pmzVh/2GFcCOyJ1Zd5AtZYxHwsz/yg9esZgxXF/g2W8W/1/vvW1DVSbxlmc8zbGWdq06ZNJPfKJu537kcYb8yJSnaIOio1BHtjzfXeE/ijiJzawOuF0X1ro1IPKqV6KaV6JWvE+c0k8TLezzzzDH/9618TrrF27Vp22223uMZSaWkphx9+OEopysrKQo95u413skCkffbZJ/a9rKyMo446KvB4N87v1WX3YqeddvLc7kRNey2DGoSf553q8qZh8NKXTBjv3r17s/fee8f+d5e9f/7zn3z11Vdxi045zkZQwykZUeaoCGW8RaSriLztBKiIyB4iclWS05ZgBXU7bA+4k1j3Ap4RkUVYduk+ETnWfaFUFNytQE7Bc6/E5Wbo0KEAHH/88bFtybrNHdwVuVc3kFeFfNllvjF8gKWsurexCmt84Xys8fH2wHDgWazgvC72vj2vugq23JKagw7i9F9+IXGtok08+eSTnrKnY7xfeeWV2LxtsBYw0KOw3Ti/rQAisxNwuvyTMW/ePMaPHx/4PN2eTTYySjmIyONYkecHAPvYn14NvGwY3U+ZsJ5306ZNGTp0KPfcc0/CNaqrqykrK/Pt8i0rKwv0vHWcdxrW8+7ZMz5uL9VuZ+f3OtMrHdzDTkHLcELqSVT8PO9M4HWvTBhvffnVfv36JWTSKykpSVghsKKigrq6Oq68Mv2UCKk2nIII6/M/BFyOPUNKKTUHOCnJOZ8AO4tIZxFpYh8ft1qRvbxoJ6VUJ6w55Ocppf4bXvzk1NXV8fXXX8cKwEsvvcS4ceN8j9e7LP08b7dyhDHeXp53sqkVbuPt5kesyKGTsLzy/YBrgTVdu0JNDaVTpnAblpf+NVYNfSCgt5f1pTp12VM13vPnz2fw4MGxsTylFL/73e9CnesXLJLPFBcXh5pKdM0113Daaad5xiY4uCusLHvevYC+SqnzlFJ/sT+JLmtqvAKcaked7wusVUotS3ZSMvzGvN1juLr35h6CqKqqoqysjDZt2ni+PyfpRhjP2228kxlFd9es+/ckM4h+QzDu7X7G25Ev1a5er/tGMd793HPPJdSL2Rzzdhg2bFjoZ1JUVNSgqV5R6nbYt1ihlHLPgwgczFNK1WI5ghOx7Md/lFJfiMg5InJO6qKmx4cffsi1114b+7+8vDywu0fvZi4rK2twt7lSiqlTp8Y8e4cwhaC+vj60ktQB07GC296/7Taev+8+hmKlwluFNag5EivwbaW9/aTiYitBjUsu596p4F6O8Ycffgh9bq9e8Y5eKvd+8cUX6dChAzNnzkx+cIQUFRWlNA/47bff9t3nrhyzbLw/x5rnHRoReRqYBuwiIktE5AyXXr8BLMQazXkIOM/nUinh53m7xxH18qMHhs2fP5+qqqqY/h522GFAvLF3PO8NGzYkjTZ3J4BydOeRRx6hU6dOCee6p4e56xGv++msWrXKs2y4G3/JGgH54nmfcMIJCTrk9oAh8xnWks0z92LGjBlxCXT8OPjg+ASkUf6WsMZ7lYjshD1uZc/HTtqSVkq9oZTqqpTaSSl1g73tAaVUQhSYUmqYUiojGdyeeuqp2Pf169cHtrJ0492kSRP++Mc/suOOO8YFeegFt6SkJKEguz3vc85JbKuEKSypGG+d2tpa/nDuuTwDnIZVM/cDbgW+BLYE/gQ8XVcHbdrAkUfCvffCkiVpR5u7V9MJWhrPjXvZRd2Y+RnyBx98kJUrV3L88cezZMmSwKCxTFBcXJy0stV56623ePXVVz335bLbHGtSxjwRmSgirzifoBOUUkOVUu2UUqVKqe2VUmN1vbajzEfYet9dKTUjCkG9xrxff/11vv76azp06MCvv/7KBRdcEFdm5s2bFzPO3bpZM1WDupWbNGnCxo0b+fXXXz3nYnsZb6dCdvaVlJTw4YcfJpzrbuS7ddtvrjFY49jvvfceffv2TdhXU1MTV2/5xbk48qVqvP3GvDPB8ccfn/B+Mq0PJSUlKfdG7L333px77rme+3bffXfAqtdefvnluH25MN4jsGZY7SoiS7GmkmTNe46Sdu3apWS8W7RowYIFC+KyfukFt0WLFgnK4DbeXpmhwgSSJes298PdVVgHfAD8HdgNK+nMxQD9+kFdHfzvf3D++dChAyMee4wrgC2WLbNSx4bE3XX5z3/+M/S5224b7/jpxsxvkZizzz47bhpctoO8ioqKUjLeK1euZNCgQZ4BKzn2vEcBxwI3Av/SPnmHWxc6duzIlClTAGut6WbNmlFRUZHQ4HM/T0d/Hb11e97OQhR+iVQc3J63c73i4mLPxrm7vKTSbb7lllsCePYw1dbWJh3n1uULa6h+++03RCRhLQVIPRDWjV+9JiIcccQRcdsyPfvC732ly/bbbw9YQXHuMnTDDTcELgGbCmGjzRcqpQ7DGlrdVSl1ANYUr4Kjb9++voX3rrvuinuJTgFzG2ddybyijt3d5u3bJ86S8Sssn3++KWlVfX19Wi3cZFOrvsaunadMgRUr4LHHYMgQqKhg+2XLuAE4d8wYK+vc3/8OU6da2eMCCFrH1qFjx46B3oWDbsyCDJm+oEq2E7mEHfN2s/XWW8em7Dh4jctmCyfTmvuTNQFSwKvCdxvqoqKihOfpLpvJPG+nG96r0e32vMeNGxfLMe54VX7dsO6y7/49YYfz3NTV1YUy3k4jJazxXr3afyq/05gIwyeffMLo0aPjtgU5Jc5zuOCCCzzfZzp8/vnn3Hrrraxbt4677rorbl+Rz2JS6eK8Z693tn79+sCln1MhJYmVUr8ppZx1NZLntcwz9tlnH0TE90VdeOGFcXP//JRJr7S9vC+35+01Fcrv2k6Xi3NuVIkQ3MQKVps2cOqp8MILsGoV4wYPZhzWODnffAO33gp9+8J228FZZ8Ebb4CHQdU9ZD2jm+4p/PnPfw7VHX/ZZZdx1113UVlZGdqQZdt4+3neYSqB446Lb/e6u9Ky4XmLyHoRWefxWS8i0aWBihAvXXDegePteD1/d6+Qc51TT7VmxO25556xfWVlZbGI4GTd5rW1tZxxxhmx/5335uXJ7bbbbgx0JYNKxXgHlauwnrdD2G5zL53asGEDSqmY7Lfddhuvv/564HV69erF1VdfzYsvvhjbFvR7nH0iQmlpaSS63bNnT/7+97/z8ssvc+GFFybcL0rPO8h4w6ZlhBtKQ5ob0WRXzyJOUFVDW1l6C9pLafTr19XVeVbymew2D4NnYW3alM933JEzsMbJ6999Fy66CDp1sjz0hx6Co4+Gtm3hj3+Ep58Gu0tNjxq9+uqrAes36nm+6+vrQxnj++67jwsvvJAbbrghtPHOdv5zL+P96KOPsmTJkqTnOgsUOJ6Q+zdmw3g76xN4fEKtW5ALvHqhnGflxBN4lWv39BzHWz/hhBNQSsUFl+medxjjreO8Ry/P+/HHH09cNMml28kMtB91dXW+y+nqpNpt7pWJzV3mR44cGXq++nHHHRcbAw5qQDjPrqioKLTxXr58eeAzcq7h1UMYteftPCO/BkFUGRQbInFWczhGgdPiaeiLcrJrgbfx1l/arFmz4uY+ex3jh9PyzAR+jQfHM64DavffH26/HRYuhFmzYNQo6NHDWszlP/+Bk0+2DPkhh9D3ww/Zw3Utd7ey3pPgtzazztSpU33X+HWTSeN97733JmzzClhLJetU//79Y91nzsIHDjlI0lIQeOnM889bMa6OofXS7Z49e8b1bgTNZigrK4ulPQ4z5q13Hwd53l7DRal43snKt7MqXxCpBqylmkY1DE4DJozn7WW8V65cGZfi9sYbb0REaNeuHX/5y1+S3t/LGRCRSD1vp95z1wUNmWLmRaAVC+paA4ITUucxesHZYYcd2HHHHQOOTiQVzxusSGM3XpX8HXfcAVjGomvXrpEueO/Gr7Dq3dqxCkME9twTrrkGPvsMvvsO7rwT+ve3At7efZejp0xhNlbe9nHAicC2LtmVUrzxxht07tyZ1157LamMM2fOTIjW9COT3ebnn39+wjavqWKlpaWhjHfz5s2ZMmUKkydP5p577knIt52JSrMx4FX5fffdd0C8t+aFPvshaOhGf6de8Sxuz1tvhDrG28vz9tK3oFkqbpKVb6+4GjepjnnnyngHed7bbLMN22yzTex/Pcf7Cy+8kNSr9WoYN9TzfvPNN3n44Ydj/zs2Qa8LDj744NjvyornnaRrLfrEthHRvXt3z+1eCt68eXPef//9lK6fzHiHaWG5lXnkyJGxsZjzzjuPr776im233TZS460XJj/jrbfwfVv7nTrBBRfAu+/CTz/Bs8/yYdeuLMVq0TlZ37765RfYd19GAfsC1NVx2GGHsXDhQg44IHDVSQDPKFc/8mHMO6znrb9TrxSefhH2Bn+8dFufxaA/5yDPW9ftZEla6urq4o53vDovz9tJ0PLYY4/x3ntWPGAq3eZRlG/ndwfdZ8OGDVx55ZWxue6QfP55Krgj/b1Ipdtc17effvqJioqKwIWMvLJaNjTxyoABAzwzczpGurq6mrfeeivydLLRdfTnES+99JJnCjuvVl9FRYVnCztoGU1dYb3G4dIx3n6tsSi7WvQMT35GRjfYoSqMLbeEE0/kwX33ZXuspVgvwVr9rBbgo4+4Biujx6X/+heceCKMGwdLl6b9O7zItvEuLS1N23g7U5H8MMY7dZznruu2Pr1TJ8jzTjYkputjz5494+oCP8978eLFsRTAp556KgceeCCQvNvcmZcO4YaFXnvtNZ599lnf/U4dE1Sn3HLLLdx44408+OCDMeOtz+poKGGMt7vbPGhutFvfNm7c6LlMchBRjHfr784pE87wi7NeeVY970Jlp5128hz/cJRFf1lz586NU1gHdx5inSg8b3ehy8YykFddtSkdfRjjnco4shOw9jlWGtbDgb677gqvvso9WIumVGzcCM89B2ecAdtvD927wyWXwNtvk/qEuHiyvIwmpaWlCeUmbLd5MqKKRm2MjB8/3nPNcy/Pu3v37nERzg5RGe/169d7et7upB9OJLybZMZbTzwUpnF69NFHJ120BILrJyegq6qqKqbTYaZ3hiUVz1tEaNKkSeBvX7FiRcI23dhfd911fPbZZ4EyReEg6e+7c+fOAHEzl2BTnWuMdxL8FqPX/zrfvY4NesDJFDzMtA33PbOxBKeeQ9yvC0dXlLDerFLK01usr6iAY47hr0BX4Nazz7Yyuf3+99CsGXz+Odx2Gxx2GKuBV7GyAXUJuE++UFJSktBjE9VKS8bz9udPf/pT3PQsB73Cd2jTpk3c+KjDsGHDfK+fivGG+C5lPWAtDMmMd1CO9oYQ5Gk69dD8+fP5+uuvgU3GO9kSpmFIx/P2++1eWexg07Oqr6/nH//4R6Ajpt+vIejXcFLyuhdcirrbPG/HrRuKlwfk1W3kjIsNHjw4LjgqyOtM5nmXlpby7LPPBiZLCdtt7kZE0jZi+m/ySkDhPias53300Ufz5ptvJmx35ztf1aoVnHee9amqspK/TJgAEyfSbPZsjmHTIvHfYiXFnwC8C+SbOSstLU149073WEMxxjsYL912tulTgdq2bZuw3CokZvTTSTbmHYTueYfBbbwHDx4c10Wt67m7TGyzzTaeXmcYguoPZ5++eFNFRQW1tbWReKhRGu85c+Z4bncWlknmcbvvd9RRR3n26qRyDbBydbzzzjtxS8CC8bxDE+RN63OSnaVCe/fuHXdsUNeaPi/UrzXllYNYJ91u8zPPPDPUcV7U1tYyceJEunfv7rtEqme0eRK8DDcEr/ZEWRkcfDDcfDPMmkXHkhKGAU8DPwM7Ya1m8Yr9/zsAN9/MmDPPpGWSKTzZoLS0NKECWuda5CVdjPEOxkvnnG16mSsvLw+97rpDqp63VzbAdD3vyy67jAEDBnge6w7e/Mc//hHqHjqnnHIKEKzXXvVQRUUFxcXFkTRMvYYu3ejz0YOMt9+UypqaGkaMGMH+++8fSibnfq+//nrCAlJhcb/zgw8+OHDBqijYLI23ruB9+vQBEo1pkPHW18/1C45I1vpO1/Nu0aIF//nPf0Id66auro4jjjiCOXPmsMce7lnZFqkGrAXJvdtuu4U+dmVJCY8BJwNbA32AfwBTsZYwPRjgsssY8dBDrCor4xHgj1iLrOQCr/frN7apI0BrYAdgV2BvrGVaB2ItaH8qsP/s2VZmu2uvhUsvhYDo2c0Rr2fv6JM7CUe3bt1SipbWjbdXMOqgQYPi5n87iZSaNGmSsuftvr6IxA1t6fpy//33xx2bzjK6jz32GC1btkyo27777rvYvdw6WlxcHOmMl2RT+iDReC9evJi99tqLBx98MO44P+NdXV2dNMhu0qRJse9Rd5snOyYqz3uz7Db3mr+Y7oT65cuXe273ajz069cvNi0tXc+7IS8+jDFOtdvc61kefvjhHHDAAZx11llx24NiAfTnVQ98bH+uA7YADgWeO/10mDCB0h9/ZBgwzD72E6zudaZOhd69IYKgsWTo768CmPToo3RbsQJmzuTvQHusRsiWtvzO39aEaDHPm2fllHcYMMCanmcAvHXLeR9OedSzfp1wwgk8/vjjoa6tG2avCrmiooKXXnoptpxoXV0d+++/P0uXLmXBggW+8nmRzCjqun7OOefQtm3b2LhzOsa7uLiY5s2bxy2hOm3aNPbff38efvhhzjjjjIT6JdXVBZMRJuLdbby/+OILIH5Od319va8TE6br23l/zn0aShh7EWUWN2jExjus5+3gNqa///3vQ93Hz3h7NR70tWrT9byD2HLLLampqfGNVg5jjMMa7zFjxrDTTjt5BoP06dMnrltv7NixPPTQQ4wcOdL3ekEF+xfgzIkT4YgjQCmWTJzInQMHciSW19rH/tC3L7RoYUWx77GH9bdbN+jYEdq3h1QXeamvh5Ur6YlljPXPoffeS/nPP3MhlkFGC4LynqC0ibX25zdgg/1X/1SXlPDnv/4Vad4cmjYFO3rVYBHG89YjtVPxHPV0vmHu7ywKoq8WF9bzTrUbVW9865ndUll+98cff+Sll15i48aNlJeXx9YemDFjBg8//DDTp09PSaZU2XrrrWnatCm33npr0mMd4+2gD3eOHTuWWbNmRSJTtoy31yp2DaHRGm+vF+I8NMfg6MqjK9yFF16YdDWv008/nXHjxvmuI+2lmHoATLrG+8ADD/Sd97jXXnvxyCOPsMMOO3juT9V4+3nq8+bNi03Fc7wNHXdlefrpp3P66acH3nf48OHcfffdCdtHjhzJbbfdtmmDCDW77BJbt7IC6A8cCZzfpQtFCxZYHvjUqfEXEoFtt7UWYmnRAlq2hIoKa9nT+nrrU1UFv/wCa9ZYf3/5Berq+NRLYC0YbyNQ3rmz1UBo357bn32WpcAvTZqwrLqa1cBqrEbIGqzUs4HU1nLSqFFJ03NurgTNJHGMt979ncr0PX1hoDD3r6uro7i4mIsuuohRo0b5yueFXuE7c7913HWCrvfl5eXU19enHURWXV1NeXl5zJFp1qxZxg03WL1vyTK36Wlc/RpeSyPMExF12tJk9zHGOwleL8R5aAcccADvvPMOu+66a2yfex3vZIwZM4YhQ4b4Lu+WCeP9xz/+kUGDBsXyObtRSgXKHsYD0Ss9P2OvexlewVXpzHW+5ZZb6NGjB1dffXWcYuqJZbzYALxhf0795BNaV1fD3LkwZ471+eorWLwYfvwRli2zPimwCivl61Jgifb92PPO45izz2bKggV03W8/ttUWhhh0/fWsXr2aCy64IO0KsbKy0hhvH4LKeDLjnSwHeKo5GmbPns1BBx1E69atPfeH5Z133knY5q4T9EDZ8vLyBhkdpzvceV5RzuVuKO5ucwfdmbj22msju1/U3dl+ZDW3eWNDV4aDDz44biUevZCEMXJNmzbl6KOP9g2G8VJg3Xi7lwkNmuc9ZswYDj30UB599NHAAqCUSrivM07Ur1+/wPmtDvpat37GW5fVSTu53377xbalU3mVlZUxfPhwPvnkk7hpbF5T2jr5jP9u2LABtt4aDj3UWg3tkUcsD3zxYsur/v57mD0b3n8fXn/dShjzwgvw0kvwyivw5pswfbrlVa9YwTatW9MW6AEcDfDvfzMaGAss/t3vYI89OHDIkDjDDdClSxd69+7NY489xn777RcXHOOF1/jljTfeGHjO5kzQClp33nkn/fv3jyuPjj5vvfXWoYfDgtDLd2VlJTNnzoxrUKRS/i+++GImTJgQylvXvfNUlgD1wm28vRJV5QrdeOt10Jo1azJyv1wY7yi870ZtvN3z7IJI1fNORjLP2921HfQyR4wYwVtvvZV03qlSKqEFfckll6CUYsqUKaEUtFOnThx88MFAfEt348aNsW473XhPmTIFsHLEO/fu169f0vv40a5dOz79dFNHtZdHICJccsklCdsDu+NKSmCHHayx8AMOgKOOghNOgCFD4NhjrcQxAwZAnz6wyy6w9db85JqeM3z48DgZktG1a1emTp0aFxzjxcSJExO23XXXXbFAHUM8QdO/9txzT9599924RrWj22H1+qOPPuKll17y3e/W7VWrVqXc+He49dZbOfLIIz33edUJjtFOdQ66g+M0/Prrr0yfPj0WxZ6pBZDSQTfeeiMsUymQc9Ft3r17dy666KIGXa9RG+9JkybFregVZCB14x1FQfZqzQUZ71Tmo/oprlKKpk2bsssuu4S+lhdOIIjjVdfW1rLFFlvQtWtXAM8x9xYtWrBw4ULef//9OIVLB/33+TU4vLybsGt/h8VdXvR7NlThdc/Jr7wly4G+uRNWZ5z3Flave/fuzbHHHuu73228W7duHXdtd2atVDjppJNi373qK8fQp+t5O2s2dO7cmf322y/mebtTeYIVeHrMMcckbM80zvuqr69PqS7xWv0vDNn2vKurq5k/f75voqywNGrj3apVKw499NDY/2GNdxSet1flrhulrbbaCoDnnnuOQw45xHMhFT8GDhzoOafY+X1+q6qFxTEa8+bNA2DZsmWxhP8LFy7k7LPPTjinefPmbLPNNqFWC0uG/pz8xuIyYbzXr1/PyJEj+eyzz7j88ssT7qe/04Yab32M1K+85VM62Hxj5cqV/PDDD6GOdQxrFHrthZOD26EhxmDgwIFcc801vvuffvppvvzyy7R/i1+X/gsvvBD7fthhh/H+++8zffp0Xn311bTu0xCc91VTU5NSI+XUU09N635RGm89B0jQferr6+MWnkmHjBpvERkgIl+JyAIRSViLTUROEZE59meqiOyZSXmy6Xl7oRslp1vvhBNO4O23344Z8zCUlJR4rnPtdGcPGTIESG3YIAh9rOmggw5i8eLFCcdkYjF7CGe8neOdpA1KKVavXh13/OrVq6murg5c9OOqq67i9ttvp2fPntx0001x+9y/L1Xj/Yc//CHufz0Qr7S01LMxlo189+kQQq/7i8haEZllf1JPB5aEtm3bJg1mdHDKShSLxkDie6mtrY3VGboeX3rppXHrPKeKX7azhvSs+empri9HHnlkJI3wdNGNdyqNlHTfb1TG+9NPPw2cvuauM/xmBYUlY8ZbRIqBe7GSR3UDhoqIu6nxHXCQUmoPrHwcD5JBsul5e6G3Ihu6Rm6QjCeddBIffPBB3JBBQ/j5559j35csWeJ5TJRd1l6NHDf6+3K61h3jfcUVV7DVVlvFxi2nTZvGVlttRVlZGS1btvQ14EGK51bwVI33+PHjY+s4Q6LnPXfuXKZNm8bAgQNTum62CanXAO8rpXrYn9FZFdKFU1aiamC6jXddXV1MH3W9vOmmmzwXUUnGySefTFFRESeffHLDBPUgzIJE6Y6nR4XzDKurq1PyvP1+W7Ku96jGvHv27JnSkEmrVq0adL9Met69gQVKqYVKqWrgGWCwfoBSaqpSyhnYmw4kzy+ZITLheV999dWce+65nvdoqILsvvvunHbaaXFRyXr2or59+6Y9pqIHUsyZMydwgRUHv1SF6RCmIeW1fq7TgHC85tGjLZvhTi3Zu3dvz+xMQQFvDa34y8vL46KF9WmKpaWltG7dmn333TeusZKn3eZJ9TrfCJNPOxW8spA594jCu+/atSt1dXUNjl3xIkw5znXwWrrd5n7PPtk1sjXm7b5PQ6eCZlLq9oDev7rE3ubHGYDnChcicpaIzBCRGfoc41TJtuc9evRo7rvvvtj/+strqOctIjz66KNxY7NRdbMOHrypLt5zzz1ZuXJl0nP07EdR4lfZxKUntY23uwHhtKjdvQJffvllXIOkqqqKn3/+OdB4uxWvoQqvj3fpSqw36vLUeIfV6/1EZLaIvCkivplPotLtIJyyEpWH5XTXO/E0erd5rg1fMsIY76iGF9LFeYa1tbUpd5s7iXJ0dJ068MADE3recjXPu6EBa5l8S16a4lkbicjBWMbbc6BFKfUgdpd6r169Uq7RnOXzgoIJstFtHqXxziTpKK+erjFK/HoovLrN3Ua6qKiImpqapAu5DB48mIkTJwb+bneO51RXq3IjIvzwww9s2LDBd5ggT413GL2eCXRUSv0qIkcB/wV29rpYQ3U7DM57jaqS3nHHHfn4449p3bp1zEt26oyoV46KmjDy5fo3pOt5g7eX7Z694tbdbE8Vc2hoHZJJ470E6KD9vz3wo/sgEdkDeBgYqJT62b0/CiZNmsSll14al9jeTZipOw0l08Y7qso+rPJuvfXWnH322Xz66afcfHOyjN6pccstt/D1118nrEzm4GW8L7/8ct59993YdhHxzT0PlrH/29/+FptnHZQ+1plSM27cOCZMmMBxxx0X/sd4UFRUFJfr3kEve3kasJZUr5VS67Tvb4jIfSLSRim1ihwQdbc5WMGgTtmqr6+PtNs8kxSS552q8dYbUTq6HnkZ6lx43s2aNWtwIymTb+kTYGcR6YyVUfIkrBUfY4jIDsCLwJ+UUl9nSpDu3bvzxhtvBB6jG9NseN6ZCAqJqrIPq7xz5sxhm222ieSebrySsOh4dZsvWrQobtnAoqIivvvuO99rjBo1Km5YIwzDhw+PS9aSLn6tfb2MZCopRQMJo9fbAiuUUkpEemMNz2WkYf7JJ58ENtBgkzGIuidDrycak/HOJ887lbq4trbW09jrw2H5YryjSH2csZKmlKoVkfOBiVhLMo9TSn0hIufY+x/AWrJ5K+A++4fVKqV6ZUqmIHRjminPW395+ex5h62Acpl728t4u1m/fj0HHXSQ7zXc08Hc7L777ixZsoS1rkxrmSTfjXdIvT4BOFdEaoFK4CSVoTGAXr2SVxeOrkW9vKVuKBzdzrXhS4Yu35FHHsnEiRPZYost4hICZcp5CUs6nnfnzp3p0qULnTt35t1332Xjxo1ccsklPPLII+y8886xmTf//Oc/E87NRcBaQ9PbQoYXJlFKOWtG6Nse0L7/GfhzJmUISzY8b90zzkQDIdvd5rkct9dl9MvCNn/+/AbdY6eddmLdunUZMd5hPO+LL76YsWPHcuWVV9K7d+/IZUiXEHo9BhiTbbn8yJTx1usJ59r57nk78nXr1o3999+fiRMnsvvuu/PBBx8A8Je//IVBgwblUsRY3VhdXZ2Q/Mavd3HhwoWx7/rCTQcddBD/+te/AGu1SK8EVrkY844ki2eDr9BI0A1R1IbVCebq06dPbFuUXuuJJ54IwJlnnhnJ9cJWQNkq9F7oSp2pHoCampqMNVD8np2+/ZtvvuGVV14JtZSrwR/nHUb9HHU9ca4dtfFevXp1QsKhhuA0ekUk1uBw9Kddu3bcfffdOY+Y16PNdX1I10N25nn79cLlots8inJijLdNJj3vRYsW8c0339ClSxdWrFjBkiVLIr3HE088wdy5c7NuvHOJ3lWeTiKMMFRWVmasgeKXHcxdkZSXl4fqGjb445SVqD1vp2wcdNBBsZXuTjnllEjvscUWW4TOJBcGvcfKyVt+wgknAA1PGhIVTpY6fbW9ESNGpG1k999/f1avXu2brz4XxjuKBlL+19JZIpNj3i1atIi1br2Wf2wopaWl/O53v4vserqCl5SU5KXnpxvvTFU6lZWVkSv2f/7zH15//XWGDh3qud99v06dOuV8DLLQyVS3OVgN8zZt2tCsWTMqKysjGcvMJLrnvc8++6CUYs6cOQC+MzuyzSGHHMJjjz0Wa1Q4w4Fjx45N+5pBDaBcdJsbzztCdIOdrZZYvqIXLL/pdV7TnLKJbrwz1W2+cePGyBX7D3/4A48++qhvA9Fd9tzrvhtSJ5PGu2PHjrGYi/Ly8pwOJYVBN94O3bt3Z+zYsTzyyCO5EisOEeHUU09NCETVdaNJkyZpryLmplA9783bSmnoDzYTSl5I6J63l2F87LHHGhwM1lB0xQ6zTnk6dOjQIeuVsft+DVle0mCRqTHvQsTLeIsIp59+et50m/vhGNmvvvqKqqoq7rnnnkivm2miXJUQjPH2ZHM33rrn3b17d0aOHMkDD8SCiTnggAMyZjDDohvvVKfnXHzxxUmPOfroo7n//vuzbryN5x09zpDY5q7XkP9T2YJwdCPqHBm5mCoWxTRQY7w1HIPUpUuXHEuSW9yLtNx2222cffbZsa4er+Urs01DjPfpp5+e9JjnnnuO7bffPufGO8pgpc0Vpzwbz9vb8y4UHNmjjivI1rNwxvDBmgbXUIzx1li+fDnLli3b7CtMd8Caw4oVK/jpp5/yIoBK9/xTbTmHeb/Ob8x1t3m+B0AVAltttRXbb789Y8bkzdTznOGUr0I03k4u8Kh7D7LleV9yySXcfffdQDTG20SbazRv3rzByeIbA37Lo+ZTo0af2peKMk+YMIFtt92W0aNH8/jjjzNs2DB+/PFHdthhBy699FIAbrvtttg1sx286L6fMd4Np7S0lMWLFyc/cDMgTxe7CcWkSZN45plnYlPJoiKbY97t2rUDouk2N8bbkIBuvPN1zrduvEWEHj16MGvWLHr27MnMmTM9zxk2bBhHHnkkYK21fvXVV8f2VVZWcumll9K0aVNGjhwZd+1sYoy3IRsUoue9yy67cM0110R+3Ww+C2e4z3SbGzKC7snmOtuSHyLC2rVrWbNmDQAfffQRy5cvTzteoWnTpvz888+415Q2xtvQmChkzztTZLN3zRhvQ0bxG/PON1q2bBmb3tKkSRO22WabONl32203TjrppNj/ySquLbfcMiGK3ox5GxoTjg4UouedKXJhvE20uSEj6IW50BLW6MZ73rx5PP3007H/0/E6sl3J6RGpkPsVngyNC2O8E8nms3CcA+N5GzJOoSn5zjvvHOn1sv37d9ttNyZNmhT733jehihxPL9cZ0jMJwq12zx/+0QNeUGhGe+LL76Yn3/+Oa673CEdzzsXPQ/6uL0x3oYo2X333XnyySc56qijci1K3pAL4x1FzgFjvA2etG7dmjVr1kQ+LSPTVFRUcNddd0V2vVw0XvQ0lcZ4G6Lm5JNPzrUIkfHpp5/SsmXLBl0jm8Y7ysyUxngbPFm+fDm1tbV5G22eDoUSaatXRo3p+RsMUdOzZ88GXyObDXR9imtDMcbb4ElZWZnx+shNt7kedBfF2JjBYPAnmzru6LazlnpDMAFrhkbPWWedBZDWEoK5HvOvrKzM6f0NhsZOthvoK1as4Pnnn2/wdYzxNjR6HnjgAdatW0efPn1SPjfXxnvLLbfM6f0NhsZOtnV86623jqRX03SbGxo9IuK5LnkYcjXP/a233mL69OkccsghObm/wbC5UGi5LBwyKrWIDBCRr0RkgYhc5rFfRORue/8cEWl49IHBECG58rwPPfRQrrzyypx7/l4YvTY0JvJRx8KQMeMtIsXAvcBAoBswVES6uQ4bCOxsf84C7s+UPAaDoeEYvTYY8oNMet69gQVKqYVKqWrgGWCw65jBwHhlMR1oLSLtMiiTwZAShdqllkGMXhsMeUAma6b2gL6I7hJ7W6rHICJnicgMEZnhXvXJYMgk1113HQCjR4/OsSR5Q2R6DUa3DbnjhRdeKOhMc5kMWPMaSHBnyQhzDEqpB4EHAXr16lUYmTYMjYK+ffuyceNGM+d9E5HpNRjdNuSOIUOGMGTIkFyLkTaZ9LyXAHr2++2BH9M4xmDIKcZwx2H02mDIAzJpvD8BdhaRziLSBDgJeMV1zCvAqXZ06r7AWqXUsgzKZDAYGobRa4MhD8hYt7lSqlZEzgcmAsXAOKXUFyJyjr3/AeAN4ChgAbABGJ4peQwGQ8Mxem0w5AcZTdKilHoDS5H1bQ9o3xUwIpMyGAyGaDF6bTDkHjMPxmAwGAyGAkMKZZlEBxH5CfjeZ3cbYFUWxUlGPsmTT7JAfsmTT7JA6vJ0VEq1zZQw2aKAdDufZIH8kiefZIHCl8dXtwvOeAchIjOUUr1yLYdDPsmTT7JAfsmTT7JA/smTD+TTM8knWSC/5MknWaBxy2O6zQ0Gg8FgKDCM8TYYDAaDocBobMb7wVwL4CKf5MknWSC/5MknWSD/5MkH8umZ5JMskF/y5JMs0IjlaVRj3gaDwWAwbA40Ns/bYDAYDIZGjzHeBoPBYDAUGHltvEVknIisFJHPtW1/EJEvRKReRHq5jr9cRBaIyFcicqS2fW8RmWvvu1tEvFY9SleeW0XkSxGZIyIviUjrHMtznS3LLBH5n4hslw15vGTR9l0sIkpE2mRDFj95RGSUiCy1n80sETlK25f1ZyMif7Hv94WI3JINWfIFo9spy5ITvfaTR9uXVd3OJ732k8fennndVkrl7Qc4EOgJfK5t2w3YBZgM9NK2dwNmA2VAZ+BboNje9zGwH9ZShW8CAyOU5wigxP5+M3BzjuVpqX3/K/BANuTxksXe3gErD/b3QJscP5tRwMUex2b92QAHA28BZfb/W2fr2eTDx+eZGN32lyUneu0nj70967rt82xGkQO9DpAnK7qd1563UmoKsNq1bb5S6iuPwwcDzyilqpRS32EtitBbRNphFfxpynpK44FjI5Tnf0qpWvvf6VjLH+ZSnnXav83YtI5yRuXxksXmDuDvxK/nnJNnE0Auns25wE1KqSr7mJXZkCVfMLqdsiw50Ws/eWyyrtv5pNcB8mRFt/PaeKdIe2Cx9v8Se1t7+7t7eyY4HavVlFN5ROQGEVkMnAL8I1fyiMggYKlSarZrVy7f1fl29+M4Edkih/J0BfqJyEci8p6I7JNDWfKdfHgmOdftfNFrW5Z80+180WvIkm43JuPtNUagArZHe3ORK4Fa4Mlcy6OUulIp1cGW5fxcyCMiFcCVbKpk4nZnUxaN+4GdgB7AMuBfOZSnBNgC2Be4BPiPPc6V03KcpxjdJj/0GvJSt/NJryFLut2YjPcSrDEYh+2BH+3t23tsjwwROQ04BjjF7vbIqTwaTwHH50ienbDGdWaLyCL7ujNFZNscyAKAUmqFUqpOKVUPPAT0tnflQp4lwIvK4mOgHmvRgnwoN/mG0e14cqnXkGe6nWd67dw387qdbFA81x+gE65ACXv7ZOKDWnYnPhhgIZuCAT7BagU5wQBHRSUPMACYB7R1HZcreXbWvv8FeD5b8vi9K3vfIjYFteTq2bTTvl+ENf6Uk2cDnAOMtr93xepOk2w9m3z4+JUXjG57yZIzvQ56V/a+RWRRtz2eTc702keerOh2zhU4yUN5GqsbpAardXIGcJz9vQpYAUzUjr8SK4LvK7RoPaAX8Lm9bwx2ZrmI5Flgv5xZ9ueBHMvzgn3tOcCrQPtsyOMli2v/ImwFz+GzeRyYaz+bV4hX+qw+G6AJ8IR97ZnAIdl6Nvnw8XkmRrf9ZcmJXvvJ49q/iCzpts+zyYleB8iTFd026VENBoPBYCgwGtOYt8FgMBgMmwXGeBsMBoPBUGAY420wGAwGQ4FhjLfBYDAYDAWGMd4Gg8FgMBQYxngb4hCLD0RkoLbtRBGZkEu5DAZDwzC63bgwU8UMCYjI74DngL2AYqw5rgOUUt+mca1ipVRdtBIaDIZ0MLrdeDDG2+CJvQbtb1grGP0GdAS6Y+XtHaWUellEOmElSGhmn3a+UmqqiPQHrsFKXtBDKdUtu9IbDAY/jG43DozxNngiIs2wsgNVA68BXyilnhCR1lhrz+6FlTy/Xim1UUR2Bp5WSvWyFfx14HfKWvrOYDDkCUa3GwcluRbAkJ8opX4TkWeBX4ETgd+LyMX27nJgB6zk+WNEpAdQh5XH1+Fjo9wGQ/5hdLtxYIy3IYh6+yPA8Uqpr/SdIjIKKwf1nljBjxu13b9lSUaDwZA6RrcLHBNtbgjDROAv9pq0iMhe9vZWwDJlLcX3J6wAGIPBUDgY3S5QjPE2hOE6oBSYIyKf2/8D3AecJiLTsbrVTIvcYCgsjG4XKCZgzWAwGAyGAsN43gaDwWAwFBjGeBsMBoPBUGAY420wGAwGQ4FhjLfBYDAYDAWGMd4Gg8FgMBQYxngbDAaDwVBgGONtMBgMBkOB8f+V1JojL86XfQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABdWUlEQVR4nO2debxVU/vAv0+320CplCikNEhRJJkV/VAhY6FQpjJmfk1vhsSLjBXShCYhZChDpjKnUhQipaRoTknq3rt+f+y9T/vsu/c+e5+zz3Tv+n4+93PP2eNz9l5rPWs961nPI0opNBqNRqPR5BcVsi2ARqPRaDSa8GgFrtFoNBpNHqIVuEaj0Wg0eYhW4BqNRqPR5CFagWs0Go1Gk4doBa7RaDQaTR6iFbgmbYjI7iIyQ0Q2icgjInK7iIzMtlyJEJHnRGSg+fkYEVmYbZk0ZQ8RUSLSJNtyuCEid4vIuKjPFZEOIrI8NemiRUQaiMhmESnw2J/0s3C5VqTvvFwqcBHpISKzzJe2UkTeFpGjHcf0Nh92d8f2Dub2Vx3bW5vbP7Ztu1dEvhORIhG520WO3URkgohsEJH1IjLetu9hEfnZVH4/isiFUf3+DNIHWAPsopS6USl1v1LqUgARaWg+r4peJ0dZcZJFKfWJUmq/bMpQHtF1tNTvySmlV5ZQSi1TSlVTShVnW5awlDsFLiI3AI8D9wO7Aw2Ap4DTHIf2AtaZ/52sBo4UkdqO439yHLcI+A8wxUOcV4E/gH2AusDDtn1/A6cCNcxrPyEiR/r8tJTxU6ZJsg/wvdLRgjQh0HU0PGmou3mH1wi6TKOUKjd/GBVtM9AtwXH7ACXAWUARsLttXwdgOTAMuMrcVmBuuxP42OV644C7HdtOBH4FCgLK/gZwo8/+04C5wF/AL0Anc/uvwP/ZjrsbGGd+bggo4BJgGTADeAe42nHtecCZ5ufmwDSMhnMh0N1DnueA7cA285n/n+Pey8x7bzb/jnCc38k8d7u5f565vb75LNZhNL6X+TyTLsD3wCbgd+Amxzu8HcNC8CvQ0yH7QPuxtn2/AjcB3wIbgReBKrb9p5jvYQPwOdAq2+U+n/4o23X0ZmAlsAK42Cz/Tcx9lTE6B8uAP03ZqwI7A/+Yv9WqK/XNujTJlPsv4FLz2Y0y7/E7MNCSHegNfGreYz2wBOhsk60RMN2sK9OAoZh11dx/uFmeN2C0Bx2Cnut4Bp51DzjU/O0VbcefBcz1uNZzwNPAVIzO1P+Zz+YVjA7cEqCf7fh2wCzzef0JPGpub2i+i4qJfg+O9sDc9itmG2ve4wvzOa00z61kOzb2zqP4K28j8COAKsBrCY67EJillHoF+AHo6XLMGPM4gJOABRgVMyiHYyjA50VkrYh8LSLt3Q4UkaoYhXuBx/52pjw3AzWBYzEKVVDaA/tj/I4JwHm2a7fAaCyniMjOGAV6AsZo5DzgKRFp6bygUqo3MB54SBnmqfcdhxxr/q9p7v/Ccf47GCOwF839rc1dL2A0APWBs4H7RaSjx+8aBfRVSlUHDgA+tO3bA6gD7IkxehouIkFN5d0xOhiNgFYYjSMi0gYYDfQFagPPAG+ISOWA19WU3TraCaPjdwLQFEPZ2HkQaAYcBDTBKJd3KqX+BjoDK8x6UE0pZf2G0zCUeE2MuvY8RmemCXAwRgfkUts9DjN/Tx3gIWCUiIi5bwIw29x3LzarhojsiWGhGAjsav6OV0Rkt0TneuBa95RSXwNrzWdkcT4w1udaPYD7gOoYHYw3MToYewIdgetE5CTz2CeAJ5RSuwCNgZc8rhn299gpBq43zz3ClOHKEOeHorwp8NrAGqVUUYLjLsR4iZj/S71ApdTnwK5mo38hRmMRhr0wKthHGAX6EeB1EanjcuwwjEL5rse1LgFGK6WmKaVKlFK/K6V+DCHL3Uqpv5VS/2A0nAeJyD7mvp7Aq0qpfzFGl78qpZ5VShUppeZg9HbPDnGvpBGRvYGjgVuUUluVUnOBkcAFHqdsB1qIyC5KqfWmvHb6K6X+VUpNx2igupe+hCuDlVIrlFLrMBqMg8ztlwHPKKW+UkoVK6WeB/7FUASaYJTVOtodeFYpNd9UyndbO0wlehlwvVJqnVJqE0bn9dwE8n2hlJqslCoBdsFQ9NeZdXkV8JjjGkuVUiOUMdf7PFAP2F1EGmB0Pqz6MAOjXFucD0xVSk0125dpGCPZLgHO9cKr7j1v3g8R2ZUdgwovXldKfWY+gwOB3ZRSA5RS25RSi4ERtmewHWgiInWUUpuVUl86L5bC7wFAKTVbKfWl2T7+itGJd+30RUF5U+BrgToJHKeOwhhZTTQ3TQAOFJGDXA4fC1wNHEfiEYOTfzCU4Sil1Hal1ETgN+AohzyDMEaP3ZVpg3FhbwyzebL8Zn0wG48p7Cj052L07sEYiR9mOvRsEJENGAp+jxTuHYb6gNXAWSzF6G27cRaGGX2piEwXkSNs+9abDan9OvUDyvGH7fMWoJr5eR/gRsfz2TvEdTVlt47Wx1bPMMqbxW7ATsBsW7l5x9zuh/16+wCFwErbNZ7BsJRZxMqtUmqL+bGaKZtbfbBfu5ujXB+N0QFIdK4bfnVvHHCqiFTDUOqfKKVW+lzL+QzqO+S8HcOPAoyBTjPgR9OacorL9ZL5PTFEpJmIvCUif4jIXxgdMbcOXySUN8eHL4CtwOkYpic3egECzN1hXQKMHvxcx7FjMeZhxyiltjiOT8S3GA4wnojIPRi96vZKqb98Dv0NwyTkxt8YjYOFm7J1NjovAHeJyAyMebiPbPeZrpQ6gdQJ4tjmPGYFxoiquk2JN8CY7yt9smGSO01ECjEa8ZcwFCpALRHZ2VZRGwDzw/wAF34D7lNK3ZfidcozZbWOrmRH2QOjvFmswegstFRKuZVlr7pi3/4bhrWnTgDrhZtsbvXBuv5vwFil1GXOE01Lnd+5bnjWPaXU7yLyBXAGhmXt6QSyO5/BEqVUU9cDlfoZOE9EKgBnApMcTo6Q+FnEtaem45y9o/U08A1wnlJqk4hcRxotlOVqBK6U2ojhxPKkiJwuIjuJSKGIdBaRh0SkCkavrw+GWdT6uwbo6RwVKKWWYJhH7nC7n3ntKhjPuaKIVLF5Sr6GUVB6iUiBiJyNMZL8zDz3Noz5nROUUmsT/LRRwEUi0lFEKojIniLS3Nw3FzjXlKUtwQrTVIze7ACMOegSc/tbQDMRucC8XqGIHCoi+we4ppPVGI45+/oc8yfQ0KxwKKV+w5jn+p/5LFth9KrHO08UkUoi0lNEaiiltmM4rjiXidxjHncMxvTAy0n8DjsjgMtF5DAx2FlEThaR6ilet9xQhuvoS0BvEWkhIjsBd9lkLMEoO4+JSF3z2nvKjrnbP4HaIlLD57mtBN4DHhGRXcx2oLF4zNk7zl2KYRK36sPRxHdcrFHxSeZzqCLG0ra9ApzrhV/dG4OxMuBAwllNZgJ/icgtIlLVlPUAETkUQETOF5HdzOe9wTwnrk0I8Ht+AqqY9boQ+C+GA6JFdYy2ZrPZBl8RQv7wqBzwPM30H4bZdxZGb+oPDJPxkRjm4pVAoeP4Khi95FNw8UK0HXcpNg9XDC9J5fjrbdt/DPAdhmfpLOAY2z6F0aPebPu73ec3nYExYtiEMeI4ydy+L/CVef4UYDClvdArulxvlLnvUMf2/czrrMYwd34IHOQh03OY3tzm97uJ92wdYF5nA3C4y/m1MTxn1wNzzG17YXQk1mFMG1zuce9KGGbI9RgV6mvgaHNfBwxHuDvM97oMuMBNbuf7xser3/zeybzXBrMsvQxUz3aZz7c/ymYdvdX8LW5e6FUwzK2LzfL6A/Ee1KPN+raBHV7o4xzXr4ExAlyOsULiG+Bcc19v4FPH8fb77wt8Yv4GNy/0wzA8s9dh1NkpQIMg5zru2QGfumces5P5DJ5PUEaew9a+mNvqY1gQ/8Co+1+yw0N8HLDKlHMBcLq5vSHxXuiJnkVvjDK4CsOh71fbPY4FfjTP/QSjjfvU7ZlH8SfmRTWacoOIdMCokHtlWRSNRuOCiPyCsYLEuXpFY6NcmdA1Go1Gk9uIyFkYI9UPEx1b3ilvTmwajUajyVHECHPbAsOsXpLg8HKPNqFrNBqNRpOHaBO6RqPRaDR5SN6Z0OvUqaMaNmyYbTE0mowxe/bsNUqpREE98h5dtzXljVTrdt4p8IYNGzJr1qxsi6HRZAwRCRwJKp/RdVtT3ki1bmsTukaj0Wg0eYhW4BqNRqPR5CFagWs0Go1Gk4doBa7RaDQaTR5SLhX4P//8Q/v27Xn88cezLYpGo9G48txzz/Hll6VSVms0McqlAh87diwzZszg+uuvz7YoGo1G48pFF13EEUcckfhATbmlXCrwf/75J9siaDQajUaTEmlT4CIyWkRWich8j/0iIoNFZJGIfCsibdIli5OSEh1iV6PRaDT5TTpH4M9h5Eb2ojPQ1Pzrg5HHNiNoBa7RaDSafCdtClwpNQMj+bsXpwFjlMGXQE0RqZcueexoBa7RaDSafCebc+B7Ar/Zvi83t5VCRPqIyCwRmbV69eqUb1xcXJzyNTQajUajySbZVODiss01t6lSarhSqq1Squ1uu6We00GPwDUajUaT72RTgS8H9rZ93wtYkYkb6xG4RqPRaPKdbCrwN4ALTW/0w4GNSqmVmbixVuAajUajyXfSlk5URF4AOgB1RGQ5cBdQCKCUGgZMBboAi4AtwEXpksWJ04Q+fPhw9tlnH0466aRMiaDRaDQaTUqkTYErpc5LsF8BV6Xr/n7YFfiiRYvo27cvAP/++y+VKlWKO1YpxZw5c2jZsiVVqlTJqJwajUaj0XhRLiOxiezwn1uzZk3s84UXXljq2LFjx9K2bVvOOOOMjMim0Wg0Gk0Qyr0CNwwBBi+++GKpY0ePHg3AO++8k37BNBqNJkWuu+466tSpk20xNBkgbSb0ssKWLVuyLYJGo9EE5oknnsi2CJoMoUfgynXpeQytwDUaTb6QqD3TlC3KnQLfvn07W7dujX3XClyj0ZQVZs6cmW0RkuKVV17ho48+yrYYeUe5M6E3bNiQFSuCx4vRqUc1mnhEZG9gDLAHUAIMV0o94ThGgCcwlopuAXorpeZkWtbyRlFRUbZFSIqzzz4b0BaEsJS7EbhTeScqMH///Xc6xUmZMWPG8H//939s2rQp26Joyg9FwI1Kqf2Bw4GrRKSF45isZRssz9inBzVln3KnwJ24KfCvvvqKIUOGMG/evJxXjL169eKDDz5gyJAh2RZFU05QSq20RtNKqU3AD5RORJS1bIMaTXmh3JnQnbgp8MMPP7zUtgoVcruvo+fqNdlARBoCBwNfOXZ5ZRuMC5csIn0wRug0aNAgbXLmM2+88QZdu3YNdKwegZcvclsrZYA//vgj0HGtW7dOsySpoeeONJlGRKoBrwDXKaX+cu52OaVUIY0602BZ5JJLLgl8rFbg5Ytyr8AXLVoU6LjCwsI0S5IaWoFrMomIFGIo7/FKqVddDslatsGyhjO8s0ZjUe4VeI0aNQIdN3PmTB555JGEx02ePJkbb7xR5xzXlFlMD/NRwA9KqUc9DstatsGygL1DXrly5cDn5eMIXA8+kqfcK/CCgoLAx950000Jl5WdccYZPProo0yZMiVV0UKhK4EmgxwFXAAcLyJzzb8uInK5iFxuHjMVWIyRbXAEcGWWZM1L7AOAMAo8H9FtV/KUeye2sCPloOss165dm4w4mnKAUootW7aw8847Z1uUpFBKfYr7HLf9mKxlGywLjBs3LvY5jAldj8DLF+V+BB5WgQc9vri4OBlxkkZXgvyhd+/eVKtWjfnz52dbFE2O8uuvv8Y+awWu8aJcKXC3ghJWgQdVzHoOXOPFmDFjABg5cmSWJdHkKvb2I8w0Xz6iFXjylCsF7qZU161bF+oaQU3oegSuSUTFiuV+Bkvjgb0+hwmPqkfg5Yu0KnAR6SQiC0VkkYjc6rK/hoi8KSLzRGSBiFyUTnncFPg999wT6hpagWuiQitwjRf2tirZ+OZRtwlKKUaPHs22bdsiv64mOdKmwEWkAHgSIyZyC+A8l3jJVwHfK6VaAx2AR0QkbYseozBrawWuiYqybhrVJI+9rdpvv/0Cn2cfgc+ePTtSmV588UUuueQSBg4cGOl1dduVPOkcgbcDFimlFiultgETMeIj21FAdXNdaTVgHUaihLQQRUHJVQWuyQ++++672GetwDVe2BV47dq1A59nb+PeeOONSGXasGEDAH/++Wek1y1LCvyVV17h66+/ztj90mnDc4uFfJjjmKEYAR9WANWBc5RSpYbJUcVLDjICv+KKK3z3+ylwe+ITPQLXuHHRRTtmibQJXeOFva0K05akqx1YsWIFgwYNSss9ylLblem0qOkcgQeJhXwSMBeoDxwEDBWRXUqdFFG85CAKfNiwYb77/RT4GWecEepemvKHvfzoEbjGC7sCSFaBR6lEzjnnHBYvXhz5ddNxvfJEOhV4kFjIFwGvmikHFwFLgObpEiidc+Dbt2/ngw8+iH3XI3BNIrQC13iR7Ag8XQOHv/7akatGK/DcIZ0K/GugqYg0Mh3TzsUwl9tZBnQEEJHdgf0wwi+mhXQq8H///Tfuu1bgmkRoBa7xombNmrHPQduS7du38+qrO/LKRNEmFBcXs3nz5rh0yqNGjWL79u0AfPrpp3z44Ycp3aOstF1LlizJ+D3TpsCVUkXA1cC7wA/AS0qpBY54yfcCR4rId8AHwC1KqTXpkKekpITzzjsv5esEdWLLtAn9scceKzMVobyg58A1XtSqVQuAqlWrBm5LBgwYEJunjorrrruO6tWrl+pEvP322wAcc8wxdOzYMaV7lJV2q0UL5yKr9JPWdeBKqalKqWZKqcZKqfvMbcOUUsPMzyuUUicqpQ5USh2glBrnf8Xk+eyzz3jnnXdSvo6XAncWwg8//JBJkyaFuvb27dsZOnQoP//8c1KyRb1sRBM99nKi00SWH7788kt69+4dWFlZx1WtWjXwCHzZsmVx36MI6vLcc88BlFr7HaX1KNcUuFIqqbX3W7duTYM0/pSbSGxRBR8IqsCnT59Ot27dQi25ePLJJ7nmmmto1qxZUrLlYxSm8oa9nNjNpJpomDx5MiLCypW5lbm0U6dOPP/882zcuDHQ8VY5qVixYmAFbjdz26+RCl6K2nmvbFBUVEStWrXiEr9EQb9+/SgsLIz0muki+28hQ3gVRMtUFRQvBe5l5gpaYSH8CNruWAJQpUqVUOdrMs/ff/8d+6xH4NHz1FNPAfDtt98mPHb16tV8/PHHga/98ssvxzyxw2K1D0E72dbxhYWFgRV4mN8SFEtRL1y4MG67sz1t0KAB69evT+oeyXY0NmzYwIYNG7j22muTOt+LoUOHArlnGXCj3CvwsIXOqzJFMecd9hr2jEWgR+D5gN3Mlg8NRL5h1c8gJt5jjz2W4447LvC1u3fvTqtWrZKSy3rXYU3oYUbgzvYg1fK1ceNGz/bR+Xx/++03pk+fntR9og44kwo//fRT7HM+BOMqNwo8KpOP1wjc62WHUaphFbizguZDgSvPbNu2jRUrnCspNVFi1YEgDoI//vgjEE7R2S0oYbDqdtA6mowCd7LHHnskdZ5F/fr1Pfe5dZCSlbNXr15JnZcOPvvss9jnfGhPy40Cj8rpIqwJPYxDWtges1bg+cXo0aPjvusRePRY9TNMfc/EihHrHkHvlYwJ3Um1atWSOs9iy5YtnvvcBkTJJl3JJezlJh/aU63AQxJWgZ988smBr53pEXjUWYU0/qxatSruu1bg0WM3oSulAvmVZOI9JDsCLygoSLqDkU4F5NaeWmvD083ixYv5/PPPY9NR69atY8iQIZFcWyvwHCXdJvRszIE7G54wPeC33nqLypUr88wzz4S6pyZ5nE6GWoFHj12Bjx8/nrZt27Lvvvv6npOJEbj1rjNpQk+nAsrmCLxx48YcddRRXHfddbFtUTmy2RW4s1wopXjppZdiSV3sODvnmUIr8ADYE5zYIx3ZyYYCd/Z4w1TYU089FYDLL788wZGaqKhatWrcd63Ao8deBxYsWAAkjpAVpN6l+q7CjsCt4+fNm8f777+f1P3t9xo8eDAiEpdwKRXcRuAXXXRRRgcEc+fOjX2OaoDmNwJftmwZ55xzDt26dSt1Xs+ePWOfM+lMXCYV+LRp03j33Xcju569cEycONH1mCh6u2ErqdMEng8mn/KMc21pvipwERktIqtEZL7H/g4islFE5pp/d2ZKtqBzzfagTplU4EE76c77uY36EmFvH5544gkgupGi15RktgYEUU2R+ilw63m+//77pc6zvx+twFPkxBNPpFOnTnGVJZUKGOSFRDECX7duXajjUxmBazKPswzmqwIHngM6JTjmE6XUQebfgAzIFEdxcbHr8924cSPbt2+nc+fOsW3Tpk0rlcvASbJrnC0sWR566CEOOuigwMdb/PHHH6HvuWzZMr755hvX66VKugK5hJHTfmxU/jz21QvO9tTexjs7VHbrmlbgKeCVTi+VAhxEOaeqwJVSzJgxI9Q5znuWBS/QskxZUeBKqRlAuN5mhrAUi5cCr1mzJmeeeWbcttNPP50bbrjB97pdunRJWib72v+nn36aefPmJTzHbf41DFWqVOGxxx6jTZs2cdujUi7pKrvZHoT4jcDtv9kZNtXu36IVeLIohbr2Wo42v9orgf2zNf8blFQV+AEHHMDvv//ue76zsLRo0YIpU6aEume2C7/G4MILL6Rt27alluGUFQUekCNEZJ6IvC0iLb0OEpE+IjJLRGatXr065ZtajWdJSUnc87XXlbfeeqvUedZ8uRv//vsvM2fOTFqmZKbzUi0rziVk+VLWwrRhyUbF88NuWXC2r/bvTpO9feSeyTCzZUuBT5tGhSFD+AT4AmDSJDALhLMyN23aNPBlgxQqPwW+YMEC7r33Xt/znRXshx9+4JRTTgl1jlbgmWPTpk3cfPPNriE7x44dy+zZsxkxYkTc9nKkwOcA+yilWgNDgMleByqlhiul2iql2u62224p3XTr1q1x3t7255uobvjtdzquVq9e3dOZ1Y1kRmTOshHWwucVyCbXR+CZzuLo5OGHH4599jOh+1lI9Ag8WQ46iKLbbmMtcDhQ2KMHNGsGTz7JdtucRUlJSSinhyCKMdExzzzzjO+a1GQKbrIj8DKsODLGnXfeycMPP0zr1q09j7Evc4Hyo8CVUn8ppTabn6cChSJSJ533XLduHVWrVmXOnDlAaQVeVFTkWz/86p/zPW3evJlbbrklRYn9SdWE7mzfoi5rXtdLdfSZ7UGIPbe5VuCZpm5dtv33vzQArgJKGjWCxYvh6qtp2aULA4C6pEeBB1HAbdu29Uw5l0wFS3YOPNu93LLA999/77rd7T0WFRVRVFSUcqOcL4jIHmK2YiLSDqOdWZvOezqdvDZs2FBKgfsFGgmrOFJtpBPVQUv2du3axX0PipciTfcIPEgI21WrVvHqq6/y/fff5/RKGj8FXlxczIwZM3j99dcBrcAjo6SkhC3AU8CWb74xzOiHHUbN4mL6A0uBfvPn0ySEw1eUTmxesZSTUarJmtDLquLIFMXFxbz33nuu+5zPdty4cRQWFlJYWFhqDW6+vgcReQFjlmo/EVkuIpeIyOUiYq0hOhuYLyLzgMHAuSrNP9Z5+XPPPTetCjyMw6hbg57ofKUUIsKtt94a++6H038gUWrRgQMHxqwVURJkYNSlSxfOOussWrZsWSoAS7oGF4ccckjo9L0lJSU0btw4FgjIOQ3bvn17Tj/9dMaPHx8nd40aNSKROQiBFLiI7CYit4vIcHMN6GgRGZ34zMxjr4jDRozgzPHj+fKxxzgaeB2oAnT5/XcmL1zIZODIkNf0Imj+Ya+KmEkTuh6Bp4bfcj/ns73gggtin5PN1pRrKKXOU0rVU0oVKqX2UkqNUkoNU0oNM/cPVUq1VEq1VkodrpT6PEtyxj5HrcCXLFnC1KlTk5YtkQIvKSlBRGLKP5ECP+qoo+K+2xWp27n9+/fnkEMOCSpuKVIZgdsD63z66adx+9I1Ap8zZ06o1M6WLIsXL47Ja6/b999/f+zz+eefH/c8ks1YlwxBR+CvAzWA94Eptj9fRKSTiCwUkUUicqvHMR3MYA8LRCTlFs7+kG+++WZee+01jjjySD4DTgf2A96sX59/RTgN+Ax4F2PO3IuLL7447vubb75Z6phUs0xFMQLXJvTM4NdI+T1b53n5OgLPB9q0aRNKgYeZA7d4++23A8mS7Ai8QoUKgRW4M2mSfQQe1XJaO1u3bmXQoEGltgcZgXvJBrltQrevVLBHnKtUqVJannEQEneXDHZSSoXy2hCRAuBJ4ARgOfC1iLyhlPredkxNDGt3J6XUMhGpG+YebiRSTj8BjzRtyrB69Thi9mz6ASeaf1OBu4BZjnM6duwY971r166sWLGCevXqxbYFnffQI/D8x89RJ4wi0Ao8OpzPsnPnznFTFkVFRb51NIoOtBfJKPCwI3AnXkoy0XMIyv333++6PC6sAneSS22TvT2dPXu2Z9rTwsLCrCnwoCPwt0QkbCSDdsAipdRipdQ2YCJwmuOYHsCrSqllAEqplOP8BSkA06dPZ9NOO9EfaAjcB2wGugBfA69hjNTBmEtzw2lGTbXnmMxLT7b3mkuVJB/xe1d+z9bZ4OWqAheRStmWIVVKSkoYPHhw7HtRUZGnAylkfuSXKHOXNQeerAL3CkgSVT56r9CuqSrwZN+D33TAmjVrkrqmXZZff/3V87icVeAisklE/gKuxVDi/4jIX7btfuwJ/Gb7vtzcZqcZUEtEPhaR2SJyoYccgYM9BC0AVkFbD/wXaAQ8CPyNYWqfD7zdpAnPmWail156Ke58ZyFMNsZx2PP9znnhhReSOk8TDr/nF+bZ5oICN+teQ9v3dhj92Lwi0brpzz77jC+//NLz/GTqxOeff84PP/yQ8Di3Ea9fZwJ2mNCtdiasfPb26eyzz2bZsmUArok4oiTIHHg6FPjRRx/tuc85BRoU+zP3+11OBZ5JfBW4Uqq6UmoX838FpVRV2/ddElzbzU7j/JUVgUOAk4GTgP4i0sxFjsDBHoIWdHtPsUqVKhTsvju3Ao2B4abwnRYtonLLlvDggzRv2DDu/JUrV/Kf//wnFmHNum+TJk187/vkk0/GfV+3bh233XYbP/30UyC57TgLzbRp0wKdY3fA0ITHr7KGqci5oMCB/wHviMiVInIfMAy4KMsyhSaRAr/gggviHAqd+CkOr/f0zTff0KJFCyZNmuSb5ctNgVux1YuLi12XK7322mtx56ZiQrf77PgNgBYtWkTz5s0DxV33kidbJnS/55NsHHv7e/H7XYWFhXEOqjkzArcQkQ+CbHOwHNjb9n0vwGm/WQ68o5T6Wym1BpgBeEfGSMDatWs9s4XZ6dGjR9wL+eKLL1i+fDkAfwJ9LSE6dYK//oJbb2W/M8/EPodwxhlnMGjQoFjvzip4lSr5Wx8HDBgQZ8bq168fDzzwAEceGcQfPp5kCvuMGTN48MEHQ5+n2YGzgm7ZsoVPPvmE4uJifvzxx6Svkw2UUu8ClwNPABcDXZRS0a8vyjBhR3KpWKW6devGZZddFuocawquWrVqNG7cOG7fk08+yc8//8zWrVsjMaEHZejQoSxcuJDx48cnPDZdCjyZEXj16tV9n49dpkSWDy9Z/H5XNp1TE5nQq4hIbaCOiNQSkV3Nv4ZA/QTX/hpoKiKNzDm1c4E3HMe8DhwjIhVFZCfgMCCxTcqDxYsXc+ONNyY8bsSIEey///6x74WFhVSsWJHJkyfHti0AePttePddaNmSSsuXMwVjfrwB8NdfxgyCle0nqAIH4nrr8+e7ZmQMRDIFJVuJ58sSzuferVs3jj32WB599NFY4I1krpMNRKQ/RrjTY4G7gY9F5OSsCpUEiUbgiUh1DtxtjnTTpk0sXbqU7777rtQ+K4DJ1q1bWbp0adw+y9wNO0bgCxcuDCyLiCQVEa1OHSNY3tq1axMui01lGVnUCrygoCCwAg8T096ygjiv4cRpYckZBY4xGJ0FNMeIbzzb/Hsdw8PcE6VUEXA1xiqtH4CXlFIL7AEflFI/AO8A3wIzgZFKqaQ1mj2lmx877bQTAwbsyHBYv77RF2noMJMDcOKJ8M03/HnLLWzCmB//AbgNqMQOk5RV8IIocHvj4swRHYZkRg3/+9//kr6fxsA5l2qtBx49OlxohFxQ4EAdoJ1S6gul1DMYU1nXZVek8PhFzUrm/LC4vcv27dvTsGFD17CrQU32lnLo3bt3YFlKSkpSVuCHHnqo77HpGoGH6ajYr+dXl+ydil12STTzu4NHH3009jlXp8YSzYE/oZRqBNyklGpk+2utlBqa6OJKqalKqWZKqcZKqfvMbbGAD+b3QUqpFkqpA5RSj6fyY+wp3RKxyy670K1bN7p160atWrUA2HXXXd0PLixk48UX0xzDlX4n4H6MXsdx5iFWg1G5cuWE9167di3nnnsu06dPD9Rj9SIZBW5ZDDTJ069fP9ftiXJKO8kFBa6UuhZARPYzvy9VSp2QXanCk2pmvmTmwBPhV9eKi4sDRUJL9t7JKPCdd94ZMNqnRNkTvbA/x3/++ScuaEsQ2U47zblQKTEiwr///ltqLfzff/9NcXFxXKfCz/vfzw8pTOS9nFHgNn4XkTMdfx2jWLcdJUFH4BYvvfRSnHe5NRJ3o7i4mBXAeUBH4EeMpWYfAqtPPZVPTPN7kBH4bbfdxosvvkiHDh18PWMtVq5cyfPPP18qbnBUBSUXFEkQli9fzpgxYxIuwUk3Xo298/0kIheeu4icCszFsIQhIgeJiHOqK+dJZgR+2GGHxT6vWLEio++juLiYZ599NuFx6eg8eGE9w1deeSXhsV5y2ZeXnXPOOey7776l3o1fIJdk7isijBw5kmbNmrFx40b23XdfLrvsMqpVq8aFF14Yp8D96qhfelK/87IZ3yGoAr8EGAn0NP9GADcAn4mIt2tnhgmrwJ34mX/szg8fYji53QFsBXZ76y2GzZjBuUClACZxy2EuKEceeSS9e/fmgQceiNtuNVJt2rQBiJvXD0O+LCtr1aoVvXr14rnnnsuqHF7PKx9H4Bjz3u2ADQBKqbkYqyrzhh9++IHDD4+PpRikTLdp0ybOgSxsvbSzdu3aUPWouLg4NuJNB8l0cqMYZe6+++6xz9bUkvO5pJKxzE1G+xz05s2bWbJkCSNHjgRgwoQJcVZOP0Xs1/6feeaZnvuymaQo6JMsAfZXSp2llDoLaAH8i+F0lt68eiEIY0IPi/OlbMMwo7cCPsbIcvYCcO+cOeyT4FphKgrscJD5+OOPXWWyCl6yBSesPNnCWg7i5hSUSbwa6nwcgQNFSilnkOicECwow4YNK7XNLUqYExEJZGoP8p5++eUX+vfvn/A4i+LiYnbaaaek75cOwrQDXnVgwYIFdO3aNc4Rz/l7girwsWPHcvfdd8fVK7eOiV2Bu8kVdASebMfC+dwy+f6CTsA2VEr9afu+CmimlFonItm1Z9oIYr5OloMPPth1+8/A8RjrbwYBh6xaxQKM4DCDMXo+TsL09O2Fw8vTNgoFHmTuPldI58glCFGNwK+99lq2bNkSyziVJeaLSA+gQESaAv2ArCQfSRY3PxK/yFkWTgXu1YD7mVbtTJo0iRtvvJEFCxaQKF5FUVFRIIth0Dq98847e2Y6DEoqHfk6derEIp69+eab1K9fP6ZYkx2BX3ihEddr27ZtsdgVbjLar+f23u0K3K+OJmuJdK6bz8UR+Cci8paI9BKRXhhe6DNEZGdM01sukMzaRydeXooi4t1jBkYB+wNf7bMPOwOPAV+SwqJ2E78MVkOGDAF2/O5kC2AuJRAIQrYtBl7PORmz5W233ZaqOKlyDdASw6L2AvAXeeaFnmy9D6rAt2zZEuh6JSUlnHTSSRx77LEJp7NGjx4dKINhUGVwxBFHBDrOjygdtZ555pnY9VI1odsd4dxktL+fHj16lNpvPyfKjHRe5KICvwp4DjgIOBgYA1xlBmA5zue8jBIkSH+DBg1896cSZetPYNSJJ3IqRgzZQzHW4P0PI41pMnilBfz++++ZO3du3DHJFpwwwQ2C8PPPP6c0n5iIbM/Ze90/23Ilg1Jqi1LqDqXUoWa0wzuUUtEWiDST7EqOChUqxDXuXg140HpVUlISq5OJ+PDDD3nssccSHhf03lF0atPlaZ2qArfn8XaLImnF5ABcrRB2s7mfko6q/uacAlcGk5RS1yulrjM/59U8mUWipRuphsmsWrUqb2E4CQzGeMC3At+xY8lZGOzTAvb72wP0WxUi2VdiDzWY6mv9+++/adasGXvvvXfig5MkmZ5ylMU13ywWbojImyLyhtdftuULQ7IKXERCKXD7umA3rAxiUVLWFbhSyjNhlIV9EPPII4/E7Rs+fHjcd7ewqfb7+/3GMjsCN5eN/SwiG0MkM8lJateu7bs/1YdvzWttxsgAcyRGYpQmGN7ro4BaIa531FFHxT579RCtBixZ2Zs3b87w4cP57bffqFWrVlyQmzCsXLmSatWqJXVuGMJWtJ49e9K0adPQc9ReRDnSPhHgk08iu14IHgYeAZYA/2CsLBmBUXSTDw+YBZINhuQ0oS9btszVxFpcXEz16tWpXr267/USBVDZZ59E7q3JE4XyceZp8CMVBf7PP/+EupZfpyhICFu7c7PXcyoqKuLKK69MeK0gKKUiy/qWiKC2jIeArkqpGip4MpO8xK8wBTE1Ox1TvgLaYDi1/Yvh7PYD0D0J2bw8KK0e6uLFi33l90tk0LdvXx599FE2btzIXXfdFUquDRs2cOGFF9K9ezK/KjxhG6sJEybwyy+/MGuWM9N7ckShwAsxKtW7AD16QJIJF5JFKTVdKTUdOFgpdY5S6k3zrwfgndopB0llDrxZsx25k4499liuv/76UseVlJRQUFCQsKOwbNmySMKE2utwEEWplOKLL74IdG0/wkx7hVn77Kwv9rXiIuJan+ym8FQHVfYOg9cI/Kuvvgr0++vVq5fwmJkzZ7Lnnnvy9dfpT+oXVIH/qYywp2WeVAuLmyf8doyc462A6cDuwIvAm8Rne0mEVwNgbzScS83s3HTTTb7XT/a333vvvYwdO5ZPP/00bnsyGdaCkOxow1qX6sX69esZN25cQqelzZs3J3V/iwOqVOEz4GagCNh43nkQIsRjxOwmIvtaX0SkEeDvQp1j2E3oQRzDLESEKVOmxG175513WLp0KfPmzYttKy4upkKFCoFG+n4K3Jm0JMi1gtTJl19+OdR1oyAVBW5XqEop13NvuOGGFCV0v5+XAg+aI+Lxxx8PfN9kwsKGJagCnyUiL4rIefZobGmVLEukqsD9KvBPGPPgfTBc90/BSJpyNTtexCAz/7gbdsVll9M+AvFTLr/99pvnPuc1w+CVE3m//faLfbayL0VBsgr8/vvv983f3K1bNy644ALfhDipKu8ewNfFxRwK/IqRQeTM2bMhghUUSXI9RgKTj0XkY+AjEnihi8hoEVklIq6mdjEYLCKLRORbEWkThaDFxcX85z//KbVsx67A99hjj8DXE5FSy70qVKhAw4YNOeigg+LuG2QEbp3vRv/+/WnUKFh8HKseBg1MZbesWStTgjjIBcUtvGkqJnR7/d2yZYvrtaJ0gt26dWtsYGXdu7i4mHr16sWc4oLGcAjjgBfFqqhEBJVmF2ALxpTdqebfKekSKpukah4VEd577z0mTZrEU089VcorVWFMNLYAXgGqY6SC+hRjLY9fsH0v2VKJbBQnWxIK/OGHH+btt9/2PWbAgAHUrl07UKrXIIRR4L/88kvcd2fmJzsffGBkyLVnpXOSrAKvhrGMYzxQZft2XsJY0vEFhkdytlBKvQM0xXDZuBbYTxkpRv14Dujks7+zec2mGP3Vp1OXFN5//30GDRrE5ZdfHrc92YbSSjJiD6fsturDMqEHcZbzmq9t2rRpwg60hTUPX6VKlUB10n7Pq6++GiBuaiAIfiPQJk2alNoWJm2unwJfunSp62+M0hFs/vz5sTgX1gh85cqV/PHHH9xxxx1x2xPhNx9/4IEHcvLJOxL5ZUKBB3LfVEpdlG5BcoUoCs4JJ8TngmjevHmpAr8SOBsju9mTwBEY6d7mv/kmlTHmy514Ka6gXrhRe8gC3HzzzQmPsebUb7nlloQep0EIosDnzZvH5ZdfXiq+fZBK5deJS2b03xZjgXUT4G/gg65dOeeNnHL0PgRoiNEetBYRlFJjvA5WSs0wUwp7cRowxlyp8qWI1BSRekqp4PZtF6xG1jlacovElohevXrFRt/2MmHvDE+bNo0//viDP/74I2UT+qpVqwIrCcuZLOgI3O2eYet6+/btPff5tYkFBQUUFxdTp04dTyubVZ9++eUXGjduXKp+bdq0iUqVKsXe65o1a3w72mHZvHkzu+22G5s2bYrVX+e7iGIEftppp8UN2HJmBC4izUTkA8tkJiKtROS/6RUtOY499tis3t+tsD/88MOex0/GCADzNEZ60jZvvcVc3L2IvJTH0UcH8zlKVKnTvfxh2bJlfP556kG+gijRU045hS+//JJXX301brtXpbI3KlEpcAH+gxHWrAlGxpC2wNetWgW+RroRkbEYHulHY4QuOBRDzFTYEyMUgsVyc1skOMtxotGgfR0xwMaNG+Pi6dvLhP3zqlWr6NWrF2+88QYFBQWBIj16NfDffPNN6KVeTZs2DVQn3e5pX2YahDAjaju77rorzzzzDNOmTfM8pqSkhGnTptGkSRMmTJhQqg5NmzYtLob6hg0b+P7772Pf33zzzaRks+McgTvfRdBgPX5KuVKlSnHvImcUOIbV9zYMfyyUUt8CqQ+l0sBHH32U0vkXXGDkZjnvvPOSOt+twiUycf8FXAkcA6ytW5fmwCfAcMC+6M1LedhDi6YyynbKvm7dOt8542SwL4sLg122IErUqwHzqlR2RyC/+fqgCrweMA14EMPj/DGMxAE/kvy65TTRFjhKKXWlUuoa8889X2pw3AqhqyYSkT4iMktEZvmtkoDSZSBoACJnBEVnffz2229jn+3lw9mpCxJu2KuuFxcXh1bgL7/8cmgTejrwu37FihXp06ePb4CskpKSmFPgrFmzXDvIfsFW7HHVk8WpwJ0JkYKGofV7FoWFhXFWmrvvvjuckEkQVIHvpJSa6diWkxkwUp0PHjp0KK+//nosm40du1OWF26FM2gF+xQYceWV3IORLOUyYCHQF+NF2a9tr9hBFXgiOZyOI7vvvjstWrQoNY9sJ8ioJIoGZvz48bHPQZSoV2PppTztJrtUR+CnYOSK74iRNKALRuo+q4lKdt1ympgPBPf8CsZy4hdY7AW4LoxVSg03I8C1TRQ/3CrzU6dOpXv37glNzFa9cMaad7YRdr8G+z77u/79999TGlEVFRWF9q+pXbt20go8U8GGgrS3CxYsiE21PfbYY66ynXTSSbHP6YhoaK0FLy4uRinFfffdF9tXXFwc2D/H7/e2bNkyrpM3b968uChx6SCotlsjIo0xe9EicjbGNK4vItJJRBaa3qieGRtE5FARKTavm1WqVq1K165dXeOe77lnYitgomw4idheoQJ3Yyw5m4YxAh+GsZ78QJuZx34frxjtTpwVvW3beEvp66+/Hvvcp0+fmBL0Wz8dZFQSRfKRF154IfY5FQXu9S6CKlW/e1fBcEh8E6iDsca7FeB08cuxEXgd4HsReTfCSGxvABea3uiHAxtTnf+G+E6rc2rEDUsBXnPNNXERvJz1wD6St5cPpwNqKh3Rjh07JjVFlawCD5sZL1mCtG32JXle2AcCXnXMz0wf9PpFRUVx69DBiO7mzJ/+hoePil8ZOPXUU/nqq6/itqU7b0OYWOjPAM1F5HeMZSaX+50gIgUY/lmdMZyuzxORFh7HPYgZ0yLfcVPg7du3j+XsToRVYRdiuPx3w5hMbAu8tnIlXHoprF4dV8iDOrs4R8t+FoURI0aUksmNIIrPqcD79esXupdtrzipjC68GpygSnXo0KGu21sCMzGWBG7DGHF3xoiPn+y9MsTdGL6U92NEZrP+PBGRFzAc6PcTkeUicomIXC4iVpswFVgMLMKYfoskxJVbObR7/Tqxv+uWLVvGPjuf/9ln7xg32JeoDR48OO445+jLLeCRV7KMXr16JVTGW7dupWfPnr7HWPew1wHrdx5wwAGxbZlS4EFG4EHqq709cIuYOHXqVE488cRwwtlYu3YtYJQh53y302HuvPPOi7MI2EkUTc+5xDGZBEdhCBoLfbFS6v8wAjw0V0odDZyR4LR2wCLz3G3ARAzvVCfXYKyoCraSPosEUTpulbRSpUrMnj070D2c50/CcHL7H6YJdtQo2G8/ao4Zg6U6g+ZBdyr6oJaBRF6oiXBaCIYMGRIoX7MXqShwrwYnSEekuLjYVYFfAXwNHIjR8TocY87b66llwrklKFZENudfgnPOU0rVU0oVKqX2UkqNUkoNU0oNM/crpdRVSqnGSqkDlVKRhMBzK4f24Dx9+/YF4KmnngKMZT0WzZs3j312Pn+7JcpvqZdVjhs3bswdd9zhmv+7dWv3/IOVKlVKqMCnTp3KhAkTAMMJ04tKlSrFeY1bnVv7NNORRx7pe68g1K1bl969e/seE6Qsh7WYuU3ZhQnQ44Z1vlKqVOfGOaqeMGGC59TgHnvsQefOnT3v4zwvJxS4hTKyj20yvyYKlZPQE1VE9sToCIRfB5IFgjjNpOrJ7RpWELgdOL5OHTjhBFi/nkPHjWM+xtCpSsBc3s5YzkFNUn4dlyC/183MnkpAlFQUuFPe4uJiNm3aFEiB//ln/Hh6D2AK8BRQFSPO/SHAN6XOjCfdTkdBsPIZuPzlbZ6De++9F4DLL7+cRx55hDFjdqyEs3s5OztxQS0irVq1Yvjw4cycOZOBAwdSUFDAFVdcEehaBQUFCaOVnXXWWbHvb731FuBeXgE+++yz2DZLydo7ykEtfn4sXbqUZ5991vcYe9vwwQcflDIhO4/x4pBDDol9dgvikmqnt0+fPgDcc889CRW4kxo1asQ+V6hQwXfK0qnAc8WE7kaiViiIJ+rjwC1KKd8WOYynajoJosBTccBYsmSJbyX/SQTefRcmT2Yh0Ax4DTjwqqs4NMD1nYUraK/WTya/AmoljnFT4EGc3+xEZUJ3vp+OHTuyyy67xExsftgdUrpheH91AdZhxLa/FKOzBfFmWSe5oMCtfAYufzmZ5+DTTz+lW7duvsdYillEuOGGG+IaXj8rVVDlICJcdtll7LrrrqXuaT/GC7965LWMyXnOwIEDPa8RpCPit6TVSZByan8Wxx9/PO3atSt1TJA20f4O3OpiqtNO9sGLU4Enmgawm829YrdbOMtSTo3AHSQaegXxRG0LTBSRXzHimjwlIqeXulEIT9V0kk4F3rZtWxo2bOhbyYuLi0EETjuNAzAcE1YDO3/zDTOBCcBOjjkYO/bCFEaJONPxde3alYceemiHTB5YDaibsg6rwL3kSfbcCRMmcNxxxzF9umEtDpKB7e+//6YmMA54CcPB8B3gAMAZjbpLly6e18kFBZ5vrFy5MuFoJtnnmsrKlSAKfPHixYC/AveSwXnOJz6Z64LUqTAxxoM8l6hM6PbrOJ3Mgsrih32de9gRuH2/GeQo9t2K5OZ1rayOwP3MbEB9v3MxpgWbikgjEamEsW48zrVPKdVIKdVQKdUQY7r3SqXU5KR/TZp58MEHEx6TrHKxCkWQpAAvv/wyRRim2ybA1uuuYytwHtC+b1/o0wdcIhnZ1z4mq8BnzpzJm2++GQtD6Vc5lVKMHDnSNStPIpP1tm3beOihh3j00UcZP358ZCPwhx56iAULFtCzZ8+4xC/OdaDWe3j++efZb7/9WL9+PYUffcR3QE+MkfYVGI5qiewYN998s6+joZdjnGYHiVJ5Zoubb745LraBW72yYqD71W3nPkuh7bvvvnHb/SwJzjK2bNmyUkFQEtX7Sy65JPCxEL86xIsg9dWuoNOxjOz333+PfQ47Arc74ToTzDgtIs5rZXUEnsDM5mvTUEoVYTjlvouRQfMlpdQCh7dqXtG1a9eExyQ7Bx5EgRcXF7N69eq4tJ3/FBay7Z572A8jQLUoBSNGQNOmcNVVYBbcNWvWxFWMMD1au0z2BmTz5s2+EYyWLFnima830WhhyJAh3HLLLdx4442cf/75cYFZUunVvvbaa3Heul5Y9+jduzdrfvqJz5s1o9XNN7MXhvv1Qfg7btifWUFBQVxj6Hz2UcWyL8sEyTOf7kiCbuy9995xWfiSNaE7lZZVJg49NH5yzG/ZplO577333uy///6ljvNb82wvi/YpCTeuuuqqUh0MN4Ka0C+++GLAPTRuqu+2U6cdofvDjsDtg42yZEJPiFJqqlKqmemNep+5Leat6ji2t1JqUjrlyQTpbESKioqoW7du3LYJEyYgIiwDLgI+GTbMyC9dVARPPQWNG0O/fmx1pLZzq9he2AusvTd95513JvU7ILHpbcGCBXHf7U5v6eihO9m+fTsoxTkYvc+T16yhuLCQWzEi5i1KcL5dxvr165cyw9nRCjwxQUbgubA877333vPc59c2OJMYedUPe1lxXs9tdO5m6Tr11FNjn5csWRK3z96xTqTYgpbboCPwUaNGBYq1kQz2JX9OBf7oo4/6nlunTp3YZ7sJ3e71b+F8JrnsxKZxIVXlknAO3EGtWrXiKtobCxfC+PEwfz506wb//gtDhrBn+/aMwVjqVKtWLV5//fXAFdAuk32NZiopCxN1dPwUfCaiTBX98guceioTgbrAx8D+27fzIGDd3S9Gs/339e3b11eB6znxxCQKGDRs2LA4p7V8x00Zf/XVV0yatGOM45wrditHbgp8p512ilnxnCNoNwXuVVeDltswTmxebVKqXuj288OukbfHxKhQoULs97hljnTKn64OSex+ab16OSTVOfCwYTwrVqwYV2hiEadatICXXoJvvwUzOMQFGCE+v2/UiEZLlzJ+3LhAstlliipARKLnlC0FXhUjskn1du1gyhQ2YHiXHw/8bDuuZcuWvmt17b/POV2gR+DhSTTl0qFDh8wIkgJhrHN2Bd6zZ0/22GOPUmlnX3zxRWbOdEa4jsfL1ySVeAiJruEkSJtoXStdCtxO2DasVq1asc/2EbhbB8Yp/1577ZWEhMHRLUfEZHoE7mU2XLlyJW+++SbqgANg3Dh+ff99nsBwvtpjzhw47jjOGDCAS4FEgVjtMmVKgfuZQ2fNmpUW09Q5GIFY7gJk61YmYATRGUXpJRdhM7ulEqNek3gEng+doDAK3O6QVrlyZQoKCkopsSuuuILDDjsMiHc+s2NXyPZOgf1adj+WMNMQUZrQLXm80ohG2WkfPnx40ufaR+Buvz/TQZpyv9TnGanOgYc9v2LFiq7nNG7cmK5du8ZMbv/Urct1QANg0QUXQN26VP7xR0ZgrPd7BGjscY90j8DdMgElakgef/zx2OeNGzcGzkzlRgeMlJ8TMdY9zgH+nDSJnoD3ojx/nB2UY445BjACVjRs2DBuXz4on2yTaAQepBNkD+aSDcLUbTfPZ7864eWdblfg9vXV9jJ3/fXXux6fiKAdz7Be6ImukWqH95133kn6XBGJyeL2PjJdl3XLETHp9EJ3o2LFiqUK9LJly/jnn3+AHetGLW/IdcCaK6+EZctYO3gwnwO1MMLqLcJIvNEdsI937DJdddVVoeTzwlJwn3/+OdWqVYtrRKB0T9b5XN5+20gR0q9fP2rWrEnVqlVjxzhTBXpxKPAe8BFwBEYs38vM7X8ffHCo3+M0lTkbreeff56BAwfy5ptvlorprEfgiUmkwIM0nD/99FPg4EXHH398oOPCEKZujx07NvbZ8nz2G90FUeD2CGL252UPHxtEgVvWkChN6IlGrnaLmz3CXiokChPrhojEZLFkvvjii2OOblqB5znpNKG7UbVq1VKh/V555ZVSx9nnz9q1aweVK7Pt7LM5CiP852hgK9AJeBFjbfNTGAHtle03uYU5TIYTTjiBjh07MmjQICB+RA2lK/SmTZvivlsVZciQIbFtlnXAaU50Pp/2wFsYyUdOADYAdwD7AiOBEsJ7j4pInGJ2nl+nTh3uuOMO6tWrp+fAkyCRCT1IJ2iXXXZhjz2CZU5NR8rXMG2D3Upjzbv6jcC94gx4nWOXxb7UKYgJ3fLoTocJPcg1ono3yQSTqlChQqxuW89q1KhRWBFCMx2vQLccEXPRRRcldV6yI3e3VJ32ymxd1x6Byap4VqWYA1yCEaj+amAWxqj8Cow0pj3uvRf692erS5zjVPjwww+ZPHmy6z5nhXaGV3RrsK3f6hyNiAgFwFkYv+dj4GQMf4D7MRT3/ewIgwqwYoVr+mrP+zsbvjBzdlqBJyaKEXgY0rEkzSqfN954Y8Jj7eXfUuBuAZEs7N7pdqxyeuyxx8Ztt4/w7YmW3JSjs6z7zQFDfOY3+/F+hDGhR6XA3bzI7THkV61a5dru+JnQn3766UhkC0qZbjmC5KqOiokTJ7JhwwYO9jG92r0ZvQiryJ0K3BnX22/O2hkcYx1G/tdDMfJYP4KRDrPWqlUwcCBVDj+cn4EHMEzO6XTXcCrw+vXjA/+5KXCrobBXrAZA/+3bWYoR6q8dsAbDUW0fjJH3epf72xNLuOG8v3OUH0aBh1mTX16pUKECP//8s+f+VKchnFM46RiBW3XbSqzhh1v4zueff97zeHuoUCc///xzXNY2J+vX76gBQToufl7YYCRasXcK3LKLOQljQk/13Zxzzjk0a9bMddrBLvduu+0WF+sd3E3oduxrxjNBmVbgNWrUCBTqLwoqV66ccB1qEOeJsArcUhzXXXcdAN27d+e///1vbP8HH3zgeW7NmjU9930H3IQRwP6Vvn2hb1/WV6pEE+AWDKevNRhKsQ/QMJTUiXH2yFu0aFFqvxVj2sJS4DWBXhjz+UuAW7ZtY0/gJ4z48Q2AAYBf+pJ169aFktdpwgxqgu/cuXNcJiaNN02aNPHcl+oI3BnMIx0K3CJIZ8MZ/StREie/5WRNmjRxtdQluq8X1qDAyypSo0YN9ttvv9j3GTNmJLxmovdnr0+pWkeKi4spKCgoFSXNT/naozf6jcAz7c9SphW4Uioub24UePUUg8yn+BWQIOvA3bAUuDVCdeYz3nvvvUudE4YiYGmzZjBsGD07dKA98ATGcquaGGbpZzAU5VKMhCpXAweT2gjdmbrTqRBFJK7RagIUPPMMnHwyP//1F89hzOdvByYVFtIB2A9jXv+fFOSy399OsiNwv7XkmuBEbUJP5wg8EStXroyzHgZRCs6Qq8ni97vvu+8+/vrrr5iDrF9c9rBKNtEI3Lqnm4wnnHCC53lz587lu+++i9vmpcDnzp3reZ2PPvoo5hDsNwLXTmwRko6Qm3anKTtBKnyQl5vsXLhVyZ0V5+OPP/b1HH/55ZcTxpmOdS5EmAFcBzTHGHX3wRiF/1VQQAOMhCpDMObVN2LEDX8GY+R7DBA0l5xzBGyfk64GFH38MXu8+CJjMDoPPwNVb7oJpk6lAHgf6Isxr9+nWjWmB7xvWEaOHEmdOnVKJSQJOgLXHujREPVztOqRPVFJqjRubCzU9EtsA5RytHPLzpUu/BRvYWEh1atXjy3ZjCJFq0WittFKnmTJYee9995joSNUtEXr1q1L5T7YsmULFSpUKKXA/aKm1alTh6OPPhqA+++/n5o1a9K0adNSx9nL4ejRoz2vFxVlXoFHXbG9chIHGYEHKdQnn3wyQJwJKgh+iQeeeuqp2Genl+TZZ58dl+caKDWP79URWgqMwMiN3b5lSw7AUJrPYyjUnYHDMZT8UGAGxlKtv4EFwFTz/EEYc9EMGcKSW29l5V13cfxPP9EPIyraE8CNc+bwGca67E3Ae//8Q4fJk7kAoyOxBniloIBf77iDehje5cMxzOTp7BVfcsklrFq1igMPPJDzzjsPMJYgWaMC55pvTXpIlxNbUEVkdwrzYuLEiUyePDl0dK558+aFOj4VggxErHDKySrwl192Jt8Np/DdZGzWrFng81esWOE6Ag/KySefzPr1612nJeztb7IOzWHIfvT/NFJcXBy5AvcyjQZR4H6NjDXKPfHEE5kzZw5NmzYNtSTB+p2JCqVb5XE+o2rVqlFYWBi7VhCrQKPGjXnt229ZgKE4wciXfaD5179rV6otWcI/333HrkAL8y+Ofv1oZH68wudeW4EfMfLVzsbwLJ8HqOJiuO++hL/Pi1122aVUZ8YL+7y1df1evXpx4IEH0qJFC6pWrco333wTG3VpouWRRx6J8+aOup5bSsL6v88++/geH8R5qVatWpx22mmhZUlmuVOy7LZbYhvZ1VdfzSuvvOKbndHvfXTu3LnUtjAdsFTnwC2Tejp8TzJtUSvTCjzdWasGDBgQy8gVJJFC0ELq58luxz63YxWcd9991/ecIJ7wYHiuWqNHv/ncgoIC7rnnHtq1a8drr70Wt28txpKtj4Gbhw5lt733ZicRdsHwAN8HqAfUwJhPr0n8vPl2DM94628Z8AuwgtKhTf0I+tybNWvGrFmzEh7XoEED1wxGIhLXKBx00EEJr5Xp0ItlhXSvpbeUROXKlVm9erXvaBPSm4XQT4F37tw5oWxBGTx4sO98skWrVq1KLa8Kg5uSC1MPrPPbtm3run/evHm0bt064XXSkeoz03PgZVqBp2MEXrduXXr06MHuu+9O8+bNY9uDKMZkcwW7Ubt27bi5naAFJ0heZYgfcdx+++306tXLVcbWrVtzxx138PHHH/tezy7fXxhe7t95Hh0tQctA0OP69+8fWearfFwDLiKdMGY2CoCRSqkHHPs7AK9juCcAvKqUGpBmmSK9njXyrly5cqDRdSoKLRF+I06/5WFhOffcczMyggySBMSLefPmxWVEdKNVq1aBrmVX4GGnLL3QXugRkg4FLiKMHz+eRx99NG4ZUxDTU1RxxC05/L57EWQ5yX/+8x8gPt/31VdfHUgOL6wK2rdv30DHR0nUCtwZCjUV8m0ELiIFGOECOmPMgpwnIqVmQ4BPlFIHmX+RK+90j8DtCjzbeFkSgy4NC4rXM7zhhhs4/vjjufjiiyO9n52g9aCoqCj27lNt2y0F/thjj0XmZ6AVeIQ4FXgQJRuGjRs3xj4HmZfxm9M+6aSTQt07TLYrO27Rh+w88sgjsaVN9kr1xx9/uGYKCmo5sH77008/zerVq0stu0onQRt3t+Ocy3OGDh1KgwYNIpEL8tILvR2wSCm1WCm1DSMHTPiJ3RTJpAk9CGHNsVZcg5tvvjnhsW5TWL///jvLli0Ldc9EeJXFevXq8cEHH1C7du203cd6f25TU3aKiopo06YN11xzDRMnTkxJDuudNWjQILKOWplS4CLSSUQWisgiEbnVZX9PEfnW/PtcRBJPXITA2XOdM2dOlJcPHffWzcy+//77M3bsWAYOHFhqn1/2JKfiDKpIE5n67d6c9k7Jt99+67lUIxFPPfVUzHQvItSpUyfpBtcZpjEIqYzAnRU7qA9BUPLQhL4nYA82sNzc5uQIEZknIm+LiOdLE5E+IjJLRGYlClbiRxQNp31EG1aBu5l1GzZs6Bl7fd68eWzbto2HHnqITz/9lPPPP9/z2m4KvH79+qWihKVKppSP3xy4tVTLi+LiYipUqMDgwYPZd999S+0P4+FvKfAow+aWmXXgAU1tS4D2SqlWwL3scGCOBKVUXGGpV69elJfnmmuu4YILLkjoOOZHnTp1OP/8810dUT788EO6dOnCEUccUWqfU2EHCRxin7N3Mm7cOPr27UuXLl1cr+mW8jMobtaFZE3Hbl70iQhr5vfbFnUFzTcTOuD2MJ29xznAPkqp1hhhASZ7XUwpNVwp1VYp1TaMhSwdI3B7jAfrvQRV4G6yL1myxDP7WcWKFWNm+qOOOiqWbtZe/yzs9fDBBx9k1KhRgWQKSzYVuPX+wkRkczJ37ly++eabQDL07t07ZkmLMvxpWRqBJzS1KaU+V0pZgXi/xIjcmTLORABun6OgWrVqjBkzJtSc6MCBA+NMUX4ytWjRgilTpvD555/z7LPP+l43SOAQvx57z549GTZsWFwFmj49cfiTIM/UrRFMttfbtGnTQN7ddoLIuNNOO/HEE0+U2u40jUZdhvJwBL4cI226xV4YCwNiKKX+UkptNj9PBQpFJNIg0c4lTFG8F3sdsqx3QS0uZ555Zkr3Pv3002nYsCEPP/ywr1y9e/dO21x0NqdzrDY7UX3wc1Br3bp1YGXco0cPHnnkEV555RWOPPLI4IImoCwp8KCmNotLMMJXlyKsmc1rVJML84133HEHq1atin0P2oD37t07Lkyq0xksiAL3M9O5EVXkODcFnuzSl4KCAt+Qh8lQsWJFNm3a5Lou9Isvvoj7bs9WFAV5OAL/GmgqIo1EpBJwLvCG/QAR2UPMyiYi7TDamUjdtBs2bBiXFzqKjpCVA/yTTz6JZf4KOk2WattSt25dlixZ4prYxj4Cr1u3bkr38SNTnclURuBBV38kGiCccMIJVK1aNeWOl5OypMCDmNqMA0WOw1Dgt7jtD2tmsxeCdI7Ak8VLvkTYl4Dde++9cfv8FHj//v357LPPQnuARxUP2k2BJ+s0kuw79IsVLSKBGq/333/fNXxiKuTbCFwpVYQR7v5d4AfgJaXUAhG5XEQuNw87G5gvIvOAwcC5Kp0LpYmmbjdu3BilFEcffXTM9H3YYYcFPv+JJ57g7bddxyApESazXVDcgrDkwhy4VR9SXda1cuXKUk63qUwDBqUsrQNPaGoDEJFWwEigs1Iqkl56jRo12Lp1a84obD/CyFizZk1GjBhBjRo1SvUwvRR4//79uf3225Ma8QYxcydrQq9du3apbGLpZPLkydx5550pzR927NgxQokM8k2BQ8wsPtWxbZjt81CM6LkZI+rnaK3WSBSBzU6/fv0ilcEiaFz9MIwYMYI33ogznGS1vXSOwFOVxc2Ubq18iXrUbacsjcCDmNoaAK8CFyilforqxlOmTOHggw8OlMYu24R94ZdeeqlrPHa3XvqECRMYMGBA0ubqMLmB7bRp0yYupanbSH7MmDGBI85FQf369Rk5cmTs+yWXXJKxe/uRjwo8F4m64Zw4cSLPPvtspEsGk8Wq224rVZLFrU3IhRG4tS9dBps1a9YEilufLGVGgQc0td2JETL7KRGZKyKJ41gG4JBDDmHOnDkJlyTkAlE14M5eulIqllwjWbxM6M7sPk5mz54d86oF90LdvHnzyJf1eXHTTTeV2mY3hftVurvuugvwDtuYKlqBR0PUz7FevXr07t070msmi6XAe/ToEdk13XwvolY+1157ret2530qVaoUWyGUbgVYu3bttMagKDMKHAxTm1KqmVKqsVLqPnPbMMvcppS6VClVyxaxKT2tZA4T1Qu3K/Ag8YyD4KbARcRV8Tp/R9RL9sJiz4PuZrEIOr9/2223sWrVqlLObFHhtpZVE56y3BGyFHiUOcrdrGtRP8N77rnHdbuzrfjqq69ia/DTPQJPN2VmHbgmGOlQ4H55bcPgJlvt2rVdGxJnr/bAAw9k0qRJSYcoPO6445I6z+LLL7+MfXZrrIIEwTj66KOpXLkyu+22W6TBHsAI5PHqq68mtGZoEnP++efnhb9LslgKPMoy6HatqJ9hUHntyjrf36Mlf5BkKlFQppOZ5APpMKE/9NBDkVzTDa+4zG3btuXKK6+MW6d51llnJX2f9u3b89FHHyV9fv369Rk0aBBr1qyJC7Lx4osv8tZbb9GzZ0/XfL3vvvtuLPBMOpzWLFq1ahU46YKmfGPV7XRHDMuUAg9yn3wegX/00UcZ65jrEXiWSccIPKqY726VaN26da7HighPPvlkZMlK/CrwAw884LnPzk033VTq2O7duzNmzBgKCwtjUd1eeuml2P4TTzyRyy67jGrVqrma3jWaTGONwKOMGeDW7uTSCDxfFThAhw4dIo3u5odW4FkmHQo8KqykJrnGlVdeGcl1zj77bIqKijjttPhcHMOHD2ft2rVJxV3XaKImHQrcjVyIMlgWFHgm0Qo8y+SyAu/evXvk1wyKXwVO1JA5g9z44XWtSpUqBb6GJnMMGDAgMifNfMFyCI3aD8NJ1Ao86HywPdqdVuDh0HPgWSbZNdpO0qHAc9WhJFFDFnWWJk3u0L9//2yLkHE++OADpk+fHvnyp5EjR3LppZfGvqejvs+ePZtGjRp51sn33nsv8uiG5Qk9As8SEydOpHXr1q7JC5IhHeEWs0kqI/Cy9iw05Zu99947dB6DIDiDGaVDgbdp08Y3IYzTmqJH4OEo8wo8bM7uTHHOOecwd+7cUKEa/bA8qs8444xIrpcp3GIyg3sFtkIgJppb0wpck01++OEHfv3112yLkZfYOxH2YFAad8q8Cb1ixYqsX78+H7M+heKEE05g+fLlWQ+gEpZXX3018NzexIkTgcQjBa+lbhpNJmjevHm2Rch7lFKxdMZlOUhPqpR5BQ5GEpDyQFQBXDKJV8fKbQQeNBKVHoFrNPmJ3YSeqz44uYTu2mh8SWfgfz9SmQPTI3CNJj/Rc+Dh0Apc40s6nGecnHPOOVStWtX3mCuuuCLw9fQIvHzQtWtXjjjiiFjCGU3+Y1lLnbEZNO6UCxO6Jrd54YUXKCoqilt7be+BP/HEE565lo866ig+++yzuG16BF4+qFGjBp9//nm2xdBESM2aNfnjjz+oXbt2bNuMGTM49thjsyhV7qJH4JqsIyKl5rftCtxv7vvxxx/nvffei9umR+AaTTA2b96cbRFKsfvuu8c5tmpvdG+0AtfkNZUqVSq1llQrcI0mGDvvvDO33357tsVIyAsvvMCsWbOyLUbOoRW4JiFRBZsJQyInlmuuuYaOHTvGsv4MGjQotk+b0DWa4Nx333057zR27rnncsghh2RbjJxDK3BNQm688UbGjRsHQK9evTJyz0QNyuDBg3n//fdja0RvuukmDjvsMABOP/30dIun0Wg0WSetClxEOonIQhFZJCK3uuwXERls7v9WRNqkUx5N8vTs2ZPFixczevTojNzPLcVgIj755BOWLl1K27Zt0yWWBl2vNZpcIW1e6CJSADwJnAAsB74WkTeUUt/bDusMNDX/DgOeNv9rcpBGjRqV2hZV7nEnyZj0CgsLadCgQRqk0Vjoel32+e9//5ttETQBSecysnbAIqXUYgARmQicBtgr+mnAGGW01l+KSE0RqaeUWplGuTQRMGPGDB544AGefvrptN9LR2TKKXS9LuOESceryS7pNKHvCfxm+77c3Bb2GESkj4jMEpFZq1evjlxQTXiOOeYYpkyZEumIt3fv3rHPffr04ayzzgL0nHaOEVm9Bl23yws9evQAiHX4Tz/9dCZMmJBNkcoE6RyBuw2bnHbRIMeglBoODAdo27ZtbrtLapLm2WefZdiwYQBUrlyZl19+mW3btlG5cuUsS6axEVm9Bl23ywvjx49n/Pjxse+vvfZaFqUpO6RTgS8H9rZ93wtYkcQxmnKEXVmLiFbeuYeu1xpNjpBOE/rXQFMRaSQilYBzgTccx7wBXGh6rR4ObNTzZBpNTqPrtUaTI6RtBK6UKhKRq4F3gQJgtFJqgYhcbu4fBkwFugCLgC3ARemSR6PRpI6u1xpN7pDWZCZKqakYldm+bZjtswKuSqcMGo0mWnS91mhyAx2JTaPRaDSaPERyPQauExFZDSxN4tQ6wJqIxUmGXJEDckeWXJEDckcWuxz7KKXSEzEnh0iybufK+4LckSVX5IDckSVX5IAI63beKfBkEZFZSqmsx9jMFTkgd2TJFTkgd2TJFTlynVx6TrkiS67IAbkjS67IAdHKok3oGo1Go9HkIVqBazQajUaTh5QnBT482wKY5IockDuy5IockDuy5IocuU4uPadckSVX5IDckSVX5IAIZSk3c+AajUaj0ZQlytMIXKPRaDSaMoNW4BqNRqPR5CF5q8BFZLSIrBKR+bZtu4rINBH52fxfy7bvNhFZJCILReQk2/ZDROQ7c99gSSL5tIcsg0TkRxH5VkReE5Ga6ZbFTQ7bvptERIlInXTL4SeLiFxj3m+BiDyUblk83s1BIvKliMw1U1m2y4Ace4vIRyLyg/nbrzW3Z6XM5jK5UrdzpV57yWLbl7G6nSv12kuWcle3lVJ5+QccC7QB5tu2PQTcan6+FXjQ/NwCmAdUBhoBvwAF5r6ZwBEYKRDfBjpHJMuJQEXz84OZkMVNDnP73hixq5cCdbL4TI4D3gcqm9/rZuOZAO9Z18GI2f1xBuSoB7QxP1cHfjLvl5Uym8t/Hu8s48/JQ46M12svWcztGa3bHs8k4/XaR5ZyVbfzdgSulJoBrHNsPg143vz8PHC6bftEpdS/SqklGEkW2olIPWAXpdQXynh6Y2znpCSLUuo9pVSR+fVLjJSKaZXF45kAPAb8h/iczBl/JsAVwANKqX/NY1alWxYPORSwi/m5BjtSXaZTjpVKqTnm503AD8CeZKnM5jK5UrdzpV57yWKS0bqdK/XaR5ZyVbfzVoF7sLsy0xaa/+ua2/cEfrMdt9zctqf52bk9ai7G6E1lXBYR6Qr8rpSa59iVjWfSDDhGRL4SkekicmiWZLkOGCQivwEPA7dlUg4RaQgcDHxF7pbZXCMXn1PW6jXkVN3OlXoN5axulzUF7oXbPILy2R7djUXuAIqA8ZmWRUR2Au4A7nTbnSk5bFQEagGHAzcDL5lzPJmW5QrgeqXU3sD1wChze9rlEJFqwCvAdUqpv/wOTbcsZYSsPKds1mvz/rlUt3OlXkM5q9tlTYH/aZohMP9bppzlGHNFFnthmFaWs8MEZt8eCSLSCzgF6GmaRDItS2OMOZZ5IvKrec05IrJHhuWwWA68qgxmAiUYgf0zLUsv4FXz88uA5eiSVjlEpBCjgo9XSln3z6kym8PkzHPKgXoNuVW3c6VeQ3mr234T5Ln+BzQk3oFhEPFOAw+Zn1sS7zSwmB1OA19j9Bwtp4EuEcnSCfge2M1xXFplccrh2PcrOxxdsvFMLgcGmJ+bYZiRJNPPBGOOqoP5uSMwO93PxDxvDPC4Y3vWymwu/7m8s6w8Jxc5slKv3WRx7PuVDNVtl2eSlXrtIUu5qttZr6jJ/gEvACuB7Rg9l0uA2sAHwM/m/11tx9+B4e23EJtnH9AWmG/uG4oZnS4CWRaZBXmu+Tcs3bK4yeHY/ytmJc/SM6kEjDOvPQc4PhvPBDgamG1Woq+AQzIgx9EY5rBvbWWiS7bKbC7/ebyzjD8nDzkyXq+9ZHHs/5UM1G2PZ5Lxeu0jS7mq2zqUqkaj0Wg0eUhZmwPXaDQajaZcoBW4RqPRaDR5iFbgGo1Go9HkIVqBazQajUaTh2gFrtFoNBpNHqIVeDlHDD4Vkc62bd1F5J1syqXRaFJD1+2yj15GpkFEDsCIWnQwUICxjrGTUuqXJK5VoJQqjlZCjUaTDLpul220AtcAYObw/RvY2fy/D3AgRpzju5VSr5uB+seaxwBcrZT6XEQ6AHdhBFU4SCnVIrPSazQaL3TdLrtoBa4BQER2xoiitA14C1iglBonIjUxctQejBFtqEQptVVEmgIvKKXampV8CnCAMtLjaTSaHEHX7bJLxWwLoMkNlFJ/i8iLwGagO3CqiNxk7q4CNMAIrD9URA4CijHiHlvM1BVco8k9dN0uu2gFrrFTYv4JcJZSaqF9p4jcDfwJtMZwgNxq2/13hmTUaDTh0XW7DKK90DVuvAtcY+b0RUQONrfXAFYqpUqACzCcYjQaTf6g63YZQitwjRv3AoXAtyIy3/wO8BTQS0S+xDCx6Z65RpNf6LpdhtBObBqNRqPR5CF6BK7RaDQaTR6iFbhGo9FoNHmIVuAajUaj0eQhWoFrNBqNRpOHaAWu0Wg0Gk0eohW4RqPRaDR5iFbgGo1Go9HkIf8PEQBzc77Fm24AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABbQklEQVR4nO2dd5wURfbAv28XUBEDAgoiyZwFRQx4YkJF8cyKIpgRE6bzTD9z4gynnvFEPAyIOcCBCoZTPERBDhBBAREVEEEJggLL7r7fH9U99PR29/SknZnd+n4+85mZ7urqNz1d9fq9evVKVBWLxWKxWCylRVmhBbBYLBaLxZI+VoFbLBaLxVKCWAVusVgsFksJYhW4xWKxWCwliFXgFovFYrGUIFaBWywWi8VSglgFbqkVRGQLEflYRFaIyP0icr2IPFVouVIhIkNE5A7n859E5JtCy2Spe4iIisi2hZYjCBG5RUSez/WxInKQiMzLTrrcIiJtRWSliJSH7M/4WgTUlfV/Xu8VuIicLiITnT/tJxF5W0QO8JU5y7nYp/i2H+Rsf923fQ9n+388224XkS9FpFJEbvGVv945v/taJSLVItLc2X+KiIwTkT+8dZYY/YBfgI1V9SpVvUtVzwMQkfbO9WoQdnAuG06mqOpYVd2hkDLUR2wbrfF7ikrp1SVU9QdVbaKqVYWWJQ71WoGLyJXAg8BdwBZAW+Ax4Fhf0TOBJc67n8XA/iLSzFd+pq/cbOCvwEh/BY4ya+K+gL8B/1HVX5wiSxw5B8b+cVkSpUwzpB0wXW3mIEsa2DaaPnlouyVHmAVd51DVevkCNgFWAienKNcOqAZOBCqBLTz7DgLmAU8AFzvbyp1tN2EauL++54FbIs4nwLfAmQH7zguqM6DcscBk4DenriOd7XOBwzzlbgGedz63BxQ4F/gB+Bh4B7jEV/cU4ATn847AGEzn9Q1wSog8Q4C1QIVzzQ/znfsH59wrndd+vuOPdI5d6+yf4mzfEhjunH82cH7ENTkKmA6sAOYDf/H9h9djPARzgd4+2e/wlvXsmwv8BZgKLAdeAtb37O/p/A/LgHHA7oW+70vpRd1uo1cDPwELgHOc+39bZ996wH1Ou/jZkX0DYENglfNb3baypdOWXnXk/s2RYRNgsHOO+cAdQLlT/1nAJ845lgLfAT08snUAPnLayhjgEZy26uzf17mfl2H6g4PiHuu7BqFtD9jb+e0NPOVPBCaH1DUEeBwYBfyO6WO2BF7DPMB9BwzwlO8CTHSu18/A353t7Z3/okGq34OvP3C2zcXpY51zfOpcp5+cYxt5yib+80xf9dkC3w9YH3gjRbm+wERVfQ2YAfQOKPOsUw7gCOArTMPMhD9hLI3XMjlYRLo48lwNbAociLmp4tIN2AnzO14ATvPUvTOmsxwpIhtibugXgM2dco+JyC7+ClX1LGAocI8aC+Y9X5EDnfdNnf2f+o5/B2OBveTs38PZNQzTAWwJnATcJSKHhvyuwcAFqroRsCvwgWdfS6A50BpjmT0pInFd5adgHjA6ALtjOkdEZE/gaeACoBnwT2C4iKwXs15L3W2jR2Ie/LoD22GUjZe/AdsDHYFtMfflTar6O9ADWKDrvAHubzgWo8Q3xbS1ZzAPM9sCnYDDMYrdZR/MQ3dz4B5gsIiIs+8F4Atn3+14vBoi0hrjobgD2Mz5Ha+JSItUx4YQ2PZUdQLwq3ONXM4Anouo63TgTmAjzAPGCMwDRmvgUOByETnCKfsQ8JCqbgxsA7wcUme6v8dLFXCFc+x+jgwXpXF8SuqzAm8G/KKqlSnK9cX8iTjvNf5AVR0HbOZ0+n0xnUWmnAm8qqorMzz+XOBpVR2jqtWqOl9Vv07j+FtU9XdVXYXpODuKSDtnX2/gdVVdg7Eu56rqv1S1UlUnYTq0kzKUOy1EpA1wAHCNqq5W1cnAU0CfkEPWAjuLyMaqutSR18uNqrpGVT/CdFCn1KwikH+o6gJVXYLpMDo6288H/qmqn6lqlao+A6zBWC+WeNTVNnoK8C9VneYo5VvcHY4SPR+4QlWXqOoKzMNrrxR1fqqqb6pqNbAxRtFf7rTlRcADvjq+V9VBasZ6nwFaAVuISFuM9eu2h48x97XLGcAoVR3l9C9jMJbsUTGODSOs7T3jnA8R2Yx1RkUYb6nqf51rsBvQQlVvU9UKVZ0DDPJcg7XAtiLSXFVXqup4f2VZ/B4AVPULVR3v9I9zMQ/x3eIeH4f6rMB/BZqnCJzqirGsXnQ2vQDsJiIdA4o/B1wCHExqiyHsfBsAJ2Nu3Expg3HvZcqP7gen8xjJupu+F+bpHowlvo+ILHNfGAXfMotzp8OWgNvBuXyPedoO4kSMG/17EflIRPbz7FvqdKTeeraMKcdCz+c/gCbO53bAVb7r0yaNei11t41uiaedYe43lxZAY+ALz33zjrM9Cm997YCGwE+eOv6J8ZS5JO5bVf3D+djEkS2oPXjrPtl3Xx+AeQBIdWwQUW3veeAYEWmCUepjVfWniLr812BLn5zXYzwnYAyd7YGvRWSCiPQMqC+T35NARLYXkX+LyEIR+Q3zINY87vFxqM/BDp8Cq4HjMK6nIM7EjHdNXuddAswT/GRf2ecw47DPquofvvJxOQEznvufTA52+BHjEgrid0zn4BKkbP1BZsOAm0XkY8w43Iee83ykqt3JnjiBbf4yCzAW1UYeJd4WM95X82DjkjtWRBpiOvGXMQoVoKmIbOhpqG2Baen8gAB+BO5U1TuzrKc+U1fb6E+su/fA3G8uv2DGuXdR1aB7OayteLf/iPH2NI/hvQiSLag9uPX/CDynquf7D3Q8dVHHBhHa9lR1voh8ChyP8aw9nkJ2/zX4TlW3CyyoOgs4TUTKMP/pq74gR0h9LZL6Uydwzvug9TjwP+A0VV0hIpeTYw9lvbXAVXU5JojlURE5TkQai0hDEekhIveIyPqYp75+GLeo+7oU6O23ClT1O4x75Iag8zl1r4+55g1EZP2ASMkzMZ2L+o4td45tAJQ5xzYM+WmDgbNF5FARKROR1iKyo7NvMtDLkaUz8W6mUZin2dswY9DVzvZ/A9uLSB+nvoYisreI7BSjTj+LMYE5W0eU+Rlo7zQ4VPVHzDjX3c712B3zVD3Uf6CINBKR3iKyiaquxQSu+KeJ3OqU+xNmeOCVDH6Hl0FAfxHZRwwbisjRIrJRlvXWG+pwG30ZOEtEdhaRxsDNHhmrMffOAyKyuVN3a1k3dvsz0ExENgmpG8dKHQ3cLyIbO/3ANiKS0n2rqt9jXOJuezgAOMZTxLWKj3B/s5ipbVvFODaMqLb3LGZmwG6k5zX5HPhNRK4RkQ0cWXcVkb0BROQMEWnhXO9lzjFJfUKM3zMTWN9p1w2B/8MEILpshOlrVjp98IVpyB8PLYJo00K+MG7fiZinqYUYl/H+GHfxT0BDX/n1MU/JPQmIQvSUS4pGxURJqu91lmd/a5ygk4C6zgo4dkjEbzoeExm9AmNxHOFs3xr4DBO9OhL4BzWj0BsE1DfY2be3b/sOTj2LMe7OD4COITINwYnmdr7fQnJk621OPcuAfQOOb4aJnF0KTHK2bYV5kFiCGTboH3LuRhg35FJMg5oAHODsOwgTCHeD87/+APQJktv/fxMR1e98P9I51zLnXnoF2KjQ93ypvaibbfRa57cERaGvj3G3znHu1xkkR1A/7bS3ZayLQn/eV/8mGAtwHmaGxP+AXh5ZP/GV955/a2Aspp8IikLfBxOZvQTTZkcCbeMc6zvnQUS0PadMY+caPJPiHhmCp39xtm2J8SAuxLT98ayLEH8eWOTI+RVwnLO9PclR6KmuxVmYe3ARJqBvruccBwJfO8eOxfRxnwRd80xf4lRksdRLROQgTIPcqsCiWCyWAETkW8wMEv/slXpPvXWhWywWi6W4EZETMZbqB6nK1kfqcxCbxWKxWIoUMSlpd8a41atTFK+XWBe6xWKxWCwliHWhWywWi8VSgtQpF3rz5s21ffv2hRbDYskZX3zxxS+qmiqJR53GtmtLXSQXbbtOKfD27dszceLEQothseQMEYmd+amuYtu1pS6Si7ZtXegWi8VisZQgVoFbLBaLxVKCWAVusVgsFksJYhW4xWLJCSLSRkQ+FJEZIvKViFwWUEZE5B8iMltEpopZN91isWRAvVTgzz//PPvuuy+LFy8utCgWS12iErhKVXfCrHt+sYjs7CvTA9jOefUj9QpTlhLg4Ycf5quvviq0GPWOeqnA+/Tpw2effcYdd9xRaFEsljqDqv6kqpOczyswi3D412c/Fmc1L1UdD2wqIq1qWVRLjhkwYACdOnUqtBj1jrwpcBF5WkQWiUjgusrOEnTLRWSy87rJs+9IEfnGcbNdmy8Z16xZk6+qLZZ6jYi0BzphVr/z0hqzVrPLPGoqeUSkn4hMFJGJ1lNWGqxdu7bQItQ78mmBD8EspxjFWFXt6Lxug8Si6I9iXG07YxZd97vhMmb+/Pm5qspisQQgIk2A14DLVfU3/+6AQ2rkc1bVJ1W1s6p2btGiXuexKXpsOu7CkTcFrqofY9aLTZcuwGxVnaOqFcCLGLdb1kyfPp2ttrKrRlos+UJEGmKU91BVfT2gyDygjef7Vpg1sS0lilXgyTz88MNcf/31tXKuQo+B7yciU0TkbRHZxdkWy8Xmko6r7e233/Yfm5nUFoulBmIa1GBghqr+PaTYcKCvE42+L7BcVX+qNSEtOccq8GQGDBjA3XffXSvnKqQCnwS0U9U9gIeBN53tsVxsiR3W1WaxFAtdgT7AIZ7YlqNEpL+I9HfKjALmALOBQcBFBZLV4mPp0qXce++9aSvk6mq70mehKFgudO/YmKqOEpHHRKQ5tehisxa4xZI7VPUTgh/AvWUUuLh2JLKkw4UXXshLL73EXnvtxSGHHBL7OKvAC0fBLHARaem43BCRLo4svwITgO1EpIOINAJ6Ydxu+ZAhH9VaLBZLybFs2TIAKioq0jrOKvDCkTcLXESGAQcBzUVkHnAz0BBAVZ8ATgIuFJFKYBXQy3k6rxSRS4B3gXLgaVW1GQIsFktKdtllF/bbbz+eeuqpQotScmQ6lm3HwAtH3hS4qp6WYv8jwCMh+0ZhxsosFoslNtOnT2f69OlWgWeAq4jT9UxaC7xwFDoKvaBYF7rFYrEYrAIvPawCt1gsFksCq8BLh3qtwC0Wi6UusXz5cp5++umMjs10LNurwG166trFKnCLxWKpI5xzzjmce+65TJo0Ke1jM3WhexX/YYcdlvZ5LZlTrxW4daFbLHWD6dOnc/TRRxdajILz008mqd3q1aszriMbF/onn3yS8Xkt6VOvFbjFYqkbXHzxxYwaZSeuxHGDjx8/nn//+9+hx9ox8NKhYJnYigFrgVsslrpEHCW83377JZVN59ggrAIvHPXaArcK3GKx1CVcJVxWVntde31N5PLBBx9Q6LXq67UCt1gslrqEaw1nYpxYCzw+1dXVHHrooRx66KEFlcMqcIvFYqljWAWeX9xrNW3atILKUa8VuHWhWyyWukQ27uxczAOvL7jXSlULOoRgFbjFYrHUETK1orM5tj4rcICPPvqoYHLUawVusVgsdYlsFLhLNolcXIYNG8Z1112XsQylxMqVKwt27no9jcxisdQNitmbtmjRIr7++msaNGjA/vvvn9dz5cICT5cgC/z0008H4O67786ozmLHe60Kee/lzQIXkadFZJGIBI7yi0hvEZnqvMaJyB6efXNF5EsRmSwiE/MoY76qtlgstUgxT2Xadttt6datG127dq21c1oXek2WLl3Ktttuy9SpU7Ouq84rcGAIcGTE/u+Abqq6O3A78KRv/8Gq2lFVO+dJPovFYsk7K1asSHzO94NGLuqvqwp89OjRfPvtt9xxxx1Z1+W9zoVM4Zs3Ba6qHwNLIvaPU9WlztfxwFb5kiUMa4FbLJbaJN/KrhAu9GL2fnhxr0ku5C2W31wsY+DnAm97viswWkQU+Keq+q3zBCLSD+gH0LZt27ROahW4xVI3KJW2XFlZSXl5ed7qz0SBjx8/PuNjoXQs8FzeI1aBO4jIwRgFfoBnc1dVXSAimwNjRORrx6KvgaPcnwTo3LlzcVxVi8ViCaCqqiqv9bvKNB0F4+ZG32effQAzVpzJOUuFumSBF3QamYjsDjwFHKuqv7rbVXWB874IeAPokovzFctFt1gsuaVU2nZlZWXO6/zyyy+ZP38+kJxgJFN69uyZVvlSUeC5dKEvWZI8Orx27dqs68yEgilwEWkLvA70UdWZnu0bishG7mfgcCAn+er8T7+l4nazWCx1g3xY4LvvvjtbbZUcQpSJkqovY+C5oH379knfC/UQkzcXuogMAw4CmovIPOBmoCGAqj4B3AQ0Ax5zLmylE3G+BfCGs60B8IKqvpMLmfwX2Spwi6VuUCptOR8WuBdXmWaiULyKuKKigkaNGsU6rlQscJdcPHD4f3O+h0bCyJsCV9XTUuw/DzgvYPscYI+aR2RPoS6yxWKxQP77IFc5rV69OmXZtWvX0rBhw8h64lAo93G65NKF7qdQDzH1KpVqqT0pWiyWukVtWeBxxrF32GGHwGMhvb6yoqIidtlCYhV4iWPHwC0WSyGpLQt8+fLlPP/887zyyiuhZb/77rvAYyE9hWQt8DroQi8mVq1axTfffMNXX32VtN0fSWixWOoP3377LZtvvjkbbbRRrZ0z3xb4b7/9lvjcp08fIDOFVRct8HxiLfA8MnPmTDp16sRrr72WtH3QoEEsXLiwQFJZLJZckYkFtO2229K9e/c8SBNOPi211atXB/ZnkydPjnW8V9GnI2epKPBUFviaNWs48sgjmTJlStp1WwWeR6Jc5W4WIovFkh0xFjA6SESWO4sUTRaRm3J17t9//z2t8m4n/tlnn+VKhFgEWeDz5s1jwYIFWde9atWqwO2zZs2KdXx9caGH8cUXX/Duu+/Sv3//tOsulAu9XijwsrLwn1mb7jOLpY4zhOgFjADGOosUdVTV23J14j/++COt8um4sqdNm8Zjjz2WrkiBBHX0bdq0oXXr1lnXHZaiNa4LvVSD2BYsWMBdd92V8nfGHQPPJDbKWuB5JEqBN2nSJPLYKVOm8Oyzz+ZaJIulzpFqAaN8kq4FtGbNmthld9ttNy6++OLIjn/FihV8//33KevK9xh4EHV9DLx3797ccMMNKV3fNgq9RIl6okr1tNWxY0fOPPNMPvnkk1yLZbHUR/YTkSki8raI7BJWSET6ichEEZm4ePHilJV269YtLSHSUeAuUQ8J++23X43sXOnWkS3/+c9/sjreq9i+/fbb2McVUoFPnjw58bvjzH2HcAWejWK3LvQ8EmWBx31ymjt3bo6ksVjqLZOAdqq6B/Aw8GZYQVV9UlU7q2rnFi1a5FwQV4FH9Q1+osZ6/TNcwsinBT58+PDA7Zm40Pfff//Y5y3kGLjXO5rqQSKVBZ7NUqxBeqQ2UszWewUe98kpblpBi8USjKr+pqornc+jgIYi0jwXdWfqQm/QIP5M2lwo33xaamF9VL7du/n6TdXV1QwePDhSMXuVZKr/J65itgq8yMiFAl9vvfVyJY7FUi8RkZbi9I4i0gXT//wafVQ80lVSrrs1LJWoi7d/yIUC99cxduzYrOt0CVPgmVjg6ZDutVdVdt55Z1544YXIci+99BLnnXced9xxR2RdLnE9AUG/c+7cuUyYMCHW8UEE6ZHaUOD1IpFL1BNV3JvPWuAWSzQxFjA6CbhQRCqBVUAvzVEvl64V6Hb2YZHb/nKQHwu8X79+WdfpUioKvKqqihkzZtCnTx9OP/300HLLli0DIE4MBKRW4FF6oEOHDrHKhRF0Daqrq1PeX9lSLxR4LizwVE/qFkt9J8YCRo8Aj+Tj3P4O9KqrruL+++9PWT5VZ+1132aiwP1y+evIpZUW5mrOtyWY7sOTWz5u/EGU/OlY4LU9jaykXegxkjqIiPxDRGaLyFQR2dOz70gR+cbZd222smSqwL2NLZ1gF4vFUrv42/Hf//73yPJxrUZvtHq6wVoPP/ww66+/ftK2fI6BP/TQQ4Hbi9ECh9SKMo4izYcCz4RCudDzqZWGEJ3UoQewnfPqBzwOICLlwKPO/p2B00Rk52wEydSF7r0h7EpmFkvx4m+fqWJW4irSbCzw2267rYZSKeZ54PlS4KtXr+aXX35JfI+rwOOQqzFwL9lY4N7ZSrWxWFbeFHiMpA7HAs+qYTywqYi0AroAs1V1jqpWAC86ZTMmUwvcu8+uJW6xFC/+9pkqQVPcB/JMFbiqJiktl0L0I/lW4P41JvwcddRReKcCpqvA48pVDC70N998M7GtNuKmCjkG3hr40fN9nrMtaPs+2ZwoUwXubeRWgVtyyYoVKxgzZgw9evRggw02KLQ4JY9fIW+44YaxyqfqzL35xdNR4GEPCLkcA1+2bBmHHXZYynL5VuBffPFF5P4PP/wQMAq2YcOGeXOhx50Hng+qqqoKsjx1IQd2g36tRmwPriRGxqY4iVx+++03nnjiCX79dd2sFq/Sti50Sy7p3bs3J554IldddVWhRSlpXnvtNdZff32mTUsOtUmVFS1ue/amR42jwF2FEvbAn0tDYOTIkSmVp1emQrNo0SJg3XXMRVyR93+Mm13Pfz3+9Kc/JX23udDjMQ9o4/m+FbAgYnsgcTI2Rf0hboM655xzuPDCC+nbt29in7XALflixIgRALz88ssFlqS0UVXWrFlTw326xRZbRB4Xp8OtqKjg888/T3yPM8bqKocwZe/fnk2/ElfRxFUucRX95MmT2WabbVi6dGms8o0bNwbWrRiXryj0VAo87HrlIk32jz/+mLpQHiikAh8O9HWi0fcFlqvqT8AEYDsR6SAijYBeTtmMiWOBu+M477zzTmKfHQO3WIobt237lWsqZRTHhX7eeedxyy23JL7HmY/s1hvHAn/77bfTyjnuJ9cu27gK/JZbbmHOnDlp514fOXIkkH0U+m+//ZZYIjUdBe6SD4/ESSedlPM64xBLgYtICxG5XkSedKaHPS0iT6c4ZhjwKbCDiMwTkXNFpL+IuIutjgLmALOBQcBFAKpaCVwCvAvMAF5W1XiJhkNIZwy8WbNmic/pWOATJ07kz3/+M//9738zlNJSHykW92ap4nby6Y4tx7FKXS+Jy8yZM1Mek0qBe4fo/v3vf6esL4pcWLDZlEs3NemVV14JZB+FfvDBB7P99tvX2B53MZNU/30hxrIzJW4Q21vAWOA9IJYpGiOpgwIXh+wbhVHwOSGOC91l4403DtyX6k8//fTTmTVrFsuXL+ejjz7KUFKLxZIOrhLzt+NUyiiOR83fb8RR+qkU+JVXXskBBxxAly5d2Gef5NhcVU1LeeTChe69TnEUuKomFk2J+wDhlXP48OEce+yxNbanOqeXSZMmBe5LZYHn6mH5448/zkk9uSCuAm+sqtfkVZI8ks5qZN7Ud+lY4K5Lx65aZrHUHnFc6FOnTuWHH36gZ8+eiW1xlHE2Cjwq4O31118H4LPPPkvaXlVVFbi4SmVlZeD2XEzDSleBe5Vk2PmXL1+e9N1bzv3tUcfH3Q/JMqeywN2y2U4jS5XDvTaJOwb+bxE5Kq+S5JF0XOhhStuuWmbJB6XkQndiUooKt237Faa3He+xxx4cc8wxofvDyIcF3rhxYwYOHBi4L0jpDx48mIYNG/LDDz8AcMopp/DAAw8EyhdGXAUe5/e5gWju+b3LebosXLgw9HivzLmIQvfK//DDD8cuG0Wq65pqimJtEnkFRWSFiPwGXIZR4qtE5DfP9pIgHQU+e/Zsliwx+Wfc96ByYWSTvD5uVKel7lCsClxE/iMi7T3fu2ACTIuKXIyBr1q1ip9//jnludJR4O+9917g/sMPPzz02NGjR9fYNmzYMAC++eYbAF555ZXEWHIuFLj3N8W5F1euXJn4LCKceeaZNcqsWLEi6XuY0s5W/nTbTlwLPBVuVH0xEKnAVXUjVd3YeS9T1Q083zeOOraYiLpRgqaGDB8+nLFjx7LXXnsltsWdipGpAn/mmWfYbLPNuOCCC2zEu6UYuBt4R0QuEpE7gSeAswssUw3CLPB0otAPO+wwWrZsWaNMNhZ4kGKD5P7GnyfdHRsOIqgPKwYL3EubNm3YcMMN2XvvvUPlDPscRKr91dXVGSnjbF3om266adrnzBdxo9Dfj7OtWImywIPGTSoqKmq4Y/JtgbtP1U8++SSnnRYZ/2epQxSrBa6q7wL9gYeAc4CjVHVS9FG1TyZBbPfee2+SS33cuHGB5fwdub/Od955h2XLliVZ7127do2U1/ugkSpfu/ecQUol1/Oo4yhwr3Xtl+m0006r8T+MGjUqYwWeitWrVzN48ODY5eNa4O+99x4zZswI3b/JJpukPNfzzz8fW65sSOVCX19EmmHW920qIps5r/bAlrUiYQ5IpcD9Lp+1a9fWOGb16tUMHz68RoCGn0wVuLfxvPLKKxnVYbHkChG5EXgYOBC4BfiPiBxdUKECCGvbUZ30jTfeGLj96quvjlwX2ttGf/75Z3r06EGvXr2SLOfp06dHyutV4H4LPIioZU9z8fAX14W+cOFCpk6dmsimBjWvfYMGDWp4Qo4++uisXehhvPvuu2mVT8eFPnTo0NB9cTLyNW3aNL5gWZAqCv0C4HKMsvY+ff+GWTGsJIhS4GvWrOGuu+5K2hakwG+55RaWLFlCt27dkhIYVFZWMmjQoMT3TG9Km6q1flKsFjjQHOiiqquAT0XkHeApYGRhxUomrL0FXdeKigoaNWoU2h/cd999kXV726g7Fjxz5sy0cqR7ywZFlocR9DtzsbJZXAt86623ZtWqVUnXyC9TkAL34732qTwIcVzo6ZBOW4syxOJc99pafjrVGPhDqtoB+IuqdvC89lDVR2pFwhwgIoEJ1sFY1v4EDZWVlTX+ADegzT/He9CgQVx00UVJx4axfPlyBg4cGJh2z45710+KVYGr6mUAIrKD8/17Ve1eWKlqko4Ffsopp0Qe4ydKgbufy8vLa9T31Vfheae8/UO606T8xO0z4i6nHNV3uYu6ROVeD3sgCXObx/VWhl2DdPvMdCxw9z+trq6u8ZtLRoF7mC8iJ/heh4rI5nmVLkeUrV3Lhxh3gp81a9bUuPGCLPAwxo8fn/Q9akWcSy+9lOuuu45DDjmkxj5rgVuKCRE5BpgMvON87ygiWaU0zgfednrooYcmPge1p7feeqvGMVGduV/xBE0xLSsrq9FX7LrrrqF1eoPY0lHgQWVz8dDv/f1x6vvjjz8Sn4Nc6EF4Z/N4f0e2U279/3Gq65mJBX7//ffTuXPnpHzpcXLi11Y2t7gK/FyM+6y38xoEXAn8V0T65Em2nCEjRtANE0b7KMnjBqtXr05bgfft2zex+pH/j1q0aFGoMnbTrM6ePbvGPqvA6yfFaoFjxr27AMsAVHUy0CG8eGHwtlNvcFFcxeyNqo4qp6o89dRTie+usguywKNIteRlHFlccuFCd+eXQ7KihWCFHrTGuUsci9p7rRo2bBhHxFD8fWaqtpSOBe7+lv/9739A+Kp0/vwCLsVmgVcDO6nqiap6IrAzsAazTnfxZ2g7+WTOBFZjEq6PwQzwQbAFrqqRf8Bzzz3HgQceCNRsWEuXLk3Kd+wlSklbBV43efTRR+ndu3cp/r+VquqP2Cy6p42wAKmoTjpV5xpm9S5YsG5RRK8CTydwdfLkybHLemUJIhMXur++KG+BP1MckLTWg7+uOFant0wqBe667XM1Dzyd46LuEa8Cry1FHUbcs7dXVW+mg0XA9qq6BEjtTygChpaX0w2zLulBmIwUu2EaQVDAWqp1dt2kK+m4tnLRGC2lxSWXXMILL7zAn//850KLki7TROR0oFxEthORh4Hg+VYFxNt2w9IgRx0ThOsijTN2nK4Fni65dqGn8yD53HPPRe739mcdOnRIW4GncqFfeumlic+ff/55jQj/oN8SZ8qcqvLcc88xZ86c0LLuvRR0/eMo8NryrMW988aKyL9F5EwROROzuMnHIrIhjout2CkrK+NzoDPwOdAe0xt1nDMn8EaYOnVqrHqDbtqwRmIt8PqLu5SinyJ2oV8K7ILxtA3DzDy5vJACBREW1ewqt4kTJ0YeE4SrwKPmaUeNgcclnf9eRLj22msT3//444+M+oyg1KdhPPHEE5H7vfIfd9xxsa5Dpi70ffbZh1122SVpWzYKvG/fvjUSzoTJCev6+eeeey5p+lqpKPCLgSFAR6AT8Cxwsar+rqoH50e03OJe6J+AbsBzQBPg8rFjOXrChNAo9VTkygK31H28a827FOs9oap/qOoNqrq3qnZ2Psdbr7EWCVPg7lizN7AtqFwQ7rFR87QzHQP3Mm/evJRl3Ptj4MCB/O1vf0tsP+mkk0L7Gf+0WFVlyZIlfPrpp5xzzjlpyVhdXc2UKVNC97mUlZVlbIHPmzePDTbYgB122IFVq1ax44478sYbb8SSzU8cBf75558DNcf8vYQtktO3b9+koYVCK/BYExHVSPOq84qNiByJyeRUDjylqgN9+6/GBMW5suwEtFDVJSIyF1iBWb60UlU7p3NuPxtssEFiJZ3VQF9gCvA34JQZMygHzgTCQ1qCyZUFbqn7HHfccbHXLC4UIjKCiLFuVS2qsYCwaUnudQ4KGsuFBe625bKysqzWP0iFe55Ro5JXV37vvfc46qj460sddthhiYCsuLRq1Yqbb76ZO+64I3C/V0mJSMYK/NZbb01M5/3yyy/55ptvOPfcc1PWlakCj8Pzzz/PFVdckbJcoRV43FSqJ4jILBFZHncxExEpxwR998AEvZ0mIjt7y6jqvaraUVU7AtcBHznj6i4HO/uzUt4Am222WY1t9wO37b03y4ATgf8C7dKsN1sLvLq6mrFjx6Z5VkspErRecRFa4PdhmsZ3wCrMjJNBwEpgWgHlCiTMAnevtT9A9fvvv49tgUeN0ca1wPO18IV/WpsX/z2lqmkrb4Bu3boFeo1cvP1cdXV1LAXuvVYbb1xzOY2gwDXvZ2/Wu6B+NlcKPFUMlEtJKHDgHuDPqrpJGouZdAFmq+ocVa0AXgTCs/XDaZixtrwQltpubJMm7AN8A+yBCW47MI16s7XA77zzzkREe23y/vvv89NPP9X6eS3Fjap+pKofAZ1U9VRVHeG8TgcOKLR8fsKC2FwL3K/A27dvn1LRJDx1Ed6SuFHo2Qa4hSmCsrKy2B69TJVJdXV1UupUP5kocG+ZIPlPOOEEIFzm4cPXpSLo379/jf25UuB+brrppqQ58C6losB/VtXw7O7BtAa8KcfmOdtqICKNgSOB1zybFRgtIl+ISL80z12DIAsczDzQmZj5cG8DLYD3MKs4xCEdCzzohr3ppptinefnn3/mmWeeCbTi0uXDDz/ksMMOo23btlnXZQknVd78IqeFiGztfhGRDpjmUVSkssCDOthUSvXUU08FkpfO9ONV4NnOZ44iTBFUV1fHjkLPZrqVaxEH4Y3GjqPAGzZsmHTtg/pDd1w60+HGfCnO2bNnc++999bYXmgFHjcZ70QReQl4ExOVCoCqvh5xTNC/GfarjgH+63Ofd1XVBU62tzEi8rWqflzjJEa59wMiFVKYBe4+VS0HemLWUPwr8DiwO2Yh9Kh5ckF/4MKFC9lhhx0A+OCDD/jpp5/o3bt3Vn9qt27d+Oabb5gzZw633nprxvXAutWXcpEIwhLOBRcE5f5Lpghd6C5XYBYwcefatCc4mWFBSTUGnskqXq779LffwkcJvdPI4ixKkmsqKyvTcqFngqpGPiSka4FXVVXVmJOuqrz44os1ynoXmEpHfrfs4sWLadq0aZIHJqiedOoO6i8LrcDjWuAbA38Ah2OU7TEYfRfFPKCN5/tWmGnYQfTC5z5X1QXO+yLgDYxLvgaq+qQTJdu5RYtwAyHKAnepxmSlOQMT6HYh8D7QKqROVQ0MdDnxxBMTnw899FDOOOMM5s2bl1UQ2zfffAOY4JVsscF0tcOIESNSlilWBa6q7wDbYZ5hLwN2ULPEaFERZoFno8BdolJmeqeR5VOBR1ng+Xahv/rqq5GR2n4Fnuq6+pV8VVUVo0ePTvJ0HHHEERnJ6qKqrFy5ks0335zLLrusxj4/t99+e+y6g1LFloQCV9WzA16p5iNMALYTkQ4i0gijpGvkUhaRTTAzu97ybNtQRDZyP2MeHLIKoGnWrFng9qBUikMx4+DzgT8B/wOC5sqNGjUqUIEHZWJbuHBhZGOIwjsWl4sbwyrw2mHTTTcttAjZshdmLvgewKki0jeqsIg8LSKLRCSwrYrhHyIyW0Smisie2QoYNgYelYwlFwq8tizwTJI/5coCT0UmY+Beli1blkiI5bLlltmtUq2qiT79scceY7vttkva5+fmm2+OXXfQUElJKHAR2V5E3ncbpojsLiL/F3WMqlYClwDvAjOAl1X1KxHpLyLeIebjgdGq6tWkWwCfiMgUTN6VkY5FkDFt2rQJ3B4WpDEB2BNjgW+BSb96PcnjAosXLw4MbAjioYceSvoelA89jEcfXbdyay5ujGK1+uoaTZo0SVmmWP8LEXkOE5F+ALC380o1G2QIJpYljB4Yq347zLDX49nKmSqRS9ADdhwFvmTJklhj4GVlZZHTzbIl6v54+umns64jE3be2Uwm6tt33fNc3DF5ryyLFy+uofSD3NRz586NLZv60mB7+9lsr0M6FnhtGUlxXeiDMNO81gKo6lSMRR2Jqo5S1e1VdRtVvdPZ9oSqPuEpM0RVe/mOm6NmydI9VHUX99hsaNmyZdrHLMKY/rdjJrLfCfwbcJ3xjRo1SloMIIrFixcnfT/99NN55plnQst7G4M3WjwXN0Y2daxatYpDDjmEhx9+OGs56jpxOowrr7yyFiTJiM6YOJSLVPVS5zUg6gAnRiXKzXQs8KwaxgObikjYCFUswsbAKysrWbBgQWCylDgK3DsHePTo0TX2e4PYXAu8Z89Uo4q55dtvv41VLtcKPMjjUFVVlbYC//XXX2so8KA6/Es4p6o/7Pdmex2CLPANNtgAiL80aq6Jq8Abq+rnvm0lFQHlfUpOx9VTDdyEMR1+BY4CJgH7Yv7QqNV5vDeM/6afP38+Z511Vuix3tVvwupMh4cffpgddtiBn3/+OZYCf++999h6662TFi8AGDp0KB9++CEDBkT25RbC/6urr7468dmfHrKImAak/9QbTTozU/qJyEQRmeh/+PUSZoFDcBpViE7Q4uIGsO222250715zGXSvAldV2rZty3nnnVejXLrt9dZbb01qn5m093y70P1ub4hvFHhlWbt2bY1EO9kG1qYKvAtj2223TXncfffdV2NbeXk5K1as4I8//oi9mE4uiavAfxGRbXCiyEXkJExW0pLBm5Rhww03TPv4dzA5ZD/DJHsZC+z22mv8FjPIw//0luoPfvHFF1m1ahVVVVVJbvpMb4wBAwYwc+ZM/va3v8VqbN27d+e7776rYVVETSuxJBN0nW+88cakjiDO2sIFojkwXUTeFZHh7ivLOmPPTIkbnBo2Bg7hS3fGWefA/V/Cpoh5FXh1dXXOppPdcsstSQ/NmXjLglZXzCVBxkV1dXXa5/n999/p0yd5NepsFfj2228fOn8/Sr5+/fql9Mx4V6Pz0qRJExo1apRUf7t26aYEy4x0cqH/E9hRROZjFjWIO1W6KPDe1KNHj87oAv+ICWq7BzP/bseXXuKJGTNCF0n2ds5+qz9VEpUWLVrQuHFjdthhBx5/fN1QYbaNsaKiIq1Owa9gbABcfIL+K39aylzM688TtwDHAXdhMrO5r2xIZ2ZKLKIs8GwejsIU+Pvvvw+sUzTl5eWJFQ2jFPhOO+0UO+/Cp59+GrlOeSriRF9nQzrJq9Itl+2qjAsXLgxVtFHXId0AvKj6n3rqKTp16pR1fXGIG4U+R1UPwyRy2FFVD8AEn5UM3qfz/fbbj7lz53LGGWekXc9azFSzQ4FfN9iA/TE51YPCc70dSLoZmfr1M7lr/ONc2TbGdKafBJ0vGwW+dOlSvv7664yPLzXiXKtiVeDqZGTzv7KsdjjQ14lG3xdYrqpZefLCxsAhcwV+3HHHJRS035odNszMdvUGsbkWuNfLd8011yQNr3300UeJRTRScc011yQWHcnEqvWnb60Nd26uprTlIjeFv45DDjmERx99NPLcuVwS1g3yqw3SklrN6mPuDPuijb4JIugPSrUebRQfAH85/HBeBTYCngFeJ3nQMBsFHka2FnB1dXXSQ8G0adGz83KpwNu0acNOO+0UO/im1ClFBe6ucxDwirP+wTDgU2AHEZknIuf6Zp2MAuYAszGBsRdlK69XafvbWKbKYP3110+0Xb8CdxW31wJ350B7LfDvvvsuaepqusuOTp48GUhf+brX48033+S2224LreOpp55Kq14v2VjgqX5PthY41FyB7sMPP+SSSy6JPHfQ1N84BNVZmwFt2WiV7H0OtUimCnzPPcOnqi4vK+Nk4GygukkTjgemY1Y1QzVJgefqT832Bv/ss894/fV1CfReeOEFhg4dGjpe6CcbBe66Bb3L8dVl4nS+rVsHxnAVDHXWOQh4pVz/QFVPU9VWqtpQVbdS1cHeWSdO9PnFzqyU3VQ1OMosDTbZZJPE51y50KurqxPH+u9397vXAndd6N7+5Lrrrks6TkTSUuBBU5bi4CrXY489NhEsGdRmmzdvnlH9YcQdA68NBZ7Jcs5uoqx0OOSQQ5ICUl1yac2nIpszFecE1hAyVeBRCsu9UYYAS8eOZRTQ1PlOjx5Uf/dd5Pkz4csvv8xKibpP9i533303Z5xxRiL/s598RLTGfVgodeL8T716pZyNaYlgo402SnyOG8TmstdeewVur6qqonNnM+V9yJAhwLpMjq7HyutiDwpicxOIuO0lXQvc7ZvSbW/ec7jKPEihZeN9zOcYeD7TO0ddy0wMrPfffz8w8UzRKPAodxqQXcqcWiYfCtx7szXo0IGjMWPhSwDefZeW3btzFSbgLZfZml566aWc1eXy5ptvRu6fOXMm119/feAUknQp4sjrWLz00ksMHjw4Zbk4nVqh5o/WFUQkYYWna4EHTfuCdf9b06ZN2Xprs56LaxFPmjQJCA5i8/Yn/r4lXQu8YcOGVFdXx4qY95/H/zlIKWajwIOorKyM9bCRSkHnwgIPI2rabqYejyCKRoGncKfl7hfXAkGZ2LxP72FEdcLe6V3uhP7nMIufc+KJlP3+O/dhgtx2yuHSnbUZCLZ69WqWL19O586dufvuuxk4cGDWdRa7Ar///vt55JFHQvf36tWL8847L2nBBT+qysKFC/MhnsWHu660Pwr85Zdfjjzu7LPPDtzuJiXxduphY+GDBw/myy+/rGGB+8una4E3bNgwcjnTMIIs8CCl6Zfv8ssvj32OIAvc6+04//zz2WKLLQKPzYcCHzFiRFLinUzI5YN0qYyBlxSbb745EydOTAqg2nvvvROf3SdtP1EK3G1gBx54YNIT7c8Ar77K3EcfZRZGoV8+YgQvEpK1IkvWrl3L6aefzgsvvBC43z8ely7XXnttoLLKNADr4osvzmqaTD5ZvXo1f/nLX7j00ktTlo16EPn0009zKZYlAleB+5VSqliLqDSYlZWVSR2xv26vIvruu+9qBLH5lVy6FnimFnJcC9z/e9Jpy2EK3LXAmzRpEpqg6D//+U9k3Zm40A888EC22WabtI/zUict8LrGXnvtlaSovWNg3mAYL1EK3L3p3UC366+/PrFPVVm6337shsmhvqa8nFOBmcBtmMj1XDF06FCGDRtG7969a+z7448/sraawyLVs0kd+dZbb6UuVABSZcHybouaO1pbmZgs69puup1wWEdbVVVFZWVlpAXubxNhiVy890jY+QYNGlRj27hx42INwTRp0oQ5c+YE7suXAg/Cf3zY/Z8qWCwTC7y8vDzredy5VLpWgdcS3iVGL7rIzGjxBxVF3VCuBe42XNeNDqaBr127ljU4a4wfcwyvAI2BGzHzaC4i/oLsUSxbtizp+yOPPMIuu+zC4sWLcxIwFrYucjZLm3qvVbES1IF6O0Ob1KY4cNc5yKUCT+VC9y8kEmdVqrAyQfOGKyoqYimz1atX06FDcCqpMAV+zjnn1HDz1pYCT0VY+tsocqHAc/nAbRV4LeFtlNtssw0rV66s4YaO40IP6jj69++f5GJd2KgRpwA3H3YY/wU2Bx4FvgJOrHF0evhvvksvvZTp06dzzz335GSecT6ixmvzJk8H7//t7/jefvvtJNdmVAdbbPO76zKtWpn1UMKGNMLcuWGdfpALPdW4Znl5ecqH0qB7/tprr2XfffcNLB9HgUe5nKOi0P19VjpL36YaAxeRWvVA5UKB5/Jh3I6BF4Dy8nI23HDDWKvjuPgtcC8VFRVJHYr7eUH79hyAyVH5DbA98CpmzdSjMpQ9rLH8/vvvOVG+ubghw6ajLViwoKjczVEK/Kijkv+hOPeGJf+47a+yspLrrruO/fffny5duiT2u5nJxo4dG6u+OBa4n7KyMpo2bVpj+2677QaYNuRX4OXl5dx9992UlZUFBk1mq1TCLHARqVF3nz59Yg+JBSnLNWvWJLXj2vRO5VKBz5o1K2t56owFLiJHisg3IjJbRK4N2H+QiCwXkcnO66a4x+aK22+/nZ49e9K1a9fA/VE3oruwh9uB+N1lXgXuLmvorhH9FrArJqH8QsxiyyOB8UQvqOw/T9B3l4qKipxYglGdV1zl61d2VVVVPPTQQ7Ru3Zo778x6tdicEaXA/VgFXhy4HWZ1dTV33XUX//3vf5Meqt0H0Lgda5wgtm233Tbpu1t23rx5/O9//0tsHzVqFO+//z4bbLBBjfN7lU7QvTRu3LhY8qYi6D72r3VeXl4eK3ATghX4wQcfHLk/n4hIzhS4Pw1tJtQJBS4i5RgvcQ9MIPZpIhKUJHasqnZ0XreleWzW/N///R8jRowItTKjFLg79uw2br8C944dT5gwAUheCa0S+KFHD/68yy5ciYle3wd4GxgH1FzEMJgwGdesWZMTBR5lgY8cOTJWHX73pmstgVmhq1jwXktvpxoUNZ+tC30jgHqS1CafeBW4izvU4V0lKm7HGmSB+9uAN37GW3fr1q3p2LFjUrlDDjkECI5Mdwlqw8cee2wseaMQkYQC97rJDzjggFBZ0uXbb7/lgQceSOr/atOrlguXvXv9c/HwUVdc6F2A2c5CKBXAi0DcOzKbY7PGO/3E2xjDCIs+Pffcc2tsdy1wl1GjRrHNbrvxALA18BdgEbAfMBqjyI8lOm+t9+b1rnaVrgUe1giibshXX301Vt1BCrwYg8DCLPCgOcNeBT5y5MhEhO2CBQt47rnnIs9zEvA1wP3ZLvBlce/PMAXubo+rwNesWcO4ceMi13fONJfBiy++GLg9X21BRBL3qTdYLsgbkKkS3HrrrdNeLjnXpFrTIRXuNcqFAq8TFjhmyvOPnu/zCJ4GvZ+ITBGRt0XEjTaJe2xe6NKlC3PmzOGaa66JlXErTIEvX768xvagjGzuzf4H0PDaa9ka+CvwC0aRv4kJdjsbCJod6m38Xmv25ZdfTmsMPMyijFLgcW94fyR7qSnwV155pUZZd07r5MmT6dmzJzvuuCMAu+++O2+//XZg/VtjVvR4BSeV4ZgxUEQxAKVIKgs8XetqwoQJLFq0qEbaYS9+t3RcheVNWZzKhZ4rvGuXh5GO0olzHbNV4OlasdnO4w57yAuampuKuqLAg/5l/786CWinqnsAD2N0VdxjTUGRfiIyUUQmLl68OFNZa9ChQwcGDhzI5ptvnrKs20C8N+32228fWDbVjXb33XfzO3Av0A4YAHwP7AQ8jVnKqeu4ceB5OIhShF988UVK+V3CrIpcKHD/w0zc1Iu1TTpj4K6HxZ8ZL2hlo0bADcA0zLjQUuACgPfeg1oeM6xrBClwNyK8Xbt2abvQ45CpAgf45z//CaR2oecCrws9F+047jlTXY9U2STd5DxxiVqLPQ6uvP7rsP/++6ddV11R4PMAb/7SrYCkldZV9TdVXel8HgU0FJHmcY711PGkqnZW1c4tWrTIpfyxcQOWvDdtx44dOe2002qUTedJ8Q/MU822wBnAVIwb4oj336eyZUu48EKYNi2ysfz444+h+/yEdSJRMse9WYMUeG1a4BUVFQwYMID3338/slw6CtwlVWd1EDC9QQPuADYAngV2BK6YMQOKdDpdKeHeg14r1s2y2KhRI84880wA2rZtm7Nzetf6hvQU+PHHH19jW7YW+IEHHhi4vaqqKuE9imqrubDA446Bn3LKKaGZL11cBe4fcgwjWwv85JNPBmr+tsMPPzztuurKGPgEYDsR6SAijYBewHBvARFpKc4VE5Eujjy/xjm2kPjnTAbd/NXV1YEKKujPTbnIPTAU2ANjvX0ANFi9Gp54AnbbjTMGDeJkgpPCpPNkHaZQc+F680e91qYCV1WaNGnCww8/zGGHHRZZNiyILYprr103SeKBBx5IfG6BWSf+Q2CbykpWtm7NtXvvzZmYOAfX5W7JjiAL3J1b/e2333LppZdSVVVFNg/43jY6ffp0/N6+dO5lt03GydIWl3fffbeGTH522mknADp16hQoU1xlmUrWVBZ4eXl5ZJ8yadKkRDS4P2FOGOl68zbYYINE/vSzzz6bU045BajZX4b9Vm8abpeDDjoosI58kjcFrqqVwCXAu8AM4GVV/UpE+otIf6fYScA0EZkC/APo5awZHHhsvmRNF7+7JmgpTlUNHH9u0KABN9xwA2Ai4NPlHeBQTGj+6O22Q5s0od333/Myxm1xH2Z6WiZkosDj3qz+a5HPZQP9fPbZZ7GDjtK1wEWEH374IfH9yiuvpAzoh5nn3xdYBXD77TT59lumNGuWjuiWGOyzzz5AcqfqRolXVVWlnYc8FUHzydNRIEEK/JJLLsnKQ7D++uunXOO7e/fuTJkyJZF10ptJUUTYf//9E8unRuGPwHeJa4GnmvbVqVOnhEW95ZZbBi7Z6SddY8Arg7d/i5op4OXJJ5+sse2tt95ixIgRNKvFNp5X/52qjlLV7VV1G1W909n2hKo+4Xx+RFV3UdU9VHVfVR0XdWyh8M9T9i800L59eyD5pq2qquKNN96oUVd5eTm33347c+fO5bbbbstYphnAEbNmMefjjxl51FF8BWwBXAV8CUwELgUGpZEHvbq6OrDhZeJ6W7VqFXvvvXfi2j366KNJ+3Plno5Txm/9R5GJC93LfsBnwD8xa8O/g/NA9X//B+utV5SBe6VOjx49mD9/flIiEjc/err/odebEsZPASsLZmuBN2nSJHIFvFzQsGFDdt9998R5Dz300MS+srIyRCQx3BBFqrnSqSxw91xRXHLJJTRu3Jh27dqllAcyiyFw+66gFdz8ZfwEyb/xxhtntT5EJtgBuBhcfPHFSd/jBEz89a9/DdzeoEEDRIR27dolboKbbrqJsrKyjBKalDdtyuedO7MrZg75Y5gAqb0wLo0FmLGH3tRcQMWfOeqrr75iiy22qJHU5t133w09f1hDbN68ORMnTkx4Gd55552k/V6L2G0k/uQn/fv3Z8cdd4xMilJdXU2XLl047rjjIst4iXKNZ6rAW2Lc5eOAzpgpFKdghjy8S00UY+BeXcBvpblLBfuv9yeffELPnj254IILAuvxtonLLrss8dlbT9DMlEwscD+tW+d3ok1Uv5WO27dly5YpLfVUCjwV/fr1Y+XKlWy11Vaxrm26Ctz7EBGlwMOuS7Gkgi4OKYocv8WdzUIcQcEWu+yyCxUVFUmrmcWlqqoqoeA+By4GWmGUx0igHDgGeB4z7vo6cCpmURW/Irv88stZvHhxWhmg/A3n559/BpLXSg9ShF6XellZGR988AFNmjThoYceSmz/5z//ycyZMyOXIJw/fz4TJ06MXN3ML+OSJUtilV21alVkWYCGmLn7MzHu8jXAHZggNXfimXcOubXAa4eNNtqIyy67jA8++CBpe9euXRkxYgRPPPFE4HFeJXfiietWKfAqEfce9xI0ZTSMIAsc1q1qGEUcCzmMXASjnn/++bz00ksp5chWgcO66+Ovy+sBcYcv021X3tS2UQo87CG+trPNhWEVeAz8Cjxs6dE4T4ph48mpIhfD1s9es2YN99xzT/I2jPLoiZlrfBHwEWYq0/GYrDiLgX/9/jsnAW5uuEySU7hTYgCeeuopWrZsyV/+8pekMm4mKi9eBS8i3HvvvVRVVXH55ZfXuI5RHU9UROxXX30VGCy3cOHC0Pq8Zbt27UqzZs0CO2wBTsbMz78X4914ExObcCNmBgHAgw8+mBSIYxV47SAiPPjgg4HBRlF4FXiYolm7di1t2rRJ2vbVV/FDdMIUeCq23HLLpERN6ZILC/yss84KHWtPZww8Hfx1eQ0oNzFOup4tb/70qDHwsERY1gIvIfzKNWyOYpybKM50h8cffzzp+7vvvkvjxo0Dg0euuuqqyLoWAY9jpjK1AS7DuHkbAydUVfEKJmHMCOCQOXNIPeu9Jm6ed9eDcL8vu1hQ0M/cuXMTn9euXZv0UPTEE08kzV/PJIhuyJAh7LrrrvTt27eG0vRaVn6CFKzfI3EwZpz7ZWA7TEa1IzEPR/6Vmf0N3Srw4sbbPqM66WymLWVqvX3wwQdstdVWGZ83EwWeybh80Bi4NyFKttar+794DYN021WDBg0SC5fMnDkzVLYdd9yR++67r8bx1gIvYcIs8DjEWeSif//+SYsluDeLfxw5bFsYCzDj4l2BoXffzV/LyvgvxjLvCTywciU/AWOBK4FtYtY7a9YsRo4cmXIai5eXXnop6bu3s7zqqqvo3Llz4nvcxVS8QwKPPfYYAMOGDWP8+PE15A0jqCN45plnABNX8DZmGt/emOvZDxOkFhYlYBV4aRFmgafjFUpFWNKQVGSb5yITmffaa6/YZYMs8CuuuII1a9bUMErSwX/tRYSKigpGjx6d2JaJC/21114DkmN8glLMBhlJVoGXMPvtt1/Gxy5YEJiPpgbem9MlKA1rpvS+9lqmdu/OARg3+/mYMfO1wAHA/cBsTPKYu5xtYXbwxx9/nHX05dSpUxOf3VXeXKIai3eMyvvZ2+jTCQ4M6ggWv/UWozCR/UcCy4HrMdb3ICBqtri/Q7BBbMXF0KFDk77HcaFDTWWYTtxIpgo8nTW7g4iywDNZByEMrwXep08fGjVqlBS5nm4b8JcvKyujYcOGSbJlosCDiPufWBd6idK9e3f69esXuC/OjZkqA5FLhw4dEp/dmyXbbEN+nn/+eQYOHMiy9dbjKYwV3hwztjsUo6h2A67DWOW/YMbWz8HJ4+1wyy23ZC2LdwzR34iixua9SttbLuq/+POf/xy6L5E3GzgCY23/FxNNvhKYfvTRbA3czbpx7iiC1oC2FA877LBD0ve4CnzGjBmJz9OmTcvooT5dBZ6t0ohS4JnkgPATZIEHjTPnap1zL7WtwK0FXqIMGDAgdB5kKgV+zTXXcMwxx6R9TvdmyTbdoj+ve/Pmzbnmmmto2bJlYttK4FVM6tYWmCVNH8CM826KybwzGJgPTMYosoOBuL6Byy+/PGUZf5R/rhV45CyC337jUsw8+3cwv20ZcBsmN33TQYOIjktPxt/pnnfeeUB6rklL/vArNe/3fFljhfLCZGKBR12DBQsW1Egp668v6Hh3ql5ZWRn9+/evsT+VbFaBr8Mq8DRR1Yz/vIEDB2b0FO2eL5t5ot27d09S1F5Co22B9zDj4TsBHTAR7SOA3zGpXa/FWKnLgP8ANwPdgPVC5IizOEw6Cnz69OmJz++99x69evViyZIlkZ2k+yD0+OOP07VrV3qdfDKLX34ZzjmHXY44gn8AOwA/YH5fO+d3LSF9L4i/o+jduzcjR46MvY66Jb9EKfCoMXAv6bZpN2XpzTffHPuY119/Pa1zBBF174YpwKi+rlWrVqFZx6IUuDukVVVVFWtsPMiF7scvf1hf5xKmwOM+XBXLUFhufbJ1mBYtWrB48eKE5XT88ccHZlrLB24jaNq0KV9++SW77bZb2nU0bNgw9KaL2wHNxUS0P45R0H/CuJYPxijzbs4LYDUm2n0cJmL7M8zUtfXWC1Pt6whS4FVVVRx++OF88MEHvPDCC3z//fdMmTIlaX1lN5/x3LlzI5eCrK6uhspKhl50EccBpwEtnHXNyzG5yx/GJMDx+zzSVeBBiSGOOuqotOqw5A+/AvfGmaQ7Xzmdc8ZVABMmTGDPPffMyZhrJi70uIlN/GWeffZZbr311kT+dS+pMrnFqd+PX/5rr7020tsX1o7jtu98Lv+aDlaBx2Tu3LksW7YskfEpaDpHvp7KvI13l112iSgZjn8ue1j9Xo499tjQBClrMNa5m025KXAgRpkfhFHohzgvl++AtUOH8iPwP0zK1yB3tP/peO3atYwZMyaRlOP0008P/S1gcp8HsS0mGO/Mzz+HLbbgE59sbzdrRttrr+WYq68Orbu8vJyHHnooKUtXFEcccUSscpbC4FdqXuUSV2nmM6DJOxsjW9J1oY8cObKGsmzVqlWsOjp16sSbb76ZvpABfPDBBwwZMiSxUFAqC/z4449P+Z94+xhv2YYNG7J48eKUEf/FMpvEutBj0rhx46R0jbU5BuI9V6bnbdSoUehNHbbdnYoVh6XAW8DlQEdMMNzxwECMa30lxgW//aRJPOBs+xUzFetdzCIs52PG3Lf47Te8jxsVFRX06NEjtiyNMVO7TgVuxyRY+RmYBfwLOGjePFiyhFmY8f0DgK2Bi3/9NVJ5g3lCHzBgQGxZ4izEYCkc3gfbTp06JX3PlwVeKOJOx3Q56qijEr+tRYsW/PDDD4l1H6LI9fXYfffd+fvf/x5Zvyv/bbfdxgsvvJBShjAFDjVTTAM1MvcViwVuFXgOyZcFnovo8/LycoYMGcJWW22VWB/YJayjymbayq8YxXkdxirfBNgdGHfWWQwCxmOUeivgcMwiLE8Co4HPli5lDUa5TwE6XXklrwNPYxYJeQzj4n4Mk3/8dWAMZsrbEsz4/JeYjHP/BxwLbI5R4q9hHjK2d15XYqLM45LrmQB1DRE5UkS+EZHZIlJjZRAROUhElovIZOd1UyHkdPFapZ988kmoAo9q28UyHpqKKAvcOyznHeJxFeF6661XI/ucnyOPPBIgbwt6uN6RIOXsLhPcs2dP1l9//VgK3I1DibM89AUXXJDTSPpcYXujDKmNp+4bbriBL774gi5duqR1XP/+/XnxxRdZtmxZYpuI0LFjR3788cca5cPStGaT891PNUapfn/44fRzFkIQoD3GWt4NkzimvfNqi1HurQAWLWLnNM61BhOA9pXnNQEzrz1bghT4/fffnzIjXn1ARMqBRzGOlHnABBEZrqrTfUXHqmrtLtsUgqvUysrKaNy4cZKLOK4FXtvW2H333cewYcOSshXGIW4mNm+AZdA0sDD22muvyIeZ4cOHM23atDiiBjJhwgTeeeedwL63T58+HH300Ylslan65wYNGiT6Vb8yjtO3F4sFnlcFLiJHAg9hYoOeUtWBvv29gWucryuBC1V1irNvLrACE0dUqaq5GwzKAVFunFyRad7jxx9/nJdffjl2ee961l7CgkWyGfPzBrEpZuz5O0xku5dyzApfzYDNnNemmBu23HlVY26QlRirexFGawRPbMkNxZLAoUjpAsxW1TkAIvIixgHiV+BFg6vU3LbrjV6O+1/XtjV21VVXcdVVV9G4ceO0xsgz8R65fUAuPE/HHHNMRtNoXXbeeWd23jn8Ud6bajqOBe6uWBdnKpufbbaJm6cyv+RNgcd8Gv8O6KaqS0WkB8aLuo9n/8Gqms/+OGPStcDD8qfnmoMPPhio2eDiyrvZZptxySWXJBpD8+bNk+Z6Zut5iB3liZlrPj+rsyWz+eabs2jRooyP7969e+i+Bx54gCuuuCLjuusIrTErqbrMI7k9u+wnIlMwoyR/UdX4K4HkmCCrtF27dnz//feRLvQLL7wwMQWqUO5U74JAccg0qxqU3tBRHAW+3nrrsXbt2rSvy5o1ayKDgmuTfJoTiadxVa3ADEke6y2gquNUdanzdTyQeab+WmbHHXessS3KAs/myTMOPXr04Oyzz2bYsGFAvDXLg2jcuDG33nprIso6nRSRcfBa4LfffntO646iW7duSVPOMiFqudc4CWrqAUG9pr9RTALaqeoemFCGNwMrEuknIhNFZGI6OfbTxVVMffr0CZIh9DhvoFM+FPjo0aMZM2ZMTuvM5OHbdRXXFQW+xx57AOseZho0aJB28pZiClrM578S92nc5VzMWhEuCowWEQX+qapPBh0kIv0wa0rQtm3brAROh3POOYfly5cnTRPq2LFjaPl8ul4333xzRo0albQt0wbnH/febrvtapR5/fXXOeGEE9Kue8iQIUljjLXZEFavXp2RBdK6dWvmzzd+gLCHomJq0AVmHmbRO5etMFZ2AlX9zfN5lIg8JiLN/Z42p70/CdC5c+e8RYmJCEuWLEm4U91t6RA1tSpdFixYQGVlZcqAsdrCzXRYqgp80003Ze3atYk4n4EDB9KjR4+MhjvffPNNHnzwwaK6Fvm0wOM8jZuCIgdjFPg1ns1dVXVPTK6Qi0XkwKBjVfVJVe2sqp2zXa0nHRo0aMDVV1/N7rvvntjmLi4fRD4VeNCi85la4HFuzuOPPz50TeAwunfvzplnnhk5fSOfrFmzJqPz/frrr4nPqa5p1PhcPWECsJ2IdBCRRkAvTD6cBCLSUpzeVUS6YPqgX2vUVIs0bdo08L6P28mn2xaiaNWqVdEobyh9BX7iiSeycuVK3njjDQYPHpwwUIL6zFQcffTRjBkzpqge2PPZg6Z8GgcQkd2Bp4BjVTXRkFV1gfO+CHgD45IvasrKythnn3VOhunTp7PrrrsC0QtopEuvXr2Svt922201ypx//vlJ3+PedHGt1Did24Ybbpj47HYAhbr5V69endG516xZk/icSoF//PHHSdcvm9S3pYiqVgKXYKb2zwBeVtWvRKS/iLiRQicB05wx8H8AvbTI5mG590nQ4hz1jVJX4O7/dtxxx3HOOeckxq6LJYo8W/KpwOM8jbfFTOPto6ozPds3FJGN3M+YqcKZzz+oRbwNfaeddmLcuHGMHz+e448/PmfnGDJkCJ988gkrVqxgwoQJXHzxxTXKXHXVVXzyySd062aSm/bu3TtW3StWrIhVLlWHNmPGDL7//vvEd7cDCFu/O4h0IulTUVZWFplTPQxvZi5vJ/bTTz8lPrudRbNmzTj22HVhHtlMmSlVVHWUqm6vqtuo6p3OtidU9Qnn8yOquouq7qGq+6pqboMsckCQAq/LRFn8pa7A/bi/IxMLvBjJmwKP+TR+E2am0GNOUoeJzvYtgE+cp/TPgZGq+k6+ZM0l/ka/0UYbsc8+++TU8lxvvfXo2rUrTZo0CZ1GUl5eTteuXRkzZgyzZ89OJFlIhVfpRpGqc9txxx2TFjrIRIGnkvn9998HTACfm8ghjMcffzwjBe51u1dUVCQ+hy2W4GZpO/fcc7Nev9lSGGpjimhtE5brYdmyZXz99dehx5W6Avf/b+ko8KBA5WIjr4OQMZ7Gz1PVpqra0Xl1drbPcZ7Q93Ce1u/Mp5y5pNgaesOGDfM+ZzHIhe9y6623AnDTTSbhVpQC9y9y4F1Yws+uu+7KIYccwoIFCxg+fDjt2rWrUeaiiy4CYOrUqRx44IEZKXBXbkhW4GF069aNX3/9lUGDBqV9LktxUWxtORvCFhDZZJNNIhcXcfuO0047LS9y5QtXgftnCMRV4DNnzmT8+PH5ES6H2KwUOeapp56iVatWDB06tNCi5Jwzzjgj8Xn48OG0bNmSN998k2uuuSapnHd62E033URFRUUiQt/bKXqf6qurq5Myx0H0mLM71tyqVSsaNGgQaM0/+uijVFRUJNJEZqLAO3fuzFlnncXuu+8eew3vzTbbrKgCXSzp4QamehXb4MGDk8oErbJVjMycOZNJkyZlfHybNm1YvXo1/fr1y6FUwTRs2JC5c+fmpK4wC9wNdD700EMjj99uu+3YZJNNciJLPiktv0gJsMceezB//vyS7cCjIrW9AVoHHHAACxYsQESSlOeXX36ZCNxz8Spi7+dLL72U4cOHc+655yIigQr7oYce4vnnn2ft2rVJS4T6g+3CEuWEnfuggw7iwQcfjJz6ByYQ71//+lfkOvDeYD1L6fPss88yYcKEpCDEfffdN/F54sSJ7LnnnsyaNatoMnKFETQNNF3iLAGcC7bbbrtAT1omhCnwli1b8u233xZVpH82WAWeB0pNeW+66aYJ63fs2LGh5fzjvu7v9Cp973zaIHbccUf69u3L9ttvT9OmTZk4cWLS/rZt2/LDDz8kOswBAwYwYMAADjwweRahX4HfeOONfP3113zxxRdJU7+8HH744ZxwwgkcfPDBXHLJJcyaNStSVlinnIP+08GDB/PGG28EJgGxlC5NmjRJZDQMwvXEuMNDltxwdYqVANMhKhBx6623ztl5Co6q1pnXXnvtpZb0+fLLL/XUU0/V2bNnB+4fM2aM9u7dW5cvXx5aB2aOvy5evDgrWWbNmqUnnXSSTp06NWn7gQcemDgHoPvuu2/g8b/88ouedtpp+vHHH6c819y5cxP1nXzyyXrPPffoqaeeql9//XVi+3fffZfV78kWYKIWQdsq5KtY2rV7T1hyi3tdq6urc1bns88+q4D27t07Z3Xmmly0bWuBW9h1110j04wedthhKaO8XZo0aZKVLNtuu22N5U6DCIuKbdasGS+88EKsc3nzGQ8bNixwDrx1j1sstUMuPZf1ZSqgVeCWnPDKK6+wdu3ayMjxXJJJWlQ/3ocA/9j/iBEjWLRoEbWZ3c9iseSG7t2706RJkzq/wJBV4JaccNJJJ9Xq+Y466qis6/A+BPif/nv2LIrlqi0WSwZsscUWsZNSlTJ2GpmlJPAq2H/96185ebLO1t1vqV/ceOONOfH8WCy5wipwS8lx1llnZbxYi5dGjRoxY8YMZs+enQOpLHWd2267rc6k4LTUDawL3VKvKYV0iRaLxRKEtcAtJcEdd9wBRKdttVgspcdrr71Gjx49Ci1GSWItcEtJcMABB7B69epaywplsVhqhxNOOIETTjih0GKUJNYCt5QMVnlbLBbLOqwCt1gsFoulBLEK3GKxWCyWEsQqcIvFYrFYShCrwC0Wi8ViKUGkLiV7F5HFwPe+zc2BXwogTqaUkrylJCuUlryurO1UtV4nZA9p11Ca/2epUErylpKskMO2XacUeBAiMlFVOxdajriUkrylJCuUlrylJGuhKKVrVEqyQmnJW0qyQm7ltS50i8VisVhKEKvALRaLxWIpQeqDAn+y0AKkSSnJW0qyQmnJW0qyFopSukalJCuUlrylJCvkUN46PwZusVgsFktdpD5Y4BaLxWKx1DmsArdYLBaLpQQpOQUuIk+LyCIRmebZdq+IfC0iU0XkDRHZ1LPvOhGZLSLfiMgRnu17iciXzr5/iIjUlryefX8RERWR5sUgb5isInKpI89XInJPMcgaJq+IdBSR8SIyWUQmikiXYpBXRNqIyIciMsO5jpc52zcTkTEiMst5b1oM8hYC27Zt246S17btAFS1pF7AgcCewDTPtsOBBs7nvwF/cz7vDEwB1gM6AN8C5c6+z4H9AAHeBnrUlrzO9jbAu5gEFc2LQd6Qa3sw8B6wnvN982KQNULe0e75gKOA/xSDvEArYE/n80bATEeme4Brne3XFtO9W9sv27Zt204hr23bvlfJWeCq+jGwxLdttKpWOl/HA1s5n48FXlTVNar6HTAb6CIirYCNVfVTNVftWeC42pLX4QHgr4A3irCg8obIeiEwUFXXOGUWFYOsEfIqsLHzeRNgQTHIq6o/qeok5/MKYAbQ2pHrGafYM55zF/z61ja2bdu2nUJe27Z9lJwCj8E5mCcXMBfxR8++ec621s5n//ZaQUT+DMxX1Sm+XcUo7/bAn0TkMxH5SET2drYXo6wAlwP3isiPwH3Adc72opFXRNoDnYDPgC1U9ScwHQGwebHJW0TYtp1bbNvOMbXdtuuUAheRG4BKYKi7KaCYRmzPOyLSGLgBuClod8C2gsoLNACaAvsCVwMvO+MyxSgrGKviClVtA1wBDHa2F4W8ItIEeA24XFV/iyoasK0Yrm9BsG07L9i2nUMK0bbrjAIXkTOBnkBvx/0A5gmmjafYVhi3yzzWueK822uDbTDjHlNEZK5z7kki0pLilHce8LoaPgeqMcn4i1FWgDOB153PrwBuoEvB5RWRhpgGPlRVXRl/dlxnOO+uG7Pg8hYLtm3nDdu2c0TB2nYuB/Nr6wW0Jzm44UhgOtDCV24XkoMF5rAuWGAC5snTDRY4qrbk9e2by7pAl4LLG3Bt+wO3OZ+3x7h+pBhkDZF3BnCQ8/lQ4ItiuLZO3c8CD/q230tyoMs9xSBvoV62bdu2HSGvbdv+c+fr4ufxTx0G/ASsxTyxnIsJAvgRmOy8nvCUvwET5fcNnog+oDMwzdn3CE5WutqQ17c/0cgLLW/ItW0EPO+cexJwSDHIGiHvAcAXTgP5DNirGOR15FJgquc+PQpoBrwPzHLeNysGeQvxsm3btu0U8tq27XvZVKoWi8VisZQgdWYM3GKxWCyW+oRV4BaLxWKxlCBWgVssFovFUoJYBW6xWCwWSwliFbjFYrFYLCWIVeCWBGL4RER6eLadIiLvFFIui8WSObZd113sNDJLEiKyKybLUSegHDOn8UhV/TaDuspVtSq3EloslnSx7bpuYhW4pQbOusC/Axs67+2A3TC5k29R1becpP3POWUALlHVcSJyEHAzJglDR1XduXalt1gsQdh2XfewCtxSAxHZEJOZqQL4N/CVqj4vIpti1qvthMk8VK2qq0VkO2CYqnZ2GvpIYFc1S+VZLJYiwLbrukeDQgtgKT5U9XcReQlYCZwCHCMif3F2rw+0xSTZf0REOgJVmFzKLp/bRm6xFBe2Xdc9rAK3hFHtvAQ4UVW/8e4UkVuAn4E9MMGQqz27f68lGS0WS3rYdl2HsFHollS8C1zqrBOMiHRytm8C/KSq1UAfTGCMxWIpDWy7rgNYBW5Jxe1AQ2CqiExzvgM8BpwpIuMxbjb7dG6xlA62XdcBbBCbxWKxWCwliLXALRaLxWIpQawCt1gsFoulBLEK3GKxWCyWEsQqcIvFYrFYShCrwC0Wi8ViKUGsArdYLBaLpQSxCtxisVgslhLk/wExll1q7I/dMQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABVuUlEQVR4nO2dZ7gURdaA33MvVxCQoCTJqKCiKCoGzHkFEXTZBROKAdaICbMu7ioG1M/VBRVRdE0giqvoYlYUFEVAUIKKSs5Byelyz/eju4eenu6JPXfmzq33efqZnu7q6pqerjp1qk6dI6qKwWAwGAyGikVRrgtgMBgMBoMhdYwANxgMBoOhAmIEuMFgMBgMFRAjwA0Gg8FgqIAYAW4wGAwGQwXECHCDwWAwGCogRoAbsoaINBSRL0RkvYg8KiJ3iMizuS5XIkTkBRG5z94/TkR+ynWZDIWHiKiI7JPrcvghIveIyMthXysiJ4rIosxKFy4i0lxENohIccD5tJ+FT16h/ueVUoCLyPkiMtn+05aKyHsicqwnTW/7YffwHD/RPv6m5/jB9vFxrmP3isgPIlIqIvd40t9h39/ZNotImYjUs88/IiJzbOH3o4hcFPZzKAf6AquAWqp6k6rer6qXA4hIS/t5VQm6OMyKky6qOl5V981lGSojpo7G/J68EnqFhKouUNWaqroj12VJlUonwEXkRuBfwP1AQ6A58CTQzZP0YmCN/ellJXC0iOzhSf+zJ90vwC3A/7wZ2MKsprMBDwHjVHWVnWQjcBZQ2877cRE5OtnfmQ7xhGmatABmqfEWZEgBU0dTJwt1t8IRpEEXNKpaaTasirYB+GuCdC2AMqA7UAo0dJ07EVgEPA1cbR8rto/9HauCe/N7Gbgnzv0E+BW4OE6aMcBNcc53A6YB6+y8zrCPzwNOdaW7B3jZ3m8JKHAZsAD4AngfuMaT93Tgz/b+fsBHWA3nT0CPgPK8AGwHttnP/FTPvRfY995gbx09159hX7vdPj/dPt7YfhZrsBrfPnGeSWdgFrAeWAz09/yHd2CNEMwDLvCU/T53Wte5eUB/4HtgLfAaUM11vov9P/wBfAUclOv3viJtFHYdvRlYCiwBLrXf/33sc1WBR+x6sdwu+65ADWCz/VudutLYrktv2OVeB1xuP7vn7HssBu4Diu38ewMT7Hv8DswFOrnK1gr43K4rHwGDseuqff4o+33+A6s9ODHZaz3PILDuAYfbv72KK313YFpAXi8ATwFjsTpTp9rPZjRWB24u0M+V/ghgsv28lgP/Zx9vaf8XVRL9HjztgX1sHnYba99jov2cltrX7uJKG/nPw9gqmwbeEagG/DdBuouAyao6GpgNXOCT5kU7HcCfgJlYFTMdjsPSNEb7nRSRXbFe7pkB54+wy3MzUAc4HuulSpYTgP2xfserwHmuvNtiNZb/E5EaWC/0q0ADO92TInKAN0NV7Q28AgxSS4P52JPkePuzjn1+ouf697E0sNfs8wfbp0ZgNQCNgb8A94vIKQG/6zngb6q6G3Ag8KnrXCOgHtAES3t6RkSSHSrvgdXBaAUchNU4IiKHAsOBvwF7AEOBMSJSNcl8DYVbR8/A6vidBrTGEjZuHgLaAO2BfbDey7+r6kagE7BEd44GOL+hG5YQr4NV1/6D1ZnZBzgEOB1LsDscidXprgcMAp4TEbHPvQpMsc/di2tUQ0SaYI1Q3Afsbv+O0SJSP9G1AfjWPVX9FlhtPyOHC4GX4uR1PjAQ2A2rg/EOVgejCXAKcL2I/MlO+zjwuKrWAvYGRgXkmervcbMDuMG+tqNdhqtSuD4lKpsA3wNYpaqlCdJdhPUnYn/G/IGq+hWwu93oX4TVWKTLxcAbqroh4PzTWC/lBwHnLwOGq+pHqlqmqotV9ccU7n+Pqm5U1c1YDWd7EWlhn7sAeFNVt2Jpl/NU9XlVLVXVqVgN2l9SuFfaiEgz4FjgVlXdoqrTgGeBXgGXbAfaikgtVf3dLq+bu1V1q6p+jtVA9YjNwpcnVHWJqq7BajDa28f7AENV9RtV3aGq/wG2YmkvhuQo1DraA3heVWfYQvke54QtRPsAN6jqGlVdj9V5PTdBmSaq6luqWgbUwhL019t1eQXwmCeP+ao6TK253v8AewINRaQ5VufDqQ9fYL3XDhcCY1V1rN2+fISlyXZO4togguref+z7ISK7s1OpCOJtVf3SfgbtgPqq+k9V3aaqvwHDXM9gO7CPiNRT1Q2q+rU3swx+DwCqOkVVv7bbx3lYnfgTkr0+VSqbAF8N1EtgOHUMlmY10j70KtBORNr7JH8JuAY4icQaQ9D9dgX+ivXi+p1/GEt77KH2GIwPzbCG99JlobNjNx7/Y+dLfy5W7x4sTfxIEfnD2bAEfKMM7p0KjQGngXOYj9Xb9qM71jD6fBH5XEQ6us79bjek7nwaJ1mOZa79TUBNe78FcJPn+TRLIV9D4dbRxrjqGdb75lAfqA5Mcb0379vH4+HOrwVQAix15TEUa6TMIfLequome7emXTa/+uDO+6+e9/pYrA5Aomv9iFf3XgbOEpGaWEJ9vKoujZOX9xk09pTzDqyRE7AUnTbAjyLyrYh08ckvnd8TQUTaiMi7IrJMRNZhdcTqJXt9qlQ2w4eJwBbgbKyhJz8uxprvmrZzdAmwevDTPGlfwpqHfVFVN3nSJ8ufseZzx3lPiMg/sHrVJ6jqujh5LMQaEvJjI1bj4OAnbL2NzghggIh8gTUP95nrPp+r6mlkTjKGbd40S7A0qt1cQrw51nxf7MXWkFw3ESnBasRHYQlUgLoiUsNVUZsDM1L5AT4sBAaq6sAM86nMFGodXcrOdw+s981hFdY89wGq6vcuB9UV9/GFWKM99ZIYvfArm199cPJfCLykqn28F9ojdfGu9SOw7qnqYhGZCJyDNbL2VIKye5/BXFVt7ZtQdQ5wnogUYf2nb3iMHCHxs4hqT23DOXdH6yngO+A8VV0vIteTxRHKSqWBq+paLCOWISJytohUF5ESEekkIoNEpBpWr68v1rCos10LXODVClR1LtbwyJ1+97Pzrob1nKuISDUfS8mLsRoX9Vx7O9b8zmmqujrBT3sOuEREThGRIhFpIiL72eemAefaZelAci/TWKze7D+x5qDL7OPvAm1EpJedX4mIHC4i+yeRp5eVWIY5e8VJsxxoaVc4VHUh1jzXA/azPAirV/2K90IR2UVELhCR2qq6HctwxbtM5B92uuOwpgdeT+N3uBkGXCEiR4pFDRE5U0R2yzDfSkMB19FRQG8RaSsi1YEBrjKWYb07j4lIAzvvJrJz7nY5sIeI1A7K3NZSPwQeFZFadjuwt4gkHL5V1flYQ+JOfTgWy7rewdGK/yQixfYzOlFEmiZxbRDx6t6LWCsD2pHaqMkkYJ2I3Coiu9plPVBEDgcQkQtFpL79vP+wr4lqE5L4PT8D1ex6XQLchWWA6LAbVluzwW6Dr0yh/KmjeWB5Wt4b1rDvZKze1DKsIeOjsYaLlwIlnvTVsHrJXfCxQnSluxyXhSuWlaR6tt6u802wjU588lKsHvUG13ZHnN90DpZl9HosjeNP9vG9gG/s6/8HPEGsFXoVn/yes88d7jm+r53PSqzhzk+B9gFlegHbmtv+fg/Rlq3/tPP5AzjK5/o9sCxnfwem2seaYnUk1mBNG1wRcO9dsIYhf8eqUN8Cx9rnTsQyhLvT/l8XAL38yu39v4lj1W9/P8O+1x/2u/Q6sFuu3/mKtlGYdfQ2+7f4WaFXwxpu/c1+X2cTbUE93K5vf7DTCv1lT/61sTTARVgrJL4DzrXP9QYm+JTfuf9ewHj7N/hZoR+JZZm9BqvO/g9onsy1nnueSJy6Z6epbj+D/yR4R17A1b7YxxpjjSAuw6r7X7PTQvxlYIVdzpnA2fbxlkRboSd6Fr2x3sEVWAZ981z3OB740b52PFYbN8HvmYexiZ2pwVBpEJETsSpk0xwXxWAw+CAiv2KtIPGuXjG4qFRD6AaDwWDIb0SkO5am+mmitJWdymbEZjAYDIY8RSw3t22xhtXLEiSv9JghdIPBYDAYKiBmCN1gMBgMhgpIhRtCr1evnrZs2TLXxTAYyoUpU6asUtVEDj0KAlO3DZWJMOp2hRPgLVu2ZPLkybkuhsFQLohI0l6gKjqmbhsqE2HU7awNoYtIMxH5TERmi8hMEbnOJ42IyBMi8ouIfC9WMAiDwWAwGAwJyKYGXooVWm+q7Ylqioh8pKqzXGk6YUXmaY3lKOAp+9NgMBgMBkMcsqaBq+pStaM/qeW3ejaxQSe6YbsoVCsyTB0R2TNbZTIYDAaDoVAoFyt0EWmJFZ/2G8+pJkRHk1lEcGQpg8FgMBgMNlkX4GKFhRuNFafWG63HLzRQzMJ0EekrIpNFZPLKlSsT3rOsrIyzzjqLO+/0jV9gMBgqKJs2beKOO+5gy5YtuS6KwZBzsirA7Wgto4FXVPVNnySLiA6x1xTL0X8UqvqMqnZQ1Q716ye2up88eTLvvvsu999/f5olNxgM+cgjjzzCAw88wODBg3NdFIMh52TTCl2wIlrNVtX/C0g2BrjItkY/Clir8YO3J8XmzZszzcJgMOQhGzZsAKxRNoOhspNNK/RjsAKy/yAi0+xjd2AHslfVp7HiTnfGCn+5CbgkjBtv3749jGwMBkOe4dTtKlUqnAsLgyF0slYLVHUC/nPc7jQKXB32vY0ANxgKE6dul5SU5LgkBkPuKUhf6Nu2bct1EQwGQxZw6vYuu+yS45IYDLmnIAW40cANhsLEaOAGw04KUoAbDdxgKEyMADcYdlKQAtxo4AZDYWIEuMGwEyPADQZDhcEIcINhJwUpwC3jdoPBUGjs2LEDgOLi4hyXxGDIPUaAGwyGCoflJ8pgqNwYAW4wGCoMpm4bDDsxAtxgMFQYnLptNHCDwQhwg8FQgTB122DYiRHgBoOhwuDUbVPHDQYjwA0GQwXCCHCDYScFKcANBkP2EJFmIvKZiMwWkZkicp1PGhGRJ0TkFxH5XkQODePeRoAbDDspyJh8pnIbDFmlFLhJVaeKyG7AFBH5SFVnudJ0Alrb25HAU/ZnKJg6bjAUqAZuKrfBkD1UdamqTrX31wOzgSaeZN2AF9Xia6COiOwZwr2jPg2GyowR4AaDIW1EpCVwCPCN51QTYKHr+yJihXzKGAFuMOzECHCDwZAWIlITGA1cr6rrvKd9LompmCLSV0Qmi8jklStXJn1vU8fj8/vvv1NaWprrYhiyjBHgBoMhZUSkBEt4v6Kqb/okWQQ0c31vCizxJlLVZ1S1g6p2qF+/fsL7OnW7rKwsnWJXCrZt28buu+/O1VdfneuiGLKMEeAGgyElxHKD9hwwW1X/LyDZGOAi2xr9KGCtqi7N9N5mCD0xmzdvBmDkyJE5Lokh2xSkFbrBYMgqxwC9gB9EZJp97A6gOYCqPg2MBToDvwCbgEvCuLER4Ikx7mYrDwUpwN2VW1XNi2wwhIiqTsB/jtudRoHQx3CNAE+MEeCVh4IcQnfPj5mKbjAUDoUmwH/++WdmzJgRap5O+1dUVJDNu8FFQf7DRoAbDIVNGPV69erVDBw4MKcGcfvuuy/t2rULNU8jwCsPBfkPe4fQDQZDYRCmBn7llVdy11138emnn2acVz6xY8cOwAyhVwYKUoAbDdxgKEzCFODr168HrGVXhYTT/hkBXvgUnAAfOXIkY8aMiXw3AtxgKBzCFOCFKuAcDdwMoRc+BWWFvmHDBs4777yoY0aAGwyFR5j1utDaCDOEXnnIWhdNRIaLyAoR8TWxFJETRWStiEyzt79nes8tW7bEHCu0ymkwVGbC9MRWqALOaOCVh2xq4C8Ag4EX46QZr6pdwrqhX4U0LhcNhopPaWkp//jHP1i7di1gNPB4GAFeecjaP6yqXwBrspW/H0aAGwyFyahRo7jvvvv4/vvvgXDnwMtbgE+dOpV//vOfWcvfGLFVHnLdResoItNF5D0ROSAoUboRiwBee+21jAtpMBhyi9dSfM6cOTkqSeYcddRRDBgwIKIpO0ybNo0VK1ZknL+ZA6885FKATwVaqOrBwL+Bt4ISJhuxyK8n/fbbb2deUoPBkFO8wmjQoEE5KknmOO2U12bnkEMOoWHDhsyePTuj/HM1hK6qBTcdke/kTICr6jpV3WDvjwVKRKReJnma4XKDoTDJhjaZqyH0XXbZBdgZNczLBx98kFH+uRLgxcXFHH744eV6z8pOzgS4iDSywxIiIkfYZVmdSZ5+FdH0CA2Gik82hFEqnYLFixcjIkyZMiXj+1atWhXwXzWTarn8yNUQuqqG8nwMyZPNZWQjgInAviKySEQuE5ErROQKO8lfgBkiMh14AjhXM5S2fhq40coNhopPNoWRt9nZunUrq1dH6xKOVjxkyJCM7+cIcLcGHqai4bR5v/32W2h5GvKTrC0jU9XzEpwfjLXMLDT8hLXRwA2Gik95DqF37tyZTz/9NOq4kzYMhcBPgJeWlsbcK10cDbysrIx58+bRsmXLjPIz5C+5tkIPFTOEbjAUJuU5HOwX3CTd+fKNGzdyxRVXsG7dusixkpISwNL0HdxW9mEJcCDqvobCo6AEeDY0cFXlscce45tvvskoH4PBkD65XhLlWL2n2p4MGTKEoUOH8tBDD0WO+XUGtm/fHnM+XdwCfNddd80or8pOvlvWF5QAz4YGPnbsWG688UaOOuqojPIxGAzpk80h9GRwlnalOoTuFswOfu5gs6WBL126NKO8KjtFRUX069cv18UIpKAEeDYM1ubPnx96ngaDITWyuSQqqJPvHO/UqVPkWKptjJPeXX6/iGozZuwMGZGpAHeX8YQTTsgoLwMMHhyqqVaoFLwAz+fhD4PBkBy5WAfuaLLvv/9+5FiqAtzJo7i4OObcwoULI/tuIRGmBp4tpk+fTvPmzWOs9QuJdGTHXnvtxRNPPJGF0vhTUALcGLEZDIVJLobQ3ZbhDqm2J34C3MnD8esOcNZZZyVdrmTvmU3uv/9+Fi5cyMcff5z1e+WKeJ21cePGISIsWbIk6vjcuXO57rrrsl20CAUlwI0GbjAUJrkwYvMT4Olq4O4hdMffuVuou39fRRDg2WhXP/74Y3r27Jk3bXa8cjj+ACZMmFBexfGl4AV4pvPiubZ+NRjyDREZLiIrRGRGwPkTRWStiEyzt7+HcM9MswgkqKHOlga+YcMGgKiIZO52qiIIcIcw/5fTTjuNUaNG5Y3zrXwpRzyyGQ+83PGrXNWqVcsoTyPADYYYXsBywvRinDTjVbVLWDfMpivVv/zlL5SWlsbMU4ehgTvp/ebAg/LNtM3xRm7LBtnUksvKyhI+r/Igmf861/Kh4DXw1q1b56AkBkPhoqpfAGvK857ZbihHjRoVcyxMDfyWW26Jmy5MAd6zZ8+Mrk8G5zlk43/xG0FYtWoVbdq04ccff/S9pk+fPrz4Yrz+ZOq4/5N8nesveAH+yy+/ZJRnrntYBkMFpaOITBeR90TkgFwXxo/yMGJLVmPPVICvX7+evn37snbt2pSvTYewBfjKlSsj+24Bvnr1ar7//nvefvtt5syZw8MPPwzA+PHjEZHIOvdnn32Wiy++OJSyOLj/69NOOy0ysjFq1Ci++OKLuOnLi4IS4H4PcPHixfztb39L29jACHCDIWWmAi1U9WDg38BbQQlFpK+ITBaRye5G3Iu7bjshK++66y5EJJQh49q1a8ccC2MI/fHHH08qXaYC/KmnnmLYsGHUqVMn5WszIaz2cfLkyZF9twA/8sgjOfjgg6lSxZrtdf4TZ6lWNo3IvP+1U66ePXtGDBHd72Uu5swLSoD7PcDp06fzzDPPcNxxx+WgRAZD5UNV16nqBnt/LFAiIvUC0j6jqh1UtUP9+vXj5RnZr1fPymrgwIHATqMwsOZ/TzvttCiBEIRb+Dgxut34DeVmomVt3LgxsLPh1ujSEYpOgJTyIgxt85JLLon8Vvdvdj/3X3/9FdhpQ+DXqcqWm2uvPEkkoHMhwJMyYhOR+kAfoKX7GlW9NDvFSo9sPECjgRsMqSEijYDlqqoicgSWopCRxw933fYKK69Hs48//phVq1bx3Xffxc3TLSj8BEMYGribmjVrRkYPvLz22mtp5wtQo0aNjK6Px8SJEzn66KOZNm0aBx98cNS5TNrHF154AbD+P3dkNr+Ok6OBjx49mpNPPjnqP8+Wm2vvf+33PrjJxRB6slbobwPjgY+B8lujkCL5sn7QYChkRGQEcCJQT0QWAQOAEgBVfRr4C3CliJQCm4FzNcPK6b7cu7LET6gmI1jcDXK2BHizZs2iPK59++23Ca9JRyhmM2jJm2++CcCHH34YEeBhtrUtWrSIekZ+z9jRwLdu3crll19O9+7dQ7t/EN7fmGh5Xt5q4EB1Vb01qyUJgfLUwDdv3szIkSPp0qUL8Yb+DIZCQ1XPS3B+MNYys9Bw122vAE9XmGRbgJeVlaU1tJ2OAK9Vq1bK1ySLnz93hzBGKN3CG/wFZdBzT6QVZ0LQHHiy6cuDZOfA3xWRzlktSQikUpEfeeQRbr01cZ8k6AW9++67ufTSSznttNOSvqfBUBEQkdgJ4RyTrABPpQ3ItgDv06dPWqtgevfuzaRJk1K6JpvCw28tezZHO1MR4Nlc857qEHreCXARWS8i64DrsIT4ZhFZ5zqeV6TyAG+++WYGDRrE8uXL07rXRx99BFhGcm5mzJjBnDlz0srTYChvRGSciLR0fT8CSDzOW87EG0L3a/CzNYSeipez4cOHJ50202vjleuwww5LWVOdPHkyIsLMmTOzroF78RPKQcPZ5SnAE/33ebeMTFV3U9Va9meRqu7q+p69MZs0SacHlOjFDnpB/Y5v2bKFdu3a0aZNm5TLYTDkiAeA90XkKhEZCDwNXJLjMsUQTwNPV/NJR4Bnc8jWTSodheXLl8eN+z116tSo9eFz587l1VdfjZvnf//7X8Ca/44XEjUb7L333vz444+0bNkycsyraDmC2y/eelgUzBy4iHyiqqckOpZr0nmp0u1B+vVGN27cmFZeBkOuUNUPROQK4CNgFXCIqi7LcbFicDeOXoMtd8OaioMRtzD2EwSlpaUxjXY+CvBGjRolTONYcYO1tnrlypWcf/75gfeuXr06YC3RS0YDD1ugP/DAA8yfPz/y/cYbb4w6P3bsWMDqjGQLr0B2L1dMJn15kGgIvZqI7IFlbVpXRHa3t5ZA43IpYQp4H2AYwzvuPIYOHRrZ93uZ163Lu1kFgyEuInI3lrOV44F7gHEicmZOC+VDskPoqQhwt1BzC2bn2tLSUnr16hV1zcSJE2NCSGaDsAOSuNtGx2FOkNCtU6cOd911F2ApJX4R1bzXhi3AFy9enFS6Rx55JLIf9nC+V5707t07bnr3MzjhhBNCLUsQiYzY/gZMBvbD8q40xd7eBoZkt2ip433gdevWTXhNoj/dff6KK66I7HsF+GuvvcZee+0V+V6eEYEMhgyoBxyhqhNVdSjwJ+D63BYpFnfd3m233aLO+QnwZDj++OMj+24B7tTt0tJSRowYEXNdooY8DMLW5vyeS9Czcmuabg3cMWJbtWoV77zzDrCzfQy7vPGmBIIoKSnJ6J79+/dHRFBVfvjhB5o3bx513s850NNPPx15d9zPwM/VajZINAf+uKq2AvqraivXdrC9VCSv8L6Qe+yxR8JrwhpCP/fcc6O+l9dQm8GQCap6HYCI7Gt/n6+qebe0wl23GzRoEHUuXSM2d57uIXS3Bu7Hli1bEuadKWErAH7CukePHgnbqY0bN8YMofu5Lw1bgM+aNSvla/y86aXCo48+CljP/rnnnvNNs2xZ9OzSZ599xjPPPAPk4RC6i8Ui8mfPdoqINEh8afnhfYDOPE68dIl67EENQaLwhkaAGyoCInIWMA143/7eXkTG5LRQPrjr7O677x7oejMV3HXf7QnMLcD9wlqWh3fGbA6hO4wePTrhMje/OXDHlS1kTwNPh7Da3NLS0sDfs+eee8Ycc4R9Pgvwy4BngQvsbRhwI/CliPSKd2F50qRJk6jvQULW/aDTfeiJBHiY1pHbtm3j22+/zYtKYig47gGOAP4AUNVpQKvcFccf97tfUlISNQ+e7hC6qlJSUkJRUVHUsLF7CD3TYdl0KY8hdEhsmOUnwP3K5j6WqVvYdAlrZGTZsmW+v9FtM+Fm6tSpLFiwIP+WkbkoA/ZX1e6q2h1oC2wFjgTyxkNbmzZt6N+/f+R7GAI8qLedKOB8mBr4pZdeyhFHHMGgQYNCy9NgsClVVW8MyrzzSexuHIuKiqLqdjquVN99910efPBBtm/fTo0aNaJWkDh5b968OW03rZmSqQZ+8sknR30PaufWr18fN58NGzbEGLH5TTe487/vvvtSL3AIeH9zurRq1cpXGMdT2iZMmJDXGnhLVXUvxFsBtFHVNYCvqikiw0VkhYjMCDgvIvKEiPwiIt+LyKGpFd0fd8886IGn22N3k6gSh6mBv/LKK4AV89ZgCJkZInI+UCwirUXk38BXuS6UF3fj6BXg6dTnfv36RfZr1qwZpYk6dbtXr15pC/BMtbFMBbh3qDeoPO6pAz+2bt0ao4H7tW3u5zRjhm+TX6Hw+9/juau94IIL8lqAjxeRd0XkYhG5GMsK/QsRqYE99ObDC8AZcfLsBLS2t77AU0mWJS7uqDy5HELPVAPftm0bw4cPj1pOYSKjGbLAtcABWCNqI4B15KEVetu2bSP7RUVFgXPgyS4jcws0rwB3D5U66c4+++zIsWTqYaYCeOvWrRld7x0hdByzeEmkgatqXAGeL3PgVatWDbUMfnmtWrUq7jX5PIR+NZZAbg8cArwIXK2qG1X1JL8LVPULYE2cPLsBL6rF10AdEYm1EEiRsAW4t7I6f1LYc+ClpaVRL8C//vUvLrvsMjp06BBYFoMhU1R1k6reqaqH23G571TV7JtZp8hxxx3H/vvvDySngaciwL1D6M7yod69e/v6AU/VSYyXZDw1JhKsiahSpUrUstarr77aN5139YwXPwG+YMGCmHSFJsDTEcZ5q4HbQvYNVb1BVa+39zPtbjQB3GFoFtnHYhCRviIyWUQmO04Igqhdu3ZkP5kh9FQfulMxw9TAt23bRuPGjTnxxBMjx77++msgetlConsaDMkiIu+IyJigLdfl88NZVVJWVhYowJ36/PXXX3PNNdckla9XA3fyU9VIQ+5u7jZu3BhZBx1EvA78zz//nLBMmTqFql69Op07Jxd/aunSpRFXq++9917UOT8B7n6u+ayBr1ixgnfeeSctYZzONU6bXZ4kJRHsZWNzRGRtiMFM/Lqxvk9NVZ+xtYMOiUJ39ujRg2OOOYaBAwdmZQjdqZhhauA//vgjK1eujFr877cEzmjghhB5BHgUmIsVs3uYvW0A8nIS0xld27RpU0IBDjBkSHK+prwauJPHlClTfPP95ptv6Nq1Kz/++KNvfgsXLowJcpQqiazDE7Hrrrsm3bY1btw4Miowe/bsqHN+AtzNjh07oubJc8XKlSuZMGECP/zwQ+TYXXfdRdeuXdOak//qq9TNQM47L26U3ayQrEo3COiqqrVDDGayCGjm+t4UyNhHYbVq1ZgwYQJ33HFHKEZs3vPJCvBUNHC/tH4C3GjghrBQ1c9V9XMs3+c9VfUdezsfODbX5fPDEeAbN25MSoDHwzsHPmfOHK699lq2b98eycPd8Pu1E0FCtl27dhx33HFJlSOITAXirrvumpIWuWLFCiA2upeq8uabbwL+7U/Xrl2pVq1aSuWdO3duxDA3bEaPHh3ZnzZtGpCeU5h0rskFyUqE5ao6O3GylBgDXGRbox8FrFXV1P3nxcGrsTrDXu6X7bHHHosbUtT7YjoveJgaeLICXET47rvvGDJkSE4MJgwFSX0RiUyWikgrIP4wV45w7EHq1q0bVf8GDhwY2U9XgK9Zs4bBgwfz4YcfphSP2mHTpk0AjBo1KiryVyLcw9wnnbTTnCjT0bZ0OwB+AtwhXpuXyv0OP/xwLrzwwtQLlwTr1q1j0KBBlJWVRVzuJprnzwblNVqarACfLCKvich5bm9s8S4QkRHARGBfEVkkIpeJyBV25COAscBvwC9YQ3dXpfsjgli9enXUd6fX537Zhg4dyvXXX+97/dq1a7nkkujIis5QW7Y18CAPUIceeijXXHNNlB9ngyEDbsAKYDJORMYBn5GHVugAAwYMYNy4cRx99NFRtiGffvppZD9Z62+3YHJHNysrK/MVRvE6zCNHjqRGjRrMmjWLnj17JnV/h7POOiuy77aByZRXXnnFt8yJBK3X+t0vj6OPPjrmWDJOVCZOnMjmzZtj2uUweeyxx7j11lsZPXp0xq5VM8FtTJ1NkgonCtQCNgGnu44p8GbQBaoad0LANoLzN40MCWdYyMERit5K/sknn/he7+c4xbEOdfewPvzww5h0mWrgfhXHfU8/f8QGQ6qo6vsi0horYBHAj6qa2RqmLFFcXJwwylM6mqfbIC0dAT5q1Cggdv44GdxL1txKQaYaXP/+/aPmgwG+/fZbjjjiiLjXxdPAnX2vL3qAQw+N78ZjwYIFHH300VHR3Ro1ahTjWzwsNm/eTKtWlkPBILup9957jxo1amRFGcorAa6qlyROlX94K2KQK0BveEIHP0tQ55i7st1zzz0x6dIV4D/88APt2rVL2ROQwZABhwEtsdqDg+2ITC/mtkjpkc4QuruuqmrSQ+hOHs6oXDqNtltQh+m98bzzzosR4OPHj497zbPPPpuUAPd7PommDZx2c+rUqZFjzZo1y5oAV9WIBu43YgA7py9OPPHE0L3HlVdbnawVehsR+cTxqiYiB4nIXdktWpq4XjhvpXM0cO/xIB+3fkLUT4C7l645nHLKKUnPU7s1gCOPPBKw1oF7MVbohrARkZewLNKPBQ63tw5xL8pjkhHgK1asiHKQ1KzZTlvaBQsW+MaijleXHWO2mjVrplLUGLwdiUTMmzePJ554wvdczZo1Y/IIaucc+vTpE6N4eDs669evz6ij4ddxOuaYY9LOLx7Ou+DtlHgZN25c6CFiy8tGKdluwjDgdmy3qar6PVD+lgGJ2LABDj0U/v1v8PFj7AhAbw8yKGCB35/gDKG7BXiQi70//vgjqWK7hXU814aZemcyGHzoAByjqlep6rX21i/hVXlKMgLcbSy2yy678MYbb0S+X3fddSnn6xiwpRP4xN3GbNu2LTLs6+QZjyOOOCKwvH5lSSTAIfZ3usvXs2dPatWqlZaXOaftdXcQSktL6dSpExdddFFSeSRae++9X7ICHEgYlS1VymtZXbICvLqqTvIcy794mSNGwLRp0K8f7LUXV27ejNuWO2gIPZkX28FvWP3zzz/3TZvsn+g1WAsaVkpnji0eW7ZsSege0FDwzAAa5boQYZGMduheIlS9enVatmyZ8Jp4Q+jOuUzdp5aWlkbiHTRu3Dhh+iCnVmeeeWZU+RySaee81/gpMePGjUuYD1hGxCLCiBEjIgJ8zpw5kfPbt2+nuLg4ae23S5cuSaUDq9zOFEIyAjxMGjdunHca+CoR2Rvb0YqI/AUIdclXKFx2Gfz3v5YWvmwZA7dsYS5wC1CTYK9B6QyhuytrUMVN5sV56623Yq73izmbDVq0aEH9+vVZsyaex1tDgVMPmCUiHyTriS1XgYqSIdV3uWrVqkmli9cgZ+KNzF3377jjDk4++WS6dOmSMNphPJzlU17SydPvdycrEL/77jsAnnnmmci+m59++okqVaqkZC0+cuRI3+N+bbjjGKu8BXhRUVHeCfCrgaHAfiKyGGuZyRVxr8gFRUVw9tkweTK8+y7fFhXRAHgImAec+d13sHZtzB+aigC/6aabeOmll5JyBpPMi5Or0Huw00p/5syZOSuDIefcA5wN3I/lmc3Z4vECOQhUlAzelSeJSFaolZWVRRlgQazf9VQF+KWXXhqZZuvfv3/EWrqoqChuXqtXr4475BvUHoWlgSfDJ598Ehndq1evXuC671Q7FUHL9MaOHRv13T2KmakAT9WrXpUqVfJLgKvqb6p6KpaDh/1U9VjgnKyWLBNE4MwzOalaNU4HxgN7AOdMnQotWlB90CDqupKnIsABLrrooigBHrSuMZk562TnySFzI5kgMuntGyo2jkc275bgmpwEKkqGVJyoQPLWwqrKIYccEjdNsgK8WrVq/PzzzwwdOjRS/+vVqxdVpnh57b///rRu3TqpMrvJdA48FU499dTItfHal6AyjRgxIqX7nXLKKVHfb7vttsh+KgLcbzncQQcdlFJZiouL824OHAC1oo85YXJuzEJ5QqVMlY+A44ETgdmNGsHatez98svMw1I59sTf4GPt2rUMHTo0OO+AP2jvvfeO7Cfz4vz+++8J0zhk6h85CCPAKx9OPAOfLYw4B1kJVJQMqc5Dp6KBe/Fq4PHu7Rb+qkrr1q2pUqUKN910ExdccAFXXbXTj1UiAZ7uc0pGgHttCIIEeDIGe8794tklBD3/VJdhxVuh475/3759ufvuuwPThuFMJx+H0P3I+zVN7krwOfBwp04wfjyL2ralFpZZ/Tzg73PmgGd47K67olfJeV+ooMrqvufMmTPjWpVDagI8W6RixGcoDJx4Bj5bGHEOshKoKBmyIcAbNWoUMS7zI9EQ+t577x01/O5etVKvXj1efvnlqHnrsDS4dDTwZAW4nzMXL47FeTyfGEFlyoYA37p1K8OGDYs7bZnqFIwfeTeEHkDeO+P2HQ469lj+168fRwJvAMXA6StWwGGHwQknwFtvwY4dMXNM7ti6ENxQuF+8c889l8MOOyxuGfPBp7nRwA0hk5VARcmQ6hrlZN79ESNG+A5Ze4VGkND1Gmkl8qJYVFSUsUW7H8kIcG+QkUzm0y+44AIgPQEeps8L553o06dPwrSpTsH4kTdD6PGG2YDE6xxyjPchOt9LS0uZBPwV2Ad4s0UL2G03+OILOOccaN2aHr/+SkPXtf3794/KK8j9qvfFC3vpV1i4n41xEGMImawHKgoiGxp4kDaYzBC6iMSENXVCd8a7XyYCIKg+pzPSFhToKZW80hlCd/unT0SycSk+/vjjhHl5y5NolYLbD787j7zQwBMMs+X9uGtQJXBXtHnA8AMPhEWL4LHHoFUrmDuXS+bMYSEwCjgVqOvjbc2P8hSGXqvYVHD3inMdy9dQsciHQEVBeIVoooY0GQGeKE28IfQpU6ZEOY5JhnQEeLNmzWJ8emdTiIQlwJ183N7wIHbEMx6J/p/Fixczb968qGM333yzb1rvaEGy/733mrwQ4BWdoCUR3heqSpUqUKsWXH89zJkDY8fyVYMGCJaW/hHQ+YYbuAVINPMTT4CH/acmGp6Ph9vALhvDdYbCRVXPU9U9VbVEVZuq6nOq+rSqPm2fV1W9WlX3VtV2qjq5vMqWSIDHcxXqxr0sKZEGHnTvoGOJSEeAjxgxImJ5HeQEJsz2JxUBHm8I3RGQbdu2jRzbZ599UlKEkknbqlWrqN//yCOP+KZ78MEHfcsXhPvdcNLmzRB6oeKtVFEvY3ExdOrEvYceSgvgbmABUHPZMh4CFgNvAV3xjwQT9DKtX7+eli1bcvXVV7N582YGDBjA7rvvHsKvSQ+3AL/11ltzVg6DIUy8ddvdkE6aNClmPjrI62HdujsXmgYJ8FmzZvH6669H6pJ72eg111zDww8/nFYnu7i4OK2pgDPOOIOXXnopKj66mzAFeCpuY7M9B55s2mSs9w888MCo76kIcPc15aWB5/0weCY0a9aMhQt3rmZxAoV4NfCgP2kJcB/WcrMpAwcy78476YK1yLUbsBx4CXgecJwzBlX20aNHs2DBAp588kkWL17M22+/nfbvcrNjx460jNDcAtxvHsdgqIjE08C7d+8ek/6ZZ54BrEhdxx13XOS4W0AF1enLL7886rt7xUlJSUmM3UyypKOBiwgiEuUwJSynLH6kooF/8803geectssrhFMR4MlarKczGpKKAHevezdD6CHw3nvvRX13rDu98yGJHnYZsOH44zkHy5y2PzATaOja/xrL5dRuARXPvVwsLOENlj/zdPCuUU+03M1gqAjE08C95+rXrx8R6m7Na/ny5VECPFlh4g5Akok1c6ZGbEF486xTp07aeYW19LQ8NfB0MHPgOeSAAw6I+q6q9OnTJ9LrdvBW8scff5z3338/Ko0z9LYcy8/kgcCRwNPAWnt/KPDV3Lm8BJxM9GLYVDyupUKqgvfNN99k4sSJMcNar732WpjFMhjKDUdzPumkkwKXQY0bN46lS6MN4d2Nr1uTatCgQZRgSVZAzJ8/P7IftgBfvXo169evD8zXr4yJNPBMnJYECd5U4zg4AvKEE06IHFPVpJ75o49aHn9zKcCDhtDNHHgWKCsr4/nnn/c97vD8889z/fXXx6Txc7g/CbgSy5vbhcAnQPG2bZH934ABAPPmZRRDNx6paOBLly6le/fuHH300bz11ltR5/JhPXplQVVNaNgMcS/PdAtpiBYuTt32Omby4m2o09HAH3rooch+Jh32Tz75hGXLlkU5FalXrx4HHHAAZ599dtr5LliwIOq7XzuXLH4C/PLLL085treTzy233MKHH34YOZ7MM3dGT8pDgHuf3d13383vv/9uhtDLEye8nBf3w37qKf+4C/EE5WbgFUA/+gh++41XW7dmPtASK1IErVpx6auvcj5QLa2SB5NM3GC/tN5lFMaZS/nx5z//mWrVqqXtEtMA++23X2RfVaPC/O63334MGjQocm7JkiV8+eWXMXm4671Xk8p0iNjPEnz69OmB/iPc/PrrrwB8//33UccXLlzIlClT0i6TV2C7PcKlip/mudtuu6UsTJ0RxKKiokgsdEhOKAfNn2eKu23cf//9Acueyu0mu27dutSpUyfnRmyVSoB7h86dP8fppU+ePDlwbfVhhx3G4YcfHjf/U089FVq1YlTbtrTCWj/+CkC1auw9bx6vYMVgfQpIfwFYNEGBVPyIN6xjBHj54Yx+eCMoGdJDVaMM1IqLi6PWZrvjf7txd6DC0MAdrrjiihjnLWAFxTj55JOTzscJXuSeu0+lLImESCZCJmjuN1VOO+003+PJGKY5acIW4E7nD2DUqFGRffd9vE583Jgh9HLC8b1cVlaGqgYK6GHDhlFSUpJ0hJzi4mIUaxj9QoClSxnTqROTgDpYcVgnA99hxWmtkyC/P//5z4HnFi9enFSZRo0aFdcDlPGHnj5r166NaE1uNm7cyAEHHMAdd9yRg1JVHlQ1quNdXFwcadxVNe4yJvc1blL1xe3mvvvuC4zJnQzOapmOHTuiqlFBjFIRVkHC0SGZ55IKRUVFKQvTIE9nqWjgmfxXiUhk6Od4jNtnn32Sir4WNgUvwOM5rnd62aqalLcg9xAKBAeXj/kD69RhcocOHIll/PZ/wCqgPTAYa7nai1hR0/yoUaNGYNncQ4fxCIqjG1hmQ9I0adKEffbZJ8qICaylg7NmzeKBBx7IUckqB15tx62Bf/7553Tu3DlhHl4hkK4G9cADD7DHHnukda2DWwMsLS1N2+3x+eefH9d9aKJoifHciPotyUqnDfFTHLxGbFOmTOGLL76ISZctDTwV9ttvP8aMGcPo0aMjx5znUB7D6AUvwO+8806uu+4633OOAN+0aZPvGlEHvxfzX//6F127dvVN79cjdF6ymcBNWLEVe2B5edsV6IUVMe0n4BaI8sMeLw54WF7U1q5dawzZ0mTjxo0AUfOTqsqaNfFCZhvCwtsBdztCSWbOGWKFgNuRSyoCIhPN28EtOFU17SF0sOJkn3HGGVFOo0499VTGjBmTUICfccYZgef8bG/S0YSTWUZ26KGHRq3R96YpLwHuV1YR4ayzzoqKGe7Ii/IYRi94AQ7BL5bzh3z22We88847gdevWrUq5piq+lqmQ6zAHzZsWMwSlm3A68DpQCvgXiwvb22Ah7CCKY+2z7ds3jywbGFZt19++eX07ds3lLzisWTJEkaMGJE1q/xc8sorr0T+50suuYQbbrghxyUqbB5//HGqVasWY9UvInzwwQeRNOlQo0aNyDLUVAREJoZhDm4BXlZWFiXAg4RCvDIWFRVFDZcPGTKEs846K+G0WTzlwG/kLywNHJJ75o7Ckc0hdDdB7b0Xo4GHTNDLkGwPyW+ttaomHYy+b9++DBs2LDD/ecDfgdJffqFn9eq8hbWG/M/AB8B1Tz1FP8BpGurVqxe5NkxBGC/mcVgccsghnH/++QwdOjTr9ypv3nzzTQ499FAA/vOf/yRMb4LIZEa/fv046aSTYjTwsrKypASAux75kY5AyoYAdzuBihdzPIji4uIobdt5Nscffzw33XQTtV2BmqpXrx7ZjyfA/dajpzMHHrTePhUBXl4aeKLIZA5GgIdM0B+c7ANO1VlKOi/U66+/Tou992ZsURHnYAVTXn/rrdC0KVUXLOBxLA19YZcufPTYY5HrshWIpKysjAkTJkQZ0KTD1KlTo0ISOmtbx48fn1G++UqQb20/Lr300qRCHBqCEZGYYeYdO3Yk1JZ+/vlnfv7557hp0mmA4013JYtXgHfp0iXqu5eGDRvGjasQJMBFhEceeSRq+NfpgELqGni2htCDcKYrrr766sA07meXKd6pjSAKRoCLyBki8pOI/CIit/mcP1FE1orINHv7e5bK4Xs8WwI8VQYNGsRf/vIXYGelWQbs9uCDMHcupa+9xuRatagJNH33Xdr36sX39erRHSjLkkOQ4cOHc9xxx9GpU6e085g1axaHHXYYjRo1ijlXXsNe+U63bt1yXYQKjSPA3SQS4AcffDCtW7eOmudOdI9kSSXIRxBeAe5e4eC1HN9rr70SzvMXFRXFXfPuPuf81rPPPjvlZaeZDqE7XtwGDBiQVPuw6667UlZWxt//Hiw23J2TINwOeOKRqgZeoefARaQYGAJ0AtoC54lIW5+k41W1vb39M0tl8T2erAD3czkYVu9q6dKlUY4DYnq9VapQpUcPOqxdCzNnwlVXQc2atFu1ijeAy++/H+67D1LQ/IJwVyZn/eOECRMSGrs4LF++PGLQBfDtt98Gpq1sAvyiiy7yfY7p+rI3WAQJ8HjvV7KCJp06HsZqDq8Ad+N9hwYOHBjjMtqL91kkmi9fsmQJI0eOjKuBN23alM8++yzm2kyG0KtXr46qctFFF0XyScYXuZPWWX7nPZ+IRFMpDpVtDvwI4BdV/U1VtwEjsYJ4lTvpzoEPGjSIcePGceaZZ8aci/fnpPLHeXvscee027aFIUNg8WLeOf10fgRqrVsHd98NzZpBjx7wySfg+l1lZWW88MILgVm6tePS0tKIcwv3b4jnvnHkyJF8/fXXrF69mkaNGtG0adPIuXjPIV0BvnXrVp566qmYJVvJMHv2bIYNG5b1nvFvv/0Wc+yll16iatWqMev2zTx4ZvgJ8K1bt8atR8kK2R49egDR/r0TDZGHIcCrVdvprzGM92PChAlR373toVcD33PPPalatWpcAb5p06YYxca9fC9ZEg2hJ6v1+nHllVcm1c507NgxqfzcyxHjtW21atXyHXXMBtkU4E2wjKkdFtnHvHQUkeki8p6I+HYlRaSviEwWkcnpuJ8M0nISCdqDDjqIE044IW6ggEyddHhf0KQqbK1aTD7qKPYHXuzVC84+G1Th9dfh1FNhv/3g0UfZvHAh99xzD5dccklgVt5Y4NOmTYtJ443qBlYI0rZt23LeeefRsWNHpk+fDkT7gI73W9IV4A899BBXXXUVhxxySNRx5z++9tprueeeewCrQ9KzZ0+GDRuGqtK2bVv69u0b4wc+VZx7lZWVcdFFF8WcjxcD2usrOpH2ZIiPiMS8Z5s2bUpLgP/73/9m4sSJke933nkna9eujTh8SoZsa+AOjtOpZHyPe/OIN4TuPhckwKtXr+5bh9Kp00EC3zmerNYL1tSImyeffDKpDsX+++9Pnz59uO22mFneKK6++mrOP//8hPlde+21LF26NOLkJZtk0/2W35PzSsypQAtV3SAinYG3gNYxF6k+AzwD0KFDh5THJfwCmEBiYZnMy+PXCUhWA//ggw9ievS1atVi3bp1UZahfjgNxZwWLeDee2HxYnjuORg2DObMgf79KerfnzbAscCEgHy8PpuDyr5u3booC9tTTjkl6rzfutB4zyHZnvq2bdt4//33OfHEE6lVqxYDBgwAosOzfvLJJ5x66qncdtttDB48GID27duzefNmRo0axahRo6IcQfh5TUuWSZMmceSRRzJgwABOPfVUXnrppZg08QJZeEcOzjrrrLTLYrDeI28HfePGjUk5ZvJyzTXXRH0vKiqKsSpP9N6GIcDd5QsKenPGGWcwadKkpPLzOoKK9xvc54IE+FNPPRUjLIG0DF6D2gjn3qkI8Mcff5xevXpFrRlPtp3xutn2wxmdSER5Tg9m806LsIypHZpiOR2LoKrrVHWDvT8WKBGR5CYkUsA9L+smkQCPN3zjvHjpznMsWbKE008/Peb4hx9+yOGHH85HH30U93qnkkcaqiZN4O9/h7lzYcwYxgIlWK5cxwNzgLuBFp583MN1EPy7LrvssrjlmTt3bsyxMIbQ77nnHrp160bt2rXp1auXbxpnFOHBBx+MHDvnnHP429/+Fvn+8ssvR/YzWerjaPf/+Mc/oqJFpYsZQs+MlStXxliTb9iwIZQhdD+877S3jQhDgLuFTrNmzXzTuMNvJsIriBMNoTs476bbyxgEd4CWLFniezweQW2EM9efigCvVq0axx57bNSxXHhpKxQB/i3QWkRaicguwLnAGHcCEWkk9hMWkSPs8iQfnSNJgh5ookrg9/I4GutJJ50UeF0yL02DBg18jx955JFMmjQpYeAUpxL5Gb1x1ll0EWEvYCDW8rN9gH9irTn/DLgEmD5hQkyDU1paSseOHWMsW9944w1atGgR6Ht9zpw5Ud+d2OtBJPuSu+OUu4UwWL99/vz5gVrK+vXrfY9nIsDdAteJR5wJ2VoGWFn46quvYo5t27aNdu3aBV4Tltvggw8+OOa9D9slcZCA846AxcPbmfHWPfe0gd8Quje9227nv//9L1deeSVgjdLFa/u8Q9SXXHJJYAelQYMG1K9fP21HPA65MJYtz05D1n6dqpYC12D5IpkNjFLVmSJyhYhcYSf7CzBDRKYDTwDnahZM94J6jImWGPgJ8NmzZzNjxgw6dOgAwA033EDz5s2jtL9kfkKmFd253s9HMEDt2rWZD9wFNMfy6PYysAk4ERgOtDvtNNo/8ghnAs4v/fXXX/n6669981ywYAEPPPCA71CZVxtNFA852YoVzwL+0ksvpWXLlsyYMSOpvFK9tx9uAe4nPFLFCPDsEG9pUCaBe9whOQ8//PCYIdV8jCngXXqW6hC6U1+Ki4u54ooropY+nn322RGXq+4Os9e2Biw/8e62cfjw4YF1sWrVqqxYscI3kNOsWbNYuHChz1Xxf095USgaOKo6VlXbqOreqjrQPva0qj5t7w9W1QNU9WBVPUpVM28RfQiqVDt27IjyPNSkSbSNnZ8Ar1WrVpThUYMGDZg3b57vC5tNnFCU33zzTeRYWVlZxO2r24CiDMvnei+gEXAplt912byZJuPG8S6wHHge2Ofnn4m3knXNmjXMmzcv5rhX2w3Sfh2SmXOC4DlAgBdffDGpPLwkuyzOj7CGvBsAZwAtFi0KJT9DNO6627BhQ0aOHBmxKs9EyN57772R/YcffjimsQ5LgLvvEzbxhNrTTz8d2fcK8EaNGvHUU0/FtIuOQxV3xz7eCEim7L///lGrXbwsXrw4MjJy4YUXUqdOHZrHcUcdNkGjq9mgUizGjSfA3b3xd955h8dcXs6SXcIQb04pW7g1XGfuqVevXtSvX5/JkyfH+F53WI8lqE8E+PVXfrzwQqZhhTTtDXQeMoTlwHPAmViBVtyMGDGCfv36xeTrjW393HPPJfwNftbtXjIRtsnkuW3bNp577rmktfh0/tumQFfgHqw5pEVYHab3gOO/+y7l/HJNvjhoSpaSkhJ69uwZiciXydIkN3Xq1Imp+2EJ8DDbEK8wDdIQ7733Xlq2bBn57hi/OYpNUGTH9u3bA9GjE178llZmi8aNG7PPPvsA0LJlS37//ffQV3v4/T/3338/7du3D8WZT7JUegHuroC1a9eOGrJxa+f5hntuyJkvf/XVVwF/xzMOURGy9tqLOT16cAiwH5aR26o996Qulpb+LpZBwv+Aq9hpAOd14ODHP/8Z7ZOnR48efP/991HHktHCsyHAH3/88Yh28frrr3P55ZfTrl0733uNHz+ec889l7vvvpubbropYeVsBXTHsj14D0tQLwTeBgYAZ2GtpVwLjAPmJ+lEIl/IJwdNyeL8Z+kYRiWiIgjw1157LSlvY957vv766wwcOJD27dujqvTu3dv3urp166KqUf4ivHmVp1DzI6wlXfFGL26//Xa+K+cOeTaXkeUNQXNeXo9NRUVFURUwXQEeZgMRhHv+3mv9GWR1D1ZlGzNmTEQLcSraT8B9QO0bb2T4zTfzV6ALcDjQ2d6GYIVD/RRL+HyBFdfcy7hx4zjmmGP48ssvI8def/11Xn/99ah0fiECHRxf7NlwY/vDDz/QoEEDunTpEuX7edSoUVx44YVRaY8/3j9Ke3XgAOAg4GD78yDAzznnaqz1klOBKfbnb1hrKvscdBDnZPh7ypmIgyYAEXEcNM3KaanikE0B7qU8BLi7XiVDvXr1uOWWW3j00UdZsWJF4DSQ93jTpk1T9nMRJOBy7XmxPNZk54JKIcDjaeB169aNrClu0aJF1NBzun/6vffeG+X9bP78+bRo4V3AlRnetZ2p4F577G0otmzZwmwsi/V/YsUl74Q1nH46ltA6ALjWTj8Daz59EjAZ+JH4Fvpu/DTekSNHsmrVKqpWrZrV8KZr1qzhxRdf5IgjjoibblcsC/42wP7sFNSt8R++Wo4lpB1BPRVYECf/CriMzM9BU6wPS9tBE9bS0f6qOtMvMxHpC/QFsjZP6XjaqkgCPN57cfTRR6eVpyNcvXW+W7duvP322+X2Ln7wwQdZGVmLx1133cUrr7wSWn7lMU2aDJVSgDvuFw877DCuv/56+vXrR7du3RCRqCUX6VqrNm3alCpVqkTyykbD5P1NCxbEExPBeF9Er8a7HHjB3kqAo4ATsObQOwIH2psTD2gj8B2WAJuFpdn/aOfjxanEf/zxB2VlZey+++6cd955QPYacy/9rrmGJliW+g3HjYNlyyibO5et06ez68KFxLqnsdiONRoxHfge4KCDePOXX/jVx6HNIYccEji0VgGt0ENz0ASZO2lKBscwqyIJ8GwICEcL9uZ96KGHZl2AuzVzP/8X2Wa//fYLJZ9cWLXHo1IIcO/wzdKlS5k/fz4HHXQQBx54IAceeGBkHjmsP6i8/+jbb789lHy8xmhutmM5hRmPNdxegjXEfhzQATgMaw74WHtz8wfwM5bqtghrbfq8++9n7cEH0+m889hWvTpvfvopgiUNUu2QFAM1gN2Amq6tNlAfqOezNba3SCWwDe+K2Gm8tx341S77T8APWAJ7NuDWId576CGetCPKeYnnVKQCCvCkHDS59seKyJMiUk9V/WZcQuOrr76K0k5vueUWBg0aFHFW5AiosIdT33333UjYymwL8EzaFacdDHKtGkan4aSTTuKVV16JEpgnnHBCuVpmp0LQOvSKQqUQ4N6XvmHDhjRs2BCwXl73kG+zZs24+eab4y5TSIbynvOJt9wqHnvvvXfUdz9f6EFsB76yN4c9gEMhYhjnbHWxJk+jBqy3boWzz2YiwObNcPDBlGJZym/3bPUbN2bZkiVUweo4VHFt1Yi1lk+FZVgdi11bt0abNeP5Tz+NCOx5QJzwMhF22223QA3mtNNO44cffvA9VwEFeMRBE1Y/7FwgykG0iDQClquqZtNBk5eSkhK6d+8esTZ/6KGHooy3Lr30UmbPnh1xxxsWZ555JnvssQerV4f3E7MhwAcMGEDfvn3ZY489oo4HCfZ0uPTSS+nUqVOUi+b3338/L9fHg1W2ikylEOCp9iwHDRqU8T3LW4B73R36MWXKlJhj7dq1Y+TIkZx77rm+11x00UUprbdejbXm3OsItj7WGGpTrEnUpva2J5aWXMfeatnfY1iyhHj+08qADcDm4mIa7r03U37+mQ3AOmAllrHd4WecwUvvv88q+/tyLHUyoknPmWNtCahevXqM7/eqVavy73//m8svvzzq+AsvvEDXrl35v//7P/9yV7A5cFUtFRHHQVMxMNxx0GSffxrLQdOVIlIKbCZLDpq87LLLLrzxxhuB56tXr86QIUOyXYxQCHovMmlX+vTp4+sd0ekUhPEuikhMfIV8GXZ+9913ad68eZQBcLIx4fOVSiHAc9FI5stL6/DHH38EBkjp2bMnn3zyCcOGDYs517Vr17QdprhZaW+JcIbCS7C8w5XY26svvMCFvXtTCpFtu/25DSJz1Xu1aMGvP/1EB5/nP+aqq3g+hB738ccfz/jx46Os/Rs0aMBll13GF198EfW8Lr74YgB69+7N9OnT2bp1K7Nm7TTYroAauBO3YKzn2NOu/cHA4PIuVy6XKvXv35/bb789YbjRZAnq74S1ht1NmBq4H/nSFvqFhc6XsqVLpVgHngsB7u0pe2PyhkGQVufm8ccfZ8KECQmjm3mH1cDy9R0vFng22IGlNa8GlmJZcP8K6H770fm665iLNdy9FBg8ciR/QJShWbz/2hu4JRO8RmmO0Z0zNePl+eefZ+rUqbRq1SrqeEUU4PlKeSzfDOK2225DVUN7x9wC/IorrojsZ1OAZ2uQJNdLyLJBvlihF96T9WHfffct93t6e3bHHHOMb+zoTEgUiL5mzZr069cvqZjBfnNUN954Y97MXVWvXj1m+YxfSMN4AjETH9huVJXWrXcaVbuXCCbqKHkrvhHg4VFeArw8QsC63xP3O5JNAZ6tdzGftdygDn+bNm18O2P59lsqhQD3RrEqD/x6naeddhpAxgZyDomEayrDed6Yym5UlRtuuMH3nBPIIBVuvvnmlK9p0KAB3bt3DyyHg7dCuq1hy6MzkkiAuznzzDMjQXEMmVNeQ+hjxozJugbmfo/dDqXiOWlKl8oyhO5HUKdl9uzZvs/aiWB51FFHZbVcyVIpBLg3SEl54Mwnu4MDnH/++fzvf/9j6tSpodwjUcV46qmnks7La5TlxSv82rRpA1jhT1MlHS2iYcOGFBcXB04bOOV48skno467n1F5rNH961//mvS17777LnfddVcoZTLkdgg9bNzvyZ133hnZz4ZzI8dPuOPTPGzyWYAHTXkUFRX5KmGdO3fmjz/+SCkeezapFAI8F/z1r39l8+bN/O1vf4scKyoqonPnztSvXz+Ue8TrMd9///0pzV8n8ozk1dC/+uortmzZktaa2rCGAd2NXL9+/di8eTNdu3aNSuNuPLyhH1PFWcvqHcp3l6Nhw4Z88MEHgXlkQ4MyWOTa33aYOPEMvvjii6j2IowVMl5OP/10Zs2aFTG4DJt8E+Br165l0aJFjB8/Pq22OJVRtmxT6QR4eb5MYRpN+RFPgKe6POKaa66Je37w4Gij4ho1alC1atWE68/ffvvtmGOZCnCnZ+x2wlC7du3AOasvv/ySUaNGsddee0UZBDkMHDgw4T2ffvppvv32W4YMGcJtt8UE4Ioi3v9+4403AuE53qnsuJdGFpIG3qVLF37//fdIvICZM2fy/vvvZ6392n///fNO0GaLWrVq0aRJE4491utuquJRKZaRuXn22WdzXYTQiCfAU+0ltm/fnmXLlnHBBRfwySefxE17zjnnRIRUPAG+bNkyX6vsTDs2a9euZfPmzVFz/HXq1PFNW7du3SiN+cEHH2TSpElR0xidO3eOGqb0o02bNjRv3pyrrroqYfniNYRdu3Zl4cKFOZnWKUTcLncLSQOH6He6bdu2tG3rF/TNUJkxGngFJp4A91sWloiGDRtG4uh6OeWUUyL7bmcZznG3Nnzdddfx8ccfR4T3d999x9VXXx05n6qm5G24atasGTP05V1p4AxBegVu7dq1mTJlSsThyi233JKU3/WwDHxEhKZNmxbUe5hL3CsLCnG5ksEQj0qngRcS7vnnP/3pT3z55Zds2LABsIaJ0uHWW2/l5Zdf5tZbb406/tBDD0Uspt0N5cknn8zEiRPZd9992bhxI7///jvt2rWLurZ9+/YMHjyYn376iTVr1sQt24svvkhJSUkkqAnED5+4YMEC1q5dSz1PXO23336b77//PnAJ3eDBg+nVqxcdO3akpKSEH374gfHjxwdq2PEEuFcYG+FcfuTLMkeDISeoaoXaDjvsME0HrBgZOnz48LSuz0fKysq0X79++uyzz6qqau/evSO/s6ysLO18d+zYEXNs5syZkbwzKe+OHTt05MiRkbyOPfbYyL477yOPPFIBve2229K+X6rs2LEjqizu7ccff4xJ75xr3rx51PHx48dn/Kxc95iseVDvymNLp25v3LgxtGdtCJeOHTua/yUOYdRto4FXYESExx9/PPJ98ODBnHrqqXTp0iWUqEVuwnCCIiKISCR4jHcNtNvRzdixY3nvvffo3r17xvdNlqKiInr06MGoUaNizsVzBuSdfy8kY6p8JyznPIbw+eCDD1i6dGmui1HQVLpJo/KKM50LatSowQUXXJCVZQ5hOv1v0KABa9eu5euvv47qaLzwwguR/d13350LLrgg65b8XkaOHMmaNWuSSvv5559zzDHHMHLkyKjjHTp0oHv37tx7773ZKKLBhRlCz1922223iL8IQ3aoNN3XiRMnMnnyZE4++eRcF6VCUr9+fV566aW0jOP88JsHz4e5YxGhbt26XHLJJTz//PNAsLOa448/3tfHfVFRUdyoWIbwMIZrhspMpRHgRx11VN64v6uoXHjhhbkuQrkxdOhQbrjhBoqLi9lrr71yXRxDAPnQ6TMYckWlEeCG/CRfG+CSkpIYa3qDwWDIJ8z4kyGnOF7Q7rvvvhyXxFBR6datG6+99lqui2EwlDtGAzfklGOPPZYtW7ZkJUyioXLw1ltv5boIBkNOMBq4IecY4W0wGAypk1UBLiJniMhPIvKLiMREgBCLJ+zz34vIodksj8FgMBgMhULWBLiIFANDgE5AW+A8EfF64+8EtLa3vkDyAawNBoPBYKjEZFMDPwL4RVV/U9VtwEigmydNN+BF27Pc10AdEcksaLPBYDAYDJWAbArwJsBC1/dF9rFU0yAifUVksohMXrlyZegFNRgMBoOhopFNK3S/Bb6aRhpU9RngGQARWSki89MoTz1gVRrX5QJT1uxQEcvaItcFKS+mTJmyytTtvMKUNTuEVrezKcAXAc1c35sCS9JIE4Wq1o93PggRmayqHRKnzD2mrNnBlDW/MXU7vzBlzQ5hljWbQ+jfAq1FpJWI7AKcC4zxpBkDXGRbox8FrFVVE77GYDAYDIYEZE0DV9VSEbkG+AAoBoar6kwRucI+/zQwFugM/AJsAi7JVnkMBoPBYCgksuqJTVXHYglp97GnXfsKXJ3NMrh4ppzuEwamrNnBlLUwqUjPypQ1O1TKsoolQw0Gg8FgMFQkjCtVg8FgMBgqIEaAGwwGg8FQAanQAlxEhovIChGZ4Tr2sIj8aPtW/6+I1HGdu932u/6TiPzJdfwwEfnBPveEZCFItV9ZXef6i4iKSL18LquIXGuXZ6aIDMrXsopIexH5WkSm2Q6Ajsh1WUWkmYh8JiKz7ed3nX18dxH5SETm2J91c13WXGPqtanXFaVe2/fIXd1W1Qq7AccDhwIzXMdOB6rY+w8BD9n7bYHpQFWgFfArUGyfmwR0xHIs8x7QqTzKah9vhmWpPx+ol69lBU4CPgaq2t8b5HFZP3TuhbXKYVyuywrsCRxq7+8G/GyXZxBwm338tnx5X3O5mXpt6nVFqdf2PXJWtyu0Bq6qXwBrPMc+VNVS++vXWM5hwPK7PlJVt6rqXKyla0eI5Xu9lqpOVOsJvgicXR5ltXkMuIVoD3T5WNYrgQdVdaudZkUel1WBWvZ+bXY6B8pZWVV1qapOtffXA7Ox3AZ3A/5jJ/uP6745fa65xNRrU68rSr22y5qzul2hBXgSXIrVi4Fgv+tN7H3v8awjIl2Bxao63XMq78oKtAGOE5FvRORzETncPp6PZb0eeFhEFgKPALfbx/OirCLSEjgE+AZoqLbzIvuzQT6VNU8x9To8TL0OkfKu2wUrwEXkTqAUeMU55JNM4xzPKiJSHbgT+LvfaZ9jOSurTRWgLnAUcDMwyp6fyceyXgncoKrNgBuA5+zjOS+riNQERgPXq+q6eEkDypTL55pzTL0OHVOvQyIXdbsgBbiIXAx0AS6whyIg2O/6InYOx7mPZ5u9seY/povIPPu+U0WkUR6WFfveb6rFJKAMyyl/Ppb1YuBNe/91rNC2kOOyikgJVgV/RVWd8i23h86wP50hzHx8rjnF1OusYOp1COSsboc5mZ+LDWhJtKHDGcAsoL4n3QFEGw78xk7DgW+xeqCO4UDn8iir59w8dhq75F1ZgSuAf9r7bbCGgCRPyzobONHePwWYkuvnauf7IvAvz/GHiTZ0GZTrsubDZuq1qdcVoV7b98hZ3c5ZBQ3pwY0AlgLbsXovl2EZBCwEptnb0670d2JZ/P2Ey7oP6ADMsM8NxvZQl+2yes5HKno+lhXYBXjZvvdU4OQ8LuuxwBS7knwDHJbrstplUuB717vZGdgD+ASYY3/unuuy5noz9drU64pSr+175KxuG1eqBoPBYDBUQApyDtxgMBgMhkLHCHCDwWAwGCogRoAbDAaDwVABMQLcYDAYDIYKiBHgBoPBYDBUQIwAr+SIxQQR6eQ61kNE3s9luQwGQ/qYel05MMvIDIjIgViejQ4BirHWMZ6hqr+mkVexqu4It4QGgyFVTL0ufIwANwBgxwHeCNSwP1sA7bB8Jd+jqm/bjvpfstMAXKOqX4nIicAALMcL7VW1bfmW3mAw+GHqdWFjBLgBABGpgeWJaRvwLjBTVV8WkTpYMWoPwfI2VKaqW0SkNTBCVTvYFf1/wIFqhcczGAx5gKnXhU2VXBfAkB+o6kYReQ3YAPQAzhKR/vbpakBzLMf6g0WkPbADy3eywyRTyQ2G/MLU68LGCHCDmzJ7E6C7qv7kPiki9wDLgYOxDCC3uE5vLKcyGgyG1DD1ukAxVugGPz4ArrXjAiMih9jHawNLVbUM6IVlGGMwGCoGpl4XGEaAG/y4FygBvheRGfZ3gCeBi0Xka6xhNtM7NxgqDqZeFxjGiM1gMBgMhgqI0cANBoPBYKiAGAFuMBgMBkMFxAhwg8FgMBgqIEaAGwwGg8FQATEC3GAwGAyGCogR4AaDwWAwVECMADcYDAaDoQLy/yqu2ng5OvBRAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABhoUlEQVR4nO2dZ5gUVdaA3zNDVoIkIwIioJhQMaPiGkDW9InLiigYVswuumbXsCIGXHVVVtHVFTCLGBBB1FUQRRTEgBIUAQUBARHJDDNzvh9V1VRXV3VXdZjunrnv88wz3VW3bp2uuveee244R1QVg8FgMBgMxUVJvgUwGAwGg8EQHaPADQaDwWAoQowCNxgMBoOhCDEK3GAwGAyGIsQocIPBYDAYihCjwA0Gg8FgKEKMAjfkDBHZXkQ+FJG1InK/iNwkIk/mW65UiMhwEbnT/nykiMzNt0yG6oeIqIjsnm85/BCR20Xk2WxfKyLdRGRxZtJlFxHZVUTWiUhpwPm0n4VPXll95zVSgYvIWSIy3X5pS0VkvIh09aQ5137YvT3Hu9nHX/Uc388+PtF1bJCIzBSRchG53UeOK0RkgYisseXp6jrXW0SmiMgGd55FxgBgJdBIVf+mqnep6l8ARKSN/bxqBV2czYqTLqo6WVU75lOGmoipowm/p6CUXnVCVX9S1W1VtSLfskSlxilwEbka+BdwF7A9sCvwKHCqJ2l/YJX938sK4HARaeZJ/50n3TzgOuAtHzkOAe4BzgAaA08Br7l6gatsOe8J98syJ5kyTZPWwCw13oIMETB1NDo5qLtFR5AFXa1R1Rrzh1UJ1wF/SpGuNVAJ9ALKge1d57oBi4FhwGX2sVL72K3ARJ/8ngVu9xz7M/CZ6/s2gAI7etL9xS9Pn3ucCnwJrAF+AHrYxxcCx7nS3Q48a39uY9/zAuAn4EPgbeByT95fAafbn/cA3sVqvOYCvQPkGQ5sAcrsZ36c594/2fdeZ/8d5rm+h33tFvv8V/bxnYAx9v3nARcmeSY9gVnAWuBn4BrPO7wJa4RgIdDXI/ud7rSucwuBa4Cvgd+Bl4B6rvMn2e9hNTAF2Dff5b6Y/qjedfRaYCmwBDjfzmt3+1xd4J92vfjFlr2+fc+N9m916spOdl16xZZ7jS2D08lYapf3O4FSO/9zgY/se/wGLABOdMnWFphk15V3gaHYddU+f6hdnldjtQfdwl7reQaBdQ84yP7ttVzpewFfBuQ1HHgMGAesx2pjdgJGY3XgFgBXutIfDEy3n9cvwAP28Tb2u6iV6vfgaQ/sYwux21j7Hp/Yz2mpfW0dV9rYO8/GX02zwA8D6gGvpUjXD5iuqqOB2UBfnzQj7XQA3YFvsSpmWMYDpSJyiN1zPB+r4V8WIQ8ARORgW55rgSbAUViFKixHA3ti/Y7ngT6uvDthNZZvicg2WAX6eaClne5REdnLm6Gqngs8BwxRa3jqPU+So+z/Tezzn3iufxvLAnvJPr+ffeoFrAZgJyzL6C4ROTbgdz0FXKSqDYG9gfdd53YAmgM7Y1lmT4hI2KHy3lgdjLbAvliNIyJyAPBf4CKgGfA4MEZE6obM11B962gPrI7f8UB7LGXj5l6gA9AZ2B2rXN6qquuBE4Eldj3YVlWd33AqlhJvglXXRmB1ZnYH9gdOwFLsDodgdbqbA0OAp0RE7HPPA5/b5wbhGtUQkZ2xRijuBJrav2O0iLRIdW0AvnVPVacBv9rPyOFs4JkkeZ0FDAYaYnUw3sTqYOwMHAsMFJHudtqHgIdUtRHQDng5IM+ov8dNBXCVfe1htgyXRrg+EjVNgTcDVqpqeYp0/bBeIvb/hBeoqlOApnaj3w+rsYjCWqye4kfAZuA2YIDa3bSIXAD8V1XfVdVKVf1ZVedEuP52VV2vqhuxGs7OItLaPtcXeFVVN2NZlwtV9WlVLVfVGfZvOCMNmSMjIq2ArsD1qrpJVb8EngTOCbhkC9BJRBqp6m+2vG5uUdXNqjoJq4HqnZiFLw+r6hJVXYXVYHS2j18IPK6qn6pqhaqOwHq3h4b9jYZqW0d7A0+r6je2Ur7dOWEr0QuBq1R1laquxeq8npkiz09U9XVVrQQaYSn6gXZdXg486MnjR1X9j1pzvSOAHYHtRWRXLOvXqQ8fYpVrh7OBcao6zm5f3sWyZHuGuDaIoLo3wr4fItKUrUZFEG+o6sf2M9gHaKGqd6hqmarOB/7jegZbgN1FpLmqrlPVqd7MMvg9AKjq56o61W4fF2J14o8Oe31UapoC/xVonmLh1BFYltWL9qHngX1EpLNP8meAy4FjSG0xePkLVo9+L6AOVqEdKyI7RcwHoBXWsHm6LHI+2I3HW2wt9Gdi9e7BssQPEZHVzh+Wgt8hg3tHYSfAaeAcfsTqbfvRC2sY/UcRmSQih7nO/WY3pO58wj57twW2AdjW/twa+Jvn+bSKkK+h+tbRnXDVM6zy5tACaAB87io3b9vHk+HOrzVQG1jqyuNxrJEyh1i5VdUN9sdtbdn86oM77z95ynVXrA5Aqmv9SFb3ngVOFpFtsZT6ZFVdmiQv7zPYySPnTVjrKMAydDoAc0Rkmoic5JNfOr8nhoh0EJGxIrJMRNZgdcSah70+KjVNgX8CbAJOS5KmPyDAlyKyDPjUPt7PJ+0zWMMj41wVIiz7AW+q6nd2r/ZtrDmTwyPmA1Yhbhdwbj1W4+Dgp2y9FsULQB9b4dUHPnDdZ5KqNnH9bauql6QhcxgrxptmCZZF1dB1bFes+b7Ei1WnqeqpWI3Y68QPmW1nTwm484kyvOrHImCw5/k0UNUXMsy3JlFd6+hSrM6cw66uzyux5rn3cpWbxqrqdAyD6or7+CKsUYLmrjwaqWrC9FaAbH71wZ33M55yvY2q3hPiWj8C656q/oxVBv4Pa2Qt2fA5JD6DBR45G6pqTzvv71W1D1Z7cC/wikcOQvyeuPbUnlpxd7QeA+YA7e2h+puwympOqFEKXFV/x1rE8m8ROU1EGohIbRE5UUSGiEg9rF7fAKxhUefvCqCv1ypQ1QVYwyM3+93Pzrse1nOuJSL1XCslpwF/FJHdxOJ4rN7hN/a1pfa1tYAS+9raAT/tKeA8ETlWREpEZGcR2cM+9yVwpi1LF8INd4/D6s3egTUHXWkfHwt0EJFz7Pxqi8hBIrJniDy9rMBamLNbkjS/AG1EpARAVRdhzXPdbT+PfbF61c95LxSROiLSV0Qaq+oWrIUr3m0i/7DTHYk1PTAqjd/h5j/AxfacqYjINiLyR0+Hw5CEalxHXwbOFZFOItIAazjekbESq+w8KCIt7bx3lq1zt78AzUSkcZLnthR4B7hfRBrZ7UA7EUk5fKuqP2INiTv1oStwsiuJYxV3d36zWFvbdglxbRDJ6t5IrJ0B+xBt1OQzYI2IXC8i9W1Z9xaRgwBE5GwRaWE/79X2NXFtQojf8x1Qz67XtYG/Yy1AdGiI1dass9vgdIyb8GgBrDyt6j+sYd/pWL2pZVhDxodjDRcvBWp70tfD6iWfhM8qRFe6uNWoWKsk1fN3rn1OsBTkT1hzbbOBc1zXnutz7fAkv+n/sFZGr8Vand3dPr4bloWyzv6dD5O4Cr2WT35P2ecO8hzvaOezAmu4832gc4BMw7FXc9vfbyd+Zesddj6rgUN9rm+GNf/4GzDDPrYLVkdiFda0wcUB966DNQz5G1aFmgZ0tc91w1oId7P9Xn/yPPuY3N73TZJV/fb3Hva9VttlaRTQMN9lvtj+qJ519Ab7t/itQq+HNdw63y6vs4lfQf1fu76tZusq9Gc9+TfGsgAXY+2Q+AI40yXrR5707vvvBkzGaif8VqEfgrUyexVWnX0L2DXMtZ57diNJ3bPTNLCfwYgUZWQ4rvbFPrYT1gjiMqy6P5WtK8SfBZbbcn4LnGYfb0P8KvRUz+JcrDK4HGtB30LXPY7CssDX2Xnc4X7u7meejT+xMzUYagwi0g2rQu6SZ1EMBoMPIvID1g4S7+4Vg4saNYRuMBgMhsJGRHphWarvp0pb06nx3nsMBoPBUBiI5ZK2E9awemWK5DUeM4RuMBgMBkMRYobQDQaDwWAoQopuCL158+bapk2bfIthMFQJn3/++UpVTeXQo1pg6rahJpGNul10CrxNmzZMnz4932IYDFWCiIT2AlXsmLptqElko26bIXSDwWAwGIoQo8ANBoPBYChCcqrARaSHiMwVkXkicoPP+cYi8qaIfCUi34rIebmUx2AwGAyG6kLOFLjtT/jfWCHuOmEFx+jkSXYZMEutWM/dsPz41smVTAaDwWAwVBdyaYEfDMxT1fmqWoYV+u9UTxoFGoqIYIW1W4UVkN5giOPCCy/kvPPMAI3BUJ2orKzk1ltvZcWKFfkWpSjJpQLfmfhYrYtJjNs8FNgTy7n/TOCvft53RGSAiEwXkenmRdc8VJUnn3yS4cOHU1HhDShmMBiKlf/9738MGjSIiy++ON+iFCW5VOB+MVC9bt+6Y4W73AkrJOBQEWmUcJHqE6raRVW7tGhRI7bEGly4vQUaz4EGQ/WhrKwMgI0bN+ZZkuIklwp8MfEB7HfBDtru4jzgVbWYBywA9sBgcFFZuXVQxihwg6H64NRnaxbVEJVcKvBpQHsRaWsvTDsTGONJ8xNwLICIbI8Va3p+DmUyFCHuYXOjwA2G6oPTOS8pMTua0yFnnthUtVxELgcmAKXAf1X1WxG52D4/DBgEDBeRmVhD7ter6spcyWQoTowFbjBUb4wFnh45daWqquOAcZ5jw1yflwAn5FIGQ/HjtsDdyjwflJWVsWbNGpo3b55XOfKJiLQCRgI7AJXAE6r6kCdNN+ANrGkxsKbK7qhCMQ1FgBlCz4yi84VuqHkUkgW+7777MnfuXBYtWsQuu+ySV1nySDnwN1WdISINgc9F5F1VneVJN1lVT8qDfIYiwanbRoGnh5l4MBQ8haTA586dC8CHH36YVznyiaouVdUZ9ue1wGwSt4gaioxNmzYhIvznP/+psns69dnMgaeHeWqGgqcQF7Hleyi/UBCRNsD+wKc+pw+z3SSPF5G9qlYyQ1R+/fVXAG677bYqu6exwDPDDKEbCh63siwUxVkoHYl8IiLbAqOBgaq6xnN6BtBaVdeJSE/gdaC9Tx4DgAEAu+66a24FNhQsRoGnh7HADQVPIVrghSJHvhCR2ljK+zlVfdV7XlXXqOo6+/M4oLaIJKz8M06aCo+qVKZmEVtmGAVuKHgKaQ7coVDkyAd27IKngNmq+kBAmh3sdIjIwVhtza9VJ6WhGDBD6JlRrYbQ58+fz8iRI2nTpg3nnntuvsUxZIlCVOCFMpSfJ44AzgFmisiX9rGbgF0htlX0DOASESkHNgJnaqG8PEPBYBaxZUa1UuALFy7kH//4B8ccc4xR4NUIM4ReWKjqR/jHOnCnGYoVrMhQJDhlesmSJXz33Xd06NChyu5pLPD0qFbdHqcXV8Oto2pHJovYfv31V44//niGDBmS9v3nzp1L9+7d+eyzz9KWw2AodNxleq+9qmbTQE3uCGcDo8ANBU8mFvhrr73Ge++9x/XXX5/2/Xv16sU777zDkUcembYcBkOh4243y8vLq/SeZgg9ParVU3MKgYkZXb3IZA588+bNGd9/0SIrrL0T+jAdOQyGQicf7aYZQs+MaqnAjQVevcj3Ija34nbItIwtWbKEkSNHsmXLlozyMRiyRT7aTaPAM6NaLWIrLS0FjAKvbuQ7mImfAs+0I3HggQeybNkyVqxYwd/+9reM8jIYsoFR4MWHscANBU++LXC/8pSpHMuWLQPgk08+ySgfgyFbmCH04sMocEPBk4kCz5XCz1a+9evXz0o+BkOmVHW7OXLkSFavXg2YRWzpUq2G0M0ituqJ+32OGjWKgQMHhr72iiuuyIFE2WvsjAI3FApVqcC/+uor+vfvH/s+f/78Krt3daJadXvMHHj1Y9q0aUyaNCn2/aqrrsqjNFv54IMPspJPvXr1spKPwZAp48aNq7J7eXeH1OTwvJlQLS1wo8CrDwcffHC+RfDltddeY8OGDTRo0CCjfOrWrZsliQyGzLjxxhur7F6OsWXIjGplgRsFbqhK1q9fn3EederUyYIkBkNxUatWtbId80a1VOBmDtxQFWzatCnjPExDVjMwbVI8ptxnh2qlwM0cuKEq2bhxY8Z51K5dOwuSGAqZ0aNHU6tWLWbPnp1vUQoGM4SeHaqVAjdD6IaqJF0LfPHixbHPRoFXf1599VUAZsyYkWdJCgez7zs7GAVuMKRJugp8v/32i302DVnh89BDD/Gvf/0r43yM//ytmDY6OxgFbihYst3gZTu/dIfQV61aFfts5kYLn4EDB2a0fdHppBkFvpVsPIuvvvqKK6+80tfVcU0hpwpcRHqIyFwRmSciNwSk6SYiX4rItyIyyS9NWMwituqFXyXPxGLNdscuG5HOTGfTUBPJRrn/17/+xSOPPFKj95DnTIGLSCnwb+BEoBPQR0Q6edI0AR4FTlHVvYA/ZXJPs4itepHt95jt/LJhRRRjZ1NEWonIByIy2+54/9UnjYjIw3bn/WsROSAfshYC1d0CLysr4/77748UWS8bz2LJkiVAcdahbJFLC/xgYJ6qzlfVMuBF4FRPmrOAV1X1JwBVXZ7JDR0LfOnSpUyYMKHaVpiaQqFb4Mnyq6ysZPz48axcuZKVK1cyfvx4KisrmTBhQly6Im18yoG/qeqewKHAZd7OOVbHvb39NwB4rGpFNEQhk7byoYce4pprrqFOnTqh8zFGVnbIpQLfGVjk+r7YPuamA7CdiEwUkc9FpF8mN3Q7xO/RowdjxozJJDtDnikECzxZg5Ts3HPPPUfPnj054IADOPDAA+nZsye9e/emR48ecemKUYGr6lJVnWF/XgvMJrFunwqMVIupQBMR2bGKRTWEJBMFvmbNmtjnp556Kuf3M2wllwrcz1TyvrVawIHAH4HuwC0i0iEhI5EBIjJdRKavWLEi8IbeiDaTJ0+OKrOhgCiERWyprOwg3n33XQAWLVrETz/9BFj7gb0UowJ3IyJtgP2BTz2nwnTgQ9ftYqYYdhp4y3IUmd1p33rrrbTulw7r1q3LWl7FSi4V+GKglev7LsASnzRvq+p6VV0JfAjs50mDqj6hql1UtUuLFi0Cb+h1DmB6ecVNIVjg6SrwsPcq5sZHRLYFRgMDVXWN97TPJQkVMmzdrg4UcnvkLYfphvcMW56z8SymTJkS6Z7VkVwq8GlAexFpKyJ1gDMB75j2G8CRIlJLRBoAh2ANx6WFiSlbvci0kv/2229x39Op6Mks5GT5hZW9WC1wEamNpbyfU9VXfZKE6cCH5vfff+e7776jvLw83Sxyzvfff8+vv/6acLy6W+DJ8sk0XVXnVWzkTOOpajlwOTABSym/rKrfisjFInKxnWY28DbwNfAZ8KSqfpPuPb0KvJB7vIbU+FXMKA3LK6+8kjK/VCRTsEHla9GiRXzyyScZ51+oiPUSngJmq+oDAcnGAP3s1eiHAr+r6tJ07/ncc8/RsWNHXwVZKHTo0IFOnbxr+baSy/Zo2bJlfPbZZ2lfn60h9Kq0wKPeszqSU4/yqjoOGOc5Nszz/T7gvmzczyjw6oXf+4vyTr1pq8oC33XXXbOSfwFzBHAOMFNEvrSP3QTsCrE6Pg7oCcwDNgDnZXJDZ3qs0J/X8uXLWbx4MT179uStt96iVatWVWKB77nnnqxevTrtNs9Y4HDHHXdw4oknctBBB2Ulv6qgWo05GwVevfCrmJWVlcydOzcr+Q0bNoz7778/sgxhzoVh3333Ldh458lQ1Y9UVVR1X1XtbP+NU9VhTgfdXn1+maq2U9V9VHV6JvcsJh8Pw4cPZ+bMmTz66KNxx3PZHq1evTqj66tagReiBX7bbbcVXX2sVjHdTISb6kVQxezWrRtLl0YfjfXmd8kllwBw0UUXse222/pek+4ceCq23XZbvvrqq7Svr2nkw8vihg0b2GabbSJf16xZMwBWrlyZbZFywtixY+nbt2/csZpogRcj1doCf+ihh/IkiSEbBPXSly1bltX8ki2MSmcOPAwmHnI08jGEvnx5eL9S7rJQv359IDuudquCJ598Mm4vN0RbEJytOfAdd0zPTYBR4NUEswq9elFV28iSKeJcWeBmtCga+VDgUd7RddddF/vsyOiEii30Veh+QXnyYYGn2zHPpEz8+OOPTJkypWinW6uVGVDoFcUQjWxXqqrcB54Ko8CjkQ8FHsUgcO94cEZ0vKMshaok/J5pum1p2PdTKHPgbdq0AQp/cWQQ1cpk9St006dP569//Str167Ng0TVkxdffJG777475/fJpQXubkDyYYGbIfRoFLoCd6xtSFTghW5YZLpdM1VemaSrqrwKtXOVimrfijhbArbZZhvuuuuuPEtTPejTpw8AZ5xxBu3bt8/ZfbJdqdxz3dlQ4JnIZyzwaORjFXoUBV6nTp3YZycqV7F4hsxUgbvThnW0UygWeDbzyAfVygJPhuOPOle89NJL7LTTTnz55Zc5vU8h4fgizhXZrlRlZWW+eSdT0mYOvDDIxyr0KLhXqzvlLB8WeLb8/ae7iC3s+3Hf87jjjgt9r1R55TOPfFBjFHi9evVymv+ZZ57J0qVL+ctf/pLT+xQSUbdBTZ8+nQcffJAFCxaESp9uL33evHksWrQo4fjEiRNjDYw772z6Ow8rsxlCj0Y+htCjlL8uXboAlkMVR4G7h9Wj5pcu2VrnkW6nI6wF/thjW6PLRnF85BC2/qaTXzFRYxR43bp18y1CteO8887jm2/Ceb5dsWIFBx10EFdffTW77bZbqGvSqZgbN26kffv2vo3CxRdfzJAhQxLyTnafqBa4N953EMYCj0ahK3AnbbNmzWLbx/Ix953O88nHIrZXX93qPj+d3UMPPLDVg282FHjYMKiFRo1R4FVFoS9YyTZh/S97re4wPfWwnQM3qTxS/fe//wVyN4RuFHhuKHRXqk5ZqKioiFng+ZA1Hxa4u6PTuXPnyPdPp8388MMPY5/TVeAbNmyIfb788svTyiPf1JhxPGdhSa6paQo83b33ZWVlKYeR//jHP0bON1Vl9lsMle4Qup+F5h02TSWHIRzFYoGXl5fHLPCKigpatmxJVcY5T+f5ZKrA3fd0nNhEIZ02M2z9TYZ7TUyxUmMs8KpS4DWNdDssufJSFbRVzHs+7BxaVAs87Nx2TevoZYrTURw1ahSff/55ldwzigJ3yoJbgVdWVsYp70KdA093CP3999/n6KOPDlwcGpZMFXi6nbqg69Jx05wvaowCr6ioYPXq1cyenXa48VBU94bZ2wiFtcC9zyVXCtwt3/z58xPOO5U2V3PgYZ9HsS6ayReOBf7www/HFozlmnQs8HwPoVelBX7mmWfy4Ycfxg1FV5UCz8YitqBpvGuvvTat/PJBKHNBRFoAFwJt3Neo6vm5ESs3tG7dmjVr1jBr1iz23HPPnNyjuitwb2XJZAg9F7jlcxas+Z3P1Rx42OdRqHO5hUo+phyiKPBNmzYB1ryqewg93fzSJR1l5idXmHLs/GZnC13Tpk3T+o35GkIPqoPbb799Wvnlg7Ct7xtAY+A94C3XX1HhOOyfMmVKVvN94403sppfIePttYatfFVlgaeqzFEt8GTnBg8ezAcffMCgQYP46KOPgPCKptaWLXDrrfDzz6HS13QKWYHPnTuX5557DoAlS5bEDaFXBW45q3IVuqPAnetr1aqV1m92W/BhyYYCD7LAGzZsmFZ++SDsIrYGqnp9TiWpQrI9H37aaafFPld3C9xb2dO1wPOtwLMxB758+XL+8Ic/xL6raqj33w14euFCGDQIvv0WRo9OeU1NpxAUeND7de882LBhQyxefVVZ4O77VOUqdKcddbuOTec3rlq1KvY5bB1KpsBVlUGDBnHRRRcltaaDFPj69etT3r9QCNv6jhWRnjmVJMe4C1YuF7RVdwXu9YFeaEPoqSwQPwv8k08+STs/L8meR1Pgv8AHQJstW2CvveCaayLlXxWISJ0U5/8rIstFxHefn4h0E5HfReRL++/WTGUqBAUeVBa8x2fOnAlUnQWe6YKuTPeBuxV4Or/Z3R4nu37jxo3079+f5cuXJ/3NU6dO5bbbbqNfv35J7xv0rKqNAheRtSKyBvgrlhLfKCJrXMeLBvfL+uabb3xD6DnMmzcvIT5uWKq7Ar/zzjvjvodV4N6KmatOVKr95b/88kuCPMm850VtEJ3oRl7OBuYA5wGbgPsbN4YZM+CwwyLln21EZKKItHF9PxiYluKy4UCPFGkmq2pn+++OzKRMLGfpzvWG9QLopA9zz7CKPVd079499jmVHwQ/3L+rbdu2QNUq8LCL4J599llGjhzJjTfeGJfOaww4zz2VIg5qK5LphkIjaeurqg1VtZH9v0RV67u+N6oqIbOB+2U98cQTHHHEEb7p5s2bR/v27enYsWNa96nuCtxL2N+bj+HEIFavXp2zqEleRdMOeBd4BmgBvA/sCzzUqBHUSWroVhV3A2+LyKUiMhgYhtXPCERVPwRWJUuTbbwW+KOPPkrv3r25/vrwM3tDhw5lt91244svvgiVPqwCDzo+YsSIUOkyZeLEibHPAwcOjHy9Wy6n/EYZWSsvL0dEKC0tTateh1XgzjnvfdKdjgtqK4rJL3qotyQi/wtzrJDx9raCKvHjjz8OpB9cvqYp8HQt8FxVkjAe3n744YfYPKXDiy++6Js2qhXl/K7awI3ATOA44FfgXOBY4Ps08s0VqjoBuBh4CDgf6KmqM7KQ9WEi8pWIjBeRvYISicgAEZkuItOTOTzxKvAFCxYwatQo350GQYwdOxaAn0MuHEw2hF5RUcEZZ5zB1KlTfd+lnyvfTMr8q6++yqOPPppw3Gt9Rg2bPGrUqLjtlk59jmqBl5SUICKhf+MOO+wQ++y2eMM4TiopKYlLt3DhQhYvXhyYPpncfmTaNj3zzDO8+eabGeURllRD6PVEpBnQXES2E5Gm9l8bYKcqkTBLhHWy/89//jOj+xgF7o+3kQtTSRo3bhxZnjCKcfPmzRxzzDFxx/r06eNb4aMqWlXlMOBz4C6gPjAS2ANw22OF0ssXkVuAR4CjgNuBiSIS3QVePDOA1qq6n53360EJVfUJVe2iql1atGgRmKFXgaez9uKdd94Bwq8yTmaB//LLL4wePZrTTz894V02aNDAN3hSJu+8V69eXHbZZQnHX3nllbjvUeuMt+OargIvLS2lpKQktAXufn9Rd4R4Ffjzzz9Pq1atYt8d2VPJkqupj379+nHKKadklEdYUtWCi4DpWO3PDKx26XOsbWX/zq1o2SWsAs8XmzdvpmvXrglzzIVOukPoYRqzdBx2hHnPQUNufjJFanRXreLgp5/mI2AfYB6W9d0fWOlJWigWONAcOFhVP1HVx4HuwMBMMlTVNaq6zv48DqgtIs0zyTObsbXDuvt07nHggQcC8e/MUUCVlZUJ79IZTvZSWVnJk08+mbAQNBN+/fXXuO89eqRamhCPt/46vyvK841qgZeXlwcuXEtHgXsJ2yblygKvSlLNgT+kqm2Ba1S1retvP1UdWkUyZoWqcqXqjgvsx+bNm30X0owZM4aPP/6YW265JVei5YRcKvAgJbfzzjtHumaXXXaJ+x6kwNO1wEuwvBzRoQMdP/iACmAwlhIPmmcqlEZCVf8KICId7e8/qurxmeQpIjuIXTDsRXElWLMIaeNViN4prs8++4yVK73dJH/CKienzfDzn++OT+59l0EKfO3atVx44YXcdNNNoe4fBu9IRNSOjbf+Ot+jdDBXr15NRUVFaAu8du3acS5mo3pFnDNnDlOnTk15n3Qt8EzqZlV7WAw7DvWziJzu+TtWRFrmVLosEtYCDxuMIohkygXg8MMPZ7fddmPatPiFvoU+QhBELofQgypYMi96fs/x2GOPZfDgwbHvUSxwR4agbUyHAJ8CTwD8+itL9tiDzsDfsVabB1EorlRF5GTgS+Bt+3tnERmT4poXgE+AjiKyWEQuEJGLReRiO8kZwDci8hXwMHCmZviDveXMcZzicMghh3DIIYeEyiuMcnr22WfZay9r6t7xbx9kgfspcL96kYvOubdcZtqOuH9XEK+99lpcFMLx48ezZcuWlJaxl9NPP5158+aF3gbnpPvf/5Ivvwo7hB70rDIZHXOc21QVYRX4BcCTQF/77z/A1cDHInJO0EUi0kNE5orIPBG5IUm6g0SkQkTOiCC7Ly+88ILv8TAFe8WKFRlb6qkU2owZ1vogZ0GNQ7HOnaerwFNVrpkzZzJ58mQAWrVqRc+eW90QRHW8UllZGRdkJMpqYic/b8euBfAUMBXoAiwCePllxl19NbMCpdtKoShwrHnvg4HVAKr6JdA22QWq2kdVd1TV2qq6i6o+parDVHWYfX6oqu5lj9QdqqoZuz4Msw/cz/e9S+bY5zBK5pxztjZrfha4k5/fEHpJSUmV7Vv31r9sKfBkSuz000/37SxFWcQG1nx9u3btsuIV0StHGNK1wDdv3swPP/zge27dunWh7p0twirwSmBPVe2lqr2ATsBmLAPEdx+HiJRizZOfaKfvIyKdAtLdC4QLpJyCM8880/d4mM35Z511Vsb3D9t780atKlYFnqsh9H333Tf2+cUXX4zbX53sWr8GTFVTRikLyje2qtxW4HWA27bZhu+wlmyXYS1W2xPgT3+iMqRiLiAFXq6qv3uOFYxwDmEVYlCkst9++y32OaqFlSwEbRQLPBd4619UAyRoCD2dYeQoi9jA3ydDNhS4Q64s8P79+7P77rv7uoDt379/eAGzQNhS1kZVf3F9Xw50UNVVQFCJORiYp6rzVbUMeBE41SfdFcBoO8+csXDhwoRj33//fdz3Dz74IOP7JHv57vuJCD179szqfFg+SFVJVqxYwSGHHMLw4cPjjkepjKWlpXHpJ06cGBhVzq9SehvZIJmTzYHXrlWL3ljOWG5fv54mWGPOewM3A+uxhhIvuuiiUL+pgBT4NyJyFlAqIu1F5BEgu8ECskBYBd6lSxffcJCOgxJIXfa8Q7R+Q+jO+1u7di333HNPXPpissCDFrGlM4wc1QJ3yJUCT0W6i9jGjx8PWJ2l++67j1GjRiWcqyrCKvDJIjJWRPqLSH+sVegfisg22ENvPuyMPbJos9g+FkNEdgb+D8t5RCBh94omw90Dd7j00kvjvmejUU1W8N2OHebOncv48eO5++67C6kxj0wq2e+44w4+++wzXn311bjjUSqj39ya9905/P6715i0ZAzjLzpoCP0wYMK6dbyENba8cbfd6IE1tOTuArqH+VNRQO/8CmAvrBG1F4A1ZLgKPRdEUYh+i9ncnhVTKaf33nvP995+isbvPQYtYssF2bbAGzVK3z9XVAvcIeoitmyRzhD67bffHitLIsJ1111H7969Wbt2LePGjcuqfGEIq8Avw3Kf2BnYH2tr62Wqul5Vjwm4xm9s1ft2/wVcr6pJ30zYvaJR8Tb22WhUk718d2/ZPae6atWqoh1CT/XM3IEK3ES1wMP6pe7bt6/vvfysp5QyzZ5N10ceYQrQZcsWlgEDgO9efjk78z0FgKpuUNWbVfUgu47drKpVuxInBMkUovd9pnKFmUoReJWgnwWeahtTqiH0bHXgvPlkOgfurCFq1qwZX331VaRro1rgfsP1+++/f2D6MHPTsPWZZHsIvbKykn/84x++58455xz++MdM3SdEJ5QCV4tXVPUqVR1of05VAhcDrVzfdwGWeNJ0AV4UkYVYK1cfFZHTwokeKGzopF6lmWsL3O1kwb0SesOGDQWvwJ3hIi+pKlVQY5qpBR4l5J93Dvzqq69OLtNXX0Hv3rDXXrSdNo0NwMONGtEea/Vmad26oe8N0K5dO1+Z8omIvCkiY4L+8iqcD8kUolfhplLgqcqet2H3W5md7P2FscCfffbZpOfDEiXGgDPn7Mbb7uy444507dqV77//ns6dO7N27dpIzlkytcCXLw+eSU313i644IK4dN6dPl6iWuDecuFON2tWmKWr2SesK9XTReR7sSIMhQ1mMg1oLyJtxYpudCYQ1zDYe8rbqGob4BXgUlV9PfrPsNmwAY4+mrA+cHbfffe0bxVEMgXutrrdFc3xJVzIvPnmm1x33XUJx1NV2GwocO8cOMC2224b+nrvHHiQK82Szz+HU0+Fzp1h1CioXZtZRx9NB+DBpk1x1pdGHR71W1iZbwUO/BO4H1gAbMTqm/wHWAf4RhnLJ8meuXdbYKqtPFEtcL954VQWeKoyMm/evKTnw+KVI8iqnDBhAjvssAP33ntvnPMXv3bHfaxRo0bcf//9oWSJuo0szJY1N6nSOZ72wuYX1QL3lgu3G1vveqqqIuwQ+hDgFFVtrCGDmahqOXA51ury2cDLqvqtZ79odnn6aZg8mTeAn3r3ThnsPN2AJckIs48REhV4oeO3MAjSV+BRFJifAvezyJItTktWqY8AxgONjz8exoyB+vVh4ECYP58PzzyTn4lXIFFXGEeRtapQ1UmqOgnYX1X/rKpv2n9nAV3zKpwPyRSiV2FnaoEHKfCwc7VhhtDvuCPjAG2+cgS1Jc7q/BtuuIHDIkbAcy/SSkbUIfS69khW2Lrgl7fbJ4RTDsI69MnUAk83YmU2CdsS/aKq/st+k6Cq41S1g6q2U9XB9rHYflFP2nNV9ZXEXCJw6aVw//1QqxatXn6ZSVjj9kG4e+5+CipVYaysrEzoeSVT4O5z7pdfDAo86HelqnxBcb+jVPSwYQqDnqOq+p77A1Zs7o+wYmNWbrMNXH89LFwIDz4IO+8c577RIR+xqXNICxHZzfkiIm2xtrkXFFEs8O+++y5pXqeeemrSOudV4E7+n376aexYsnIfdhX6iy++mHFHznt90BC62ze7dzeMF++xsHU16hC6MyKZiQU+depU2rdvD2x9T6effnqo/KKuQvc+2x9//DEw77oRp9nSJawCny4iL4lIH7c3tpxKlg4icPXVMGkS7LILhwNfYDl39sN54Y899hg77ZQYm8Vv7tJNv3796NChQ9yxsBa4ewFdRUVFwQ+hZ9vtYJTr6tevn9Aw+DUUyVykujsSJwIfY7k57Ya1jeIfwIrPPoN77oGWWx0MOr/brcCzscc33xa4i6uwAphMFJGJWH2agXmVyIcoCjxMiNFkVpq3oXas1yuuuCJ2LFnbUFJSEqqM9OnTJzAKXljcoUQhWCn5BVcJIl0FHmSBX3/99fz734mhM5zFgZko8EaNGsW8X/oZCyISG1r3EjWYiffZHnfccb7ptt12W4488kjfc9kmbEvUCNgAnACcbP+dlCuhMubww+GLLxiPFanhbWAQ4G0CnBd+8803+2bjt3fcjdedIyRXdI888kjsu9cCL3QFnsy6TUYUpylB1KtXLyH9+vXrGTp0aFwYwWTWftmmTZyGFZlnHHA4VoCRm4DWWO7IKrfbLuFaPwUe1QL3e7eFosBV9W2gPfBX+6+jWiFGC4ooCjzT/LwK3Nm62rx5uHgsUbaRpbstFqw9x97h7TAWOGzd8lgVFviQIUO4/PLLE477bc8LYu3atYFBYFKtafDrPIB/m3bQQQcFyuON7x7E6NGjeffdd0OlzZRU08QAqOp5uRYk6zRvzh+BG7CU99+x5jrPApwwCN5tB1HwC0gCwYVpypQpLFq0dVu82wKozkPoQWSqwMeOHcvYsWMZMmQIP/30E+DfkJcAXRcv5sxJk2LTKcuA+4DHsRywJJMpGwrcj0IJZmJzINAGqz3YT0RQ1ZH5FSmeZB3cZDGwFy5c6LtoMYoCv+qqq7j//vsDvTx6EZHAzqSXTDpyTrl3E9YCdxyO+D1Xb0CmTCxw97NcunQpO+64Y+x7FAs8aA0OpFbgQcPZfs+qWbNm/Prrr6xbty5hoezf//73lHJC5vE0ohB2FXoHEfmfiHxjf99XRML9mjyiwN3AscBS4BisIXVn43o6PXeHoJXM3sJ055130rdv34Q9527HMi+88AK9evVKW5awfP/993Tr1o0PP/ww8rX5HkIPSu/uFLnfZy2gHzALuObzz9ll9WoWYa2qbAs8QLzyDpLJbw48G6MlhWKBi8gzWCvSuwIH2X/R47jmkZdffjnwXNu2benaNXFNXseOHbn99tt9r/EqX2eOtWnTpqHkEZEqscD83MYGKXCv62YHv3K49957x33PxAJ3LzDce++94847ii5MXUi2Pc5pm4J+Y506dZJe52bt2rVMmzaNhg0b8v3338eNkITtuBecAsfaXnIjtttUVf0aa1tYUTAJy/vM+8AOwLtYFnmZXbiSKfIgRyRBPWxvobjlllt4/vnn+eKLLwLv8cADDwQLn0XOPvtsJk2axNFHHx352qgWuKomxCp2420UVDVwOLFWrVqhK3kdbGcrwAigI7Csfn2GHXAA7bCc8wdtMvIrB34WeFWFpq0iugBHqOqlqnqF/XdlvoWKgrf+bOczFeJl5cqVgU45wmwj88NR8FHWSNx2221pd+b+85//JBxbtGhRaAcsS5cu9b2311r/5ptvfK19L37byNx1atWqVXHnBw0aBCS2BZ9//jkPPvhg3LFko5SpIgYGKXAnT/f7+vjjj2Of//KXv9CyZcvYaGvY91qICryBqn7mOVb4474ufgGOB+7AchE3CLjugw9gxYqk206aNWvG3LlzE44HNeJBldzP8X0QuRpeXbLE60cnPFHnwHv37k3z5s0DnSl4r7vsssto2bIlU6b4u+Fu0qRJcgE3baLhyJHMwxoab4vlt7wfcOFRRzGtc+dAp/0OjqXlJlXjEIZCngPH2vO9Q76FCMMbb7wRKl2QJebH4MGDU67kDqvAHecsUUZofv/9d2bOnBk6fSqmT59O586dQ6X95ZdffH+TX1k/5hhr3DKo3F577bUJQ+jexaMQ/wybNWsGJLZ3Xbp04eqrr467VxgFHqRgU1ngF154oe95Z6TS6bwUswW+UkTaYbtCtcN+Bk9KFCiVwG1Yq5BXAJ2XL4f996dbiuteeSVxd1uUmNIQbLFHySNTMolVG3UI3XlmYa977LHHADjiiCN8G4k777zTV8HWBz48/XQ27LgjO9x5J62AmcCfsRx8PwOUi3DXXXf5ypHKf7kjv7tRbt26ddJrwlBACrw5MEtEJhSyJzYgtto4FVE6y3//+9/56KOPAMtZ0bp161Iq8KB355SRqFMs2fbx7UeQz3Y/xeinqJYts1YOBcl68sknU1paGjs/Y8YMSkpKEvyD+7UXjz76qG+e7rUNyRS4k2d5ebnvqEoqCzyVwnXeZzFb4JdhGTZ7iMjPWNtMcuOMpQp4B2tI/ZvGjeHnn/kfcA8Q9Nj9lG/YIfRU6aPkkSlRZPCS7ir0IJJ1Uvy2fbRs2ZK333479n0b4BosN2JHvfYaDVav5gusyDj7AS9jddice22//fZcfHFikX3rrbdCyemOZlWd5sCxFuCfhhUV9X7XX8ER9rlHneJYsGABd955J6eccgoXXHBBSgUeVD+ddFG3GeaiLHhH2/zuUVJSEvdbGjRoAPiPYJSUlLB58+bAqcA6depQp04d1qxZg6ry/vvvA4mjJn7P7vzzz/ddx+BeJ5Ss7XLq6JYtW3zXNaSywMOO2OyySzKvIluJMgKUKWF9oc9X1eOwHDzsoapdsdrKouVn4Mp99oFbb0Wxgpp/gjVn6uWOO+7gmWeeiTsWdQg9SqOSKwWeyaK9IPlzocC//fZb3+OlpaU0xNpZsBBrJfn2WD57TwYOAF4nMWKOI6O7Yd1uu+1illcQEyZMiPXo99lnH0aNGhUYb9qPN954g6lTp4ZOnw8cj2zev2TXiMh/RWS5s6jV57yIyMMiMk9EvhaRA3IjvT9lZWWoKqtXrw6Vvn///txyyy0A/PDDD6xbty4hjYiEVuBRO3i5UODe0Qo/md0WeKtWrWJK388CX7duHfXq1ePggw/2vV/t2rXZuHEjc+bM4fbbb4/cPvo9M/fC32Sjh6kMk1Sr0N2/9+yzzw6U7Ywzzkh6H4eqigUP4S1wANSKPuaMa/hHhCgiNmzZAv/4B0dhWXIHAjMAv4jO/fr1i/sepAyDtrQkW9DlpRAVeNBivlwocN9zmzbR6KmnmI+1s6A5VoerB1bg+bFJ7uUEL3E3En/+85854ogjksrYo0eP2OfS0lLOOOMMDjggnC667bbbOOWUUzjkkEMKcg7ciWfg8xcmzsFwrEcfxIlYe8vbY60pfCwbMjtTF0H7gd1s2bKF9eu9+wxSIyIJHUhVjRsezrYCHzMm9zMWfnXKPWfdsmXLWLCldNZ7ONY3wMiRI2MK3HvfoHqfyjFTMiWdamowlQXufl/HHntsQjrnfJSgLlVFJncqbM8jIdi8eTOqyhSsYdcRQAOs4ORjsKy7IIIK1Ny5c32Hm8P6E4bcz4lFraBLliwJdGKQi21k7nOlYPm479CB7QYNojmW69PjsJyxJPM4cvzxx7Ny5cqYInZXLPeQeBiiPrMrr9y6kNu7rxbyr8CdeAY+f2HiHHwI+PfoLE4FRqrFVKCJiOyYJH0omjVrhqrGPdsgysrK0iqbQZ2tWrVqxep1pkPo3rCT2fKLngy/Z6GqvsPI6SjwWrVqxSlKR4H/8MMPcemitG1PPPEE++yzD7NmzUqqpNNV4OXl5XGhiq+++uqkw99hZa9KBZ7JYH3BTOKlS3l5eay3vRY4F8tL1zCsIdlZWK6pnMB/zz//PGD1VpMNia9evTq01yY/cu3kI4pbRbCGkoPI1AJ/55134sKsus+dBgwGOP98ALZ06sSps2YxPsJ9nJWuEN84B+3pfeWVV9i8eTOHH3543PEolXL77bePy/+SSy7hvffe46yzzqJ///5A/hV4jtkZWOT6vtg+lrDwVUQGYFnp7LrrrqEyD6NgysrK0uoI+ynwysrKyBb4lClTEsqQg1/Z++WXX9h++2QmQ2b4yVxWVhaTxT00no4CLy0tjS3eEpFY++jdwRPFAn/yyScB2GuvvZLuQkmlwIMWlZWXl8fFWdhxxx2T/vYoDm2qiqStUrJhNiDReXiRUVFRwT777BN37GVgX6zoVE2xVjG/ifVj+/btS9++fTn++OOTDoln2jjn2gKP6mg/WYFM97c6+8S7d+/OoYceGndul3nz+AR4DegE0LYtPPccq957L5Ly9uJWwkE97T/96U+cffbZCaFmoyxMGT58eNz3bbbZhrfffjthGqYa41dgfAuKqj6hql1UtUuLFuFiqIR5F2VlZWnt1w+ywFMp8Dlz5sQaf1Vlt912S0jj4NcZTNZ5yYZTGD/lc+CBB8ZiOfzzn/+MHU9HgZeUlASGS3aTrtfJZOsZ0t1dU1FREWeBi4hv2XLKRLJ2edKkrctGCmYIPcUwW9UttUuTb7/9lieeeIIDDzzQ9/zs2f4B1hYDPbEs8tVYTt9nAee70gTNCcPWQurnKz0MI0aM4OSTT85ZjNmgIaUgkinw888/nz//+c/87W9/i5RnZWUly5cvjzvWGavjdPZTT3Eo1t79ywDmzIGzzqIk4upOb+fC/TtSbfXwNnjeUYJkVGUFLlAWA61c33cB0ndC4CHM8928eXNaCtzvmjAKvEOHDrGRrfLy8qTly68+JZvj9S6gTYcg67GyshIRiWsT0llFXVJSEstj1apVgc6psr0YFqwtbMlIFh7U/VuDfNivXLmSF198keeffz6w7XQbRQWjwIudTp06ceGFFyb4tA3LCCwL8E2gMfAUlje3PfBfEOas/HQquN+KxjBce+21jB07lj/96U9pXZ+KqEP03gbnlFNOifv+8ssv88ADDyTt1Dg4jZx7v2074HksN7c9gM116vB3+/ijAHalybRihLHAg0jpSMZFsg5PoQetyRJjgH72avRDgd9VNWt+I8I8w7KysrR2APgp0jAKXERiZXvLli1xCrxjx47MmjUrtqMhqrJytneBZRS88847/PLLL5HySOaPwfs807HARST2m71uo93kwovhs88+6+sjwiGovauoqIjz8hhkgZ922mn06dMn0H02xLcnRoFnmTZt2qR97VLgFOBsrOhVxwBfAbv95z808KR1XmK2gpMkKzBRceaTAJYvXx6pEfFW8L333tu31xumcjohGW+88UY2LVjAv4HZQB8sF6f3A/+68koGY/kqd/d4M91f674+qrOFMO45/e7jpToocBF5AXvXpYgsFpELRORiEXE22o8D5gPzsNwwX1rVMpaVlXHBBRckHPdbUOi9zkvYVehuBe5u0OfMmcOee+4ZK8tRO9CPP/547PPZZ59N9+7d2WGH8M7zfv/9dy691P8VTJo0KUGedIfQw65NACv+g5uonZrevXtz0UXWfqG6desmnYK45557fNsm7yI2EUlZP4NGSrIdbjgsNUKBR2l8g3gOa4/440Ad4NqKCmZhKXeHqAo8lRUYtVCvWbOGF154wXf7jNddYJR5I79C7deAhJm7r1OnDo2AO4H9e/fmUqxC+F+gA5ZzlrWu4ahM5paSDaFHtcAbNmwYOm0yOavSyUOuUNU+qrqjqtZW1V1U9SlVHaaqw+zzqqqXqWo7Vd1HVafnSpagBjfICkxVp4IaaEeBP/LII7Rq1co3TZAF7hA1/nW28E5VufHzhZCuAg9TPx1Fmqm3spdeeolhw4bFvrvLQZs2bZg7d27MI9/vv//u6zfezwJPd6ut+/5GgWeZbIR/BGvfzMXAocDXpaW0Bt7Aije+t+s+YRehpVoNHlWBn3XWWZx11lkJsXd//PHHhLRRCqq3kQzqqaYM6wccPX0684GbgdplZbwG7ANcwNZly04HSEQ45JBDYtfncwjdPYyZimS9+KgLCA3JCarbQXv8U5VRv3rhtsCDAqBAvAL3k8tZ+FrVCjzIMVIQuVTgTgfJO5ec6ciUc+/mzZuzYMECOnToEFfX/IwaPws86oI47yJotyxVQY1Q4Nm2ej7Fch5yBdYit+7Al8Cg5ctpSXgLPJUCDzOn7MZxC/rqq6+mzCcTBR50bMCAAahq4pAccB7wPXD8hAk0w4oQ98fttuN0rCF0P9lq166dUc82k0VsXqIo8GRyGgWeXaIqm1TK0y/utKpSu3ZtysrKkr5bRylt2bLFt3449fCwww6LInLG/N//xTvNTBVOOJ32MmgBmBfHTbK3/mW6c8d5L+658FSdAj8LPIwCv/nmmwErTrxfeTAKPMtkywJ3s7migqHA7sAjWHtkeq9ezTyg6bBhkCTCmUPU/dhh8VYGP6sjqKA6DjDcCt7PAvfbRvf2228zadKkmB9ksDx6fI01RN4KWLHTTvQEugHjXL6O/WTLVS8dcmuBJ6vAuXrnNZWo7zEdRaGqNGjQgI0bNyZtS7bZZhtatGjB0KFDfc871mfQotowITuzQar2MJcWuKP8sq3knPzc9dTdXvi1HY4F7k4TRoE7C1qDfoNR4FkmFwrc4VfgSqwh9EmNG9MQ2HHoUNh9dy7Bmi9344Tlg3DuVcPG9k2GnwL3s8A3bdrE9ttvT2lpKdtss00sApFf4ff26h2OOeYYjj/+eE4GPsfyTd4Ja0VTX+CVm25KuZd74sSJAL4+qaMQdhGb3zCYFzOEXnh07tw5oW57fQp4ScfHgqpSv359Nm7cmPTdlpSUsHz5cs4991wA7r333riV8E6dC9qK5GeZz58/P7K8qchUgZ933nkJx8IuYnPwhnDOlgUedovsXnvtxfPPP0+tWrVie+Fbt24dylVyqvClRoFnmVS99D322CPje8wFruvYkT8A6zt2hCVLeBT4DvgLW13eue+VLA65wwknnOAbjzwKfkP6fj3N7777LuYwoaKign79+vluM9m4cWPgEPQfsYKLjMEKLrIUa6phD6ytYnXr108p75w5c3yPN2jQICNnKEGL2MIo5/oh5HYIM8xqyIzly5fz8ccfs+OO8R5aU43ShFUUQ4cOZcCAAbFrHAUepXG+7rrr4tZwOAo8qBO3ZMkSpk+fHvNP8fPPP9OuXbvQ9/MStCskUwXu54s+7BC6g3dOOqwTnyCc9xLULg0ePJiPPvqIRYuslTazZs0CrN96+eWXM3HiRE4++eRA73lunGkY9+91lyujwLNMqoL10EMPZe0+HwBfPfkkjB7NN0BrrH00c4D+QL2IL3f58uWROxhhhtD9LHDvFpt3332XZ599NqFRXLt2bVxFESzF/RlWUJEuwDKsmLO7AUMBpynJdD1CkE/2MLhDh7rlD9PwRJE7WQXu2rUrED40ocGfFi1a0KBBg4Qtot5n77Vqw77HnXbaKVZGnCH0DRs2xG3tjKp0nM5GMjfLBx10EJ06dQISQ4JGxbuY1cH7DM4555y476nqQ1C40aByf/zxx3P11VfHtS/e8n/ccccxZMiQpPdNRioFvnr1ao488kh23XVXVq5cGTteq1YtSkpKOProo0Pfy1HgJSUlvoFOjALPMqkKpPeBDx48OK37xLaRVVbC6aezL3AmlvJuhxXC6eann2YgVjzrqiLsHLifdXLttdcmHFuzZg21atWiNlanZCaW4j4IS3FfhaW4H8La2+2mKgu39/e4Q4FmGrwhGcmswPvvv5+7776byZMnZ/WeNRVvg+0tX507d4597tWrV9JV5G5KS0vjGuf69eszbdq0uDR+W5OSMWTIEJ5//vnQyiKT6IEQHMPAOwrkVcjpWOjJFLjjZnXLli2ccMIJ1KtXj6OOOioh3Z///Oek902G867CjHC5I0amY1A4CjxoN07B+ELPFBHpISJz7bjAN/ic72vHC/5aRKaIyH65kCPVS/IWvJNOOimj+1RUVFBeXo4CL2HNj/fDcsfabMMGHgR+Au7ACosZhky2nvjtbfVrHPyG2pcvX57wfPqfdhrtX3+dBVidkr2wfGdejaW4/wUETQ5kY0dA2DySDZdm6jmpV69egeeS5dewYUNuuOGGjJwLGbaSTPmcfvrp7LXXXrHv9913H40aJQ20FsNrXfkNe6ezk6FPnz6ISEJEMj8yVeB+20chcQjf+wzDtJf77bdfwrEgxe+4WS0rK2Pt2rWBMcXDBrMJugeEeyfudiFseXCz5557ApZDq2SyVAU5u5OIlAL/xooN3AnoIyKdPMkWAEer6r7AIOCJXMgS1QJPtwflFPyZM2fGFaQKrKAoFxx8ML8NH87HWIFSbsFS5E9hxSJPht/CkTBUVFTExbV2CKvA3XQClvbqRY8LL6TjU0+xM5b13Q9LcT9IsOJ2SPYuvCE+77rrrhS5pY/7/aRT4V588cVAX/XGF3rV4S1P7md/5JFHxn0XkUgxnbt16wbAAQcc4PtOMxm5GTs2WQR7iygKfPPmzYER9rx4d0J4f0eY9tJvh0gyBe4Mn0+bNi0ni4qjKHD3cw37zNycccYZfPHFF5x55pmxY9VxCP1gYJ6qzlfVMuBFrF1FMVR1iqo6e4mmYgU9yDqpepTeHmm6L8DJJ2iYrn3HjnDKKXQFugIL99mH+lhBUqZjPYBzsByeeBk5cmRaMi1YsMD3+CuvvJKwyttvqL0OsPPkyUwCvgV2GD0a1q5l9f77cyJW5LZn2DrHnYpkz9ZrlaZTudw+y72N9RNPbO0fZmqB16pVi913353rrrsuYeFLdXCXWiw4I1NOw+1uwDdv3py2AgfLgl++fDlHHnmk7zvN5e4WiKbAoyyOTGWBpyq/ftZ2SUkJt912W2D6Ll26AIlbt7JFVSlwZ4GtMzXj96yqiwIPigkcxAWQUbTIQJIVmAMOOCBh8VaUBvjtt9+OfXbySba63EnzMbBq+HDaY/n//g04BBiJNY/8BHAU/nEZo3DllVf6Hh8+fHgsNrVDzAMacLQtwzLgsIcf5iismOlbLrwQvv6aWUOH8jbRSfYuvJUvnYr+m2tvubexdi9oytQCd7j33nsT3FEaC7zq8HY63Yps8+bNod9zkLtRZ6Ga34ruXCvwbMRU+Pzzz+nSpUvckH2uFHizZs0C07uffS6em+M6N0xHxq3Ao7jZ7t+/Px07dow75gyju4fiq4sCDx0TWESOwVLg1wecHyAi00Vk+ooVKyIL4i4wgwcPjnM08vzzz2ekwN1pnXyCnAFUVFTEFTBVZR6W/++dsR7AdKAJcCGWt7KFWAr+D8AvixYRlfHjg/tEr7766taVrhs2sO3EiTyKNaw/0ZZhO2D5TjtxMVZM9NpPPAH77JO2L+Nklde7hzdqRT/yyCOTnnc3VNmMHuQtL1FCjxqyg9NZ80YBcztN8Vrgzo4ASL2i/OWXX044lmu/9lH3Rvul79KlCxUVFXFlPJUCT1UfghR4EOvXr49LnwsF7hhSYZzhLFy4MPY5igXu9xuHDRvG+++/H+cBrroo8FAxgUVkX+BJ4FRV9fVsoqpPqGoXVe2Szn5BdwG96qqr4pyptGjRIsEzUpQX4G68nXyCKp7XWnD3BDdieSs7CGtR2F3Aj8CuWIvD/gc03G03+L//g/vvh48/DvT2FqbiN8eKeT7l2GPh2GOhaVM6XnMNl2C9qPlYAUc6AdsvWcLjwGmu8KjpNl7JKq93QUnUin7iiSfGffc+B7fM2bLA/YgSetSQGc67c+qWu4Pcu3fvuM65V4EnCzMcpg5lqojOP//8pOczdW7iUFlZGecrPNVIV6r6UFpamnCN0w4+++yzCenfe++9jBV427ZtefHFF1OmC+MoyT13HUWB+/mnqF+/fpw+geqzCn0a0F5E2opIHawdVWPcCURkV+BV4BxV/S5XgrgLjF/hDGuBX3bZZQnXu/NOFarQq8DdQ2R33XUXP/30EwMGDGAWVrCPtlhz5fdiLRZrUF4Or78O11wDXbtCw4aw++5w4olwxRXciuU0pc+WLfDMMzBiBOdjWfj3Yq0Y/whYYf+9BZwxZw68/z6UlbFmzz25DWsfdzusRXZuP+Vffvll7HMqBR60yjrZEFc2htCTkSsLHOI9ZqWzstWQHt59uO7yJSIJFrjftemSafm85ZZbAs/98MMPaXmN88NR4L///js//vhjwu/O1hA6BHc6UrXBqZgxY0aobWZR30mUupqtDlU2ydkYkKqWi8jlwASseBb/VdVvnZjBdujBW4FmwKN2oSlX1S7ZlsWv8PTr14/Vq1ez3XbbJQ164aZjx47sscceMS8+AEcddRRHHHEEhx9+eMren1Mhr732Wj7++OO4OdkddtiBVq1a0bNnz9hiK8WaK/8YuAFrOGPwMcdwTvv2MHUqfPMN/PCD9QfEls6VlYHtseypAFnWAV8AK9q14/T77oMjjuCZUaO4I8D5A8A333wT+5xqCL19+/ZxQ1UOyfbApqPA99577zi5kuHOP9v7wNu0acNJJ51E06ZNzRx4FeLU1ZNOOomxY8dy+OGHM3LkyNh0TLIh9Hwr8GTlZNmyZZEVeJCCqayspLS0NFBZpdpL70VEEtKEsdr9Pocl1ahW7969fac5UhElTHCu1zykQ05bGlUdp6od7LjAg+1j7rjBf1HV7VS1s/2XdeUN/tbWiBEjeOONN3wLY1DFFpGESlWrVi0++ugjhgwZ4luI3ZXGuXbIkCF8/PHHcRVn++23B5IrxkXAOzvvDI8/Dl99BevXw7ffwuuv88v11zMIy+vZC6WlcPbZ0K8fTwMPADdiuXT9A9Z8e0OsRXJjuna1huVbtgz03ORHmFjmfqvxk/2+ZKMbQcycOTOpDG6ChtAdz1eZICK8+eabGXmKM0THKTOnnHIK5eXlsUVFTh1OpsCTWVRVMYSerAPx3nvvxW2jdNz9+m0JTYV7CN0P77ayMB2boCH0MBZ42Ofm+CgPw8knnxwnR1iMAi8Cog7fBBVCEUm6MtQvb7fS8Lt24sSJDB48ODZ/G+S/2GHNmjVbv9SrB506wamn8li9erEh9LMqKpBnn+XU1as5H/gbcA+WNf4B8QsRnDkgvzCKyQiziC1IyT/99NO+x72do6gVJlXlDRpCTzaUCfDCCy9EkqO6E8JBUzcR+V1EvrT/bs2hLMDWYd0ddtgBIObpK9kceKbk0gK//fbb4+Zc//SnP/HZZ58xbtw4zjjjjEj3mT17dqQQt7lQ4FFXof/2228Jnu+Ske57jaLAC3F7aI1Q4N69oKlIV4H7bUVxF1a/IbGjjz6am266KSbXhg0bksoWFKHLz9odM2aMT8p4nCAdXkcxfhG63KurwyxiC0oT5IkpIY54hg1ksmhk7rxTBTPZfffdM5KjOhHSQRPAZNfI2h25ksd5p877bNeuHXPmzIm5Q042B56pMs+lAvdLe9BBByEiKSNmuQOohLlXkAXevn37wNCoQb89jAXu9icfRJMmTZIuMswWfvf4+9//zjXXXJNwPFtrErJJjVDg2ew5JVPgfi5L3X53wxQAvzzcvP/++ymVfBSc3/PFF1/EHfeLW+1eYRrGAg+q5EHXhlXg2XClGoVC7HnnkZQOmqoStwXu0LFjx1jZ8VrgYQlTdjLdp53ubpdUa22CfJW7cbuY9dZ1J229evW47LLLfO8RJHsYBb548WLfNGHvkey+2RhCHzRokO+oXCburHOFUeA+JKu8UYfQ3XvCwyjwXr160alTJ269NXjUcfTo0Xz44YcxOYO8rYXBUdzevet+K+rdxzKxwIMUuPe5BynwCRMm0KZNG/73v/+llMFNkyZN6N69u+9q1osvvjgwlKBZlBZHWAdNh4nIVyIyXkT28jkPZO7jwXk3Qe8oLmpehDnwoPu4ybQjnW7HMMwis1TXfPjhh+y0005AsCfKZAorqG6HUeCZ+njPJkFWfqNGjXjvvffifIakar/feOMNLr744qzKl4rceiIoEMJUlGOOOYYPPvgASH8IPdWQWhgFvu222/Ltt98C8Nhjj+HXqDkxsUeMGEG/fv3YbbfdUuYbxLvvvsuqVasSvMf59fLdW3RSWeCqGljJw1b+oOd51FFH+XZaUg2Rikic5zw3jz32mG8eQcdqMGEcNM0AWqvqOhHpCbwOtE+4CsvHA3YMhC5dukQeMkm1fckvbTqUlJQkKLTmzZsza9astC2zKPK475HK+g2jwJs2bcp+++3HkiVLEixwp+4n2yMddfogrAKfPn16aAvdTboWeLLps2OPPZbvvtu6uznVez7llFM45ZRTIt0/U2qEaZEtC6oqFLibjz/+OOn5119/PSvDOhMnTkxYPOenZIO2Yfmxbt26yBZ4povYssHUqVM54ogj4o4ZBR5HSgdNqrpGVdfZn8cBtUUkbOC9SDjvJkw98LPAH3300YTpI4gPQwrxbchhhx3G999/T/v27dlzzz3jhqOjkG0F7hBmCB22Lpj1dtY7dOjAI488knRb1iWXXOJ7PGivtlumIE+VAAceeCCnnpq9GZlJkyYlPZ/qWbpjtxeig6YaocAzHUJ3FNHhhx+eVAmnKgxRFXj79u1TKrG4Velp0qtXr4QGy0/5RrHAv/zyy0DZg457O0dhFXjLli2B5HvMw3LIIYckxIMvRAcOeSSMg6YdxK50InIwVjvj62UxU6JY4H6r0C+55JKEsg/QqlWruO/uul1SUpKVhY3pzPHC1vYsSIn6tXd+7YRT3/zWu1x++eWxFf1+HHXUUb7P3GvRDhs2jClTpsT91lwMoTttgNeBVJStaH40bdqUO+6w1mB6oyUWAmYI3Qdvwfzpp5/45Zdf2HfffTNauJLOKsa6desGzrWJCKtXrw6dV4sWLdh333195469lSqVBZ5KuSYbQg/rajasAp87dy7z589PWJ2bruL1LiTMRlCJ6kJIB01nAJeISDmWl+AzNUe9oKgWuJtzzz3XN92BByYG93UrIG8HL12itEvuxbBBv9l5xGHn6x0LPFUAkKOPPjqlJRvERRddBMQvXMtFferRowevvfZaQpx1p83q2LEjc+fOTSvvm266iTp16gQu6MsnNcICz2Tv9wknnMAOO+wQ66VXtQIfN25c4LlVq1axfv360Hl16NAhtnDFy+zZltPUY489ll122YV77rknIY27p+5ufPzmkcrLywMVuHtYyqFNmzaxyu4QtqfepEkT36012VLghbh9JJ+EcNA0VFX3UtX9VPVQVZ2SK1lS7T/2pnXSXXvttfTp08c33fTp0xOOuTuT2RjpgWgWuHuYP4rbUge/Do6jwFONpmVjCind6bA333wzlOIVEU477bSE39KsWTPGjx/PJ598ktb9wZL9+uuvr5JtbVGpEQo8agF0r7aeMGFC3PVuBe4dwgq6j6P40hnOSdZY+M1dZ8oll1zCokWL2H333enWrVvcuSBf786iOzeVlZUx73JevM/pqquuYsGCBQnhCLO5XS4KRoEXD2FWTDuICMceeyxAgqUGyetnLmNYh8FvDjyM0xQHv+2puVbg7vjg6T6/k046KeNh8B49ekQKG1pMGAXuQ+vWrbn33nt9I+u4ufvuu+O+eyvUgAEDeOedd/j888+54oorePjhhyPJEYYo7k/D4K5o3kYxqAca1Hged9xx3HzzzWnLEmV0wY90LXBvp8go8MIlqgXepUsXVNW3Y/z1118HOkrKxVbCKHm6y2CqTkuyBWt+xzJR4HPmzGH06NG+526//fbYZ3e7UtUrtR02bdrE1VdfnZd754oaocDDVBRvIb3uuuvo27dvQjpnn9+VV16ZMu7zI488wvHHH0+nTp14+OGHU8YcTodUK9W9pGro3BWtd+/eceeCtlz4DYmD9UzvvPNO9thjj6T3PP74432P77vvvkmvS5WfO2xgFLz3NXPghUvURWzJqFu3buAoUy4UeCp5unbtGmtj3GUwHQXuZ4E7eabaUeLk9+CDDyasn+nYsSOnn3560uu9jBo1KlL6bFG3bt1q1xmvEQo8m9uAHnroIT744APuu+++pOkGDBiQcnFILnjggQf48ccfE0YHHFI1dO7KfMkll8QpcW/DsGDBAmbOnEmjRo2SOp5JRVCAhnS357z++utMmjSJgQMHpnX9HnvswWeffRb7Xt0qfXUik0VsUciHBX722WfH5r4zVeB+60miWuB77rknf/jDH5KmDcI9hJ2PdtHBvYUtVfjnYsCsQo9InTp1EuaGHdzK0YmKVNV07tyZXXfdlSOPPDKt672BXw4++ODA/aDuLRvJ4uoOHz6cHj168O9//zvhnOPfOZs0aNAgFswiXQ466CDOP/98Jk+eTNeuXbMkmSHbVKUjl2yTKs/KysqYcnV3ItNZhe5ngb/++uv8+9//TukIKso0BfiPCmbr+T3yyCMZtRfujkwql7TFgFHgOSKMr/Bc4FQUv8KZTojEVL7Zvfd12GWXXWKfDznkEFatWuX7Htq1axcq/3zw1FNPoarGkUsBE3URW6b3ySZh/EY47YifBa6qjBkzJmEIPKwC33vvvWMeCJPh7Ad3Ah+lIsglcTbIdM1PquiQxYZR4FnErSDzpcAdBRw0TBVlCB3Cb+VyNxoXXHAB1157bdx57zv48ssveeyxxxg0aFCo/POFUd6FTVUNoediFXoqedwKPGgRmxMH201YBR6WoUOHcsQRR2Q8qlUI3HvvvTRo0ICHH364WijwGjEH3r69rxvmnFKIFng6cX7DKnB33k8++SQdO3ZMmn6//fZj2LBhOVnYZ6g5ZHMRW5j7ZJMw8ev9LHBne6bX61iyIfRMvJ81bNiQAQMGVIvObNOmTXnggQeA7O/gyQc1wgLfdddd+fTTTwP3JUP2La2wIS+zjaOAszWEno4Fngl+QSMMhiAcBRem/haaAg/ivvvu47HHHuMvf/lLrM66LfDjjjuON998k+7du/tef8stt7B+/XrKysp47733gMws8OpGaWkpFRUV1aJDUiMscICDDz6Y1q1b5/Qe+RpCd+/PdmRId4GGt+MxcOBAGjVq5Bsf102fPn1o3Lhxxu4Gq0OlMlQdt9xyC5deeikXXnhhyrTZKFsfffRRxnmk4qyzzuKHH36gbt26sXbE2/k+6aSTAtuYnXbaibfeeitu5bdR4PGUlJRUi7amRljg+cDrVSyX/P777zHLOZl/49atW0faBw7W6MVvv/2W0gJp1qwZq1atythSKSkpMdu2DKFp3Lix7+4GP7LRYO+4444Z55EKdx1y6mPQzpdk1+c6gIgh/9QYC7yqOeaYY6rsXu6K6ihwtyU9bdo0zj33XB566KG0vJOFVcrZGGasyqFKQ80iEwWeq4h0/fr1S2grvHLOnj2bN998M3SezvVOXWrevDmTJ0/OUFJDIWJaS5tsV9B8Dc84Q2Vur2ldunTh6aefDrVgbOPGjTmTLQxGgRtyRTbqZLbr9YgRIzjppJPijnnrwB577BEpkIYjo/P/wQcf5NBDD81QUkMhYlrLIub6669n1qxZccccBV67dm1mzJjB119/HXj95MmTY7FuHfIVQMShOsxLGQxR8MYeT7cOeFehOztBksX1NhQ3RoFnkVwNswX59L7nnnvYc889AejVqxcNGzaMmyvbf//92WeffQLz7dq1K7vvvnvse7NmzXLqhCEMRoEbChFnLjoXdfyMM85g/PjxNGnSBMi8DjjX33TTTUyYMIHjjjsuUxENBYpR4DZuz2Hp0rJlyyxIksgLL7zAggULkqYZNWoUq1atSurSFBIbIKfRAFi2bFne/QM7e/aTbfkzGKLQsGHDjPMYO3YsV199NW3bts2CRPGICD169EgY+s6UWrVqccIJJ2Qlr2yw884751uEakdOFbiI9BCRuSIyT0Ru8DkvIvKwff5rETkgl/Ik44EHHqBv375MmTIl7TwGDhxIv379ePvtt7MomUWbNm248cYbA8+LSFp7z7t3784ll1zCc889l7e9625Gjx5Nnz59EqIeGQqHYqrXADNmzGDEiBEZ5bHHHntw//3353SEKFPrPlcjgNni22+/5aeffsq3GNULVc3JH1AK/ADsBtQBvgI6edL0BMYDAhwKfJoq3wMPPFBrMuecc44Car266PTu3Tuj6w1VCzBdc1RH0/nLVb1WU7e1SZMmCuivv/6a1vUNGjRQQNetW5dlyQy5IBt1O5cW+MHAPFWdr6plwIvAqZ40pwIj7d8zFWgiIrnfaFnEaIH3sg3VHlOvDYYCIZcKfGdgkev7YvtY1DSIyAARmS4i01esWJF1QYuJa665BoC//e1vaV1/ww3WiOf111+fNZkMNYqs1WswddvNSy+9RLdu3WjcuHFa17/yyiscc8wxoaOGGYqfXE56+k0Wec3HMGlQ1SeAJwC6dOlSo03Q/fbbj02bNqXtKnX//ffP6HpDjSdr9RpM3XZzwgknZLTo7MQTT+TEE0/MokSGQieXFvhiwL3BcRdgSRppDB4yVb5GeRsywNRrg6FAyKUCnwa0F5G2IlIHOBMY40kzBuhnr1o9FPhdVZfmUCaDwZAZpl4bDAVCzobQVbVcRC4HJmCtXP2vqn4rIhfb54cB47BWrM4DNgDn5Uoeg8GQOaZeGwyFQ043/qrqOKzK7D42zPVZgcziTxoMhirF1GuDoTAwntgMBoPBYChCpNj2FYvICuDHkMmbAytzKE62MfLmjmKSFbbK21pVU4eRqwZU47pdTLKCkTfXZK1uF50Cj4KITFfVLvmWIyxG3txRTLJC8clb1RTT8ykmWcHIm2uyKa8ZQjcYDAaDoQgxCtxgMBgMhiKkuivwJ/ItQESMvLmjmGSF4pO3qimm51NMsoKRN9dkTd5qPQduMBgMBkN1pbpb4AaDwWAwVEuMAjcYDAaDoQgpKgUuIv8VkeUi8o3r2H0iMkdEvhaR10SkievcjSIyT0Tmikh31/EDRWSmfe5hEfGLnpQTeV3nrhERFZHmhS6viFxhy/StiAwpZHlFpLOITBWRL+0wlQcXgrwi0kpEPhCR2fZz/Kt9vKmIvCsi39v/tysEeasaU7dN3U4ma6HWa/s++avbqlo0f8BRwAHAN65jJwC17M/3AvfanzsBXwF1gbbAD0Cpfe4z4DCssIfjgROrSl77eCssX9I/As0LWV7gGOA9oK79vWWBy/uOcz8sf9wTC0FeYEfgAPtzQ+A7W6YhwA328RsKqfxW5Z+p26Zup5C1IOu1fZ+81e2issBV9UNglefYO6pabn+dihW6EOBU4EVV3ayqC7ACKxwsIjsCjVT1E7We2EjgtKqS1+ZB4DriYyQXqryXAPeo6mY7zfICl1eBRvbnxmwNY5lXeVV1qarOsD+vBWYDO9tyjbCTjXDdO+/PtyoxddvU7RSyFmS9tuXNW90uKgUegvOxei1gPcBFrnOL7WM725+9x6sEETkF+FlVv/KcKkh5gQ7AkSLyqYhMEpGD7OOFKu9A4D4RWQT8E7jRPl4w8opIG2B/4FNge7VDbdr/WxaavAWCqdvZp5jq9kAKvF5D1dftaqPAReRmoBx4zjnkk0yTHM85ItIAuBm41e+0z7G8ymtTC9gOOBS4FnjZnpcpVHkvAa5S1VbAVcBT9vGCkFdEtgVGAwNVdU2ypD7HCuH5VjmmbueMYqrbBV2vIT91u1oocBHpD5wE9LWHHsDqvbRyJdsFa9hlMVuH4tzHq4J2WHMeX4nIQvveM0RkBwpTXuz7v6oWnwGVWM74C1Xe/sCr9udRgLPYJe/yikhtrAr+nKo6Mv5iD51h/3eGMfMubyFg6nZOKaa6XbD1GvJYt7M5mV8Vf0Ab4hc39ABmAS086fYifqHAfLYuFJiG1et0Fgr0rCp5PecWsnWhS0HKC1wM3GF/7oA19CMFLO9soJv9+Vjg80J4vnbeI4F/eY7fR/xClyGFIG8+/kzdNnU7iawFWa/t++StbldpBc3Cg3oBWApsweqtXIC1AGAR8KX9N8yV/masFX5zca3mA7oA39jnhmJ7pKsKeT3nY5W8UOUF6gDP2vefAfyhwOXtCnxuV5BPgQMLQV5bLgW+dpXVnkAz4H/A9/b/poUgb1X/mbpt6nYKWQuyXtv3yVvdNq5UDQaDwWAoQqrFHLjBYDAYDDUNo8ANBoPBYChCjAI3GAwGg6EIMQrcYDAYDIYixChwg8FgMBiKEKPAazhi8ZGInOg61ltE3s6nXAaDIX1Mva4ZmG1kBkRkbyzvRvsDpVj7GHuo6g9p5FWqqhXZldBgMETF1Ovqj1HgBgDsWMDrgW3s/62BfbD8Jd+uqm/YjvqfsdMAXK6qU0SkG3AblvOFzqraqWqlNxgMfph6Xb0xCtwAgIhsg+WNqQwYC3yrqs+KSBOsGLX7Y3kbqlTVTSLSHnhBVbvYFf0tYG+1wuMZDIYCwNTr6k2tfAtgKAxUdb2IvASsA3oDJ4vINfbpesCuWI71h4pIZ6ACy3+yw2emkhsMhYWp19Ubo8ANbirtPwF6qepc90kRuR34BdgPawHkJtfp9VUko8FgiIap19UUswrd4McE4Ao7NjAisr99vDGwVFUrgXOwFsYYDIbiwNTraoZR4AY/BgG1ga9F5Bv7O8CjQH8RmYo1zGZ65wZD8WDqdTXDLGIzGAwGg6EIMRa4wWAwGAxFiFHgBoPBYDAUIUaBGwwGg8FQhBgFbjAYDAZDEWIUuMFgMBgMRYhR4AaDwWAwFCFGgRsMBoPBUIT8P9nMPjJZCReXAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABTmElEQVR4nO2dZ7gURdaA33OJEkURDIAIJgQEBQUWTKgEs6Io+okginnVFSO7pjWjK2bEAGKCFQOiGFBREWQVUBDBAAJ6ESXnINx7vh/dPfT0dM/0pDsz99b7PP1MT3V19emeqTp9TlWdElXFYDAYDAZDYVGUawEMBoPBYDAkj1HgBoPBYDAUIEaBGwwGg8FQgBgFbjAYDAZDAWIUuMFgMBgMBYhR4AaDwWAwFCBGgRuyhog0FJHPRWS9iDwkIreIyLO5lisRIjJSRO6y948QkR9zLZOh/CEiKiL75loOP0TkdhF5KdPnisjRIlKcnnSZRUSaiMgGEakUcDzlZ+FTVkZ/8wqpwEXkXBGZbv9oS0XkPRHp4snTz37YvT3pR9vpb3jS29jpn7rS/i0i34nIdhG53ZNfRGSwiPwqIutEZLSI1HEd7y0iU0Vkk7vMAmMgsAKoo6rXqeo9qnoRgIg0tZ9X5aCTM1lxUkVVJ6vqAbmUoSJi6mjM/eSV0itPqOqvqlpLVUtyLUuyVDgFLiL/AIYC9wANgSbAk8CpnqwXAKvsTy/Lgb+JyK6e/D958s0HbgDe9SmjL3A+0BnYE9gJeMx1fJUt530JbiljxFOmKbI3MFdNtCBDEpg6mjxZqLsFR5AFXa5R1QqzAXWBDcBZCfLtDZQCvYDtQEPXsaOBYmAYcIWdVslOuxX41Ke8l4DbPWljgetd3/8GbAFqePJd5FemzzVOBb4F1gELgB52+iLgOFe+24GX7P2mgAIDgF+Bz4H3gSs9Zc8CzrD3DwQmYjVePwK9A+QZCWwD/rKf+XGea/9qX3uDvXXynN/DPnebfXyWnb4n8LZ9/fnAxXGeyQnAXGA9sAQY5PkNb8HyECwCzvPIfpc7r+vYImAQMBtYC4wBqruOn2T/DmuAqcDBuf7fF9JG+a6j1wNLgd+BC+3//772sWrAg3a9+NOWfSegJrDZvlenruxp16WxttzrbBnqAs/Z11gC3AVUssvvB3xhX2M1sBDo6ZJtH+Azu65MBB7Hrqv28Y72/3kNVntwdNhzPc8gsO4Bh9n3XtmVvxfwbUBZI4GngAnARqw2Zk/gdawXuIXA3135Dwem28/rT+A/dnpT+7eonOh+8LQHdtoi7DbWvsaX9nNaap9b1ZU38ptnYqtoFngnoDrwZoJ8fYHpqvo6MA84zyfPKDsfQHfge6yKGRaxN/f3asB+SZRhnShyuC3P9cDOwJFYf6qwHAW0wLqPV4A+rrIPwmos3xWRmlh/6FeABna+J0WkpbdAVe0HvAw8oJZ76iNPliPtz53t4196zn8fywIbYx9vYx96FasB2BM4E7hHRI4NuK/ngEtUtTbQCvjEdWx3oD6wF5ZlNlxEwrrKe2O9YOwDHIzVOCIihwLPA5cAuwJPA2+LSLWQ5RrKbx3tgfXid7x9/nGeLPcD+wNtgX2x/pe3qupGoCfwu10Paqmqcw+nYinxnbHq2gtYLzP7AocA3bAUu0MHrJfu+sADwHMi4tzfK8AM+9i/cXk1RGQvLA/FXcAu9n28LiK7JTo3AN+6p6pfAyvtZ+Twf8CLcco6F7gbqI31gjEe6wVjL+BY4BoR6W7nfQR4RFXrAM2B/waUmez9uCkBrrXP7WTLcHkS5ydFRVPguwIrVHV7gnx9sX5E7M+YH1BVpwK72I1+X6zGIhneAy6y+4LrAjfa6TWSLAcsC/p5VZ2oqqWqukRVf0ji/NtVdaOqbsZqONuKyN72sfOAN1R1K5Z1uUhVR6jqdlWdifW2e2YKMieNiDQGugA3quoWVf0WeBbLzenHNuAgEamjqqtted38S1W3qupnWA1U79gifHlUVX9X1VVYDUZbO/1i4GlV/Z+qlqjqC8BWLOvFEI7yWkd7AyNUdY6tlG93DthK9GLgWlVdparrsV5ez0lQ5peq+paqlgJ1sBT9NXZdXgY87Cljsao+o1Zf7wvAHkBDEWmCZf069eFzrP+1w/8BE1R1gt2+TMSyZE8IcW4QQXXvBft6iMgu7DAqghinqlPsZ9Aa2E1V71TVv1T1F+AZ1zPYBuwrIvVVdYOqTvMWlsb9AKCqM1R1mt0+LsJ6iT8q7PnJUtEU+EqgfoKBU52xLKvRdtIrQGsRaeuT/UXgSuAYElsMXp7HsiY/xbIMJtnpqQxWaYzlNk+V35wdu/F4lx1/+nOw3u7BssQ7iMgaZ8NS8Lunce1k2BNwGjiHxVhv2370wnKjLxaRz0Skk+vYarshdZezZ0g5/nDtbwJq2ft7A9d5nk/jJMo1lN86uieueob1f3PYDeulYIbrf/O+nR4Pd3l7A1WApa4ynsbylDlE/requsnerWXL5lcf3GWf5flfd8F6AUh0rh/x6t5LwMkiUgtLqU9W1aVxyvI+gz09ct6CNY4CLENnf+AHEflaRE7yKS+V+4kgIvuLyDsi8oeIrMN6Easf9vxkqWgK/EusPqzT4uS5AMtV9q2I/AH8z07v65P3RSz3yARXhQiF/SZ7m6o2VdVGWA3EEntLlt+wXEJ+bCTaYvBTtt5BZq8CfWyFtxM7Gq7fgM9UdWfXVktVL0tB5jAD27x5fseyqGq70poQ8MxU9WtVPRWrEXuLaJdZPbtLwF1OMu5VP34D7vY8nxqq+mqa5VYkymsdXYr1MufQxLW/Aqufu6Xrf1NXVZ0Xw6C64k7/DcvbU99VRh1VjeneCpDNrz64y37R87+uqar3hTjXj8C6p6pLsP4Dp2N51uK5zyH2GSz0yFlbVU+wy/5ZVftgtQf3A2M9chDifqLaU3vgnPtF6yngB2A/21V/C9HdMBmlQilwVV2LNYjlCRE5TURqiEgVEekpIg+ISHWst76BWG5RZ7sKOM9rFajqQiz3yGC/69llV8d6zpVFpLozUlJEdhGR5vZUlYOA/wB32q4gRKSSfW5loMg+t0rArT0H9BeRY0WkSET2EpED7WPfAufYsrQnnLt7Atbb7J1YfdCldvo7wP4icr5dXhUROUxEWoQo08tyrIE5zeLk+RNoKiJFAKr6G1Y/17328zgY6636Ze+JIlJVRM4Tkbqqug1r4Ip3msgddr4jsLoHXkvhPtw8A1wqIh3s37WmiJzoeeEwxKEc19H/Av1E5CARqQHc5pKxFOu/87CINLDL3kt29N3+Cewqlhs/6LktBT4EHhKROnY70FxEErpvVXUxlkvcqQ9dgJNdWRyruLtzz2JNbWsU4twg4tW9UVgzA1qTnNfkK2CdiNwoIjvZsrYSkcMAROT/RGQ3+3mvsc+JahNC3M9PQHW7XlcB/ok1LsKhNlZbs8Fug1MxbsKjeTDytKw3LLfvdKy3qT+wXMZ/w3IXLwWqePJXx3pLPgmfUYiufFGjUbFGSapn62cf2x9rQMkmLBfNPzxl9fM5d2Scezoda2T0eqzR2d3t9GZYFsoG+z4fJXYUemWf8p6zjx3mST/ALmc5lrvzE6BtgEwjsUdz299vJ3pk6512OWuAjj7n74o1cnY1MNNOa4T1IrEKq9vg0oBrV8VyQ67GqlBfA13sY0djuUEH27/rr8D5fnJ7f2/ijOq3v/ewr7XG/i+9BtTO9X++0DbKZx29yb4Xv1Ho1bHcrb/Y/9d5RI+gft6ub2vYMQr9JU/5dbEswGKsGRLfAOe4ZP3Ck999/WbAZKx2wm8UegeskdmrsOrsu0CTMOd6rnk0ceqenaeG/QxeSPAfGYmrfbHT9sTyIP6BVfensWOE+EvAMlvO74HT7PSmRI9CT/Qs+mH9B5dhDehb5LrGkVgW+Aa7jDvdz939zDOxiV2owVBhEJGjsSpkoxyLYjAYfBCRBVgzSLyzVwwuKpQL3WAwGAz5jYj0wrJUP0mUt6JT4aP3GAwGgyE/ECsk7UFYbvXSBNkrPMaFbjAYDAZDAWJc6AaDwWAwFCAF50KvX7++Nm3aNNdiGAxlwowZM1aoaqKAHuUCU7cNFYlM1O2CU+BNmzZl+vTpuRbDYCgTRCR0FKhCx9RtQ0UiE3XbuNANBoPBYChAjAI3GAwGg6EAMQrcYDAYDIYCxChwg8FgMBgKkKwpcBFpLCKTRGSeiHwvIlf75DlaRNaKyLf2dmu6150wYQKHHXYY8+fPT7cog8GQR4wfP553330312IYDHlDNkehbweuU9WZ9mpMM0RkoqrO9eSbrKp+67KmxIknngjAxRdfzKRJkxLkNhgMhcIpp5wCgAk+ZTBYZM0CV9WlqjrT3l+PtbrOXtm6npdNm5Ja+tdgMBgMhoKiTPrARaQpcAjWspZeOonILBF5T0R8F58XkYEiMl1Epi9fvjzsNVOW12AwGAyGfCfrClxEagGvA9eo6jrP4ZnA3qraBngMeMuvDFUdrqrtVbX9brtViKBUBoPBkBalpaXce++9rFvnbXYN5YWsKnARqYKlvF9W1Te8x1V1napusPcnAFVEpH42ZTIYDIaKwJtvvsktt9zCDTfckGtRDFkim6PQBXgOmKeq/wnIs7udDxE53JZnZYaun4liDAaDoSDZsmULAOvXr8+xJIZskc1R6J2B84HvRORbO+0WoAmAqg4DzgQuE5HtwGbgHDVDTA0GgyFtTFNa/smaAlfVL4C4ZrCqPg48ni0ZDAaDoaJjvJHll3Ibic38aQ0Gg8FQnjEK3GAwJEXIKIsiIo+KyHwRmS0ih+ZCVoOhPFNw64EbDIacEybKYk9gP3vrADxlfxoMhgxRbi1wg8GQHUJGWTwVGKUW04CdRWSPMha1QpPNQWzHHXccQ4YMyVr5hnCUWwVuXOgGQ/aJE2VxL+A31/difEIppxJl0ZB7Pv74YzO/PA8otwrcYDBklwRRFv3eoGNMQhNl0WBIHaPADQZD0iSKsohlcTd2fW8E/F4WshmiMd7I8ku5VeDmT2swZIcwURaBt4G+9mj0jsBaVV1aZkIaCoaVK1fyyiuv5FqMgqTcKnCDwZA1nCiLXUXkW3s7QUQuFZFL7TwTgF+A+cAzwOU5kjUnbNy4ERHh4YcfzpkMZRmJbevWrfz4448pnXvmmWdy3nnnsXjx4gxLVf4xCtxgMCSFqn6hqqKqB6tqW3uboKrD7BDJ2KPPr1DV5qraWlWn51rusmTZsmUAPProozmWBF566aWsX2PAgAEceOCBLF2avJNl0aJFAJSUlGRYqvJPuVXgxoVuMBhyRWlpKVCY7dCvv/7K5s2bkzrnvffeA0hp6dLVq1cDULmyCUuSLEaBGwyGgmb9+vWsWbMm12JE4bivC7Ed2nvvvTn11FMDjx922GExac79Oi8uYdm0aRNr164FjAJPBfPEDAZDQdOwYUM2b96cV6tvOYqsqKgwbaSJEycGHps+PbY3xHn2yf4GGzZsiOwX4stOrinMf5fBYKiwzJgxg3bt2rFp0yaApN29ZYGjyIIU+CeffMJff/1VJjJk+xz3ecme77bYnXNHjRrFCy+8kJIcFY1yq8DN25zBUD659tprmTlzpq8lmC/E6wP/5ptvOPbYYxk0aFBZi5WQRAo46HiqLnR3fmf/ggsuoF+/fkmVU1Eptwo8n9xpBoMhPfwa+nx+SXdk3LBhA9WrV+f999+PHFuxYgUA8+bNy4ls8Ug0EjxIQTvpmbDADeEptwq8UPueDAZDLH4NfT4rcEcRLlmyhK1bt3L77bfnViAPH3/8MWPHjo1JT2RBByn4TLrQDeHJmpbL9ZrBIsJzzz3HnDlzMlWkwWDIEW7FUQgKfPv27VHfEymqN954gz/++CPrcjkcd9xxnHXWWTHpiRR40PFMuNCNAk+ebI5Cz+mawZMmTWLSpEmA+WMYDIVOoStwP8vVkX/16tX06tWLTp06MXXq1DKRL4h0FXg6Fniyyt+QRQvcrBlsMBgyhZ+l1rlzZx5//PFciRSXeBa4Fyd62apVq7IqUxgS9YEncqH73ee2bduYP3++73nGAk+PMukoTnfNYIPBULHxs8ABnnjiiVyIk5BkFLgzqK1+/foZlSEVhZisBb5u3TrmzJkTuZZfkJe///3v7LfffpHwsm6CfldDOLKuwDOxZrCIDBSR6SIyffny5dkQ02Aw5DFBDX2+utG9Ctwts1dROfeWD5HIvAp627ZtnHLKKcyYMQOItcCPPPJIWrduHVf5fvTRRwAx0fKWL1/OXXfdFfluFHjyZFWBZ2rNYFUdrqrtVbX9brvtlh1hDQZD3hLkas1XBb5t27ao716F7sZxnWdKgZWWlvL999+nfK7DlClTuPXWWxk/fjx9+/aNOQ4wa9Ys33Q3zm/kvb8BAwZELbTiV8bgwYOjpuAZosnmKPS8WjN47ty5XHjhhfz222+JMxsMhrwiyAIvq+mif/zxB7Nnzw6d37uohzvqmvel48wzzwQyo8CbN29OpUqVaNWqVcRqTgb3c+7SpQv33XcfsOMFJNE8cD+c+/V6T9evXx/13e/+77nnHnr27BlC8sxTXFyMiOR1VLhs/vvzas3gI488khEjRnDuuedm6xIGgyFLuBWLe7+sLPB9992XNm3ahM7vrLDl4LbAgxT15MmT+eGHH1IT0OaXX36J7P/6669Jnx+kiB2PQtAgtjAK/Oijj/ZNd/A+lyVLlsSVNZt89tlnNG5sOYfLYjnWVMnmKPS8WTP42WefZeXKlQD8/PPP2biEwWDIIm4FkQsFvnHjxqTyexW416UexC233BIq3+DBgxGRuK75VJ5NkCJOZIHHw/m9vMo/kQJ3FGguGDBgQGQ/n/vmK0S4sosvvjjXIhgMhjRwN/5uJZKvfeBe93BYBR5WWTz44INZKTeeAi8pKeG1114LVY6bIKvd+9t5r11WinPTpk0RA8+hUqVKZS5HKlQIBe4mn38Mg8HgT6EpcO8KaX4rj/nJHtbCTTRfG1Jr64LK3b59O48++ijXXnttxsr0Mm/evJz8noceemjMFD63As9nKpwCNxgMhUeuXejJ4ix16uC2lOMp1rBK13kGYRV+olXEHOL1gac6ADisBT537lzffMmwcuXKpLtJf/zxx5g0o8BzQJg/s7HADYbCI9eD2PyuHQ+vBe4o8Hnz5sUdVZ1OLPF4BLV7o0aNClXe9u3bU247wz6zsPnicdBBB7H//vunXY57dkM+64wKp8ANBkPh4W7cFyxYENkvawUets85yAJ3gpoEkU4scS9hFKLXqk40iC0VwlrgmVDgftHeUsFY4DkgW/1CBoNhByLyvIgsExHfpf5E5GgRWeuaPnprutcMUixlrcD9+rL98FrgDlWqVInsi0jM6PZMWuDfffddZD9s8JugNnTbtm0Zt8CzocAzRaEMYst97L4MYhS4wVAmjAQeB0bFyTNZVU/K1AXDKoFsE1aBey1wgOnTp/P1119Hvqsq++23X1SeTFrgbhnSHYVeUlKSctsZ9qUknzyo7rC2+awzypUCz6c/gMFQXlHVz+0FisqMfFHgW7duDZXPT4H7LfThrETmkEkL3E/xePMnmsqVqLww5KsFPmXKFP73P+/6WhaF4kIvVwrcWOAGQ97QSURmYa1tMEhVUwvObZMvLvRUB7H58eGHH8akJds+xZPHbwGVRPLnUoGn08+eCl26dAk85h7E9tlnn7F+/Xpq165dFmIlRYXrAzcYDFlnJrC3qrYBHgPeCsoYdqXBoLrtjYW+ffv2rHriEpX95ptv8tBDD/la4JkoP5n8fgvAJIqGlo3wpWFfvvLJg+q1wIcNG5YjSeJjFLjBYMgoqrpOVTfY+xOAKiLiu9h12JUGw1pxVapUoUePHqmKnpBEbcwZZ5zBoEGDYizwVq1ahSo/k33gfuUmUuAnnnhixmRzKMtpZJnCq8DzNd5AuVLgZh64wZB7RGR3ezVCRORwrHZmZfyz4pOMC33ixInpXColObx4FXj16tUzWn6q+dNRkqm2nWFd4y+//HJK5WcDo8BzQD69wRkM5RUReRX4EjhARIpFZIBnlcEzgTl2H/ijwDma5ptzsnX7888/T+dyUbhFDyvH2rVro75nOma5g1uBewPE+PWBJxrElgnZvPmCzvNe2/vMwl47nSluQXi7ZvJVgZtBbAaDISlUtU+C449jTTPLGPHmJ/tx1FFHZayuB8Vhj4fX6gxrhaZjgb///vuB+VSVadOm0alTp6TKT4WSkpKoaVgdO3Zk2rRpNGzYMCpfMkqxtLTUd2T4+vXrqVOnDq1bt05p/fMgUrXAv/zyS6pWrUq7du0yJks8ypUFblzoBkP5JNE61X5s2LAhI9fesmVLQjkSURYWeKKy/JR3Nixw78uWs4768ccfH/paYa+9atUqwApac++996ZcvsP27dvZsmVLygr8yCOPpH379nzyySdpyxKGcqXAjQvdYCifJGuBA9x0000ZubZbgSdqY4IG4pWFBe7Fz4WeDl988UWofN5n5MiYjvs+6D7dijYTI+hPPPFEdtppp9AKfOrUqVx00UWR5+v8zscee2zasoShwilwY4EbDIVHKgo8Uxa4e0BaIgUbNNo82xb48OHD45YVth86HnPm+EbOjSGbCnzhwoVRLxLuvup0+6lVNTI3P6wC79q1K88991zUS15ZUuEUuMFgKDxScaFnIvDGrFmzouKVJ2pj3H2/N954Y2Q/7FKcqVrgl1xyScyxMC8D2Ric5b0HPwU+fvx4xo8fH7pM516aNWvGEUcc4Xst972kYqi5ywo7iM05J1eD3LKmwPNpwQODwVDYpGKBl5aWpmUZPfPMM7Rt25YXX3wxqsx4uI+7lXlYstUHXpaeR+9v5bd2+SmnnJJUmUOGDAl1LYeg+120aBFbt25l9OjRccsKa4Hn2qMbSoGLyG4icouIDLcV8/Mi8nyC00YCiSIqTFbVtvZ2ZxhZ4mFc6AZD+SQVBf7kk0+y0047pXzNzz77DIB77rknkpaMAi8qKooZeZ2Isl4PPBuWY5ALPR0P6W233ZbwWu578XsuW7ZsYZ999qF///6+4yPcZXkt8KVLl/q+DDrXyZVeCWuBjwPqAh8B77q2QFT1c2BVWtIliVHgBkP5JIwCD1Jmbvf1woULmTVrFgDPPfccH3/8se85X331lW9AmCeffDKunF4FvnTpUq699tq457jJ1mpkZcnpp58e9T2oDzwTBLnQ/a7l/FdeffVVFi9eHHP8q6++iux7V5275557Yu4LoufX50K3hFXgNVT1RlX9r6q+7mwZuH4nEZklIu+JSMugTGHjJRsXusFQPgmq2//3f/8X2Q8a6e12ZTdr1oy2bdsCcNFFF3Hcccf5ntOhQweWLVsWk+52p3u5//77I1Y7WApcRKhatWrgOV7K2gLPBlOmTIn67ijDTLbPBx98MIMGDQp8sfO7ViJvw4oVKyL7r732Wsxxv3n2znOtVasWkyZNilt+NgirwN8RkRMyfO3QCx6kGy/ZU1bykhoMFQgRCa9xyoigul2jRo3I/gMPPFBW4vjidcs6bthk+sKzHQvdi4iwdu1aevXqRTzjKB2cJVjTVeCrV6+O7H/33Xc89NBDgf+LX375JSYt0bMNoz/++OMPRMTXc/Pwww8nPD/TxFXgIrJeRNYBV2Mp8c0iss6VnjLJLHgQlrB9LC+88ALHHHMM69aldQsGQ8EjIp+61/a2Y5d/nTuJ/AkzWGns2LG+ebLpmZs9e3YkBKjXwnMGQlWpUiV0eWH62J966qnQ+RMhIjz77LO88cYbGQmE4mXTpk2RYCvpyvrHH3/EpAX1gbds2ZLHH48OBpjo+mGm+jlu9qFDh8Ycy0WXRVwFrqq1VbWO/Vmkqju5vtdJ58LZWPAgrAXer18/Pv30U98fwWCoYNwLvC8il4vI3cAwoH+OZYohqPF1K/CgWNrZnF7apk0bunXrBkC1atWijmXDAn/llVe4/PLLI98zYYFncwrU7rvvHnGpp/s7+MnpLtO75OdVV10V9T3Rs000Y0FEOPXUUwH/7hrvAjZl4e0N9c8SkY9V9dhEaZ7jrwJHA/VFpBi4DagCoKrDsBY8uExEtgObycCCB8mGUl2zZk06lzMYCh5V/cBehGQisAI4RFVjTZ0cE8YCD2o+smWBO9dzrLJq1apFKYFUFHgiWb0vKZnsA8+Gwlm/fn1k3zswLFn82mv3/Sd6QUj0rC666KK4x4uKiiLX8LuW2wIPGluRaeL+s0SkOlATSwnXA5xXoDrAnvHOzacFD4JYunRpJi9vMBQcIvIvoDdwJHAw8KmIXKeqcWeZlDXpKPCSkhJ+//33jPfxuq2wX3/9lerVq0cpWEeBZ9KFnmr+MMuxZttidPrCU8UvlnsybX66L3Lu8/0s8B9//DGy36NHjzIJ7pJoENslwHTgQKxBZzPsbRzwRHZFS55kFfjo0aMDp5EYDBWE+sDhqvqlqj4NdAeuya1IsYRxocc7t0mTJpHR55nC3Wc6bdq0jLjQEzX63uPpKvAw10yFBQsWxKSlq8D9SKbNT/cFxX2+X3+52/uSzEtbOiTqA39EVfcBBqnqPq6tjW1B5xVt2rTh/PPPj5vH+yN6BzoYDBUJVb0aQEQOsL8vVtXUl43KEnXq+A+5cddnv+UmwWrkvQ19JqxNtxWmqoGD2DKpwL2EVeBlPUNn3333jUnLtQLPZFfKF198wVlnnRV4PJmpg+kQdhrZEhE5w7MdKyINsipdktSvX58TTkhuttuECROyJI3BkP+IyMnAt8D79ve2IvJ2ToXyoU+fPvTpE9sr51Y6Bx98sO+5F198cUxa2MVF4uEtw6sAU3GhJ6vAf/nlF954442E+YKUp3sQW7oK/KCDDop7PBsLfnTp0iV03kx3EQTNeoD8U+ADgGeB8+ztGeAfwBQRiW/y5hneHzHdgRUGQ4FzO3A4sAZAVb8F9smdOMEcffTRMWnu+hwUyMVvGcx06v306dPjXs8hFRd6IrwKfsCAAfTq1SvhefGWVs2UC71p06Zxj2fDAk+Gsgz0lRcudBelQAtV7aWqvYCDgK1AB+DGuGeWMckGyQcTwc1Qodmuqt75V3kZ7ejiiy9m8uTJUWluBZ6MUk5nSpMTitVtgftZd4ks8JYtY4NPZmsg2YwZM3zTM7ngifeZvvzyy1Hfc63AyzKIV74p8Kaq+qfr+zJgf1VdBaTvi8ogNWrUiPtm7FdxzTKkhgrMHBE5F6gkIvuJyGPA1FwL5YeI0KhRo6i0VBV4Jl7avX3gQS70IAu8b9++MWnZUjJB5br77tO99tlnnx313R3mFnYocMeDUdaUpaGWby70ySLyjohcICIXYI1C/1xEamK73vKJoMEs4O/2SuQKMxjKMVcBLbE8aq8C68jDUegOXnevO+52WSvwRBZ4okFs3hWvIHvGRFko8Pbt28c97tybO5JctpkzZ8dq1mVpgZeVAg/bOXMF0AvojDUXfBTwuh145ZgsyVZmzJ07l3bt2uVaDIOhzFHVTcBge8t7vErPbc3l0gL3I5EL3c/QSFRmqv3VYabhrVyZViBM3xcSN44Cd8evzzatW7eOWjEsHSpXrhza2MsrBW4r6rH2Vu5o3749EydOLLPoOQZDrhGR8cTp61bV5AeTlAHxFFgyI8uzYYEn60L3U+DZ6icOul9nxTSAMWPGpHWNsAo8nTXa0yHIAt9tt90iQX66du3Krrvu6rsaWbVq1UIr8P322y91QZMglAvdnjb2s4iszdRiJvnG8cfn3dRXgyGbPAg8BCzECmX8jL1tAObEOQ8ReV5ElomIbz6xeFRE5ovIbBE5NFNCx1MSqVrgbjdrMnj7wL2kosCzNSvm119/9U2vVasWV155ZUaukUiBO88rVwo86CXG7dIXEZ555hnffNWrVw91nffee4999imbiRxh+8AfAE5R1bqZWswkK2zdCuecAya6msEQF1X9TFU/w4p9fraqjre3c4FEk2tHAj3iHO8J7GdvA4GMdXrGs8CTsV7dfc3e+eNh+0oTWfzZUOCZjpqWyX7hRArc8VJ48/3rX//KmAyJru+lZ8+eUfKsX78+sMsjrALfZZddUhMwBcIq8D9VdV5WJckEzz4LY8bAKackbIEMBgMAu4lIM+eLiOwD7BbvBFX9HFgVJ8upwCi1mAbsLCJ7ZELYeEpi4cKFUd8nTZoUmNdtjXkb9hEjRoSSJZEF7ijooD7fsrTAgyhLBQ7+g/TuvPPOjMkQDz8LvFmzZlFyr169OvAlKawCD/McMkXYQWzTRWQM8BbWaFUAVDVxCKCy5LLLYPp0GDmSd4Hjga9yLZPBkN9ci7WAyS/296ZYayCkw17Ab67vxXZazOpBIjIQy0qnSZMmCQv2a1xr1KjhuxZzvNkoQe7UxYsXM2DAgIRyQPhIbLvuuqvv+fXq1YtJK+u50mWtwHM54yfeOACH1atXB54fdmBaWSxi4hD2VaEOsAnoBpxsbydlS6iUKSqyrPA+fagDfAAckmuZDIY8RlXfx3J1X21vB6jqB2kW69eC+WoKVR2uqu1Vtf1uu8U1/K2CfRrHoAYznkIJaszffTf8ImxuZVRaWsqSJUt8r7/77rvHnLvnnntyxhlnRM2d7tu3L6WlpWU63SmTc6PDKK5cxtwIeq7u/8maNWsC7yOsYi5LCzzUlVS1v892YbaFS4lKleCFF3gd2Bn4EGgV4rSaNWtmVSyDIY9phzUXvA1wtojERhhJjmKgset7I+D3NMsE/BvHoIY1ngUepEiCrGU/3Ba4X3mOrN6FWG6++WYWLVpEUVERl156aSTd6XuNp+QKqQ/cz8OQCwXuvKSEscC3b98e+IwPOOCAUNfLOwtcRPYXkY+dUacicrCI/DO7oqVBlSr0Ad7BWivxIyDRo3f/iFu3buXTTz/NyIIHBkM+IyIvYo1I7wIcZm/xI3Ik5m2grz0avSOwVlVj3OepkEzjWKtWrcBjfq7c3377LSZUaxClpaWMGzcu8t1vJHuQrNWqVYsoa3ceJ60s3czZVOB+7mi/leHcOCPCvVHc/Khdu3YouZzr+d2riMS86BVSH3jYKz0D3IwdNlVVZwPnZEuoTLANOBPLAm8IfAw0i5Pf/dD//ve/c8wxx3DjjXkV5t1gyAbtgc6qermqXmVvf493goi8CnwJHCAixSIyQEQuFRHHnJwA/ALMx2o7Ls+UsMlEL/OLNe7gVZKbNm2iefPmPPHEE6HkeOSRR3j66acj3x9++OGYPGE8A+77SaTAV61axWWXXRZKvrDkog/83//+d+DxSy+9FFVNuLIZEHp998WLFwPhLHAI/t3CemnzzgIHaqiqdzxY3NfEXM4VddgKnAZ8ijWC5hMgaJhMUVERqsr8+fMZPnw4AE8++WSmRTIY8o05QGwnbRxUtY+q7qGqVVS1kao+p6rDVHWYfVxV9QpVba6qrVU1Y8Gv/RrHoIY5XkPqVZL//Oc/k/K4/fjjjwnzhOlLde87082CFPhtt92W8XjeqSrw+vXrx6Rlsg88mRHtQ4cOjZvvyCOPpHHjxhFFnuhaQffxzTffJJTJr7xsEvZKK0SkOfZAFBE5E58RpR5GkqO5om42Y422mwrsjaXE9/TJt3r1aoqKiqIi6IgIpaWlrFixIvT1li1blp7ABkPZUh+YKyIfiMjbzpZroYLwaxzDKDV3XzPA7Nmzo77/+eefJMPmzZuTyu/GfQ/JuNCz0aWXqgJftGhRjJWcigIPmkKWzIj2eGMdAJYuXUpxcXHgSpVhFXjQim5e8tECvwJ4GjhQRJZgLXZwabwTcjlX1MtGrLeFr4HmWEq8YYjzRITevXuz22678b///S9h/hEjRtCwYUPuvffetOQ1GMqQ27EcVfdgRWZztrzEr3EMY9V5g6n069cv6vvOO+8cWobFixczatSo0Pm9uBVGMi70bIxO37BhQ0rn1axZM2aQWiYt8DBTtpyy0rV4w54fb4nQfffdN+nyMkHYUei/qOpxWAEeDlTVLsDpaV47aK5oDCIyUESmi8h0J2ZtsqwDugOzsAa0fQQkGm8qIrz++usAPPfccwmvMWjQIABuueWWlGQ0GMoaJyKbd8u1XEEk40J3ExQNzSGZ7rJ589KLaRVkgSdyoWdjOcx//jP1scjePuEwCtx7b0EvJR07dkxYViYUeDKD2KZODV5l1z1gMh8tcABUdaOqrre//iPNa2dtrmgQq4HjgO+xppZ9iDXVLFBA1w8R5s3RLEtqKBSc9Qx8trxe5yBVKzSRm9WPoKAqiV4GHMLMT99rrx02i1NuUFtTlutZh+GFF16ICoOaSQvc/YyDBr2FdaEnIqwLvX379hx++OEJy8g7CzyAdF8zsjZXNB4rsJT4T8ChwPtYUWoSEeaPl8sgBQZDMjjrGfhs+bnOgU2qCjys0nUT1BCHVRhhFHjjxjuawEQudLcCT8eFnyl23333qD7sVEKpBv2e7mcc9Byz5UKP9yKS7MDEbJPOnafbIZO1uaKJ+AM4FmsZpg5Ylnhdn3zuPo8w1rWxwA2G7FKzZk1OPvlkPvroo6TOS6WRTyVATCqyOMFjkukDP+GEE9KSIRuEUVxDhgwJVZb7hSto9bJsWOCnnXZa3LxBLxzue88bCzyemw3/wdzuc3M2VzQMxcAx7FDiHwPeNWTq1t2h1o0FbjDknqKiIt5++22OPfbYpM5LxXIPaoizZfEl0wdelkoiLGEU+PPPPx/1Peh3cSvwvn39AwM6zymTv8ebb76Zdhl5Y4EncLPF9Unlcq4owKeffpow6MFi4CisN4h2WKPT3bMbk1XgxgI3GPKDwYMHp11GUEOcbl+0V+E4SiwZF3oqSqtr166h8gVNt0pEMorLkd+591122YVmzXaE2nIr8KAR6c7qc2U1Cj1sGXljgRcyRx11VKiRpb9hKfEfsAJBf8qOKWbuZQD9FHhJSQnff/8933//fdRc8bAh9wD+85//cNlll5XpAgYGQ3knm/UprKct2UUxnHLfeecd3+POPVWuXDklJXHSSdldfyodBb5ixQrmz58fOe5W4InuNR0Xut8odD/23nvvSH6AAw88MKYcv/1sU24VeDL8DhyNNTq9JZYS35PoP5Ffpb3sssto1aoVrVq1okOHDpH0oD4bP6677jqGDRvGTz/9lJrwBkMFxa8f+MADD2TXXXelf//+UenJKvR4L+HugCruQWheghryPfbwD3fRpk0b3/P++usvNm/eHLHAq1atmpKSCKv0U1VAyZznzSsivlPqwpRbVFRE9+7dQ1/b7/x4rF27Nmbq4COPPBL1PS/7wCsSf2Ip8VnAgcBnwJ5btkSO+7m1nnnmmcj+L7/8EtkPG2TfTb5NETEY8p0jjjgiJq1Zs2asWLEiElijV69e1K1bN2kF/vvv1oSYm2++OeaYuy1IVtmNGzcuZqCUU4aj2L0vDwcffDA1atSItBHVqlVLSUmEtVRT9V6kY4F78caLjxfhsqioyPd3SlYWP66//nrq1KkTY5R53fp52Qde0VgBdAWmA/sCT8yaxcH2sWQGqIW1wN1lpjuS0mCoaPg1lN7G+LXXXksqFLKDE5hj06ZNMcfSGetyyimnxMjtdo1DbFvjxF13FHiVKlUSKonevXvHpKU7/Q3gjTfe4I477kj6PC+JXkC8LvR48T8qVaqUltKMJ8sDDzzgm+7nQQhTXqYp9wp84MCBSeVfhaXEPwbqb9vG58ARwPvvvx+6jLDK3h1Pedu2bcYKNxiSIIwCFxEqV66ctFXpKLtEClxEMta3nGgUuhOFsqioKOMu9GrVqkX245V9+umnc+uttyZdvhfnGmFGoYdxoadDKnLHSzcWeAY555zkVz1dD5wAfFSvHnWx5omfCnz++eehzp8/fz4bN25MmM+dp1WrVjRs2NAocYMhDdJpzN3x0J1y/BT4hAkTIvsHHHBA1AJIQ4cOpUePeGs4BeO8NJSUlHDzzTfz7rvvRh3/7LPPIrL5KYnHHnuM448/Pkp+v/L9CIowlgyZdKEnM4gt06FU4+HI671X40LPEol+nE6dOvmm/wXctPfePAlUB14HSp4Kv2CaO8RgECtXroz6vmLFClKN9W4wVDTCWOAOYSxwv3PjzTe/7777GDNmTFQbs9NOO0XkCtuQO/mc65eUlHDfffdx0kkn+codpMCvvPJKDjvssMBrx2sLM6F0kikjUbucjAWe6cA6YQjqBkm1vFSp8Ap8/Pjxgce2lZZyBXAbUAk4ZvRouP56COEi//LLLxPmmTMndqn0oPjLBoMhGGfgV6YVuHfVMjeDBg1i5513DpzXHRYnv6OY3S7000+PXTOqUqVKCZVEMi83iY6FpRAt8GTPD7rHLa4Bz8YCzyCJFLgTxtAPpy/7TmAAUFJUBA8+CGecAQmW4fOu1ONm69atfPTRRyxYsCDmWKrL+xkMFZXrrrsu0oebrjvVL61OndjQ8E2aNIm0Le5rpjNCHSzF5R5DM27cuJg8YfrA890CT5TXHca6ECxw93gmY4FnkKAf99hjj+W9996Le+6SJUsi+88DL5x7LtSrB2+/DUcc4b/2qY17eTkvt99+O8cff7zvsqNuBX7jjTdy7bXXxpXRYKio+I38TccCTwb3NCL3Nbdt28Ztt93G7rvvHtg958V9H5UqVUr4Eu+dM+0mqI/WK2c8GVIlmTIcAyeeoROWXERi896rscCzRJACv+iiixIONlmzZk3U94VNm8K0abDffvDtt3wNdA44N96fYuTIkYHH1q9fH9l/4IEHGDp0qHGrGwxxUFVWr14NJKfATz31VN5+++2Urum2EL0KvGPHjixdujRqUFxYtmzZwmOPPRY3TzYs8ETnZvq8Sy65hHvuuYdBgwaldC03Qc9DVWnVqlWo85NFRKKWgjUWeJYIWkYwFbfLX3/9xbm3386uP//MJ8AewCTg7z553UHxX3vtNa699tpII+IEmfDDeft2u9HMyHSDIZZkrUwvVapU4eSTT07p2m4F7m5L3FHawpKsd2Ds2LEZV+BuGYLKTrTQR7xn77125cqVufnmm6Omr6VKpUqVAp9horYz2VHo7mczc+ZMvvzyS3beeWeGDBkSCb1dlu11uVfg7h+nbdu2kX33n81Z4q5169ZxyxozZgyvvvoqq4BuwBCgCvAI8AoQ5Azq3bs3Q4cOZeLEiYC1jm4QjgJ396WZRVIMhmDCjAD2a+C9L/dupZwI92wR9zXDTB9Nhj59+sSkOSFXHVq1asVvv/0WlZbuy40fiZbajPdS4X3WmVRy3vu6//77IwOEE70cnXzyySk/lwYNGtCxY0dWr17N2Wefzfjx4+nZs6fvmIlsUaEUeNDIxkGDBjF37lyuu+66uGUtXrw4sl8C3ACciTVvvA/wP6wwrEF0796dL774grFjxwbmmT17Nv/617+49957d1zLtsZLS0vNoieGnCMiPUTkRxGZLyI3+Rw/WkTWisi39uYf+SN9OWLSklHgXoWd7Brjftdct25d0ufHU3xhgkIdcsghNGrUCIjfB57taI/x7qNhw4ZR31NR4KNGjQp13QEDBtCyZUsgvgJv2bIlXbt2TUqBxyuva9euTJgwoUyjasZdErQ84P5x3P3L3ofcokULZs2alXT5r2MtgvIG1kIoM4FrgacD8t93331xy/ML3edY4Keddhpz585lzpw5Sa14ZjBkChGpBDwBHA8UA1+LyNuqOteTdbKqZnf5K5tUX2q9VmGLFi1Cn+uN1e3gbmMywX//+9+k8runpHkJ60LPBrVq1eKOO+7gtttuA1JT4PEG7nkHAjrEu06iqYeFQOFKHhL3D+vEFAb/Hy3VwRs/AIcDI4GdgGHAmwA+MZjda4yHZfv27YwYMYLx48ezYMECiouLU5LTYMgAhwPzVfUXVf0LGI0VqLDM8QvHGTTgM4wFDvGnlfpdG6IVRt++fUOdn0i2dMmGCz2TpHLPiUbeO7jv03vM/Vu9/vrrMflTlSFX5M8vmiWCHrjf22g6f/ANQH/gHGANcBrAwQejH3wQlc+vfyRooJ1DcXExF154YeT7lClTUpbTYEiTvQB3h2uxnealk4jMEpH3RKRlNgTxq9vJzNjwU+ALFy4MtfiJX797x44dOeaYY3zzX3DBBaHlikfYaaWJXOjxFGjPnj0j+/vss08S0oWXKZN94PEUuPc67vbXWeM7n15skqVwJQ9JkALPpAXuZgzQBpgMsHQp0qMHzwKO3e13jWnTpkUNsPPihEd06Nevn+kLN+QKv0ri/TPOBPZW1TbAY8BbgYWJDBSR6SIyPdUwwu66kMyqgX4vzrVr1w5lhfvNQY/XfowcOTKwzl5++eVA/NgRDn4hmv3KTWcU+oEHHuibni7pKvB4Frh7yp5bZq/8L7/8csz5qfRZ50v7m1UFng+DXbKtwLt27RqT9itwDMA996BVqzIAq5/8JPx/+CZNmiQdsMXMDTfkiGKgset7I+B3dwZVXaeqG+z9CUAVEanvV5iqDlfV9qraPt6SkX44o7E7dOiQMG9YF3pY/AK5pGoA3HHHHWzfvj3UMsTZWjYziGwpqkwr8NatWzNs2DAeeughateuHXXMTdOmTWPONy50H1yDXXoCBwF9ROQgn6yTVbWtvd2ZLXm8ZMqF7l3Y3aEEKL3xRgYceihTsXyM44ELJ07EO4msatWqSUckMiFXDTnia2A/EdlHRKpi9RpFRUMRkd3FbulE5HCsdmZlTElpcswxx7Bw4ULOPffclM5P1HUVD3e9d9qSdAKghLUCE7VRqQ5ic9O+fXv23HPPUHmTIZsWOFjBYf7xj39EHfNex+8lybjQ/cmLwS5Bo7UzZYFfc801gcd69uzJiGnTOAK4BtgEHLZgAT/a353mo0qVKqHcZ26MAjfkAlXdDlwJfADMA/6rqt+LyKUicqmd7UxgjojMAh4FztEsmXJ+FpUfmbbA3bEZ0rXAE+FeUCXZFc7cJFLg06ZNY9KkSVSvXp3JkycD2bPAszmILd4xv8AxRoH7k7HBLun0k+25557ccccdDBs2LCo9Exb4HnvsQffu3QOPf/jhhwCUYgV7aYVlqtQBHga+AY7EeptPVoFnOmCEwRAWVZ2gqvuranNVvdtOG6aqw+z9x1W1paq2UdWOqjo1txKHC+SSDKeeusMWcdqNdMrzluVwwAEH8Oyzz0a+p6PA47VvqkqHDh04+uijo87PJxd6Jq5jFHh4MjbYJZ1+MoBbb72VSy65JCotExa4E1Et7AjThVguiBOBBVgK/TOgUp8+1FuZnIcxkxb4M888w0svvZSx8gyGXJGMwknWAnfXc3c8B6ctyUQAD28Zf/75Z+Cc83ikG8glG94E928TRoE///zznHXWWQllSsYC9+vyzLd+7WTIpgLP6GCXTONXEYIqx6OPPuqb7vzwyfbBTcAK+vIvYDMgY8fSolcvHgHC3nxYBZ5oVO7mzZsZOHAg559/fsgrGwyFh18jv2zZsqTKeOSRR5gyZQpjx46NUobOfjYUuHdBpUTKJtXVyLxk2gJX1bijw/3o379/VCCboHvfY4894l7XTdCYpUIlmwo8bwa7+OFX2YL+IAcccIBvupM/FXf2VuAuYD+A/v2hpIS/Y1nmNwM1Epwf5ppz585l55135qGHHgrM414GzyyaYqhIrFq1Kulz/va3v9GrV6+otGy60L34tVF+101nGplbjky60JNV4F787mn27NmRsKl+eNu0eF4X9+piiSj308jybbCLl2Rc6EEr5jj5Ey1LGo8lAM8/j8yaxQSs/vF7gF+AQQQr8jAW+PXXX8+GDRviLtnnXgbPBIhJjcmTJzNp0qRci2EguA7/9ddfMWmZilldlgrc7/iDDz4YquxUXOjZUuCZGoWeaAEqr/xB/48PP/yQr7/+OiUZcklWe+/zebBLMoPYgtwuzo+50047cd5556UnUOvWnAh0Bb4CGmKtdvZrURE3ELvSWZiYyysD+tWHDx/OQQcdxAsvvMC8efMi6em8iFREli1bRqtWrTjyyCPp2rVr6KUkly9fzhNPPMGIESPMfP4ME9TA7r///jFpYX+vK664AvCfggSZ7QNPxQJ3B56Jd34u5zuLSNoKPBWc64wePZoRI0YE5jv++OPjuuLzlcIdfpcmqVrgDRo0iOx7+6fSpWnTpkwCOmBNnv9KhF1LS7kfWATcCjhD+MJce9OmTb7pl1xyCfPmzaNfv34cd9xxCfMbLAvuo48+iupyePzxx/n+++8j3937blSVSZMmRX6zgQMHcuWVV3LhhRdGrTpnSJ+gOuwXKCmsAr/77rspKSkJfJHPZB94Kgrc77if5ZzKYib5boGHvWbr1q2jpuOVFyqsAk+msrkVuKoyYsQIRCRq5bCgP3pRURHPP/98zCj4RLwPtN+2jZJ332WaCPWBO7CivA0Hin74Ie75CxYsYMmSJTHpfq7EIL766iuOPfZYX8W0cuXKyJq7Qaxbty6lFd7ykZtvvpnjjz+eyy67LJLm7U875JBDfM998cUX6dq1K/vssw/FxcW89dZbkWNjxozJirwVDSd+d1Aj7+feds/ljoeIxFWszjVz5UL3O56sAveSD4PYgmRK9rqQ+aVUy30feL7jV9mCfhTvm3e/fv3YtGlTwgXuAe666y769+/P4YcfnjBvzECSSpWodMIJHLx+PcdgjQCsDlwMXD9yJPToAW+9BR5LYuPGjey7774xg3QWLVoU2J/vR4cOHfjkk0/o379/zLHWrVvTunVrfvrpJ99zN2zYwK677krbtm2ZOnVq5P5mz56dkqVfXFxMq1atGDduHGCNrv/hhx+yXpEWL17MUUcdxX/+8x9gR0zrefPm+c7d//13a6LFsmXLcGIWOKserVmzhsaNG0flDxM+05AY92I/QXinoMYb/JQMjjWZq0FsYY/nOmRoLl3oZblGd1lSoRT4vvvuG9n3q2xBfyo/pRd2Pe4aNaxhaF5rzU/5BymjGjVr8inWHPIDgCeBrZUqwQcfwOmnQ+PGcMMNYC+XGrSaUjIuJLdl6De4Y+nSpQBMnDiRBQsWsHHjxii3fqtWrSIWzqeffgrA2LFjadOmTdTczrA0btyY77//PvLcrrjiClq0aMHIkSPZvn17YH+/H7/++isXXHBBoMvbzSWXXMLnn38elfbAAw9w0EEHxYRtBGsk6+jRo2nYsCENGjTg999/j9vPfcYZZ4SW2xBMvOlTDjNmzODdd9+NfPdbGCQVnP95PrjQ89UC95aVCQU+cODA0NfMtALPl8FsFUqBv/32jlls6bjQ/Qj6QZ0Y514F7o7k5Fd2kGX2E3AF0KdzZ3joIWjRAv78E4YMgQMPhA4dqDlsGE085w0aNIjPPvvMt0yHk046iYkTJyIinHPOOXHzOlx11VXsu+++1KpVi3r16rFx40Y2btzI4sWLI3lefvllrr76am6//XYAJkyYEHkBcNi6dSvXXHMN77//flR6SUkJN954Y1Taxo0befrppwHL8jr//POpX78+33zzTSiZ+/bty6hRozjqqKN8j2/fvp2NGzeyatUqPvAsBwtw000x6/JE0adPn8j+Xnvt5VuGwz8992ZIjTAKvHHjxpxwwgmR785LfDJeKT+cWAtlocATEe/+4x0LGq2dTwrcfX6fPn0ibUCYc4wFXg5wK1E/C/zYY4/1PS/M5P+gP7qzMo5XgZ933nmcffbZjBo1yrcMr4I78cQTo74v3rAB/vEP+P57mDoVLrwQataEr76i/n33sRj4EmsqWkuIOxfcff1u3bolzPfVV1/5ygwwdepU6tWrF5U2d+5cHn30UebOnRtJ83oDhg8fziOPPELPnj1ZvXp1JH3s2LFRYw1EJCb+9ejRowEYMmRIoMxvvfUW7dq147XXXou4/YOs9uOOO45atWqFWlYyEVWA5sDxwCXA/cBrwAxgjQgkuQqdwZ8wCjyIP//8k1SXMoUdCrwsXOiJyEbfdaZItw88FbLlQjd94DnAXTn8ftCqVavyt7/9LSbd/YaearhVrwKvUqUKo0ePjoqA5v5T1K1bNyq/t/9u5syZlutOBDp1gueeg2XL2DxqFGOAjUBHrKloc7CC0j+DNfE+KBhtokE9zkCUeMs3jh8/PtTo3mnTpkV9Ly4u9j3mjZalqoFdBE7/8+rVq7nvvvtYunRp5JmefvrpzJw5k969e0f99t26dYuJVpfIU+FGgD2BvwHnAYOBZ4GPsULnbgbmAx8Cw4AbsH6DQ4G6quC6b0PqpKPA69atS/36qQeAzKQL3b2udSrEc6En82zy0QLPh0Fs+eI6d0j/lbGAcP+IQW/LPXv2jAy6cgjjQg+iefPmQLQC97qEUy17+fLl0XMXa9RgYt26nIMVAKYnVtz1HlhxbC+yN7Bc8VPsbSrwo11eENu3b6d9+/aR+wniscceCyW7O4AMRL9cOR6PVatW8cwzz4QqDyzFO3HiRJ544gnGjRvHzTffTIMGDZgxY0ZUPvfLwsSJExk5ciQDBgwILLch0BTYx/PZFNgbiOeALQUWYwXm8W7/W7YM0lAchh2ko8DTxVHgmbDA33nnHZo1a5by+Zl2oWeSTPaBh5WvvA9iq1AKPJEFDpZyPeCAA+jdu3fCvEF07tyZKVOmcOedd9KoUSMgWoG3a9cuqfK8NG/enAULFjB48GCmTJnCtGnTmDVrFhdeeGFkUNQm4HV7AzgYS5F3w7LM97c3Z3z5ZmDOzJnMAmbb23ys4PUKzJ8/n1mzZmVsWti2bdv44IMP6N69O2vWrIms3AY7gtT07duX7777LqlyvV0Ay5Ytixn57SBAA+Cpiy7ioJ9/plPjxlBczAtYLzx7AU2AROPEl2FZ24vszdlfgKW8A/0RKSzMY0if6667joYNG2asvEz2gTvdQ4cccghnn302TZp4R7PEJ1MWuEMmLfA6depE9p2xQdnGzwJv2bJl2gGU8sWFXqEUeBgLvEqVKlGjpMMO5rrzzjv58MMPGTx4sO8a4W4F7vSLe/nvf//LKaecktDqXLBgAUAkstANN9wQWXLQ3dfdqFGjiLXpKOUHsH70NkBne+uAZUkeZm9uNmNZi9V69+YhLIW+1LOtjSttMD169GDKlCl07tw5Kt1xm7tHDIehFlYo2rrAzlhdBbthKendPFsDLMs68qvcf3+knL6eclcC1Q88kPd++CGioHtccgk3Pv00i7Felhy6d+8ed9CaITskY4GHDT0alkz2gYsIU6dO5YADDmCXXXZJ6fxUjgXlzaSiuu666xg8eDBASgGM3LKEXZXST4Enil/h4Df117jQc0gYC9yL0587cuRI+vXrFxiOr3nz5ixbtizwBw6jwDt37syKFSuS/pO41wt2M27cOF9rfzvWIKoZWAHowVJ6B2Mp9jZYA9+aYym6lgDffUfspCmLv7CU+Br709lfh7Voi9/2F5YF/FrnzjjDuMTeGr7wAqt/+IG7sOa9e7caQG1b5jquz1QGdCzHikdfHPD5G7AeWPLxx5zlWuzgiKOPZp7PKNhu3brRpUuXwClK3pCShsyQDy70TLlpO3XqlPK5qVrg3sFz2RgM5+6KDGoDwxL2BSBVF/qWLVsKwu1eYRV42Ldlpz/qggsu4Lzzzot7XrwKEkaBxyvjqquuYuTIkQwcOJDhw4cnEhsgqVHUa4HJ9uamNpYibw40A/bw2Wqzw7LNCFOnwtSpDE7ytA1YLw3rsO5nGZaCdm/utD+xXibC4LaGqlevzllnnRU1Xeyxxx5j1apVXHHFFVFekGbNmvHLL79EvtesWTOja7kbLPJBgWfCAk8Xp43z62N2h4H24p1Kl2+WppvTTz89dACkVAexBU0tzLeX79z/48oQvzV8g/jmm2948cUXoyypdCpoWAUexKGHHsqGDRuoUaMG3333HV9++WXCc/bee++YtG7durF48WJ+tIO+JGI98K29BVGVHW7ruq79OlgDvNxbw7p12bx2LVWx+tbdG/ZnKbDFs53bvz9PjhjBFmCrCJurVOGIE09k5JtvstaWM/7K5+nhrtC33npr1P/n7LPP5sorr4x8dzd+Q4YMiSw/WaNGDUaPHs1JJ53E9ddfn0VpKx65VODOfyHd+eSZwLl/rwI/7LDD4k6HDQpMla7CatGiRdSCSZkgGZnMILZyRDIu9LZt29K2bduMXTtdBQ47Bn507tw5oQL3m2o1YMAAHn/8cT744IO4YWCrVauW1CCPv9hh1bpp0qQJU6dO5Z577uGRJ58EYK9atViyNvle88efe47nRXjl+ecZM3o0vXv3RlW5I4l5s3797WFxKwbvtDP34BwvZ5xxBn/88Qd169Zl8+bN1KtXj5UrV6Y9XcgQTS4V+NVXX83y5ct9I/OVNUEu9ERKz/vyUa9ePS6++GIuvvjiUGGgg3jppZdo165dRn4XRxknM1e+du3arFmzJu359Q755pmoUPPA3WTqBw1LJhS4g597zFnMwcHPff7ss89SvXr1hJ6ETLyt9urVi3feeYe99tqLJ554IpIedgEJLyLC8OHD+fnnnyMzBLyVKVHZfn2LJ5xwQsJK+e9//ztGFjdB/YcODRs2pHr16pEAN7vsskuZ//8M2aNmzZo8/PDDZTayOh7Of8/7kpkIr3Xu1LfDDvMOa02OsCGnw+AYFcmUOXXqVB566KG86N7IBhWqFSmrAPqJrp2uq83vbbpx48aRuOuJSPRnTtdtNnnyZMaOHUvr1q1jjiWrwE877TTuvvtuwHqxcMezd9Lc+37LRjq4FWuLFi2YO3cu7777btQKY166d+/OP//5z6g077S0RArckH2cRj2eN6QiENQHnqhOZ1LR+pGJvmNnKd9k2s8WLVrkhWckW1QoBZ7LN+Swaw+H4YgjjohJq1SpUky0NzfuN+l0VsC64oorqFatGh988AFXX321b54uXboEnp/oOTjx0h1efvllbrnllsD8gwYNAnYsDnPBBRf45nMU/fz583nqqaf48ssvadGiBUDUGt9ApM8aohuLIUOGcPzxx0fFCICy9+YYYunVqxd333039913X65FySlBfeDJutAzLU8mcCzwfBhrkC+D2bLa8ohIDxH5UUTmi0jMChBi8ah9fLaIHJpNeapXr87XX3/N7Nmzs3kZX1q2bMlxxx0X10IMy2mnnUa7du1o3rw5F110ETVr1mTw4MFxLWu35eq3DGZYunXrxpYtW+jWrRtDhw5N+vxEFvh+++0X9T2RZXDnnXcybty4SEx5v5eY+vXrs3DhQsCa7nfppZdGhap1K/A333wzalqee8T4oEGD+PDDD2Nk8nY5lHeFnm/1Gqzf4JZbbkm7e6rQSdUCL4Tnlg8KPN+8a1nrGBCRSsATWOs4FANfi8jbqjrXla0nsJ+9dQCesj+zRvv27bNZfCBFRUVMnDgxI2WJCNOnT498dwK/hJ3ilsgCj1fZw7rpg0hkgXtjUidShlWrVuWUU06J+u5m1KhRnH766XFfWtwyOZb8mDFj+Mc//hG1kIqXoUOHMnTo0JjVyfKtkmeSfK3XBot488Dj4V17IR/JBwWeb2TTVDgcmK+qv6jqX8BorCWt3ZwKjFKLacDOIrKHtyBDOMIq8HgVwLv2tZeWLVtGfe/du3dU7OZEyiuRBb7PPvtE9p0wtKny1ltvcf755yf0ONxxxx3Uq1ePRx55JJLWu3dviouL44a9vfrqq1m4cGF0PPryj6nXeUyqLvRCmBWRyiC2co+zwlSmN6xFl551fT8feNyT5x2gi+v7x0B7n7IGAtOB6U2aNFGDP++8844C+tRTT0XSbrrpJgX022+/jaRt27ZNGzRooO3atdMjjjhCa9Soofvvv782aNBAt23bpmPGjFFAR44cqf/6178iU7VPP/103+uWlJToSy+9pIC+/PLLvnleeeUVBfTVV1/VM888M2oK+MKFC7Vdu3Zar1493bp1q954440K6OzZs5N+Blu2bNFGjRrpUUcdldR5JSUlSV8riOLiYgX0vPPOS7ssYLpmqY6msmWyXqup26EZMWKEnnPOOVFpV1xxhT744INRacuXL9c2bdroTz/9pEcddZSOHz9eO3bsqFOnTlVV1ccff1z79++vqqpXXnmlXnbZZdquXTtdvnx54LWHDh2qAwcODDz+yCOPRI63bds2Uq8feOAB3bp1q3bq1Ek///xzVVW9/PLL9aGHHkr+AahVr9q0aaPFxcUpnZ8JZsyYoe3atdONGzemXVYm6rZoljrjReQsoLuqXmR/Px84XFWvcuV5F7hXVb+wv38M3KCqM/zKBGjfvr263ceGaLZu3RpjYfulbdu2jaKiIoqKiti2bRuVK1empKQk0ofsPmfr1q1UqVIFVY07xczvOkHH169fH3F3V6tWjdLS0sDrJ8tff/1FlSpVcurK3rp1K1WrVk1bBhGZoaq56ffxIVv1GkzdNlQsMlG3szk5rhhwz7dphLUWRrJ5DEngp/T80tyDvRxF6u5vdp8TVpEmyhcvFrLzMpHsNf2IF3GqrCjH/XSmXhsMeUI2+8C/BvYTkX1EpCpwDvC2J8/bQF971GpHYK2qLs2iTAaDIT1MvTYY8oSsWeCqul1ErgQ+ACoBz6vq9yJyqX18GDABOAFr6elN7Fie2mAw5CGmXhsM+UNW48up6gSsyuxOG+baV+CKbMpgMBgyi6nXBkN+UL4jThgMBoPBUE7J2ij0bCEiy4HFSZ5WH4hdnis/KSRZobDkLURZ91bVjC21ns+Yup1XGFmzR8bqdsEp8FQQken5NBUnHoUkKxSWvEbW8kchPScja3YoJFkhs/IaF7rBYDAYDAWIUeAGg8FgMBQgFUWBD8+1AElQSLJCYclrZC1/FNJzMrJmh0KSFTIob4XoAzcYDAaDobxRUSxwg8FgMBjKFUaBGwwGg8FQgBSkAheR50VkmYjMcaUNEZEfRGS2iLwpIju7jt0sIvNF5EcR6e5Kbyci39nHHpUsLV/lJ6/r2CARURGpnw/yBskqIlfZ8nwvIg/kq6wi0lZEponItyIyXUQOzxNZG4vIJBGZZz/Dq+30XURkooj8bH/Wywd5c0Uh1e1Cqtfx5DV1O21Zc1e3012PNBcbcCRwKDDHldYNqGzv3w/cb+8fBMwCqgH7AAuASvaxr4BOgADvAT3LSl47vTFWTOnFQP18kDfg2R4DfARUs783yGNZP3SuhRWP+9M8kXUP4FB7vzbwky3TA8BNdvpN+fS/zcVWSHW7kOp1nGdr6nb6suasbhekBa6qnwOrPGkfqup2++s0rCUMAU4FRqvqVlVdiLXAwuEisgdQR1W/VOvJjQJOKyt5bR4GbgDcIwlzKm+ArJcB96nqVjvPsjyWVYE69n5ddixjmWtZl6rqTHt/PTAP2MuW6wU72wuua+f8f5sLCqluF1K9jiOvqdvpy5qzul2QCjwEF2K9vYD1IH9zHSu20/ay973pZYKInAIsUdVZnkP5KO/+wBEi8j8R+UxEDrPT81HWa4AhIvIb8CBws52eN7KKSFPgEOB/QEO1l9q0Pxvkm7x5Rl7X7QKr12DqdkYp67pd7hS4iAwGtgMvO0k+2TROetYRkRrAYOBWv8M+aTmVF2vVunpAR+B64L9230w+ynoZcK2qNgauBZ6z0/NCVhGpBbwOXKOq6+Jl9UnL9bPNKfletwuwXoOp2xkjF3W7XClwEbkAOAk4z3ZBgPUW09iVrRGW66WYHa44d3pZ0Byr72OWiCyyrz1TRHYnP+UtBt5Qi6+AUqyA/Pko6wXAG/b+a4Az0CXnsopIFawK/rKqOjL+abvOsD8dF2bO5c0nCqRuF1q9BlO3M0LO6nYmO/PLcgOaEj3AoQcwF9jNk68l0QMGfmHHgIGvsd48nQEDJ5SVvJ5ji9gx2CXn8vo820uBO+39/bHcP5Knss4Djrb3jwVm5MNztcseBQz1pA8heqDLA/kgby63QqrbhVSvA56tqdvpy5mzup2TCpqBB/YqsBTYhvXWMgBrIMBvwLf2NsyVfzDWSL8fcY3qA9oDc+xjj2NHpisLeT3HIxU91/IGPNuqwEv2tWcCXfNY1i7ADLuC/A9olyeydsFyh812/UdPAHYFPgZ+tj93yQd5c7UVUt0upHod59maup2+rDmr2yaUqsFgMBgMBUi56gM3GAwGg6GiYBS4wWAwGAwFiFHgBoPBYDAUIEaBGwwGg8FQgBgFbjAYDAZDAWIUeAVHLL4QkZ6utN4i8n4u5TIYDKlj6nXFwEwjMyAirbAiGx0CVMKax9hDVRekUFYlVS3JrIQGgyFZTL0u/xgFbgDAXgd4I1DT/twbaI0VK/l2VR1nB+p/0c4DcKWqThWRo4HbsAIvtFXVg8pWeoPB4Iep1+Ubo8ANAIhITaxITH8B7wDfq+pLIrIz1hq1h2BFGypV1S0ish/wqqq2tyv6u0ArtZbHMxgMeYCp1+WbyrkWwJAfqOpGERkDbAB6AyeLyCD7cHWgCVZg/cdFpC1QghU72eErU8kNhvzC1OvyjVHgBjel9iZAL1X90X1QRG4H/gTaYA2A3OI6vLGMZDQYDMlh6nU5xYxCN/jxAXCVvS4wInKInV4XWKqqpcD5WANjDAZDYWDqdTnDKHCDH/8GqgCzRWSO/R3gSeACEZmG5WYzb+cGQ+Fg6nU5wwxiMxgMBoOhADEWuMFgMBgMBYhR4AaDwWAwFCBGgRsMBoPBUIAYBW4wGAwGQwFiFLjBYDAYDAWIUeAGg8FgMBQgRoEbDAaDwVCA/D/i7reKRc8YvAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABa+klEQVR4nO2dZ7gURdaA38MNoARBUFBQMICYRa+gophdggHDquCi7prDmuPqp4iriItr3NU1iwEFV5RVXHFNgAgKCiZEMIKIKEiWcO8934/uHmp6umd60p2Ze+t9nnlmpmNVd1WdOqdOnRJVxWKxWCwWS2nRqNAJsFgsFovFkj5WgFssFovFUoJYAW6xWCwWSwliBbjFYrFYLCWIFeAWi8VisZQgVoBbLBaLxVKCWAFuqVNEpK2ITBCRFSJyh4j8RUQeLnS6UiEij4vIX93fB4jI7EKnyVI/EBEVke0LnY4gRGSwiDyV63NF5CARmZ9d6nKLiGwtIitFpCxkf8bPIuBaOXnnVoC7iMhAEZnmvsAfReRVEdnfd8zp7oM/0bf9IHf7C77tu7vb33b/by4iI0VkgYgsE5F3RaRHQDq+E5FVIvKiiGxq7DtRRCaLyGrvmiXI2cAvQAtVvVxVb1XVMwFEpJP7vMrDTs5lJcoUVZ2oqjsUMg0NBVsvE/JTVEKvPqGq36tqM1WtKXRaomIFOCAilwF3AbcCbYGtgX8Cx/gOPQ1Y4n77+RnYT0Ra+47/0vjfDPgA2AvYFHgCeEVEmrnp2Bn4FzDITcdqNx0eS9x03pZmFjMmmTDNkI7A52ojCFlSYOtl+uShvpYcYRp0vURVG/QH2ARYCfw+xXEdgVrgeKAaaGvsOwiYDzwAXOBuK3O33QC8neS6y4G93N+3As8Y+7YD1gHNfeecmeyaxnHHADPce3wF9Ha3fwscZhw3GHjK/d0JUOAM4HtgAvBf4ELftWcCx7m/uwKv4zRks4ETQ9LzOLDezdNK4DDfvb93773S/ezrO7+3e+56d/9Md/uWwFj3/nOBs5I8k77A58AK4AfgCt87/AuOheBb4BRf2v9qHmvs+xa4AvgYWAY8BzQx9h/pvoelwGRgt0KX+2L/UL/r5ZXAj8AC4E9umd/e3dcYGO7WhZ/ctG8ENAV+c/Pq1Y8t3frzPPCUm+Yz3Wf3iHuPH4C/AmXu9U8HJrn3+BX4BuhjpG0b4B23frwO3IdbP939+7hleClOG3BQ1HN9zyC0vgF7u3kvN44/HpgRcq3HgfuBccAqnHZlS+DfOB24b4CLjOO7A9Pc5/UT8Hd3eyf3XZSnyg++NsDd9i1uu+re4z33Of3onltpHBt759l8rAYO+wJNgDEpjjsVmKaq/wZmAacEHDPCPQ7gd8BnOJU0EBHZA6jEEToAO+NUCgBU9SuchqJLqkwEXLu7m54rgZZAL5wCFpUDgR1x8vEMMMC49k44DecrItIUp3A/A2zuHvdPV2uJQ1VPB54GblfHVPU/3yG93O+W7v73fOf/F6cxfc7dv7u7ayROY7AlcAJwq4gcGpKvR4BzVLU5sAvwprGvHdAGaI+jpT0oIlFN5SfidDC2AXbDaSgRkT2BR4FzgNY4mtxYEWkc8boNlfpaL3vjdPYOBzrjCBuTYe519wC2xymLN6jqKqAPsMAt+81U1cvDMThCvCVO/XoCpzOzPdANOAJHsHv0wOlotwFuBx4REXH3PQNMd/fdjGHVEJH2wCs4HYJN3Xz8W0Q2S3VuCIH1TVU/ABa7z8jjD8CTSa41ELgFaI7TwfgPzjtrDxwKXCIiv3OPvRu4W1Vb4HTGRoVcM938mNQAl7rn7uum4fw0zo+EFeBOo/qLqlanOO5UnBeK+53wMlV1MrCp2+ifitNwBCIiLXAK5E2quszd3AxHgzNZhlMo0+UM4FFVfV1Va1X1B1X9Io3zB6vqKlX9DacR3UNEOrr7TgFeUNW1ONrlt6r6mKpWq+qHOD3fEzJIc9qIyFbA/sDVqrpGVWcAD+OYO4NYD+wkIi1U9Vc3vSb/p6prVfUdnMbqxMRLBHKPqi5Q1SU4jcce7vazgH+p6lRVrVHVJ4C1OJqMJZz6Wi9PBB5T1U9doTzYuLfglJdLVXWJqq7A6bCenOKa76nqi6paC7TAEfSXuPV3EXCn7xrfqepD6oz1PgFsAbQVka1xtF+vDkzAKcsefwDGqeo4t015HUeT7Rvh3DDC6tsT7v1w/Q08RSKMl1T1XfcZ7ApspqpDVHWdqn4NPGQ8g/XA9iLSRlVXquoU/8WyyA8AqjpdVae4beK3OB33A6OeHxUrwJ2eXpsUjlM9cTSrZ91NzwC7uj11P08CFwIHE6I9iMhGOIVhiqoONXatxKmAJi1wTDjpshWO2TxT5nk/3IbkFTZUgJNxevrgaOI9RGSp98ER8O2yuHc6bAl4jZ3Hdzg97yCOxzGjfyci74jIvsa+X91G1bzOlhHTsdD4vRqn0Qfn+Vzuez5bpXHdhkp9rZdbYtQtnDLmsRmwMTDdKCv/dbcnw7xeR6AC+NG4xr9wrGMesbKqqqvdn83ctAXVAfPav/eV5f1xOgCpzg0iWX17CjjK9UM4EZioqj8muZb/GWzpS+dfcPwXwFFuugBfiMgHInJkwPUyyU8MEekiIi+LyEIRWY7TEWsT9fyoNHiHB5xxijVAfxwzVBCnAQLM2GBpApze/AzfsU/imN5GqOpq3/G4ptMXccamzvGd+xmwu3HstjhjYl+SPvNwzENBrMJpKDyChK3fyWwkcKOITMAZk3vLuM87qno42RPFsc1/zAIc7aq5IcS3xnm+iSc75rljRKQCp0EfhSNQAVqJSFOj0m4NfJpOBgKYB9yiqrdkeZ2GRn2tlz+yobyBU8Y8fsEZ595ZVYPKb1j9MLfPw7HwtIlgvQhKW1Ad8K4/D3hSVc/yn+ha55KdG0RofVPVH0TkPeBYHGva/SnS7n8G36hq58ADVecAA0SkEXAc8LzPyRFSP4u4NtR1nDM7WvcDHwEDVHWFiFxCHqySDV4Dd81kNwD/EJH+IrKxiFSISB8RuV1EmuD0AM/GMYt6nz8Dp/g1BFX9BsdUcp3/Xq7QeB6nkp7qmntMnsbpdR7gji0PwTFVr3DPL3PTUw40EpEm7jWDeAT4o4gcKiKNRKS9iHR1980ATnbzWUW0gjUOp2c7BGcM2kv7y0AXERnkXq9CRPYWkR0jXNPPzzhOOtsmOeYnoJNb+VDVeThjXkPd57EbTg/7af+JIlIpIqeIyCaquh7HicU/ZeQm97gDcIYHRmeQD5OHgHNFpIc4NBWRfiKSifm1wVCP6+Uo4HQR2UlENgZuNNJYi1Ne7hSRzd1rt5cNY7c/Aa1FZJMkz+1HYDxwh4i0cOv+diKS0nyrqt/hmMS9OrA/cJRxiKcV/87LszhT2zpEODeMZPVtBHAVjkk8lS+EyfvAchG5WkQ2ctO6i4jsDSAifxCRzdznvdQ9J64diJCfL4Embl2uAK7H6dR5NMdpX1a67e55aaQ/OloEHqfF8MEx+07D6VktxDEZ74djLv4RqPAd3wSnx3wkAR6JxnExz1ScBkRxTKwrjc8BxvEDcTxQVwEvAZsa+053zzc/jyfJ07E4ntErcLSP37nbtwWmuvd+BbiHRC/08oDrPeLu29u3fQf3Oj/jmD7fBPYISdPjuN7c7v/BxHu5DnGvsxTYJ+D81jhetL8CH7rbOuB0JJbgDBucG3LvShyT5K84lesDYH9330E4jnDXue/1e2BQULr975skXv3u/97uvZa6ZWk0Pg9m+2lQ9fIaNy9BXuhNcMytX7tldBbxHtSPunVsKRu80J/yXX8THA1wPs5Y/UfAyUZaJ/mON++/LTDRzX+QF3oPHM/sJTj19BVg6yjn+u55EEnqm3vMxu4zeCJFGXkco01xt22JYzVciFPfp7DBQ/wpYJGbzs+A/u72TsR7oad6FqfjlMFFOA593xr36AV84Z47EaddmxT0zLP5iHsxi6VBIyIH4VTODgVOisVicRGRr3BmjfhnrFiwJnSLxWKxFCEicjyOpvpmqmMbKtaJzWKxWCxFhTghaXfCMav7fRIsLtaEbrFYLBZLCWJN6BaLxWKxlCD1yoTepk0b7dSpU6GTYbHklenTp/+iqqmCe5Q0ti5bGgLZ1uV6JcA7derEtGnTCp0MiyWviEjkiFCliq3LloZAtnXZmtAtFovFYilB8ibAReRREVkkIoGhKN0IPstEZIb7ucHY11tEZovIXBG5Jl9ptFgsFoulVMmnBv44TgSqZExU1T3czxCIxZT9B86KOjvhxKzdKY/ptFgsFoul5MibAFdn+bUlGZzaHZirql+r6jqclYaOyWniLBaLxWIpcQo9Br6viMwUkVdFZGd3W3vil4abT/jSkIjI2SIyTUSm/fzzz/lMq8USicWLF7Pvvvvy+OOPFzopFoslSyZPnsyIEaFLyBeUQgrwD4GOqro7cC/OUn7gLA/oJzTajKo+qKpVqlq12Wb1emaNpUS4/fbbmTJlCn/84x8LnRSLxZIlPXv25LTTTit0MgIpmABX1eWqutL9PQ6oEJE2OBq3uV5uB5xVeyyWkmDNmjWFToLFYmkAFEyAi0g7ERH3d3c3LYtxll3sLCLbiEglzrKBYwuVToslXdxibbFYLHklb4FcRGQkzpqvbURkPs7C9RUAqvoAcAJwnohUA7/hrFerQLWIXAi8BpQBj6rqZ/lKp8VisVgspUjeBLiqDkix/z6cBdKD9o0DxuUjXRaLxWKx1AcK7YVusVgsFoslA6wAt1hyjB0Dt1gsdYEV4BZLjrEC3GKx1AVWgFssFovFUoJYAW6xWCwWSwliBbjFkmMakgldRLYSkbdEZJaIfCYiFwccE7ryoMViyZy8TSOzWCwNgmrgclX9UESaA9NF5HVV/dx33ERVPbIA6bNY6i1WA7dYLBmjqj+q6ofu7xXALJIsPmSxWHKHFeAWiyUniEgnoBswNWB30MqDFoslC6wJ3WLJMQ1pDNxDRJoB/wYuUdXlvt3eyoMrRaQvzsqDnQOucTZwNsDWW2+d3wRbLPUAq4FbLDmmoQlwEanAEd5Pq+oL/v1JVh70H2eXBrZY0sAKcIvFkjHuioKPALNU9e8hx4StPGixWLLAmtAtFks29AQGAZ+IyAx321+ArSHlyoMWiyUL8rmc6KPAkcAiVd0lYP8pwNXu35XAeao60933LbACqAGqVbUqX+m0WHJNQzKhq+okIGmGk608aLFYMiefJvTHgd5J9n8DHKiquwE3Aw/69h+sqntY4W2xWCyWQlOMRqN8rgc+wZ1WErZ/svF3CtAhX2mxWCwWiyUdVq9ezVNPPRX7r6pFZ10rFie2M4BXjf8KjBeR6e7UEoulJJg+fTrTp08vdDIsFkuWXHnllZxzzjmx/7W1tQVMTTAFd2ITkYNxBPj+xuaeqrpARDYHXheRL1R1Qsj5du6opShQVaqq7IiPxVIf+PHHH+P+F6MJvaAauIjsBjwMHKOqsWklqrrA/V4EjAG6h13Dzh21FAvV1dWFToLFYskRfo27GDXwgglwEdkaeAEYpKpfGtubuosiICJNgSOATwuTSoslOuvXry90EiwWS47wa9zFKMDzOY1sJHAQ0EZE5gM3AhUQmxt6A9Aa+KfrGOBNF2sLjHG3lQPPqOp/85VOiyVXWAFusdQf/AK7GE3o+fRCH5Bi/5nAmQHbvwZ2z1e6LJZ8YQW4xVJ/sCZ0i6UBYQV43TBp0iR69erFl19+mfrgPFFTU8PNN9/MnDlzCpYGS34pBRO6FeAWS46wArxuWLJkCRMnTmTlypUFS8OsWbO44YYb6NevX8HSYMkvpWBCtwLcYskRVoDXDV4wjUJqRDU1NQAsXLiwYGmw5BdrQrdYGhBWgNcNngAvpEbkCXBL/cWa0C2WBoQV4HVDoQW4qsai7RVbaE1L7rAmdIulAWEFeN3QqJHTbBWqQf373//O2WfbCM/1HWtCt1gaEFaA1w2FHgN/7733CnJfS91iNXCLpQHREAW4iGwlIm+JyCwR+UxELg44RkTkHhGZKyIfi8ieWd4TKFyDumrVqoS0WOofpaCBF3wxE4ulvrBu3bpCJ6EQVAOXq+qHbgjk6SLyuqp+bhzTB+jsfnoA97vfGVFoE/rq1asLcl9L3VIKAtxq4BZLjmiIGriq/qiqH7q/VwCzgPa+w44BRqjDFKCliGyR6T0LbUK3Arxh4HUUPawJ3WKpxzT0qUUi0gnoBkz17WoPzDP+zydRyKdzH6A4TOiW+otfgFsNvIHz888/88YbbzT4hr6+Uow99LpCRJoB/wYuUdXl/t0BpyQ8LBE5W0Smici0n3/+Odm9nAsU6Hn/9ttvBbmvpW6xAtwSR9++fTnssMN4+OGHC50USx5oqAJcRCpwhPfTqvpCwCHzga2M/x2ABf6DVPVBVa1S1arNNtss9H6FHgM3h0qsE1v9xZrQLXFMmzYNgKlT/RZGS32gGCt4vhFHgj0CzFLVv4ccNhY41fVG3wdYpqo/ZnFPoHAaUXV1deRjV69ezXHHHcf333+fxxRZ8kFZWVnc/walgYvIoyKySEQ+DdkfOrVERHqLyGx33zX5SqPFkkuKsYLXAT2BQcAhIjLD/fQVkXNF5Fz3mHHA18Bc4CHg/GxuWGgTejrOii+++CJjxozh6quvzuheVVVV7L333hmda8kOv3WlGOt3PqeRPQ7cB4wI2R84tUREyoB/AIfjmN4+EJGxvmkpFkvR0RA1cFWdRPAYt3mMAhfk6p6FFuCmBh7VhJ6pqd0L2Wqpexq0CV1VJwBLkhwSNrWkOzBXVb9W1XXAs+6xJc0111hDQn2nGCt4faSYxsBT4aXRjpWXHhtttFHc/2LUwAs5Bh42tSStKSdRPVcLiaoybNiw2H9bmesnVoDXDYUeA68rAf7222+nfY4ld5SXxxuoi7F+F1KAh00tiTTlJLYjoudqIbHzRhsGQQKlIQZ3yTeFNKHX1tam5cSWTRqffvrpjM+1ZI//3RVjXS6kAA+bWhJpykkpsXy5f1pscn777TcWLCjpLDdIghprO2c49xRSgP/vf/9L6/hsNPBmzZqlfY4ld/g75GvWrClQSsIppAAPm1ryAdBZRLYRkUrgZPfYkmXFihVx/1NV5m233Zb27dszb968pMcFUVNTw6RJk6zgKABWgNcNhRwDb9KkSVrHZyPAmzZtmvY5ltzhL1/FWJfzOY1sJPAesIOIzBeRM6JMLVHVauBC4DWcuMqjVPWzfKWzLvBr4KkanoULFwIwZcqUtO915513csABB3DKKaekfa4lO6wArxsKOQbuF6qpBLMV4KVLKQjwvE0jU9UBKfaHTi1R1XE4Ar5e4NfAo5JJpfeivI0ZMyaje1oyJ0igFGOlL3UKaULPNAyyNaGXHqUgwG0ktjog07GTTCr97NmzM7qXJXusBl43FFKAp+PABtmlsXHjxgBUVlZmfI36xsyZM/n444/r5F7+Dnkx1mUrwOsAvwDPd/AHS2GwArxuKOQYeLoaeDYmdO9e/vnI9Y3a2tpYmOlU7LHHHuy+++55TpGD1cAtAKxduzaj89Kt9MU4T7EhYQV43VDIMfB8CfC7776br7/+OvBe9b0jf9ttt7H33nvz3nvvFTopcZSCAI80Bi4imwFnAZ3Mc1T1T/lJVv2irgS4Xaa0sNgx8LqhkCb0J554IjAtYUQR4CtXruSSSy5h+PDhcTNPPHN9fRfgXrjYYps66y9fxTiNLKoT20vAROB/gJUSaVJXY+BWgBeWIIEycODAjJ0YLcEUUoA//vjjaR2fjgndm33iUQoa+MqVK4HsHO68jop/9a9C4++QL168uEApCSeqAN9YVTNbTsfCr7/+Gvc/qqBNt+Km62BjyS1BAsVr4Cy5wxsDL8bY1GEkq8tePqqrq1HV2LGloIE3b94cyK4z5bWH/tClhcafp9tuu40hQ4ZQUVFRoBQlEnUM/GUR6ZvXlNRj/vKXv8T9j9rwZCPADzzwwLTOtWRPffRBcIMpFRWFXo3MxL9ilZ8oaTTbg6VLl8Z+e4Jt8eLFfPDBB5klsAQoVg086N0Vm5KUtPSJyAoRWQ5cjCPEfxOR5cZ2SwbkQgNfsGABo0ePjqv85nVbtWqVeQItGVFKGmEQIvK2iHQy/nfHiYxYVBSTAE+ljUUxoZvlxhQQZn3u3r17pkkserx8loIAL7ZhyqQ2C1VtXlcJaUjkQoB369aNRYsW8cgjj/CnPzm+hGGV31I3FINAyZKhwH9F5B6cFQD7AH8sbJISKSYBnqqeRRHg5jVMf5li0va8lR7zsWBUsWrgQR3yYnonENGELiJvRNlmiUYuhOuiRYsAeOONDa/BLFylrg2WIsUgULJBVV8DzgXuBv4E9FXVD5OdIyKPisgiEfk0ZP9BIrJMRGa4nxuyTWcxjYF7swxMB6dJkyYhInz33Xdpa+CmAC+mTvjmm2/O5ptvnpdre+1WMbxPk1LQwFOZ0JuISGugjYi0EpFN3U8nYMs6SWE9wO+hGbWgphpfA3jmmWdiv83CVWwFrVD88MMPnHLKKXz00Ud5v1epC3AR+T/gXqAXMBh4W0T6pTjtcaB3imMmquoe7mdIDtIJFMfzXrlyJU8++SRt2rThww+dvo4Xzvitt96KHRdVgJtTTotN2/NYtmwZy5Yty9n1vLYqKL8///xzTPuva0p+DBw4B5gGdAU+BKa7n5eAf+Q3afUHvwCvCy/0YuvN5prLLruMiy66KOVxZ5xxBs888wx77bVX3tNUD555G6C7qr6nqv8CfgdckuwEVZ0ALKmDtMXIhwCvqqrKKMJXbW0tY8c6iyV++umncemrra2tNxq4SdeuXdlhhx1ydj1vpkZQfvOp+aei5DVwVb1bVbcBrlDVbYzP7qp6Xx2lseTxLwSfr0JgCvDx48fHAiTUN2pra7nzzju59957E56tn6+++gqoG20t6B5eHOtSEO6qejGAiOzg/v9OVQ/PwaX3FZGZIvKqiOwcdpCInC0i00RkWjKtKx+hVKdPn55xjG1vnr+XLrODkc0YeLEJC4+FCxfy008/5ex6n3zyCVB82m29GQMHfhCR43yfQ0UkaddIRHqLyGwRmSsi1wTsv9IYG/tURGpEZFN337ci8om7L1qg3CJkypQpCQEAkjXmZqOU7TzwE044Ia3z6wr/8qrpYpoZUzVyddkIBgkUVeWpp56iRYsWnHfeeTRv3pyJEyfWWZrSQUSOAmYA/3X/7yEiY7O87IdAR1XdHcc8/2LYgar6oKpWqWpVMmepQoZSDcIrz166ggR4MrIxodfU1CTEmShViq3DUvIauMEZwMPAKe7nIeAy4F0RGRR0goiU4ZjZ+wA7AQNEZCfzGFX9mzc2BlwLvKOqpjnuYHd/VRp5KirOO++8hG1BhWDJkiX8/PPPcYUmXQ3Df91iDOM5ZswYNtlkEwYPHpzxNdLx1K3LRj6swg8aNIhVq1bxwAMPsHLlSs4555w6S1OaDAa6A0sBVHUGsE02F1TV5aq60v09DqgQkTbZXLOYxsBhgwDPVAMPMqGrKo888kjKe1966aVsuummrF69OrPEFxHV1dWRw06PHDkyz6mpH2PgHrXAjqp6vKoejyOQ1wI9gLAIbd2Buar6taquA54FjklyjwFA/t9KHRO1F9e6dWs233xz1q1bl/Rcjy233OBD6BUqf+EqlgbO5LrrrgPgpptuyvga6QjwuuwxB3UWgrZ5Zv8PP/yQH374Ie/pSoNqVfV7J2VViESknbjSy51X3gjIKiZlsQlwT3h6AjzIxB9VgC9Z4ugvr732WiSh7Amyuor4l4tnfv3117PLLrskbB87dixNmjSJmdT9mM9pzJgxWacjFWZevShxNTU1bLnlllx55ZVFUf6iCvBOqmoOeiwCurjactggZHtgnvF/vrstARHZGMeT9d/GZgXGi8h0ETk7YjpLgurqat5//30mTZqUsM+siMm0x06dOsV+e73WUhDguaCUNPAgKioq+P7779lrr73o0KFDnlOVFp+KyECgTEQ6i8i9wORkJ4jISOA9YAcRmS8iZ4jIuSJyrnvICe51ZwL3ACdrlgWzkMuJBuGVR78JPRMntsmTnce9atWqwGMXL17MuHHjAMfP5ZdffgHqrqMaZWYMOJbHG2+8MXDfLbfcwmeffQbEv8P//Oc/ALz00kuB55n+LnVhcTDfizdHvbq6mh9//JHhw4ezxRZbcOWVV+Y9HcmIKsAnisjLInKaiJyG44U+QUSa4prbAggqsWE17ijgXZ/5vKeq7oljgr9ARHoF3iSi40sxsWrVKnr06MEBBxwQp3FDdE9yc59nKvdX4kI2cCtWrOCOO+5g/vz5cdtzkaZi1cCj5u2HH37g3HPPTX1g3fNnYGcc69pIYDmpvdAHqOoWqlqhqh1U9RFVfUBVH3D336eqO7uOr/uoatIOQRQKNQYe9n5//PFHIDdObJ5ADosLfuSRR9KvXz+WL1/O008/HXiNXJPuc37wwQd54IEHGDIk+YzByy+/PE4T99rCoFXJRo4cGVfXwzo4ucR836YA9/jpp58YPnx43tORjKgC/AKc+Z57AN2AEcAFqrpKVQ8OOWc+sJXxvwMQtl7cyfjM56q6wP1eBIzBMcknENXxpZgwnbi8BQw8zF5mMoEQNG7mF2aFdPK57LLLuOKKKzjkkEPitte1AC9GDXz58uW8+uqrsf/FMq6mqqtV9TpV3dutU9epatGtoVgoE7opJLfaaiuuuSbeLzfIhJ6uBj5v3jwmT54cGqLVm6pWW1sbF7ksn2UobFw6LE8vvvgikHqFsr///e98/vnnCffxr4sOTqfAbBvrWoB7HapiW1kwkgBXh+dV9VJVvcT9nar2fAB0FpFt3AURTgYSPFpFZBPgQByt3tvWVESae7+BI4DASE/FTpAAMRcsUNW4Y0yNPJnwCZp64l/qsJAC/O233wZgzpw5zJw5kyOPPDJOaGVDMgE+f/58BgwYEAuqUegx8CjMnDkzxylJDxH5j4iMDfsUNHEB1IUAnz59esICIqZT6GeffcbJJ58cmC7TQuCViagCfOrUqfTs2ZO//e1vgcd65X39+vVxWrrfkpdL0hWWc+fOBaBjx478+uuv9OjRgzlz5kQ+P2j55bfffrvOTehBAjyXAWxyQdRQqseJyBw3JGKkxUxUtRq4EHgNmAWMUtXPfONjAMcC41XVLCVtgUnuuNn7wCuq+t90MlYshHmcm/vNY6IKcHPf7NmzgQ0RoDyCGrja2lpOPPFEhg0bFiH1mWNWtmuvvZZXXnmFE088MSeNrhnhyj8P/KyzzuLZZ5+NBW4pRhO6HzMcboEYDtwBfAP8hjPL5CFgJUXYcc71GLhZRpYsWcLLL79MVVUV3bt3R1Vj+716e80119C8eXMaN24cmC5PWA8bNozLL7885f09LdTUur0OsB9PgK9bty5OA08VDyEbjj/++LSO94TcmjVrGDNmDO+//z633HJLbH/Lli2Tnu+1bV6AHA+zE5DP/PrTARtM6Kby5VFTU8M///lPRKTOrWlRTei3A0er6iaq2kJVm6tqi1Qnqeo4Ve2iqtup6i3uttj4mPv/cVU92Xfe1+6Y2e7u+Nkt/muny4oVK1i2bFmdm92CXqhfSIfNA42qgYdpcF5eTWeaKVOmMHr06ATzX64xK9i8eY4v48qVK3Py/L0xR0h8vt9//33c/2IT4EFOQGaHrhCo6juq+g7QTVVPUtX/uJ+BwP4FTVwAuR4Df+2112K/W7duzVFHHRX7P3jwYMrLy1m9enXsPXkrg/kFuF8DN/0/wpy/3n///ZgmH2UFQa8816UGPmHChLSO9+rkmjVrYu9o8uTJnHjiidTW1kYW4OYYPxAXPKYuBGWQBh4kwHv27MkFF1wA1H1djirAf1LVWXlNSZ5p06YNLVu2zGtBDyKKk1WYCT3qGPj8+fMD76Oq/Pbbb3Ts2JEBAwYATmGrC8x8mI1XpgJ86dKlsXPNa69evTrO5OZf0cgU4Pkev4qSN3+jDxscl4qAzURkW++PiGwDFJ1jSa5N6EGNsscDDzi6xooVK2IBmVq3bg2kFuAmYU5ppla58cYbp0yrl+f169fHlfW6bteSYQpwr/7NmTOH0aNHs3LlypQCPOy9mvU33xr4+vXr4zoM3vszh1EOP9wJUjh16tTYtrp2pI4qwKeJyHMiMsCMxpbXlOWYQq1glEoDrK2tzdqEfv/999O+feIMvdraWt577z3mz5/Pc889l06ys8asYF4401R8/fXXgR2RWbNm0apVK0466SQg3kpRVVVFt27dYvfzazrmczI1rXzg1/6DCBLgpkWhwFyKs4DJ2yLyNvAWKbzQC0GuBXiygEfeqn+wwTS8ySabANCkSZO4Y730BGnbYWPgZh422mijiClOFOC5FGivvfYaIhLoTBYFLy2mAPeora2NPb8wwto9U4DnWwM/55xz4iwongA3254TTzwx4bxMw/FmSlQB3gJYjeNMdpT7OTJficoHhRLg6Wrgb775Zux3WFoXLFgQ570J8Q2Nh6rGVey6NCen6zE6cOBAtttuO+6+++6EfV6witGjRzNx4sQEgffFF1/w7rvvAomNp5nnfAa7WLhwIffdl3x5gHvuuSeh0QeYOHFiUcxpdv1MOgMXu58d1FlitKjIZAz822+/5c4772Tu3Ll8+eWXcfuiOESJSEzQe5qyF+fewytrQcI6LK3m9qCy0a5du8Dz8mlCHzFiBADvvfdeRucHaeAe/nQH4bV7o0aNittuCvB8t2X+e3udJVOAb7rppgnnme13XRDVC/2PAZ8/5TtxuSTXAnzt2rU8/fTTKc2fUWJ1m2kygx+EpTVI2w7CL8Dr0sEiTCPwPFRNpkyZEhPSQYERzIrSq1cvxo8fn3CM1/M1Bfjs2bPjnmE+TehRet4DBw4M1MBXrFhRTDGW98KZC747cJKInFrg9CSQyRh47969ueyyy+jcuXPCSlpRQg7vtttuDBrkRI32NOWmTZvG1cVkHudhaU2lgffrF7yaa12Y0N9//31EJC5oVCq8NkdEqKmpSZiCNm7cuEhWySCuvfba2O9M27Jly5bFguV49wq6n/8dBgnwoA5XkCKVT6J6oXcRkTdE5FP3/24icn1+k5ZbvIY9Vw3lTTfdxB/+8Af69OmT9DjzfldfnRh11m9CN8lWK6utrY0r6HU5Tzwdk545XefYY49l8uTJcR71QT1dP56Z3hTg99xzT1we86mBR4lQVVZWFijAoTjmgovIkzge6fsDe7ufoluHIBMTerLpP1E0cHM81BO0IhIXEtgra0FlIayumduDxsCbN28e+22atP0C/Ouvv06YhZIp3nN96qmnAMd6EYX//ve/nHLKKcCGOeB+69vpp58e2N6ZjoP+ZxX0PDOtL8cddxw9e/aMvfN27dqxzTaJ4f799/Sb0EeNGhUowOt6DDy5LWMDDwFXAv8CUNWPReQZ4K/5Sliu8Qp7roSWF/Zv2rTkC6W1bds29lJvu+22hOlbfg3cJNu01tbWxglSv1Bdv359qEDJhnS1gW+++Sb2W1VjjnbdunVjr732Cqwofry8mZ0B7x155FOAR1k5rry8PDQvxSDAcYT1ThFiPBSUTAR4sveT7qI/pqZsCtFMTOhmXfGuu9FGG8XSZFoL9thjj9jv9evXxwkZzwv6+OOPj+TNngwvrel6VJvKjFeeg/xOgsr6KaecEquv/mdVUVGRoMlnWl+8+BBr1qxh4403DhW4/nfoF+DmWhQmCxcuzChdmRJ1DHxjVX3ft60oWpyo5NqEHlWT93qiDz74YOh18iXA/SZ0vwCPuvJPujz22GNpHW+mw2xMTzjhBB555JFIz7qmpiah4nvT1zzyKSSjCPBkGvhxxx0XyQkuz3wKBA+6FhFeXfY6oA899FDkc0y6devGWWedxe23357W/c1OmHndTEzoZnn3BLh57OGHHx7zdjaHgNatWxe6fG0x4OUlaBw9qD6blgb/swqKSpdpXfY6XKmUDH958ZvQwzrj33zzTZ0uUBRVgP8iItvhxjIXkROAonGdjUKhBLjXwzvwwAMD96drQk+nglZXV8c1EP4IR/maepLuOJCZDjO93377LWeeeWakylpbWxsYwckkF566X375Jb169eKdd96J2x7VhB7mwPP666/HxlgLSBvgcxF5rRQisa1cuZJ169Zx2WWXRT7HZMaMGRmZnc13HVWA+50z77zzTs4888y4uhIkwMvKyhLCEYNTloPajbD2bdy4cXU6XdHv4Gfy/vt+XTBRgJvtnDdtz2TdunWROm5+PEGcyuqSSgMvKytLEOBeKO+6nAueTiz0fwFdReQHnKklRbkaQxi5FuB+ofLpp5+y/fbbM3r0aHr27Mkll1wCbJjj26ZN8BLI6Wrg6WrNZq/dP9aXSwF+0kknceyxx6KqKaeJ+EkVIjFKZ6m2tjZlpcyk175+/Xr22WcfrrjiCgBOO+00Jk6cyEEHHRR3XFQTethSibsCR02ZAj17QuHM6YOB/sCtOJHZvE9R4T1rr6yICL/88kssBncQUVfRSpeoJnSTZcuWcdlll/HII49w6623xrZ7Y+A1NTWxa5SXlwdqoOvXrw8sz0HbvvzyS/r168dFF10UIUe50eJTeZr78Qtws86//vrrgeecfXb6i1R66fJ39q+66qq4/6nGwIM0cG/ooi6ixHlE9UL/WlUPwwnq0FVV98cJgVoy5NqJzR8gZODAgXz11VeceOKJTJ48mbvvvhtVTZg7esMNN8RdJ8wL0tvnJ90YwJdeemnouYsXL86JWVlVGTVqFC+++CJLly4NXYghjFRTzqJq4I888kjk+0RlwoQJTJ06lTvucORYNk4qjRo1inNU2hG4Efgc+Bi4Yt06mDwZ0ox8lSu8iGz+T0ESkwRTA/f+9+/fn2OPPZZffvmFxYsXx8IL+8/xSCc2dzL8GnhNTU1omGKvHIdNq/QEgrlQSVlZWaw++ed9RxXg5rhvEBdffHHMYQ3IKGaEX+in2674BbhXV4cOHcr2228fet61117LihUrePTRRyN1PEwBbsab98eej6KB+4fDPAFel/4saXVL1Vl9zFPpUtutioh8mtBbtGgRqFl99NFHgFMxvcrn7+n5Y6GbmAJ37dq1TJ8+PWH+dxC///3vU14PnKkxu+66a8rrpcJM/4477sj5558f+dzZs2fH5cmLdmXy5JNPprxObW1twrP1k4kA91dks/yYDUaqjqHXAHQGrsMR2J/jqLw7Ar/geoi+8QaEDLfkC29tg4BPyjUPCoFXl00B7s1CWL9+Pbvtthtdu3YNPMcj3XHvVGkBpwwkswJ4nfmw6YxBsbfT1cCDyrhXTseMGRMT4qNGjWL06NGAM1tj0KBB9O/fP2MFx2/NS7eumQLc9N2pqKhIatG47bbb2GeffTjjjDN4/vnnU97He65r1qxJaC9uvPHG2LtJNY0syITuCfBZs2bx66+/pkxLLsjGrpTaZlhE5NoL3b/OdRDeghqm1hUUaCQsTZ4ZHqBv375UVVVxwAEHpLzv0KFDA7cHae9ffPFFyuulwqys5nSbVLz99tt07dqVGTNmJD0/SizmKO811Rh5EH5ToHmff/7zn7HfyXrd2wBXq0K3bkxatIi/4pjMfwUewYmOtAXw54oKOOQQ8IWDzTfe2gYBn5RrHojIoyKyyJtiGrBfROQeEZkrIh+LyJ7ZptdrXD1N1t/YBq0n7a932XpqB123trY26RCX16iHCXCzHgUJcNP7PR0N3Hw+t9xyC7/++isnnXRSQiSxl156KXLURD/ZDs/5NXDv/CjWPO+Zf/bZZymPDQqJ6jFkyJDYwkJRnNj80/68ELGnn346u+++e8q05IJsBHhxuDtGpFCR2CBegPtjdSczoZukivBjVtKwQp+vJfgyHfNJFbksGV26dIn7H+UZpjtdCOIF+JIlS/juu+9i/y+88MLY1Bd/w7kVcDkwFfga+GtNDcyYweryckYA/XCW3DsTeB1nSke644ZFwuNA7yT7++AYHjoDZwP3Z3vDVAI8CH+DHBbhLF38a3J786A9qqo2TKP3BPhpp50WeC2vHolIrCyISKw+r1y5MuYMm0yAn3DCCfTv3z+2zbQULVu2jOuvDw/hEUUxCcJft1IJ8I4dO9K1a1d23HFHxo8fH6fNmib0ZM5wHltssQUQzXnW1MCD8AR0qjHwsrKyhMA7ZjvvnwGTL5IK8GSmNSB4IlyRkksBnq7ASqWBT5o0Kes0mY1/WKFPR4B/9dVX3HvvvZGeV6ZjPlEDRASRzLQdxgsvvJB2xTIbv6CgPUcffTQLFiygurqarXGCiU8GvseJiNIdZ03OUWVl8OKLrP7mGz698krGAf5SlE4s7GJBVScAydxujwFGqMMUoKWIbJHNPYNM6EZ6Yr9Nc7C/vOTKgdOsz0HBYvbbb7/Yb0+ApxoGE5HYef6ZC9601HXr1oWa0P/973/z0ksvxbaZz6RVq1ZJ64op+NPB37YcfPDBSY9v3rw5s2bN4vPPP+fwww+Pez+1tbWxcfsoGng6bXtQRDUTr1ykGgMvLy9POCZKvIpck1SApzCtpVQXRKS3iMx2zWcJ61eKyEHuGuMz3M8NUc9Nl1wK8HQXuDdjLwdp4GeccUbWaTILei408O23356LLroo6ZieR6YaeC4tAlHfa7qrsZl5C5r+0glodMcd7H/FFXwH/B3YF2fhgNHACcDmwEk1NXDMMbTp0IHbb7+dl19+mZdffjnuWsmcdUqY9oDZa5rvbktARM4WkWkiMi2Zs2BFRQXNmjWLzZs3370ptH/77Tfuuusu5s6dm9BxTrcOh2FeN6gemJ3ppUuXhnZ2r7nmmjjfldGjRzNlyhSaN28eV5+bNm0au1cqE3pNTQ0rV65k+fLlced7nYAggsz7AwYMYPDgwXHb2rZtG1tWFRI18CFDhrDvvvuG3ico7WeddRaNGjVCVTnySGepjaCV4m677ba4/94QWzre82Ftliegw8bAvaWb/e04FKEAzwYRKQP+gWNC2wkYICI7BRw6UVX3cD9D0jw3Mrn0Qs+m8vsLRpRY6eYYcRi5FuAeQRV6xowZ/P73v49p0EGCLQq5nMZWW1sbC8d42GGHcfzxxwceN2/ePIYMGcLNN98cFwYzDH9FLwN64oQg/BD4Bmj397+z6Zw5rAJGAb/HEdonAv8Gggz3/fr1S4hzXSTR2HJNkH07sKVV1QdVtUpVq7w5tYEXFKFr164xc+/69etjjbdZnxYtWsSll17KIYcckjAH2l8XrrkmMx3BFOBB/huVlZW8/fbbgKOBewuF+Bk6dGjMq1lEaNasGT169ADi67NnzYsiwJcvX06bNm0477zz4vZ7nYAolJeX88wzzyTEQz/iiCOYOnUq1157LZWVlXHPs02bNuy9994JQ0IvvPBC7FkEDRc9+OCDDBo0KK5DFuQMFjQvHNKPkRGE1yaFmdD9/0eNGhUT5vVKgONYD+e6U9DWAc/imNPyfW4guXRiy2VIzmeffZZyoCvOEm/nAbcATwAvA7X774/suSdf4agx5udb4BMck+0Lq1czCrgP2Gj4cM4A+gLdcMZahcwE+Omnn8769euZM2cO+++/P2+++SYHHnggzz//PNtssw1Dhw7l6KOPzijv2QjwIBO6J2wvvfTSpGNnN954IzfccAODBw9O6S26fs0adgPOxymEPwOTcDzJu+GYx38+7DAmXnIJmwEnAc8DqwLSmIp6KsDn47gEeHQAEr3M0sQMbhK24p6nef70008JAtyvMWYypxjiNTHTqdGjoqIiNg6+dOnSuMWK/Jjj3iamMPGGWcIEuOkrs3Tp0gRT8fr16yM5hXp4z9PMZ6dOnWIe3I0aNaK2tjawbfELvZqamtg7CVuQybueR9CslLB10zPVwHfZZZfYb+95+dsPf1685/H73/8+9syDAu7km3x6zQSZznoEHLeviMzEqdRXqOpnaZyLiJyN4xzD1ltvHZqYbEzo1dXVcS8wXQEepxGvX08VsB+wD7DLvfcyHAgVN1OmEMmf0dQUb74Zf3yp9cCqoUM5APjB/cx3v9+7/XYuuu02Bl1zDRcFTMWaMGEChx12GACHHnpo3L6//OUvUVIXSDahXP0LnJieq5WVlZHnon/xxRcbTH2rV8Ps2fDpp/DJJzBzJodPmkRf3zmzgVeBccAE4NW//IX58+cnaNqNGjVKy+JTTwX4WOBCEXkWpw4vU9WsoziaAiBMgHsRsYI6iqYTk39+fhD7779/oK9KqgAxlZWVMc1s7dq19O/fP9R50xMKYeZbSK2Bmyt2BZmff/zxR956662kaTbxhKLX/rVt2zZu7QJP4AY5iPrNzDU1Ney5554J6TQREWpraznkkEN48803A1cnND3WTdKZUWO2Pea798qKf453mAYOzgqJqpqwTG1dkE8BHsV09iHQUVVXikhf4EUcb9W0zG7AgwBVVVWhXbBMBPjy5cv56KOP6NOnD/fccw9nnnkmS5YsCZ1nHcbOTZrAPffAK6/AxIl8EHDMN8AXOM5PzXbYgf/Nns3PwF/vvps/XnwxywFT3LXedFPef/ddqnbckebAkb16ccVZZ1G+eDGNfvqJx4YOZQuc6UntcWJktly2jP0I4OqrnTRdfTXcfjvavj2v4MTKXQ50fvJJrgBWuJ/1QE3AR3AKVJnvE7StDGi2fDlBvqDJ9FbFGce79LDDGDx5Mupu2/Xrr/ll8WK2BbYeP579Z8+mkbvP+5QBzYFNcBa43wTY5uKLnc7PvHkQ0NuvwHk377qf1wH/RJswh6J0+fzzz/nyyy/p1KlTJO/bYkBERgIHAW1EZD5ObJoKAFV9AKef0xeYi+Ma8Mdc3NfsoJmal+lX4O9smpgNeFBULb8mGNYhjCLAy8rKKCsrY926dUmXtI2igXuabpgANwmyLv3rX/+K/W7Tpk2cME6GOa3NxBO4yTTwzp07M2fOHHr06EH79u2Tasrecy8vL2efffZh2223jdt/0kknsfnmmweeO2nSJNasWRPJlG124EwBHqaB+zsjQWPgQb4K+SafAjyl6UxVlxu/x4nIP0WkTZRz0yVdAb58+fK4kKBnnXUWS5YsCVwSNIhtgFOAk4GdV6yAiy+O7ZuNY/aeDMwAZuGYXD2evuEGFjzxBOPHj+fAtWuZEXD96ooKGnftijf5dqt27aj8wx9i+88ZPjxOM2kMXHXKKbz19NN0wBHq3meHpk1puWoVWwIVixcjixfHa51PPEF8nKIckcG8bABWrYIhQ/iHuc1cj/tvf6MLcFaUaxmrl1FRAdttB7vuCrvsArvswos//sixF16Y9BJr165NOf82KjvssAOffPJJnFmvmFHVASn2K04o5pziFyTe+PPll18e6XyzAV+3bl1Co9+kSZM4oRTWoQpqyE288yorK1m3bl3czIuXXnqJY47ZMDIYRYA3atSI8vLymADfZZdd+PTTwCn4gRq4H3/AmzC8tPk7Ml7azGfldRy8c/r37x85cI7nxLZq1apAq8izzz7L3LlzQ8//5JNP6N69O6+++iq9eyfObvQ6D6bFwLzPt99+y8iRI1N2oIPG8M1tdRVONZ8C/AOgs4hsg2OpPRkYaB4gIu2An1RVRaQ7zpj8YmBpqnPTJV0ntqBKkUp4N8NJ5GkQp+kuF6HFCSfAkUfC735H1xRzUCsrK2M9uLDAKP6OSLJKD472/n15OUET1srXrqUaR/Mdeddd3H7JJbTHWZaqOXDWgAG8PHIkzd3/jUUQ1QSNupYN2ni7Lbfk+wULqMGZ41wDNCovpxpYW13NRs2asXzlSsy30euAA5gwcSIQbG7pXlXFfvvuC6qgysIFCxgzZgwCVJSXU1NdTSOg/zHH8P6UKfz0008ITqESN33L3c8yHGvCyRddxIF/+ANstRVsvjn4ntvyEKcjk4kTJwY25FHib48ePZobbriBWbNmxbaFxc23bCDbOfP+4Rt/g+2fJ5yNBu59r169Om4RHH8nLawz4N9eXV3N0KFDOeKII5J6lKcS4OksbhKmgXv5Nx17/ePm6UyP9DTwdevW0aJFcAyhrbbaiiZNmgTO5fbGo5999tlAAe7l2TzX1JYfe+wxHnvssVgQrjBSaeB1NRyWNwGuqtUiciHwGk77/qiqfiYi57r7H8CZZXOeiFTjOOue7PbYA8/NJj3pOrGl6lmbdMVxcjoNxzQLjkY9Bnga+KhVKxaOGhX5eo0bN46NwYQJcH9HxC/Ag8aXw5zYvMKmwF3PPsuHOGMbHtvstx9XjhwZ+79JixaBc149evbsyRtvvEEPn1YzecIENt54Y/bYYw9223ZbPja05r59+1LRrx+XuALcY8WKFbExr78PHMh+Rmz3dkCnV1+lb9++bFRRwW9uPna66ipuufJKJkeICle1224cuPfeofujONoNHz48cHsUDfyEE05gv/32ixvTDfOytWwgWwHub/z976pnz55MNMpi2P1SCXCvUa+srEwwn/s7BVE0cNP87PfN8ZNpOM/evXtz+eWXx5YxNdMWRYCb6YPMBXiYFty4cWN+++23wPqVrL6uX78+FuzFfP9BJnd/fvz3Ckqb+Wy8AF35WkTHI69XV9VxqtpFVbdT1VvcbQ+4whtVvU9Vd1bV3VV1H1WdnOzcbEjXhB7lwR8B/A/HBP5nHOE9EfgDzjSiQcB/gZo0X2JlZWWsgHjTLvyk0sCDiBKJLEjT+POf/xz3P1WFrKysjCvMHTt2ZNiwYeyzzz6h76G8vDywMTLTs88++yTs965n5m2TTTaJbGkJW+nIIxtTWFQTupnvli1bpr0YTEMkWwHuhcwMo23btgmObkGko4H765//PUdxYjPLdSoB/swzzyRNWxgPPPBAglDz0hBmQg/yFveEaSoHQRNvTD2ZAE+Gp7gEjbObFgnz3QZp+qkclYPqtj+9//nPf7Ja/CgK+e0eFBG5EuCNcOb5TscxDxyKo20/AOwO9MLRurMJUVJZWRnTwMNCG6bjjOdVuldffTXlsamE87HHHsvChQuTHlNZWRn3/I4++miuuuoqRCR0KKOioiJQcJWXlzNlyhRGjBgRGBgi6D3tvPPOcddP5lDy3HPP8dJLLzF48ODASp/NlMFMBHiuYnTXd/IddrZr1640btyYU089FYhu3vbjN6GbZKKBm/XeL8D/+Md4/0Avmlm6lJeXh3ph+7d7gt60pnl4AjwXGviRRx4Z5y8AwZaqZDNbzNgQZmdqq622SjjWa3ej+jyB0xEYOXJkbOnh/v37M3ny5BRnZYcV4CEkmEyAM3C07VHAnsBC4GocR7DzcFaYygWmBh6GXwAm0wQ8LTIXQWy82N/J8K8gZDZUXjr9JszVq1fHNUYXXHABU6dOpaysjB49ejBo0KDAe/nz7a2EZr5n/9KSfvr3789NN93Ee++9l7Av1bl+zKmM5jPwLxxhYubb30BagsmHAP/rX//K2LFj+d///hebr33vvffSs2dPbr755sBzUmngXofM1MBvvfVW5s2bF1mAm52E2tra2JTOdevWBYZZzZby8vIEoeulwd8ubbPNNgCMHz8+4Tpeu5OuAFfVBAH+n//8JyEqZJB2m0yAm0MiZvtzxBFH0KFDh4TOc58+fdhhhx0ipx3g5JNPjsVmB8eSk08anACPKsRijhjA6cCXwMNAF5zFKc7D8TS/HcchKpeYY+BhZGJCj8IPP/yQdH/UtblNggS4Gd4RHOuAf26lGaoxDH8D6mkE5ntu3749v/vd71Jey5s3bOKF64yKOcXQfCdPPPFE6Dlmvq35PBr5EODXXXcdRx11FIceemjs+i1atGDSpEmhDXkqAe5NgzI18FatWtGhQ4fQqUqpNHBvetyqVavinoNnqm7atGnoXOkoBK205dUnf7u03XbbAU67cPbZZ7NixYqY4PbainRM6FHGwD2C2rxkJnQTU4B369aNefPm8QdjFo+XlqB7eRp2GGYdtgI8R6TSwP2CqXrdOn4PfAo8BnQEPsPxMu8CPNa4ceAc5iDSFa5hGri5ilEqJ7ZMibIkXxC33npr7HeQedzDvxCFidkYRZ1H6W9AvQbGn4YolgN/pV+4cGHoGPmOO+6YMj3mO0k2N9UK8PQplpXbghSCnj178thjj/HnP/85ToB7GniYOTqqCd0rS34BboZizSaOQJAA9wSjP83mPO1OnTrRrFmzhPxlYkJfv359Rnl48MEHY7/feOMN7r33XoCEYb8gfyC/bAjrnIUFofEw30nYnPVc0WAEuNe7rampiU0lWLZsGevWrWPevHm0aNHC6VmpwiuvsOsf/8goHA/zr3Ac03YDRuJMiercuXPe0tqmTZuEivLKK6/w2GOPxf6nI8CDnL9yjVmo/WkzK2Ky1YCCYj6nwl/JvHv5G42KioqYthAVr/IHMWPGjEBHKP+c3SiYFT5oLWtLIpl2dM4999ycpsNvxm3ZsiWTJk3i9NNP55577omVAVMDj+KsFra9trY21jasXLkyruyY1ievHnjm9nSoqKiILMCbNm0ay6O3HrZHJqvrZevEZnLYYYdx0UUXAcSZtQHGjh2bcHyymQlm5z5VvQ6yiuSLBiPAvYd++umns9lmmzF+/HhatmxJly5deOCBB/jtt9/44I47qN1vPzjySJrNmcN84BwcIf40zjxij6AGJEwrS5ctttgiofC2aNEirkClM5598skn5yRdUfFbM8yKnGyOcy418Mcee4xdd92VcePGxfY99NBDSa/l18CTOShVVlbSsWPHpOmJahUxz0nlIGhxSKWB77zzznH/hw0bxi233ML992e9HHkc++yzD23bto1pfrfcEjxhprKykjlz5gCpp6Ql08BbtGgRqoF7203tNRMBkkwDDxKq3trq/jF4Lz1ha28HETYGHkZYHXvyyScj3e/hhzcEnY4ySwdSOy6asiFXltEwGpwA97wLPWen7777jvYLFvAa8A7QaMoUfgYuw4np+iBOIBI/H330UcK2wYMHBy6/GfUlVlVVcfvttyMioea1MM0j2T3qOiynX4CbeWnRogVbbpm4lPzEiRMz6rmGCfCdd96Zjz/+OG4N74MPPphXXnkl9Frr16/nzTff5Oeff4606EOQx3gmAhwStRdLclIJcP8Y8FVXXZVV3P4wWrduzcKFCznrrLP4/vvv41b+MgmyQoWRTDO/7bbbYmV87dq1gSb06urq2P0yGWoImtK52267AQSu8ueZif0C/IgjjgBIWMksGd76AVEFeBQrl2ka96ffrMN+Rcdsx8x3kur91eXwTnEMJNUB/hctIuwE3Awc9/jjgOOMNhy4C2eVqXRp164dvXr1YtSoUbz77rvcfffdkc7beeedEyK/hTm4NG7cOHBucjJhUdfjqv5gCv7x365du8ZMxc8++ywnnXQSAFOmTIkdk60Gngn//ve/GTlyJO3ateOCCy6Ii5plcueddwLEhdr1MN9DOkEc0gkcZEndSOZjacfhw4cnDXEbNB3Jw6yDYWn3BKA/7KhZjpo1axZXxoM0cNjQfmRS94PK7U477cTq1asDzeLePGp/p/v888+nX79+aQtwr32LIsDLy8tTWiO94C2QaNY3n99RRx2FqjJo0CCeeuqp0BgQqep1Xc4kaXAaOMC2wPCffuIT4DhgXXk5t+F4lf+V6MLbm5e85ZZbMmzYMA444ADA8US+6667Iqft0UcfTdgWdR6mRzIB3qVLl8hpyQX+gu9vTM2hBtPJw1wDOlsNPIxkz2mkG21u4cKFcc4wfjyP9rKyMkaMGMFZZ22Iup5p5KV8R2yqb6QS4J6gPfTQQxkzZkxO7nn55ZdHms0QhGlGDuusVVRUoKoJS5uG+Xl417r88svZfvvtAwV4ttqgGY0tbEzb63j4/VpEJC3hDfF5jdIJi9LxNUPGhs1aMfF8hsKiuqW6p2d5qAsaTKtRVlbGlsD9OKt+HbNiBdXAvcAd553HtUC6gQdffPFF7r33XmbNmhULVBKEf/u0adMYMWJE7DtoulTYerT+AudNUzjooINC09mzZ8+Ueckl/oLvF6qmADejIJnj4/nSwKOatZPNJzUbxUGDBjF06NDA9KRjQrcCPD3Md/DSSy/F7ausrGTIkCF88cUXvP766/Tv37+OU5eIGUY1XaHqFximVl1WVsbw4cOZM2dOXNvgDfFFLVdBcQrWrFkTKfiTJ+TD1vhOB7PORPHgjtKhSua4GCTAvTZk3bp1gdPRUj3TsBju+aBhmNCXLuVPs2YxGmiC40U+unlzrlyxgu8AkngbJ2PzzTfnwhQrVQWx1157xYLlhwXN9wsi04RuMnPmTKZOncqRRx4ZeJ19992XsrIyysvL6yzAvqeBe1NCqqqq4vabFgFzrNIs+IXQwE2SzSP1V3rznpkKcGtCTw9TCPqf3bBhw2jVqlWkqHaXX355nTx700HKvN+AAQNSzln2l/GwvAeV/aihgHv37s0o33oNUU3BF198MX379s2Jpc/Ma7sUiz4BPP300ynbinfffTd0X1AeTWdAj3SGxvLtuGbSMLr9qvzu++9pAjwH7Axc0ry5I7zziBeG7//+7//SPjdMA/cXuLZt23L00UeHFqqgGMYDBjgrQHom/1zjaeALFy7k448/TljT1xwrNIW2iPDNN9/w1VdfRdYckpkXsyFZIIyoAjwdrdpq4OmRTICnoyENGzaMYcOG5TZxAZjjtGban3nmmdjQTRjJNPAwk7MX7MUvTGbOnMnChQsTHM5OP/30FDkIR0RyNkxn5sccUgsj3alq/ucRpIF7bUiYwlOXAjoVDaPVaNWKj84/n24465LOpm7m2w4dOpRvv/2WCy5IfznksDHwO+64AyByoxMUArFHjx7MmzcvtvRervCc9rzx/80224xdd9014TjT1OYXlJ06dUoQ+MnwN9apIlBFrXxff/117LfflOev9GaDbGpTDcWELiK9RWS2iMwVkWsC9h8kIstEZIb7uSHbe/rNyCapnqW5kl5dPXdTGKSr8fvTGJZ3s1x6Fjn/vXbbbTfatm0bV6Zbt25dNELJzGs+5lD7x6eDBLj3zFJZRoqBvJbeCBX7FBH52P1MFpHdjX3fisgnboWflm1adrj+emZke5E0EZHAucJRCNPA+/Tpw6pVq7jqqqsiXSdIAy8rK6NDhw5ZO7j4g9lcdNFFrFq1KmHRAT/Nmzfn8MMP58ADD8y6kvobtw4dOiQ9/sADD0z7Hv40+it9WMCHhmBCF5Ey4B9AH2AnYICI7BRw6ERV3cP9DMn2vsk08HSeZV0JrjANPAqpxsA9zE6/tz2sgxLkoNW1a9e00pUPzPeR6+mvjz/+OAMHDoyb8WMFeAgRK/Y3wIGquhvOjC6/6+/BboWvIktKbZGIsDFwSK9n6jUWpidmusIirBPSr1+/hG1R0/baa6/x1ltvZd2A+huooDnmJpmUA//0oKgNcDp5S5XuIqY7MFdVv1bVdcCzQPIeXA7IxoReCPKlgYeZ0MOivXmYAtwTVB988EHBAwmlGtPPBs/yZwb5CbqH90wbtAAnQsVW1cmq6jl/TwGSq09ZkElh6NOnT+hc4HwTpoGnS1BjEdTAJXMY+fbbb5kxY0bctnPPPTcrDV5EcqL9+Mecc7Uik0f37t0Twi4mS3emGviIESPo3bt33pcfzAPtgXnG//nuNj/7ishMEXlVRHYO2I+InC0i00RkWqp1lEtNgGejgWdiQk+lgffo0SP2u1evXoAzHSzfi2+kwhzTzrUGHnS9UtfA8+mFHlSxe4QcC85qneacBQXGi4gC/1LV8Im5EcgkoIEZhtNP0Fq0ucRfyXMpwIO2pQqG4De5qWrascXzgdlANW7cOOcm0eeff56WLVvy+OOPR3L0yVSAb7vttpGm7BQhQZn0t3wfAh1VdaWI9AVexAl0GH+SU8cfBKiqqkraeiYT4FG8l+uabDTwqE5sQc6UYWVw5MiRzJ49O6M1AvKJacFLR+kSkVjdGz16NIsWLUrwPTKv17FjR7777rvAe5TScFY+BXiUiu0cKHIwjgDf39jcU1UXiMjmwOsi8oWqJsS2FJGzgbMhfi3mgOPSSHry4CfXX3993Mpg+cAvUDMtVFEFeKp10oPmRZ955pksWrSIvn37ZpS2XBCmgeQK75pRNftMBXgJMx8wxxg6AHEeoqq63Pg9TkT+KSJtVPUXMiSZAA+bUllI2rVrx08//QQ4MczTwS+Mo5jQg8retGkbXImaNm3KnnvumVY66gJTgEfVwN999106dOgQG+o79NBDadWqVVIB/s477zB+/PhAL3bThJ6pFv7GG2/USUcgn7amlBUbQER2w1lq+xhVXextV9UF7vciYAyOST4BVX1QVatUtSrKtIMoXHDBBbz11lux/8cee2zc/ptvvpntt98+J/cKwz+FodAauH8cuFevXpSXl3PDDTckzPOuSzLtsUfFu6YXCzoV6axaVE/4AOgsItuISCXORI+4MQcRaSeuRBGR7jjtzuKEK6VBMgFejB2nV155JZbOdBb3gA35C3JINS1jqQR4WMyJYsKsz1HbvP322y9OeQvryJvX7tixY1wERRPvOZtKTbpl6pBDDsnIYTZd8qmBxyo28ANOxR5oHiAiWwMvAINU9Utje1OgkaqucH8fAWTtuZqKd999l99++y02h9JjxIgRKacn5Rp/ByHfGniYAPeC/3fs2JG3336bsrIyli5dWlCt28TUjKM64AwaNIgnn3wyFmgGYPz48YEhED0B3rlzZ956662U0aYamgauqtUiciHwGlAGPKqqn4nIue7+B4ATgPNEpBr4DThZsxxgTCbAi5H27duzbNkyHnzwQXr37p3WuV5HMEiAm0ImyIG0FMZxTcw6k2n9CevI+5cUDaOUOt55E+ARK/YNQGvgn+7LqnY9ztsCY9xt5cAzqvrffKUV4JFHHmG//fYL3NesWTMOOeSQnM+bTka7du34/PPP2Wknx3E/U+0yqBebjgB/+umnY7/rokeZLplMQ3v44Ye58MILeeGFF2Lz6c2YzyamGS9ZuFqPhibAwTGLA+N82x4wft8H3JfLeyabB16sNG3alEsvvTTt85IJcLO8mc/BK3ulJsCThTCOSpgAjqqElZITW167Gqo6TlW7qOp2qnqLu+0Br3Kr6pmq2sqYH1rlbv9aVXd3Pzt75+aKIFO7F8A+jFRjxPlgxx13ZNmyZSxZsiTjXmFUDTys4hT79LtMnktlZSXdu3ePJGCzEcINRYAXAvO9m+X5q6++KkRy8oonSII8ywvRLuWTXMYRv+KKK2K/u3XrFvk8U4B7v+tyidB0KB1bQQ4Jco5IpckVqqK0aNEiUkznMFJp4N7+VGPg9ZF85FlVOf/88+nSpUtROlPVR7zyvPHGG6cVxa9U8Norb1EWs62qbwI83eGFZPztb3+L/f7www8jn2c6sQ0cOJCLL76Y2267LWfpyiXF2a3IM0GmkVSrX5VqRQma7mYK8FatWpFqzm19xf9OX3/99ThTerIlRZNd8x//+AeqypIlS5gyZUrS1ZAs2VMqJvRM2WijjZg3b14s/GllZSV33303F198cUJbdtddd1FRUVGyJnQRYc6cOcyfP79gaTA18MrKylho6L/97W9MmjSpYOkKwgpwl1RB8UtNgI8dO5aHHnqI66+/HnAWTRg40PEhNBu8vffem3HjxrHJJpvExYguJbw5nenif6eHHXYYXbp04csvHX/KMC/VKIgIrVu35v3338/4GpZo1HcBDokhgsOihV188cWAEza0VNl+++0zmuUzefJk5syZE7ctk9Xmwo6/4oor4szyxUCDNKEHkWqeb6kJ8KOOOoqxY8fSsmVLIH4qnDmG9uijj3LGGWcwYULCFPuS4YsvvuDcc8/ljTfeSOs8fyx3IDYlLlVM9TBKTeOpDzQEAe7H07BLrV3KJ/vuuy+nnnpq3Lbhw4envdpcKYVStRo40eJQl/oYcdi0m7Zt2/Lwww8XIkk5o0mTJtx///1pn3fmmWfyyy+/xE2Ju++++9h+++0zXl6xFCp9fSNV3O8gnnjiidDlIkuBqELGlsf0CZoHXqw0SAHu56STTkp5TCm8zGSYQruU5jnmk4qKioS12lu1asVNN92U8TVtg1n3ZKKB+zW1UiOVBm5nQGROKVl0GmRLbjayzZs359Zbb015TqkL8LAlLy25xT7bumXXXXctqQY3V0R1UrPlMX1KyYTeIAW4yTHHHBMphra3/rY/vm4pUuqdkWKmFCp9fWHJkiVMnTq1QQrwVEKmVL3Qi4FSCuTS4E3oUU1NJ598MgcccEApr9scoxQKZqlin23d4cVH8K+U1xCwTmz5o5Q08AYpwDN9ManiYJcKqSp9WVlZyTvtWRoODdGnIx0Ne9y4cXzyySf5TlK9oZQ08AZV8r0IRvVBi86GVAXzX//6FwcffDBPPPFEHaWo/lAKld5S+nidllRObKpKnz59YkOAltSUUoewdFKaAyZMmEC/fv147rnnCp2UgpJKA2/dujVvvvlmyXvqFgJr0qx7PB+WYguykU+iCnBL5pRCZ7xBmdD32msvXn755bhtDbGgWyFjqU9UVFSURGObS6wXev5I1TkqJhqUBm7irbK19957FzgldU+qgmkrfebYZ2epC0pJyJQapaTU5VWAi0hvEZktInNF5JqA/SIi97j7PxaRPaOemy1ffPEFDz/8cINcaKJr165Z7beE0xAFeDb13JIZffr0oVOnTlxzTXDTePTRR3PggQcyZMiQOk5Z/aEU6nLeTOgiUgb8AzgcmA98ICJjVfVz47A+QGf30wO4H+gR8dys6NSpE2eccUauLlcSfPPNN3z33XfstNNOSffvuOOOdZyy+kMpVPpckk09r+u01idat27NN998E7q/RYsWvP3223WXoHpEKc2hz+cYeHdgrqp+DSAizwLHAGbFPgYYoc6TmiIiLUVkC6BThHMtadKpUyc6deqU8X5Lakqh0ueYjOu5qv5Y98m1WJJTSgI8nyb09sA84/98d1uUY6KcC4CInC0i00RkWkNd19pSeC688EKgfkTqS5Ns6nkcti5bioG2bdvSq1cvnnrqqUInJSX5FOBBngD+Lk3YMVHOdTaqPqiqVapatdlmm6WZRIslN9x7772sWbOmIfoPZFPP4zfYumwpAsrKynjnnXc49NBDC52UlOTThD4f2Mr43wFYEPGYygjnWixFhTezoYGRTT23WCxZkE8N/AOgs4hsIyKVwMnAWN8xY4FTXS/VfYBl7rhYlHMtFkvhyaaeWyyWLMibBq6q1SJyIfAaUAY8qqqfici57v4HgHFAX2AusBr4Y7Jz85VWi8WSGdnUc4vFkh1SCp52UamqqtJp06YVOhkWS14RkemqWlXodOQTW5ctDYFs63KDjcRmsVgsFkspU680cBH5Gfgu4uFtgF/ymJxiwOaxfuDPY0dVrddu2rYuJ9AQ8ggNI59mHrOqy/VKgKeDiEyr72ZIm8f6QUPIYzY0hOfTEPIIDSOfucyjNaFbLBaLxVKCWAFusVgsFksJ0pAF+IOFTkAdYPNYP2gIecyGhvB8GkIeoWHkM2d5bLBj4BaLxWKxlDINWQO3WCwWi6VksQLcYrFYLJYSpN4IcBF5VEQWicinxrZNReR1EZnjfrcy9l0rInNFZLaI/M7YvpeIfOLuu0e8xWGLgJA8/k1EvhCRj0VkjIi0NPaVXB4hOJ/GvitEREWkjbGt5PIZlkcR+bObj89E5HZje8nlMRtsfa4f9dnW5TzXZVWtFx+gF7An8Kmx7XbgGvf3NcAw9/dOwEygMbAN8BVQ5u57H9gXZwnEV4E+hc5bijweAZS7v4eVeh7D8ulu3won5vZ3QJtSzmfIuzwY+B/Q2P2/eSnnMQ/Px9bnepBHd7utyznIY73RwFV1ArDEt/kY4An39xNAf2P7s6q6VlW/wVlkobuIbAG0UNX31HmiI4xzCk5QHlV1vKpWu3+n4CzVCCWaRwh9lwB3AlcRv5Z0SeYzJI/nAbep6lr3mEXu9pLMYzbY+gzUg/ps63J+63K9EeAhtFV32UL3e3N3e3tgnnHcfHdbe/e3f3up8CecnhvUszyKyNHAD6o607erPuWzC3CAiEwVkXdEZG93e33KYzbY+ryBks2jrcu5y2PelhMtcoLGFjTJ9qJHRK4DqoGnvU0Bh5VkHkVkY+A6HPNiwu6AbSWZT5z62ArYB9gbGCUi21K/8pgP6t3zqa/12dbl3OaxvmvgP7mmCdxvz4wxH2cMxqMDsMDd3iFge1EjIqcBRwKnuOYXqF953A5nvGimiHyLk+YPRaQd9Suf84EX1OF9oBZn4YP6lMdssPV5A6WaR1uXc5jH+i7AxwKnub9PA14ytp8sIo1FZBugM/C+a5ZbISL7uB6ApxrnFCUi0hu4GjhaVVcbu+pNHlX1E1XdXFU7qWonnMK+p6oupB7lE3gROARARLoAlTirFtWnPGaDrc8lnkdbl3Ocx1x64xXyA4wEfgTW4xSKM4DWwBvAHPd7U+P463A8AGdjePsBVcCn7r77cKPVFcMnJI9zccZUZrifB0o5j2H59O3/FtdztVTzGfIuK4Gn3DR/CBxSynnMw/Ox9bke5NG339blLPJoQ6laLBaLxVKC1HcTusVisVgs9RIrwC0Wi8ViKUGsALdYLBaLpQSxAtxisVgslhLECnCLxWKxWEoQK8AtCYjDJBHpY2w7UUT+W8h0WSyW9LB1uX5jp5FZAhGRXYDRQDegDGdOam9V/SqDa5Wpak1uU2ixWKJg63L9xQpwSyjuGrargKbud0dgV5w4v4NV9SUR6QQ86R4DcKGqThaRg4AbcQIc7KGqO9Vt6i0Wi4ety/UTK8AtoYhIU5woQuuAl4HPVPUpEWmJs3ZtN5yA+7WqukZEOgMjVbXKrfSvALuos2yexWIpELYu108a6mpklgio6ioReQ5YCZwIHCUiV7i7mwBb4wTcv09E9gBqcJbR83jfVniLpfDYulw/sQLckopa9yPA8ao629wpIoOBn4DdcZwi1xi7V9VRGi0WS2psXa5nWC90S1ReA/7srpSDiHRzt28C/KiqtcAgHCcZi8VSvNi6XE+wAtwSlZuBCuBjEfnU/Q/wT+A0EZmCY3KzPXWLpbixdbmeYJ3YLBaLxWIpQawGbrFYLBZLCWIFuMVisVgsJYgV4BaLxWKxlCBWgFssFovFUoJYAW6xWCwWSwliBbjFYrFYLCWIFeAWi8VisZQg/w+2MW4o1qGw7QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAADQCAYAAAD4dzNkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABdC0lEQVR4nO2dd7gURfaw3wMIioIgqKsIAoJiBgVEYc2iYAAVXRPmwGdYdQ0grGFNiDmtumJ2EfSngiAouopiABUVUIxgJBkAQTAAl/P90d2Xnr7dPd0z3RPu1Ps888xMd3VVdXdVnQqnzhFVxWAwGAwGQ3lRp9gZMBgMBoPBEB8jwA0Gg8FgKEOMADcYDAaDoQwxAtxgMBgMhjLECHCDwWAwGMoQI8ANBoPBYChDjAA3pIqIbCoik0XkVxG5RUQGi8gDxc5XNkTkERG51v79VxH5vNh5MtQ+RERFpF2x8+GHiFwlIv9N+loR2VtE5uaXu2QRkVYislxE6gacz/lZ+MSV2DuvWAEuIseJyDT7pS0QkRdEpIcnzMn2wz7ac3xv+/iznuM728dfs/9vIiIjRWS+iCwVkbdEZDdX+M1EZKx9XkWktSe+o0XkbRH5zYmzDDkT+BlorKoXqer1qno6gIi0tu+7XtDFSVacXFHVN1R1m2LmoRIxdbTG/ZSU0KtNqOp3qrqBqlYVOy9xqEgBLiL/AG4Hrgc2BVoB9wB9PEFPAhbb315+AvYQkWae8F+4/m8AvAfsCmwEPAqMF5EN7PNrgBeBIwOyutjO5w0RbisRwoRpjmwJfKLGYpAhBqaOxieFult2BI2gay2qWlEfYENgOXBUlnBbYlXeI4HVwKauc3sDc4H7gHPsY3XtY1cAr4XEuwzY1XOsHqBA64BrTg+L0xWuDzDdTmMOcJB9/Btgf1e4q4D/2r9b22mfBnwHTMZqsM71xD0DOML+3QF4Gavx+hw4OiA/jwCrgJX2M9/fk/Z3dtrL7c/unusPsq9dZZ+fYR/fHBhrpz8bOCPkmfQGPgF+BeYBF3ve4WCsGYJvgOM9eb/WHdZ17hvgYmAmsBR4EljXdf4Q+z38ArwN7FTscl9OH2p3Hb0EWADMB06142xnn2sA3GzXix/svK8HrA/8bt+rU1c2t+vS08B/7Tyfbj+7B+005gHXAnXt+E8G3rTTWAJ8DfRy5a0N8LpdV14G7sauq/b5bnZ5/gWrPdg76rWeZxBY94Au9r3Xc4U/EpgeENcjwL3ABGAFVhuzOfAMVgfua+DvrvBdgWn28/oBuNU+3tp+F/Wy3Q+e9sA+9g12G2unMcV+Tgvsa+u7wla/83w/lTgC3x1YFxidJdyJwDRVfQb4FDjeJ8xjdjiAA4FZWBXTFxHpCNTHEjqJIiJd7fxcAjQB9sQqVFHZC9gW6z6eAI51xb0dVmM5XkTWxyrQTwCb2OHuEZHtvRGq6snACOBGtaan/ucJsqf93cQ+P8Vz/YtYI7An7fM726dGYjUAmwP9gOtFZL+A+3oQOEtVGwE7AK+6zv0FaA60wBqZ3S8iUafKj8bqYLQBdsJqHBGRXYCHgLOAZsB/gLEi0iBivIbaW0cPwur4HQC0xxI2boYBWwMdgXZY5fIKVV0B9ALm2/VgA1V17qEPlhBvglXXHsXqzLQDOgE9sQS7w25Yne7mwI3AgyIi9rkngPftc9fgmtUQkRbAeKwOwUb2fTwjIhtnuzYA37qnqu8Bi+xn5HAC8HhIXMcB1wGNsDoY47A6GC2A/YALRORAO+wdwB2q2hjYCngqIM649+OmCrjQvnZ3Ow9nx7g+MpUowJsBP6vq6izhTsR6idjfNV6gqr4NbGQ3+idiNRa+iEhjrEL4L1VdmkvGs3Aa8JCqvqyqa1R1nqp+FuP6q1R1har+jtVwdhSRLe1zxwPPquqfWKPLb1T1YVVdraofYPV2+yV5M0GISEugBzBQVf9Q1enAA0D/gEtWAduJSGNVXWLn183lqvqnqr6O1UAdXTMKX+5U1fmquhirwehoHz8D+I+qvqOqVar6KPAn1ujFEI3aWkePBh5W1Y9toXyVK23BKjsXqupiVf0Vq/N6TJY4p6jqGFVdAzTGEvQX2HX5R+A2TxzfqupwtdZ6HwU2AzYVkVZYo1+nPkzGKtcOJwATVHWC3b68jDWS7R3h2iCC6t6jdnqIyEasHVQE8ZyqvmU/gx2BjVX1alVdqapfAcNdz2AV0E5EmqvqclWd6o0sj/sBQFXfV9Wpdvv4DVYnfq+o18ehEgX4IqB5FsWp7lgjq1H2oSeAHe3euZfHgXOBfQgYMYjIelgFYKqqDs0966G0xJo2z5XvnR924zGetYX+GKzePVgj8d1E5BfngyXg/5JH2nHYHHAaOIdvsXrbfhyJNY3+rYi8LiK7u84tsRtSdzybR8zHQtfv37DWUsF6Phd5nk/LGPEaam8d3RxXPcMqbw4bAw2B913l5kX7eBju+LYE1gEWuOL4D9ZMmUN1uVXV3+yfG9h586sP7riP8pTrHlgdgGzX+hFW9/4LHGrrIRwNvKGqC0Li8j6DzT35HIylRwHWQGdr4DMReU9EDvGJL5f7qUZEthaR50VkoYgsw+qINY96fRwqUelhCvAH0Bdr6smPkwABpq+dXQKsHvx0T9jHsabbHlPV3zzhsadOx2CtR52VV87D+R5rSsiPFViNg4OfsPUqmY0ErhSRyVjrcJNc6byuqgeQP1EU27xh5mONqBq5hHgrrOdb82JrSq6PiKyD1Yg/hSVQAZqKyPquitoK+DjODfjwPXCdql6XZzyVTG2towtYW/bAKm8OP2Otc2+vqn5lOaiuuI9/jzXb0zzC7IVf3vzqgxP/98DjqnqG90J7pi7sWj8C656qzhORKcDhWDNr92bJu/cZfK2q7X0Dqn4JHCsidYAjgKc9So6Q/VlktKe24py7o3Uv8CFwrKr+KiIXkNIMZcWNwO2psSuAf4tIXxFpKCLriEgvEblRRNbF6vWdiTUt6nzOA473jgpU9Wus6ZEh3rRsofE0VsU80Z7i8YZZF0t5BaCB/d85V9f+Xw+oIyLr2nH68SBwiojsJyJ1RKSFiHSwz00HjrHvszPRCtMErN7s1Vhr0E7enwe2FpH+dnzriEgXEdk2QpxefsJSzGkbEuYHoLVd4VDV77HWuYbaz2MnrF71CO+FIlJfRI4XkQ1VdRWW4op3m8i/7HB/xVoe+L8c7sPNcGCAiOwmFuuLyMEi0ijPeCuGWlxHnwJOFpHtRKQhcKUrj2uwys5tIrKJHXcLWbt2+wPQTEQ2DIgbe5T6EnCLiDS224GtRCTr9K2qfos1Je7Uhx7Aoa4gzqj4QOeexdratkWEa4MIq3uPAZdiTYln04Vw8y6wTEQGish6dl53EJEuACJygohsbD/vX+xrMtqECPfzBbCuXa/XAf7J2vIB1lr8MmC53Qb/vxj5j0XFCXAAVb0V+AfWg/8Jq9d2LlYvvC9WZX5MVRc6HywBWRdLcckb35supRI3e2AVzJ7AL2LtZ11uF1iH37G0SgE+s/879Lf/3wv81f49POCe3gVOwVrzWoqlQemsYV+ONTpfAvyL8PUkJ74/gWexFG2ecB3/1b6fY7BGwwuxlG9iK2nZU3jXAW+JNd3lt07sVOpFIuKsXx+LpTU6H6tyX2mvyfnRH/jGnsoagL22ZrMQ65nMx+oADIipN1ADVZ2GtZZ5tx33bGwFN0N0amkdfQFry9mrWOXiVU+QgfbxqXZ5/R+wjX3tZ1izYl/ZdSVoSeZELCW8T7DK39NY09xROA5LyW0xVueiWl/A7jj3wZqOdt7HJayVIYHXBpCt7o3Gar9Ge6ayQ7HX9g/F6tB9jTWz8QCWdj5YZWOWiCzHUmg7RlX/8Ikq7FksxVJKewBr1mYFllKtw8X29b9ilYUno+Y/LqIaZRbTYKhdiMjeWNtCtihyVgwGgw8iMgdrB4l394rBpiJH4AaDwWAoXUTkSKw1Z+8shcFFJSqxGQwGg6FEEcsk7XZAfz+dBMNazBS6wWAwGAxliJlCNxgMBoOhDCm7KfTmzZtr69ati50Ng6GgvP/++z+rajajHmWNqduGSiSful12Arx169ZMmzat2NkwGAqKiES2BFWumLptqETyqdtmCt1gMBgMhjLECHCDwWAwGMoQI8ANBkMsbDOa74rIDBGZJSL/8gkjInKniMwWkZliuVk1GAwJUnZr4AaDoej8CeyrqsttW9BvisgLHteMvbB8XrfHMkl5r/1tMBgSomJG4AsWLGC33XZj1KhR2QMbDIZA1MKxDb6O/fEalOiDZatcbcHeRESi2uQ2RGTp0qUMGTKE1avjOh8z1AYqRoBffvnlvPvuuxx77LHFzorBUPbYXp6mAz8CL6vqO54gLcj00zyXYJ/thhwZNGgQ119/PU8+mZq/DEMJUzEC/Pfff88eyGAwREJVq1S1I7AF0FVEdvAEkZpX1fQPLSJnisg0EZn2008/pZDT2o3Trq1cubLIOTEUg4oR4AaDIXlU9RfgNWq68JwLtHT93wLLdaT3+vtVtbOqdt5441ptpyYV6tSxmvA1a4zJ8ErECHCDwRALEdlYRJrYv9fD8hnv9aM+FjjR1kbvBixV1QWFzWntxxHgxqdFZWK00A0GQ1w2Ax4VkbpYg4CnVPV5ERkAoKr3AROA3sBs4DfglGJltjYjYq1UmBF4ZVIxAtwp6AaDIT9UdSbQyef4fa7fCpxTyHxVIk67ZkbglYmZQjcYDIYS5OOPP84axgjwyqZiBLgp4AaDoVwYM2YMO+64IyNHjgwNZ5TYKpuKEeAGg8FQLsyaNQvIPgo3AryySU2Ai8hDIvKjiPiWQGMr2WAwGPyJOmNoptArmzRH4I9Qc2+oG7et5DOxbCUbDAaDwSab8q0R4JVNagJcVScDi0OCFNRWstFCNxgMtQ2zD7yyKeYaeGRbycbcosFgqCTiTqGbNfDKpJgCPJKtZDDmFg0GQ2XhCPBsM4dmBF7ZFFOAR7KVXCiqqqpMJTAUhaqqqmJnwVCiRF0DNyPwyqSYArxkbCX/+eefbL755vTq1asYyRsqmCuuuIJ69erx2WdeU+KGSibqYMKMwCubNLeRjQSmANuIyFwROU1EBjj2krFsJX+FZSt5OHB2WnnJxsyZM/nxxx+ZOHFisbKQKqtXr+aII47grrvuKnZWDB6uueYaAG666aYi58RQjpgReGWTmi10VT02y/mSsZVc2zXUX3zxRUaPHs3o0aM577zzip0dgw+1vQwacsNsIzOEYSyxlTlvv/121unXP//8s0C5MeSKEeCGXDACvLKpGG9ktZGffvqJ7t27A+EV2FknMxgM5UHcNXAzhV6ZmJa9jFmwIJrOnxndlT7l9I5EpKWITBKRT0Vkloic7xNmbxFZKiLT7c8VxchruRN1G5kR4JVJxQjwcmogk8aMwEufMiufq4GLVHVboBtwjohs5xPuDVXtaH+uTiszS5Ys4dVXX00r+rLgzjvvLHYWDEXAtOwVgBHgpU85CXBVXaCqH9i/fwU+JcCKYiE49NBD2W+//VixYkWxspA4UafQnZH3zz//bNbBK5CKadlrY+GOa27RYEgaEWkNdALe8Tm9u4jMEJEXRGT7gOvzNpP80UcfAdZ2ydpGnLq7cuXKFHNiKEUqRoCHUdsFnBmBlz7lWAZFZAPgGeACVV3mOf0BsKWq7gzcBYzxi8OYSfZn5syZkcK5O/HLly9PKzuGEsW07JRn4wlmBF7KxN26V27vSETWwRLeI1T1We95VV2mqsvt3xOAdUSkeYGzWbaMGTMGyK6c5m4DauMMhCGcihHg5dZAJokZgReWOXPmsO6663LGGWdEvqacyqdYmX0Q+FRVbw0I8xc7HCLSFautWVS4XNYOstnJdwtw9++LLrqIp59+mqVLl6aWN0PxqciWXVU58sgjueKKytjZYgR4YXnggQcyvmsh3YH+wL6ubWK9PaaS+wEfi8gM4E7gGK2Niigpk21UHSTAb731Vo466iiaNGnCuHHjUsufobhUhCGX4cOH89///rf6/0cffcSzzz7Ls88+y9VXp7a7JXXMFHppksvzLqd3pKpv4u8O2B3mbuDuwuSoOs1CJlcQ4gjwICZNmsShhx6aVJYMJUStH5qpKmeeeWbGsUo2elDJ9x6ViRMnpuYd7LXXXmP69Ok1jpeTAC81wp6dqjJ16tSyFe65jsDLgdmzZzNixIhiZ6OsqQgB7qVu3boZ/5csWVKo7CRK3L2iYBRdsvHpp59y0EEHse222yYe96JFi9hnn33o1KlTjXNGgOePX30YMWIEu+++O6NGjSpCjuLxySefsGrVqoxjkyZNCu10RxHgpSrYO3XqxAknnFDsbJQ1tV6A+xV+twBXVfbff/9CZqngGAEendmzZ+cdR5Aw/uWXX/KO2xCMn6D6/PPPAfjyyy8LnZ1YfP3112y//fZceumlGcdnzpzJ8OHDA6+LIpxLVYCbbW/5U+sFeLYReDlPKecyAs+m1VrppNnYrbPOOoHnzAg8f/zeXbk8159//hmAN954o8a5hQsXBl5XziNwP6644gr23HPP1OIv19nWIFIV4CJykIh8LiKzRWSQz/kNRWScba1ploicknQe/AS0Wyu7nAp3rpgReGEJEhpGgKdLOddlp03yu4d111038LpyXgP345prrvHtxCTBU089xUYbbcS7776bSvzFIDUBLiJ1gX8DvYDtgGN9HB6cA3xiW2vaG7hFROonmY9sU+jlPAL//fffI4UzI/DC4ieM16xZk+Fw4o8//sh6jSEe5SzAnPe/Zs0a3n777YxzUe+rNozA3agqAwYMYOrUqYnE98orrwDw4YcfJhJfKZDmCLwrMFtVv1LVlcAooI8njAKNbIMPGwCLsTwdJUZcAT5p0qSyGaUOGzYsUjj3PRrDDsXhueee44Ybbqj+f9NNNxUxN7WTMEFVqkLsrbfe4vrrr89wC/rcc89lhCnH+0qCP/74g//85z/ss88+icRXG59VmgK8BfC96/9canosuhvYFpgPfAScr6qJDomzjbC9wnrfffflsssuKwvHAFHtJbufwWGHHZZWdgw2frMc33//fcZ/76jCjMDzpxzXwHv06MGQIUMyBHi9epnmOcLaMPe52jgCT4NSLxNxSFOA+z0l7xs5EJgObA50BO4WkcY1IsrDY5FfIXAf8xPUN998M82bl77ZZu92uCDclfyTTz5JKzsGm6FDh9Y4tv7662f8j7r8YYhOuQoqyFwD99brqCPw2irAkxa45fo8/EhTgM8FWrr+b4E10nZzCvCsWswGvgY6eCPKx2NRthF40Jrwr7/+WvLrxbkIcENx8L4rrwCvTaOCYlHOU83uEXgcAR6FUr/3IEy7lZ00Bfh7QHsRaWMrph0DjPWE+Q7YD0BENgW2Ab5KMhN++z/dBTpMSJfiNPr999/PjTfeCETfs2wqQnTSauy876AUy1a5U45T6F7iCvDaPAJ36ky5vcNCkpoAV9XVwLnAROBT4ClVneVxeHANsIeIfAS8AgxU1Z+TzEfPnj398lb9O0yAR3UJ+eWXXzJy5MiCVJSzzjqLgQMHsnjx4ozjXs1VN0aAFx9v2VizZk1kHQZDNMpVUMHavPutgYfdV5Q18HIlrXarNnUIUnVmYvsBnuA5dp/r93ygpoRNkGzWr5IQ4FtvvTUAjRs35uCDD46ct3zw5q179+6BFTioIvzxxx/MmzePrbbaKvH8VSpR34GqsvPOOxciSxVDOQswd/nIdQSeT5hCMmvWLBo3rqHqVINSX8IsBWq9JTY/3AU6rJcXVYA7fPTRRznnKRvefMbpnQaF3XXXXWnXrh3vvPNOyVXycuWee+7xPe59vuX8vEWkpYhMEpFPbQNM5/uEERG50zbiNFNEdkk7X2msgV955ZW8+OKLuWYpMu7p4jgj8HI05LLDDjvQqlWrrOHMFHp2Kl6Ah/Xy4laItCrQlClTaNCgQYZN5N9++y3y9UEC3NFI79atG7169covkwYA7rjjDt/j2TpgZdZIrQYuUtVtgW7AOT5GmnoB7e3PmcC9aWdKVfnwww8REaZNmwbk/1yvvvrqgtQNt8a1dyCQ7xR6KQn2OKZMk55CL6XnkBQVKcDdhBltKZUXfvbZZ7N69eoMt6hxzAFGqQgTJ07MKW+GaPhNobu55ZZbCpmdvFDVBar6gf37VywdF6+Nhz7AY/YOk6lAExHZLOV8MX78eADGjBnDsmXLuOqqq9JMMjHco82HH34441xtmkKP4yworSn0Mussh1KRArzcRuB+8brtuWfDKLEVH+87+PXXX4uUk2QRkdZAJ+Adz6kohpzysvHgigPI3EO9evVqXn311eowpSTE/AibLr722mv57rvvQq+D8hiBx8G0W9mpSAHuJqzRKGUBHqcXWc4VoaqqihdeeCHDBOyff/7JhAkTqpcRvv7661At/Di4n/WMGTMSiRNqvoOgBrmcEJENgGeAC1R1mfe0zyU1CnI+Nh584qoW4N6O+apVq2LrtBSSbG3HZZddlvW6chDUfu1WNsXPpEbM5fB84lKRAtz9Ivfee+/iZSQilSzAb7/9dnr37p3hs/2CCy7g4IMP5vTTTwegbdu2dO/enW+++Sbv9BYtWlT9u2PHjrHt4gcpq9W2xkNE1sES3iNU9VmfIFEMOeXFd999h4hU7zTxCnD3M7/hhhtYd911ERGeeeaZJLORCE4djWsfoBL2gSdNPh2CESNGICIsW+btrxaHihfgSYTLNXw+xEmrnAW449jBUUoCePTRRwEYOXJkRtg5c+bkldbjjz9e3SlwiDvV7V3jO/98S0G7nN+BF9v50IPAp6p6a0CwscCJtjZ6N2Cpqi5IMh9+yl6OBrdXgLt55JFHksxGIjjlI6gMBwmd2lCugjotaa2B59NOOw6Jvv3226xhx44dm7rr0ooU4FEb+lIR4FFH4HH3gZcrad3P4MGDaxzzCvBHHnmEbbfd1ncK3O/YXXfdBdS6d9Ad6A/sKyLT7U9vj5GmCVhWFWcDw4Gzk86Etw5418CD6kMpWsHL1nYECfDaMAIfOHCg7/Ekp9A/++wzxo0bl3c8bn2LbPTp04fddtst7zTDSNWQS6lywQUXpBJvISuKnx10VQ30RV2u+D3ToPvJt6L7xev1233KKacAMGTIEB5//PGMc/369YsVd7miqm/iv8btDqPAOYXJkYXbDGkSBprS5Mcff8zwDJhr+agNSmxB9jOiPJNVq1YxY8YMOnfuHBpu2223rf49bNgwjjzySDbaaKN4GSWeAC8EFTkCj9oDL5WX5JcPrylVCC7wtUl4QHr34xdvUBnwExDvvfderLgN+RE2Ai9lAb58+XJuvvlm3nlnreJ+tvIRZQQeRKm0Y+B/H3733q5du+p3GNYxv+iii+jSpQuff/555DzMmTOnuiNe7lTkCLw2rIGfddZZkdMvZ+FR7BF4kCCIm1YpNaK1FVXN8OoVp/NVSDp06MC8efMyjmWro1HqdlCYUndd63fvc+bMiTSF7nSa/QY0Ycyfn58+ZanU50gCXEQ2Bs4AWruvUdVT08lWusQV4KtWrWKdddZJLN64RI139erVvvkslcKWFGndj19DklTnp5w7UaWK3wjcPcVZquXeK7whe6fCa17VwW8N3HvfaZW9l19+mXr16rHPPvtEvub777+vcSzuwMNRUKxXr16GBbs4LF++PFZ4h1IzAhN1Cv05YEPgf8B416csiVOxTz75ZOrXr8/ChQsTjTcNdtppJ9/j5Sw8CvlM/RrRfEfgpbZmVpsIE+DO/3IhmwAPGkBEuceo9f+PP/7IsLeQjZ49e7LvvvtGDg8wYMCAGseCtn8G5XuLLbagWbNmADkL8FxnYUqtPkcV4A1VdaCqPqWqzzifVHOWIlEf/s8//1y9ZenJJ59MM0uhRM1vkJnCqBW4VAplVLyVNo0p9Hyn650p3WJP21YC3tFoKZbnoPJ04IEHhl4XNAL3m0IPskWQja5du9KkSZNIYXPFz4Kk36gcguvMwoULq/dh56qpnkvZUFWmT5/ue/2qVasYNmxYDaXXtIkqwJ8Xkd6p5qSARH15butHUQx6pNFg3HnnnXz66aeRw/sV+qj5KsWReljeo5qTraqq4vLLL2fy5Mmh4dJYA3evyZYLIlK/2HmIgrdT7V4DT0KAp1GfTzzxxJyuizICDxLgUY0RpelN0cFv94zDE088kfE/inB27jWOaWl33HEIs9r50EMPMWjQIK6//vrY8eZD6F2LyK8isgw4H0uI/y4iy1zHS5ogazlRK6Z7X6/juSuMJCv8ihUruOOOO6oNgURl1apVNY5FLaylJGQWLlzImDFjQvMUtdKOHDmSa6+9lr322is0XBoj8KhTbsVaWxOR12x75s7/rkCwOn0J4ef0I8kpzjQE+IgRI3K6LqgjGWUEXiqzP6rK3LlzA89fe+21Gf+jtEe5jsBzaevq11/br/U+Y2dnU1xlunwJbQFVtZGqNra/66jqeq7/WT2yi8hBIvK57RN4UECYvW1DELNE5PVcb8SPY4891vd41IrpLhQPPfRQInmKyllnnZXTfnU/AV6OI/A2bdpw+OGHZ2y18RJ1Cj1ois5LnBF4VKKOwHv06JFXOnkwFHhRRM4WkeuA+4Cy3GMTxagJRG/sS2kK3lnz9eKXxyABntb9RBncALzxxhuh572KZVHqXq5r4H718ZBDDgltc4Omx99//33+/ve/A4U3EhRpCCMir0Q55jlfF/g3ll/g7YBjvT6DRaQJcA9wmKpuDxwVLdvRmDBhgu/xqAU57rRMkhUk1566XwEqxxF4lLWkqO8n6nvxazCSWgPPlof77rsvUnxJo6oTgQHAHcCpQG+1XYWWG+4R+OOPP563g5tSqg8NGjTwPR5lCr2qqop58+ZRp06dVAYiUduqbApyXgEeZwo9iTXw8ePHc8cddwRe49ZTcF9/8cUXV/9+7bXXYuUjX7JNoa8rIs2A5iLSVEQ2sj+tgc2zxN0VmK2qX6nqSmAUlo9gN8cBz6rqdwCq+mNOdxGTfAX49ddfT7t27WpMlyQpwON2HhzyEeClNOKIgohEGnVFuf9Ro0b5Pju3UF+xYkVG2lHzGCUPaSsPBSEilwN3AXsCVwGvicjBRclMnni10B0ztkGMHz+er776KjS+pMl1qSTOPnA/AT5p0iRgrR+BMF5++eVQo0Reoo463bOD7ulohyVLlmT8j1Jvo6yBf/HFFzWO5dI5mzlzZo10ARo1alT9+8svv4wdbz5kkxJnAdOADsAHwPv25zms0XUYUfwBbw00tdfh3hcRXw2PJHwGu8lVgDsWnIYMGcKcOXNqjJqSqvDz5s3Lufdf25TYwvjjjz8CDVm899579OvXj++//z7S/Qctt7jj/7//+7/q34VYcysQzYGuqjpFVf8DHAhcUNws5YaqRlbYUlUOOeQQ2rdvHximlN5ZUBmOMoW+Zs0a+vfvDxBpVqJnz5507do1ct6iWrZz3P8CNG3aNGv4KFPoUUbp22yzTY1jSXbOgnYIFILQlFX1DuAOETlPVcO7szWJ4g+4HrArsB+wHjBFRKaqakaXSVXvB+4H6Ny5c95PPpc1cIAzzjgjY60yLcWj8847L+dr/e6tHKfQo6Cq1a4kITP/TgP066+/sscee+ScRlAH4a233uKRRx7h5JNPBrJr8OZqKjNtVPV8EVlPRLZR1c9V9VvggKJkJk9UlVNPjWZb6vLLLwfC30saI/Bc48x3BO6wevXqyIap/Pjmm29Ys2YNbdu2zZo3L04nAqKV91LTQvdLN4m48iHqXc8TkSM8n/1EZJOQa6L4A54LvKiqK1T1Z2AysHPk3KeMt1A8/vjjGSZM/QxJJMGPP+a+klCbBbjf6Orcc8+t/u3XY58/f35e7+Wtt96q3s3gjueLL77glFNO4eOPPwaCjeisWLGCDz/80Hcaz00RtdAPBaYDL9r/O4rI2KJkJk+87/mkk07yDSciGdt93NeNHz++2q52KdWHKCPwqFrozvnJkyfz+uvx9IbbtGnDVlttlXEsl+W+KNf4PX+vd8Bc63aS77aYWv5Rn/xpwAPA8fZnOPAP4C0R6R9wzXtAexFpY+8rPQbLR7Cb54C/ikg9EWkI7AZE3/QcQpipvKQEbVoCfN1118352ihTakGUSoMVlF+/iuLWbPXLf506dfK6ryuuuILu3bsHnl+wILuL61122aXar3kQRTTReBWWvsovAKo6HWgTdoGIPCQiP4rIxwHn9xaRpbLW1egVyWbZH2+5CdLc9oZ17yc/5JBD6NChg298xSSOfke2feDO+b322ou9994777xFFeDuaflcBfgHH2TqVzr3EreOxw3v9SFfbiPwNcC2qnqkqh6JpVX+J5bA9XXmqqqrgXOBiVhC+SlVnSUun8Gq+ilWz38m8C7wgKr6NgpxWbRoUeC5qBUzmwEVbyEcNmxYpHizEaRxGoXaMAIPyoffvbmFepAAz7chdkbZ+XSOslFEAb5aVb3qwdlu6hHgoCxh3lDVjvbn6pxzF4Nc9z+7l2HclEp9CCPKCNy7FTPpjklUAb7jjjvGusZ5f4sXL65WlPO+K+cdxb2nuO/W673stttuq5HPYhBVgLdW1R9c/38EtlbVxUDNjcc2qjpBVbdW1a1U9Tr72H2qep8rzE2qup2q7qCqt+dwD7Ep9UY3zFpRNvIRMqUy4ojjFjWbAPdqqidNUo18EQX4xyJyHFBXRNqLyF1AqKaTqk4GCmuxIgJ+yltBuJ/30qVLWb58eY2RatD1c+fO5fzzzy9ow53PFLqXpDsmcXdkRL3Gnc+33noLgL59+2aEiXrPXvJtE9yzNt7n6d0NkSZRBfgbIvK8iJwkIidhTX1PFpH1safeyolCNLpVVVVcfPHFvPTSS7Hjzadw1YYRuJ8xGrDcInrPuRtRvwY13yn0bEybNi2ReIoowM8DtseaURsJLCMZLfTdRWSGiLwgItsHBUpyh4m37IfVI3cnedCgQTRq1KiGmdOg608++WTuvPNO3nzzzcD4V61axfXXX5+YK09VyzTsxIkTM8qz+7efrkZQXHG2iWWjEAI82xJCvgI5Hxvm3nankO5bowrwc7CmzToCnYDHgHNs5bPovuQKyLvvvht4rhAj8JEjR3LLLbdkdVLgR6UL8Kefftr3+L333sv999+fcawQU+hhONrM5Yqq/qaqQ1S1i6p2tn/n65HhA2BLVd0Za4/5mJD077fT7bzxxhvnlWjUEbiI+M5yjRw5MtL1zrapsGnghx56iCFDhnDdddeF5jkqqsro0aM56KCDuP322zOOO1x44YU1jvmxZs0axowZk0i+ID0ltmx1G9baJ49bx5csWYKIVL/LgQN9V4Ij4c1bIQV4pA1saj2dp+1PWXD00UcHnkuqQa9Tpw6zZs3yPZePw/ikBXiSSmyqyuzZs2nXrl2kXnRVVRVff/017dq1i5QHCNbCnzdvXg2HAkGjEYckBXhQPFH3HodR6BG4iIwjZK1bVQ/LNW5VXeb6PUFE7hGR5vZOk9SIM4UeRYBkU6YMi8PZ85yr32m/vDh+xL/++mvAUuB01xXHEEqUEXiSTjeiCnB3OK8BnWx+CILepWPdLdfBx4oVK2jQoEFkc8tunKlyb9pehdUVK1aw/vrr55S/bEQ1pXqEiHxpa5aWjTOTIJIcgQdZcoq6Ppa0YlS+I3Bnqi6IYcOGsfXWW2d4agvjpJNOon379jz++OORwkO4DoB3G0m2XnpVVVXqMwt/+9vf8rq+DVA3wCdyitwM3AJ8DfyOtbNkOLAcyEuRVET+InaPRCznKHWAYK3ShPBbi/RDVSPpmQSZxXTSCRNcTocszDRnHLz1UlXZc889MwYQUc32Jl0fogpwpwPih9+y2fvvv1/9O0qnpNA4aXrb+tNOOy3jv9PhSoOocx83Ytkr31BjODMpVZIU4N6RkzPyjlJJqqqq2HnnnWsoZrzwwgs55ykfAa6qHHTQQXTv3j3wGTkeg6Jq3Dt2ku+5555I4QH+8Y9/+B4XEX744YeMY9nWwH///fdEGqywjs2zzz6bU5x1gYuxpOX6550HBVzCUNXXVfV1oJOq/k1Vx9mf44BQzyoiMhKYAmwjInNF5DT37hKgH5Zy3AzgTuAYTbiFXbhwod89hf53E2Vk/Nhjj1X/dpvRdcpTPsqmcXHfi9+oD+Dbb7+tETYorlxNNfsRNa7nn38+8JzfLNYNN9xQ/fvrr7/mlVeC3W/kWrz8HL3cdNNNfPbZZ1mvda7J1r7ksy04G1Hf4g9qbfkqC/73v/+Fnk9TgDv2l6OMwL/66is++uijrHuE45BtRL/ZZpsFXjtv3jxeeuklpkyZktFgZYs/13z5EfbcPvzwwxoNr7vn7lQkt5CvW7duIu87iWlyN52xDCXcBDQEtEULKODamYuNRaTarJaItAFCF6NV9VhV3UxV11HVLVT1QffuElW9W1W3V9WdVbWbqubnVcQHv3Lsfc9BZSnMw10Qu+66a414o4zAk8J7b2HlMcoIPMn+VNBzUNXISwjZ6tf/+3//j/333z/wfK7347eUcOmll8byDphNgOezLTgbUQX4NBF5UkSOdVtjSy1XeXLAAeGWIJOaQqpTp06Nwhu1V+YlzXVad14aNw6eOHFc4kGm4f5s8UchaqMZpg06derUGo2y+96mTJkCwCWXXFJ9TEQS0RRPSoCvD9wKTMXSBv0aa0P17w88ACmtk2XhQiwHJq+JyGvAJMrYFrqbJIWoY50Nij8Ch8yOa6dOnULDeokqwL2zXUFMnz7d9/htt91Go0aNIukD5Vu/cm2XvglYuvIu1YWlWQ4CvDHwG9ATONT+HJJWptImKZ+tfiNwhygjcPe1r776aiJ5UlVmzJjB7NmzM475/fbiVogJsj7mLqyvvvpq4utpQSN/h7DnevfddwNkeIkTESZPnpx3vlatWpX3vfYGZmFJTLAWoXfAsnRURFvoLwLtgfPtzzZquRgtO5IW4NmU2Ar5zsJG4F675rmsF/utT0cVimPH+lvedfZKf/fdd1njCNp5EpV8p9C9uOt6kH39qAI8V7vzUYiqhX5K9lDlQyG2S8UV4GEKHnH49ddf2W233QD/Aha2xcHrHtXhl19+8XV3ud9++/Hwww9XO/RIAkcIBxHlubpnRZJqZFevXp21cxHEpljOth1Vt/eBM4APE8lZIuwKtMZqD3a2jd88Fn5J6RF1Cj1fnK1HYUIjbeEe5pozrhJbUF7jCJ527dplDBrc+YiyRj5gwICsYcLItU13OkJhOxgefvhh32uDlNi8RPG8litRtdC3FpFXHNvHIrKTiPwztVyVCeecc06gPfSkRvlx+fnnmjt13IUxbLuE33rV4MGDadq0aXUv21vQ4yjcRZkmGzduXOj5Yi1NPP3001l1K7zUAf4f8BmW8F6B5UBgN2oK7yI6M3kcazKgB9DF/nQuSmbyxPuuc+1wBcUHVr126nYhPZmlPQKPG+7OO+/M+D9nzhzmzp2bccytrZ+EG+gwcn3eUQR4tjTLwRb6cOAybLOpqjoTyzlJaVFVBQceyMXUdDyeFt7e5cqVK+nRowe33HJL1mvjWiaKgrcgXnnllfznP//JOBanwA0dOhSAf/3rX77x+zF+/Hi22267Gi42gyysufHaHPYSd2YjqYZ06NChoc4xvHTCUtO+B2gCjMcyd3Yb4HcHRbTE1hnorqpnq+p59ufvWa8qIkH6FN537TZ3mQRjxoyhQYMG1eumaQrwv/71rzXic8fprkvetfiktpE55kv9OP/882sca9myZcZ/tzvQa665JlKauZKvAPcj23OKOgJPk6gCvKGqek2bJauWmwSvvQYvvcRNwHfAK8ApWAv4aeFteF988cXQgh81nlzxFrqrr67pRyIXhREnf1G26hxyyCF8+umnGf5/IVpBb9iwYej5bJXq1FNPrXY+kiSrVq2K1Eg0Am7H0jDviuUv9wgshZFvQ64rpi104C/FSjwXgpQSkxz1+sXlnR0KK4vuc2GOlYKoVy9zddO7jcxdh4MUaYOI+pycHTW54p5CdysBRqV9+/ah593PeM6cObHjh/A2afXq1aHnS8HtbFQB/rOIbIVtuUlE+gHZ/SgWmh49YMwY/g9YCewLPAT8ADwFHAYkrU5wxRWZnhJz1aZMawTuR1R/4+64gqYNw9LzLiNEKejZwmTrBDz88MOBxnXyIUre+2FNl5+PVVFuAbYFRkeIv4gCvDnwiYhMFJGxzqdYmcmHJAX49OnTsyrFecuEY4vcey4XO9throp//vln3n577c489wh88uTJvnvk3cSxC5EP7hF4LnHtscceoefdbUGuxlIc63VB8Ye5C+7YsSPnnHNOUQV4JCU2LFvo9wMdRGQe1u6X41PLVa40aAB9+nA01qj7SOAEYG/gKPuzGEuY/xfL5VK+Vd7ZupQL7kqajzH9uJxwwgmBVqbcuO0lO/mLUxG9I4MoI/Ckpv+ixhcnnqC4tsEadTv+NacCA4AZMeIvogC/qlgJ50rQs0pSgEfRYXGXxXfeeYdu3boxevRo+vbtm3de/AT4BRdcAMATTzzBE088UX3OXc/22muvrHFHVZhNSoD/8ccfoYIwiGztRRRnJ9lwlvn8lveqqqpqLAt4yWagKsr7yIdII3BV/UpV98cy8NBBVXsAh6easzxZBjwM7Ae0Ai7BalA3wmpc3wS+Aq4FOhQwX1VVVdWFzV1JTz/99ETij1KQX3/99UhxffjhWlWrKJq3XryNUBQBnu8IPC38BPiGWKPsj7CE9xLgLGAP4glvKOo2stf9PkXJTASWL1/OOeec43suSQE+c+ZMJkyYkHEsbATu7IV2rvEqdMUlbATuJe5+9Gwj26A0zz777KzXuLfDOs9nn332yWlZK1tdj+LsJCp+yzJJtDWHHnpo3nGEEcuenlrex5wd7v72Ll2IyEEi8rmIzBaRQSHhuohIlT01nzjzsNRsOwI7AjcA32PtmxkCfIq1tedCrC0/aVFVVUWHDh3Yd999U0sjyekc93JAEtOAUSrErbfeGjlPuZCrZrLbolsd4EzgS6xKUBf4D9ZI/H7yn9UpBI4/A59PSfs58CpGuklSgDsmg8Nw1zXHWYXjxMSrpQ3xBEIcAZ6kWVQ33rbk3nvvzXpNnz59qn87ec51djGOAPfbQnjjjTdGru9+WvJJCPC0O+ZRp9D9CM2ZiNQF/g0cgKXL856IjFXVT3zCDcOyZ5E6H2Op0w8G9sSaYu8H7GJ/bgJeBh7H8oH4W8z4w17Y/PnzmT17dvV+ySSE7WabbZYxPZXWNGKhBLh3L6mXfNe3v/vuO7bddtvq/2eeeWYk7fK//e1vzJ83j/2xykhH+/ibdetyblVV7BG3l0KPwFW1UUETTIiw55Rk2fcqkfml7a6/zl5sZ6bKy/z58323eAYhIhm+7EtBgEfBvRU13/Yt7Po2bdqEjsDHjh3LwIEDAy2teWnUqFGoo6RcSbte5/Pms9WWrsBse/p9JTAK6OMT7jzgGSCaZlVCKPA6lkGNv2AJ8TFYW3wOAkYAC7GcoO9Hfg/KwW1wYdWqVUycmH+fJe4e0DhEEeDvvfde4PXZlH7AqiT/+te/MpRy0sT9fJYtW8bw4cMznCYE0W7RIv45aRIvYwnvb7DKzIH16+ctvKGoa+Blhdvcr5e0BbgXv/L8ww8/1MjH888/T4sWLdh5550jp+8I8LC03GHTIN/nme/1YQJURDLO33DDDRmKbE67GFWA+z3DJAR4Wp2r6vjDToZNswGbZ4m7BdZMtcNcPNuzRaQF1lr6fVnycaaITBORaWkYBPgTqwdxONZNnY21h7cRcBLwP6xtacOwpuBzxV0gVqxYEWlNKRvehsa9nSLIxGFU3NPVK1eu9BV0jgckP7yF12/6+4knnuCqq64KNN2aNO5GJcoIYVvgWeDsxx5jh59+YgkwyD7+DLAmQcc4huyEdRiTXD7yW1f265D+9ttvXH311dVl+4033qih2Txy5MjY6Xv9LOTr2zwXkjZGE5cwAaqqNc67/Tc47y/qPfilFaahHpWijsDVdhvq82mkqtm6qH459z7N24GBqhra1VHV+1W1s6p23njjUEdJebMIuBdLEak98C9gDlbP41JgJjAduAgI9utVkyVLlmSYMfXTcv3ll18Cp+CC8I7ABw4cWP3bvR7lJcreVG8eo/oAd/AW3nvuuadGhUrTVy7AX/6SucXZrW0atp6+A/AEloLa4cDKevV4qm1b2mJ15Jz5iKSU6spJgIvIQyLyo2OZ0ee8iMidtu7LTBHZpRD5SlLBMUrDv2bNGq6//nquvPJKHnjggerj7u1kEF1p1E1tGIHnm684a+CQn36MX1pBJlTjkPYWszTH93MBtw7+FoDXLU1nYJSIfIM1I3mPiPRNOiMdOuSmZz4ba49NOyyBfi/WNrSdsZTivsdauD+DcGG+ePFiNtpoI9q1a1d97LDDDqsRrmnTprF9x+ZqKL958+ah5zt27BjJcloY3gp80003MWhQpi6ju4B/+mnyHmsdu/AOXbt2rf7tV2m7YC2lfAQcC6zBeu9DTzuNv331Fb94widVQctJgGOtLB0Ucr4XVv+3PZa+X3btpwRIUoD7vVe/EbijJOVeYkpq5BrVomCpjsBzMd7iJtsI3Osx0S3Ao+a9devWgWltsMEGkeIII22T2mkK8PeA9iLSRkTqY5lezZjTVdU2qtpaVVsDTwNnq+qYpDOy9dZb5x3HFKyp9c2wRmTPYq2X98TSPJ4PvAOc88sv7OS51r0dyyEXn8R+RFmry4UNNtggbwH+/vvv1zh24403ZiiquRvKuLbGo+CtyH4jcAEOxlJefBdLUeN34E5gK6z3vrRhQ9+OYFwBHrRdsJwEuKpOxurLBtEHeEwtpgJNRCTOhFVOZFOAjEPULY9+W0KTwDuFnm09OA2KaaAkW/qqWsNSXC4jcCcNv7Qc4Z4PZSvAVXU1cC7WIPVT4ClVnSUiA0QkP9czRWQl1gjtSCzlt9OB57C01bsC5//0EzNYa/3t/wHrf/ttuMp+Hng9ESXFm2++mZpxmX/+c60fnLQbCVVlww039D23ZvFiLgC+AJ4H9seyH3AD1hbD81mrxLFmzRrfvMYdpQwZMiRW+DIlq/5LGlx66aWJxeUnDKIoZUIyI/BSmELPtW4msXYM4S6WVbVG+xRkjCWMMAGeRNtUtgIcQFUnqOrWqrqVql5nH7tPVWsoranqyaqan1PY4HykES1LgAeBvlj2KA8DxjRrxnxgEyzLb/cA3U47jSXAJCzDH8djaTKvn0Ae0hqBAzz33HOpxOtumNzv5vbbb088LVVl6dKl1f8FLJv5p5xCi27duA1rieRr4GJgS6xtht4tEUECPC6tW7f2VQYspxF4BKLov1gBU1ZQzZW4Aty9iyIpAe52QxlW9mbNmpV3en7keh/5Tp07hI2oVbWGcFRVXnzxRY477rjq5/Xyyy+HpuEIeL97zdfmBARvK0yK9Fr/IuH3IgqhTfk7MA74qX17pi5aRHssE6771a1LnyZN2HDRIva2j7lZgGUQZDbWMGU+luEZ5/tHwvfrpSnAcxFYUUbtbqtM7h5yGjbMnbS2A44GTgTYZx/A6r2+gjVV/jzWencQSQlw8BfWtUyAR9F/ASwFVaxVKDp37lwyNnCimBtNewQ+adIkttpqq9C0AGbMSGIjY01yLe+56uXEQVVrrFGrKr169QIsuw1eWrdunbGtrG3btqGGXpIQ4GnPMNY6Ae43ZVLI7RBOWl/an8fq1eP5UaPof8ABdGKtwZgOWOurm9mfPQPiW4W1H32e6zPf9XvLVav4AKjpybtwqGq1ADryyCOzhv/oo4+YPn06HTt2TK2AC9aSRt8pU7gJcGtBLN9oI25fvJiJm2zCmxEdu1RVVeWd17Q17kuIscC5IjIKy/35UlXN2/lRsbc1RZ1CTyqttm3bVv8vhgnhDz/8EBGhdevWscpuIQQ4QM+ePXnhhReq/7vLx9NP15zMveuuuzJMm7oN5fiRrw5QIah1ArzYD92rnOYUkIXAC/bHoQ7W0KQ90BZrkXBz+9v5vTHWUCbQpP6UKTyMpVE0O+CT9sSkW4B77UcHMWPGjMQF+BZY69jOZ1MAe1r2Zyyp8l9gnV124aX//Q8iCm+w7jFqXm+77TaGDx/OJ59kGB2sVoop99G2iIzEmkxqLiJzgSuxHf3Zy2MTgN5Yxe83LK++eeM3HVm3bt2CCTev4wq3EpubpEbg3rSKRVRjKA6FEOBz5871NX/q8N///rfGMe8zNQK8BPGb9ihmzz3UZzCWgRjHd7kf9akp1Fu4Pu0bNqTpb7+xEdaIs6tPHEux3FzOAj6xP7OwtIySeDJr1qyJvZXFeSe5vhvBGlXvbn/2wrJF7uY74PWmTXlwyRLexNo1AHBADgLUz3BEEBdccAFVVVVcfPHFsdMpB1T12CznFcuDYaIkMaWZC927d+ett96qcXzNmjW+Ns9rmwCPS6E6qF7rjdmeu58AdzuX8pJPeevUqZPv7qOkqXUCPI694UKwZs0annrqqZyvX4lltvObgPOvTZjA3nvvzSZYI/l2nk97LK9Zu9kfN8uxtge4BftnWApdcZqLXBqXuNtvWgM7AZ2w7qMb0NQTZimWouD/7M/nwE4tWzLToxWbSwMza9asyG4YIbwxKfcReLHwGxEVonMepGcyf77vsn4iefJ2iMtJgOc6I9K3b98MF8bZiPtMvM/UGYEHxZPPCLxBgwZAaTszKUnOP//8Gsf69esXeWo3aVSV4cOHpxZ/586dAUvZ7Ueg5jjBmobfFtgeS5lrO/v3pliGS7p4wv+JtX7/mefzOf5r7fk0Lu7Gzr2k0B7LGtrOWOZr/TaCzcPanz8F676nsXaU7fDll1/WuC6XSuU3AmvatGnglplyanDLBW+Deswxx/Dkk0+mnm6QAA8SVEm8e28ZzWcQUGic++/cubOvm84gunbtmpcAX7w4zDRBTQEuIqEza/mMwAvVSa91AtxPI/Pkk09mm222YcGCBfTrl4rH0qIRxRfwT/Znsud4MyzB7gj07bCmoVtiCc8dfOJahDX17nzmAnWGD4dNNoEmTeiKpZFfhTWKX4MlmNd3fRoB7V98Eb78kqMnTmR/rBF2W6BBwD0sxDJjOwPLQtAUO+1suM3XVse1cGGEK4OZOHEiO+20Ezvs4PeELNq3b59XGoaaeAX44MGDiyrAg0bald55c+6/S5cusQR4rstwDoMHDw4N7xWq++yzD4888kh1ftdff/0MrXRveWvQoEHkbWHOvaQ9Q1TrBLjfAxYR9thjj6KNwtMkigAPYhHwpv1xswHW+nIHz2drLKHfjLXuNAFweYiKbF/OHlF4p/XnY2k+zcGa2neEdpKu6qJuu+nduzd77LFHhuEZgF122YXmzZuHPvu+ffsGnjNT6LnhbVDr1KkTq4Hcddddfa0DevG66A16z0Fpl4MXq7j88ssvkcM69x+3IxO3Xnifc7bn7n2m9evXR1Wr3Yh6O/ve8jZgwADuuOMO37jPPvvsDCXHQr2/WifAw/YhF3sbShqkUVCWAx/YHzeCZaBmC6xR+hb258KTTqL+b7/BL7/w3ssvsy7WqNv5KJYq8gr7sxzLUt05V1/NiFdeYdTrr/M9luAO3pVZeC655BJf85zOMw979kZIJ4+3QY37jLt27RpJgO+1116MGjUqa7g0p9CDTO4WizhmjqP4MPfD733+73//Y//99w9NJ5f4d9xxx+op9E022cQ3Pu8UeliH/bzzzssQ4IWq/6XVzUuAMNN1tXFqq5A9dcUSvO9jmZO9G8u15pYTJ9LohRd4f+hQumIpm+2ANSXfAWuaflesve69sCzUnQtw+eW8vvXWPI81yi4l4e3gVxGdZ57r7IcR7rnhNwLPRuPGjWOFh5pT5gcd5O+3JWiNNGo706xZs0A3ukFCK2m22ca7d8OfOOvBzv3ff//91ceiLF26LSY67LfffixduhQ/L5S5KrE1bNiQmTNnIiIZA75dd90VgOuvvx6ASZMmZVzfsWPHwLhVlXPPPbdGWkV1J1qOhK1R5DoCb9WqVa7ZSZ1SEAYLFy5k+fLl7L777rGvLdbWoCiISKgAL7VpztpO2Aj8tNNO873GXeej1hWvAA96z0FlN6rS6o477sguuxTE02qgP4Cdd9450vXHHhu6czADP8Hq7kgFcdxxx/keb9y4MQ899FCkdMJw3r/72x3HCSecwNy5cznjjDOAmk6oOnfuzE8//cS+++5bI+6WLVty++23Vzs8MiPwHAndd10LR+ClRC7bLkrdWIIR4KWD3wh88803B4jkhrdRo0aR0slXgN93Xw1XD744U7iFwG8Emxa//fZbTnoA22yzTeCzPuSQQ2q037mOwL2C3KFu3bq0aNEiMA916tShefPmNdJ966232GCDDahbty7NmjXLSCttKqoFyrWyFHvt/MQTT/Q9fuaZZxY4J8kTtVEtFmYKvXS47bbbMv6LCG+//TYjRoyIVEe9nuBGjx7tG85rSSzoPefb+SykAC8k++23X41OUJQyn03oeeOI20lYf/1M91F+Atz97cU57n1nxfRtUFECPC3Xm2lzxBFH+B4v1PRbmiThqx1gypQpicTjxa8irrfeeoAZgReaJ554IuN/nTp12HLLLTnuuOMCBaH7eMOGDTPOBe0U8DbgQe85zN1lFAopwIPSueiiiwqSfhSBFiWMe83+o48+iiUovcsIfpbZYO379zP8AuECPGh0nxYV1QIdeOCBGcbsy53a0HtPYlmjS5cudOvWjcWLF1croiRB0Bq4c8yMwIuL+zlG8QwW9bkHNdxeomi0hzFs2LCiC/CuXf2MLydPUmX+s88+y/gf5/llG4F7BbjTUXeWZ5zwjz76aGA8zm8zhZ4C9erVY+zYsbGvqw2CslTJ5q83Ck6Fa9q0aSzDEdkIEuAOuVbSYniWqo24n3+S+i1RBXg+3Hrrrey6665FF+D5EkX3AEqj0+qnxObGmfZ32hPvjiZnBtdxSuSN102tEOAicpCIfC4is0VkkM/540Vkpv15W0SiqUSG0LJloN+unCl2g1so93xB/OUvf0kt7hdffDH2Nb1798747x0Ju90wxmXAgAEZ/8MaHvc5Z3o2aPuPu6GL4jPdkJ0oI/BcBEchBLhDuQ8OFi1axN13313sbEQimwB3NOWd9mTVqlUZmupB7bC7fNSaKXQRqQv8G2vr73bAsSKynSfY18BeqroTcA1wP3mS5BSqQ1TzeWnw7bffFn2tNa30vdNhUfEqyHgF+IwZM3LSd+jXr1+Gdym/EfiDDz6Ycd6hf//+fPDBB4wbN843brfji2KWp9qEu1xGWQPPJV6//0niN4J1DItE4YADDuCnn35i+XI/LwVrcZ5D0gOchg0b1piaLkV++eWXGnXZ+99ZI3e/b8djGQQLcD9hXaiOWZqSoSswW1W/UtWVwCigjzuAqr6tqo43iKlYhr3yIsyQS64Us8Ft1apVoo1TLjRt6vX7lQzbbrttIvF4G9gNNtiAnXbaKXY8u+yyS41K6q2c7vOzZs2q/v3FF1/QqVOnjAbZvXXH/QzTep6FIsLM2t4islREptufK9LIh/u9B63llqoAd8rV1VdfzWWXXVZ9/M0332T69OmR43nppZdo3rx5ViHqPIdu3brFz2wWojxjd5ikHbNEUebdcMMNswrwHj16VB9367k4I/CgQYFjitUdZ20Q4C2w/F04zLWPBXEa8ILfCRE5U0Smici0MCfukI6w9avAu+3mteKdHkHTMYUamR9yyCEFSScKfs/CT5kslyksv0oX1Ev34qfQNHLkSN+wAwYM4NRTT+X222+PncdiE3FmDeANVe1of65OKS/Vv88880y++OKLROL1Luvk428gG40bN662/AWW7/HNNtss8XS22MIaGxV7tNy0aVOOOuqo6v933XVX3nFOnTo1VvigaW5HaQ0yFdqcdiFoBO4nc+K6S86VNCWAX859uyUisg+WAB/od15V71fVzqraOZtBgjRG4OPHj8/437p168S2P0Vh3333rdFh6NixIyeccEKseIYOHZpT+nXr1q2huFEsoiqMpCXADzzwQN9r/UYVW265pW/Y9dZbjwcffJCePXvGzmMJkHVmrVB41x79PMDFHQndfffdzJw5MzCdcuWBBx7gscceK9rW06D3cNZZZ0UKF0aQtzgv2UbgbtzGmtq1awdEE+C1aQQ+F8vnhcMWWM6mMhCRnYAHgD6quiifBOfPn88bb7yRTxS+/PWvf834r6oZbufSpn79+hm9zH/84x98+OGHsXrTqsqgQTVmOyMhIpG1TQuBt3L4jZC8je5ee+2VNd4jjzwy47/fGniDBv4OT51KXgFEnVnbXURmiMgLIrJ9UGRxZtd8rs0aJm5Des4559Q4VhsE+IYbbkj//v2Lpg0eNCJNQkE32z298MILvuHCrnOM9KxYsYLJkyfz/PPPB4Z3K6V6w6QtyNMsme8B7UWkjYjUB44BMvZwiUgr4Fmgv6rmPf/lXotIm2KOngpdCbNtp8rG6aefnveeWXdevEQR4H5+wb04doxzwa8hKncN4wCizKx9AGypqjsDd2H5vvElzuyat5MURbBmewfffPNN1jjSXAMvNMVKt3HjxjRv3jzrlHka+fM6o/GbQr/55psDr99ss804+OCDA8/vscce1b+d9fKy10JX1dVYTqcmAp8CT6nqLBEZICLOXp0rsNxL32Mru+S1iTdodBSFOJqfAKeeemrOaZUb+RbGOnXqxLbF7PXBHZaXKGvgv/32W2h6G2ywgW8cUe89F633KA4eSpCsM2uqukxVl9u/JwDriEjzfBP2bhWL8m6y7Q/3q/dXXnllxv9CjMAPO+wwbrrpptTTSfJebrnllshh69Wrx08//RTosMShEJ1ePwEe1SublwsuuKBavwDWDhS8Vv/SItWSqaoTVHVrVd1KVa+zj92nqvfZv09X1aYuZZfO+aQXVYC/++67XHvttTmnIyKR113SIM2G/7rrrquhfJWvABeR2A1Hr169fCtBrmvguS55RG1QcpkKbNGiBffff39OxoWKSJSZtb+I/QJEpCtWO5PX8hhYU5Unn3xy9f8oZSqbDQe/OA444ICM/1EVGfPhueee4+KLL048XocmTZoAyQnwm266iX/84x+JxFUs3O81SFHx6qv99S+PP/543+POQKFWCPBCE3UU1KVLlxqODeKgqkWZinryySfp3bs3F154YWppDB48uIZb0CRG4Lk0HFGUyiDaFHq2EbgfIhL5ulzX8s4444yyMu8bcWatH/CxiMwA7gSO0TyHVsuWLWP+/Pm+ZivDcO/r98MvjmxrpcXW5I6LqlZrWIcpsbVp0yZynIWYlbjhhhtSjd9dJIMEeJBMCXqO9957L7vvvnu1knM5a6EXnLhT6F6rW6XO0Ucfzfjx41P34OWtnPmugccZgR955JG0bNky0CBPriPwbJ6j8q1ofgK8TZs2tGvXLlBzvVyJMLN2t6pur6o7q2o3VX073zRfe+01INqatZs+fcIV5HMR4HH7Ivks7SVNly5dWLx4se+5W2+9NXI83nXlbOTSf9tuO7/dibnjzcNzzz1X/TuuAHfw20v+9ttvF+yd1yoB7t7HFwVnP2K3bt1iFbCojX3z5nkv+xUURxnDT4Dnw2GHHRZZgD/99NN88803NGjQwPed+FW0/v371ziWVM83ajx+Syr16tXj888/r9aCNeSOswvCXSb8yse3337L7NmzI8fr9369HeQ4Zclvu6Wf6dxiKZOBtRd79OjRGYaIIJ49+aSFqx9Jr4d7NeHd27+C2qcgAV4qCqq1SoDXrVuXBQsW8OOPP1YfC1M223ffffniiy+qe/dRcV7ezz//HBouzjRTMdfUwep9T5o0Cai5xp7PCPzjjz/mwAMPjHV92HPz69n6TUF7K1guFU4kurvHoPdXp06dknDkUO5EXaJo1aoVW221VXXnOdv783s3O+ywQ4brUm95DIszDSMsadC3b98aQjgtnw99+/bl0ksvTSXuXIi6DAel74K6VglwsBxvuDWes72A9u3bR5rumDFjRo1jzZo1C70mjrLZpptuGjlsGrRv3776WTVq1IiXXnqp+lw+zky2397aApyUYZWo+9G9jVGuPeaooxIjpNPFWQKJ+pydjns2hbOgzuKxxx4beM2ee+4ZeC5Jr2jZCDIXPHbs2JxmfdIS4KNHjw7dhTJv3jy+/fbbVNKOSpAADzrudNSCbMufddZZ9O3bN1XFRKiFAjwt3JUlaiPiCK9iM2LEiNjXHHDAAbz00kv8/e9/z9D8LSR+jWFUO+KrV6/O+J+rTexCNsiGYJytOsccc0z1Mb+tfw5Dhw5l2bJlWTvRIsKSJUtCw3jLziOPPBIYttieC8Gakdp7771jX+fkPa6Ni3w1rjfffHNatWqVVxxR8L7HKFroQW39sccey7PPPsvf//533/NNmjTJ2nFJAiPAU+K4444rGQtOfiYmwTLHGsYBBxzAHXfcUTB3pueff37Gf7fwnDhxIjvttBOjRo2KFFc+gnfQoEH07NmTzp07Z1R6PytdhsKw3Xbb8cMPP3DmmWdWHwsrl3Xq1Ims7OlssQrC2/CH6dpkE+DeLWppkcuMkOPRLEiY3nHHHb7HjzrqqFT2sCe9zux05gYOHFgj/qBZ2KA2XEQ4/PDDU7WTH4XSkDAlzG233ZbTdapa9Jfr4FcIu3Tpwocffhg5jrSniLt3717DuYe7MezZsyczZsxgxx13jBSf27gCxGsMhg4dysSJE2uMwMtt10JtI66xpaSI0xnMFrZQSy25pONsI9t33319z/fu3dv3eJ06dVKfKnaT64jfUYy95JJLgMw2IWgwUyqDsCBKO3dFZpddduGCCy7I+fpSFuBJKHnFIWy6E8IbnFwao6SUT9wNcqlonhryJ46HvSQFuDN6T31/cA6Cp2fPnnz55ZeB6/+F1vNIu7654w+6t1LXbTECPIRsQieMHXbYIbASBU3thSnO5EMUAZ4kfiOlBg0a1Ni2EpU4WsBB5Hq/2bYtGcqTcePGRQ7rFsreaXuv8ZN///vfvnE40/T5tClxyFXwhDnlKfXRaBqU+j2Xdu5KlGwN+SWXXMJFF10UWIn83IBuvvnmqWmiJy3AH3nkkQwtdS9Ba5O57h1NYibD736juFc1I3CDUwb22GMPfvjhh4xz3jLh9ly46667VisxOSY50zbC5JDGyHGjjTZKPE4vSXSYjzjiiEjXRgljBHiZkGTjPGjQoNCtad5C0adPH0aNGsU///lPjjjiCC666KLE8uKXHsS/X3eDcNJJJyWujBPW4KQlwB1llmzph8VhqP04AnyzzTaLvAsCYNq0adU2Kc4777yC6sXkK8CXLFmSYbFtyZIlqdiAz4Wk6mGUeMwUepkwevRoNtlkk0iOJbK9VEdgBjlMueyyyzL+jxkzhrZt29KsWTOeeeYZ9t9//4i5jkZavcgHH3ywxh7xm2++ObRi5FIhkmr0evToETsv/fr1q/5tBHhl4ghwdz1yzHC6R9SfffZZYTMWglO2zzvvvJyub9KkScYWvGya+gATJkzIKS03uQpMt0vPqPTq1StrGDMCLxN69OjBwoULc3Ys4XYA4ggcP+cAAwcOpEWLFrllMkfCRuDOenXnzuGO4Pwq1qmnnsr8+Ws9ST711FNZZw+COjVpj8CBDOtaDoMHDwbg8ssv973GbVnLCPDyZM6cOUyePDnn65337q5HTt12l4k4LikLMbKrqqoK3PrlJijfcfPYq1evSEIxjChT6H75Gjt2bI3tbwMHDqw2l+2H400tzHpeqY/Ai2u/s8TI52W5lVPCps+LUSD8BLgzqvjmm29YunRpVmtrBx98MDNnzqRLly4Zx+N6h7rssstYunQpN954Y9awvXv3ZsKECRmj4Fzp168fLVu2ZO7cuRlbzK699lrOOOMMttxyy6xxeBuUN998s8ao3lB6tG3blrZt2+Z8vVM2/N51MTt12dKOOnqcMmUKCxcurHE8zbZq9uzZObv4dRg8eHB1vps1a8Zbb71Fy5YtOf3004Hs3syc5xP2HItt4jobqeZORA4C7gDqAg+o6g2e82Kf7w38Bpysqh+kmae0aNSoEa+88gr169cP3cLkdiYfVHCSbhTCKvJ6660XyQnMlVdeyc477xy69u3kO9sUerdu3bKmBzBy5EgmTJjAYYcdFil8WDzOzEqLFi14++23q5+JiPg6oPDDe1/du3dn3LhxdOjQIa/8lRuVVK/BcnY0Z86cjHLirIV37do1590VUenQoUOq0/NNmzb1XdvPRYDfeeedXHjhhTRr1oxHH300MNxWW22VNa5s7eDgwYMzXLtuscUWOTml8rtm4cKFDB06lIMPPjhyfMUgNQEuInWBfwMHAHOB90RkrKp+4grWC2hvf3YD7rW/yw4R8TWAMGLECH744Yfq6ZooAjwu06ZNY+TIkdxyyy2BefOSi0vEv/3tbznlz0ufPn0YMmQIq1evZtiwYYF5bNy4cYbpzDi4788bh9ffeVT8OkJx9hPXBiqtXoNVNr0j+C222IL333+f7bbbjocffjhyXHHr3Z9//kmdOnUKZg0xX9q1a1e9RS9MgEchbW+OTn32W6LbdNNNaxiWKkXSXAPvCsxW1a9UdSUwCvA65+0DPKYWU4EmIlIe7nwictxxx3HhhRdW/3cL8KTYddddufnmmwPP+ymgpDn1F2Vq79prr82Y4sr1eeRqKS8OV1xxBYcffjidOnVKPa0ywNRrm1122SWycx0vUct7/fr1A6dx42jElxvjxo1jr732SjWNTTbZhEGDBvHyyy+nmk6qqGoqH6Af1vSa878/cLcnzPNAD9f/V4DOPnGdCUwDprVq1UqjcN555ymgH3/8caTwbq655hoF9PXXX884ftdddymg48aNqz42aNAgBfS9994LjfP0009XQOfMmaOqqiNHjlRAH3300Rphly5dqoDus88+sfJ94oknKlD92XTTTbVVq1a6Zs2a6jC33HKLAjpx4sRYcYfRq1cvBXTRokWqqjp69GgF9J577sl6rfOsJ0+eHDm9qVOnKqBDhgwJDPPBBx8ooJdccknkeEsZYJqmVFfjfJKs15pj3T7jjDP0jjvuiP8QVfXSSy/Vq666qsbxq6++Wi+66KKMY+eee64OGzYsa5z9+/fX+++/v/r/3Xffraeffrpv2Dlz5uiOO+6oP/74Y6x877///gpo586d9cEHH9Q99thDZ8yYkRHmiiuu0EGDBsWKNxsHHXSQPvvss9X/hw8frscff3yka4OedRhjx47V/fffP6PN8jJhwgTdZ599tKqqKlbcpUo+dVs0pZGYiBwFHKiqp9v/+wNdVfU8V5jxwFBVfdP+/wpwqaq+HxRv586dddq0aZHy8Oeff0ZyFRrnWr/jUdPxhgu7buXKlayzzjqxR6bLly+nYcOGrFq1irp16yIiNaaI8nkufqgqK1eujHxvXnLJT5Rrkr7PYiIi76tq+FaBwuQjlXoN8eq2wVBbyKdup6nENhdwO0vdApifQ5icyafxDrrW73jUdLzhwq7L1Za3ow0fFnfSQk1EYt1bEvmJck1tEd4lRtHrtcFgsEhzDfw9oL2ItBGR+sAxgNdKyljgRLHoBixV1QUp5slgMOSHqdcGQ4mQ2ghcVVeLyLnARKztJg+p6iwRGWCfvw+YgLXVZDbWdpNT0sqPwWDIH1OvDYbSIdV94Ko6Aasyu4/d5/qtwDlp5sFgMCSLqdcGQ2lgTKkaDAaDwVCGpKaFnhYi8hPwbcrJNAd+TjkNk35p56HU0t9SVTcuVmYKQQHqdrHfaSnkwaRfemUg57pddgK8EIjItGJu2an09EshD5Wefm2kFJ5psfNg0q9dZcBMoRsMBoPBUIYYAW4wGAwGQxliBLg/95v0i06x81Dp6ddGSuGZFjsPJv3ik1gezBq4wWAwGAxliBmBGwwGg8FQhhgBbjAYDAZDGVJxAlxEthGR6a7PMhG5QESuEpF5ruO9XddcJiKzReRzETkwhzQfEpEfReRj17GNRORlEfnS/m7qOuebnojsKiIf2efulBiuygLycJOIfCYiM0VktIg0sY+3FpHfXc/iPtc1OeUhIP3Yzzzh9J90pf2NiExP8f5bisgkEflURGaJyPn28YKWg9pMJdbtSq/XIXmojLqdqx/S2vDBsuW8ENgSuAq42CfMdsAMoAHQBpgD1I2Zzp7ALsDHrmM3AoPs34OAYdnSA94FdgcEeAHolWceegL17N/DXHlo7Q7niSenPASkH/uZJ5m+5/wtwBUp3v9mwC7270bAF/Z9FrQcVMqnUup2pdfroDx4ztfaul1xI3AP+wFzVDXM+lMfYJSq/qmqX2M5aOgaJxFVnQws9on3Ufv3o0DfsPREZDOgsapOUetNP+a6Jqc8qOpLqrra/jsVy+1jIPnkIeAZBJH4MwhL3+7lHg2MDIsjz/QXqOoH9u9fgU+BFhS4HFQQFVG3K71eZ8tDba/blS7AjyHzxZ5rTzs95JruaAF87woz1z6WL5uq7WLR/t4kS3ot7N9J58PhVKwen0MbEflQRF4Xkb+68pZ0HuI887SewV+BH1T1S9ex1O5fRFoDnYB3KL1yUFswdduikus11PK6XbECXCxfxocB/2cfuhfYCugILMCadgFrKsNLmnvvgtJLLR8iMgRYDYywDy0AWqlqJ+AfwBMi0jiFPMR95mk9g2PJbOxTu38R2QB4BrhAVZeFBQ1Iq9DlsewwddtOzNRrqOV1u2IFONAL+EBVfwBQ1R9UtUpV1wDDWTuVNhdo6bpuC2B+Aun/YE+ZONM3P2ZJby6ZU2GJ5ENETgIOAY63p22wp3YW2b/fx1qj2TrpPOTwzBN/BiJSDzgCeNKVr1TuX0TWwargI1T1WftwSZSDWkbF1+1Kr9dQGXW7kgV4Rs/MedA2hwOORuNY4BgRaSAibYD2WIoG+TIWOMn+fRLwXFh69hTMryLSzV7XOdF1TU6IyEHAQOAwVf3NdXxjEalr/25r5+GrpPMQ95mn8QyA/YHPVLV66iqN+7fDPwh8qqq3uk4VvRzUQiq6bpt6XU3tr9uaggZoqX+AhsAiYEPXsceBj4CZ9gPezHVuCFZP7XNy0PjFakwWAKuwelmnAc2AV4Av7e+NsqUHdMaqDHOAu7Et6eWRh9lYazHT7c99dtgjgVlYmpIfAIfmm4eA9GM/8yTTt48/AgzwhE3j/ntgTYfNdD3v3oUuB7X9Q4XV7YD0K6ZeB+XBPv4ItbxuG1OqBoPBYDCUIZU8hW4wGAwGQ9liBLjBYDAYDGWIEeAGg8FgMJQhRoAbDAaDwVCGGAFuMBgMBkMZYgS4AbF4U0R6uY4dLSIvFjNfBoMhd0y9rv2YbWQGAERkByzTk52wPDlNBw5S1Tk5xFVXVauSzaHBYIiLqde1GyPADdWIyI3ACmB9+3tLYEegHnCVqj5nG+t/3A4DcK6qvi0iewNXYhlU6Kiq2xU29waDwQ9Tr2svRoAbqhGR9bGsE60Engdmqep/RaQJlonJTlgWh9ao6h8i0h4Yqaqd7Yo+HthBLRd5BoOhBDD1uvZSr9gZMJQOqrpCRJ4ElmP50D1URC62T68LtMIyrn+3iHQEqrAcATi8ayq5wVBamHpdezEC3OBljf0R4EhV/dx9UkSuAn4AdsZSgvzDdXpFgfJoMBjiYep1LcRooRuCmAicZ3vFQUQ62cc3BBao5SqwP5ZijMFgKA9Mva5FGAFuCOIaYB1gpoh8bP8HuAc4SUSmYk2zmd65wVA+mHpdizBKbAaDwWAwlCFmBG4wGAwGQxliBLjBYDAYDGWIEeAGg8FgMJQhRoAbDAaDwVCGGAFuMBgMBkMZYgS4wWAwGAxliBHgBoPBYDCUIf8fRrwcYrH3g40AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " CAM011 CAM021 CAM031 CAM032 CAM041 CAM042 CAM051 \\\n", + "626 NaN NaN NaN NaN NaN NaN NaN \n", + "627 NaN NaN NaN NaN NaN NaN NaN \n", + "628 NaN NaN NaN NaN NaN NaN NaN \n", + "629 NaN NaN NaN NaN NaN NaN NaN \n", + "630 NaN NaN NaN NaN NaN NaN NaN \n", + "... ... ... ... ... ... ... ... \n", + "1979 0.995480 1.035034 0.478701 1.041036 1.214757 1.190700 1.426840 \n", + "1980 1.118069 1.451645 1.115436 1.138915 1.759442 1.543335 2.057217 \n", + "1981 1.190643 1.400192 0.998177 0.931251 1.222604 1.325723 1.830926 \n", + "1982 1.163922 1.226275 1.097936 1.197448 1.635310 1.392638 1.432203 \n", + "1983 1.681208 1.395723 0.764619 0.974378 1.853490 1.388557 1.261920 \n", + "\n", + " CAM061 CAM062 CAM071 ... CAM151 CAM152 CAM161 CAM162 \\\n", + "626 NaN NaN NaN ... NaN NaN NaN NaN \n", + "627 NaN NaN NaN ... NaN NaN NaN NaN \n", + "628 NaN NaN NaN ... NaN NaN NaN NaN \n", + "629 NaN NaN NaN ... NaN NaN NaN NaN \n", + "630 NaN NaN NaN ... NaN NaN NaN NaN \n", + "... ... ... ... ... ... ... ... ... \n", + "1979 0.897468 1.399924 0.504710 ... NaN NaN NaN NaN \n", + "1980 1.474113 1.713195 0.642137 ... NaN NaN NaN NaN \n", + "1981 1.367015 1.230242 1.237981 ... NaN NaN NaN NaN \n", + "1982 1.430803 1.374571 1.375062 ... NaN NaN NaN NaN \n", + "1983 1.494565 0.892002 1.466229 ... NaN NaN NaN NaN \n", + "\n", + " CAM171 CAM172 CAM181 CAM191 CAM201 CAM211 \n", + "626 NaN NaN NaN NaN NaN 0.371605 \n", + "627 NaN NaN NaN NaN NaN 0.284398 \n", + "628 NaN NaN NaN NaN NaN 0.306523 \n", + "629 NaN NaN NaN NaN NaN 0.416333 \n", + "630 NaN NaN NaN NaN NaN 0.482462 \n", + "... ... ... ... ... ... ... \n", + "1979 NaN NaN NaN NaN NaN NaN \n", + "1980 NaN NaN NaN NaN NaN NaN \n", + "1981 NaN NaN NaN NaN NaN NaN \n", + "1982 NaN NaN NaN NaN NaN NaN \n", + "1983 NaN NaN NaN NaN NaN NaN \n", + "\n", + "[1358 rows x 34 columns]\n" + ] + } + ], + "source": [ + "ca533_rwi = dpl.detrend(ca533, fit=\"spline\", method=\"residual\", plot=True)\n", + "print(ca533_rwi)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2kAAAHhCAYAAAD09PY6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd5wU5f3HP7O71w84RA4EEcVYYgMLtkSJGEtsGIzxFxV7iy1qYsFesCt2ExWNJXaigB1FAxYQbKBUpdej3XF173Z35vfH7DPzzDPPM2Vv927v7vvOy3A75Zln5nnmmef7fJtmGIYBgiAIgiAIgiAIIi+ItHcFCIIgCIIgCIIgCBsS0giCIAiCIAiCIPIIEtIIgiAIgiAIgiDyCBLSCIIgCIIgCIIg8ggS0giCIAiCIAiCIPIIEtIIgiAIgiAIgiDyiFhbXWjt2rW45pprsHHjRkQiEfz5z3/GmWee6TjGMAzceeedmDp1KoqLi3HPPfdg9913BwBMmzYNd955J3Rdx8knn4wLLrjAdY0NG+pyUvfy8iLU1zfnpGwiO1Ab5TfUPvkPtVH+Q22U31D75D/URvlPW7VR797dcn6N1tJmQlo0GsV1112H3XffHfX19TjppJPwm9/8Br/61a+sY6ZNm4Zly5Zh8uTJmD17Nm699Va8+eabSKVSuP322/Hvf/8bffr0wZ/+9CcMHz7ccW4uicWibXIdInOojfIbap/8h9oo/6E2ym+offIfaqP8h9rIps3MHSsrKy2tWHl5OQYNGoSqqirHMVOmTMGJJ54ITdMwZMgQ1NbWYv369ZgzZw4GDhyIAQMGoLCwEMceeyymTJnSVlUnCIIgCIIgCIJoM9rFJ23VqlWYP38+Bg8e7NheVVWFvn37Wr/79u2Lqqoq1/Y+ffq4BDyCIAiCIAiCIIjOQJuZOzIaGhpw+eWX4/rrr0d5ebljn2EYruM1TVNuFykvL8qJmjQajaCiojTr5RLZg9oov6H2yX+ojfIfaqP8hton/6E2yn+ojWzaVEhLJBK4/PLLcfzxx+PII4907e/bty/WrVtn/V63bh0qKyuRSCQc26uqqlBZWek6P1eOhhUVpaipacxJ2UR2oDbKb6h98h9qo/yH2ii/ofbJf6iN8p+2aqOOEDikzcwdDcPADTfcgEGDBuHss8+WHjN8+HBMmDABhmHghx9+QLdu3VBZWYk999wTy5Ytw8qVK9HS0oL33nsPw4cPb6uqEwRBEARBEARBtBltpkn79ttvMXHiROy8884YMWIEAOCqq67CmjVrAAB/+ctfMGzYMEydOhVHHHEESkpKcNddd5mVjMVw880347zzzkMqlcJJJ52EnXbaqa2qThAEQRAEQRAE0WZohszhq4OSqzxppB7Pf6iN8htqn/yH2ij/oTbKb6h98h9qo/yHzB1t2iW6I0EQBEEQBEEQBCGHhDSCIAiCIAiCIIg8goQ0giAIgiAIgiCIPIKENIIgCIIgCIIgiDyChDSCIAiCIAiCIIg8goQ0giAIgiAIgiCIPIKENIIgCIIgCIIgiDyizZJZEwRBEARBEARB5CPNzc047bTT0NLSglQqhaOOOgqXX345ampqcOWVV2L16tXo378/Hn74YfTo0SPn9SFNGkEQBEEQBEEQXZrCwkK88MILmDRpEiZMmIDPP/8cP/zwA55++mkcdNBBmDx5Mg466CA8/fTTbVIfEtIIgiAIgiAIgujSaJqGsrIyAEAymUQymYSmaZgyZQpOPPFEAMCJJ56ITz75pE3qQ0JaJ2DixLewZMkv7V0NgiAIgiAIguiwpFIpjBgxAgcffDAOPvhgDB48GJs2bUJlZSUAoLKyEps3b26TunQqn7Ty8iLEYtGslxuNRlBRUZr1crPFkCG7A0jldR1zTb63UVeH2if/oTbKf6iN8htqH5N40sDMNc3Q9fauiZtIbTN0nfQTucAwgIqSCPbuW9iqctr7PYpGo5g4cSJqa2txySWXYNGiRe1Wl04lpNXXN+ek3IqKUtTUNOak7GwwdOhQAMD69bXtXJP2I9/bqKtD7ZP/UBvlP9RG+Q21j0lts4El6xPoWaS1d1VclJYVobEhN3PFrk7KANbVGNihONmqctrqPerdu5vn/u7du+OAAw7A559/jl69emH9+vWorKzE+vXrsdVWW+W8fkAnE9IIgiAIgiCI9kOHgcKIhqJY/glpxTENqTysV2fAMAzEUx372W7evBmxWAzdu3dHPB7HV199hfPPPx/Dhw/HhAkTcMEFF2DChAk4/PDD26Q+JKQRBEEQBEEQWUE3AMAA0LEn7EQ4NE2DAQO6YSCidcy2X79+Pa677jqkUikYhoGjjz4ahx12GIYMGYIrrrgC48ePxzbbbINHHnmkTepDQlonwjAMaB30xSAIgiAIouOTMkwRjeh6aDCgG0Ckg05Fd911V0yYMMG1vWfPnnjhhRfavD7kPdmJqK3d0t5VIAiCIAiiC6OThNZlMUDtn01ISOtE6PkYSokgCIIgiC4DTdK7NtT+2YOEtE6EYdCbQRAEQRBE+6GTuWOXJkWNnzVISOtEkIxGEARBEER7ktQNChnShSFNWvYgIY0gCIIgCILICkm94waOIFoPCWnZg4S0TgSZOxIEQRAE0Z4kdYo03XXRkKK5aNYgIY0gCIIgCILICkmdJpddF4M0aVmE3qNOBGnSCIIgCIJoT5IGQIq0LopB5o7ZhJJZEwRBEARBdCFaUgaWbEnlZEK9oVFHhKS0LokBYE29jspS0gFlAxLSOhGkSSMIgiAIwo/GJDB3k45uBbkQpjSUF+SgWCLv6VagYU2DjiHtXZFOAglpnQgS0giCIAiC8EM3DBTHNHQvIo0XkT0KooCWpD6VLUgfSRAEQRAE0YUwzRxpYZfILiSeZRcS0joVNOASBEEQBOGNbgBkfEMQ+Q0JaQRBEARBEF0IisBH5ArqWtmDhLROBPmkEQRBEAThh26QaRqRG2gqmj1ISOtEkJBGEARBEIQfKVKlETmD+la2ICGNIAiCIAiiC0EJp4lcoFGnyiokpHUiSJNGEARBEIQfSYMmgASR79A72sEhwYwgCIIgiDAkUwZpPYicQXPT7EBCWieCXgqCIAiCIPxI6kCEZDQiJ1DHyhYkpHVwSDAjCIIgCCIMSYruSOQQmplmh1h7V4DIHiSwEQRBEF0RwzBQ1WjkLP9XYRTYusRe125JGdjY5LxYfSSJ2nrdsS0aAfqUtu16eF2LgboW7wexpdkgTRpB5DkkpHVweMGMhDSCIAiiK9KcAmasTSKWA3koZQBFUeDo7QutbdXNBj5fnUBZgS3plNa1oLEp6TjXMIBjdihAtA0loiVbUlhUraPEY4anAagoIimNIPIZEtIIgiAIgujQpAygIAr0Ks6+lKYbBmqbhevpQHmBhl6cdq2sLIoGwYtkU5OOlAFEs14rNUkd2KpYcwiQBEF0PMgnrYNDmjSCIAiiq5PL3MwagJRhOL6xuhHc76at80andPI3I9oPA+STli1ISOvgkGBGEARBdHVSuRTSNA0GNPDeZknDCCwItbWQljTI34wgOgMkpHUiSGAjCIIguiK6YSCX+iMNzqAkqRAh7NtDk0ZCGtGu0HQ0K5CQ1sEhc0eCIAiiq2MKQrn9BvLCVlI3EAmYDLrtNWkA5akm2guNJLSsQUIaQRAEQRAdGr0NHGGcQlowQUiDBr2NJ60pnSZ3RPtCYlp2oPe4g0OaNIIgCKKrk2ttlSZcI2kEnUAZSOn+R2WToAIkQRD5DQlpBEEQBEF0aMJEW2zNNRhBBSED7eCTFiKoCUFkHep8WaPN8qSNHj0a//vf/9CrVy+8++67rv3jxo3DO++8AwBIpVJYvHgxpk+fjoqKCgwfPhxlZWWIRCKIRqN466232qraeQ9p0giCIIiuTirHkpABzRFBMpmngUNShgEDGjRSpRHtCM1Gs0ObCWkjR47E6aefjmuvvVa6/7zzzsN5550HAPj000/x/PPPo6Kiwtr/wgsvYKuttmqLqhIEQRAE0YFIGjmOaKg5I0iGCcGfy/QAIrrBAjeQkEa0D6QvyB5tZu44dOhQ9OjRI9Cx7733Ho477rgc16hz4NSe0ZtBEARBdD2C+4hlSmYh+Nva3LGtTSsJQoSWB7JHm2nSgtLU1ITPP/8cN910k2P7ueeeC03TcMopp+CUU05pp9rlN2TuSBAEQXQFdMNAbYv9u7bZyLmJX02zgVjE/M42JQ2UFvhfTwNQ06yjvLBtpq7xpEGCGtHu0HQ0O+SdkPbZZ59hn332cZg6vvrqq+jTpw82bdqEs88+G4MGDcLQoUNd55aXFyEWi2a9TtFoBBUVpVkvNxsUFtp/d+tWkrf1zDX53EYEtU9HgNoo/6E2stnUmMKM1XEUxUzhJ2XEsFX3CIpjuRGGUjEdK+IGVsbN35HCQnQvizhypUUjGsrKipwnFuqoajGwoTon1XJhQEO38kKUlWR/LtQZkLYRkVWaNB0VFcUojGb2LtI4Z5N3Qtp7772HY4891rGtT58+AIBevXrhiCOOwJw5c6RCWn19c07qVFFRipqaxpyU3VoaG+161dY25W09c00+txFB7dMRoDbKf6iNbDY36Ui1JFEStY0cU81AQ26mAYgCcEwbNaBJaIqysiI0SCpQBrStN4IBNDQk2/CCHQdVGxHZo7FJR02NnrGQ1lbjXO/e3XJ+jdaSVyH46+rqMGvWLBx++OHWtsbGRtTX11t/f/nll9hpp53aq4p5B5k4EgRBEF0NMukjiDyFnNKyRptp0q666irMnDkT1dXVOPTQQ3HZZZchmTRXev7yl78AAD7++GP85je/QWmpvV61adMmXHLJJQDM0PzHHXccDj300LaqdoeCBDaCIAiiK0BCGkEQnZ02E9LGjh3re8zIkSMxcuRIx7YBAwZg0qRJuapWh4cEM4IgCKKr0RbJqwmCyAx6N7NDXpk7Eq2DBDaCIAiiK5DUg+cpIwii7aCpaPYgIa3DY78NJKQRBEEQXYFkwDxlBEG0LfRaZg8S0giCIAiC6FAk9dznRSMIIjwGSJuWLUhI6+Dw2jPSpBEEQRBdgaROExiCyEdo6SR70BhHEARBEESHImmQuSNBEJ0bEtI6OKRJIwiCILoaSR0ga0eCyEPovcwaJKR1IkhIIwiCILoCKQocQhBEJ6fN8qQRuYEEM4IgCKKrkNQN6AbQnKIQ/ASRr9DMNDuQkNaJIIGNIAiC6MxMW5VEQ9JAIgVUlpKYRhB5B01FswYJaR0cEswIgiCIrkJzCti6WKPw+wSRx9DUNDuQT1oHhwKHEARBEF0BwzBNHUlAIwiiK0BCGkEQBEEQeY9uAGRLRRBEV4GEtA4OadIIgiCIrkCKPnEE0SGgVzU7kJDWqaDXgiAIguic6PSJI4j8h6yRswYJaR0cUp4RBEEQXQES0giC6EqQkNaJIHNHgiAIorNCQhpBEF0JEtI6OCSY5TdLly7Bhg0b2rsaBEEQHR4S0ggi/9HoPc0alCetE0ECW/5xwAFDEI1GsXZtdXtXhSAIokOjw4BGDi8Ekfd01Ono2rVrcc0112Djxo2IRCL485//jDPPPBOPPfYY3njjDWy11VYAgKuuugrDhg3LeX1ISOvgUHTH/CeVSrV3FQiCIDo8dgh+EtQIIl/pyDPRaDSK6667Drvvvjvq6+tx0kkn4Te/+Q0A4KyzzsK5557bpvUhIY0gCIIgiLwnpXfsCSBBEPlNZWUlKisrAQDl5eUYNGgQqqqq2q0+5JPWwSFNGkEQBNEVIJ80gugYdIZXddWqVZg/fz4GDx4MAHj55Zdx/PHHY/To0diyZUub1EEzOtHMvqmpBbFYNOvlRqMRpFJ61svNBslkAnPn/gQA2GmnXVBaWtrONWof8rWNZs/+HgAwePDeAIAtW7age/fu0LSuZa6Tr+1D2FAb5T/51kbxpIH/LWtGqo2mEUkd0A0DW5dm/zufDaIRDSmSJPMaaqPcs7FRx+E7FKF7UWZ6oLYa5woK1ONIQ0MDRo0ahYsuughHHnkkNm7ciJ49e0LTNDzyyCNYv3497r777pzXsVOZO9bXN+ek3IqKUtTUNOak7NZSVVWFoUOHAgA+/PBT7LPPfu1co/YhX9uItc369bX4+OMPcdppf8Y//nEdrrnm+nauWduSr+1D2FAb5T/51kZ1LQY21CawVVHbLDrFAEQ0oKEh2SbXC0tZWREaGnIzDyGyA7VR7mmM69iyRYdemNm40FbjXO/e3aTbE4kELr/8chx//PE48sgjAQBbb721tf/kk0/GRRddlPP6AWTu2GWZNetr7LBDP2zatKm9q9Jl2LhxIwBg1aqV7VwTgiCI1pMyTKEpGtHa7L+uZoVAEB2NjvyGGoaBG264AYMGDcLZZ59tbV+/fr319yeffIKddtqpTerTqTRpXZPMfNJWrFiOhoZ6bNq0Eb169cpFxQiCIIhOjG5QpEUiNzQ1NSKVSqG8XK7tIPKYDmxN+u2332LixInYeeedMWLECABmuP13330XCxYsAAD0798ft99+e5vUh4S0TkQm7oW6nj/+DQRBEETHgULiE7ni0ksvREtLC1566fX2rgqRAR012sV+++2HhQsXura3RU40GWTu2MHJNO4LO4+ENIIgCCITdKPjTsaI/KalpaW9q0BkCA0J2YOEtE5EGIGNHduJgnsSBEEQbQgFySMIgsgdJKR1cEiTRhAEQbQHukGGjgRBuKH1m+xAQloHobm5GXfddTsaG9VhScPIa7YmjYQ0giAIIjyUb4ogCBe0cpM1SEjrIDz//Dg8/PADeOyxhxzbeU0amTvmN/SsCYLoTCQNgCLiEwQhQrOd7EBCWgchHo8DyL4zLZk7tj2U54cgiM5A0qBJBEEQTjRSpWUNGl87CEwLI07wM9WkMUhIIwiCIDIhmTJo0YkgCAdkNJQ9SEjrIKiEtNaWR0IaQRAEkQlJHYiQjEYQhAuS1LIBJbPuIATRpIV5KWyftFZXjQgJ+aYRBJFvxJMG5m5KAQB26xVFScz5rZm/KYn6hDMmwKa4jhhJaQRBcNCIkD1ISOsg2EKafHum5ZEmjSAIgmhKGlheq0ODgR16RFxC2pJaHcVRp7dJQURDCc0iCIIQoLXo7EDmjh2EIOaOmUV3JCGtrSDfDYIg8pWUARTFgMKohpTwKdENAzA0lBVoKBX+a+9xrTkex+LFv7RrHQiCsCH5LHuQkNZBsAUwChxCEARBZBfdgDW7EtOfmb/zc+r1z389jltvvQH19XXtXRWCIACyd8wiJKR1EHIVOIT8owiCIAheMJMLafnJkrQWLZFItHNNCIJg5PGQ0aEga/IOQrZD8JNPGkEQBMHQDXti1ZGENIIgiM4KCWkdBArBTxAEQeSKlG5YVkpJQSoTfdQIgiCI3ENCWofB/EpGIk4LVdKkdRzItJQgiHwlaZjRgzWY+c94SJNGEATR9pCQlufU1dXimWf+hWTSzF+T7eiOZDnc9rR3NDSCIAiRpGE6qWua5tKkdQQhLV8WwWpqalBUWICS0rL2rgpBtAtanryLnQES0vKcW265Af/5zwvYeeddpPtb+2EiTRpBEASR1A1omgZNk2nSDGgUsi0Ql112Ibp164YnnxzX3lUhiHaD5LTsQNEd85za2loAQEtLC4Dsa9JISCMIgiBSOhDRzElBUhI4xCCri8DU1VE6AKLrQiNF9iAhLc8RBS+v6I6ZlEurHQRBEERSN/3R5Jq0dqkSQRAdEVK6Zw0yd8xz/IQ0r2N9SgZAmjSCIAjCjOAY0UwhLUVCGkEQrYCGjOzQZkLa6NGj8b///Q+9evXCu+++69r/9ddf4+KLL8a2224LADjiiCNw6aWXAgCmTZuGO++8E7qu4+STT8YFF1zQVtVud5gQxYQzt5DWOk0aCWkEQRBdh2+/nYXNRhkG/crp51wd1xGNmJ5nNS06FtekuH15bOyY/ibmS+AQgiCIbNFmQtrIkSNx+umn49prr1Ues99+++Gpp55ybEulUrj99tvx73//G3369MGf/vQnDB8+HL/61a9yXeW8QBSiNE1toZrJR4qENIIgiK7DH449ElsfcjoevO9Bx3YNQGmB+W88CSyqTjn2dy8kGyaCIIi2pM2EtKFDh2LVqlWhz5szZw4GDhyIAQMGAACOPfZYTJkypcsIaUxTptKktTZPGimlCYIgug5aJAroKfQsVi/4VRR3PIGMFhwJIn+gmWV2yCuftB9++AEnnHACKisrce2112KnnXZCVVUV+vbtax3Tp08fzJkzR3p+eXkRYrFo1usVjUZQUVGa9XKDEIlo6TqY91VSUuCoS7duJdbf5eVFgetZXFxg/dte95ZN2rONglBRUYrS0kIAQGFhLK/rmgvyvX0IaqOOQFbaSDO/JWVlRVmoUfvDvpElJYXtfk/RiC3ctnddOgvZfo7RiEZtk2MatRR6dC9CRVlm83H6FtnkjZC2++6749NPP0VZWRmmTp2KSy65BJMnT5Zqh1TBM+rrm3NSt4qKUtTUNOakbD8SiSQAe5UwHk866lJb22T9XVcXD1zPxkbzWdXXN7XZvS1Z8gvmz5+PY489Putlt2cbBaGmphGNjWYahZaWZF7XNRfke/sQ1EYdgWy0kRYxNWgNDbn5XrY1ejqqSUNDvN3viZ/8t3ddOgvZfo5lZUXUNjmmqUnHli06ChOZBZBvq29R797dcn6N1pI3IfjLy8tRVlYGABg2bBiSySQ2b96Mvn37Yt26ddZxVVVVqKysbK9qtjn+gUMyoz0Chxx44D44++zT2ux6BEEQhBMtEu2cqVc65U0RBNGVyRshbcOGDZbgMGfOHOi6jp49e2LPPffEsmXLsHLlSrS0tOC9997D8OHD27m2bYefkObUNIbxSZOdTxAEQXRqIlFkaa0vr8jj+JMEQRAZ0WbmjldddRVmzpyJ6upqHHroobjsssuQTJqmfH/5y1/w0Ucf4dVXX0U0GkVxcTHGjh0LTdMQi8Vw880347zzzkMqlcJJJ52EnXbaqa2q3e7YSafNfyORbOVJMyFna4IgiK6DFomiM7r103ojQeQHBjrjCNM+tJmQNnbsWM/9p59+Ok4//XTpvmHDhmHYsGG5qFbeowtZRL01acGhPGkEQRBdDy0ShYHOp0ojqxCCyA86o6a+vcgbc0dCDvvwBPFJyyQEP33YCIIguhCRaCcU0ehbRhBE54OEtDzHMExNVyQib6rWatLow5Y76NkSBJFvaJFI59Sk6TTeEkQ+YBhk7pgtSEjLc7wCh9TUVCOVSlm/M9Gkkblj7iAhjSCIvEOLQuuEUygKHEIQ+UHnWwJqP0hIyxOqqtbhxx/dSbrFiT4T0pqbm7Hffnvhv/99I6PrkZCWe0hIIwgi3zADh3SeaRT7Jhr0LSOI/IGmP1mBhLQ8Yd9998Dhh/8Wzz77FHbZZaC13S2kmU3W0tKM2totWLdurfLYIJAgkTvo2RIEkW/Eum+NzjiD6nx3lBk//7wQNdWb27saBEFkARLS8oSWlhYAwOjRV6O6utraLmq6rFVDiSYsnExAmrRcQ0Ia0ZExDAN33nkb5sz5ob2rQmSJlpSBkn67ItVU195VyTrMf7urc/vtN+O60f9o72oQXRya/WQHEtLyHDHAh1tIS8lPDFguCWm5g4Q0oiOTTCbxyCMP4g9/OLy9q0JkCd0AYOjQWxrbuypZh4Zbm4aGhvauAtGFoVcxe5CQlucwIUqc8LPfqZTu2uZHTU01Xn75xfQ5JKTlChLSiI4MRYDtfHTmAIj0LSOI/KDzeLy2PySk5Sn2BMkppImaND66Y1Auu+wiLFu21FEOkX3o2RIdGeq/nQ/d6Lwap856X10eatgOCbVadiAhLU8RV7HFUPwyIS3opKqqap31N5k7th006SU6EtRfOx+6AWiddJmbNGmdE0qtQHRlSEjLU0QhjQljLKm1rrt90jKZVOmd2f6lnVG1h9ZZZ0lEp4IWcDofKcNAZ13jpkWFzgklKSe6MiSk5Sm2Bs35r3t/6yZSNBHLHTRpIDoy1H87H7oBGJ3UY4S6a+eENGkdE3ofswMJaXkKE55sIcqpWWuNuSN/GE3Ecgc9W6IjQ+ZjnQ/d6LxO/TTedk6oWTse1GTZg4S0PEXUlIlRHmXRHcOWzZdLZB+aNBAdGeq/nY/OrUmj/toZMWiOQnRhSEjLU1SBQ+wPUXZ80mi1PJfQpIHouNACTucjZQBapx2XOut9dW2oVYmuDAlp7cCCBfMxdOhe2LRpk/IYURgThbbWhOAnTVrboBKaacWX6AjQ2ND5MF2bO5cmjcVhoiBYnRP6XuaOO++8DdePvjrr5XauEaZ9ISGtHXj00bFYvnwZpkyZrDxGZe4o7s/MJ82Q/t1WdJVBV7xPiupIdCS6ynvalUh24uiO5LzUgTE8EvhRu+aMBQvmYeWqFTkpm1otO8TauwKEnOA+abwmLbyQ1h6r5YZhdAmBhSa5REeGNBOZEU8aSOZoWI0266hvybxd6luMTmvirnfS++oKTP74Q7z00vN48slx6Natm2MfRXfseBgAGhKGNVZ9+tnH+OzTT3HHHXejMAoURjv//C9bkJCWp7jNG+VCGu+TlgntJaR1BbrKfRKdE+q/mTFzXRLVzQZiOZiHlG7W0NiYyPh83QD0lqYs1qjtaWpsQHNzMyp6buXcQd213YjH4/j73y/DXy+6DHvsuVfo86dO/QwAsHnzRreQRuNQh6MoqmFRdQo/V5vz02ufmgAAOHRFAtuWRzC0L4keQaEnlbcE06Txq92ZBQ6hATBXiM+WnjXRkSCftMxI6ECvYg2xSPaltLLSKBqM1nkp6PH6LNWmfbj6mquwZUsNXnrpdcf2n39eiCeefAQPPPAIysrK26l27Uw7fWNWr16F2tpavDn+tYyENLvakneGvpsdjm6FGrpxbZmsrQIAVBRpIAONcJBPWjviNWkXhTIxXxr73drAIe1h+tJVhBUS0oiODfXXTEh14lxk+cCWLTXS7W9P+C/q6+vx88+L2rZCecJHH72Pqqp17XJtNo+IZOrGkD5f5gah03eT6MKQkNYOsIHo3/9+RilkuUPvO7dnK3BIe/iddBVhRbxNdt9dwR+P6PjkmyYtlUph/fr17V0NX1I6kAMlWpdh6tTPcOEFZ4dfQBS+kV2JlpYW/Oc/L+D2O25pl+sbbB6hZTalZIJYRHJ+V2xPgmCQkNaOfPfdt/jPf16Q7lOF3M+OT1rrA4cYhoF//etxbN6sTiPgdW5XoCto0u677y689dab7V0NIgfkm5B2xx23YI89foWNGze2d1WU6IYB3aCFmNbwwgvPorGpEclEMtR5FGACqK3d0i7XtYWszPq99W2UnU7NSnRhSEhrZ+rq6qTb/fKhtUaTJisnLN98MxM333w9rrji0ja7ZkejKwhpDzxwDy666Nz2rgaRA/Ktv3700fsAgOrqze1cEzWmQiG/nltHo9WLA234+L/+ejqeeuqJtrugAqOdF1QsK5FMVcgeViZk7kh0ZUhIy1OCRndsvbljZoN7PB4HANTXy4XMoNfvzHQFIY3ovOSbJo1N4PL5PSKn+CxgOP5x8O2337RpVfx4/PGH8cUX09q7Gu2uRTQsn7LMppSs9lINdB6/7wSRa0hIy1PYuKSK7siGtVQq/EQqG0IaOy+TQTmfJ1nZhIQ0Igxvvz0e9913V3tXwyLb/fXSSy/EvvvukfH5HcGEkIS01qMb4rfO5uGH75eckf/9Ite097eF+aRFMtSkedWfXimiK0Mh+POUoMmseZ+0ttSksfMyHZS7BiSkEcG58MJzAADXXHN9O9fEJNuatDfeeDUr5eTze5TK36p1HLpwAJBMae9nZScSz3Dd38Pcsb3vjSDaE9Kk5QGyyZA7uiMTzuD4t/UTqcwGQCvkboQ0aUHpqvdNdEzyrb+SuWPXwDbdy/Db1AV1L+1tmszeyQymA+b56X+lgUfaIU0QkSPyeOxmrF27FqNGjcIf/vAHHHvssXjhBTO4X01NDc4++2wceeSROPvss7FlS9sE6SEhLQ9IJt1RrIJGd2ytT9r8+fNRWdkdCxcuCFVnW5NGQpoK9312jfvuyKxZsxqJRKK9q5EXtEcORS/I3LFr0ZG+E1999QUuv+yidhOW2vtR2ellMvRJ83huHacXtD16KoWaPA6kJNIRgsBEo1Fcd911+OCDD/D666/jlVdewS+//IKnn34aBx10ECZPnoyDDjoITz/9dJvUh4S0PEAupDk1aOrojknXtjBMm/YZAGDixLdCnUdCmj+d0SftueeewapVK9u7Gjmhvr4eQ4b8GldffUV7VyUvaI8cil50DE2aAfKRyg753M4i/37uGVTXVKO5ubldrt/ez6q1yayt2pO5YyjeeONVXHb5X9tMqxOWeDzu/J52gLasrKzE7rvvDgAoLy/HoEGDUFVVhSlTpuDEE08EAJx44on45JNP2qQ+JKS1A/yK8C+/LML333/rOsYvqqPoqxaGbAx6uuUonEkXyv8XFQBmzfq6VVqVziakbdiwAddd93f85S8ntXdVQhGPx7FmzWrf4xobGwEAkyd/mOsqdQjyrb+ycbO9Tbu8oBD82SPT/tce3daOTtj21wba/11l84GMQ/AzJPfR3veWz/z40xwAQHV1+Hy1bcGSJYuxbt1a63dH0KTxrFq1CvPnz8fgwYOxadMmVFZWAjAFuc2b20aDqRmd6A1oampBLBbNernRaCSjKIoqVqxY7pvrZ7fd9kBBQQHmzv3RoWnbZpt+qKzsg3i8CQsXLkA0GrW0bNttNxA9e27le/0FC+a5Vvz69OmLvn23CXwPW7bUYNmypejevQd22GFQoHNmz/4eALDnnnshEsluO2W7jZqb41iwYD623ro3+vffNqMyEokWzJs3FwAwePDe2LhxPVavXo2ttuqFAQO2y1pd2wp2PwUFBdhtNzNKH2vTwYP39jw32+0ThqVLF6O2tta3jslkAnPn/oRYLIbdd9+zjWpnE/RZ5gqxjeLxOBYunA9N07DXXkNaXX5r72/hwgWIx5uwyy67ori4pNX1yQVV9Sl8uaoZvUuz/x0CgGhEQ6qVGs5lS5cAALYPOG63Nax+2w0c6PpOsH2AXf9Vq1Y4El9X9umD0tKyNqipXR8tosHQDewwaAcsXbLUUb/WYUDXDd/FUD2VxIoVKxzb2rJ9mxobUFVVhZLSEvTpE3wewWBtuO22AxArKABgP9ttB2yHWCx7Me6y8Q7lC2vXrkZzvBnb9NsGRUUlaGxsgAagJGD/z/VYEI83Yd1aW0ir3HYgygqj+O2AIs/z2mq+UFCgHqcbGhowatQoXHTRRTjyyCOx33774Ztv7BQgQ4cOxaxZs3Jex04lpG3YED5nVxAqKkpRU9OYtfIuvfRC30hnP/wwH/369cfOO2+Hmpoaa/tNN92Oyy67AvPmzcXvfncQysu7WbnKnnjiaZx88v/5Xv+gg/bB4sW/OLZdddU1uO66GwPfw7vvTsI555yOY445Hs8//3KgcyoruwMAFi9ehW7duge+VhCy3UbffDMTxxzze+y773744INPMypj1aqV2GcfU22+fn0tnnrqCdx002iceuooPPxw+ydADcvKlSuw7757YNttB+C770zhk7Xp+vW1nudmu33CwOq4bl2N52SnqqoKe+65E7beujfmzVvcVtWzCPosc4XYRvPnz8OwYQciFothzZrWrxq29v6GDTsI8+fPxaeffok99mh7IToIVQ06vqlKoldJboxUysqK0NDQOpO6UaNOAQC89NLr2ahS1mH1e/LJcejWrZt0H2DX/4orLsGmTRut7VdccTX23Xe/NqipXZ/CwkK0tLTg5ZdfxWmn/cVRv9bw9NNP4vPPp+LFF1/19Peqrt6Myy//q2Ob1/UTiQQaGupRUdHT2vb9d9+ipLQEu+66W+h6fvvNLDz8yAPYZ5/9cOWVV4c+n7Xh/fc/hL59+wGwn+3YsY+hd+/K0GWqyMY7lC/cc88YzJ37I6655nrsuefg0O92rseCeXN/wt333GH9fvypF1FRWoQDtvEWuttqvtC7dzfp9kQigYsuugi//e1vcfbZZwMAjjrqKLz00kuorKzE+vXrMWrUKHz00Uc5ryOZO+Yptlmj3GQuWyH4M69f5/ZJKywsBAA0N7dY24466nd45pl/Bi6js5k7Mo1ttrWgbYXo16miIwSoaAu8zArbw+SwI/ikpQwydswWXsEk8g3RPUFFdfVm6AHHIQD4/POp0u011ZuxebNt4hb2nXj88Ydx2WUXObaNfeg+3HnnbaHKsa4PdQj9QOcL0auFwgkFRUWmRqqFm6fkM0YH0GAahoEbbrgBgwYNsgQ0ABg+fDgmTJgAAJgwYQIOP/zwNqkPCWl5iiiMcXsc24NOPGVly8oNiipwiK7rWLz45wyun18UFJhCWiJhD37ff/8dbrjh2sBldIT7DAMLUhONdsxhQxagh1Cj6r8zZnyFvn0rMHPm121an44gPOd0DmIYeOXl/wTyr2xPZs36GtOm/a/V5WT8KNtx3PW6dDzehMsv/yuef+G5Vpd72eV/xd/+djG3P9w9f/fdN/KCM4RNvlsrpMnQ8yzKbD5hLSa3dAzNYEeYEX377beYOHEiZsyYgREjRmDEiBGYOnUqLrjgAnz55Zc48sgj8eWXX+KCCy5ok/pQMus8RS2kOfdnEoLfq7ygiMmsk8kkampq8Pzz43DffXfhiy9mYeedd8nKtTJl3333wC677IpXXhkf+tzCQtMuvqUl8xUqtyYt46LygmTS7GvZ9A9oS/hIqIQ/Kq3Ap5+aUa2+/HIa9t//gLasUpr8fZGShoHWxk5QsaW2FuP/Ox6ffvYZHnnkydxcJAs8+uhYAMChh/6uVeXkUwqInxctxO133IzHHv0nKjz8vr3qnEj7zc2aNQPnnHN+uAr4fDwy1WzrhpFxREYeAyy6o/8C3ooVy1FTvRl7cb6pnvOdjv7hzCFMk9ZeUUXDkk/vtIr99tsPCxculO5jOdPako65JN4FEKM4itvZRKW1edIyRdSkXXfdP7DbboPw2WdTAMBztbethLSVK1fgk08mt6qM7App5u9Zs77G66+/0qp6tQesr0WjHcvcka3u+mvSaDLAo5r4secYjbatsN4RzB2Teu4C8LNyk8ks5fHL4+cIIOP65SKZ9eSPPwAAzF8wX35NJmR4qFKZBUIiEX6xyO+eMn0nsmW2HCa64w03XIP7H7jHsS2f3uk77rgFr70WzM/eiy8+n4q7777D/8BWUFSYNnfMU02a2G/zqZ07CiSk5Sls8BRXHlRJrcMgOydsMax+zJn57bdNbRVvHhjm+vkGq2IuhLSff17k8gfoCNjmjh1Lk8YWEpgmUIXdp/PfrK4tsBPUOp+HLaS1rbCerXaprt6MysruePPN17JSHk9Sz45mQkqWUxDkezjsoLVri/eVPSrVpaxFVY9nyo4J8o0MS9hvqobs9iXVWBGiAEc5PLphwDB03HHHLZg9+7uM6xiURYsW4L33JrW6nKeefhLz5v2UhRqpKWQ+aa2Yp7QlHWHul2+QkJan+GnSst3ZMzd3ZBNgc3W3o2lZVLDnIRv8fvxxdqgyVL9zwYwZ0/Hss0/npGymSeto5o6sj/qZO9q5B1OoqanOeb3yHXuhyNlv2buei3QnQWjte/Tzz6bP7HPPPZON6jhI6rnLlRVE+Fu1cmXwFbc8nzBlKkBke5ydM+cHfP319PQvlZTmf22mZcsst2lrD3DCxsSsCWmtXOCy7IMUedLiTU1YtGgBnnjisUyr2CnpcOaOHSBwSL5BQlo7EGQgUwlj+SKksePZYM+SPgcpJ8/nBgB4Ic09+B1++CG+wVHSpUjLzCUnnHAURo/+R07KtjUoHWvYsBcSgglpGzduxM47D8ybD9+MGV9hKZcfKht89NEH2HPPnT3vUdVf2XOMxQqsbRMm/Benn/7nrNZRJFvmjkyTUVBQ4HNkeFJGDj+q6c+GGPGXMW/uTxh9/T8wJe0z6Ee+a9JE2iuJ+bvvTrT+9vt2e/nctOZp+/X5sG3JzBINPXzgMa/rB/FJk2M4/iGCwcawljz5VvmRC1Pkzk7HWhLvUngLabIPVnCftFZWDTJNWjJwHdpa5f3ZZ1Pwu98ND7XKJ2rSxDq3tPj7hXS+EPxmm3dUc0e2kKDC3cbN1kple3LCCUcDyG7+tBtvvBZVVeuwZs1qZTJ61aRYplG94IKzpcdmk2yZtbF+wCK4ZpNcatIYqnFk7do1AMzADIHKyfMQ92L/a6/orIEWVdn32kNT8L//TclanVzXDyukpe8plTVzx7QmLWTUnOXLl2LWrJn24rNkEt/Rv5u5hLmb5MuCoi/UlqHpWEviXQgvYYzf77dNUXorzjVRheDPRyHtlFP+GDpQB7s/NiEV26GoyH+C577Njj1A2T5pHcuklX3Igpo7Mrr65EB1+7YmrX2E9Wxp0lgE12yS0BE6uuOUTyY7kjEr8TGps3NVBbtu3vduA3jwwXvw8cdmwtj2i85qf+NUJqcqn7S6ujoAphnqG2+8mnkVshzdkeW6VGllw2L77IXr/LfeeiMmTnwLKQ9/4Q5vItfK8Wrp0sVYunSxZ9n5EoJ/0aKFGDXqFOV41tG09/kACWl5CuvL4uB77713YsiQX2c93H72hLTMrp9rVq1aGep4sY5iPrpMhNGOPulnGoh88Un74IP3cOCBe/uusIcNHMLo6O3VWvyjO2YmrGf6XNn8r7XtwrTgOTF31I1Q0R3r6+vw/AvP4p57xvge6+W3Y243/9UC1iDfNWmNTQ344Yfv8eKLZl4xv/fXIsuvrfMT5+2Txr8zc+f+iIsvPg8//PAdEsnWBXbwvaWQ96xlOQgN06SJ8wE/mHDGJu/SuUn+Lyd40tr633zz9bj55us9j2nP9DJV69YiHo8DAD6d8jEAYP68uQBk7dmx27I9ICEtT/HyPVuzZnVWBK2wXHDBWbjmmisBuKM7hqlDe0x+M/W5Y7gn8OHL6OiTfvYhYKuw7c1VV12KJUsWo7raO8hHUJ80VSTVzoxnoAOFf40dOMQtrAd5ZuK7dNJJx+Phhx/wPS9bPmms/jkxdzRCatLSt1JX52/Kan8TVNYV4UzO8r13L1q0CADQvXt3AEBKTD3QRu+nQ+hVymjM8sUWJJcsMbUfixYuyPlYEjbhc8R6l7Icgj/jZNY6+0Oyr2OLabn0pbT7Xfs9oX9cfQXuv+8usx4+wnpX+KZmm/xYEidc+HXm1vT1TAW8JUuWoFevXgDcyawzKS+f8dOkBRl4O5uQxvL7tFdUPxE7b5v3WhPro/7mjt6CeWciTPAidwj+FAoqtsHS6ABMXWVOnCv2PR5aJIqfNyewcy+58BPrtjXKd/kNpq5sQZQT8H5s7I4fP/oee//J7TO4ZvVq9OnTB9FYDNqOv0VFpD/m1JejflXmucIWJHqhYt/j0bLtUKv+2aKm2UCv4vATValJl2Fg4aIF2GXnXU01ok/QKLu9gq295ntiWWYyVVnZFwCQEBZZDBgKrWGWx9kwvsyOdkxrqwyj1fKk/3wg3AUi0exGd1Qt2k6f/iWefPJRPPjgo6is7ON7vuwuDMPo0N9OXTfAGx1UV2/GQw/dj7///Tr06NGjVWWzx5KV52MYeHP86zj0kGHo03ebUKcu+nlhugi2UCQfgzrzNzVXkCYtT8lkUG5NMusg5yYSCVf+tkx80tpjDbe1mrRsaFk68ocGaL/8WCpYIBM/E5uw0R3t3x27vYKhvkcvc8doSTe0aIXQkJ6KGjoiBUXY0Kg2SYsUlaGg+9YwdN06j50Lw7lNA1BbU41bbhmNV175j3Cs4To2zH+pZBIwdESj0VaVI/tvq2INsRCqNBa4QXzWjY0NuOTSCzBmzK3439TPAAQxdwzpk5YH49GWLVtw6aUXYuXKFYBh4L//fcPa514oE4S0LL6fhqFj8uQP0Jw22+Lhn6ff4gbvc8MWhwzDaL3Wz3c+EG7ya5k7prItpDmfz/TpXwIA/v73yz39Lu1FUKmY1qH90sR3++PJH2Lp0iWYNu2znF0jNIaBTZs3YdKkt3Hf/XdnXo+U2U5hzV4JNW32JEePHo2DDjoIxx13nHT/pEmTcPzxx+P444/H//3f/2HBggXWvuHDh+P444/HiBEjMHLkyLaqcrvi99K1h09aKpV0+cqJL2OQhMDtOTlIJBI4/vij8NVXX/gcSZo0ETsXXn4o4Fmb+D3XTH3SxDbvTITRpImkUklosUJEkUJhVENhVIORbIHe0oSEx6RPi0RhJFsQi8A6j51rJFsc2wqjGuKN9TCSLVi8aC4KoxqQSsJItiAC3XVsmP+QYtdDq8qR/VcQMmoIC4EuGnS9/fZ41NaaJpCrV690tIdywqrQfCqvnQfj0ezZ32PLlhp88P67qNmyBRMm/NfaZ72P6XomE4JfcBYX+7777ju89NLzeP0Nd4ApXjvk5+/HjyHsvLbw/QvblKxuepZC8FuLtq6+Z1fshx++V56vysnItrW6pQ0jtF96tnDNA9L/vv32eOmiQCZlt1ZI0zltZWv823RlP0jvJ01aaNpMSBs5ciTGjRun3L/tttviP//5D9555x389a9/xU033eTY/8ILL2DixIl46623cl3VnHLCCUcHijTo/wHNrk9akHOTyaQ1GHek6I78NVetWomvv56Oyy+/ONDxjEyCSnQ+IS2/NGl2X/R7rkHNHcU27tofFC9NmhYtkGiXdbQk1W2hRWOAoQd+rpZmyL0n0PkqrH6cB76VKk0any7C/jstpCnun70GwQOHtP94xCdVdn9L2DNJC2kpp2lqNjXdTU2NAICGhgbXPsd8M0SeNCavG+n/tQbf2UBYnzT23LP0TdLZgpbweMJbsJj/8sKLYbRe0H3//XcxevQ/sHjxL60qJxNUbZNIJDBhYnbms60VfgxD53x+7e1Lly7BlVdeioaG+lD1sMwdxeZv/yGnw9FmQtrQoUM97W/32Wcfa/+QIUOwbt26tqpamzJjxleBjsuluWMm1wOYkOZ0VO1ogUPYx8nvo+bWqpCQxiaL+SKkqdIjiGRq7tiZNWlBUPXXRCIJLRZzL9/rOpIeK/NatACGrgefcFnlp2d+WQocYuV5K2h/jbBKG8z3Ravfcqvmo0adYk+MwXZ7+4PAMFBTU21fIw/GIzaWpPSUy7+ZPYPFixdj1KhTsH59lfPkLNbfenYSATdMMAxecNQsATQbPlU+84GQAmu2ozuy+848mbWTCy608y4aht7quf0vi38GAGzatKGVJYXH6xk3N7dOk2Yt3LRyQZHvt3xfnTDhv9i4cQMWzJ8frDbiPEtouXwYczoaeWk4On78eBx66KGObeeeey5GjhyJ119/vZ1q1bZk21HY/1x1eb/88jM2bNiAZDJpDTgqTVqQpZL2FFbYpCCsOanbX6nrmTsGDdTRVmRbSBP7rle5S5YsbrfkutnEq0+qTJBSqSS0SAFeeH4c1qxZzZWloyXhIaTFCgBDD/yhto5KTyjZXLm1GhRm9poPZrtMYBUn2fwCAVscEe+6sbHRWZalSZPz8SeTcdllF7lPyAaGYeUEC4Ol0Unprhtkz4RN9ObMme3cn/5XFKIy0VpZz05qrmpv85PXnOaOXATFHA/9oaM7RrIrpKUsDYrQFmKbcvVcsXyZpK3c5numS5/9Ox5vCm2Spwps0haI7zY/nmZrTtBarbhhGPZ7xPtVaramW3Gi46fo7uK6vw4+B2oP2v8rJTBjxgyMHz8er7ximwS++uqr6NOnDzZt2oSzzz4bgwYNwtChQ13nlpcX5STyXDQaQUVFadbL9aK8vMjzmqWl7hw/JSUFgeop+9AUFcWU5x588L4oKytDt27dEI1qqKgoRVFRNH3NQul5XvXv3r0EFRWleOWVV7Drrrtgn332RU1NDSoqKnzrrsKvjdj91dWxYwzP48vLi6y/KypK0dRU5Nrv96zFMoqKnK9bLvtULsouKDA7TklJsat8v+vl4h1iE9lu3bzbgo0JRUXedSgrc0YlVLXxihUrcOCBe+Oqq/6Oe+65N5Oqe6KqYzaen2EY2HXXnbF06VIAQFmZfY9iG/HPw3lt3dKKTZnyES666K/QoMEwdMSK5OMBkNakGQZKSgpRVlbk2i9uKy4usOpVVlaEaHpCX1QUlZ4flGjEnCiUFMvr0ZYUFtmLRnxdnGO0gbKyIsTjwpivpRznFBaaz6egMCa9r8W/LBSuHcH48a/gj38cie7d1VYuQfjss0/x2GOP4oEHxlrbgjzb0tL0MZqBEuGbFok6P1Tit720tABFRUWu71lRUUHodi0oMJ9dYaH7XP66xcV+ZRvcseb7E4tGUFLivLew9SstKURJqfqdKSl2zwe8rsEWK2XvUibvREHMbIRCoe/FYrZQVFQUQ2Gh/SxvuPFaVzmy51tSEkNJifksNQDnn38W9t57b9x00y2B68f6SCyq4fnnn8P//d9fUFxc4nlOtsaG4hLnPRUU2M8gFnM+/5qaGvz044/47SGHBKoPK0uLOPeH7l+lBTB09i7a5xcWmf0qVhCRlskLz2VlRVZOwdLSIpSVFTnaGwCKS2IoKy9CRYV3/dpjzp0L3n//fUyfPh2bNm1yCbr/+te/ApWRV0LaggULcOONN+KZZ55Bz549re19+pihW3v16oUjjjgCc+bMkQpp9fW5ybpeUVGKmppG/wOzSF1dk+c16+rcavLGxpZA9ZStRMfjCc9zGxoaUFRUhJaWJGpqGtHYaD7rREJ3nMcmzvX1zY7tc+b8YP29ZUsjunVrxFlnnQEAeOGFV3HmmX/BO+9MxgEHHOhbfxl+bRSPm8+mpqYhXU/d8/ja2ibr75qaRlRXO22y/dpHVkZTkzOhaS77VLbL/vbbWaiuNgMZpFKGq3y/6+XyHaqpaUBpqVfZ5hd6y5ZGzzps2eLcV11dj5493ccvWrQEADB16tSc3JOqTK9rPf/8s/jNbw7BTjvt7Fm2ruuWgAY4n4nYRnV1Zv/VNM2xvbm5BZFYCWDoSCRSaGhohhbRYOg66hriqK5ukJqIaVFTk1Zf14RIxB2mv6HBOX43NZm/Dd1AQ0OzNW41NbW4jg1DY7pc3dBaVU42qK83x3EDhqMuLOE2AMTjzWhoaHbVddOmapSXV1i/m5tN7UIqqUvvKxpzTuS/+OIrTJw4EVVVG3DJJX9r1X18960ZFOLnRbbPj9+zra+vw333mYsciUQSDcL3m6X8YCSTzklOfX0zkknNtTgfjydCt2s8PTanUobrXP572dKS8izboQFtMf9ubkmiscnpTxe2fg0NceiGewGaldPQ6E6W7XkNwz5GPC6TdyLebN5fMul8fnywl+bmJLZs8fZtamx0v9sNDc0oKWnmq43vv/8+VD2Z1cM7776Dn39ehMLCEowY4R2ELltjQ319HLFYsfU70WL365ZmZ1+9447bsXTpEuy0869RXt7Ntz4t6bKSSWe/nDTxHVStr8Kpp44KXEf2Dui63Yb2mOvuJ+Z++51saGi23tnm5iQaGppdc56GhhY01DejpsbblaCt5ty9e3fzPyhD7r33Xrz44os44IADUFlZmXEOwbwR0tasWYPLLrsM9913H3bYYQdre2NjI3RdR3l5ORobG/Hll1/i4ou9gz50BvIxBH8ymXJFEwoSOGTBgvn4/e8PdRzT1GQLMF999TkA4LvvvslYSPODVSuoiVw2zB35VdX2MHU88cRjcMYZZ2PkyJNbVc7cuT/hD3843EpeLEti3J4Ej+6YncAhzPwsFnOvXrcX11xzJUpLS7Fs2Tr8/e+XY5dddsUFF7jHyTD9WB04JAVEC6zIhID5jHVdh5HSoQOQ2TMw7Vtgc0fbns3xb7Z80izfSsNAIpFAQWH2k1v7oXrG/HY+iAhPQ4NzEuNy2hcoFO6PvQ/ZCMOeSSCKTz/9xPpbT6Vc54rPRpzjZDOwT0vCnEzKQodrIcwdHX2T669h+ix7Fvw46x84JNw7wQdsyQbsnfI0PTUMl+DtQnYfRhaiF6bPZ/OOtjR19uqn4t1u3rwZgH8kYhHxHX7+hWcBILCQZui6tHOz4Eqi/6t1niF+T8x/mZlkZ3P5CMPEiRPx4IMP4uijj25VOW3WU6+66irMnDkT1dXVOPTQQ3HZZZdZH4m//OUveOKJJ1BTU4PbbrsNgPkBfeutt7Bp0yZccsklAMyB4LjjjnP5q3VG2lpIC4LcJ020QXeXXVW1znUM7wT+1FNPAmibQA0s5HBYIU2sW9jAIebfbTdAGYaBr776Al999UWrhTTWVux9jeRBVDwevi03b94Ew4CVdB2wJw5hozuKwWIYbNJcUJAfQhrrZ8xH6aWXngeAQEKa1zsn6+K6rmP27O9Rse/xgKGD9WnrGRsGdAOISiazkZgZ3RGBJ9esbDj+be2HnvVjVs7bb4/HW2+PxzPPPO9rApVt+BDoo0adgt///kj8/vdHSYU08b6bXD5pzufFs359lSRZu48TWwgySY7MT+hTesrVL/zK+uqrLzF06AGu7Zn0j5aWFled7IoGL8fpk8bqY78nQbjjjlvwy+Kf8dJLbv/7TZs24pln3GZSofOkWUJadkPwu7dzf8NAIuHW+DmOl0WtblXNTFi7tDSb2qDi4rYzc/bqx+Jzi4Rsl2yG4Lcai/dJS7/XKUX57lfN6Zvo9pXrOkKaruv49a9/3epy2kxIGzt2rOf+O++8E3feeadr+4ABAzBp0qRcVStvycc8aclkwjUoBInuKFtNqaqqch3XmvwcfohRKf0+au7Ada2L7ui3mvqvfz2OvfYagoMP/q1vuUHI5YpVLvw+WwPfNrvuamrh16+vtbYF16QFCxzC8sXli0Yx1Cp9iDQDsvt/9dX/AAC0SAxGspmL5hUFkIChp6D0YU+bO/If/G+//UZ5fTsEv0uFojwnCGycYeV/8cU0AGZi5TYX0oSFgE8+mYxPPpmMbbbpZ21LKoS0xiZnuHh7v1uq+PvfL3dfW7HQlglhJ5eA89uh6+4IfuL9igLU88+Pw1dffu4qN5Oxrzk9eZf1Lf66fukNZJFLw9aHRSKUlfH22//F3Lk/SvaHugQX3TE73wnWj/3ulY2dKuTzBz0LmjSz3Jb0u1RcVOx1eFbxeibivqCBzURaHYJft8VjvkZWfZSaNPnCj61ZDz9v6iyccsopmDRpEi677LJWlZMfswzCRX6aO9p50pTmDQGFF1c4ZbSNJi2ouaPbLKx1yaxNIU197M03Xw/AKVy0hmwmjVR9SPKFbEV3FAUWVX9k5eSDJm38+NcxbNjwwMeHScoue5fXrl0DwIzUqCea7Kh4nGmXat6npU0k+XIffvh+j+uzE9k/6YllqzVpzrD3TNhuj2idqhXqjRvtUOEJKwS/8xhXTi9LkyaOySqTStYXWi+kaX5R4KTn2H+nUin3AoKrI7nrubl6c0bfIBEmpCUkQoSjfB97R75vWv1V15VjfyqVxIIF81FSUoJbbrkBt99+t/Q4ezFEfv2wmrSoRyqac845HTfeeCsGDfpV4PLExONcxRw/VdYJXmTDCIXdJ9OkFXFC2s8/L8SAAQNRXJwbwc3Vrx31ct4Y+1YFngulzzcgf651dXUoLy9DXV09li1djL0G7y2vo2IRmVnNZBrdUdzf2YW0MWPGWH/ruo533nkHX375JXbZZRfXfOHGG28MVCYJaXmKYRgYP16dbqA9Oruu2yta7AOvsjn2Wz3asGG9a3suJ0msPqq8RJIzHL/EFcewmrSFCxdg0aKFHkdnl1wKvJk6wDLWrFmNaDSKPn36ZqU+fhOUoB++oP5azK+irX3S4vE4IpGI5Vu0bNlSXHzx+aG0r24fgvA+aUA6MTW3P6LZ5i1KIY1p34Ku3otCh6YyoQmHtZrPhLT0x7M9hDSV5on3Q7M0f8KYJJo76gohLc75/zqvLUyoWkHYkO5z5vyA11572VUXR/2Evhq0lpn4qrHJu8wcL1yeNJUmTd5n33zzdbz33iT8+te7AXAG2JKh0uSFfieYUC0RmhKJBF5//TWMHh1sEglw6Tp8jvP9bkp3G6FTDIiw+sXTecmiaWuQhoZ63H77zdh7731w1VXuaJPZwCsvpEpIC9qH2dkqjejFF5+HE088CbN/+B5Lly3Bs8++5PJNZfWw68KZO6bf65RinHJrv50aVXFBrbMLaQsXOud4u+66KwBgyZIlGZdJQlqeYhgGLr74fK8jpOcELD3jc9lh9oqYSkjzHmRaWrwjBWUbUUjzM/Pw80nzO5/33wOAww47OHBds0F2J5zZHWiHDDHttINoDWtrt+CWW27AHXfc7Yp2xfBri2wHDmGT/LCatPr6OpSWlkmDEwRhu+0qMXDg9pg1aw4A249m1aqVgcvwEkRXrFiBzZvrsP32psmorJ3Z4oqmRWH2i7RgkP6YJ3QdP21MoVjyZYmWdEOitim4v4XgkyZuzxQ2MWUTCEuTpgjQkUuCBO1Q+aTFm51jqKEQ0upFjRu7dlaFtHBmWt9//61QF4kmTXz/ZBFDJdsyGZ6YJo2PqulxWSWOe+AWFVRjJtNMV6cDRij9fdOnq8aO0HnSfJJZL1sWblJpX1/4VjiCZwWwEJJt4/2lMkT0pWfFxeOm0Pb999+hpqYaFRU9pee36tpedRd2RbgE6KGu4XH8t9/MxPoNG9LH+QcA4dvIz/zStUgvPF/xHc5msJ985KWXXsp6mfmRlZZwkYm5Yy6vx2Avq0ojJdOkzZs313WMzOwhl0KafY1gmjS/6I5+5/frt5WPkJ1bsuUQDqjbuC144olH8PLLL+LZZ59WHuNXHzaRCyukqTRvdnTH4Gtc8Xgcgwb1xx133BL4HBnLly+z/g56XzziPV51lR3A6Ve/GoT99x9s7ZN9UNevX4+tK/uAzS5EwaBES6K2xcD6Rvd/enM9oKcCC1m2T1okfY309lZq0nRhtZdpRBPtYu7o/56Kmj+Ge4VeLqSJSa8Z2RXS3JNLzwmZ0ITJpK70b/FCg2x8Cv8daW5hmjSZoM49H7/vhiSZtW6ozR0ZzOy1QOHv+9eLz8O4cU8pkm2rKqO+qMpnyN4frk+oEt+7rR/Dz2tMf6n0eJPhHEE8T9T4AGj12Ky8tsf3U3z+0ZDmjkECh6RSKasHs+NramrwyCMPOsqRmjt6aFz58qxrCWavbgskZTU7HaNHj0Z9vTvlRGNjI0aPHh24HBLS8hRfqwDpAeEmP/7lqc+1hTRxv/kvGzS++uoL3HrrDa56ygahtjB3FFfU/I5nf7PjzzmHCV7+z2vp0sxV3K2lLZ5lWxAkFLFfWzJ/Gb/ANH6COSOT6I5MuPrgg3cDn+OHHbUyuEAu3tP8+fPw3XffBjoWMDVplX36ubazSV+BlkK3Qk36X6qpLl2u/8QC4MaW9H3yk97WYD8vpybtscfGZrV9ghBk0qkKW+42NTL/FYUul+9amtwIafb9nHHGXzDlk8mBztdTKd/3T1pNTcvKeMTGBpmQxj8fvwUGmdZEWj9hGxuvox4LP1OnfqrUpMkEU6+6aj7mqUVF4aIfihoqu17ib1+DSMkW258703ffZXYnGYPWr6/KiRThpS13mzuaQnrYIGpeCxMpLrw+u95bb72Jb76ZaddR161nwtcpktakqXxnlZZU1iJe19Kk8UyYMMEOSMQRj8cxceLEwOWQkJan+A1matv3zHj++WelHUp1XbVGyrmCIrOxb25ucWgEGK31o5oxYzquuOISTyHUFi6DC2mmL555HpvQtYXWrzWEzbPiRXtq0mxNjXqossIrt8jDO7OJjV+OnkxC8E+e/IE0Uul11/0df/ubHQJ/+fKlAIDtthvoWYcgnHzyCFRVrbMmrV7vzcKFC/Djj7Ot3zLtRDSqmvi5j62rq0X3HhWuY/ggCX6I76LfcfYcmanSfC/hiTihLEi/07W1tXjlleybq3gRJJCCyifNNUFSCF0NDfIEwrkQ0sRxleVrEhHvRTd0t6ZQ+C3zxzLrHl4DJ8LOSfr4pPkNfcrvsnhvQp1dufsA3H33GIiI42BzczOuuuoyzJ79g/u6Hs/Bz9yxKGT0Q+uZZyCEOfZK5Vlby5Ppt8cdvCM9Bojm37kQ0sS5hrAAzGP5Twf9fgfQpOm6bi9wWVE43ZZBMqHeL2qramHFai9Rk5bf06asUFNTg+rqahiGgS1btqCmpsb6b/Pmzfjf//7nSBHkB/mk5Sn+ZgHZL3vs2HsxevTNnsf6BeAQB9NNmza5rvO3v/0VP/zwvWt7a030Ro48FslkEvfd95DLOdaudzBNGr+fD5jCVrry3QE2m+aOIl73vnz5Mmy33cCsTPyAYBNJdoxqMmoHDgkX3VEdgj+ZrlMEp59+Cn71q53w1VdObdRzzz0DAHjkETMH4LJlppA2cOAOnnUIwtSpn+GJJx7FWWedm66nuq0POWR/ALb/n+yeZEKm6ljDMBArKATYo0x3BetjHkDoEE2m1TgFQCakqSKZBUWcSMTaMUpnEHNHO3Kmc7srZYTCJ01p7qiI0JsJdvt7389jjz6EPfbY03UvqZTbDDaIwK9BJpSFH5ut6H9+mjQ/X2bJftkE2DCcQUrY2MQnWZ43zx1qX2yr6upN2LBhPT7++CPXsbphKFfhNZ9k1mGTPduBQ3wWEjLRpHFCWqaLo25f3PR8IERKkkxhdY/HmzBjxnTv6I7pBJPJoOaOfDmKZ6vrKS7lgnz+w/tNOjRpfuaXCg0lrH+8Fyc6IwceeCA0TYOmaTj22GNd+zVNCxWWn4S0NiTcxN5PSAtoVhGiHps3V7u2uZM4B/NJY4PA5s1uIU0moMmuFZYgA3kmPmm6rlt1Y5o0v+iV7U02ozv6+Rkwvv56Bo4//kiMHfsYTj/9zKxe2yvYBmtv1WSUaYrC+qSpI++ZkyuWL+6XX9x5jUTWrl0LAOjZ098x3TCMQBNn2ycteFvLJiFnnXUqPv30S2k9ZNsi0RgM5iZlBQ7xTnrqKEPQxqvrmv7DMndE+rzWvV+iP0pBQft9BjP1sTFPNhS/nX2nqVFh7miwBZDWG9SIk0AVM2fNwMxZM3DYYb931iWVkvivBHw2rtX8DIS09DnZNHfkk6+L79J///sGJk1624rqyDQnfulNxHHQS5jy6luszZXHhPyG+VnWsL8z+Tbyzy/T75p4n5vTi8dBv22tgb0TL77wb3z+xVTssP0g7nqCtlhjgTpS+OGH79CjR4/A11BpAVMp3R47DbmQxmuy+WJY/VRBlfgrmnVwCuuudzpLefnymRdffBGGYeDMM8/EY4895mjDgoIC9OvXD3369AlcHpk7tiFhVoHaOpm1arsqYEaKS14p+m/x58k0aSqC+FHNnPk1Kiu7Y7Ek4SfDayD//vvvHPVTwd8Tn8MniLljPphCZsMnbdmypais7C4N/CJj0aIFAIDvvlMnKOaZNu1/gTWaXkILm8zxvjeGY7KUWeAQVd2am5mQFnxyHzz1Q/B3OxOfNNWxv/yyyLVNdf+RWIHLPyjoJB2wP+D+pn5MMyTfniliW4TVGsj45ZdFGc3wgmjSGC7TItFkKf0vC/pQV1eHxb/8rAyIYr9bgaugJBpCSJeR0t2BQ1wTOoVPmmtymkE7sDKkQhp34TDmjuxYWXTHadP+BwBobDAXllKWOb2PkOYOdaqui2FgxYrlGDXqFFStWystJ6ivkR92njShFGFukEngEK/tgesnnP/qa//BZ59+ItEo5UKTZpZZXbMZgDMXn3hfbEExlUzhwQfvtfKnqsu251te+RD9NGmCZMadax6n+nby5SQSCS66o1srB7R25O4Y7L///jjggAMwZcoUHH744dh///2t//bee+9QAhrQCiFt+fLlgXyYCJswk/eMoiAFGMiWLl2CmpqawGWqkt/yK2cyIY39K9OkqQjin/HGG68CAKZNm+raZwuQ7gHFMAwsXvyzFcQkjJBmatLM49lKp9ezznW+paeeegIzZkz3PCYbmrSPPnofAPDyyy86tqsGYHvSF2xY+dOfTsA///m4z1Fsou4lpJnH8OaOfBtYpi0+5o7iqp/qGbL0Ecpw2dI6BjOzNY8N9ykL42TuZ8LpVw+mSWPtImo6g9yfbe4YLJBLVVUVpk791KVJW7hwfka5B+0JJdOktc7c8fvvv8Vtt92EKVM+Dn1uq95TcULM3r+0UHHLLdfj1ttuVK6Ch31fvbB90oL2XffYETRwD4+maW5NWobaGkDh16o5DvQphxPS2LfSkAmg6eOEBSS/9BwRwX/US7NnGAa+/PJzAMCsb2ZJy1E947DP0JoXpM+r3bIFX345zV0n39Q37m1NTU24/vqrQ9VHVT+eb76dKdEoZV+MsOdM5m+Hb6VwOcu8UA83hzBdMlSatJTjOP5faztnkitqxwB5knfx4FQq6SpXFVWzK9C/f39s3LgRjzzyCC6//HJcfvnlePjhh5XuBSoCjc5jx47F22+/DcB88c8++2wcddRR+O1vf4vZs2f7nE0w8kFIO/PMvwSuA6AW0vx90szjtmzZEvhaQfyoxAAeMmQTH8MwsGnTZq6cMEJayrqfIJq0XCaSBoCbbhqNE044yvOYbNShsNCM8CUuxsjCFwP2MwmTB4z5aqmwywzik2Zr0vg62x8mH1OlgJo0VYASL1h7BGmXoBPd4L5d7nNEVO+MbFskGoMhBPFgrRPsHQ5musQuX1NTbYYfZz5p6f43ZsytuOOOm1Wn+16fTcj8TMz8YLnjVq9ZlUFdgn0TEokEbrvtJue5ilVqFrmP1Uvl38KeQza8RyM++ZRExL6VkkV3DPAemGFDWq9JY31KpknjxzNfc0ed/27w1iai1tOpJba/m341dbaWp9m957voLaSFXSiy7i993kMP3Yd//esJx/d//Pg30BSXJ1bnCnJtCrPQq0J2n1u21HprlLKELZimF0W4b5moDWcLf8lkuPdIFh3VuoZu+PukGYb01v2+MfwpiUTSfmcN5xjL+Oqrz9U308n48ssvccQRR+D9999HcXExiouL8eGHH+LII4/EF198EbicQLOpd955BzvsYDq8T5s2DfPnz8cbb7yBESNG4IEHHsjsDroguRbSgiDPA6NGnHTJAofINGnnnXcmqqs3hwpgEWSyaYUqlkysRFNMcR+vjAnjwBzWJy1s+NxckA1tHgvDLCYe99Okhcmx43csu0aQwCF83+brHFSYcX+45O8rS4Aapm8rzUwkhNVGtCZPGkP2bFSBQ7RozDFVTCaTVmLlYPcXULhUmj75XsITK7gF68ei8J7hBTIZk4N+E1atWolG0bfMtUDGNGlO/EyVQuXeUsC0cUHNwGWPSrXgZ5/vPkmLRDIS7tzXNv9NSKI78k/UTxPkCDjFLVi6grwIWk/Z+TJcC2Ae96obhis/FiMacS54iKj6cm1tLd5/7x239jLl1MKsWWMm6ebH7aamRrwiWGW4risNHOJ5SiDkQlqNUnjOJqwfsKBKDs21cDlm7qiHnEPouo65c92BZsx9trmjoZu+Z02C/7ZMk822A+p5I39OMpmw5waKEPzTp3/VZbRpY8aMwcknn4wPP/wQ9913H+677z58+OGHOPnkk3HnnXcGLieQkLZx40b07dsXADB16lT84Q9/wF577YVRo0Zh/vz5md1BFyQfNGli1EOhBNcWlXbBT0gDgI8++iDUxCWIkMaO8dLWZENIcvqk2dEdbf8VLyEtt5q0IGSjDkxIi8eDCWls8A2jSfM7Nkx0R37w57VdQYU08ePhZ+6YiQYryAcquCZN3g5B6iES1NwRACLRAkuTZsDA3XffgdraLelzAtyflaPI+fxGjTrFzFXEjlO8Y17XmDr1M9RUb1buN6+bbgv2Wygv7EKW1TcVzbB+fRX++c/HpOUGiYZpHifRdKYvWF9Xh6amRnsyK7wraiEtHd0xC7q0IOauKY/FhCBJqWX9UZPmSctck5ZMJl3XdT7O4EKaZXEg8UmzFp8EAdnPJyrM2GrohtLh0C9Pmurdf+aZJ/Hqa//B4sW/OLbb5ZjnNSsWbVauWuldZ+m8pvWTelm5W2pqlD732cQydWem4ZqXJi0d5Crk91s3dIwde590n/mdsn0QP/9iKn78aY5QR3l0RzZGKBcCeSEtYQtpXt+mTCxROiKrV6/Gaaed5pq7nHbaadYiRhACvfEVFRVYvXo1AFOFd+CBBwJgA1r2O3VnJcxgE0bTE4aCAi8hzY2olRLNGb2EtAT30ga7lnwgePLJx1BZ2R319XXSfDLucuQDXJhQ044VUZ0X0vzNeoJG21MJO9kgG4Kqbe4Yd2z390kLo0lzD0GzZn2NI48chng8bl3D65nKkiPzH4Kg/mCqMM0irGy+TvX1dT5lO+s4cuRxuP/+u6XHqt4n8ZhMhDPVGCT7CKs0aZFoFBrnk8YCxgD2irpnXawJsbtN+QTwotYiZX345eXWbtmCceP+hQceuNf7+sKzEO/zyX8+hkSIiYS1Sg3DFKaECj7//LP46qsvMH/+XNe5QQOHyAI8fD1jOkaNOgV/vfg8XHHFpS6TM0ZbaNIiHpN+SwByjEnqyXi3bt2kZQXV+mQynvJ9TcynGCa6I19H3k/LnS9KZZrmPUaJY6tXfZwaRedxluZTsUigeoZNTaa5ohiMRufmA4Ddr0MvFkou29pormYZkn4Jw1W2SkicOPEt3zFefW3nnMnrfbOTWQd9bu5vn0gqleLM0XX8+OMc1zEGr0lzCGne1hr800okOZ80qyj38wy7CNZR2WOPPbBokTsg16JFi/DrX/86cDmBhLSjjjoK//jHP3D22WejpqYGhxxyCABgwYIFGDhwYOCLdXXCSM9+L+lbb413bQvybQobbtodgl+coKsni8mk25HU+1ryY8eN+xcAoLq62tMnTTTFFPaGEh7E1SRdiL7lbe4YTkjLRTTITM0d6+vrrFXQoqJCaVlq2/fsaNKuv/4a/PDD91iwYJ71kfAa2A1Dx4MP3os333zN2sYLaaw9/EO+C0KBoh1ZXfjyTjjhDz5lOwWCL76Y1iohjS8rCH37VqTPUbVdOJ80lSdTGHNOmXaI1/S7ksDCOREUYRPDLbXefrD2hFJe52++mYnpM77yLIOHaaI2b96MM886FZ9+9oljPwtMkmiRaNICtqGsfRqbbJOlxsYGztQIzhVuhdO/yuQuE7yS3rJxnU/QK+9b5r/Dh5vh+UVBRvasNLi/exmZnToWF0UBXR7dUSY0yt5dw9CVkTjFe/SbwIbSpBmGOxqkUE5YTZrKrNUOJAZheza+bbkR0mTbZcfNmfMDxo9/3RVAK/i108+G+YA63C4ETZrmk5dMeQ31MzIMW6Oq67plIeM4BoYtWDnO1d0bZfvhDBxieAiPslyEnZFTTz0Vd999N55++ml8/fXX+Prrr/H000/jnnvuwemnn465c+da/3kRaMZ+3XXXoV+/flizZg2uvvpqlJaWAgA2bNiAv/wlXCCKrsxvfzs08LF+E8r33puUUR3CatJUPmn2oot6JSqsNkclWLDtsVjMWn0Pq0kL7wht/+3UpPn7pAX1VTIMA/X1dYEj1H3xxTTsttvugY7N1Nxx0KD+GDx4b3z88VRlX1Fr0tLmHCGiHsoiy/HO9HYIYPXArus67r3XaeMtCxwS1ifNbwLDl/fTT+7VSVlZYX3SPAMDZDAZVT0DT01aJIrV9ToMA9AqtoVe2guAPHF4sOiObLXdfWxRITeBUIwtXtpFwD8Qhp0+RN0mocLSpw9mYc6/+uoLDB9+hLW7sNAU0lok/k5+yZ/N4rVAZpHs/hsaGhxmZaqJf2580txtY73D3PfAy6xNLQjInoHb3DEjywRusik+L4cmzRG9UX2v/N+6DldfFqMhMmR9xFkXIbqjx60ahm71TfGZWIEkVNY9KlNnK4qnqm2CLXSpkPuk5VBIE+snuVRTk2lJEtoMGhoMbhHbYIFDON2IrpvfuH/+81Ecd9wIK+pm0LmTaqHJVRerH+iWhQyPrhuIRMzCmpvj+OyzKTjssMNtLaBaSrP+dIbgZ7slmrSWrhEV/h//+AcAM/Ciah9gto2X21ggIS0Wi+Gcc85xbT/rrLOCnE5kQJgEtYwgg5lXuGkvx1HxtzNyFT+ptI8Paw7r5y+jaRrnk+YlpMn9a8LUxSlspqyJnR3dUV1WUC2WYRg499wz8NlnU3yPTSQSGDnyOAwevHegslvjkzZ79vdW/WRk09xRdqzGTSy8oq6J9eHhV8NVAtLGjRsBAFtvvbV0v0rYziSqoh3dMTtCmqZpGa1Sq98x9cJGtLgc09ckURwDYgP3QaJ0ayQbZ0vrp5z0OerAnoX7PSkotMcnV/RCNmHwW/336X/82MX/5gkTlt7HJc1a7JD14UDJvw0jkFkku/2JE9/CxIlvWdt9zR2551W1bi1mzPgKI0aMDCWpqibv5nV8/FqE+ltlQdA+ycbctE9aNBK1nlGYcT6RSKCgoMCpSWsRhTTn8ePHv47jjz9RHrzKIaSxMt2JhlWmqS0SbSuPqBkLuogjHhfxCfSiKpX1lbffHo/1VVU4LK31FN8pRtgxKlNfe/9y5fWIC6b8sqAzLIVFmLyYAFjoUTsVgy4ZnwwDVVXrMGPGdCxbtgzbb28G6JN9W1579T847vgRKC/v5trntzDMmzsWSeISGEKaiOeeexrDDv0ddJ93it+aTKbs8Z/NESTvrF8f7yxMmeI/rwtC4C/RwoULcfvtt+O8887D+vVmaN9PPvkE8+bNy0pFCCeZmKu1VkiT4Wfu6CX8JBJhhTTVKj8zL9M9zR3tOgefiKpwmju6fdKyZe743XffBjqWlamK4CTS2uiOpj+h92TYS0i75547sHq1f0hymfkOHy6YTWy97kc2EWAJp/n9Yr/YbbdB2G23QcpydF1HVdU6DB26l5XU+5prrsT48a+ny3O2s5dDdKaBQ7LlkybWQ0QmMPGatJKYhq1LItDrNiDWvAVGgq2Ghp+U2ZpIybGCBttRtrUi7X3frP9MnfoZliz5xbVfNOGR1TlMWH4m0IlWBgwmpIlRUlXXltGa1A3yiIVyc8d77r0T4//7BmprawPVi7t4ukx3HawFCv4dFg4zYLeLbYrnvwCgpe0dd9jBfo9lj2HVypWYOvVTx7ZZM7/GOeecjlWrVjomky2JFmzatNF6J/jn8/nnUzFx4luYMOG/0rbTHe+uPTlXBUERhYKknyYthNZT13UuqI0gpGVo7siExIULF+C5fz8DABg//jX89NOP0vPCRMBV4TfOTZ78AaZ8MtnzGNV91tU5+7mXD1XYuZOtrVS/G+JYFmU+aZLv3Xvvv4M333xdWl9fTTurS0pHoczcUTfclgswfMcn/nnxgUMsc0fJ8/TTFncW+vfvH/g/LwIJaV988QX+9Kc/oaqqCjNmzLBMiVasWIHHH/dLRksA4VeDsjG4yfCK7iiroypPmkpI41/qVCqckKaaiDNH7lQqxYXg94ru6M4ZkkgkcN11fw9cF7cmzWlm6S2kBdekeUfbtAmrvWmtkLZmzWrfD7jbzMg8fu7cHzF27P246KJzlecyZJNhftLLJrbi/cgSdPLwE2JbYyJ/dp988pHUfzKVSuGmm67D8uXLAAAzZ87A888/y13XWZ6XY3m+mDuqhES5iTATuqPgYnkL5l/Oc/hnUrtlC5rEsPHghTRJ2H/+3l1O/bp0u3WuFeLa/D1u3L9wyy03uI6zfBQ9NGle44uIaiLMYO+4bAU5iLkjEEwDq9J/tLR4a9L4lX2ZIBkE2wdF7ZPGR6wTJ6e6nrLaVSmkKbU+hjOXmaSPj77+Hxg37inHtlnffA0AWLF8maPfNTU14oorLsFTTz1pbuDkIk0zx6uammqpRtcR3ZFbmFEGqBDq6uev4woc4jM+qJSh/tEd5dtlQuLEiW9zJzr3Beu3jgu7NvmNmS+99Dyef+FZz2NUli/iYoTseTIz3Vg0pCaNlSkEDoHKZNYwuOiOiufPPf7x41/HO+9MAOD/jPjAPjJzRwOG6500DLWG1D6G00AnE9YYzPtjiiS7SHRHwIyGf+GFF+KYY47B2rWmOfybb76J6dOnBy4j0JfokUcewXXXXYcnnnjCsZqw//77Y84cb18MwiTspPm8884MfY1gmrTs+KSpzB35wSKsuaNKAGFCDy+keTlQyybcH3/8EebN+ylwXUQTznDJrIN9mGRCmup5+Q2W7uNbJ+SffPIIXHHFpdJ9fpo09q9sBV98bl6aNMOwJ7aiTxpvOiZrC/7aduAQebuceurJePjhB6T3w9dPbCtRM5tIJHDffXfhlVdecmw/99wzLO2brA733DMG99xzB7clqJDmLsuvf/iZFEvLikSsOhnwDjTBl3/JpRdI+5DVTzwEQ8CtObFC9yvfEVZeMHNHeAhp4fwq08Up9luBQyTvQxBzRyDY+6yaiKq0M+z5RxxCd2amZew0qXZJYu4o82dlW1SmkzLhXNPMPGlOIS1Yna1AR9EoYBhWO8XTPkjTp3+Zvob9fEpLSgAAjY2NUs2eLLqjIdOk6fb7xOMXnlwcLz3HB+55iUeJyY1d5yqK9Qtc4hK+s+CTpur7jz46Fs8/P86x7ZtvZuL1119xl6u4z1oxyJCkTdkicUFBAZLJJBoa5P64Imyc5PsBICxEwSlIM5801T3zAta770x0lONZF2beauiWjyyPNE2ErnP91v+lSib5ZNbpf2SatC4ipE2aNAlXXHEFBg4ciFWrVlnjXyqVwrhx43zOtgm0NPDLL79g2LBhru09evRwZJQn1ORL2NGwPmmiwOGnSeOLMIW04HVTCTd2ND09kLCi625NWhg/KXYtvl6qZNbLli3F/vsPxhtvTMDvfjccQDifNHHin0gkpNq1sEJXazVpy5YtVe7zE9LYdnGi+8ILz7lU+7Jk1rxPGlvZF98f54TPe0U7iBZy+fJl2Gabfq4yYjH7fRHbRWbu+MAD97jKZqudYr0YYn4b1aIHjzw/VOZCmpe5oyYKLB5J4cXy+QiE1jlW4BDZNZ0ry47z4D1hYAKP10TyzTdfQ1XVOkcpsv4TJooeeyC2dsRZPzZmSPOkpU3SMm03HpX2Q/XtsTRbsrEx5HgJS5PmrgN7T/xMlkVzR3FirQrwYhiGNbkF1M9BVa9oJArdMFBUVIREIoFmYRLJ+ycyn8nGhgZpm/H919LUGu4Q/LplCumsq9+47fKV9Og25jXkgUN8zR2V446PkCZcJ2iKCft89zYxJQJj1qyvXdseeeRBAMCBBx6Mvn36oqi4GICZ9FyGS5MmOYYtEMYKCvDYYw/hu+++wUsvvS45UiD9ClnRZNlCF99HuMdswG4XVU5BPjJjmGfLvql333UH+qRzHvPohuG2ijAMO0m5YWD06H8gHo/joYds6zn3orxzjJb1o+Y8mQvnmnHjxmHMmDE49thj8eabb1rbhwwZgkcffTRwOYG+RN27d0dVVZVr+7x586wk14Q3XtHpskWQVdCg5nUMcRB3vYQukzenmWC4a6k0abYmxE8rwo5XfZSC45wof/XVFwD46I7m9WfOnAEAjtW7MD5pYjhcv0hsQckk8Exwggppzmd+9dVX4NRTTxbK8hLSdGvVTfxQ8++TfPU+nJAWiUSkPmm8OabYVmJ/Vfn+qOqlIqhPmqyszDVp6sAhWiSqngyKH/YAWmQ2eZUtyjg1aW7zG75eIkHeu0mTbNMsy2dIWg/foiyshQYfLXhLczPmzZuLefPskMt6KhXI/601Pmmqb09KoknLFC/zJvZ8k14+aYZuPT5LgBDHF5lPmhXdMeD4Lvk+mZo02wwskXCafPKPh7VlQ2OjtN84zB05k0a3KZlcoPcTMF2BQzykNK+yfDVpPucxli5d7D4xwCJTGJIZTOpvvPFaPPnPx6zfqh7e0OA0x+br29jYgKamRusbFIlE8N133wSuA/8d48v2yl9nmYIH0KRlQkpPYc2a1a7t5nVdLyX3TQdWrVqJjRs34JJLzueOsf9MJhP28R4+aX5+l52F5cuXY8iQIa7tpaWlqK8Ppo0FAo5sxx13HO6//36sW7cOmqYhmUxi5syZuPfeezFixIjAF+vKtEVEm7YMHMK/vKpJpSlwBJ/t+K0i8uaO4q2uW7eOK6f1mjRR2GS+SKJPmqzcMCH4RfNT2YRK13VHSPkgtCa6ox9vvTUe3347C2Lbih/kIJNPb3NHg0scLWrSvHMuOVa0AwTt0DQNTz31hFCG7ghQI7aVW5Pm/46HnWyH9UnzmhSpBDtAFYKfzZrtdjT9XPzNHa+++gqPeqiFZuckV2HuqLgH9t5p5snK69vlu68plhUG1RVZ+fHmOO6++3bcffft1r6UYFKrIpDZmKICombIujbTnmbB3JEhS2ZuR/P08knjNWlRaxuP9P1Na9KinEbe6x3gJ43smUajEeicVQMfdAhwjvEs11tjY4N0AipbHNINd9Jk656E377jQ4jvmJdW2ldIU2wX++rNN1/vPA+Gw/cwyKKN43zJMxUTZwdl0aIF9g/FcxMtCPjrX3jhObjggrPRnI4AGdZ0037GzkVNRxoH7m8+559qkZXlLg2LX68RozsCZluK0RoBp/aRf4+TiaRjXmj+627PrmLuWFlZiWXLlrm2z5o1C9ttt13gcgIJaVdccQX69++Pww47DI2NjTj22GNx5plnYt9998VFF10U+GJdmbbQpKlYsWI5vvhiGvbddw+8/fZ/Q50bJHAI/6lxRPtJJqQvqWqS5/eB4gN4iB+XQw75DVfH7App/LXEZNa8QMFojbmjbKJ/9tmnY889dw5Yc5OwOerC8oc/HO74bZq9OvtGNoU0t7kjr0lz9zHHhNASCtQThsWLf3Hlq0sJWg4/c0evwCGMurpazOASJfvl9PM26/VeyRdJJBLKZ+CVzFoThTQ+ua842U4/63XpnGEy2ATQ797d0f3k2gf7eM5EWbgfPZWSRIBjq9bhhF0/VH458Xjcdazp9+j9nui6ofTDcxwX0tzRTmei1mYHRVy8c1xH13HffXdhVtrqIBqJSrXwYuCQtWvXOI+R9F1N0wBDCGjh8az4PseH7Dd03crR5wieYhjgp7jsnIaGBoUm261Jk/n7WMdIghV54mG54j7UXlBRHaW6nur4SABzR95Uz89XSqS+vg4vvfhvx7ZM5078t0XVnUVhSPY8WZ40PxN7FaKvtsNXULfNDA3u/1XtkrEmzed95uthbTMM67ugakcxcIjoCiF7R1SLRp2NP//5zxgzZgy+/daM4L127Vq8/fbbuP/++0Pllw7kk1ZQUIAHH3wQf/vb3zBv3jzouo7ddtsN22+/fUaV74q0jU+a/EU68MC9AwkO/As3Z84PePfdSTj22OOlx6h90pzCikpIk2sBvD9Qpk+aXEhbvny59XcqlXLtb42Qxg/ITLOybNlSrF27xmXSYF4/2AAuN3d0D2AffPBu8IqnyVUKB9XxBrdarPJJk+EXgt8OOmC/Pxs3bsSsWTOt3yqNjGEYuO++u6x8aF4TIJVWitekif1TLG/z5k3K8hkff/wRPv74I+u3y3HdVZfsadK80ip4JrOOFji/8SF80rgD7WPYB9wncIg7bLn5+/0P3kPvSreZvdUemuaafE359GO8KEz+7AUnWURCe1tzPI7zzj8TZ515Lg7//ZHue/OB+cqpnrGfuaFhGDkxd7Trkz1zR5mgmEgk8OOPs8GSh0QkkTN13TYJVGkWvfo27yslCrSvvvofe18qBaStSXgzaN0wUFCQ9h3kFsoamxqdmrT04lci0QJZkAmZBl9PC4HSewr6/qRxTZa9hDRdrfVm7aU2JZSXGyQFQFg/NJ7XXnvFNSZm6l/NLyapF4bVmjRGc3NT+lhOwE/piMXsPrdq1UqMHv0P3HPPg2hpacamTfa3wI5K6zQFZH9Lta+KfrBy5QroqZRpohsCv/mPbuiS8dZp7ijFMd/j512G8K9NVzF3PP/881FfX49zzjkHzc3NOOOMM1BYWIhzzjkHp512WuByQsUU3W677Rxqug8//BCPP/443n03/CSyq9GegUMyGeQ++OA9PPzwAzjyyKMd23WXyZGXkOYWlgC5/08QdD1lTb68BAqZcNhac0cG80m7667bcdddt+Nf/3KH/g2qxXrppectXzdGtkwBMjF3DHuOqG0UtawsjPluuw3CNddcKy2Dd2Dfe+/dcP31N9thiJNJq7/xPml/+MNwKyy+WW9ZZEIdS5cuxoMP3uuoowqZGbCoSRP96dxC2mZl+Sqqq93nBNekhRPSeJ8B9z61wBSJFnAmF+Ik0f/6a9asxrXXXuU45rXXXpYL15y5nCsEf/p3dfVmPPzw/a5zU1YIfg260CekPgBe5o7pum3YsN76+73335EKaV5mk3xZqjQHWkQzfatUq9W6HsjUStVXxOTMjNYGF/rwg3ex2257YLuB21sPQbbQJob1lwlhpjbLR0iTLvghHYJfrUl7//13uDLsNmJ9ngWb2Gkn01qBj7hZV1vrEKL5BThZZE6HuS5nZq3UhArb/cZgl7bD41hdotUTSSQSmD9/LrbaqpfzXI+ARd7105FUBPoIgqxPZjx30vyFNPF6MmE6mXAHvkmlUo4FPGYdMXPmDLz1lhkkglleiJE8+XfZMLj9hmEdpFpMmzz5AxQWFuKUU06V7lfhN/v5/vvvEJVEDhUj4Yo4zB25xSB7TJSZO3aNwCEAcOWVV+Kiiy7CL7/8AsMwsOOOO6KsrCxUGb5C2htvvIEvvvgCBQUFOOOMMzB48GDMnDkTd911F5YuXUo+aQFpCyGttf4EzrLSzu6C0CDTpAlnWn8lkwnpR0f1EfarP2/u6GVuIAscIvcdU/uDyFa3AHUS7UwCptxyy/WubR1VSHOuutnmjjU11di4cSOuueZqaRns+cfjcaxduwZ///vl2H//A9P1SXKR4ez3hxfQAPkzM/34WoRt6vuTtath6JZQLkN8XkxjF4bq6mrJdfm/w2nSvI5PJNypKRhyQTddVjTmSIsQxCeNZ86cHxy/a2qq8d57k+Tn831KdKr3MZ2yfNI0DQlR6JRpHRUR9lg9li9fhhtvvBZHHnG0a7+zaKf5pnippERIe+65p7Fs6VLs+Ktfmc9Tg3LGbcAIpJ3wmojLsLUo7vOWLl2M/v23Ra9eWyuv93I61cRLL71uT0Alz1IUEiORqHT8Zu0nM78E5PfHAod4adJ4HPkVhffXzs/ICWn1dY7JvjWGGP7vnxXVTxKC3zpe+O2/eKn+3srqonF/y05rSbTgrrtuR1B8Q/AbrdOkyZ5pxuaOgYS0AKkt2Put88KV/yKzrV12LmA47CQM3fFd8hqTGKJZfiAk9x+NRK17mjz5A9d+Q+esY5TmjvbfDnNQYS7QlSkpKcGee+6Z8fmeQtqzzz6Lhx56CDvvvDOWLFmCKVOm4JJLLsGzzz6L008/Haeeeiq22mqrjC/elciXEPxeyPxBRD8K/xD8TnNH2cQ/rFaLv7bK3JE3oQzqk+YlpPlp0rzKbU3QjrABQlRkskoe9hyVJu3rr81EjdFoFCtWmGaoxcXFUp8cNjFiq+28HwWvifV6f1ShzcXwyn7RHWVlqIRyWXlBzB1FxOhiQHBNmjxPmpe5Y4vy4/+f/7zg2maF4I8WwA5gKCSz9gkeI6Ouzivpt/lMm5oa8fTT/3TsU/r1GDo0LWK1h0yTJj8x/Y/MjyqVwvp0ROOFCxe49jvqnPKeWFljFtdfPvtsCgBg0I47QtM0zzD8ekBNmlIAV0yamfAoW+2+//67ASBQqHHTjFZdh2aXJk2TLsyz+qjHZFngkAhgOH2lgmqfxeciC0sv9lUWOEQ3dJem1zyXm3Bz5m2qKskiynrhCu7gNz74fGvV0YQV5o4+5dXWbsGCBfM9j/FCGjgkQ82cM+x+MHNHLwFf1KT5wZ6tHd0xPWdyBEcSxlBrTPJaaAg/l5S1W6wghlSz+j70AOaOjvke15fsdAPu/nzYYYe7tnUWRo0aFXh+++KLLwY6znNZZPz48bj11lvx1ltv4amnnkI8HseXX36JyZMn49JLLyUBLQT5EoI/6PlW2GiFJo33P1ILaQmp9iJ8OHwTPl+Z+DHjzdXM6I7O/TIBJKiPklNIc9ad1zDYx2du7sEiSbWWIB8RXddx3XV/x88/L0r/zlyTdv75Z7p8CSKRqKX12npr+Yo86wtMODXrrVl/s3b0+lCrNGm1tTWubSpkkxXT70Bt+y8+402bwmvS/MLoh9Wk+d2jrpsTt1j33sr/Nsd1bI7riEeKzW3lPYUpjjoaYBAhrcEr/HC6vKVLlgS+t5QgJGmAI8IcINc3sImE1GyNP18SHKi2thbjx7/uMGXzSyEiE5ZMzWTEM0E47+/pRVgTcuubFLC/CZWyr5tKWb9l9RT9bFXjvx3IRP7Oye6PmTs6faW8hDR15EGZkFZfX+e4Vz63n6y9HUJg0v5WqRdPwpk7us72aC6+LadMmezUdKSvqzKFVRXsFzhk/vx5ePLJ4Dmg3JfNniaNnyyr3i5V9Gqeurra9LG8kBYicAg7VtCsmdt0R38Tc6rJYOaXYZDdv5eViFmJAD5pfL2SzufzzjsTpIvO3bv38C+sg7Lzzjtjp512wk477YRBgwZh7ty5qKqqQt++fdG3b1+sX78ec+fOxY477hi4TM9WWrNmDQ4++GAAwAEHHIBYLIYrr7wS3bt3b92ddEE6mrkjezlFoUGM4OclpDU2NrlMzoDWaNL4EPzOey0oKLAm6zJzR79w3yIqIU3UrMiiO7ZGkyYTOGKxmFLLdf75Z6F79+548EHnhzGIoPjzz4vw3HPP4PPPp+LLL79plbnjhx++79pvatJWAAB69doaq1atch3DmzsCTLvJhDTbPM/rQy0LtpJKpUJp0hob3RqtjRs3WMEEZIiTtJqaGuWx6jIyF9KCRHccNGhHLFmyGID5DO+88zZES3ui534jYCTkCwLT1yQBTUNV8faoGHwUorECFLF5s0soE6IoBtGkeUTBZBMYWXAJVfAF5h/CBw5RJYN1lOchWKT0lGtmw7fFv597Bt98OxO77vprLgCF239j5szpWLVqpVVPWR0sc0dVPXW3uWOvXlu7FgXCjv/Md8jrrCeffBTnnnuhK8CRGPzAEngl406L8A2IaBFpXVM+mjSpkJZ+cA7trscNeUUAZeOOQ5NWW+d4PnYbyyfSju8AZ3Wi1pKGW+QI08Y6Fzikvr4e7747ESeeeJKjnJaE3HJDpVEKEjikdWTR3JGP7qjoUy6fNMl9s0VM3jSStVNdXR0+/PA9x/ElJaVoamq0j7XGGbcJoBk4hKnP3Ivk0jpnsggs06R5WIkATk2aCv5eElw7/e9/U6zn1pW46aabrL/vuusu/PGPf8QNN9zgGJ/uvPPOUO+x57JIc3OzY3AuKCgg7VmGdARzRx5bSHMO4nbn8hfSPvzwPTQ0yFbN5QP9999/Z5kByTB90uSmRWIUPvElaI0mjT83iE9aaxJJy1aeioqKpcd+++0sTJz4Fl566Xn8+c8nYq+9duHqEHwgZwNImNVBwH91LRqN+oalZxMj/r5tc0fbXLaxsdF9chqZI7JhGNiyxanZ87q/pqYm17bHHnsIGzaotWNieZloQWUr7Bs3buD8m8Jp0mTmUCz4ydq1azFnzg/QIhEYiTgSW6qk/21VDPQq1lCUrDe31axFQdQO5S1L7qv6na6E42edIDzLztckK/aqJ2GbQLsnyHYV1M9KGjY+lcK0aZ+l6+KuQSPXX2xzJrcf3GOPPYylS02tYEoRnIWZO6pI6SlXOPry8m6u40Jr0tKTPdH8imf69C8xc+Z017kOZYBhm/PJvnNiyG0tEpE2JtNeqrQ1XiZgvB+bSpgHxAh9Acwd6+uEBThb0+EXuCfFPV9VndyLiWGFNB9zRw5m6ZBMJq3xVDkvUWnSMrSCCYqsD2eiOQKCxSx1Bw7xMjN0a1Gff34cJk16Gz/+ONvaV15e7ixT0I6JbiW6xNctrNWHH7Ly/IQ0cyVCt/+WHcHdC/8Nj8ez47bRkZk4cSJOO+0019h+6qmnYtIkuU+2DN/AIa+++qoVjSSVSmH8+PGoqKhwHHP22WcHvmBXpSNo0oKYO4ohYufPn4dXXrFDHAepg9dAf8opf8T69fJJnJdPmtPc0R3dUSa0ePnv8Oe//vor1t8qn7RcatJKSoqlwi6fq+x///vUsY//2NfX10kndUG0jV74tXU0GrH6vVxYt1EJaaydN2xYrzxXpknTdd0yU7Hra5a1adMmV3RAlRC4ZUuN8rpin5L53Pkhe4a/+91BuOSSv+Ef/7gOP/zwvbW9oKDAMY7INWnulfmiomI0NjZY52qRqK+2gSX4ldWX/+iIdVi0aCEefvgBdeEAauvUQhqbzMrC0ntp0gBukh+JBFykYJMmd7mffPwR1qf7HNPWOAUT2zSPD+XOIy64qM0dvYU0APj886nW36OvuwmvvfayY78GLbSQZvnM+BwnM8UU84FZmhnJ+JVocU/YZFoo9nzU0R1lPmlMk+aMP7p8+TIMHLg9EuL3ixfShD6i8kkrLSmxz3FM1N31eeedSdyxzH/NgGru7zYX9hmDw/ik6Yaj5dg34YEH7sHcuWZCBPH5WOdK2uf9997B0qVLvevXSqQ+aZm6igRI0u4Kwe9lZph0C/jsHefH3dKSUsd54pypnvNzXLp0ie2XrNm+mt5RepPB7A/5Oki+7TGfMP6GYXCLXf5CmmOhM4tWXR0VwzCwaNEi7LDDDo7tixaF0zB6Cmn9+vXDW2+9Zf3eeuut8c477ziO0TSNhLQAtGcy66A4NWJyTZqosp89+3vMnv09d57/yxnG3FEUftjka/XqVais7I7Jk/+HIUP2cQhpMnNH2ccvqFAyfrztPC8maJYLaZn7pInhqgG1Js0Lvg6DBvXHTz/9gsrKSumxdl6yzIVLGZFI1Jq0qYJFPPzwA/i//zvNoYWyNXt24JCNGze4BASGTPuo67pEk2be3y23XI833njVsU8lpHktrojPKx53a+P8UH2MP/rofSxe/LPDjDQWizmc0YP4pBmGgaKiQjQ2NthjUCTmGU9A1w1Eo06TZiea41ieefN+UhecRhSeHddm5o6yQC4qk7H05JNN8jUEy3+k6wZWLF/maPuioiI0NzdbApqqDPaczSAYzNSP9Qfzd72wMKEMwR/W/FvTpGZnYRLsmsen2zekcGeeK5ZjbpC9i6ImTXU9NgnOJE8ar32bPv0LvPvuRFx+2VXYaeddHMfxfaixyfnOM184p5BWixKHkOY2eXPegzu4hJdPmus75ReC33W++lhdCBzCxismoAFAi2J8k70vr772H8mR2UXqkxZigZtP7+NY6FE8KFcya08trERAZ+MVu5ZhICr4MYtm1XHB4sLK48ctdvgJaWGThMv8bn3NHXUdYu5TBgvWxG93fv9ISDvppJNw4403Yvny5Rg8eDAAYPbs2Rg3bhxGjhwZuBzPVvr000+9dhMhyDRCURhaq0mTmYKozB3VkdZap0kT4YNR6Lodgv+TTyYDAF544TkMGbKPlZOE1V2cPMpMEL0GQtU+UUgDsqtJk2ljRH+QIIiahNWrV7qENFbnjRs34LPPpmBnYULjhxiYQyQajVpCp+gfxti0aROuvfYqjBplL/Sw/sG3Y0tLC7ZsqUFFRU9XGWGjO8oWTGTmjoDbV23XXX9tRS8T27mpKbwmTRUQIhqN4ttvv3Fs4wMqyBK2A+6JumEYKCgodNRP5Z/BaG6O4+abR1vaV8M5I3ccG2YCxWACezQalTjupydYioTHMtzRE7VAmrRUKoUbbnTm7zvqqGMwadLbAc5lQpqtSRPHPlEYVfkfBtGk8WiaPGhfpnnPHLWWjd8+Wk3eRKxFIqSJmm4DCqGZaUKjihD8HqZovNDKEgmvWbMK2wur2Ky/1VRvduXOi0hC8NfX1TnGTUceNJ9vnRUwhsv3KCK+r/4+QH4b+F3+lhKqRahs+reHQa5JC96vo1H7feTHOdXduDVpamQ+aZawxHVZcY6gGh8YfBsEEtISidC5xlzpJqD5Bw4BX3ehDskUCgoijh1x7vtHIhpw9dVXY6uttsKLL76IsWPHAgB69+6N888/H+ecc07gckIlsyYyR2aS1V6owj3LwgeLmh1RdS8SZHAXIyR6sXbtWse1Re0Fux6vSTNXLv3NHX/3u4Mxe/YC6QRJdh+HH36Ey9482yH4ZeZCmWnSnHXwGtQ3bdqEU075I2bNmhPqGuecc4bn/mg0an2AVEIQYAbckGnSTLNV3QqcsmHDBqmQJntmqVTKJWDZfdbdZrLAIeZ2+Wo7uwZPJj5pqvcoEom6Vjr53zJtMSAzn9ItIZ85s2uRKLw8NlauXGEFuxDLNIQzWwKMa6oRwctcM8x7xVaJLXNCTQvkXylbEJEuINnJpqxNtrmjppyAi9pjucl1JkKa5jZB1NQLIX6E1cABEPLZ2X1EqklzBY8ypJ3C0oQqfNK8Jq7SMVxyDnufFy9e7C4jLejxiy2iTxrfhn4CFRMAzPsKtqjpm2NM1Gh4RrIUTJMl74QqL2e7CWmSdymoFdKcOT84BB5nj1Bo0hKixt1j4VaiSWOPiflEGjDzjznKVGijGGxc598jzyBXTY047zzvb6+I2K+0iIaIj7mjQwMs0/gWFDieahOnSQtret0ZiUQiOP/883H++edbC0Li/DFQOdmuGCEnn3zS3Nogk1RKx9q1a8DnvMqFJi3MhIR3mOdD8Iv1iMW8fdJkJojr1q2Vtsv69etx5ZWXurYfeODByrpnS5Mmm+SUlLTO3BGQLxKIzyhsH120yDt/lKlJ85/EJ5Mph6OxGDikb99tAKj90mQfcV3XJTn+2CRQnjNPhiik8e+OeE62fNLYdUQhjV/c0BUJcsWVfsMwLC2zJShHosG86p0VZX84NCutGdf4e//tbw91bJM9FtUESkzLoWmy991dYLPEPDUSiajfce5vPWWPPy7tZfpIUUiTmbIZ1kQ6TINoZn4wfoumoaamOkQZXB18hmzp43AIrLaZlmjKBcjTuEh90vyiO3pMoGXnyNrmjjtuBgxDGmGUlTF1qmlB1L17d9TV1TqeDz+2+wm3bKGAz/coqyOPTJByHM89t0hEHiWTrx/fl/n0AYy806RJ+kVQKySW24/h0KSp5ivC9bzuOyHxSWOdQ+Om0qLwY0f5lLctP3cJoknLBHFOomma/2K5YY9Z4nOyhT6FuSP5pDkoLy/PSEADSEhrM/JJSFN9BJcvX4bBg3fFgw/ea60Oy4QGr5DCuRXS5CGsAbh80mbN+tpxnMoUSKb9+PLLadJjZZOp7AcOyY5PmmjeKROWxLYKK2QMHjzEc7+mRQJpkFOppFSTpuvm5KZHjwoA9qRX7D/ye9MRjzc5TEXZpClM/2ty+a3wgpJZ3sMPPwEguz5p0WjU9Z7yWjxZBFOxPLbYUlhY5KifFo15+l5IBSTuY8w/PlXggbCwNmaCtJ8A6tyeQtW6tdaquAYt0DvYJE2urrkWsWTPOcVFlHT7AZr/ipFNpYFDkNak+daWr6NbcNJ13WW+FxRHEJCg58AppHlNysQxTXyevXub5oS8Can0mrIQ/Br7V24NIc/blpCOs+L71r17DzTUNziEa96Sw6+PWeaOCq034NYc+U3O+fsxn7v6WLHsVErHo4+OdWyTzUu8Equ3B9nIkxb0fryO0yXRHS2Nssc35Y03XgEMdTh7Ps2LpUnL0HRZhRhZNhKJKN8zhs7lcBMfixXllNvR1Mhp0vKo/3R0SEhrIzL1F8gFKiFtzRozj9Wnn35ifbhlHzPDY8AJgsqcRQavPTE/dnYdAPujJgppZ511qqMc1fMPFypWcz07+0PgNonh/eSCIhOKi4uzYe7oL6TJ2tqLfv229dwfjUakefJEksmkEN0xkt5uCmnFxaaQwSYUYhuoklnH43H077+tY5tZfvApsdvc0T6XtXMkEkEsFstQk6YS0iK+5o5+edKY2S/rh6x+WrQA8NICeAh/mWhfg3yvWZtapkGy3GUKLcPKlSvxj6uvwNsT/mtu0IL5pMnaS4O7f4ljTjwedwZwUYyFYt+X1d8KhhMyeEiYMdQ83jtZtue50uiOgibN43y/sefII48GYGs/MwkcIk3ZYBhSzVQiKffpEUP/FxcVwYDh8Ini29BfSEta/ypD8Ivn+AZvMqR/yhA1j7quuxYvZWN+NBrNMyEts7lTuKUPEy+/x4TE1FUmo8nG9Hhzs4e5o1uT5t8PwuEyd9Q0/yGHn+cpLJNU0R3zqf90dEhIayOCmH21ltZq0mxTI3sFRSbEmPsyfwnDTJKdTrVuXzNbk8ZPYIMP6mH8iGS+I16aNBawIQwyIY0XQIMiftiCCGCya3vhJ6ibPmmZCGnOEPxME8RWVIMKaU1NTRgwYDs8+OCj2GuvIVa7tE5Is6/NT9IKCwszEtK8fNJEjQ7/m1+w4Pngg3cdZZvPz2nu6CekyczKrMTHhuGY/GQcHluAPdfaulrcdddtePc9dx4Z1bOqrt4MwE6XoGn2yrEsfD5D+u5rmnuF2ZbSAADnn3+mpeHXU7pHTjZ/k2smpF1w/l+l9yYnwARLQGXizuog+9u+nI/PriLSKMPt1+w8lgUw0H3NHdXXiEijXRrSvtzSkpCmBXAtwLGFA4MXzOw29FugYH0wlUop6y4Kb37RHR3n+sX4Mwzwlh+y/icTNKPRmLs9O+Ckmw8mE3Ru5GVSK8+xlzZ35FNAcP2bjT/xpkbl+BVzRINki8/Zfd5uc8eIrxBrwLD6rcvcUZLHkz+mqmpdq+rbnowePRoHHXQQjjvuOGvbY489hkMOOQQjRozAiBEjMHXqVI8SsktoIa22thY1NTWO/wh/8ikEv59jNq8pk03uf/nlZ2zcqE7y60eY6I7q5KOiTxovpAXX8skmaqoBXdM012RAagqVYpq08MKVTODwM0uQIQZYyYW5o99KclCfNNHckV+B1vWUZbLIJkXihFMe3dFAPB5HSUkJRo06CwMGbOfpk6ZCDCjCvzu80FdQUJiRdtnLJ02MvsX/5v1GeW66abSjfoZhcIFD0kJarMA77DpXpW7dzAiPjmfMPb6wCdBVRNNjwsqVKzB//jx8881M1zGqFBEFMed7pkGz/G+8xhpZMBuZr4Z3cAb1gpXYPl6atKH7H4Cjjz5GeR2xjmE1aV6R3Px90nw0aT6FuBb6BHN59rztPGn+fr9cUco6mvvdz3zz5o1obGp0aarFiKKidhdwjnl80AmvQDee7gEuXx+/6I7m8UcecbTjtwxRMAz6rh544MHsYsqyOgLJZBJV68zAY14aMgceh8nTLzgXcJz7gNIyM2daY1OTsg7z5s3lzk1r0lqRxkeGOBYF+Qbyptxuc8eUY3tQrWXodCPtwMiRIzFu3DjX9rPOOgsTJ07ExIkTMWzYsDarT6CRfvXq1TjvvPOw55574oADDsBBBx2Egw46CAceeCAOOuigXNexU5BPIfjV5iT2Ko6XkHbooQdg+fJlmVXS4/oynKuYvNO2U0gTzR29ePDBR62/w4RNl2nSZGZg2dakea2CqxCfQTwex5dffi4c5ewvYTVpfo7zfJ40L8TAIZMnfwjANuljQgZvXsijiu4YjzdZpqJ8aOYglJaWOa7JcAYO4YW0zALlevmkuTVpvD+c2s+FL9sw3NEdIz6aNH7i2L17DwDAXy8+z+ofzmTWAVb+A4xLrE29NNuqoAqucP2a7ZPJVtPliynuukt90pgJpqxOhq6sV5AQ6Ja5I0JMdBDaOtISgmVkYprETzh1XffU6LiSyot1Sz9v2yctuLmjnRNLdo7cLP+WW27Ahx++j0JhfHb7gKaTWyu+QfzYILt+UvK9ctVQDBwSUEgrtnK3qZ+8IUR39BPSCgoKcOyxJ6DXVlulS+Y1rB0vWt+aNavxj6uvQHM8Htjux0sYlQlpttsFt48rg31HmpqaguU2Y+aOWVr8UhEJaGKtNnd0Bk6JBfz+yd/T/GLo0KHo0aNHVsqaOnUqLrzwQhxzzDFWpPI333wT06dPD1xGoCc7evRo1NXV4a677kJlZWWHkIbzhZaWFmy77dbo169/zq8VPLqjvybNzpOWfTPNMP1H9AFwf9RSuO22m7BmzVruOG+BuLS01Po7bNh0se6yjxerc2Y+aQHDgvsgBg558MF7sXr1Ktx44624/PKrALgnBGGfhd+EQtO0jDRpjGQ6vxAzd2RliVoEmZbaDBwSR0mJ2daRiIYw5o4DB26P+fPnurY7zR1tH7dMtJ1AOCFN1Bb7BxkwzawKy3ogUliC+ngSkcISRIrKPCdd/DvGB15pamoMJHiIBPGvYBHRWjzGG1U5YhjtsG3tRKalkpsvAgpTNra4LpqyyQKHGIbVpwK/51r4+xIT7Aq14CvkvpzkUuJRXt8ePtelfax9vJUXUbEIw5DnmXMK487j5T5pjILCQoALDCS2u6ZFufq64U19tYgGCJcKEmREHB99zR0NZl6nXnywyjIMR9v5LaiI/pGGYbd9ts3v2pKmeDzEQoSX1tx+fvF4PO1+kd7HLxpzY6slpAlm88prWOVk5pNWUdEzUJTXSDTiK6M5rTUU5o7p7QWxgkD+ybL3tKPw8ssvY8KECdhjjz1w3XXX+QpykyZNwi233IKTTz4Z06dPtxZ1UqkUxo0bF1jBpRkBeu/ee++N119/HTvvvHOgQtuLpqYWwb43O0SjkYxXNpqbm7Fgwbws10hOnz59rXDlPLNnf+/4zfJOiUQiEei6jpKSEhQVFaOmphrdu3fPOP+OisLCQs/J++DBe1t/r127BuvXVwEABgzYDqtXr4Ku6ygtLUVjYyOKiopcGqC+fbfBunVroWLgwO0tTeCvfrUTysqcoVGrqzdjxYrlrvP69euPrbbqhZ9+svOJsbK6d++OHXbYEYAZmr6pqUlaNz+22qoXBgzYzrFt2bKllr9NmHI2b94k3bf99jugR48KNDY24OefF1nbt9tuoPS+VXTr1t21Ss7Tu3cl6uvrXRESRYqKitCjR4XVzow+ffpgw4YN6NGjB6qrq9G//7bo2bMn5s2b5/hglpd3c0XS22abbdJ51SrQv/8ALF++DI2Njfj1r3fDypXLsXmz6cdUXFyC0tJS17Ni/QtwRjsrLy+3ouix92W77QZi7do10o/U4MF7u94/HtUz79atWzrXm/3siouLLZPUHj0q0LNnTyxbtlRZ9h577Imp3y/Ewnh3JOONKCkpRVNTIxK6hoqCFAoUMkGfvn1Rtc70KSguKbaSlG43cCBWrVqJ8rLyUGNCRc+eqKn2njj03GorVG/ejMKiImlCZC969eplJTAGzP5U3q0bNm3cCC2iYeDAHVBdvRlbApjm99xqK9TWbnFEQysoLECiJYFINILtttsey5YusfZV9umDeDyO2i22IFJYVIR+/fqjpnqzrztAaVkpEokE+vcfELiO2/Trh+rqasQ9cg+KRKJRpQBQ3q0btt66N5KJFqxatcq1v3dlpWuM1FMpq99uO2A71NfVSu9Vi0RcwqoW0VBcXGxFg+vduzc2bNhgfWv69d8Wa1a76xGNRV1R6lh/6d6jh6MNAKBHRQVKS0uxds0ayIgVxBwCvvitKykpQVNTE8rKy9EgiZy5de/e2LhhQ/qm4JrfFxTYE9fuPbqjdov/OxOJRqCndGfZHOxdqqioQE1NDfpusw3WrV2L0rL0eMXVobJPHyQSCVSnx7qi4iI0ewXK0sxxRdM01FRXpxOBs0m1jmVLl/nWPx/ZdsAArF69KpDJIz/eibC2YZR364ZEIoHmeNzqhxUVFWhqarK++6y8yj59sL6qSlouI1YQQ0GsAE1NTSgsKvRcsFLB9zkvItEICgoK0ezh4rBNv35Yt24tDN1wzWX69d8WhYWFaG6OY+2aNa5no6LZiGDXHbfHbwcUeR7Xmjl3GAoK5PLCqlWrcNFFF+Hdd00f740bN6Jnz57QNA2PPPII1q9fj7vvvlt6LuOEE07AhRdeiGOPPRZ77703Jk2ahAEDBmDBggU455xz8NVXXwWqYyBN2rbbbtsmgS9aS319uI97UCoqSlFTE2wlROSrr77AiScG8zVoLVdddTWuu+4m1/ahQ4c6fm+9dW9s3Oj+ALCJ6e6774mdd94Zb7/9XxxyyO/w+ef/y2o9+/ffFqslH2HGmjWbEY1Gce+9Y/DTTz9a5m8PPfQ4brppNOrr67D33vvg+++/w0477WwJGnvuORg//jgbV1892pUzhWfcuBdw3nlnAgBee+0tDB/+e0yf/iUqKnri17/eDW+9NQl//et5rvNuu+0unH76GY7n+fTT/8YFF5yNww8/Aq++akaX22OPPbDvvkPR3NzsEOiCcNJJf8Y//+m0h77yyr/jPUkgBS9OOeVUvP76K9J9N954G4YM2RuFhUU44YSjrO0PPvgo/v73ywNf43e/G47//e9T5f4LL7wE06Z9hvnzM1ukuPTSK/Dcc8/gj388CS+//CIuvPASPPXUE67jDjroN5g+/UvHtuuuuxGPPjoWZ555Lm677U5cf/2N+PrrGfjmmzm46aZb8corLwEARo++CWvWrMELLzyrLJMX2A45ZBg+/9x0GmaTuH/+cxzuvPM2RwJoxvr1ta73j+fRR/+Jyy93B40YPvz3qKurc0Rj2223PTBv3k8AgGOOOR4jR/7J6scyFixYitPOPBsHnnguvvhogvI4kb///Vo8+OC9AGC9ZwDw5JPjcP3o6/HbQ4Zh8uQPApd34oknYQKLvKjg1FNH4ZVXXkK/bfphzVr5pFrFKaechtdff9n6veOOO+Lggw/BSy89j+LiEjzzzPOY8PZEvPPuRADAyJEn44cfvsOSJe6Exv/3f6dhypSPHVFl2XjVrVs3PPnkOFz196usfZdffhUWLVqIDz98z9q2w/aDcPsdd2PipHcxceJbnnXfd9+hWL9+Pe666z5MmDAJ77wzwfd+b71lDN4c/zrmzv3R91iG16LNsGGH4bzzLsL5558lTSNxySV/s/2U0mzZssV6DmMffAxTp30mvdfevStd+Q2Lioqx666/thYvLr30Cjz++MM4/PAjMGXKx7j7rgcw+vp/uMrq3r2HSys3cOAOWL58KY455ni8//47jn3HHzcCg4fsgzFjbpHet/gdOvKIozH54w+t34P3GoLZc37AgQcejBkz3BOqs846D88/b47VsoVH/t6HH/Z7fPrZJ9J68LBFoFtvvRN33HGzSwM3cuTJeOutNzHyj3/CW2+Px3XX3Yh77hmD0aNvRq+ttsI/rr7COvbyy67Eho0b8eqr5li34447SpN4M6LRKI75w3EoKi7G+PGv49//ftnS3jc3Nzv6fUfirrvux2233eSy1mCLbEEpLip25QHceeddsWjRAmux7dhjjse3387CunTgjP323R/ffDsT55//VzzzzD89y996697o27cvfvrpRwzYdjusXLUicN0Y/fr1x5o1q32P6969B/pt0w8LFs73XTQHgB12GISl3OLU7bffhR122BGLFi3CHXfc7FooU1HSvSeeeeJfqKnx1hS2Zs4dht69uwU6buutt7b+Pvnkk3HRRRf5nrN8+XIMGTLEtb20tDRUupRA9hXXX389xo4di+XLg6+yEyZrQ0442gKVqQx7UU01t7nqlEnuJz/8BsZEIoFnn30KY8febwlogNwnjTcBi8Wi0DTN19yRN01jq0MjRvwBw4Yd6HmeJjEzcudIMus1fPjvM/IlCxLgIwheZmjffPM1/vSnE3DvvWMc28ObO3rX6/vvv81YQAOYT5odOETlB/nLLz9Lz21qarISgZsfZLcJnJmPzP0+8GZ+fIhkVeAQVVv7tV24ZNb+edJ4Uikd0GIo8AgaIWPGdHtCyufoYxqRsBaEQUwiLZ+0kGkgzPKd77ueMixz33i8CTfddB0aOI3k9tvv4PCNuPXWO9Gzp+mHo0nSbPD+r67E1Yba7DTIe2twJmnBzR0106ckBF5jkR3JVz7WywOH8LnVnOaLPOWCBs46l3s2lrkji+6oNMeXmYuq02oYQj1FXD5pYuCQKIvuqAr48JP1tyyQC9/vg+ZJtU2oIX+kzNxRCGqiSRwVRXPHVEr3jhRsIB3d1H3fHSmk+tChB2C/ffe3fpv92l3/sG4Eorl19+49rPZgY+N7779jCWgAFzhECEClgg0lmYbg9/I95eHNWr2CCtn1cj4/ZonF+kWQMtJXDnhcfrF+vb3Q9Mknn2CnnXbyPaeyshLLli1zbZ81axa222479wkKAj3Ziy++GIlEAkcffTQKCwtdA/53330X+IJdjTUKU4tcwF6YV1/9DwoKCvCnP50iPU4lpNkvnj3xkEVAay1+QtqiRQtw/fXXSM8TPxb84BCJRGAYBsaOvd+zfH5wDhvdUfwYux2I7UmDyvfPC1VeurB4CaqNaTOjr792Oq+Gyxnn7+Mwc+aMUOWJphpmdEc7BL9qwsWv1LPV0eZ0XpriYtPBPhqNSv2UNC0incDyuen4oCC8QBdESPP3G1P7pLnzpNnX2LBhPc4//yzPsidNegtNzS3KaHkqvvzKDjDjENLgGfxMSZCw4mzhJKx5sKz85SuWYdly2wx02bKljpVLTdMs34hYLIYdd/wVysu7maH8NbeQporcxn67BDc4J25emEJaxKpXEGQTcj88J28+jSq9FD+B13WohqjycreQZgYasU+wA4dkEN3RChyiCMHv55PG4fZJswUhmRkZP77JaswnJE4kg1ki8d8PWTh49gQsnzRHknlvf+lUykzH4SUwqhJAhw0c8puDD3GMI22JoRsoLrHHrea4PEdZaCFNGGd69Kiwnr8q4Ajzfw8+j0qXFyIVQyZEuDxpQeYpYn1EX7WgaYJ6VvQMXMf24qqrrsLMmTNRXV2NQw89FJdddhlmzpyJBQsWAAD69++P22+/3becP//5zxgzZgzGjDEXw9euXYtvvvkG999/Py677LLA9QkkpN18882BCySc8EEq2oq//e1iAFAKaX6DEx+CPxeaND+hY4vgW8DgA4ewlR3+XoKEpX7ooccdE+owYee9ojsyWP0ikUhGwSRk9ZF9IH/720PxxRfTlOWIgUN4WGqATHKp8bQmobmMHj16OFI7sDxpTKvFX2/YsMNw8cWX45RT/ugogyVibWgwJ+Wy6I5uTZrdbw444CB8/fV0h3DCa9LEXGWsvGwLaZFI1PWe8gsSc+bM9iwXAEaPvhplg/ZDpBU5DVkicQBgeQrDBq3wCysO8NEdwwtpixf/4vgte6YJTkMd0TQrkqK4Aqxpbq2TFTZEMunXPQK4BAlbbhh6aE2aloEmLeKlSfOZgMuiTor3phrTyyRCmqEbDqHOiqJoaZG8ow9fcsnf8MQTjwCw+5YmeXaqPGmMwsIC3HjjrRgz5lZHPVz1MnSUlpRiS0L+XWLwvqtm3XhNmn90Zw2aQ9svTzkgDxwi/zYZjpbT9ZRjLHOVLeT8qq3dgq237u24ThB23XU3XPTXS9tNSEumEohG7X4Xb5YHDgk7jonveY8e3a2FTfViW8zMFxrQXYh964OMmdLzAx6nRSLW/QeZp4iaPeYbyh6rV79i9NumH6640m3GnG+MHTvWte3kk08OXc7555+P+vp6nHPOOWhubsYZZ5yBwsJCnHPOOTjttNMClxPoq/DHP/7R878gyBLE8RiGgTFjxuCII47A8ccfj7lz7chq06ZNw1FHHYUjjjgCTz/9dKDr5QvnnntBRtH5MiHoOOo3OPFRfXKpSTv++BOl+0XhwfpYcgOFqG5nx/3rX07fIpEhQ/ZxrNTKJoXeedKCadIiEbmGxo+g5o6DBv3KsxwvEzNVxM5s50kLSzQaw9VX23m+nnvuGSSTSUSjEYcmDAAGDdoRBx/8W1cZ7LkzHzKmSdO0iCJxq1OYZtorvu34xJyyd7mtzB0rK/tYfwcVkLVYQWjzRB5eWIVhpAeZkEJagJw/7LkGNQvjmT3nB99jEvyYwpn6uJLTw93GhvWOKzRpCrNfvzYyNf92HYILXsHCZ/NEvSZiGcjwfL+9/oZrlO2m0qRJzR2tPGne0R358Vu28MLX0asNCguLsMsuv7bqqBLSDMOQCoEiYnhxPvBBIuE/SY9EI1JtP8+iRYsc++0FPLeQZhi6o5+kUinPPsZMb9khV155qbUvzIJcW813VCSTSYfmWPVdC5ryQkWP7hVWP1Z9C5nwHDi2JIsWmaG5Y1Bh2mFNEuB4UZNmC20suqO/vue3hwxDRQfQpGWTK6+8EjNmzMCbb76JN954A9OnT8cVV1wRqozQb9OGDRuwZs0ax39BUCWIY0ybNg3Lli3D5MmTcccdd+DWW28FYHb+22+/HePGjcN7772Hd999F7/88ouynHwkqCq4tYgv6Jgxt+Kqq9xqVT8hjfe98IvMlwmGYUbE69u3r3S/KKiw5+fMUZNwbYtEIq7IiCKi8OTnh7XHHns5fqueHfuI8ZOGG2+8zbNsETP5czChscTKkyPHa2KsuuewQlq2NWnRaBRDhuzt2q5pkXQkKfvZxGIx6WTA1GBGrH5ra9J4n7SI63i7DjFruwy1kCb/SGVu7ujsp2effR722mtw4HKtukULWjUV4c0+mfYkbHlBonTJNAHZhE/TENEi1mTV1Z6a5hJorLfPMFyTJ12irWGvK//eit+AX/1q57RGSbeEDi9tl1DF0IJ3azRpshbn762lpQVVVfJourJJmZH+HyOWfndsc0f5u2f5n3HTFn5RTHKCt09a2qJAlQLBIaQFeOBieHF+DA6y+ODQ9ivesnnznMFidM4nzSWkCYsHeirl2XGM9AKMTJMZxuI+rHl1tmDC9mGHHe7wL2xWhOAPInh7UVRcDDY6eLtIaIFMnzdu3GBFSw4b2ZCNWeFy5Wqskr7H8352APDhh+/hyScftfpfLNAct2P6o7WWkpIS7Lnnnthrr71QVlYW+vxA5o51dXUYM2YMPvjgA+lgM3/+fN8yhg4dKg3vy5gyZQpOPPFEaJqGIUOGoLa2FuvXr8fq1asxcOBADBgwAABw7LHHYsqUKfjVr7w1CflEW64s8ZO3Rx91q22BYJo09sHMnSZNPSljpmqMggJzgm4OCOagwPvPMaLRKHr16uV5bdGvLB6PS9MRMN5++13stNN23LnBzB01LYIDDjgQb7wxAX/+84medWIUF5dItVyygbe01FtI87onlUlZ+MAh2dWkxWIxqdlEJBJBLFbgWDCIxQqUAlMkEkFLizlOMUFHZe4YiTjzkTG/L1XflE1gWqNJ8zJ35AW//fc/ECtX2tG+Aq+YRgsQVbzu22+/g2cIf8AZQMUwAqVjdfHppx/7HqNppvCUyjA/kB+JFu67xfl0iRPKSCSCiPDAnCZsop9PyiNwiL29oMD2BTriiKNQVlaOX35ZZCYcDjl5kfnG+hGLZfcbJPY/VX/cKp0YWYR/ZBHBJ83PdJgXhgyPhQMDZhAZFQWxwvS5coHdFtL0YEKacAyfLsDR/xQ4NHG+13OaO0o1aRCSWeupdDqTzd4lSy4dRMhgBDbbhRYswXNAysvNVBL773+QI7VMtswdRczxkFnQyMetSCScJo1FGw37bY3Goki1+AeTYmjc/2cCM7f/3bDhABAo9VVXyK8cJOoj41//+leg4wK9Tffeey8WLFiAJ554AkVFRXjwwQdxzTXXoG/fvnjooYcCV8qLqqoqh2alb9++qKqqcm3v06cPqnzyTeQbmSa6DQvvi+NFW5k77r+/PFqirjOzCnn3E8PfsxVPpyYtZdWVEYlE0KvX1vBC1KTF43GX351oQsnwNnd0/mbHhRmYSkqK8dNPc1wTZ9nAy8z4VHibO8qFsbBpNrKtSdM0Tap1jkajKCiIoYnLX6PSpGmaqRljmhPW1pGIPO+KqEljJoaRSAQ9elRIj5fU3DdBvArVSr+YzFrW94KgefgKBCnPETiEJSHO0cc2l4lO+clgRIvY2ivJM4hGhLVLFsEN7ihnUnNHK+KbvZ1PbB+NxixNXkrXgfQ4GDwsc3ito9c3yDcohGzSLgppCpPPrbaSL5rxk1BmmmZp0oTvwpFHHI2tturFRTJ0a9LkPmm6p19ghBsbzHLdAjtg+sppWnjzOKdPWpDcVXYbic9AxDJ3tJ6J209R7KuplC41P1WV7SgrhCot6DhVVh5eq+CFnkpxArfgdy6pfms1fo5k1spIx5rSv9CLsK4EkZCaNNMnLdQlpLD5YRBrsSBm7x2dnj17Bv4vKIE0adOmTcPYsWOx3377IRKJYPfdd8cxxxyD3r174/XXX8fRRx+d8U0xVCsdYVZAysuLcpbMuqIi8wAgmUT5y4SiohgMw3+i7Vcf03m+9W/wcccdK43wZxg6YrEoSkqCmYGy1fzCwojVHwzJinthYQzbbbeNMlk3AHTvXoLGRlvAMYwkiors51FRUYqSEntC1bOn/VErLS1Cz57OD0thoXluLKahoqIU0WgqfWwhKipK0b27tzDFw4LM7L//YLS0JDFnzhzsueee0lXwnj27e5alaerBWhUgRNfDDaJBJ4ojR56Et97yzpMFmP2Sf96M0tKidFQyu95lZcWutmBlmPM2c/LWrVspKipKUVpaBF1PoaKiFMXFdr/r1q0EpaW2togFyigqKsCGDRtRWOgcIouLnRHhAKC8vNhaSBDp0cO7/fm6iNfh+3hZWbGjXwZFixagqFA+JgYZK7t3t9ujpKQQhmGgUFFeaygqkmtGc0FJaaE1BkYiEZSVFVkTtqKiAhQWCW1idXMDJcXO/lBQEIFL/tGAsrIiRLn3tpjTSBYVxVCUvsa8eT9h1112RVlZEerqvANTMEpLCkN/51T9EzCFpLIydXLZ4uIC135x7I5ETTNRMcBA//7bSMvkx6eycrYQYL6z5d2c78xFf70IF1/8g2WW6by2WU6x2GYw+zcbn2UUFcbMtk/3BfHdtswho+kFEg3SyT5gLjBohno8TAaYoPJtWlLq/a4XFZn9sLDIPKe0pAClQhsVFkah687ItH6CCd83AVjt3twc3GWjoMDdX2SwnHDZwoCBaNTsy3x/SCVbpBq71o430Sgn6CiEo6KiGDRoKCgId62wC6B+FiAi0UgEMWsMzHyuF282UwvwFhcqEok4SksLUVYYQUWFfzLr1sy52wu/BNeZENjcsV+/fgCAbt26oaamBgMHDsSQIUNw4403ZqUiffv2xbp1tt3runXrUFlZiUQi4dheVVWFyspKaRn5mMwaUGuMsk08nsCKFXLfAB7D42MCmCtuzc3hHfhFWlrkq0G6bkDXDbS0BBuImNlXY6MdSpeZszlDthvYsqUJ3bt3x+bNcpOOhoZmNDXZH8zq6i2oqrKPralpRGOj3Y9qa23tTVNTAlu2OLVudXWN6XqkUFPTiLo6c9Bqbk6lywr+HFmoeQB4990PMXLkcbjnngelbeG30BaPq4V1FoJfhNU9KEEilnXv3gP77DPUJaTdffcDGD3aGekpldIRj7tvrKUlhWg0hvp6u37JpCF9J7W0lqSx0Wy3eDyJmppGJBJmEIGamka0tNj1bm5OIZHgcj6l341k0jx25szZWLdunZX0W7Zi2tjYApVRQnW19ySkocGsp5hYNR5vcZiENTW1oLk5vCmgFokhmVCc5zMOmNj3xeqaTGRXgwqYbdxW42Rzc8p6fzRoaGhottq1pSXl8HkC7DY3DKCu3vnuxOMtjv4EmKvgDQ3N1hgFAFHOsT6R0JGI2W2iG+a4xJLBFhUVe5oeN8UTnmZ8MgxD/WwTCbO+KuLxhGt/o/A7mUghVhBDSuijxcVyzU2C65PsO8HGk6Ym59jV0NAMGODGfvtcph1PJGURPZNoanLfF0u8m9INNDQ0W/0uKZTB2j2RSFoBXlSaCj8FRhArBV5TF497fzcS6WcQTz+rpnjC8V1j+5q5PmgY/mN2S0vK0Tas3flvoh+GDs/+xCgqKsGFF16Cp556InDZXiQTSaR03XyfubFtc3WN1W5HHHEUPv74o/Se1i1Et7QkrP6nymvGxkrVXEiFZforWfiQYQdXCz42W6bbIS1Oe/SoQN++fbFw4QKsX29GYw4ydm/ZUmd+K1u0DpfMujXE43GsWGG6Kmy33XYOP+8gBPoqDhgwACtXrgRgZq1/7733YBgGPv74Y/To0SNkleUMHz4cEyZMgGEY+OGHH9CtWzdUVlZizz33xLJly7By5Uq0tLTgvffew/Dhw7NyzbairTRphmGgttZ/NVa22PLYY7Z9rBkVq/W24qrOqOt6KPMtZoLG+38w1bkYOATwXk0S/Tk2bdqEqVM/Ux4vmjuKZYtmLGIEMv74bt28tV+8CSMzeZwz5wfpxKCgwHul1ctcYt06uSAf1ictiEmGyl/rd787THq8zGxC0yKIxWIO01uVeQVbLWbt4jR3dEdOc5s7Olckt99+B/TuvbXj+KD3CABLly6Rbmew/lJS4lw1TKVS2TF3jMaUZi1ByuPN9MyAQuHGBTEvjtrXr+18Fsxnaf4tJjDWNNO/g8e6Z0m0QD2VcpkLskhovAlg9+72u2/maePHFfPfXluZ/YxF8Tz66GNw/vl/ldY/rGmo1zfI1y8ovTsej+Paa6/C4l9+dp1j/nbXqbi4GA8//AT23HOw83hOSxyxhCRm7uguh39e/H7PwCFwT1qj0ShK0+8a6292KHLRJy2aLqP1gW2CCGkR4X33hJk78nnShEPEKJpmAAvvtlbdp9/kf+B222OnnXYGYD/H4cOP8DwHMFPJhOXaa2+QmvundNt3kI+MW1dXCxjAiBEjccYZ51jbs+GTxvBMw6F5qGAVsG9VEA0VYAv48rmC5JsaiWQc3XK//Ybi9NPPBADUptMliZGIZbCIy12FlpYW3Hnnndh///0xYsQInHDCCdh///0xZsyYUKlmAn31R44ciYULFwIwY/+//vrr2GOPPXDffffh/PPPD3Shq666Cv/3f/+HpUuX4tBDD8Wbb76JV199Fa+++ioAYNiwYRgwYACOOOII3HTTTbjlllsAmI1/880347zzzsMxxxyDP/zhD4GyfXdVMvVJ2333Pa2/ZQlagWAvIs8ZZ5yDCy+8xLWdOWIHHST56I5sMGQrgjL/MW8hLeKYsEyc+JYj1LBYpitEt0tIM+vR0FCPPn164N13JzmO4z/8p546Csccc7zj/F//endLmOUHZCssdUruDFxY6Cekhbf/DpvMOkiCU1Nocgsw8pDZ8nwr0WgUhYWFjsAhqmiKTOhiIa+Z0KVKZi36KMo+/mLya9l+lZD2+997T0LYYogYrVPXU8J1/U2VZGjRAqhOEwUUGY77Yv1Q0/DA/Q9LI3GKHHX0MY7fXkJeW5k7apqdJ81OJJ3eB1mkTt4nza1tkfmpmcfb2/fcczB69zYtQCLC2MfqcMaZ5+CGG25Bnz6mkFZcXCKN4qpBCz3B8hTSfBfkzP3Lli3BmjWr8epr/3Hds2Go9RK9em3tmijy/qGWMJQes2T+ZY7xgvvbjvgoGU/gzmsXiUSs8tl11UIaK9MZcMgznYGCIHmyxEUZL9hunfNJE1djdEmgHz/fMlVACb/FmQMP+o1lCcIC75xwwome52RKz55bSQV5c8w0/+YXMetq6+TmjiGENFmb61wSd1XS9ERLS0Y+aay8vQYPCXYCE9ol1ykvM7XZhxwyDMPSgT4iXH/ZbruBoeoGmBYyAFCzpQaA99yQvZuNjeEsdTo6t9xyCz766COMGTMGkydPxscff4wxY8bgk08+saLXByHQrPuss86y/j7ooIPwwQcf4KeffsLAgQOxyy67BLqQLEEcj6ZplmAmMmzYMAwbNizQdfKRsC9oa64TRAMm+wCUlDgDBMhWhgoLCz2jBooUFxfjjjvudpkzME1aYPvpdMJhXeeFtIRVV4b9kfXWpAVJ5s0fL/ubwQJULFu2FIZh4J57xjjqIk7qve6Z/0jz5guy7iNOesQ8Yl7JrFW0pSZN1UayVb9IREMsVuBYjVZ9FFi/YsIzr0kLksya+QU6V76dQp3smpkKGKyviUnvdd1w9cOg70txv11RPmhfGIaBWGl35WQkiIlKJBLFX/7vdLz62n/MwOnpcOR9+m6Dfv22xQ8/fO95ftD0IxoyE0IzQdNgTVBcz0Zzh+C3zd5asHHDBse+lO5OZm2n47DbLxaLoXv3btiwYX3aaZ9PA2HWobi4GLvuuhsmT/4wXRVNHkBCQ2hLLdWiBuCvSWMTe9YfZQF4DEtjIMcrKi5bLLDLdZcTcWjSZIFDJIKFbriEkj33HGyZlVrBY3w1aUY6IGhaSyMx65TdI0+zwg/YcT1+8chPSEv/a0e3dAcO4QNb8NvC1CNt5+kryEcidloL1rdzteii0iSnUrolEBQUcJq0+jrrPEc5Ieona3M+VZFKk9bc0my6MoacArJ3ct99h2Kbbfrh7bfHex7v1V/KystRXVOdXsBkq1H2vffuXYnzz/8rnnnmn4HrxxaWWdA1r7Yu71aOurq6LqdJ+/DDD/H444/jN7/5jbVtwIAB6NWrFy677LLA/msZvUX9+vXDkUceGVhAI9qOIAKh7GPCf8R1ycQD8DexCwoT0oLaT7Mw6amUXa/WmDt6JZk2DMNRpr+QZtbDnSfNXRf5RNsOk8xfN8qFpZZr0pxmEKLQkkmiaVVAERVB2k/1vGXPUtNUQlrEtV0VOEHTzAkwE57ZRMtMHGwLGXzZvKaPmR3yyWfF44PeYxDYMxRNg93tHlwQjJZ2h6EnkazfiHjVEuX7EMQMOxLR0DMdRt1atWc1CiA0qrQOLo1lK83JwsDnSWMTNfaoI5rmCsHPduq6jrvvuUPYpbveT1uocaYH0TSmuRHlGZUQ7daOsO1hBVov7U+QhOtr167BXXfdnv6dkkQr9M4lpkoQbu4zz0t6JHJWaQ5Zn5S9G+aign0dDRouueRvSmHCKwQ/3w6ZaNKCjMdB8+QBsDUn7DlqmqsbGVbyeW6b35gt9LmX/vMCzjzzL7659CL8wkcGkY1ViGbgZvkqk8wU2EPgLTJY7jG3VUzwesgWBXkhOC4scLLvVXNzs3mhDBfqIxENpT45UQF4atLs3Fy2Bt7U5lubQ2kVzXqxBQyzX3gtAvXpYwYP2nvvfUNdo6NTWlpqWUXw9OnTJ5RfWmAh7eWXX8axxx6LwYMHW/5pTz/9NN5///3AFyNyi0oDJiIb4PhBiM+TxsOvTrUGJqQFFSSYCRuvxWN/OwUq/4+D6IMkkkwmQwppTKOH9L+G41h+MiUT0kyhgflk2PfHJv3mh8ff3LFbN6cDbCbmjmHspM1rZK5JU5k7qoU0Z9/r00eeCN02d3TnSWN15j9koiaNmZfxQR/8hbTwpsAMw4pYJ2rSnAslYbR1kWgBjFQy3SnNyfOYMfe4jvP6sNrHRB3379BcBxHShOdy2qmjcMYZZ7uiDWqaf9jxbKFFNNeEkq+IqGH0ml69+eZr+PbbWY5tlrkjp32IRvh+5ryG2k/Pa3vISZWXuWMAIW358mXW75bmFtx447WOY5i2SYV4LylH32ZWAx5CGjeO8gKiTDtu19u5kLRNv34oLCy0yrI0aFF5ZDxLSNMNx/sn+ixmC4e5o8+7zupqJZjX5IKww2dNC2DuqDk1cpMnf+DybZMRiUatSb9lvRDwff7jH/+EK6642rX9hBP+iN8c/Ft3HRULVikuWXcBN+6w75rYQ8IEKpKNlbruFoIZbBLe3NxsymgZ5oMzc8kFOM4S0tzzv7K0uWMkYmsgtQhv8p2Bj2vE6UfqtUjZo0cPPP3Ucxgx4o+hrtHROf300/H444+bKSDSxONxPPnkkzj99NMDlxOolz7//PP45z//iT//+c+OAb2yshIvv/xyiGp3TdrK3BEIpt2QDXCikCYrJ8ikLghMmxFUk8ZyRjGBCLAFBDFPGuCvSfManFtaWkIJaW7fOOfKrl+eNb5cmZDGaw95RCFt6617O36HMUtlhBXSgrWf9z2LyHzSzMAhzu3bbjvA8Zt/3tFoVJrMmtVZ7DO8RokJS7xWUTSPlN1LprkQ7cAhbp80hxbAp986iBY4zo1EIhg4cAf3YQHqHIlE7AmhrpvdW9BCeVZFEA5+vdvuOOKIoyFOmTRoocyPWoOpbWV/i6vrMrO5cNEsrbGJbwNuMcA0DeOvqagnoJwEhtVSeGvS/HL5GY7FpvoGiW9J2ixONVlT5ZcE7Mm8zGeUIcuNZv6dcu3n6yTzFRLNG6OWb5pck6YbTAA1/79nz63c1+L2Zwo/hvj5HIqTctPP0olMhvD3P4S0Q/LCXUlJKY488g+u+ohJwYMuKo0ceTJ2+pU7zkBlZaVUeBDNhRn8dzsmM7MO8K6r4Pv1OWefj/79twWfzFqEWQq0tDQjE580rpI47LDf49BDf+dzmHkv+w9156ZlmjReuBW19GEEVtNv1+lHGvMQ0iKRCEpKy0JdozMwe/ZsTJs2DYceeihGjRqFUaNGYdiwYZg6dSrmzJmDiy66yPrPi0BP7bXXXsOYMWNw5plnOjrr7rvvjl9++aV1d9KFGDr0gJyWHzT6mp+5IwQzEa/zMsE2dwymSYtGTZM0meCxYcN67jj/XCFioAiRlpZm1wSXIRfSnL5xGzdudJwnCnleJmb887D9P9zmjpFIxKW5EQXoTMwdlyxZHOp4LyFNFJpEVG3Ea8yYVo0FDuHZdtvtHL9Z0BXme7ZixbL0uTHHvy0tLYKQFk6TFjZwiB+sbd1Cmu7waQrjkxaJxsw42ApYwvcggUMikai9sm6YK8KsHoHMHYV+aQVrEA9sQ3NHc37CJuhC4JAsaPTY+CFqbHnB0BndUXE9TZOamYXpCwxvTZr3uYahO9ISyLT0umF4apRdPmm8mXrUKaTJTDl57c6A7bbDX/7vdAwevLf1jGVaXQOC5sgKfJNu83QbxAqY5keuSUPa3JGNz337yHO/yQjTTo6JbsDT7NtzL3K4TXG1QIFDZM+f//aWlpbghBOcWpGIFrG108yMNExUa4VgLhNWVf3fSPdBACiQLvZlR0iLFcQQ0czvjK74zrLvlalJy1xIi2gRFBcXS6O88rB76bvNNjjnnAsc+yxzR26hz2HhE9IfOBqzv5kJFpHVR0jrivTs2RNHHXUUDj/8cGy77bbYdtttMXz4cBx55JGhElsHUo2sWbNGGlExFos5VHmEHPZ+nnjiSOy88y54+eUXc3QduXAlIjd3tF8ylSYtzMt21lnn+tZBJkiceuoovPLKS8J1zUGhQbaC6zjOf/LoZzYWVpNmmzs6B2Hb3FHUpLkHM3YM/yFkwt/7779jRYVjxGIxl1AgXj+TwCFh8RLSotGoJYyHE9Lsj2txcQkSiYRUKO3d26k5LCwsQlNTEyKRCFavXsXVw3y2zBy0oaHeIfwwLS2DBfBoa580WQh+lbkjy/OkJFrg0P6IQsDAgdtj06aNgepsXpOZVrFVe36fN+I1rN+SCVPbRXe0tYNwCUjueoSdXqm0/Lw5tnNckZcTiUSkFzeFzHBCmpc57uzZ33t+kwxDNDeUCGnsXVdo7FyaNEnAJ0srBs0dyIDXPELDMccejzVrV3tqhgzD+zvGnmE0Yj4bUcjhTQo1zU7r0Xeb4EJaLBaDntID5briF/AikQguu+wKPPXUk9Lw/XLzNkEQ1k1zZ8bmTZuwebPHuGEW7CoHcAdSEttTi2iuccGvj/K7VT7KMk0ar913nSMJHGLvE8oJ8Q5FhEUV5uOcUnwDmZBma9ICX8pJwDpaC2cSgauoyDS9TKVSlpm5hoij6KBjb3FRMU4aebK1qGZp0ryiO7bR4lu+ka3E1oFaZsCAAZg3b55r+9SpU7HjjjtmpSKdGWu1LxLNeYfNhk+aKkpk0Ino+vW1uO++h/xqIa2r6FsFmANIbe0WvP76K54lBvk4+GnSmpubpdHLVDBhSLwXtSbNLVyxY/hgCrzAxmsLAbOtRGFPFNL8fNIOOOAgz/1B8OprrD+FFdJ4s0b2oRUDh1x66RWujwr7KIrlsmuzflVbW+vQWJpO6HZZsuiOTiFNvrKrCmTih9rcUe2TJksT4KhPtMChSRMfNZvYBROyIvZEyXBHnPQ/XxDSFO+oprXdiisvJLkmm5rMPyPcDIuNH6ImjU0T3UKa1327r60hA02az7P98MP31DUwdEcdebNz+5i0b4riPRC1kylufLN9ctNCWkRDr169nOcr3jvrHZFqVpxCjAHnoaKPmWvssAKHONugstK5aMbOVbVIgU+6FEZE0Drvv/9BuFLiq5W+Yrpu7Pqy91EIGoJgljayZ82bfzuiBFrboq53KoxGWvbsNMF309rutaCTroPMbN61MBRivHFEXk6PEYahS98FAChKB/ZqaW4BoGUeOCSokMb+lfjc29YhduJ2jQ++omkOTflll12hvM6fTzkVJaWmZo6PKO01p+qqmrRsEejpnXPOObj99tsxadIkAMD333+Pxx9/HA8//DDOO++8nFawM+G1ApQNsmXuaOb+kZnZZO9lMzVpskm+Xbdddtk1XbdgE2BZ4JBrrrkeBx54sKN8L9V+ItGiFD68NGmiUCQLwe8npLHgDnvtNUQSPc0mGo1JzCZFIc175TZoaHQvvM0d7YlP0DxpYr34yIy8YHLllf9wncfMHVVCGksmfP/9d7miaPJtYn/QgmvSzD4VXEhj/nRFRUVKIU30ReQn9qq2sxz2YzHHpEB8b9kCTJD3ijc5Mkx7R7B3NFDgEOEaarMYby8cPo9ja4lw9ySOBbwpJCOo7yyDjQWOwCFRe+Va/A6oxyO1eVqQ78iwYYfZ18/QZ5LBt7VsbNJTRnqxQpFkXhivUo6FErcmTewN/CQS1twyYvkEqR6HyhyNv66dpkNu7mgYzqAoTDPhrJ8cTdN8c1oy+IUea5xRFMzul2nMZSaAZvqWcMKBql+Jed5kixvWuBAN55NmFiCtjHRzxENIY9WX+aRly9wxEo2kFwgMNDU2SY+v6FkBABg8ZB8zBH/gKzkJGtBDs+YbwIEHHIz+/be19tn+cS1CZFNuocgR4EzdbilOKI1Go1ZEVq/xpasKaVu2bMGYMWNw/PHH4ze/+Q0OOuggx39BCWTueNJJJyGVSuGhhx5CU1MTrrnmGvTp0wc33HADjjnmGP8CCADO1dRcETSYg0iQwCHZzGNkmgDI6zp9+rdYu3YtbrjBjCAWjUax//4HYubMGZ5lyrRXe++9DzZv3oQZM76yjvGaUDc3tygFHC+fNNFfTmXu6BV8pVevrXHEEUdh/fr1PkKaWxvoNndUn2+W0foIZV6CIO8fKDOFUH0g+XrxOc74PGKyZ8gmQqpcR926mck3J0x4C7/9rZ1gmpmuMNoiBP+RRx4NTdPw3/++YQnpfCJzgPmTOLVhtiZNHr43EomYbRItgGE0Os4FgGOPOR6fTJlsCXBB6hyNRq0PuOgoHyhwiHCM1S+E4/jVcZkPxzbbbIO5c3/0vV4QzOiO5t+WibQjF57/OLfzzrtixYrlVp4gHhaswhE4JBLlBAlRQ6Aw3ZI8h/QO3wnmc8++hNVrVmHq1M/M67fifdd1w52WQCCVTr6uEkjE+jpTp5j7UsxE25SUnecLUXIBOJ69fDpvQGYNaWufmNYlJi2DPTNDd+aAU5p2SU323O+2iqgjcIg3rK62EC+PHBwWUyPovnozv2gFt5aMD4tva2tCaNIkz87UWEnK0CK+z0dq7ihcI4zw4DZ3NLW4TU1yIa20tBxPPjkOZWVl+PzzqYHcUKTXDatJ0yIoKCzEuedegNtvvxkAUJL+XrS0tNiJ3B2afKdgJrZtNBK1FlWSQhJ6S5PmYUnSVc0dr732Wvz88/+3d+ZxUhTn//90z+y9yy7X7oLciCCnKCCIgqLiAQgCoqiogMGDeOEVRE0knph4xBs1iZKEmBivBKMxeH4TjfqLCSYeMVHEiwVR7j1n+vfHTPVZ1V090zPds/u8Xy9lp7u6qrqrurqeeo76CCeeeCK6du2a8XOQDtc3b948zJs3D9988w00TXOYIxBiNNOkKLcdVi4Ev1d0R5FvW5ArIhZTFdvxgQMHYeDAQaZJegwrVnwfM2ce50jPq5/dxFAmwiKjpaVZGNDEXZOW4KZ1mjs6yzb70rGJtpuQxTPZdApp7uaO9onGtGknYN26Z1yvseP24WGrwvboiQyhTwFnMmQX0syaJGZyYQ4cYq1HKg+mSQOc+9H506TxtYJ+hDSWlpljqarqWJ1380mz75Fn1I2tYMdtIc5T9T9l/uk4Zf7pWLXqRkt6IOVrYN/rh6Vhk7adO3ZY8stEs64/P465ox7IIR53LFJkGj2Th6IYm0SzvcsMjYwzWAFvsnvSSafgjjtu5eafSCZw770/sZo7qjFYfdJc6qebRfLL5mlN7KRW+432yW5Rxnuyn9LoKCgW7KXpNHc0vYPpdt/baCwsODWczr7WaErPN3d0/x6y/h+PFXHz0LcGsO2t6G+7DUXaasEiSHttJ6OwhZO0Jo2TNplMOhZJZOBpbyyaNM431Pzbb3RHcUX4/VwovMF4d0QaXV5aGcwCtJo2D2xsbHQNrc9M7IWLLTa6deuOr7/eaqukZB0VxfyP5X0rTX/TWltajMXjmE2bb/7b9r1WY6oupNldBeTMHXOzZUXU+dvf/oZf/OIXGDZsWFb5+H6LunTpQgJahuRaSMvG3NE8oIr2SQtaSPMyyTOboVRWVnrmKTJFs6wSqe4T6tbWVl+REXlO9Oa6WAVEcQh3VjdVTQXcEOVr5O8upPGczc04N4f2t72CrrXxqJ9fc0czTGOmqqq+14u9ruw4E1zsfcBu7ghYJ3fOfdKYJs3PPmn+hLTGxkZ9kSKZ1NLmnFbBi+eTJjJ37Nevv1HPlLQD88TaucKe3oDU1C6HH3Ekt66qamjSbv3RzbZz/scyUQRWc3hoXmQ2v5PN4uJinHrqAu651HNK/W1fqU49PvvzcuYR4/h+mHn99b9YhbR4zDSBsmvSnL5Dqbqoeh5Wk23v90exaRuyEdKSSQ3JhPt3JZFMQgFQVMyfHNufqdncUeFO4mxaD9tiFwChFoOhJa2LjXp7aMbzBcw+adbrDXPHZMZCmgLndikiLPuksUm3UMuKdN0MpzTLM0r7fLu1mtBk0EOTltrw3W7uqJq+Y05tjRf8OYnCzUNxcxvRx0heG4m1s4wuXbpi2rQTHMctC41pIXXvXpdAZmZzc4C7FYSd+fNPc9ZY8hmqtv5ivjfd3LG1xdTmtoVrk6bcYf1gej+PPvoY43gsppt2u1kIdVRzxz59+vg2lefhOtp4xe9n3H///VlXpD1jBA5RHR+CoBF1ihkzZqG0tBS//e2vJV58/gpkpi/bpZdeiR//+BbLMRkhjWljYrEYKiudAUVE9bNPqv1o0tra2nz6pPGFKVFgAjefNCNqlNghGUivkHpo0ryirtoHVb+TuFT0RvEUwDtwiFzQCsCpSTO3Q2VlJXbu3GHRuvHyMAekMU/u7P3DS5MmErL9PL9XXnkJxx8/Q1/pT5lEOTVp9iAdrB52c8ennnoWX375BWbPng4oMdgn/U4hLfWvjAkcb8zKRpPG2sP5KhkTsnhRHLDNv/2a63Xr2s3SZyx5mZ6lw7dG0mxMVVXPwAj2rTzMEygZAVdRYBIorBNwT02aTduQ1UTJQyMFpH2/FBdNmq18q7kjb+HD9pvzvPaa/IF4z0ODZvVJ42xlAgDx9FhojxTJ2siukRJpabht4vJM7MRNY7KsuaNm7h/mPqIqgEegEFVVOe3K11KZzb/hWGSw9m/Dn86HkCY6yhPSFBcBM52cv9+mc2HITiwWM0LWmzAHdWELV27Rpi1PXeFvpeEoI8PFTFYGYLwn5uvYAmCLWZOm2sYUxSqEWuqVHnsnTjzMEoVYVWNoSe+t6hY4q6OaO65YsQK33XYbrrzySgwaNCjjhTJXIe3ll19Gz549cfDBud3fq72TL3NHN01aIpHgCjE8ggjBb+bKK1dwhTSvfdLYoOVXSDMP+Txzx0w1aW7mjqK6OE0vxUIaExgSiYSrT1oyqXkKaV6TKuc+a/4GkHg8LuWTBviL7ggAK1feiNGjx+CSS5YCYEKa88MJAP37D8CXX34B+ybiDPa8zf2nsbHJcp4npFkmJRZ/pcw1ab169UZTUxMuv3w53n//Pd2x3x4YBXCGDzebB9tX5rt06YqePfdJCXLcD721zvp4JPE+26NfAsbTyMRF1ej/9lk4wEy8eBMsv2NPaiFD7Duk2CY15nN24YsrpMXcNWmpOtiiOyrGBMr8TEVjtgLD58jyvijWCWZ5WbnFVJDdh9figixJTfMcq9lig8i0zy0Yi8gCwu16ANi7d7fpvDMHT3PH9DVMk2YPk28OHGKuj59IroqioLhEUpNmylfxEnQUQ4AE0ppo27cmmdQQU92FNJesLTQ3N5vOOzVc5kWHjOYJXGGMv5jhGoKfLfRwhTTbb17EUPA1tJbtEdLvr5smzepPzHftsCP6tsigzzdMEWQZbAGwpblZoN20jhWihU57XWImM0j3wCEdU0jr27cvmpqacOKJJ3LPv//++1L5uAppixYtwjPPPIO33noLs2fPxuzZs1FfX++/tgQA98ElKEQf/GQymbWQFmx0R29BwuyTJmPuaM7b+NsqpKXawE2T1upLRS0SpgxzR/OzFk3mjYE1FkutbtqFvwMOGI399x+GtWt/AU1zCml+1ep2Ic38u0ePnvj2229ctXGqGnP1STPM2txNPHmce+53LXUSrW4CwIMPPoJ1657BG2/8Ff/v/70N++SOlW2ugznggN2/r1R3snY3d4zH47oWlSekVQ05FGqxVfCqGzgI3//BDwEAr3/5S1QMPQLbKgeg04ijsLWiH6pHHq2nTfQagObySlSPTJX3UUtnfAstlabPGP04ALzZoKG4uBWVw45ESSIJpciqabM/aj0Ev9m8Cny4/ZUtKnhM/Hv23AdDbVEZxSH4jfc0zsnXt5CmaS4CgznIAQtkYprcOB8Ytz5ehuXOTdPNQpo4e10AUxRDk2ZbeGIZzJ+/AGPGjMWll17IvU9GVj5pLvtBMZLpCIiicPNu7SczObUvdgHAnj1mwZQnpYEbHZOZk6r62JAaZ+x7S+pCWjIJxI38/UTGVSD2IbUT47yPYhktfcJ8f7ZxKhXox6VugvD2vOMttsAh9oqZI21mIqSJfM947coTEk1nAYj2SRP3Kf2YqnKDAZkXV5km3G0h1VqOdxCXkpJSge+23LPU+4s+vpp80tg3Lb3nqHGN850CnP6juuuC3QRZjenfQPfNrDumT9qyZcuwe/duXH311bkLHHLFFVfg0ksvxcsvv4zf/e53uP/++zFu3DjMnTsXRx55ZCBhvDsS+dCkiSbrLEABIB74GamgBfyJSVCwlT7ecYY5up8oop0Zptlxaq/kNWktLWIhLRNzR3sIfrcJiVmTZhYSgJRT8bhx47F27S/SAre1Ln786AB3n7S///3f+POf/4QFC04WXh+LxdDSIvabM/vkZeuTpiiq0HStW7duOPPMRfjb3163lMsw39ddd92PCy4417JS2qNHD3z11Rf6b33VscW6cmzcV+rv4uJii5BmuUc1jpK6gUjs3a4fqqiowDkXXIbG9CNLxoqhFJWiDTGoxRVQi8uglhj3qMVKkIwV68falBhakirUknKopeWWtC0akGgD1JIKKC1NaN3+leUZ2OcHzKxL5n1WFbFZn1cbnnvuUqHGluuTpps7Zu+TpmmalFmaPduUKZW1brzplarGLBuGm4V2hnmLkdQEzCSkSQQtUBTF8E+zRTdkz6q0tEQoBFjG0iwmSklNcw1lD6QFUkXRN8t1q4sdrt+R4p3GEt2Rcz61L5hYuDS0LmlNmmAblVTgEOO4sF/xC7GYMbphEdI8tA+sPvon1KEQVqB5hOAXmZnymsoipHGuU03+k5nNE7w1PEYdxYFDGG77pN1++x3YuXMPHn30p9y8PTVpqgp4hHOwPnZvTdpDDz2Cd9/9p+O4tBZKsc7tzFcZe7Y1W5+bKa35+2X3N9THbM4WFXKBQzqmJu1f//oXfvvb32K//fbLKh/PtykWi+HII4/Evffei/Xr1+Pggw/GHXfcgUmTJrna5BIGUdjMOjWxN4QeN1L+MEY+bEKf78AhZnNHmedmnjSby7HbXrvvk+bP3NFsBmKtO9/c0T1wSEqg4WnSzKZEKRM5az5+hTT75NkySKv8iIxmmMbPK3+mHbTDb0/rhMIagp+vSbPn5+YDOGhQarA0Bw7ZZ59elntnUSLNgUask/pU2iKTn4miWLcZUNQYkEwg2bxX/2/ShAmo71qDsriCsriCuNaGRPMeqMkWaK2NKC+KWdInW/ZCaWvUf5coGmKJFv1vc9ryuIqyuAK0pH5rbfagMfzAFJa+KHi/1FiMOwG0PxfutbzJnJtGJcYmzc5JbSbmjvzgAVZ/Mme+PE0Cf8EqaRkjnRqkpGnSb7aiUBTVOuHR+O2jKIoRLp5nHopUG/I0j+x6hj1Etr/vkLdPWiKRSI9RxnPgRfwTVJRzyCbEc0Lw19bWudda0ywBGzT9eLpOLHCIQJNmRGHVLM9f9Lwt1+qBk+C5fYH9mtR1Xu+Ykq5bkptOUVQkPQKJib6DCmdaKFq00usejxn73GVgccMV0USBQ7jvqDUnngKBZdW3bz8MGLAv9z5VRcGQIUMdx+1BXbyGI7s/qoylC38hRa7v6MIZZ/sD9k1rbmnW207T+IuPqTysZYoW1ix+mi4LEUFaYBUSAwcOxO7du70TeuDr6TU2NmLXrl3Yu3cvysvLcy5wtB+MSVGQgs5Pf/oLaykug7Ifc0eWnsEmyGZTr2yREdLY5N5LYGDwhLSU4OMtKBl5+BPSrL5L5rTOSSDPxt4aOCSlafv666/xwAP3AjA+NlYhzRk4JFshzexnwfOds8NC37udZ3nxBVPvOpoDh4jMHY38+EKa+T6YxsGs8bAHDonFYvjxj3+CP/zhBUfe5vzNkwD7PfJXmp2mNux9VRUFo0YdYDmvJTWrplkxfGbsmiavVXf7mKD52Mw6xgmQYZhiub+XXG0R6+uc44YAzBHSfJrrJZNJd01augK6SZtuquWcGIoCh5iP8+ps7mfWfYhsPmkCozRFUTBmzFgMGrQfZs6abTlu7u9xkTDKWVww118WTcLcMRUB0SqsmscYv989p2ma2UwrxTXXXGc6z6uTXAh+9h6INGmaZtsnTcKCSDX58chOUi0+aZy/zLD2Z2OEeYyqqemsjy9ucLVUULhFOswdbRQXlxjjSlA+aYIgJoqqCs0dFdN7PXTocJx8shEx0X4F1ydNVTF50uHo2XMfW77eFjFm/PqIA/wxTnaOrQdt4Qj3RUVFGDduPC677Ht8c0fF3SeN5+sP2PY0dfHT7KjRHS+++GLcfPPN+Otf/4qvv/4a27dvt/wni+fTa2pqwpNPPonTTjsNM2bMwBdffIFbbrkF69evF5ogEXxiMf8+aTNnzhae69atu+W320cpFThEn155lmuegLN2ZtcHY+Yq3syaYfZJM/8WITJ3tIbgV7kTbcY55yzCjh3b+TXmatJEQppTaEgdEwtpLP2ePcbqi1kjxSZAPJ+07IU067PwChvNNH5u5wFv7aHtqOUXW+GOxcTmjs5y7Xk4VxQZgwcPSaex1m/BgrMwYMBAU13N+afyMz8fh7aQZ95p+1DpQlpSg6IqqKioxIoV39fPJx2bWSu6yVmRre0sPkwcHBMGk2bfCzUVBsx2M9YJgQhXkySH0GqeNPNWwf2bO9qfE0NVzPuk2QVQ58RQJKSZ4Y0l5ndSUUy+HrZJkdAnDQrKyytw7bU/RF2d4QtuHtMURRWbMpo1aQITJhk0WXNHWM0d45aIeD4XdG39g3d9TU1nz2zMPmm13WutRdgWHe3mquwZMwGUIdyDy/K8jXHbKwqo/Rpz3UQYRVk7z+WXL8cPV94IVZH4vvL6jcI3MbRs6cK5n+LiIv17IFo0cBTlMQ9RVH6KlLmju5AGAMuXX4MJEw7hnwR/TFEVBVAUdKrqZD1u1gor7n7tACzNokBuY3GecCu9mbVtbmcZnxQFF1xwCYYPHymst3WOZO0Xhh+xrW6mdK7mjh1UmbNkyRJs2LABixYtwmGHHYYJEyZgwoQJGD9+PCZMmCCdj+vbdM011+DZZ59F3759MXfuXNx3330WMyBCDnN0R1n1NePBB3+Op59+Qjq92NxR86VJM5s3MC2GMYnKlyYt5vjX7RqRuaNdUNL3x4nFuM6/a9f+wnHMni+jmbMBMCA2d3TzSeMJX+aPPZsI8kLw86Kvua2meoXg93J2j8fjrh8esyZN3idNbO5YVeU+7siYO5oFq9GjD8Szz65PX+MxWeCsMlqFWOs9KmrMOfEWaNKSlj2YTBP3ZNISEjy171Hqt2Ml3+N9drRTevIWl9FQc7S/DLvvguO8y0ST55PG2qqEs0Aguxo7YvhIvPuvDdCSSfFkkaNJMwtG9rqJhDSz1ohn7mjVpJnKFEyEedXkHjedU1UVMYEwyvPvNervQ0gTBJIyk0yw6I7Gc7BohnwK2c51AVV8EqIJf8onrbS0DOeesxRD9t/fctZuGSL0SUtazR25lh0OEzFj/Jftu9Y2YhoR92v06I7phCNHHpD6rSrp8SOT6I48c0fzliTOa4qLS9Ca7u+8fQ69EGn1uFYJAjNIdo0Z3t5zej68Mll5jva0+myZx8Q5c+bhd7/7jSW9RTuuSEZ35C1mSi5u8PZH45ZhPq2v7VkDGTkXOtm33KZhM70HrvukSVpCtTceffTRQPJxnW3/9re/Rc+ePVFbW4tXX30Vr776Kjcd7ZMmh3nDx2Dy400m+IOy2UROpg7myH6GuWPqej8hiEUogoGL5/9j/pi6bdLMPrLW+3NGdzR/2EaMGMV12BXV2U5LSwuqqjph166dluPmwBnm672ENGfgCyNkuVlIk/FJq6ioxO7du7j34rWZdYlH2Gjeytm5534X999/t6Xe9uiJDJk+aGgRVey332Bcd92N2GeffbhpeYJOqp7GfZmDz8RicW7kR/e8xZo0y/NTYpxJJl9Ia9i8WT9nTpJMJi1aAEVVjHDHHj5IY8cejLfe+ptxQqRJc5nAeNU99a+1r+6zTy988cXncnlyDrD8SjhBgmRMnu+550Fs27YV7/5rA5Kam7mj2T/M3lByWp+UkGbkzxXSLJN+c9h/m1+sKAS/SLCxLTSJJ9smwSIbc0c4w9PbSXBC8JvfPb+r6Q4Np21M51zgOKRpKeFRVVUcNGas9YTpEvY+CaM7apqlSBlzPvMWJLITbbvJObueh3OfNNt5RUlr48XlcU0JFWtehx06Ga/93yv4+9/fdpRtpsQUSElWk2Ypl1s/UeAQFTxtHg+LdtI+jvHMHW0BOBiihV4AGD58hFNIs+1xKdJqXn75cmzdujVdV057yPqkscixuiZN0G/0Pm0ax+H0STdjRHe0Yn4P3MbnjuqTNm7cuEDycX16s2bNwsEHH4zOnTu7/kfIEXR0R7uWBhBr0lKO3cbq3rvvfoQnn1wnzNsc4YiZmh1//AwAwJFHTs2u4hALaWbsk2iv1V9ZTRqbYC9efA7Wr3/Nf+VNNDc3Cz4kSNfZr5BmvUc20VRVVa93SuNmzcccSY7h5sfl5pMGeGvSePexcuWN+t/ePmne74HFZEhVcd5538UJJ5zITetXk2ZtFy/TIufCgf35ZOKTBgDv/msDdu1igrSRJqlpusaLpU96RNJiV/fs2dNy3B5E1fAdkV1sEQlp1lSqomDNmseM326TU87zYH2aF8lVRqjo1KkTiuKpNnYLHGKeZNnzVRQFxxwzDSOGj9SP8TRpMdP7CPAXriyaNJhWuxXFErRA7JPGPWzKCa6mdJZ+69CkyX+HUv6RHpq0tBA3dOhw/VgmPmljx6b2ZHXKzv6/m6zeQk1wuk6dO3cBAHTqVG05zyahWjJpHa9EWhyLIGdMbGXvXeUEDhHCvhmmfdKsealIJr03s3Zkayp76NAROPOsxcKyzRSXlOjBrngLFp4IvqEik0Sh0G877r7Jsrx5ofk9sy+2c8djm7mj6P0ZOfIAHHlkausVrsWJrCaNacVU9h3k37f1u2c+bpoz2fsSm2vYNZGmMtziFHRUc0dGQ0MD/vGPf+Ctt96y/CeL65LHzTffnHUFidxtZm39biiuPmnmwCGqqqKurg5btjR41hkwJvsHHzweW7bsxAMP3ONYOfJfd4UrWJjhmTu6ISukxeNxbN683XdbiDRpog03veoCWH3SUkKa/SNjCCpMYOOZO/I0aZWVlWgQNLEzNLpdk+YupHm1hdUnTSyYupfBzI28/e3khLQS7vHMNGnWwCEOc0e7YMMRBtzKSe1xZJ5gKXrwBq9Jn+MDLaFJc81POCn1EG7Tz2Dfgfviv//7r+1au5Bm3Bev78n69TDBTEuKQ/CrJvMe+/umQEFVVRWWXXolFi5MBx3gzHNVNWYx6+KNARafNNWI6Gg2fXRDJJikfHL4QqY9HSMrc0dYoyTySCaTUJDy87z88uW49dabPBcueEydelwqvYvWw21RzMwXX36OLVuLOPfKtE+pOh068TDE43GMG3sw1q5d46izBs32rfW+F/3dsmldXK9x+C+Lx0l2WCyCKdi06VPsP2R/cQph3mws5b/7vGPFxcVIBG3uqKj6fVZX16CkpCQ1Z1HkfNIAd00a7yU03lGxaZ95rAL475LT3JFbXVtdeYuZcn2HLfqwMaO0hL9lEbfNFXvgEH4kWMcG5uZvqOtm1h1Tk9bQ0IDLLrsMb731lj4/Nz9n2c2sO+bTyzO5E9KsHy5Nc9/M2m7uKBulkZk7BhmKP6VJk4vuKGtmyRNUUi+G1dyR/RuMkNbMfR6GkGafnDuFtK5duwFI9Q/7QG0W0phgwPNd45lTVFSINwC3mzva8/MS0rz6jnHej0+aFSPqWjBCmvmepMOD2+pqBM8xmzvanp8ag2KbPolMBi3HTH+nNpQ3m8wYq7HC+qbztJtjOTQ1Fh9ZCQRNJRLe7Jrv7//gBs8sFVM/KeFMMGQFSuaf5Rrd0WRGpb+P+lK0U0uY5LxbdnNH3rBr1qQVFxVZijALnUJlh2gSDeP5uW5p4NLH/UTgSyY1T3NHtk8aAJSVpjZxt/oD+RVUxO8L76nwBNovvvgcGzd+Ihxr9LIUBePHH8LRNrJFoqQlfy/hBoBl03ZZrSXPf8p85fjxRhAMVh/RouzOnTvw3//+B99u/1ZYHrfvmLRUIp8wXgMUF5fo/t1Fgr3y3BArxgzz8ut/eBOuv/5my3Fn1fiLnOysGd6tGWOaWGtk30qJJ6A4zR29v2H8xUzPyywJmZBZWlYmSMbK0ABLnzaNFSLTRVtdLIFD3DRpPiPzthduvPFGqKqKdevWobS0FL/85S9x5513YuDAgXjooYek8yEhLY/kcp80w9xRPgS/7CSNmTuyVamghLSjjz7WNY3hk+auwmfwNpa2+3ll8/x51zY1NQmeh1NoEJk7rlnza9x884/Te3bxhQy7v4eMT1plpVhIs2vO7EKXl7mjV9/xMneUUSUYUdcyF9LMv+PxuEmAMNvT+9ekWfZFs2kL+c7u3po08yNJOjailTB3ZNohR1AZUXRHU525Oabzc0yI0s/a9jFnpTBzRVdTHYc9m8J9tgzZsYpdq0FzN3dk9+BYREn/a34inCE1qWmImwR1Nlk21zORaMO+++6Hc89dirr6HmDPzb5PmkhIE45VKTuwdHkumjTT3/Z9jPxNnLzNHS2rxOl/rOaOkoKKHsjFiuf1LuO6w3rBtN2CGxafNAkhzQybtCqS6VP5ckzRTJeeeOJcOBNott9WRPt4AgJzR6vKULDRuPNYUTyOtvT4ZF4cOemkU4TlW/LkjECqoloCXZSVV6Bv3/7CurM6W/IQmPelfvMEUH6+5r6iqlbB2yswhgJYgkAJ03HKltaksbE//UexIAL39rTQ3jm9TUPqWrsmzb5AAj2dmZglcAj5pNl56623cNlll2HgwIFQFAVdunTB1KlTcdlll+HOO++UzqdjPr08Y2jSsgsc8pvfPIXrrjP8fuyatGQyiU8//YR7bTKZ4Ahpcs3PhDRjz65ghLTzzvsuPvjgE8dxht3M0Ut7w9ekJQMT0nhTWbumjuEnumN9fQ8sWvSddBrj/KxZs237pJkip3HMHe3HeL49DKcmzfpsS0u9fNLkzB2zCRzC6pSNJs1eDtOm+dGkmdtdFBDG8CsDoHgLpVLmjknramznLinfmS5duvJrKXgGDilDcwoUvEne3Xev5p5zaKFs8DRhMrgFNpL1a2DCSDKZFG6wqpiEHP1Z6QEYrBo1gO8zVlJSguJiI/9EeiHB/I62tSVQVVWFiRMnWfJOFW++H/E+aaLjurbDre8q4kmUr8AhEiH4AaOH8yw1pP2yWFREx3usmn84y/YhpHHz5J5P/esWqXXp0ou4VdLfLcV7z0njGvOYwvumOAVF3j5pAHD22eem6u4iHIiemLGZOn+hhfuoFcXQpJkWR446Kgv/dcUozF4k2z5Fqm56djYBzmWccZ6yPntz+/C00pYFNkUuumOm38lUOr5FgJ2hQ4dBURScOHuu5bibj7buS8vxe9TrrpJPmp2mpiY9ZkdNTQ22bdsGILXJ9YcffiidDwlpeSQTEzszhx8+BccfP13/bV/hX7PmZ/jZz/hq1CFDhuqDvDGZk/t4sPDnQZs7plYX+BNOwL9Pmj2EMsD388oUGTMXhjGZN5/zDu/N7nH27LlYvfrntn3S4o50jLa2Nofg5bbXmd101D6Jy1aTZl594wnX/swdne3KKdH2Lx/2TLx8Ciw5W94zI2qb+fymTZ8CSO1dqKgxoWAj+p3K0TjmiO6I1ITn4osvx6ETD3OtL8/v0fI7/a/XIg0zrxWtrIo+vkwQdovEynsePAGYITvmsO0JkomkcD9Hs6+LfRVcEU7SUhx77PFYs+YxlJSUcDduNgfSSiTaHIs0vL99C2mmCrqaO5r7re199TMimjezPuSQQ8UJ0+UxX2O38OcijEhy3u+LLKJn5OXnaDEpFLSdyGzUvEgnHzjEqfWx9hnneT26o+156ZGA3fZKU5zfI+Y2wcrjabgUwbSRjdPm90661bgCk7Gnqf38rFlz8AOOGbWfMngCqNFubtlY53E8rbTd3DEptGk28BLS3N4BkbbLzv77D8Ojj/7auu8ibN9DkSmpIDQ/AI/NrDumkDZgwAB8/PHHAIAhQ4bg17/+Nb744gv86le/Ql1dnXQ+JKTlgSB90kRaIdGk+f33P8EzzzyHm276kSWYg9s1dmbMmIlVq25H//4DHOVmip9JuqGV8TJ3TK32mgdIu7Mmj1NOOQ2rVt3uWR8RbmYjTnNHu5DGz8vYyJmZmFo1abwy7T44wk1X4dScOc0dvULwuw8d1klKppq0VB7+NGkKnn76j8J0zL/Ssu+Nj33SjD5pHEtAQVPlPijvewD2nTANpfWDLJEZAadAwze1MWvSktY8lNQ1Bx00xn0GAed77djMWvdtc59EG3UUlCeox6xZcwAAnWtqhHV0TA49zMlk99ph/TipJYUmfSnzVGPxw3rOWR8zZv8T82R01AGjcdppZ2DBgrP0Y21tbdaocOk8taRm6Q8iP2JhMytmE3A3TZrL98HHGM4CUsXUGA45ZKIw3ebNXwEw3ldLCH6JQCeA6fnaquc1WXW7HaGQ5iU8pTNNfUNM15l/CAo2tML+BVSAr72w5sP6UtL805HWa0Nr3jPQkoYmjXt/gvtpbWVCWrFnWqksOUIkQ1VV7nYsMoKM8Zvz3Vadz51Xtl+fZhmfNK/v5N13r8ZtP75LUAYzE5Z/r0XvlHOsVRxpUvWVewYd1SftjDPOwNdffw0AWLp0Kf7yl7/gqKOOwq9+9Stccskl0vmQkJZHgvBJE2tzxLbU48cfgrKyMqG/kxc1NZ1x1lmLAxHOGOa87r33QUyY4Pz4O/dJy94njcdPfnIfzuKFGnaps7We2Zk7mmFtwiaATHumKIowhDzD7oNTVBTHE0/8AWeffQ4nrbu5o1dby2qf7P5axvXOY2wjVnud/Jo78voSY+DAfR3lZ+KTZr6+VYvhsJO/i4WX/hD9xxyBeGUN2nZbHfbtq5Becx+HJk3i3ROaO9o1aWzRyKsN0//yIiCmjvOvP+SQQ7FmzWMoKze2gCgttTqyO+5Gcam/4BiPeLotWVhrHqpi+HeqNjMhfZIjmnybFjPM/jaqouDYY6c5tr2wtDvTfkDzJSTZST0n9zZgddL/FkRsk4EJaWpMdd20lsE0KnHOZtaeUWFjznETgE3Y5aHgO985D506OTe9L7aFhNc1RZIr/JpmCxxi9kcSfHdjJo17Jpo0Xv/gTaqTdjNd2+UiH3VumWk0W/RLZz34ebEQ/LIBySx58nzSVKOfi66SO8Yvw3VhylXYswqPvD5t0aRBQTIhoUnzGPc6deqE7rW1gjql//WhtTKPdSqnbzkytz0/3ubrZsyuGh2RE044AbNnzwYADBs2DC+++CIef/xxvPTSSzjuuOOk8yEhLQ9YNWnZ5SVc/ZBYLTRHqwLkB1MvrUpmGHWfO/dk7t5rbHLv19zR/FzMAVOyJRMhzalJ8/LlSpVh16QBiqtmzJo2RVFRMQ49dBKqq2scab2iO3rh1XfMZiMytvZlZWW46677uWXICWnWckUMSYek5r07MuashqbTuCdNUdGlqgLHTJ6IkmQT2nZ/Ay3RKswj9VusfQVSq9mayY/BzwqpXfiyTw/MPrJuGH5B/I+2H1+Du+66D/ff/7A5E1uWpmAe3PdJNhKlgp/97Jc444yFrmn0MU04IeFjrlu3bt0xc+Zsy3l7XxeO127RHT20eeZJovtedOZ6uftqusF80mJqTGhCaoYtlvE1aR4BhwTvotfkU1EUTJp0OAYPdoacF0UblI3qmtrM2tSOHB9Ve51VXZPmsqeXDe4YLPjG64fFoUHTp700ac7+qgn83Iyc+cfZOG2eL7j2M4tikC9wGT5iHIGKd4VredZzPA22l7kzwNOkuQtpUGR90ty/CW5kFCfAvH4koRVz06Tx6sn2H5TdPqW9U1RUhH79+qFL2rdcFnp6eSBIc8dshDT2EWD18fpgzpkzD1df/QPU1/cQ1iFTZCbEhnDGNGmZBA7hB/bIBNFKv5u5o9WPwHtVlaVnq9C8EPwi7BMo9nv37l2OtKJQ/7LIap9kA4cceOAYhxbiu9+9GH379vOMAmovz4399x8GAPjss8/0Y+w9KC/nb/7tLdApxsRaUpDnJzMOJmyaNJnVHf0Z2KMuCjRpfrSh1uPpf32s2paWllm3hLDnaXmGmWvSgFRfdnvnU6bDbM9B7wUAS96ifq/3P34Y91QSNnGGdYZpnyx6aHoUmPu7my+IuWyrf5FfIS2RXuwSBWMxw4Q0S+AQyfdTEQlplsAhnOtc3j/74pYm0D458jT5pFlfd75WzVqmSUiTNNXlf0fMfzsFRUPrxdcSuUYV5FqZKMLN1fUUtns++eTTLL+tzzvzuYKiKCbzQ149/H3XZfq8efsBYRrVrknjaCMtVhCQ8knjmzt6XsZSpsqViCLpLMMW3dH0rlVX16BXr156OjOe0YE5UYQ7Aq+//jqeffZZy7HVq1dj9OjRGDt2LBYvXoydO3dK59exnl7IpCarEgOFS6cWCWmiVXHrHmEsEEPC9RpG//4DcOGFy4QfgFzj5ZP24YcbLb955o650KQ59x/jrPIpzskGX0jjBw5hExzeZtYi7IIWm4haIg/ayhH99sJ7M+vsfdL2228w3nprA7p16+aZVl5IGwoA+M9/PnDU1S4k8urKE1w0RQEEkyVeHqJ05kNtra2OD703/GfgENKYT5o5sAMnN3ugIcd5iZVpYU3tWZq1Q5zyzPe0cuWNjvN+UBRjjzP7mOHVL2OivdfS18lo0jQtKbW6LJwoKsYZNobfeee9uOsn9wnLToUNd1/5FpEyd0xAjal6YBY3EpytIlTdKkLO3NtePV5kQx68c5n7pKX+0TRN2BYiTY81b7lnLavZM+cpMmdkSb2EA54mVl/EkdyLbPr0Eyy/Mwocwsk3FQ3bZS7kI2+AN4ZyNGnseaQT8zaFVmCL7sj5Fs6de7Ilvd1HmQfPd0vWgoLdm1nA7t6dbxppXMNf5Df/fffdDxhbqtiu94oOzGriV5gudFavXo2Ghgb994YNG3Dbbbdh5syZuPzyy/Hhhx/ivvvuc8nBSsd6eiEjG93R70eI5e11PG7a6BWQn2jnApk5wscf/w8A0LNnykHYXt+ams6W3yJNWtBCmn3/Md6HjufYryjeE2i7psaqSXM3O/UjpNnr4WbG9MYbf/eYhDgx0vP3SbPn52eC71ae1/vFzKHMk3NWP7bVhChvwLhvc32TmnmF271+ot/2Y4lkwmIiIzVu2OrIyDS6I2+hwVyOj2VeZ94Oc0fjGP99Muras2cv6XKGDBmKGTNmWfNSjCA89jHD6zmL9l5j2P1KVMUpGGmaVRsh1Fy4CPxs4sPy79KlK2o6d3GkM/2yaHTsfeSwQyfz65CuYTKRhKrGpDTu7D2qrTUimLG+JG3uaO8fHpNVPdAGJ5nIJNRNAJg371SrNkrUL0SLpun7TAVcyUaTJhBOdQEy6TwHgEVg9Bs4JLXexFS5gov8vCNZjBEWyyNePh5jqH5MvxHvb44x5qV+9+QFJ1FVWPdNs/bpE044EfvsYxqjFEWPjuqGl7mrG6o+thj3dOONtxrbqHAwvzNWU12ndpVXF9norR1Nk/af//wHY8eO1X//8Y9/xOjRo3H99ddj4cKFWLFiBV588UXp/DrW0wsJzaT2lemw7kIafzVUHDjEvOJj9UnLVEjLpbmjGSakTZ58BADDhOTyy5fjqaeeteQxfPgIPPTQI5xcghTSUv/aNS7u5o7Wj6znSr2+kmw18RSZDZqxT6CY5u3AA8c40voJIjNgwL6OPLwma+YJfjb7v8jCMy/lwQTsffcdpB9raUlt+OrUkFrzBgRO4opqWjaUmxDy7996zBrCXuJ5CbQ5YnNH92cl9AeR1Fq6whNa2VzAw4Hej9Z3xYrvY968+Y6ymemwX02aU5vtxzTMmEgpMj5pwrooJoFc/CysvlPWsceeM9s2gUcyqSGppYQNGSFt5IhRuPCCSzBnzjyjfNY3Pc0dBRE5PTVpbu+/LX36ebv13+HDh+t5adBEr7Uwj5hpQVT2PeH3a/433m7O6HxHkS7fQ5PG2RNL3+xbYmNnHmafWF/jvC2peVHba1HLyIInzPHT89YF7YukhlbfGsTJzYqJZx4uswjpZUHgiq5KM8opLS1FdXW1yzXGn2YzZtGinL1+XB9JDh1tn7SdO3eia1dja6l33nkHhx1mbJszYsQIbNmyRTo/EtLyiKxPmqy5IywfYW+ByvBJY0Ka+wfXHpEtSJzPwTmI3Xvvg7j00ivRp09fAMaEZNKkIxz79TzyyKM44IADHXkEqUljODVp4kmljP+a23VmTRp7ZpZVOhP2CSTTvJ133nfx5pv/tJyzT2a8+oK9vWR90vItpMm09bvvfoTnn39J/71nzx4A/swdzWhS76H9N0ewt/02C2l+HpczaiM/BL+nsCOYIBkTmMzfK+f9KJY2vPPOe3HTTT/Sz1q3TMj+fWaaY4cmzUMYtmucvZUOVkGJXeTanvo+VQKBH4Yg6+bvZBV2FVt7WfMuKi6GcN8pTUMikTZ3lPFdVRSMHTfekpYJWV7huHUhzkXzzH0qLs9T1gTZnqFFcSWyYPFYHNU0Tdrcy3vfNkvtAJiiO9rT6poVnyH4FWOfNPEzTZ24+eYf87euyXBsd1prxFwFQu7kn3dIH8f81EFfMXKWq6qWtnJqI+1CjhE4ZPTog3DVVdeKCueWJYOuSfNYNBIUbNF+Or5NAm2mrDDux3e5PdC9e3ds2rQJQOob/t5772H06NH6+T179vgKxkdCWh7wGzhE1tzRa4UfsNsaWwOH2K/ZsOFDPPnkOv13z549PesqS9++/Sy/ZT6co0cfhCuvXKH/ZvXlOfuL8suFuaNd4+LmB+GM7uhVF6uwYd/P6ckn1+G5517iXml/8c1auH79+nPrZ08rrBXnA+qG+f5lVkGDMneUaeu6ujp9g3YA+iLA/Pmnu+Zt/5uRlNBybd261ZYntyDLT6bhE5XrvDw9GbE9A/tqusYT0iTHHMvxLD6+3E1yTcJfly5d0atXb/2cZRwLQMAviqfNHe1+rJ6aNMF7olgnzQyeb1LSHsxIuE+aoC6mBRs3zZRlUm8fezir4mVl/EW5pGaYO/r1XTXyj3nWFzCETrvA4inAuCwcOHwnmabIpf8qinhBlFdfexrjW5UUavd/dOsdtrzcA0conPbTx02OYAB4B5LgCfnegVWMxcIePdznCH7eVKdPmrvPLO9dldauCVBNFiCp3/xvu0Wza8vfcY1ijLkTJkzUg1fxeOCBn+Kcc5ZaypKCjT8+AoeYn5V5gVe0KOeYA8Ssc5sLL1yG66+/xVGOdGTedsKkSZNw66234vXXX8ett96KsrIyHHTQQfr5Dz/8EH369JHOz/+GFoRv/App8po072t4PmmJBH8lvb6+hx42FQB69HDaY7vVwY0XX/w/bNq0CUcccYhrHm6TdVZfnu+ZaCKd+kjK1XfDhg8xcuRg4XmxT5q8uaOnv5DGNhpOpbPvNTJx4mEQMXbsOIwdOw7/+Mc7ePvtN139zJzmjs57OP30MyHyS/KjScsn7L6mTDkK//d/r0pds88+vfDFF9uEz4vXtyx9DCqMb7b1fidOPAydqjphypSjbHm6+58A9n4uIaSl/3Vo0kQ+aarc8O/ciJs9g2zMHW0/FeMgT/izTL6DENLS5o6tbXafNI/rBJECGRW2CKFcDZCmWW7f7+p3Kk++QG5JZ18gskyqbIndFkk0DTt37kBMVVFT0xlXXrkCt9wi0LoJEFkWONPxN7O2qbXEGfA0KQJhzNVUVFFtmSm4++7V0lsZmBcUhcKgQ1B2Fzp4j8DQlHFfKH3RoL6uHpsbNluSaHA+A0UxC2lS1da56cYf4fMvNrkmrq2tw5YtDeBiyzemmgKHcAUy86UpM01Xc0eH2atL4BBeIfoha+AQh4DM0ayJ9rOzU15eYQ28IjnWGVp6qeSOvOMmTZpjvBfUxbr5OjB27MGW87Jm9e2NCy+8EBdccAEWLlyI8vJy3HLLLZYF9N/97nc45JBDpPMjIS2PyG5m7RrRSCCMiD44PF8OpnrnvTxm34R9OE6z9nJlqarqhB49jFD+meThtrmxaCCIx+PSg4R9qwE7rM4HHjgGzz//R0vZ77zzHkaPHuqoj18hzd42ho+a9/OKxeL44Q9vwrx5swAAXbuKoyLaJxs8c8fbbrvLUncz8vuk5UdIMzRpqX9//esnfF3vJtB6atI08b5VxcXFOPW0Mzh5cspxEcREZ/ZNb85txt62du2OEd3R6ePih2za1nmtYV7G3djWY1HgmmtW+ipfD8Gf8OmT5hE4pFN1NS684BL85K7b0/lxtB82sUzkkyZCgbm/u30rzH/bozum38/05DbhIkx8svFjvPfev/Xfw4ePdK8gBz0Ev4+osNbj7g9FDzrDXfzw71uVesbmPMD17xFuZm3a7ka4gOowOZf3EWf3+/LL/AAEet21JKqqqnDscdPx858/xElnn5ArJiFNVG/+c+vVuzd69e5tOWbPf9Wq2/D+e+/hllVOId9RF1V11ZrbNxgXaQ31fB2aILEZvt1E0hpp18NXzpGnOMALD4sppfRCmFUo93ONl9ApksoVjzRff52yHhEF5GqvdOnSBb/85S+xa9culJeXO97rO++809cz6VgibsikQsrKCGkuA5PCTyeOYGVOk2puJgh41aWurt6zrn7wmux6wSafiYQz1D4vv5qaGhx++JGBCQosn4suuhTr1r2AkSMPSB9XHX5i8iH4rRirT6nrzD5psvVjTqkiITuVf3bmjl6RAb3Ct9vJ1tzR+ODkdkjjRndUVH0gtQsYvXv35ebDrafboxI8x++b/Yj0ibv1o2D31WQigmzUOd7KcKoca52yCcGfmiiIH4DXe2M35/WCOcqzwCFG0e791a5JA2eFvN5kAmYZf5mQptmeld++rxib/Lo9F7uptXWftNS/TOhsa2sTLhJ88803/urHgfUhp7+kFTau8IQH/W/uCocu4QtPcc6IK2LSVrrlIdLSGQuimrhf2w7zJ+QK5y/ntaLnlTKt5W+oLRIgvfzY/Giy7Uljsbhwc3GetYarPx9vPuFSNfszmHfSfIwebR0b9e+Wy/fEHACOK6TZx0soSKatl2RMtRVL5EjJMdqQJqXSu2Ef10UCqcJZ9DEza9Yc7Lvvfhg+fETWdSpEqqqquAsvNTU1vnzSSJOWR4IIwS/a60bmZbYHDhHx3HMv4q9//YuU+ZcfshXSmCDB2w+Nl9+yZVdIR9S0s3bt47rzp6kUAKlnPXbswbqzrVfoZPP1XnWxC9D2aI9uGEJayqxFZK7Kq7Os+aJxvfxm1iLKy8uxd+9e13xkyZ95pTP/pKYgxg6ny+/dqze+s+R89BcID9yPu+vijPx9mZ/5mjWPOc7rCwGS/kXiPaIyF4idIdaN//PM/zy3fPAo75prVuKHPzQc9plw4gzB756PfZ+wfdIbvZp9cyxBTiyraql/UuOvRZdmLcRjnqUoilAgv/76m7Fn9550OrE/rDG+xNHa2opEIuGYXJ555iI88shPfW90z69z2twx04jCHN8+a/7i6+1jp8w81r5oIHwHLNot83HDakU2SjJ/nyzT34Jvvz1dKq2ilw8oQmHHLXCIcJ+0rIdYuQxS5o6sTPdrVFVN9WG3cdV2rlfv3li27EosWGDa00w3r2T58vuaMPIt75iimrZTkZn/mdpZ0u+XlenHdFr0bPljs3uf49Vyzpx5lgivRGaQkJZHwvBJs5cPwLL/Eo8DDxzDDdueLTJCmtvzMXzSnPV3GywzEdKOPHKqZxlsryVe2SLBTV5Is/pw+BHuv/76awDumjRndEd/Qpp3eu96//OfH+DPf/4TzjvvbNe8ZMimrc20JTVsa3R+6oq7psx4dqEMxV17I1HeTT+2OxlDV/ZRN2lk+vcf4FlfM26aKBnnd/0ZeLSNKHCQMF/HREHhH8/A1Mb8kx1xC40tzM3j/H77WX1NYzZNmhF/wT2fIpvAMvGQw7DPPr3Qr5/R1paNlwWh47Nd8BYJJX37ihcFrPukpTJg25q0tbY5+uRRRx2D3/7m13qU0YmHiP1hvWDlye7N5xUxz3GdMZXk5Cn61rjnZ9VcifLgm4nFTQui0kIaL51AUHRUxz6BZgsCSc1humnGrk1XFMVYxBVc4ycQh1uAIM9r1ZjUd8Sat9s5ibmXozy+Jk1x+S47t1sBkszcUULoUjPRpLEFrgwDh1iO2y0kBOl5gWyI4CFzxzySWl0Td+Z//ON9APIr6ua/ZSZc9s2s8022mrROnVI+AbwPfdBCmgzMrpjlf8YZi/RzIiHNuarr7pPGVmT9CGnHHTcdAFBdXSNM69waIGghTTxpYlRX1+gb3uYzuqMbO1s0vPZFG/5fg/W/TkMno9PQydikdUWnoZPRUjdMP7YnEUMJexyS/Zq3Quv6DCSyddMmmGERwGT3uXF8nPUV2CyetSNPQzvEk2A8hTSfw4kRRMnmk+Z1nd26QFEsAhpgc6g3r4qziZQjkIvtfj0qoShG/YvicoK2qigYONDYG5DVhZkftiXahEJCa2srAOD4aTOkyuKWz0LwS0Z6sz8Cs0bS7fF4Bd8AIKlKsxYk6l8iNwPVtCDK+sCQwftjwYKzhPXy3kPO2ZdEeVlC9HO+O7w8GWPHjscBB4zGSSedIrjGx8vmwzqA9zxkI7kafdetPO987PcW0832babDLpo0Z+ANk5+fxEBuWeSRHGONevv/jjqX4OQW0C1GAiSk5QwS0vKIlyZN5OvBS2P/W2ZyajbByIZgXkj/edx44ypceeUKHHXUMY5zIjPQ1O9gurk938rKqvS/qWiPP/rRHcK07Jjf6I6Gj4Z8/Vav/hnef/8T13ZyCmkeK9U+hTS7BvCyyy7H9dff7EiXaUhvUf2yFdKSGlBWBHQtUy3/te5oQOuOBlQpLWjd0YBY03b9WOfiBOJ2H7wM3hFXTZpUfmziLen3KDsBEEwAs3nWDosgU+AQnsmOrAZGFtbvHD5pHo/ZLcAMw7rtiWm8Vs1CmnGPvl3SoGD8+IlYuvQilJXz9/bjccEFl2Dc2PF6LoCx6XJbm1OTxurf2prSpGVj9sjax6sdTRdYf3qt2iuOP0zJ5Sad9nMy5o6G7xJf4DKbO9Z07ox99zUEZbfNgXl1VKwnbPVwXJj6V0um74VbfY7GMrUJ8qWXfk8YeMrP99+1qTzyTfUVxfUaI0+ZOZP8Qif795BDDsWUI47CPJPAqirubiu8CJHMJ01GwDWPZbw+MX36TOc1GQUOEVaAf9jlCIlouYOEtDziJaTJTHrEQpr3ZFfW3DFXuGnSZDQp1dU1uPTSKz0/ZvZ9XoLeJ43BNj+uqqpypM3c3NGq5XCL7njSSaegc+fOjvqVlJRYdrzn4ducKENNGrvsxhtvwjHHHC9MFxVNmqe1CGcF1TOoATcbnsO+OEyzH02qrLmjl5+PV9mBrp4qhoEZryt4CWF+905j7+7gwfvbynHPR0ZQse7v5Owbmqa572ck0Qerqqowfrx8GGeHxiRdF7OwKrr31taUIOsImuIDVbGOZ964a1kcqV00G0ceebTlt4zfjqI4DB65qIINfZnwqyU1k6BuCyJiH1M5WlFrBEOXd0BQ1aTGzB2Na6ccYWwH4hwv5ReDZHALie91QlVjJqHGo/1dzQ/FfcOOfXExXlSEhYu+g0rTN17x8HO3l6Io5k3HJepg09rZOfnkUx3HRo46AADQs6fYxUGIx3Phfy/g2peJ4CAhLY94a9JkhDT+Cyznk2as7oVBtj5psnnbj+VKSGMaNKZRs6blXy/rkyYjpN1zz2pceOGlwvrZMftI2SdLsptsy6YXbebtyDWgwT2otk5YlRwOjAh9PjcgdqRzHmNa1OLiEudJH/iNIOqF457Ysw4ycIgCUxfzb+7od5JQWVmFW265DQsXfce1XnZkNGlWx3/jbzZOlJVZwy/7XaDI5JXR78t2LdP4JBIiTZpqaNI8th9ww5j8Zqi99fh2iBTY046fkdGWAY7MRN8r4R5sqfvUYI+gqAj+NnycRagS30/7eS2ZBBQjuuOYMeMwdNjwVCJNy+odzhTht9/2OxVoLbP+wsvZjzWKAWcvNYUfLVM/z4nuqPnwSTOnkY3AO3nS4bjvvofQu7f8Jsl+9V/2Z2N+BrLfEsI/JKTlARYe2m5CYcfPajmDTbaDDBzitw4+rhTmMW/efPTvPwBnnLEwsDrlT0ir5KQVadIkV610B3r39mUTKF797Pztb/8Q1s/b58efkMZbveTXL1ghLdv8vDVp3MIdCbxeETdNWjEnRLWfscErzPm55y5Fnz59UVJS6plnOmdbOel/BQ7mclmKJ+E8oSUos1gzPXvu4xS6PDVp3kKaRZNmym/atBNw5pmLMGnS4VZ1oe990vz3HdI4NQAAXYBJREFUcb2t9Mh96b6imzsmBBNiRf9eyNy7V/my5o5uE0L+KMLXlmQ69ttNBEXdQpQ/T5tq79b2iT53AcAytJifgfj9Mf9mIfitkSHF9Q/ct4j3XRZGJHHObYxh3b1eblu+GF8GmTHUqknjrZ/ETIFD+Hk4F7WMgGCeVbAt8ki2h6JwF4vlLs2wzV36IxEcFN0xD/z+989jw4Z/eAppogH//vsf1jfStE96Y7FYOvSsdz1YRLMoatJ69OhpESKyydt0FEBwqzxOc8eUcMYzgRK15ZAhQy2/p9mc8f1uZm1effVzn6K9UEQ4vzteH02n+YnbNVExd0z4iI5lLzv1d+pfv9EyAbOQ5lxRtyfv2rUbtm37mpu36jERHjNmHMaMGSc9DvAc4YFsfZQcRzzGxuCFNB5e42iRhDZJFJ0tHo/r/rRmkzs/YbOlKsm9hH8N62vFxUWemu64ZJASHjzNuhsOoSPD69zfBbcFU7mxS6RRYd9awKRV0zTbeo712mKOkGaxlrFIjeJ05t/Gop/5Un7/5FRJQEChST0wb1nkveiVTsc1r5RfwLMvLvK+S4rqtdjufKb2qM1uZBI4JKfoz8BlzhC0cE/okJCWB+rq6nH00ccCcO/LonOzZ59kSmOdENbX98CmTZ9KrYYY+6QF4FyaAaIV5iBw81PzM3F/993/SJuyuYXgFx3r3bsP/vKXtzFx4hh06dIFP/yhNZiGXyHt7LPPwXXXXe2ahofz4yynGTv11AX41a/WBKZJc/sY+sFo6+z6VVvS//fG6nfE2s3f5uCAET6ZZ/Zkn3zccsttaGtr5eYtayIjjeCByGviOFlytHOi6IdA7iK0OuqVQ02aGfM95mM41uthq87Agfti7NiDMWnSEVyBwyqkZaFJM2koFEXxfN/tNfGcEOrjjd1CwClYygV3VGy18Nb+mFOYteFmQdFtPHREDnUry7FwYkvK3qVkMi1wmhfN0ufgvaDDI1fzB54GSt4kO30f3K7B7/s8HOXxhDQY0TK5YxVHYPbzzPItmPEey/jxh2D8wSmfV2EIfs7iJBE8ERDTOxbu2gR/1yuKgqeeehZ33HGPw8+BR9jmjmZzjqCFNDcBwM+gV1dXj/r6HlJp3QI9uAmN7N8uXbo6NC5GdMdUGiO6o2iiXGIK6+xfSOvffwA2bdoiLXRdccVV2LJlp2dZvP1tAjelsZSX+jf7fdIyGBQ580cvsy7e5COp+6RxfFNsz66kpETX5HKqIYVsczgm7+nfpaWZC2n2wpXUTBKASEjL1yzAQ0iTMLsU+Q2HidAPSFEwY8YsVFdXc02rgtOkGWMx7x0tt3+/bFXx8m01zomvY/Tr2y9VZrnLN1OxmzsKNGmC8cb6rUun0QBYFnRs13CEYLH/Fv+dtP/Ww1UI5M1IaGrS8O40CJ80RSINw+6jx9VyK4ZvOXdfMkc5hrmjjA+g3yBImeJWytKlF+GgMWOt6R1dzLxAEY1xrj2SV03aq6++ihtuuAHJZBInnXQSlixZYjn/0EMP4fe//z0AIJFI4H//+x9ef/111NTUYMqUKaioqICqqojFYnjiiSfyWfXAyHYSaR9oevXqjVNPXYDHH39MouxghbQ+ffrhggsuxuWXXyx1HQucomla4JMXN2EgqLLs+dj9x8y4CWluwp1onzS3IdXvhp/m/IuLi1FaWup5rV0rKSvUWcORez+TTAnK3LEtg77J+1h5atI47ckeAc+MUKpOfustG5VS8HEuKXEPdOBatqM400SS55OWJ02aJz4sFux/m7EsBOVBlcbTUqSKNsp206Slxu4sAsXYwoonEgnL+R/9+CfYu2e3uL6ei0IiTZqzzmctPBtHHHEkunevdc1PalIv6JfFJm24Rdjj1JkhE5SGmyknL/YztU+bOK3DosLlOQ8dOgLvvfeufB394ipoubeFqrc/V5UmlQcAfaHCzSctVZ53XUy5cv/0qkPeyHB+ROaO+SFvX75EIoGVK1fioYcewrp16/CHP/wB//3vfy1pzj77bDz99NN4+umnsWzZMowdOxY1NTX6+UceeQRPP/10wQpogL9VQB6iSFEyH1C2EppMJjxSyjFmzFiceeYiX9ewD1HQ77SbJi1XgUMMO3P3FWj7MT9CmjHJ895DKxMhzSswibMMd4Hw+edfwtq1j3MdufnPRLrKHgQkpCXdP8Dcks33yNrNRzTCW265DYDxbtTUdHYm9+FPIe3jJPnwRX4r2U3abRNHmOvPSZ8nnzQ3Jh5ymFQ6r4UJAOjWrTuuuWZlIPWSw/o+lpWVAYBVG+syZmVj6ghYfVR5z6Sqqgp1JsHVuYeYWAMFGO+HY3rM6aPFxcUYtN9g1/oqUKQWMSz3YtY6cgQu+3vpuMesguPwBTH7gqh9HNGFG4nxhVkH5GpNgfeIdc2T1yIi61+c+9AvlRjv9O8by0fk+mCK3ik6xzD/lNKkRWVBKo14AbV9CmbLly/HhAkTMH36dP3Y9u3bsXDhQkydOhULFy7Ejh078lafvPWGDRs2oG/fvujduzeKi4sxbdo0rF+/Xph+3bp1lofUXvAzke6bNssQXW9dEZNf4Q1zM2v2sc+nuWOuhLTjj58GILVfmZ1sNWn2urtvdMyvnzuZaca8oomOHn0Qjjxyqum8Ze3YR/38Ydx7dmUkktnlwKrhNeEyt1WXLl0AAP379ceihd/BOeecn0UNgke2X/nThvI0O+LV66y0Dr4Q38OJJ86RysEamlr8XpWUlKRLzL0mzS4QHHLIoViw4CzMPOFE/ZgoIi0gFzDFtXzToo2UaZRDiJd8K23XZRwVVLHmJdzMWvBumE0XLdf61D6I8k/aNJGcrx+AdAh+xxlT/2Rm2RKCjG7Cna2U5mP7ElmtkpvfmbHA6D8f0bvpvtju0nd9CIr5QnZ8dwj47TTs/uzZs/HQQw9Zjq1evRoTJkzAn/70J0yYMAGrV6/OW33y1hsaGhpQX1+v/66rq0NDQwM3bWNjI1577TVMnTrVcnzx4sWYPXs2HnvM27Qvush17Jde+iuef/4l59VCIc27KcPezBowa9KCfcGDChzijrXOAwcOwpYtOzFihHMfHrk975zPoFu37gCAzp1TE3eZYC+ZaNKYNtW/+aJcWX6jO2YbMSw4c8fsNGmsj3hHd+RoxBUFR0w5CuXlFY70zF/NNc/0v0GsdD/00KNGvj5Nz+RwrvzrR3jO+rY6MAEnKDIRHGTSuW2H4NVegQZosE1UVVXB1KnHoajYbJYnXujyMt/1Lt4UOETiHXVMdM2aNO5MPPWPmwbODw5zR2E2AiGNI9Q6tFpSE3b+8USyzeO61IXJZBIKbH3MUof0+K+3jzjPXEdY5UZShLXfiuB9b0R5ucHGFW/zf5fAIfY+53MxPW/CT5YLX+3VD23s2LF6NHXG+vXrMWvWLADArFmz8Oc//zlv9cmbTxr3BRS8CC+99BIOPPBAi6nj2rVrUVdXh23btmHhwoUYMGAAxo61OjZWVpZk5dwsIhZTUVPjHZhDhooK8eSiujpVhqIomDhxHDeN+Tl26lSm16u4mN+U5npXV1dwj/N+u1FenrqHoqIY9zq3vFjUq+LiosCeKZAy5WT5sQG7oqIENTXl6NSpTKpuXnTqVCp9fU1NuSNtRUXq+srKEr2e9jTf//41GDx4XyxYcAYURUFFRSo4g+hZA0BpaWqiVVZWLF2/8nJrO3g9Izbp6Ny5EjU15Sgrc/ojma9jfaS4OI6amnLHO8T+ZuX6eceSmoZdzdbxJFZRhVhFZ8QrOkHJIqCFVtyCyiKgrIg/NpWWpp6bOYBERXmJ/l6z51JSUuz6rpeVGh/EysoST6GjrMw9P8Do9+a28bqGYR8/unTppP8dj1ufdWlpETdfVVGkyyuKWyfq5eXFqOqUMr2rqCxz5MPeGSB1TyUlJdi9e7flmCzcusdS7e32nM3tLEupS36snVTFWif2DSsp4T9nv3UAgMrKUlRUlOiLByXFzryLi619vqKiRDfbLSn27n9udWPH4/GYI6gO75pYLGk5X1pivC8VlaWOxRjWbkW2fizz3nDrW14CRTG0VfF4zLUtUmacxvOrrDLGspL0+ByLqSgvN97NykrrOGXO3z6e2M/Hbe9PRWWpZQwxl6PGVJSkn1+8KKaPPYpivPeKqgBJcZ8DjG+3GpN/z+1UVJSgLP3ticVUSz72OWIqbTE3rR3WT4uK4o50rK+UlhWl+7S4/lVVFal+lP7e8Z5HRUWJ0S6as//arzG3lb0/8upRXl7qep5HJu1RVJQaC4qLU8/svnvvx9avt3LGhXS6EuuzLTF9w2THKaU1iYpiFTU17vUNcs4dBNu2bUNtbcqHtba2Ft98803eyla0PMVjf+edd3D33Xfj4YcfBgA88MADAIBzzjnHkXbp0qU49thjMWPGDMc5ALjrrrtQXl6OxYsXW443NrbkTEhLJILRPm3b9jU+//wz7rlhw0bg3/9+F7FYDMOHO7UzjH/+8x0AwP77D0Vxcaqzf/LJ/7Bz505H2lGjRut/NzU14sMPP4CqxnTtD8vLnM6Lb7/9Bps2fYqams7o27efngevTDvvvfcvtLa2onPnzujTp590mSJY2SNHjtJXtz788H00NTWhd+8+6NKlK/bs2Y3//vcjz7p5lbHvvvuhosKp5eClHTZshB4Agh3r06cvOnfuordDaWkpBg/e3zW/rVu34Msvv0C3bt2wzz69uWm++OJzfP31VtTX90BdXT03jb1+gwbth48++g/Ky8sxaNBgNDc344MP3gPAf0affPIxdu7cgeHDRyIWi2Hz5i8dmnDzdV9++QW2bt2C6uoa9OvXH7GYiubmFvz73+9a0u7du8dSDxm+3pvAnz9pQolpsrdr1w7s2LEDVVVVqK7uLJUPj7akhm7lKuK21cyNn3wMwLAAKCsvQ+PeRgBA7z59dE3D7t278PXWraiorHQNTNC4d4/+/Pr26+fQvLLyGL169fYM0f3F55+htbUVvXr1wueffw4A6Nd/gOs1rJyamhps375dP26+TtOS+HTjRv13t+7d9Y1TzfUsKirCPr34fdROw+av0NjYqP/ep1cvxONx7NixI704p1jy79e/HzZ+slGvG7tXXn297pWX9ssvv0BLczN67rOPPqY62qB3b2nfLHZt165dUdWpmpumtbUFX3z+OYqKiyzv9tatDdizew+619ZafMbc6u9Vjz59+0JVY8K8U2jY+Mkn+q9+/Qfg8883oa21DfGiOHr16uPI146obm2tLfj8889RUVmBxsZGJE3fU9415j7Xr/8A7Nq5A9u2bUv/7g97/6jv0QOlpWX49ttvsMPUj7t264aqqk6QheXXu08fJJNJfJF+j8orKlBbW+dI16dPX2za9CnUmApFUZFoS2m4evTsia++/BIAUFtXhy0NDSivKEfnzl30PPv262d5r/r1H+Bo47bWVn2+YD7P8mTYx5Dm5iZ89eWXUGMqYmoMNZ07Y+uWLaiorEBlRSUaGhoQLypCSUkx9uzek3qcGtC9e3dU2DZFZmVWVlVi967dKCktRY8ePX0/U3YPrG4lJSXo0XMf/dynn260mGem0jbiqy+/QnFJCXqa0trzLioqQmtrKyqrqnRrFMamTRuRTCRRV1eHsvIKxFTFsh+muX7sff366y3YvWs3d6zr138Adu3aiW1ff63/Nudhf4bmsa5Hzx4oKSlzfZfZuCA6b6+zWzo3tm37Grt27kTnLl1QXV0jTPfNN9uwc8cOdOnaFZ1MY9nOnTvwjf5OGuW73dvetJB2aG9vIS2oObcbTFC18/nnn+Pcc8/FH/7wBwDAmDFj8Pbbb+vnx44di7feeivn9QPyKKS1tbXhmGOOwc9//nPU1dVh7ty5+PGPf4xBgwZZ0u3atQtHHnkkXn75ZT1E7t69e5FMJlFZWYm9e/di0aJFOP/88zFp0iTLtVu37spJ3WtqyrF9+95A8vr5zx/GFVdcwj33/vufYP/9+6Nz58748MNPhXnU1qY+Om+//S769OkLADj99Hn405+ec6RNhUtP8dFH/8HEiWNQXl6BjRu/AgD06VOLmprO2LDhQ+l7eOKJ3+LccxfjxBPn4IEHfqbXh1emnYMOGo7PPtuEuXNPxr33PihdpghW9pdfbkY8nuovkyePx/vvv4fbb78bp512Bt5882+YPv1oz7p5lfGHP7yAceMOlkr7wQefoEuXrpZj99yzGieddAree+/fOPzwCdh//2F45ZXXXfN74IF7cM01y3HmmYtx6623c9NcddXleOihB7B8+TW45JLLper3+9//CTNmTMWYMePw7LN/xsaNn2DcuFEA+M/ojDNOwXPPPYuPP/4ClZVVuPnmH+K22261pDFft3Lltbj77jswY8YsPPzwo6ipKcfHH3+GIUP6W9K+/fabOP74o3DggQfhueec5r08tu5N4s3NbehaZkxKnnzycTzxxG8xY8YszJs3XyofPyxYcDIAYNmyK3DbbaswatRoXeC966779WAfr732Mlavvg8TJx6Gc8/9rjC/f/7z7/jRj24BAPz04TUWszNzeYxVq273nBhdccUl+OqrL3HLLbfhyiuXAQDWrHE3DWflnHjiXDz55OP6cfN1rS0tWLR4gf57yZLzcNhhhzvqWV/fA7feeodrefr93HID3v3XBv33TTf+CL16OwU8lv/Pf/5LnHXWaXrdrrrqCnz2mTFGet2nOS9e2muvWY5PNn6MlStvRP/+Ay3pGbfddper4M0r68wzF+kbWNvZu3cPzjlnEc4662wceeTR+vG77rodb775BpYuvQjjxx8iVX+vejzwwE9RXl6Be+65E2+88Vecf/6FmDBhoiVtMpHAmWedqv9es+YxyzMwl2t/Nrw0ZjZv/hKXX34Jxo+fgPfeew87d+5A3779MXPmiRg71jmmtrS0YHG6z61Z8xheeOE5PProzwAAjz66VhdIWD2WL78WQ4cOw29+sxa///1Tej6LFn4HR0w5iv9wOLD87rzzXjQ2NuJ737sUADBu3HhccMEljnT33L0aS7+7BJ06dUJRUZEuSK5ceSOuvfYqAMCFFy7DT35yGw46aCxOOukUPc+HH16j3yO7T3sbN2z+Cpeloyebz59//oW4996f6Nfax5CPPvoQK1dei4qKClRVVmHuSafg7rvvwLhx43HooZNw222rUNu9FgMG7os33vgriouL0dLSgvPOuwCHHHIo95kce+zxeO65Z9GvX3/H/p4yz5Tdw//++xF+cN3VGDhwIH7wgxv1c9/5zlloamq0pP3ww/dx/fU/QP/+A7By5U3CvOvr6rG5YTMmT56Cs8+2LvwvXboEO3fuwGWXXYlRow5ERUUJ9uxp5tbvnCXn49DDJuPBB+/Dq6++jLPPPgeTJ0+xpFuz5jG8/PKLePjhB/Tf5jzOPvtcTJ58hP77Rz+6Wf9WXHPNSuy332DXd/mLLz7X+4jofbK/f37GBMbPfvYQXnzxBcybNx8zZswSpvvVLx/FH59bh/nzF+D44404Ec8//yx+8YtHHOW73Vtjm4byuIKDe7gb8QU553aje/cq7nG7kHbMMcdgzZo1qK2txZYtW7BgwQI8//zzOa8fkEdzx3g8jmuvvRZnn302EokE5syZg0GDBmHt2rUAgPnzUxOrF154ARMnTrTsYbJt2zYsXboUQCpK5PTp0x0CWqGQbXRHUV5yPmnMjtpYofj44y/9FWqCJ99fffUPXK9h2qXc+qTlxsHVT5VlIj7KPAMZP8JM/LGYT5rXZtmmUtLpeAFBnPDylY2C6QV/axqrz1yu4NfXOMbaiRdG33qFP2dymbW0iRMPw+OPP4ZOneQ1B1IE/K5mkqfd/6GEt5dcjsmkr7r5pJWXV3AnMkGPjYC5h7r4tubw3THaz/D1Ovjg8VwBLZXK9lsiiAfgfP+TGa5B233SstqWQ3BtNu3s2Mhe8G3RkhqgWDdT5s0bZHyo2V6sTU1NGdXZE65LjNz2Mnp0R7G7opxPWtpUnlfe4MFD8OGHH3jWp63N6i8o5dpoIv/RHTP32+woTJkyBU899RSWLFmCp556CkceeWTeys7rPmmTJ0/G5MmTLceYcMaYPXs2Zs+ebTnWu3dvPPPMMzmvXz7IVceWGWR5+6R5TSb5ZfHv4eWXX8fQocNcr81V4BB3p/eY5d8gyxDhNtD6UV6zNtNkAkdI1G/UqNFoaWnR+4BXtEajHir3X3F6JtS5T1aY3+nQocM9685IaM6ppsL5Kxd4+da2tbGALB59LYsJoIiZJ5yI44+b7tDKyeBWA/vE1zzZYeZevsvze8uKgrlz5mHI/qnxpTjgwCFyVfDfTqrHpuY8cmHcIhWsI4fvDnsfzCH4Xb9ZDqHDK7CR/pfleCLhHmBDmJ97dXRELcVrwkwCh4gKtpuCiSIKJvUyORGFLW3hHK/tsG0bmpubhWmygbv1hmSXdK2/HrFRQkjTx5W0kGuq1JVXXo2WltS928fE0aMPxDvv/B2As89Zt2hJ/X3CCSfqprF28raZtWQxwgD87VRIW7ZsGd588018++23mDRpEi644AIsWbIEF198MR5//HH06NEDd955Z97qk1chjXDv2MXpyZWs35TfAT/X0R1l6hBGCP4RI0bhe9+7GtOnzwy8DBGZhuC34ye6o4yA8sILrwBIrfYtWLAQF120TFhfXhmymjdjUsarp8HAgYPwzDPP4YADDvSsO4OnSYPEJCNIRKujuoZS8nkCch9lqXdWUTIS0DyzdelX1113Iz75+H9Y+cNrfYWV9CsQKAowc5YRAp8FMYg62ayKB9uXJcYIl/LMZpcZlW5atDEWcNyqYj2pWgcSYXr7dW2tmQlpsEd39Oyvii2NSXMlDN8vUw2BkOairQGM561pSbHAqWnGopvi3SbMuqk5Q03affc95HqetxAp+w7wt3zxlwcAlJQwTRqrk9GORUVFxiKzrZxly67EL3/5KJ57bp2+UGeqgemv1N+8bXtMFZaubxBIh+B3JONfd9llV+p+vYXIbbfdxj3+yCOP5LkmKUhIyzPshRg8eAh69eqN9etf0M9VVlbh2Wf/jCFD3INJ2PMC8huCn4WH79mzl7A+ItjkKhdCmn2OyMqIx+NYtuyKQMrIJm02QpqMuaOf+sXjcfz4x8ZqkHfI4dR5WU0aT2spKsPvBLBN0xxh8vX6hbG6ZyqTTZ5iHgGM7CvanuTac9ilDg4zOFPaeDyeWTj8LM0dw5gEZKRJy0JIC1KjZq+737zPPXdpVuVbN7NOL+C4mS3aNUOez5E/BiaS9gmzLIrnApMboudrXVjNXLvZf4B7oAhWTnNzs2XoUBRrnnq7SJi6ljNzx+bMhLTKSr7/D0NmL1DheZe+pC9PSLRhaaktBL+gTrz3mlklyWjS3IjaZtYiRN/aUaPkF1wJbwqjN7QjzBN13qAxZsw4z8HMnhcgK6SlBpFshbTJk4/Aww8/iuXLrxHWR0R+NGm5mdH6E9LEmjQ/+ckJ1tlrkeT3SZPzETA24XbmkS28Dad1QTXkD1xCNyP18EmzTNbE6UpLUyZGlVX2SHz5wz4BctQ3g3bNxNzRTEmOhDQ5jbU8mewtlROftCw1zfb+fOKJc31dr5rK1yfNbhNWn2OlYdFm16S1clJ7oyqSm27LYPnmOw5bmDBhIgYMGOiZ5YAB+1oCZDjravz+6iub37lFi28fz8X3zHzScmWJ4/ruebSFrqnlnmTnvNvTbu4o8mnkfWfYt9qtz8m8f/kW0jIebtqpuWPUICEtz2TjjOyGTMAEGdM5GRRFwYwZsxwr6DL3E8Zm1mHgVh/mh3XAAaM982HXBK1Jc+YhJ6TZhTURPOFSZuVYhrakJlzFy1ebi4TPRELW3NE47zZ5OHX+6bj99rv16JGhYJ8wczaizjfFJQGbdUrcQiZ3ad8TLCxk20hWYzZ79km+IsopJu2ZvtDjlt52UjeR9Jqs24W0RIaaNMnnxdq3tnutpWyZTyzvXs4//0Jcd92N5kRCmGYrlc5jIYWDBueim6tPWnlu963KZl6ij6cuFiwyL7Bu7uhZnjNFEdOk2bS3fud8eTPZlx7RBNpEEtLyApk75pkghTT/mrTwJwz50aTlZvAIytyxd+8+eOGFVzBkyFDpfGRW+LP7yHlPfth/Mul5QWqCavO2JO9bLCc8Zgu3XU1/M3NH1SNIjWVRxeW5xIvijn1/ckEnH3tJ2clE45BtX5g1ay62b9+O//f/AtqrRubVyUhjGJHAIfa6C8oYNdJ74Sib8hVVMbQQbia29oUA9lt4CX9cEgVn8EJRFEv9RP21srIKF198OfbbbzCuvXa5ccISTVE/6Duqq9t7YtbS2pM5zVv55/xEdyzOdURVQbCVFB7fG/275Dwn0rLy0O/R09zRmZea1jbb/SD9zvnyLfzIjt/OTy4Jafkg/Fl7ByNXQpqMYJJtdEMv5DRpuQnB7yYU5bIMEV6avVGjRkv58hhmg7kV0rzNHa1pvD7qvHoHJqRpzoErTK2p+dVLSIbgl11ICEr76MURU47ChRdcJJfYMSPMpMTs2qumpgYXX3xZVnnwcO9H/uucibljLpCe+OXoNVItgUMk/FrtmiEPSxFh4JAsojtavtUuD+agg8agqkrsopCrqJnmyKFu5o6AVdix+KTF7Jo0l/ICWgDTBCsi3ON6tT3a31XTKqeFnXLEUagor7AUJ6qrwpk6F6X9kF01aRJ9QYnImOFFrre7IVKQJi0kRD5pfsjUJy1XhGnumMpP4xwLugw5gjK/NIQdb3PH7IQ070mQWcj3uhdjT74cCGkcTZqxWppbocYrBL9u7uixICL7LPLln6CqKg4/4gj85K47PdNm4lvplUchkEmdM7FeCPLZjDloHN7+f29Kr3rnql3M0fcy0RR47Zel6OmM83369MUxU4/3XRbL0Kr1kqmjkUiDhjvuuAeKouDTjRtTxzTNt/bBrT0sY4zDJNktU/NltuiObgE4FAWnnroA/fr1d8vdEz1wll2Q5IbtlUPvU1xNmv5xcM3jlPmn6WnYpvXV1TX88jjjcr/+qWAu/ftZg7oEqT3NCR7liecVhTeGFyIkpOUZJqS0trYiyE7uJ7pjrpAZW5i5Y9AveNSENH7azIU0GZ+0bAKmyAQOMaeR3VctV0KaI+AgM3fMlz2/5bvrFNJkA7F4EcXVSpFpVa4DUGbLDTes8tw3yz14gX+CFLJvuGEVGhq+9E5o4vylF2Lnzh2Oegg1BJx+GcQ9GNozxbTxsJ9FL4+0iuMP3HDDKj9VtGanKDZhxl/ra5qGrl27AQA+/XRjxvm44dYuogBK9vKN6I4y+6wqOO646T5q6A9FVRyCmqQiDXBZnJPREprTAcBxx03HPvv0wgGC7ZB4mt0hQ4bi9tvvdpqnm5KqMvvZ5ktI81uMo+9E79vUHiEhLc8wx9SWlpYABmy/mrT2a+6Yun/3DT6zJzxNWtJllTEfPmmAVUhj6Xv23AdffvmFI7URpCYYn7SEpunuAS1JTWgfLxPiOGjMJer7pHlq0uTyLpRwzH6R2Zw9aPr06Ss+maNuE2T79enTF/vvvx/27JHfTLioqEgXFgDvd9B+9v77H3a9h4svvhy99tkHl11+sUe+ivGXh1bMrWZe5mJBTRzN/rcy5Trg+ldlWSkbbmOMl0aMYfikGVdmkmdmiDXy+++f8tcWad3smKOHCkuT+Mbp+amq696dorx4/sOWtBKPUM1z7IACNGroUJCQlmfKypiQ1pxTc8djjjkO27dvtxzLtZAmMwKFsZl1LsuQSauqKpLJZJZCmowmLXNkND9mU0I2Gerbtx9XSOMFDslmwvryZ61oSpv6N7YC9RX2D7xRz3xgmXCZNWltwZo75ssnzR/iyZUsbosOkSWj9zea/iViCybrPVZUuG/9cNBBY6TKM0d0lI3UaL1ebM4GmLQlAQkSCvxPrs2YH++AAfsCAKZOPdZ3/WQDhzgvdDvFE9JYMBeX63K8YKSqKhKJBM5Zcj4OPWyyr2vdfNIUzl/cPHyU52cxwNyEMt/AQjEFj+a3qf1BTznPsH2PmpqCFdLsea1Z8xh+//vnLceisCpv+KQFm28+hLRMYfecGal7kNmbJpAQxsLzVk3ajh07AEC48XqQ5o5JTUNTm4KupSq6lqroVaUibvtIsl+hRHc0HRs6dDgAY2ImzkeunjLmMfnG6ZOWQSY5iGCYa/LlkxYmuRozdRNHVTEJXD4muh5TFTY5D0yTbtekZWDuyKiursaaNY9h5MgDfAt77j5p3iZ+pgqZT+p/yu57KZsmG/xsrG3HLQS/bmXhqUjzI3j5ea/9CuZ51qR5nBcN1RGZXrV7CusL0g5gEf2am5tyqkkLA5n7yYcmLWcTDYl8mZmGGaZVyS5wSPgh+M19jG2Qeuyx07jp+fukZSqkAVA87k3C3CV3GGWOHXcwVj/wUwwc6C6kya7ERuG9tuPwSctAeyHaJDYsTjrpFJSXlaNnz17CNJn0rCgK2YDbBCs374+hSVOgKKmxwY/vjaJ6vN+6Ji0YHOaOMkKMZL5B4WruaCtnn16pfj106HC97TVNc+xZ5665y/ECmL6Ngrmc9Djh8dyM6KGcfPWD3t84Wfy819Z5mncZ+Rrz/fZF5+JcNMe29gaZO+YZpklrbW0NdMCOwgsTpk9aVMwdn3xyHT7++H+WYyyqZrSjO8po0oz6f+97V2PEiJE4/PAp3PS8jdOzEtI8kP0Q5wJ7iWXpMM7+ruKjxtrpcmXEhLQRI0bhgdU/c0+UQVNkMuGaeMhh+NvfXkf//gO8E2eIcHU8R+WZo+8Zf/vXXAijOyr2P7LFuVObP+QDs7jXQowfU9q+ffvjrrseQE11NT748H1THtbAIbK+bLmA1cH8zmhyMhrcnpSMAOqeAydthhpbqRD8eTPZl3y4gsEiKpZK7R0S0vJMaWmp/newmjS5vFatuh3jxo3PqlyZ+ojIbQh+//XJtgw7Xbp0RZcuXS3H4vHMNWnsGneftNS/uRbSzCu39fU9sHjxOa7p7XXKh5CW741A04X7vkT2fY3C4osd0UTDT/+LmiZNhowWWTLwAx594EFYs+Yx39fJ4DlJzNX7o6T251IV1ZeJHUP2vQ5KC6EAlmfh57EMGrQf9t13UCD1cCvY7V5540tNTQ3L1JS9fFvkemxldc4k+IsRwdHF3NE7Ex/lZaZJkykj31ETvdqeRYJ1atJISMsHJKTlmWCFNONv2Y/TWWctzqpMN6Ji7uinPtmWIUN2mjRvLVm+zB39fJgMc8fshbSEj9vKdXRHr33S5JGcdEZQSBPW3Uf/k+2rU6cehz/96Y/S+eaSbDThkSOE1XFFVVLCmpfpouhat/NBj/WqCnM/l9JapetwzpLzc7Yn6cSJh6G+vgeAzKM7mokx7ZWMdjPHY5FhemmU06VLFwDAsGEj3K+VsaTwXJ/wsWjgJ3CIRSguXHPHoK8n5CAhLc+wEPxA9ouW+fDDCpri4twIaTyiI6QxTZr/a2WiO7KvT+7NHf0LaUGEWvcTCDAMzVNGIlqeNQOynHPOUnzzzTb3RIG8Vvb9kPiNvGDBWViw4KwgCsyaTG47FrXojl4T1RwWraoqFAW6T1ommjTxNex8cJo0c1nxgCIj+/+GWNOfe+539b9jGY4N1sXd9HNzhOJ3EpQmjX0bitP++Ua9nIFDamvrcMcd9+jCmggjuiPnnKS/sp/by3SBQc63MVqaNBGhWK10QEhIyzMsBD8QrBARhRVbmfthQmpbm/umssEQDSEtHs9ckyZn7ph7Ia2srAxlZWW+88umTgwZTZpu7phjTZqbOU3W+XDI9545hx46yf9FGdx/hwnBX2DRHXNm7ggmpKlgQ42voiQn2MG5pFmnykFtX5NtsAYz7iH43coxaQh9BLUKKgT/gP4DMWfOPIc/s2M7gDTmff6EdXOJ7mjo2Dz6kJ8tIfyYO/rUpOXyHQyWQqlnYVNgX5DCx6pJC07dXChCGguc0tLSkuvqREa7mI25I/v4hG3ueMklV+DnP/+VdH68wCGZkvJf8np2wa6k+yEb4TsXeTPKy8ozvtbO0Ucfo/8dxHsVxmbW2ZLJfWeq7cg1Is1lNm1bX1fver68vALlZWUZfatUz8AhAWvSUio//Xcs7r2eXVxc7J2v33q4nHNbAHBrR/P3YtCgwTjwwDGoqKhIl+d2nXtdpVEUzJo1BzU1nbn1ykRDo7qZ0MpK8AGa31oTm4uIxpzED6JveK5dC4gUpEnLM9Y9s4IT0qIQYEBOk5YycWhqagq1HvnMN5vAIYa5Y7hCWl1dHerq6oTn+/btZ8svOE1a6tbdBbXAV9J9kI0Zq2e6DN/r1at/Fqg/2xlnLMJrr76CpuamQMxxWLcYP/4Q/Oc/H6LOY4IfDTIQxiMmpAVp8mXmwQcf8RRIr776B6iursbdd9+ZLsuHNkKfEOam/rx8zM9KRpN2ySWX4/XXX3PvywEOUJn6pJnP9O8/AJdccjluumml86SNXC8E64FDMoho69aXDAHeK49gyhOVb/87bLLdWD3fZpkdFRLSQqQjatKYyVwuNWlMMIieT1rmQppMCP6w+Pzzrx114O2TlilS0R2ZJi2UEPy5NRHLhLIAtWgMJSM7NT6sP48cOQpLl16UdX75IJO7jsK47IdM+7I5IJYIJryoEv5Pjnp5TooD1qTBv7ljbW0dTj31NOzZ0xxIHVIVydTc0S1Pvxew8nItpLHvpL9yUma0bPx3Iu2T5sfc0U/gEPM8LUJCGiPThVTSpOWHwvqCtDOCnFyHPVGXxbyZd64JXkjL7Lq4biqTjSZNRtgJx8+nuLjYpiEGYrGANWle2bAPcY4/HPsOHARVVTF9+gmOsv0gHYI/Qh9Cr5r4aWktLXkXlBCTibljQL5MeSOPAZ0ymRSLrtD1bIGq0oyfcQlzR8mMfVZDnD7mYu7o9l4ZeZrfWG9BJtcLYJm04X33PYT773/YuMbFJ83z2fsxd/TnUJlRGZFBuKdiAd5LAUKatBDpiJo05pPW3BzgaqOAqGjS2LYDmSAjpAVh7hg0QQYOkdsnjf2b2/egsqoKjzyyllu2H2Q/cFF4r3UEZkOZvBcakulrs7u/ww6bjN27d2WVhyzZ+JQWCvmYQ9o3UJbB89lLakvky7OZOwYUpTPIb1KmCwCZ+p3l2nQ3k/3zKiurUte6+izKmTv6wZ+5o/G3fTEzU/YbNBj/+ejDQPKSx2buGKEFxPYMCWkh0jGFNKZJKzwhLTODp3xsZs2EtAwqlyOY6Qqr90fbWvHO563oPPZEAMCLm1ql82pJat7+BOm2yfdGoOay/V0kKaRFaJKvC8IBrKAmA9KkLVlyftZ1kSWTuy40TVo+VseNCbX8NW7R+1KHAxbSoFiFtHhAQlqA6d3MHeWeg9lXSiJ1jiV4JgRmMua5heAPWoAH/I1b5nKLiryDy8hw+RXL8f777+G221ZlnknW88+sLickic4MoAPx3HMv4o03/h7AoGEW0oy/c7lhtRv+NGmFaO6YWX6GrX3mQlquozsGjX2ftG+bkkhqgNbWDK2tGcUxSP9XWaSgc4nsSnoIQ1oW7eqF1Ca6ecIwKQogs3RXDUOozidRuz9PISwf5o6SQUAAI0KprClckBEIzVkF9h76raBLcjdzR9fnxDV3ZMWJr8vX9iaZaGjco1lmXKWMyuOk1v8qDkiTVlpahp49egaSV8Y+aRFaQGzPkCYtBA48cAyAYIUI9sIcc8xxWLXq9sDy9VkLzxRGdMfcadKi5p+X3T5p7cPcMQmgSAW0REqDFg/4gy8bwSsqSIfgj9AkP8j3KqkH9ymgD30WgX8IA/ZMvCb9119/C6qrawB4vwc5CRxkam/7ZtZjxozD//733wyy5Nfv3nsf8p2Xq9+Zax0yO5nrd9XoFxlo0lx90oL/PvrSpKX/LSoqCtrmMri8XBBt10HkBxLSQiRIc8eg94nJBH/7pOXD3DHo/DI1d8xcSGMTmULVpDHhUksGo4ARYSh5CmNSLB2CP0KT/CBNypiGNUqaQi8ye3+jeX9hDhWygUPM23qw75rwCvb+B7ioYTV3tE6VLrro0sDKAYCqqirPOjjPuYwNrtdxBBmJx5bryIR6G2cwh3H1ScuBO4CvsSCdVmYfvZzVIZDyrL+jZIrfnqGnHCK58EmLmhbJDgvVXIg+aZmH4E994DMJR9+7dx8AwPTpMz3rFSUhzdCkpX4nkOuFv8xNZaJMtEI2B6etZP0iWvfnTiZVjZKQDSC3KyWSGM9EvjK61s3LJy3AGzTn5WZa6C9Pn+kzfD/cBR2n0CL13HL8rmayNQND90kTy2gQhSmcN+9U3wE9/IxbLG1Q/mhBEaC3DZFDSJMWIh0zcEhHFNJSbZNItPm+tr6+Bz7++EtUVFS41QxA9kLaz3/+KwwZMiSrPBhMg6CbO2a/XZorUdAk+0H2fc3HZsj9+w2QShfoRJhp0jLYuDYsMrnvQgsckg8y8T3y9kVjeQb4vpg1abGApkp56u4ZmzuGCBNmMgocYngtCs+Jvo8zZszEjBniRVBueX76WbpKfv3Rxo492CPbgBrSY94gOq1rL0layykkpIVIWNGGcgWF4OfDzB0TiURG11dWVrqeD0qTdvzx07O63gwTTHVzR03Li7ljoWhmZGuZ6/f6pz/9BWKyAqNIi5FBy3YYn7SI9scwte56ICUf/UaRjAgZrMuPWUjLTQj+WbPmoFev3uL0mRfkWQfZPlBdXYMdO7ZnWhNpslmwcRX406fCMndkaYvT/vgyrFnzmETG0tkFguN9jejY1t4gIS1E2pu5o58Q/PnxSYuGkMZWYdvaMhPSvIi2uaMROCQfPbNgzB0lhZNcC2l+zHz0JxuIT1o6BH8BCWl+bnvZsivw0kt/jtxEJgrm8F6mizzk/SGDNHc0iAekSbPXf86ceV4XBFKOxAXCU9dddwM+/XRjRvXwVQV4B8kSXusyjujPIrTAIczcMZjIjnq+Ib/LUYtc214hIS1UghPSwn5hU3XwTsM0aU1NuQ/BHxWjabYKm4m5owxRaHs79sAhCS2381U9ulv0HgUX+RD8ERJiBHUuK0+90yOGj5TOShfSonR/HvjR/IwefRBGjz4oh7XJlvAWdNiE2p9fj3s/Ye9ToBNHS+CQwjJb9TAOTf1f8vl37doNXbt2y7pOXrAFtmQGwpSqiu9Jl9EC7PNRCBwSPgXysS1wSEgrYKxCWuojFnUfiHg8juHDR2Lp0gtzVkauhJZszR3b2nIjpDGipUlj/TBVp5xXLQSftIqKCuzZsyeja6VD8EdI0ySaCFVWVuH22+9G586dpfPSkswnLTr350mhrAC4EIUFHV048zPP9QrBr2cZoCYtF+aOWdQhqILYKe73IsRvCBvrMvuOuQhpuQjB70sLnPo3apo06esFzy0KY0lHgIS0EMmFuWNZWVlWeWaD7P28+OL/5bgmKaJi7phrIa0gzB01LbeaNN2CKn8fjuuvvwWbNn2a0bWyH/loaZrEde7WrbuvnFhPpQ99fonCGJGJab5n4BA9Bn+QQprxd2CLn77rl9n9uI4bedI2+YXVOSNzR9u/3LNB+qT52FpD90krlvdJyyfSj8XWb2jszg8kpIVILgKHlJWVB5anX6L20kZNSMs0cIgXRr3Cn4Ax7OaOSS23xhGKTxOeIOjWrbtv4URHsppRsvsPMrqjrkmLkKaQyA9u4dJFuJmzWfIOUkgzh+APaL87v/XL9G7crnPTNoWJsbCXgZCWgZ9jNvhrRyakRUuTln357I9Qq9HuoS9kiGT7jplfUqalKS8nIY0RFSGNCSy506Sl/o3CKjmDPat8CWmMQpn0S29mHaF3Su//AVRJ16RFSAjtCERhjFYz2LRYdhEmUPPgnPik5en5u0V3dAl3GIVNzjPTpLnZd6YtTTKqFR9f5o7pf6O2T5osoucWhbGkI1AYM5p2SpDmjo2NewEUhrljvoiOkNbxzB3tdUrmyyetQCb9srX0Y1aTa/SF0yCjO0bKnJPIB5nsZeZ5DQsckjNzx5CMjnIR3ZF3KgLfbl2Tlsmmmi7m7rlYxPT1nUlXIGghLftx2KdWV7H/prE7H9BTDpFghbRGAEB5udumxx0DTd+DKegPT6bmjiy6Y8cJwe8U0nLtk5Z/c8dskJ2oRkqICfDZMpOmSN1fByLMoSI7nzSB1xET0gLcHN1i7lhogUNMJa1adXtAeeaWxYuXYNKkwzF02Ajf1xqm2JxzRqiUzCtnw1/gkByZOwaUj/dYIAocElAFCFfoCxkiQQ6WTJNWXk6aNEZU6sNCcQ8cuG9O8o+ikMZ8SFidtFz7pLmspEYTuXpGSYgJ0ictmSzAzazbBeG/H5ksqOiCnShP3RwyN+aO8aDMHfPlM2X6u0ePntLXhfkN6dq1G77znfN0H24/uAaO0b+P2dTOlqWfwCHpf0PTxgaEfdw3NpgPf0xpzxR2rylwcqFJo8AhuatHpvmefPKpOPDAMdhvv8EB1yhFFIU0NoDrPmnIdf/IwSQth0jvkxaRdwowTfzI3LHgCXOsyESTJp13jt7/mJqbzaw902dekK86RDD2lD9cBP+y0lIAwY41meyTlonwKZNvrhGNFRH6NLVrSEgLkSCFtL17mSYtPCEtCqu0ZqLik6YoSs4ENJY/EDUhzahTUtMALbd9w1idz03+Xbt2C3Qz0kIMwa/ok+vs89KjO0bo/joCUZhYZaKR1fuJ6AaYIiVHPqlBBQ7xXbsMG8zv4k5UFlgzxS3655Il5+PFl/6M/QbtF1x5Pp4X+y4XBS2kZTnfyrYvFsqCaKFDTzlE2IBy9dU/wGefbc0qr717U5vqhumTFsZAX1/fQ3guKkJarmFmFFHayNwspGlAzuV31jS5Wkm/4457HL4dWeHRl2bOPFEqXT4Jsia0T1o4dOpUDcB7MW/8+Ak5q4OuSfMhUHmZSOo+aTkS+tWgAvjkq79LaNJ4S3ph7pOWHeL77VRdjVmz5gT67P0Ev0kkUgHDYvGIhuDPcHGXRu78QJq0EGEvWTxehJKS7DY6NMwdw/NJC4O//OUt7Nmzh3uuowhpp5xyGj744D1ceeWKsKuiY97MOh8KPt0npUCiO3rtfzZ37imYO/eUPNVGkgCDs7DAITHSpOWVWbPmoLa2DgePGy9M8+ija3O6b5aaQT/yWrU3hLjc9KeSgIM+yJKN9Yb4HPdoRuVEhXzX3o8mjUV1DsyvMc9MmXIUXn75RYwcOcpyXLesKPC+E3XoCxkqwU16zj13KQBgxIiRWeeVKWEIMVVVnYTatOCFtECzC4zS0lLcfPOPUV1dE3ZVdMx73uRnbbbAfNIK+sMWnE9aJuHYicwpKirC5MlHeGha1JwOdqqu8c9Ak+aVd476U2lAi5++fdIybAb3CPyFPPYI8Ij+GXhxPhYDWVTnoqA1aYHmJqZ//4FYs+YxdO3azVZ+O+xHEYQ0aSESpBAxdepx2LJlZ2D5ZUL0NE0dQ5MWRfKtSXML7hVFCkXjZ0YN0ictZ9tkENHH/+KkrrnwMHfMVXcKavEnb9aOEt8+ng9zLsbqH/7wJpSV5sfCJ1/jiZ/+kGhLCWnxoogFDsk2JkIBfsMKERLSQiTXH5Z8E7UJV9Tq05Fgq27Ll18DDblf9StNR/AqKSnNcUnBUIirkIH6pCUpumNHJZbJPmmSE8LAfMdyhG6WLfk2ZTxOuKrSnOdy+a3s129AzvJmRPlb38Z80gIOwR/2PYddfkeBhLQQaW+dPCr3E7UQ/B2RkpISXbPb1KblPLTzsGEjsGLFD3ztCRQqBdmXgjMpYt2BhLSOBxO4/PQiLz82I3BIxN8rv+99nqI76kQoQrAfohjhmKFr0gKP7hgu+rsY8Veu0KEvZIhksqlnlInafXSUwCFRJx/RHVVVxZAh++e2kI5OkIFD0iH4C8WHkAiOjKI7egjzLKeCEfpz/SnxuU8ao1CjOxr3FL36M01a0EJa2LMRmg7lh7yOaK+++iqOOeYYHH300Vi9erXj/N/+9jccdNBBmDlzJmbOnIm7775b+tpCpL0JaVEj6MdK7ZQZyeh9N4kM0LUZAeTFJoNRnlRfdtmVOGfJ+WFXo92RyT5pupmg6JIM8uQx9ehjUZ3epiAXsHdo5szZUulz8cnhPaNC/7bpIloUNWnpwCGBb5ETUJNlKpgXosl+IZI3/WsikcDKlSvxs5/9DHV1dZg7dy6mTJmCfffd15JuzJgxeOCBBzK6ttAo9IHRTtTuhzRp4fDV7gSaEsYEY2+rhqTWvkw9OiQB9n82mcrYLCsPjBp1IADggdX3hlyT9oXnxtQcDE2aUEqzpcuMBWcsxIIzFmaVhyuKgjVrHpNP7jERHnPQOPzr3+/6rEP63wgKNBkTZXNH3SctWv6SWc9nIjx2tyfyNnPasGED+vbti969ewMApk2bhvXr10sJWtlcG2XamyYtavdBQlo4/GNrAgkNMFsz1VQqQFt4dSKyJ8go17qQFouuJo3IDczE1Y//mOzYG2XNbEZ43PdFF1+aQZYu5o4RFHJk0O8pgvVnmrR4OwscopKpel7Im5DW0NCA+vp6/XddXR02bNjgSPePf/wDJ5xwAmpra3HllVdi0KBB0tdWVpbkZMPAWExFTU154PmWlqb2zSgrK84o/1zUKRs6d64IbbXI3Eax9MSvU6eyQJ9RTU0FKiuj9cyjSFkZ0LlMtWhJYqqCRNIY1Csqstu8vT0RlWcRUxXXurD3qry8JOs6J9M+aZWVZSgri8b9exGFdvJqo0KgLP3dKy8rlr6XRCL1XYmpKveaiopUn6woL7EcC4KePXpK55XL9sk0X/t1jXtTvxVTXdm8qbS0qCD7V3FxaipbVBTzrH/QbeSVl6axsa404GdrrHpmkm9RUWo8Ly6OZ3T9ngr/75rSmkRFsYqaGo82ytGcuxDJm5DGW6GxrwQMGzYML774IioqKvDKK69g6dKl+NOf/iR1LQDs3t0cXIVN1NSUY/v2vYHn29KSWmFpamrNKP9c1CkbduxoDG0l09xGybQT1K5dTYE+o+3b96KtjVaP3EhqGvbsbUOpZn0/KypKsGeP8X6a/+7oROVZ2NvIDhuGmxpbs69zOq/GvS1IJgvjnYpCO3m1USHQ2paatDY2yfcjJtRr4LdD494WFBU1o7nZmLgG8ZxWrbod1dXV0nnlsn0yzdd+3d7GFgCpbTDYuUS6TZp8tEmUaG1NzaWam73rH3QbeeXV2toKAGhpTQZabuPe7L6nra2pNm9ubsvo+qam1H0piiJ9fWObBrQo2L494ZouV3NuO927V+W8jGzJ29exvr4emzdv1n83NDSgtrbWkqayshIVFRUAgMmTJ6OtrQ3ffPON1LWFCFnP5YZcbZQbtnlBIZCSj6NnckJkj25RFED7JtOry+3OPI3whJk7ZrSZtThT678B0aNHT5SXVwSaZySJbnBEKfQQ/Hkut0+fvp5p2tICcND7pGULzWYKg7x9IUeMGIGNGzfis88+Q0tLC9atW4cpU6ZY0mzdulWfYG/YsAHJZBKdO3eWurYQIZ+03EJCWv6hSI7tFxbEIAi/FfJJ67gYUUJ9jKceY6+xTxr1Jy9437Eoh7CXIYx90u76yX245pqVnukSOQrBH/YqP71r+SFvon08Hse1116Ls88+G4lEAnPmzMGgQYOwdu1aAMD8+fPx/PPPY+3atYjFYigtLcVtt90GRVGE1xY+7WvSHzUhhoS0/JPU4NqtL7/seygrJ1vzwkRXpQWXIzmfdzj0/dF8jqeKhFhHE0dvwtI65ZIwQvDXdO4ila6tLTfRHcOej9BsKD/kVf86efJkTJ482XJs/vz5+t+nn346Tj/9dOlrCx3jJSvs7t61a1ds27Yt7Go4ICEt/yQ8vpEjR43OT0WIwGGT6yCnQVEOwU/kBlVNTVb9jqdum18X3GbWIeL21At1M+uwtUpu5GyftIDmjRkLthmYLRP+iZaRbAejvXTuP/7xRfztb6+HXY2c017aK5eQuWP7xTB3TGad17XXrMQbb/w10pMrxhFHHIVXX3kp7Gq0G1iUUL8ClaIo4v6imNIQ7vDMHQt8oViNsLmmHoI/aHPHbMnyXaF3LT9ErNd0LNqLT1q/fv3Rr1//sKvhoFD3fClkSEhrx+h+H9lnNWi/wRi03+DsM8oDixZ9B4sWfSfsarQbRowYhVNOOQ09e/b0dZ2qqsJvpe6TRuazEkRXoMmYdPsnI/gBOu64afjlLx9FVVWnQPMNe9ZY6PPWQoGEtBChTp4bcvVcqb28SWoeTmlEwWJ0/+hNhIjCoaysHNOmneD7OrfxV1/wJHNHT7jPMbp7QRc8xx47DcceOy34jMP2SWvH86EpU6agoqICqqoiFovhiSeeCK0uJKSFSHvRpHUUqJ28MULw07Nqb7AgH6ShJsJAUVSJwCE07njBe0JhREcMEv3bXKD1D5fMnll7nw498sgj6NJFLjhMLqFlpxChSX9hQe3lTVIDKVraKfo8KIImRUT7x1WTlv63vQai6d9vQNhViDTtMWKlF9nOR8K+npCDNGkhQpq0woLayWBPq4a9bc5P4tdNHekz2bEwJkLUxkT+UV0DhzBzx6Aj6IXPLbfchs6dO+eptEJ9twtbE5gJYc9G2uuCCGPx4sVQFAUnn3wyTj755NDqoWjtqFc3NrYgHg9+kI7FVCQS2Uc0s7Nly2Z89dVX6NWrN7p27SZ93T//+Q4AYBSFM9cxt9F//vMhGhv3Yr/9BqOsLPs9uYznfQDCHxqjwRufN+OT7W0ojTufR2lcQWWxVUkfUxUkSANjYeMnHwMA+vWPxiq5Vxtt3vwVmhobUVffA2VlZXmsGcHoyO/Rpk0bEVNj2KdXb/0Ye4f69usHRVGhaUl8unEjgHDeqyi1j2h8SSYS2LTpU6gxFX369AMAbN3agD2796B7bS0qKirzXdWs2bFjO7795ht0qq5Gly5dXdNGqY2yI4mNn2wEkFlf//bbb7Bj+3Z07tIF1dU1vq/X3zUF6Cep6d3bmkRFsYpDe5e4psvVnNtOURFfXmhoaEBdXR22bduGhQsX4pprrsHYsWNzXh8e7UpI27p1V07yrakpx/btewPP9847f4wbbrgOt956B848c5H0dbW1qShBW7bsDLxOhYq5jY46ahI2bPgHXnjhlUAEWfa8Gxp2kDYtzRtftaGxTUMZR0jjUVFRgj17mnNcq8JiwYLU6tyaNY+FXJMUXm10883X49//fhdXXrECw0eMzGPNCEZHfo/OO28xqqo6YdWq2/Vj7B168MFHUFpaitbWVixalNprNYz3KkrtIxpfdu7ciaVLv4Oqqirce+9DAIB77rkDb7zxOpYuvRDjx0/Me12zZd26Z/DrX/8Sxx03HaeeusA1bZTaKBuy7euPPfYr/OEPT2PevPmYMWOW7+ubmprwne+cieLiYjz88BqpaxrbNJTHFRzcw92IL1dzbjvdu1d5prnrrrtQXl6OxYsX57w+PMgnLURowp9b2tH6Q+RIJDUaPDoYbLhKBrBPGkH4RVWdgUPs+3tR4JDsKNRPptIBw1OGPX9sr2/a3r17sXv3bv3vv/zlLxg0aFBo9SGftFAhn7RcQCH4c0+b1v6jOxFWCn3DW6KwUSD2SdMDh1AIfmnMi5hz556C7dt3YPToA0OsURZ0yMAhWV4fdgUiyrZt27B06VIAqY3Ip0+fjkmTJoVWHxLSQoQm/USh0pYEStqfjz7hBoW5JkLEdQ80FjiEFhIyoq6uHitWfD/samRMR9zDMfS+3k6/A71798YzzzwTdjV0aNkpRCi6Y2EwfvwhYVchciS09mvuQPDRZbQONBEiooOiKMJvpX6cvqXStKd5R6Hv81bItKd+FEVIkxYi1LkLg1/96nF88cXnYVcjUiSSALl/dCwUPcx1yBUhOiRcIU0BQAtGGdGeBBpdSGsXURslCWj+mGk/KCkpwbTjZ2DCIYUXaKaQICEtREiTlhuC/vhUVlZi8OAhgeZZyCQ1DUmN+m2Hg1ariRDhjTeKolB/9El7HLc74h6OWTdj1k5tCk6Zf3qWlSC8IHPHEGmPgyXR/knNiTrOx5BIoQ9X1PRECPCiO+rQt5QALSAR7Q8S0kLEMKOnD0yQ0PPMLQn6DnZIFCX1uehIq9VEdFBM/3ecozG/Q6MYDrMdhtADhxB5gcwdQ4Q+LEQh0pHM/nNNjx49w66CNCeffCp27dyBoUOHhV0VogPiFt2RPqXytM9H1fHMHcP2SSPyAwlpIUI+aUQhQkJaMPz04TVQY4VjzLDPPr3w/R/cEHY1iA6Kooj3SSN8kH6ERfGicOsRILQ7iH9o3lkYkJAWIvSSEIVES0JDaxLY09qh1itzRlFxcdhVIIiCQeUFDmmneqFcUllZhblz5mHcwRPCrkpg6P2ApDSinUFCWoiQJo0oJN74qg3bmzUoChCjLksQRB5RVNWhSBt38Hi8/vpfdH9JQo6Zs+aEXYVg0aM7EkT7goS0ECHhjCgkWhNAl1IFcdogjSCIPKMqikNztmTJ+TjttDOhuvirEe0fYypFYppvSPsYaWhkCxXSpOUScogNljaNNrAmCCIkONqyeDyO6urqECpDRAkmvNM3Xx6adhYGJKSFCAlnuYEea25oS7bXyGAEQUQdlQKHEAJY5E+S0eShZ1UYkJAWIpkKaWedtbigQncThU8yPaLTwgJBEGGgqArJaAQXI7pjMtyKEETAkJAWIplOeFetuh3//OcHAdeGIMQkNQAKLb0RBBEOtEBEiCFzR7/Q61QYkJAWIhTdkSgUaG80giDCRFWdgUMId7p27RZ2FfKCPoei75Rv6JFFG4ruGCIknOWG+voeAN5BSUlp2FVpN5CQRhBEmChQASURdjUKhtUP/BRqrGNM8QwZjT5URPuiY7zBEYU0abnhrrvuxx//uA5Dhw4LuyrthgR9+wiCCBFFVQByOZKmrLwi7CrkDYruSLRXyNwxREg4yw3V1TU45ZTTwq5GuyKpUWRHgiDCQ4FC30yCj0JCmn/oXSoESEgLEdKkEYVCSpNG/ZQgiHBQaJNGQoAR3ZGENL/QM4s2JKSFCAlnRKGQpIGcIIgQURSVItIRXHr36gMAGD58ZMg1IYhgIZ+0ECFNGlEopAKHaCBtGkEQYUDRHQkRffr2w733PoSqqqqwq0IQgUJCWohESTjbsjeJtxraCjYea1k50Li3JexqtG+i010JguhwkOEPIYYENKI9QkJaBIiCsNaSADQN6FZWmB/CivIY9miFWXeCIAjCnZKSIiST3iH47757NVSVvgUEIQW5MkQaEtJCJArCGaNN00B+2QRBEEQUmT9/ARIJbyGturo6D7UhiGjQUTYs76iQkBYiUfJJa0uSNRtBEAQRTXr06Bl2FQgiUqxceRMJae0cEtJCJArCGaMtqUGNUH0IgiAIgiAIPv37D8j42ijNPwkxZLgdIpHTpIVfDYIgCIIgCCIPkEdatCEhjQCQEtKoMxAEQRAEQbRvoqAcILyheXmIREmTltBIk0YQBEEQBNHe0SiqY0FAQlqIREE4Y7QmQdEdCYIgCIIgCCICkJAWIpHSpCU16gwEQRAEQRDtnCjMOwlvaF4eIlF6SdrI3JEgCIIgCKLDQGaP0YaEtBCJliaNzB0JgiAIgiAIIgqQkBYiURDOGG0abWZNEARBEARBEFGANrMOkXxq0va0anhnSwKiXTH2tGqoKiIxjSAIgiAIoj1TX98j/W99yDUh3MirkPbqq6/ihhtuQDKZxEknnYQlS5ZYzj/zzDN48MEHAQAVFRX4wQ9+gCFDhgAApkyZgoqKCqiqilgshieeeCKfVc8Riu3f3NHUpuHrxiQ6l/DL6laqREqzRxAEQRAEQQTPIRMmonv37hi0735hV4VwIW9CWiKRwMqVK/Gzn/0MdXV1mDt3LqZMmYJ9991XT9OrVy/84he/QHV1NV555RVcc801+O1vf6uff+SRR9ClS5d8VTnn5FMoSmpAkQqUxEkQIwiCIAiC6LAoCgYNGhx2LQgP8uaTtmHDBvTt2xe9e/dGcXExpk2bhvXr11vSHHjggaiurgYAHHDAAdi8eXO+qhcK+TR3TFIAH4IgCIIgCIIoCPImpDU0NFhsX+vq6tDQ0CBM//jjj2PSpEmWY4sXL8bs2bPx2GOP5aye+SSfmrSEJvJGIwiCIAiCIAgiSuTN3JG3F4NISHnjjTfw+OOP41e/+pV+bO3atairq8O2bduwcOFCDBgwAGPHjrVcV1lZgng8FmzFAcRiKmpqygPPt7KyVP83F/mb2Y5WlO1SUVER/POJAjFVQUVFSdjVIARQ+0QfaqPoQ20Ubah9og+1UXgorUlUFKuoqXF//rmacxcieRPS6uvrLeaLDQ0NqK2tdaT74IMPcPXVV+PBBx9E586d9eN1dXUAgK5du+Loo4/Ghg0bHELa7t3NOal7TU05tm/fG3i+e/e2AAD27GnOSf5mvt2RQHNTAnva6a4LFRUl2LMnN+1PZA+1T/ShNoo+1EbRhton+lAbhUdjmwa0KNi+PeGaLldzbjvdu1flvIxsyduMfcSIEdi4cSM+++wztLS0YN26dZgyZYolzZdffokLLrgAq1atQv/+/fXje/fuxe7du/W///KXv2DQoEH5qnrOyKdPGu2DRhAEQRAEQRCFQd40afF4HNdeey3OPvtsJBIJzJkzB4MGDcLatWsBAPPnz8c999yD7du347rrrgMAPdT+tm3bsHTpUgCpKJHTp093+KsVIvmMeN+W1KBSiH2CIAiCIAiCiDx53Sdt8uTJmDx5suXY/Pnz9b9vuOEG3HDDDY7revfujWeeeSbn9cs3+dSkJZL5FQoJgiAIgiAIgsiM9umgVCDkM7pjW5IamyAIgiAIgiAKAZq3h0heNWkaadIIgiAIgiAIohAgIS1E8qlJa00CKglpBEEQBEEQBBF58uqT1pHY06ph4w73MKOft1WhYsAYfJXshH9/3ZbT+mxvSqIsTlIaQRAEQRAEQUQdEtJyxO4WDf/+JoGaErGycnuyDCV1A/Btsgxf7HFu9h0kMVVBcfvcx5ogCIIgCIIg2hUkpOWQiriCTsVi7VW5mkBiz7coU9tc0xEEQRAEQRAE0XEgn7QwIbmMIAiCIAiCIAgbJKSFSD6jOxIEQRAEQRAEURiQkBYiCqnSCIIgCIIgCIKwQUJamOiatJDrQRAEQRAEQRBEZCAhLURIOCMIgiAIgiAIwg4JaSGi+6SR2SNBEARBEARBEGlISAsVEs4IgiAIgiAIgrBCQlqI6OaOZPdIEARBEARBEKHx6quv4phjjsHRRx+N1atXh10dEtLChYQzgiAIgiAIggiTRCKBlStX4qGHHsK6devwhz/8Af/9739DrRMJaSFC+6MRBEEQBEEQRLhs2LABffv2Re/evVFcXIxp06Zh/fr1odYpHmrp7ZxdrRoUJSk831ZchaLqWiRLqvFNkzgd4U2jkkAjPcPIQu0TfaiNog+1UbSh9ok+1Ebh0dgGlFZGVznR0NCA+vp6/XddXR02bNgQYo3amZBWWVmCeDwWeL6xmIqamnJf1xRXJDG1POGeqN9AHP+re1BcXJJF7QgAUGMqkomisKtBCKD2iT7URtGH2ijaUPtEH2qjcKksVlBT4S56ZDLnDgJN0xzHwrZ4a1dC2u7dzTnJt6amHNu37/V9XReZti1RAbT6zpuwUtOpHNu356b9ieyh9ok+1EbRh9oo2lD7RB9qo5BpBbZvb3FNkumc2y/du1dZftfX12Pz5s3674aGBtTW1ua8Hm6QTxpBEARBEARBEB2WESNGYOPGjfjss8/Q0tKCdevWYcqUKaHWqV1p0giCIAiCIAiCIPwQj8dx7bXX4uyzz0YikcCcOXMwaNCgcOsUaukEQRAEQRAEQRAhM3nyZEyePDnsauiQuSNBEARBEARBEESEICGNIAiCIAiCIAgiQpCQRhAEQRAEQRAEESFISCMIgiAIgiAIgogQJKQRBEEQBEEQBEFECBLSCIIgCIIgCIIgIgQJaQRBEARBEARBEBGChDSCIAiCIAiCIIgIQUIaQRAEQRAEQRBEhCAhjSAIgiAIgiAIIkKQkEYQBEEQBEEQBBEhSEgjCIIgCIIgCIKIECSkEQRBEARBEARBRAgS0giCIAiCIAiCICKEommaFnYlCIIgCIIgCIIgiBSkSSMIgiAIgiAIgogQJKQRBEEQBEEQBEFECBLSCIIgCIIgCIIgIgQJaQB27tyJCy+8EMceeyyOO+44vPPOO9i+fTsWLlyIqVOnYuHChdixY4ee/oEHHsDRRx+NY445Bq+99lqINe84/PznP8e0adMwffp0LFu2DM3NzdRGIbN8+XJMmDAB06dP149l0ib/+te/MGPGDBx99NG4/vrrQW6ywcBrn1tuuQXHHnssZsyYgaVLl2Lnzp36OWqf/MNrI8bDDz+MwYMH45tvvtGPURvlH1EbrVmzBscccwymTZuGVatW6cepjfILr33ef/99zJs3DzNnzsTs2bOxYcMG/Ry1T/756quvsGDBAhx33HGYNm0aHnnkEQA0X5BCI7QrrrhC+81vfqNpmqY1NzdrO3bs0G655RbtgQce0DRN0x544AFt1apVmqZp2kcffaTNmDFDa25u1jZt2qQdeeSRWltbW2h17whs3rxZO+KII7TGxkZN0zTtwgsv1H73u99RG4XMm2++qf3rX//Spk2bph/LpE3mzJmj/f3vf9eSyaS2ePFi7eWXX87/zbRDeO3z2muvaa2trZqmadqqVauofUKG10aapmlffvmltmjRIu3www/Xtm3bpmkatVFY8Nro9ddf184880ytublZ0zRN+/rrrzVNozYKA177LFy4UH++L7/8snb66adrmkbtExYNDQ3av/71L03TNG3Xrl3a1KlTtY8++ojmCxJ0eE3a7t278dZbb2Hu3LkAgOLiYnTq1Anr16/HrFmzAACzZs3Cn//8ZwDA+vXrMW3aNBQXF6N3797o27evZZWGyA2JRAJNTU1oa2tDU1MTamtrqY1CZuzYsaiurrYc89smW7Zswe7duzF69GgoioJZs2Zh/fr1+b6VdgmvfQ499FDE43EAwAEHHIDNmzcDoPYJC14bAcBNN92Eyy+/HIqi6MeojcKB10Zr167FkiVLUFxcDADo2rUrAGqjMOC1j6Io2LNnDwBg165dqK2tBUDtExa1tbUYNmwYAKCyshIDBgxAQ0MDzRck6PBC2meffYYuXbpg+fLlmDVrFlasWIG9e/di27Zt+otdW1urm5w0NDSgvr5ev76urg4NDQ2h1L2jUFdXh0WLFuGII47AoYceisrKShx66KHURhHEb5vYj9fX11Nb5Ynf/e53mDRpEgBqnyixfv161NbWYsiQIZbj1EbRYePGjXj77bdx0kkn4fTTT9cXAamNosFVV12FVatWYfLkybjllluwbNkyANQ+UeDzzz/H+++/j1GjRtF8QYIOL6S1tbXhvffew/z58/HUU0+hrKwMq1evFqbXOPav5tVOInh27NiB9evXY/369XjttdfQ2NiIp59+Wpie2ih6iNqE2ioc7rvvPsRiMZxwwgkAqH2iQmNjI+6//35cdNFFjnPURtEhkUhg586d+M1vfoMrrrgCF198MTRNozaKCGvXrsXy5cvxyiuvYPny5VixYgUAeofCZs+ePbjwwgtx1VVXobKyUpiO2smgwwtp9fX1qK+vx6hRowAAxx57LN577z107doVW7ZsAQBs2bIFXbp00dMzEyEgJfGzlQAiN/z1r39Fr1690KVLFxQVFWHq1Kl45513qI0iiN82sR/fvHkztVWOefLJJ/Hyyy/jRz/6kf6Bo/aJBps2bcLnn3+OmTNnYsqUKdi8eTNmz56NrVu3UhtFiLq6Ohx99NFQFAUjR46Eqqr49ttvqY0iwpNPPompU6cCAI477jhd00ntEx6tra248MILMWPGDL1taL7gTYcX0rp37476+np8/PHHAIDXX38dAwcOxJQpU/DUU08BAJ566ikceeSRAIApU6Zg3bp1aGlpwWeffYaNGzdi5MiRYVW/Q9CzZ0/885//RGNjIzRNozaKMH7bpLa2FhUVFfjHP/4BTdMs1xDB8+qrr+LBBx/Efffdh7KyMv04tU80GDx4MF5//XW8+OKLePHFF1FfX48nnngC3bt3pzaKEEcddRTeeOMNAMAnn3yC1tZWdO7cmdooItTW1uLNN98EALzxxhvo168fABrnwkLTNKxYsQIDBgzAwoUL9eM0X/BG0Xj6ww7G+++/jxUrVqC1tRW9e/fGTTfdhGQyiYsvvhhfffUVevTogTvvvBM1NTUAUqZCv/vd7xCLxXDVVVdh8uTJ4d5AB+AnP/kJnn32WcTjcey///644YYbsGfPHmqjEFm2bBnefPNNfPvtt+jatSsuuOACHHXUUb7b5N1338Xy5cvR1NSESZMm4Zprrmn3Jgz5gNc+q1evRktLi94mo0aNwsqVKwFQ+4QBr41OOukk/fyUKVPw+OOP6yvM1Eb5h9dGM2fOxFVXXYUPPvgARUVFuOKKKzBhwgQA1Eb5htc+/fv3x4033oi2tjaUlJTg+9//PoYPHw6A2icM3n77bZx22mnYb7/9oKop3dCyZcswcuRImi94QEIaQRAEQRAEQRBEhOjw5o4EQRAEQRAEQRBRgoQ0giAIgiAIgiCICEFCGkEQBEEQBEEQRIQgIY0gCIIgCIIgCCJCkJBGEARBEARBEAQRIUhIIwiCIAiCIAiCiBAkpBEEQRCR57LLLsPMmTPR0tJiOf76669j2LBh+Pvf/x5SzQiCIAgieEhIIwiCICLPtddei+3bt+Oee+7Rj+3evRtXXXUVFi9ejAMPPDDQ8uzCIEEQBEHkExLSCIIgiMjTqVMn3HTTTXjooYewYcMGAMCNN96ITp064eSTT8Yll1yCsWPHYuzYsViyZAk2btyoX7tp0yacd955mDhxIg444ACceOKJeOmllyz5T5kyBXfddReWL1+OMWPG4LLLLsvn7REEQRCEBUXTNC3sShAEQRCEDNdffz3+7//+DxdffDEuv/xy/Pa3v8VFF12E0aNH46yzzkJRURF++tOf4q9//SueffZZlJWV4YMPPsA777yDAw88EKWlpXj22Wdxzz334Omnn8bAgQMBpIS07du347zzzsPUqVOhaRr69esX7s0SBEEQHRYS0giCIIiCoampCbNmzcKnn36KSy+9FDU1NVi9ejWef/55KIoCAEgkEjjkkEPw/e9/H8cffzw3n3nz5uHwww/H+eefDyAlpO233364//7783YvBEEQBCEiHnYFCIIgCEKW0tJSLF68GNdffz0WLVqEH/7wh/j8888dPmmNjY347LPPAAB79+7F3XffjZdffhlbt25FW1sbmpubMXjwYMs1w4cPz9t9EARBEIQbJKQRBEEQBUUsFoOqqlBVFclkEkOGDMHtt9/uSFddXQ0AuOWWW/Daa6/hyiuvRN++fVFWVoYrr7wSra2tlvRlZWV5qT9BEARBeEFCGkEQBFGwDBs2DOvWrUPnzp3RqVMnbpq///3vmDVrFo455hgAQHNzMzZt2kQ+ZwRBEERkoeiOBEEQRMEyY8YMdO3aFeeffz7efPNNfPbZZ3jrrbdw88036xEe+/XrhxdeeAH//ve/8eGHH+Lyyy9Hc3NzuBUnCIIgCBdIk0YQBEEULGVlZfjlL3+JH//4x7jooouwa9cu1NbW4uCDD9Y1a9/73vewYsUKnHbaaejUqRPOPPNMEtIIgiCISEPRHQmCIAiCIAiCICIEmTsSBEEQBEEQBEFECBLSCIIgCIIgCIIgIgQJaQRBEARBEARBEBGChDSCIAiCIAiCIIgIQUIaQRAEQRAEQRBEhCAhjSAIgiAIgiAIIkKQkEYQBEEQBEEQBBEhSEgjCIIgCIIgCIKIECSkEQRBEARBEARBRIj/D4MIuHjdXjFrAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Mean RWI Mean Res Sample depth\n", + "Year \n", + "626 0.371605 NaN 1\n", + "627 0.284398 NaN 1\n", + "628 0.306523 NaN 1\n", + "629 0.416333 NaN 1\n", + "630 0.482462 NaN 1\n", + "... ... ... ...\n", + "1979 1.053427 0.975424 21\n", + "1980 1.455353 1.394603 21\n", + "1981 1.252526 1.023029 21\n", + "1982 1.362244 1.178407 21\n", + "1983 1.314827 1.108811 21\n", + "\n", + "[1358 rows x 3 columns]\n" + ] + } + ], + "source": [ + "ca533_crn = dpl.chron(ca533_rwi, biweight=True, prewhiten=True, plot=True)\n", + "print(ca533_crn)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Flags for CAM011\n", + "[A] Segment High -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10\n", + " 1920-1959 -8 -0.12 -0.35 0.28 -0.14 0.19 -0.27 -0.07 -0.10 0.03 0.02 0.22 -0.21 0.01 -0.15 0.19 0.10 0.20 0.11 -0.27 0.20 -0.12\n", + " 1940-1979 -8 0.03 -0.07 0.24 -0.19 0.01 -0.04 0.11 -0.15 0.14 0.03 0.22 -0.12 -0.22 -0.28 0.15 \n", + "[B] Segment High -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10\n", + " 1900-1939 6 -0.03 -0.31 0.06 -0.17 0.01 -0.24 -0.07 0.10 -0.21 0.19 0.14 -0.09 0.00 0.13 0.09 -0.01 0.28 0.28 -0.22 0.12 -0.07\n", + "\n", + "Flags for CAM031\n", + "[B] Segment High -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10\n", + " 1780-1819 8 -0.20 0.16 -0.09 -0.19 -0.11 0.16 0.13 0.04 -0.05 0.08 0.31 -0.01 -0.08 -0.07 -0.05 0.00 -0.33 -0.14 0.45 0.05 -0.04\n", + " 1800-1839 8 0.01 0.00 -0.14 0.21 0.05 0.12 0.15 -0.08 0.03 -0.15 0.27 0.07 0.34 0.03 -0.05 -0.07 -0.21 -0.05 0.35 0.26 -0.06\n", + "\n", + "Flags for CAM051\n", + "[A] Segment High -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10\n", + " 1400-1439 -8 -0.22 -0.10 0.26 0.19 -0.27 0.01 0.22 0.10 -0.24 -0.10 0.20 -0.05 -0.15 0.21 0.19 0.01 -0.10 -0.09 0.03 0.17 -0.07\n", + "[B] Segment High -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10\n", + " 1380-1419 3 0.00 -0.31 0.24 0.04 -0.12 0.08 0.29 0.12 -0.07 -0.09 0.05 -0.00 -0.10 0.42 -0.07 -0.22 0.04 0.15 -0.15 0.39 -0.02\n", + " 1860-1899 -4 -0.07 0.09 -0.11 0.01 0.25 0.00 0.44 0.01 -0.17 -0.08 0.31 -0.16 0.07 -0.12 -0.22 0.03 0.11 -0.29 -0.16 0.19 0.00\n", + "\n", + "Flags for CAM081\n", + "[B] Segment High -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10\n", + " 1920-1959 -7 -0.03 -0.24 -0.08 0.46 -0.19 0.18 0.02 -0.04 -0.09 -0.05 0.33 0.04 0.02 -0.15 -0.18 0.35 0.12 -0.03 0.07 -0.25 0.06\n", + "\n", + "Flags for CAM082\n", + "[B] Segment High -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10\n", + " 1940-1979 1 0.04 -0.01 -0.03 0.02 -0.02 0.11 -0.25 -0.18 -0.15 0.02 0.28 0.42 -0.04 -0.11 -0.01 \n", + "\n", + "Flags for CAM092\n", + "[B] Segment High -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10\n", + " 1700-1739 9 -0.03 -0.02 0.18 0.20 0.22 0.05 0.01 0.07 0.35 -0.20 0.50 -0.01 0.28 -0.10 -0.05 0.08 0.25 -0.17 -0.10 0.58 -0.42\n", + "\n", + "Flags for CAM131\n", + "[A] Segment High -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10\n", + " 1800-1839 0 -0.06 -0.10 -0.06 0.01 0.18 -0.07 -0.14 -0.20 -0.10 -0.18 0.22 -0.16 0.11 -0.16 -0.03 -0.34 0.10 -0.15 0.12 -0.16 0.07\n", + " 1820-1859 0 -0.15 0.10 -0.09 -0.13 0.12 0.05 0.01 -0.06 0.03 -0.01 0.23 0.07 0.18 -0.08 0.11 -0.46 -0.09 0.18 0.17 -0.03 -0.25\n", + "\n", + "Flags for CAM161\n", + "[B] Segment High -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10\n", + " 1340-1379 6 0.04 -0.00 0.19 -0.15 0.00 -0.10 -0.02 0.10 0.24 0.09 0.20 0.12 -0.03 -0.22 -0.08 0.12 0.29 -0.12 -0.20 0.12 0.26\n", + " 1480-1519 1 -0.11 0.20 0.03 -0.10 -0.07 0.16 0.22 -0.12 -0.18 -0.00 0.09 0.32 -0.21 0.13 -0.02 0.16 -0.09 -0.09 0.01 0.21 -0.11\n", + "\n", + "Flags for CAM162\n", + "[A] Segment High -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10\n", + " 1340-1379 -2 0.11 -0.18 -0.03 -0.24 0.12 -0.22 0.19 0.11 0.29 0.15 0.22 -0.30 0.13 -0.16 0.00 -0.31 -0.17 -0.02 0.01 0.21 -0.06\n", + "[B] Segment High -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10\n", + " 1620-1659 -2 -0.01 0.20 0.27 -0.31 0.17 -0.17 -0.21 0.18 0.28 -0.08 0.16 -0.25 0.10 0.14 -0.17 0.03 0.04 0.08 -0.02 -0.30 -0.27\n", + "\n", + "Flags for CAM181\n", + "[B] Segment High -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10\n", + " 1780-1819 8 -0.14 0.02 -0.00 -0.07 -0.19 0.18 0.08 -0.42 -0.28 0.03 0.17 0.05 -0.07 0.17 0.07 -0.05 0.09 0.01 0.30 0.03 -0.12\n", + "\n", + "Flags for CAM201\n", + "[B] Segment High -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10\n", + " 1120-1159 1 -0.08 -0.11 -0.18 -0.12 -0.12 0.04 0.02 -0.05 0.21 -0.15 0.39 0.54 0.02 -0.09 0.06 -0.19 -0.24 0.07 -0.30 -0.10 -0.28\n", + " 1340-1379 -1 -0.05 -0.04 0.05 0.07 -0.05 -0.11 -0.20 -0.00 -0.09 0.26 0.11 0.20 -0.01 0.21 -0.12 -0.03 -0.40 -0.04 -0.20 -0.11 -0.05\n", + " 1360-1399 -1 -0.03 0.01 -0.04 0.22 -0.04 0.01 -0.12 -0.02 0.05 0.30 0.21 0.29 -0.18 0.15 0.09 -0.06 -0.16 0.14 -0.09 -0.03 0.29\n", + "\n", + "Flags for CAM211\n", + "[B] Segment High -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10\n", + " 1020-1059 -1 -0.09 -0.02 0.06 0.20 0.03 -0.15 -0.34 -0.32 0.15 0.79 0.10 -0.30 -0.07 0.09 0.10 -0.21 -0.35 -0.23 0.01 0.14 0.21\n", + " 1040-1079 -1 0.11 -0.18 -0.15 -0.16 -0.20 -0.00 -0.10 -0.17 0.04 0.59 0.41 -0.03 -0.05 -0.02 -0.07 -0.33 -0.24 -0.14 -0.05 0.15 0.21\n", + " 1340-1379 -1 0.05 -0.11 0.10 0.12 -0.15 -0.13 -0.23 0.14 0.01 0.29 0.21 0.21 -0.37 0.10 -0.20 -0.20 -0.01 -0.10 0.17 -0.08 -0.05\n", + " 1620-1659 1 -0.17 -0.05 0.25 -0.15 0.03 0.08 -0.25 -0.09 0.16 -0.17 0.27 0.38 0.02 -0.08 0.19 -0.04 0.04 0.05 -0.15 -0.07 -0.33\n", + "\n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "
CAM011CAM021CAM031CAM032CAM041CAM042CAM051CAM061CAM062CAM071...CAM151CAM152CAM161CAM162CAM171CAM172CAM181CAM191CAM201CAM211
700-749NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN0.402641
725-774NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN0.459880
750-799NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN0.303433
775-824NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN0.403601
800-849NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN0.512605
825-874NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN0.317647
850-899NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN0.336951
875-924NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN0.533830
900-949NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN0.529124
925-974NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN0.445090
950-999NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN0.542761
975-1024NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaN0.582521NaNNaNNaNNaNNaN0.482545
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -777,64 +930,18 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -843,142 +950,45 @@ " \n", " \n", " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -988,23 +998,9 @@ " \n", " \n", " \n", - " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", @@ -1012,655 +1008,164 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -1675,228 +1180,93 @@ " \n", " \n", "
CAM011CAM021CAM031CAM032CAM041CAM042CAM051CAM061CAM062CAM071...CAM151CAM152CAM161CAM162CAM171CAM172CAM181CAM191CAM201CAM211
1000-1049700-739NaNNaNNaNNaNNaNNaN0.635726NaNNaNNaNNaN0.3674910.304970
1025-1074NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaN0.534598NaNNaNNaNNaN0.2928690.3555820.308818
1050-1099NaNNaNNaNNaNNaNNaNNaNNaNNaN0.506747...NaNNaNNaN0.462377NaNNaN720-759NaNNaN0.5298920.569556
1075-1124NaNNaNNaNNaNNaNNaNNaN0.616519...NaNNaNNaN0.572149NaNNaNNaNNaN0.6327490.543337
1100-1149NaNNaNNaNNaNNaNNaNNaNNaNNaN0.754814...NaNNaNNaN0.607587NaNNaNNaNNaN0.4763990.6607920.476360
1125-1174NaNNaNNaNNaNNaNNaNNaNNaNNaN0.851813...NaNNaN0.7126530.581945740-779NaNNaNNaNNaN0.2812480.650036
1150-1199NaNNaNNaNNaNNaNNaNNaNNaNNaN0.567347...NaNNaN0.6846100.559376NaNNaNNaNNaN0.4842740.454694
1175-1224NaNNaNNaNNaNNaNNaNNaNNaNNaN0.510876...NaNNaN0.6178630.666651NaNNaNNaNNaN0.5205760.7022810.360788
1200-1249NaNNaNNaNNaNNaNNaNNaNNaNNaN0.667611...NaNNaN0.6248740.606627760-799NaN0.5877070.7259060.8142620.5151980.746363
1225-1274NaNNaNNaNNaNNaNNaN0.636783...NaNNaN0.6702040.4777430.3911160.6086430.6304440.7528930.5935650.538055
1250-1299NaNNaNNaNNaNNaNNaNNaNNaN0.604898...0.5990400.5450660.6954620.4492200.3444420.5810800.7238900.7357020.6541660.5458340.284053
1275-1324NaN780-819NaNNaNNaNNaNNaN0.686915NaNNaN0.460264...0.6159420.5860740.5840580.5103000.2793280.4783190.6831690.6863390.5892440.612101
1300-1349NaNNaNNaNNaNNaNNaN0.647923NaNNaN0.611140...0.6284270.5970230.6127730.5689800.4748620.5240340.5997120.7142860.5324850.714286
1325-1374NaNNaNNaNNaNNaNNaN0.433181NaNNaN0.731765...0.5389200.5778150.4213690.3819930.5775270.4850420.6527250.7659540.2798080.470348
1350-1399NaNNaNNaNNaNNaNNaN0.444034NaNNaN0.664730...0.4806240.6620410.4563270.4618010.6013450.5079950.5161580.7133250.1914530.3644180.518949
1375-1424NaNNaN0.349532NaNNaNNaN0.1828090.652917NaN0.708043...............0.4127250.5733970.5525570.4606480.6105640.4890760.5564950.7782470.3227370.508091
1400-1449NaNNaN0.625834NaNNaNNaN0.3050660.817431NaN0.787563...0.7080430.7366630.4462420.4342380.6777910.6092200.7102520.8390400.5103960.759904
1425-1474NaNNaN0.719472NaNNaNNaN0.5930850.801104NaN0.758079...0.707659NaN0.5044420.4035050.7710440.6267950.7575990.7012240.6972870.660696
1450-1499NaN0.6605040.7932290.573974NaNNaN0.4978150.802161NaN0.757407...0.800336NaN0.4436490.6402400.8021610.6753900.7775750.6984390.5457380.556399
1475-1524NaN0.6698200.7334930.671549NaNNaN0.4703480.794670NaN0.788043...0.786987NaN0.2864350.7418490.6860500.5788720.7092920.7178390.5059780.598079
1500-1549NaN0.7072750.6838420.669628NaNNaN0.6468670.793037NaN0.874670...0.814742NaN0.3767110.6550300.7282110.6401440.6144060.7671070.4389440.686435
1525-1574NaN0.6994000.5586070.535558NaNNaN0.6954620.736759NaN0.832893...0.817527NaN0.4986790.5033850.6412970.6101800.5770470.5769510.3081390.685954
1550-15990.6713570.6867230.4346220.492341NaN0.5369030.6932530.7378150.6340940.753565...0.754334NaN0.5660020.5478510.6423530.5311400.5612000.543818NaN0.692485
1575-16240.7378150.6759660.4668910.663385NaN0.6406240.7202400.8031210.6920050.822329...0.753950NaNNaN0.5932770.8324130.7027610.6377430.771909NaN0.767107
1600-16490.7213930.6811520.5073230.691813NaN0.5937580.6663630.8594000.7343580.731477...0.721681NaNNaN0.4180070.7520290.7205280.7187030.801681NaN0.422809
1625-16740.5640820.7153420.6800000.657719NaN0.7002640.7550060.8708280.7621130.639472...0.786507NaNNaN0.4033130.7061220.7986070.7655700.778055NaN0.437599
1650-16990.6632890.7210080.5928930.721200NaN0.7380070.7306120.8671790.7547180.753758...0.771236NaNNaN0.4890760.6754860.7706600.7327250.775462NaN0.775558
1675-17240.6986310.5690760.5317170.712173NaN0.6592560.6652100.8175270.8149340.805906...0.777959NaNNaN0.5581270.4413450.6834570.7324370.853830NaN0.708619
1700-17490.4133010.6560860.6125810.5866510.3643220.5376710.6272750.7558700.7872750.711597...0.744922NaNNaN0.7147660.3845860.7513570.5717650.670588NaN0.626315
1725-17740.5101080.8037940.4913810.6150780.3607680.4146460.5641780.7802640.8308760.678175...0.719472NaNNaN0.6777910.4717890.8218490.5488120.615750NaN0.656663
1750-17990.5953900.7723890.4422090.6854740.3958220.2814410.4299160.7904440.8717890.723890...0.669532NaNNaN0.5603360.4823530.5668670.3727730.702761NaN0.590684
1775-18240.4824490.5264350.2941180.6460020.4511400.4893640.4555580.7775750.8624730.772677...0.702473NaNNaN0.4849460.5728210.5781030.2085470.764706NaN0.544202
1800-18490.5223050.4569990.3087150.5684990.5812730.4852340.6071070.7907320.8106120.761633...0.782953NaNNaN0.5323890.5230730.7490520.2565670.810900NaN0.568980
1825-18740.5458340.5756060.5469870.6258340.6550300.5146220.5725330.7934210.7474190.6525331860-18990.4923080.7035650.6084430.7084430.6178240.6318950.3138840.8183860.7823640.627767...0.7072750.738274NaNNaN0.4940700.5359420.7002640.4110920.7364710.5701690.4799250.6512200.5015010.702627NaN0.5037700.709193
1850-18990.5386310.7382950.6568550.7143820.6526290.6554140.4029290.8591120.8014890.6744301880-19190.3000000.7690430.5814260.6956850.5596620.7420260.4757970.7272050.7679170.621764...0.6921010.724390NaNNaN0.5678270.5381510.6729890.5136610.7494360.7538460.5669790.6754220.6127580.702251NaN0.6601200.717448
1875-19240.3026650.7511640.5336370.6408160.4618010.6049940.4254980.7091960.7168790.6534931900-19390.1412760.6855530.6484050.6315200.4587240.6977490.4076920.6452160.6671670.472983...0.6895080.751407NaNNaN0.7175510.5421850.6928690.5540940.6791360.6082550.5568480.7144470.4748590.672233NaN0.6833610.620263
1900-19490.1538060.7004560.6408160.6962300.4657380.7283070.3851620.6471550.7187030.4930131920-19590.2183860.5969980.5613510.6566600.3577860.6439020.3048780.6574110.7515950.464353...0.7306120.571670NaNNaN0.6285230.5752220.7510680.4238660.7283070.4212010.4427770.6966230.3679170.660788NaN0.5669630.534334
1925-19740.2888360.6184390.5609120.6885470.5097240.6379350.3542380.6967110.8132050.5292201940-19790.2183860.6530960.4632270.5949340.5343340.5590990.3878050.6185740.7849910.584615...NaNNaN
\n", - "

50 rows × 34 columns

\n", + "

63 rows × 34 columns

\n", "
" ], "text/plain": [ " CAM011 CAM021 CAM031 CAM032 CAM041 CAM042 \\\n", - "700-749 NaN NaN NaN NaN NaN NaN \n", - "725-774 NaN NaN NaN NaN NaN NaN \n", - "750-799 NaN NaN NaN NaN NaN NaN \n", - "775-824 NaN NaN NaN NaN NaN NaN \n", - "800-849 NaN NaN NaN NaN NaN NaN \n", - "825-874 NaN NaN NaN NaN NaN NaN \n", - "850-899 NaN NaN NaN NaN NaN NaN \n", - "875-924 NaN NaN NaN NaN NaN NaN \n", - "900-949 NaN NaN NaN NaN NaN NaN \n", - "925-974 NaN NaN NaN NaN NaN NaN \n", - "950-999 NaN NaN NaN NaN NaN NaN \n", - "975-1024 NaN NaN NaN NaN NaN NaN \n", - "1000-1049 NaN NaN NaN NaN NaN NaN \n", - "1025-1074 NaN NaN NaN NaN NaN NaN \n", - "1050-1099 NaN NaN NaN NaN NaN NaN \n", - "1075-1124 NaN NaN NaN NaN NaN NaN \n", - "1100-1149 NaN NaN NaN NaN NaN NaN \n", - "1125-1174 NaN NaN NaN NaN NaN NaN \n", - "1150-1199 NaN NaN NaN NaN NaN NaN \n", - "1175-1224 NaN NaN NaN NaN NaN NaN \n", - "1200-1249 NaN NaN NaN NaN NaN NaN \n", - "1225-1274 NaN NaN NaN NaN NaN NaN \n", - "1250-1299 NaN NaN NaN NaN NaN NaN \n", - "1275-1324 NaN NaN NaN NaN NaN NaN \n", - "1300-1349 NaN NaN NaN NaN NaN NaN \n", - "1325-1374 NaN NaN NaN NaN NaN NaN \n", - "1350-1399 NaN NaN NaN NaN NaN NaN \n", - "1375-1424 NaN NaN 0.349532 NaN NaN NaN \n", - "1400-1449 NaN NaN 0.625834 NaN NaN NaN \n", - "1425-1474 NaN NaN 0.719472 NaN NaN NaN \n", - "1450-1499 NaN 0.660504 0.793229 0.573974 NaN NaN \n", - "1475-1524 NaN 0.669820 0.733493 0.671549 NaN NaN \n", - "1500-1549 NaN 0.707275 0.683842 0.669628 NaN NaN \n", - "1525-1574 NaN 0.699400 0.558607 0.535558 NaN NaN \n", - "1550-1599 0.671357 0.686723 0.434622 0.492341 NaN 0.536903 \n", - "1575-1624 0.737815 0.675966 0.466891 0.663385 NaN 0.640624 \n", - "1600-1649 0.721393 0.681152 0.507323 0.691813 NaN 0.593758 \n", - "1625-1674 0.564082 0.715342 0.680000 0.657719 NaN 0.700264 \n", - "1650-1699 0.663289 0.721008 0.592893 0.721200 NaN 0.738007 \n", - "1675-1724 0.698631 0.569076 0.531717 0.712173 NaN 0.659256 \n", - "1700-1749 0.413301 0.656086 0.612581 0.586651 0.364322 0.537671 \n", - "1725-1774 0.510108 0.803794 0.491381 0.615078 0.360768 0.414646 \n", - "1750-1799 0.595390 0.772389 0.442209 0.685474 0.395822 0.281441 \n", - "1775-1824 0.482449 0.526435 0.294118 0.646002 0.451140 0.489364 \n", - "1800-1849 0.522305 0.456999 0.308715 0.568499 0.581273 0.485234 \n", - "1825-1874 0.545834 0.575606 0.546987 0.625834 0.655030 0.514622 \n", - "1850-1899 0.538631 0.738295 0.656855 0.714382 0.652629 0.655414 \n", - "1875-1924 0.302665 0.751164 0.533637 0.640816 0.461801 0.604994 \n", - "1900-1949 0.153806 0.700456 0.640816 0.696230 0.465738 0.728307 \n", - "1925-1974 0.288836 0.618439 0.560912 0.688547 0.509724 0.637935 \n", + "700-739 NaN NaN NaN NaN NaN NaN \n", + "720-759 NaN NaN NaN NaN NaN NaN \n", + "740-779 NaN NaN NaN NaN NaN NaN \n", + "760-799 NaN NaN NaN NaN NaN NaN \n", + "780-819 NaN NaN NaN NaN NaN NaN \n", + "... ... ... ... ... ... ... \n", + "1860-1899 0.492308 0.703565 0.608443 0.708443 0.617824 0.631895 \n", + "1880-1919 0.300000 0.769043 0.581426 0.695685 0.559662 0.742026 \n", + "1900-1939 0.141276 0.685553 0.648405 0.631520 0.458724 0.697749 \n", + "1920-1959 0.218386 0.596998 0.561351 0.656660 0.357786 0.643902 \n", + "1940-1979 0.218386 0.653096 0.463227 0.594934 0.534334 0.559099 \n", "\n", - " CAM051 CAM061 CAM062 CAM071 ... CAM151 CAM152 \\\n", - "700-749 NaN NaN NaN NaN ... NaN NaN \n", - "725-774 NaN NaN NaN NaN ... NaN NaN \n", - "750-799 NaN NaN NaN NaN ... NaN NaN \n", - "775-824 NaN NaN NaN NaN ... NaN NaN \n", - "800-849 NaN NaN NaN NaN ... NaN NaN \n", - "825-874 NaN NaN NaN NaN ... NaN NaN \n", - "850-899 NaN NaN NaN NaN ... NaN NaN \n", - "875-924 NaN NaN NaN NaN ... NaN NaN \n", - "900-949 NaN NaN NaN NaN ... NaN NaN \n", - "925-974 NaN NaN NaN NaN ... NaN NaN \n", - "950-999 NaN NaN NaN NaN ... NaN NaN \n", - "975-1024 NaN NaN NaN NaN ... NaN NaN \n", - "1000-1049 NaN NaN NaN NaN ... NaN NaN \n", - "1025-1074 NaN NaN NaN NaN ... NaN NaN \n", - "1050-1099 NaN NaN NaN 0.506747 ... NaN NaN \n", - "1075-1124 NaN NaN NaN 0.616519 ... NaN NaN \n", - "1100-1149 NaN NaN NaN 0.754814 ... NaN NaN \n", - "1125-1174 NaN NaN NaN 0.851813 ... NaN NaN \n", - "1150-1199 NaN NaN NaN 0.567347 ... NaN NaN \n", - "1175-1224 NaN NaN NaN 0.510876 ... NaN NaN \n", - "1200-1249 NaN NaN NaN 0.667611 ... NaN NaN \n", - "1225-1274 NaN NaN NaN 0.636783 ... NaN NaN \n", - "1250-1299 NaN NaN NaN 0.604898 ... 0.599040 0.545066 \n", - "1275-1324 0.686915 NaN NaN 0.460264 ... 0.615942 0.586074 \n", - "1300-1349 0.647923 NaN NaN 0.611140 ... 0.628427 0.597023 \n", - "1325-1374 0.433181 NaN NaN 0.731765 ... 0.538920 0.577815 \n", - "1350-1399 0.444034 NaN NaN 0.664730 ... 0.480624 0.662041 \n", - "1375-1424 0.182809 0.652917 NaN 0.708043 ... 0.412725 0.573397 \n", - "1400-1449 0.305066 0.817431 NaN 0.787563 ... 0.708043 0.736663 \n", - "1425-1474 0.593085 0.801104 NaN 0.758079 ... 0.707659 NaN \n", - "1450-1499 0.497815 0.802161 NaN 0.757407 ... 0.800336 NaN \n", - "1475-1524 0.470348 0.794670 NaN 0.788043 ... 0.786987 NaN \n", - "1500-1549 0.646867 0.793037 NaN 0.874670 ... 0.814742 NaN \n", - "1525-1574 0.695462 0.736759 NaN 0.832893 ... 0.817527 NaN \n", - "1550-1599 0.693253 0.737815 0.634094 0.753565 ... 0.754334 NaN \n", - "1575-1624 0.720240 0.803121 0.692005 0.822329 ... 0.753950 NaN \n", - "1600-1649 0.666363 0.859400 0.734358 0.731477 ... 0.721681 NaN \n", - "1625-1674 0.755006 0.870828 0.762113 0.639472 ... 0.786507 NaN \n", - "1650-1699 0.730612 0.867179 0.754718 0.753758 ... 0.771236 NaN \n", - "1675-1724 0.665210 0.817527 0.814934 0.805906 ... 0.777959 NaN \n", - "1700-1749 0.627275 0.755870 0.787275 0.711597 ... 0.744922 NaN \n", - "1725-1774 0.564178 0.780264 0.830876 0.678175 ... 0.719472 NaN \n", - "1750-1799 0.429916 0.790444 0.871789 0.723890 ... 0.669532 NaN \n", - "1775-1824 0.455558 0.777575 0.862473 0.772677 ... 0.702473 NaN \n", - "1800-1849 0.607107 0.790732 0.810612 0.761633 ... 0.782953 NaN \n", - "1825-1874 0.572533 0.793421 0.747419 0.652533 ... 0.707275 NaN \n", - "1850-1899 0.402929 0.859112 0.801489 0.674430 ... 0.692101 NaN \n", - "1875-1924 0.425498 0.709196 0.716879 0.653493 ... 0.689508 NaN \n", - "1900-1949 0.385162 0.647155 0.718703 0.493013 ... 0.730612 NaN \n", - "1925-1974 0.354238 0.696711 0.813205 0.529220 ... NaN NaN \n", + " CAM051 CAM061 CAM062 CAM071 ... CAM151 CAM152 \\\n", + "700-739 NaN NaN NaN NaN ... NaN NaN \n", + "720-759 NaN NaN NaN NaN ... NaN NaN \n", + "740-779 NaN NaN NaN NaN ... NaN NaN \n", + "760-799 NaN NaN NaN NaN ... NaN NaN \n", + "780-819 NaN NaN NaN NaN ... NaN NaN \n", + "... ... ... ... ... ... ... ... \n", + "1860-1899 0.313884 0.818386 0.782364 0.627767 ... 0.738274 NaN \n", + "1880-1919 0.475797 0.727205 0.767917 0.621764 ... 0.724390 NaN \n", + "1900-1939 0.407692 0.645216 0.667167 0.472983 ... 0.751407 NaN \n", + "1920-1959 0.304878 0.657411 0.751595 0.464353 ... 0.571670 NaN \n", + "1940-1979 0.387805 0.618574 0.784991 0.584615 ... NaN NaN \n", "\n", - " CAM161 CAM162 CAM171 CAM172 CAM181 CAM191 \\\n", - "700-749 NaN NaN NaN NaN NaN NaN \n", - "725-774 NaN NaN NaN NaN NaN NaN \n", - "750-799 NaN NaN NaN NaN NaN NaN \n", - "775-824 NaN NaN NaN NaN NaN NaN \n", - "800-849 NaN NaN NaN NaN NaN NaN \n", - "825-874 NaN NaN NaN NaN NaN NaN \n", - "850-899 NaN NaN NaN NaN NaN NaN \n", - "875-924 NaN NaN NaN NaN NaN NaN \n", - "900-949 NaN NaN NaN NaN NaN NaN \n", - "925-974 NaN NaN NaN NaN NaN NaN \n", - "950-999 NaN NaN NaN NaN NaN NaN \n", - "975-1024 NaN 0.582521 NaN NaN NaN NaN \n", - "1000-1049 NaN 0.635726 NaN NaN NaN NaN \n", - "1025-1074 NaN 0.534598 NaN NaN NaN NaN \n", - "1050-1099 NaN 0.462377 NaN NaN NaN NaN \n", - "1075-1124 NaN 0.572149 NaN NaN NaN NaN \n", - "1100-1149 NaN 0.607587 NaN NaN NaN NaN \n", - "1125-1174 0.712653 0.581945 NaN NaN NaN NaN \n", - "1150-1199 0.684610 0.559376 NaN NaN NaN NaN \n", - "1175-1224 0.617863 0.666651 NaN NaN NaN NaN \n", - "1200-1249 0.624874 0.606627 NaN 0.587707 0.725906 0.814262 \n", - "1225-1274 0.670204 0.477743 0.391116 0.608643 0.630444 0.752893 \n", - "1250-1299 0.695462 0.449220 0.344442 0.581080 0.723890 0.735702 \n", - "1275-1324 0.584058 0.510300 0.279328 0.478319 0.683169 0.686339 \n", - "1300-1349 0.612773 0.568980 0.474862 0.524034 0.599712 0.714286 \n", - "1325-1374 0.421369 0.381993 0.577527 0.485042 0.652725 0.765954 \n", - "1350-1399 0.456327 0.461801 0.601345 0.507995 0.516158 0.713325 \n", - "1375-1424 0.552557 0.460648 0.610564 0.489076 0.556495 0.778247 \n", - "1400-1449 0.446242 0.434238 0.677791 0.609220 0.710252 0.839040 \n", - "1425-1474 0.504442 0.403505 0.771044 0.626795 0.757599 0.701224 \n", - "1450-1499 0.443649 0.640240 0.802161 0.675390 0.777575 0.698439 \n", - "1475-1524 0.286435 0.741849 0.686050 0.578872 0.709292 0.717839 \n", - "1500-1549 0.376711 0.655030 0.728211 0.640144 0.614406 0.767107 \n", - "1525-1574 0.498679 0.503385 0.641297 0.610180 0.577047 0.576951 \n", - "1550-1599 0.566002 0.547851 0.642353 0.531140 0.561200 0.543818 \n", - "1575-1624 NaN 0.593277 0.832413 0.702761 0.637743 0.771909 \n", - "1600-1649 NaN 0.418007 0.752029 0.720528 0.718703 0.801681 \n", - "1625-1674 NaN 0.403313 0.706122 0.798607 0.765570 0.778055 \n", - "1650-1699 NaN 0.489076 0.675486 0.770660 0.732725 0.775462 \n", - "1675-1724 NaN 0.558127 0.441345 0.683457 0.732437 0.853830 \n", - "1700-1749 NaN 0.714766 0.384586 0.751357 0.571765 0.670588 \n", - "1725-1774 NaN 0.677791 0.471789 0.821849 0.548812 0.615750 \n", - "1750-1799 NaN 0.560336 0.482353 0.566867 0.372773 0.702761 \n", - "1775-1824 NaN 0.484946 0.572821 0.578103 0.208547 0.764706 \n", - "1800-1849 NaN 0.532389 0.523073 0.749052 0.256567 0.810900 \n", - "1825-1874 NaN 0.494070 0.535942 0.700264 0.411092 0.736471 \n", - "1850-1899 NaN 0.567827 0.538151 0.672989 0.513661 0.749436 \n", - "1875-1924 NaN 0.717551 0.542185 0.692869 0.554094 0.679136 \n", - "1900-1949 NaN 0.628523 0.575222 0.751068 0.423866 0.728307 \n", - "1925-1974 NaN NaN NaN NaN NaN NaN \n", + " CAM161 CAM162 CAM171 CAM172 CAM181 CAM191 CAM201 \\\n", + "700-739 NaN NaN NaN NaN NaN NaN NaN \n", + "720-759 NaN NaN NaN NaN NaN NaN NaN \n", + "740-779 NaN NaN NaN NaN NaN NaN NaN \n", + "760-799 NaN NaN NaN NaN NaN NaN NaN \n", + "780-819 NaN NaN NaN NaN NaN NaN NaN \n", + "... ... ... ... ... ... ... ... \n", + "1860-1899 NaN 0.570169 0.479925 0.651220 0.501501 0.702627 NaN \n", + "1880-1919 NaN 0.753846 0.566979 0.675422 0.612758 0.702251 NaN \n", + "1900-1939 NaN 0.608255 0.556848 0.714447 0.474859 0.672233 NaN \n", + "1920-1959 NaN 0.421201 0.442777 0.696623 0.367917 0.660788 NaN \n", + "1940-1979 NaN NaN NaN NaN NaN NaN NaN \n", "\n", - " CAM201 CAM211 \n", - "700-749 NaN 0.402641 \n", - "725-774 NaN 0.459880 \n", - "750-799 NaN 0.303433 \n", - "775-824 NaN 0.403601 \n", - "800-849 NaN 0.512605 \n", - "825-874 NaN 0.317647 \n", - "850-899 NaN 0.336951 \n", - "875-924 NaN 0.533830 \n", - "900-949 NaN 0.529124 \n", - "925-974 NaN 0.445090 \n", - "950-999 NaN 0.542761 \n", - "975-1024 NaN 0.482545 \n", - "1000-1049 0.367491 0.304970 \n", - "1025-1074 0.292869 0.355582 \n", - "1050-1099 0.529892 0.569556 \n", - "1075-1124 0.632749 0.543337 \n", - "1100-1149 0.476399 0.660792 \n", - "1125-1174 0.281248 0.650036 \n", - "1150-1199 0.484274 0.454694 \n", - "1175-1224 0.520576 0.702281 \n", - "1200-1249 0.515198 0.746363 \n", - "1225-1274 0.593565 0.538055 \n", - "1250-1299 0.654166 0.545834 \n", - "1275-1324 0.589244 0.612101 \n", - "1300-1349 0.532485 0.714286 \n", - "1325-1374 0.279808 0.470348 \n", - "1350-1399 0.191453 0.364418 \n", - "1375-1424 0.322737 0.508091 \n", - "1400-1449 0.510396 0.759904 \n", - "1425-1474 0.697287 0.660696 \n", - "1450-1499 0.545738 0.556399 \n", - "1475-1524 0.505978 0.598079 \n", - "1500-1549 0.438944 0.686435 \n", - "1525-1574 0.308139 0.685954 \n", - "1550-1599 NaN 0.692485 \n", - "1575-1624 NaN 0.767107 \n", - "1600-1649 NaN 0.422809 \n", - "1625-1674 NaN 0.437599 \n", - "1650-1699 NaN 0.775558 \n", - "1675-1724 NaN 0.708619 \n", - "1700-1749 NaN 0.626315 \n", - "1725-1774 NaN 0.656663 \n", - "1750-1799 NaN 0.590684 \n", - "1775-1824 NaN 0.544202 \n", - "1800-1849 NaN 0.568980 \n", - "1825-1874 NaN 0.503770 \n", - "1850-1899 NaN 0.660120 \n", - "1875-1924 NaN 0.683361 \n", - "1900-1949 NaN 0.566963 \n", - "1925-1974 NaN NaN \n", + " CAM211 \n", + "700-739 0.308818 \n", + "720-759 0.476360 \n", + "740-779 0.360788 \n", + "760-799 0.284053 \n", + "780-819 0.518949 \n", + "... ... \n", + "1860-1899 0.709193 \n", + "1880-1919 0.717448 \n", + "1900-1939 0.620263 \n", + "1920-1959 0.534334 \n", + "1940-1979 NaN \n", "\n", - "[50 rows x 34 columns]" + "[63 rows x 34 columns]" ] }, - "execution_count": 7, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "dpl.xdate(ca533_rwi, prewhiten=True, corr=\"Spearman\", slide_period=50, bin_floor=100, p_val=0.05, show_flags=True)" + "dpl.xdate(ca533_rwi, prewhiten=True, corr=\"Spearman\", slide_period=40, bin_floor=100, p_val=0.05, show_flags=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "ename": "AttributeError", + "evalue": "module 'dplpy' has no attribute 'writers'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "Input \u001b[0;32mIn [13]\u001b[0m, in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mdpl\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mwriters\u001b[49m(ca533_crn, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCA533\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcrn\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "\u001b[0;31mAttributeError\u001b[0m: module 'dplpy' has no attribute 'writers'" + ] + } + ], + "source": [ + "dpl.writers(ca533_crn, \"CA533\", \"crn\")" ] }, { @@ -1935,12 +1305,12 @@ } ], "source": [ - "dpl.series_corr(ca533_rwi, \"CAM181\", prewhiten=True, corr=\"Spearman\", seg_length=50, bin_floor=100, p_val=0.05, plot=True)" + "dpl.series_corr(ca533_rwi, \"CAM181\", prewhiten=True, corr=\"Spearman\", seg_length=60, bin_floor=60, p_val=0.05, plot=True)" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -1965,17 +1335,17 @@ "[736 rows x 3 columns]\n", " Mean RWI Mean Res Sample depth\n", "Year \n", - "1247 0.413357 1.005539 19\n", - "1248 0.603095 1.359648 19\n", - "1249 0.561613 1.097758 19\n", - "1250 0.494872 0.973166 19\n", - "1251 0.469847 0.984602 19\n", + "1247 1.986489 1.005539 19\n", + "1248 2.898322 1.359648 19\n", + "1249 2.698966 1.097758 19\n", + "1250 2.378230 0.973166 19\n", + "1251 2.257966 0.984602 19\n", "... ... ... ...\n", - "1978 0.500314 1.010618 21\n", - "1979 0.465306 0.975424 21\n", - "1980 0.642840 1.394603 21\n", - "1981 0.553250 1.023029 21\n", - "1982 0.601713 1.178407 21\n", + "1978 2.418748 1.010618 21\n", + "1979 2.249506 0.975424 21\n", + "1980 3.107785 1.394603 21\n", + "1981 2.674665 1.023029 21\n", + "1982 2.908960 1.178407 21\n", "\n", "[736 rows x 3 columns]\n" ] @@ -1987,7 +1357,8 @@ "ca533_crn2 = ca533_crn.loc[start:end, :].copy()\n", "print(ca533_crn2)\n", "ca533_rbar = dpl.rbar(ca533_rwi, start, end, method=\"osborn\")\n", - "ca533_crn2['Mean RWI'] = ca533_crn2['Mean RWI'] * ca533_rbar\n", + "nEff = (ca533_crn2['Sample depth'])/ (1 + ((ca533_crn2['Sample depth'] - 1) * ca533_rbar))\n", + "ca533_crn2['Mean RWI'] = ca533_crn2['Mean RWI'] * nEff\n", "print(ca533_crn2)" ] } diff --git a/src/pytest.ini b/src/pytest.ini new file mode 100644 index 0000000..5ee3d35 --- /dev/null +++ b/src/pytest.ini @@ -0,0 +1,2 @@ +[pytest] +testpaths = unittests \ No newline at end of file diff --git a/src/rbar.py b/src/rbar.py index 642e246..23db9c4 100644 --- a/src/rbar.py +++ b/src/rbar.py @@ -39,14 +39,21 @@ import numpy as np from detrend import detrend from chron import chron +<<<<<<< HEAD +======= from xdate import correlate +>>>>>>> main # common_interval finds a range of years in the provided dataframe where there is maximum overlap between series over the longest period of years. def common_interval(data): year = data.index.to_numpy() # this is the year vector crn = data.iloc[:,:] # these are the chronologies +<<<<<<< HEAD + num_years = crn.shape[0] +======= num_years, num_series = crn.shape +>>>>>>> main # across-column sum of non-NaN values to get the sample size = sample size sample_depth = np.sum(~np.isnan(crn), axis=1) @@ -64,13 +71,52 @@ def common_interval(data): N0 = N * np.tile(np.arange(num_years) + 1, (num_years, 1)) # row (startyear) and column (block length) position of maximum value - is this an OK way to do this? tried other things that didn't work +<<<<<<< HEAD + start_year, window_width = np.where(N0 == np.nanmax(N0)) + # this gives the same answer as MATLAB - 1828 to 1982 common interval + return year[int(start_year)], year[int(start_year+window_width-1)] + + +======= startYear, windowWidth = np.where(N0 == np.nanmax(N0)) # this gives the same answer as MATLAB - 1828 to 1982 common interval return year[int(startYear)], year[int(startYear+windowWidth-1)] +>>>>>>> main # rbar returns a list of constants to multiply with each mean value generated for a range of years from a mean value chronology. # Can use osborn, frank and 67spline methods to generate rbar values. # Will be updated in the future to prioritize number of series, number of years or both. Currently attempts to do both. +<<<<<<< HEAD +def get_running_rbar(data, min_seg_ratio, method="osborn", corr_type="pearson"): + # how we deal with nans will depend on method chosen for finding rbar. + # drop all series with nans for osborn, but drop only if they are not up to fraction of seg_length for frank + + # Osborn assumes all series are overlapping along the entire period. Drops none + if method == "osborn": + r_bar = mean_series_intercorrelation(data, corr_type, min_seg_ratio) + return r_bar + + elif method == "frank": + rel_data = data.copy() + drop_columns = [] + + # Identify columns that need to be dropped and drop them + + for column in rel_data: + num_valid_elems = rel_data[column].size + if num_valid_elems/data.shape[0] < min_seg_ratio: + drop_columns.append(column) + rel_data = rel_data.drop(columns=drop_columns) + + r_bar = mean_series_intercorrelation(rel_data, corr_type, min_seg_ratio) + + return r_bar + + elif method == "67spline": + # probably need to update this + rel_data = data.copy() + signs = rel_data.where(rel_data < 0, 1) +======= def rbar(data, start, end, method="osborn", seg_length=50, seg_overlap=0.5, corr_type="Spearman"): # how we deal with nans will depend on method chosen for finding rbar. # drop all series with nans for osborn, but drop only if they are not up to fraction of seg_length for frank @@ -106,10 +152,30 @@ def rbar(data, start, end, method="osborn", seg_length=50, seg_overlap=0.5, corr return results elif method == "67spline": signs = rel_series.where(rel_series < 0, 1) +>>>>>>> main signs = signs.where(signs >= 0, -1) rel_series = rel_series.abs() rel_series_rwi = detrend(rel_series, fit="spline") res_frame = rel_series_rwi * signs return chron(res_frame, plot=False)['Mean RWI'].tolist() - return None \ No newline at end of file +<<<<<<< HEAD + return None + +def mean_series_intercorrelation(data_set, corr_type, min_seg_ratio): + presence_df = data_set.notnull().astype('int') + trans_presence_df = presence_df.transpose() + + corr_mat = data_set.corr(corr_type) + np.fill_diagonal(corr_mat.values, np.nan) + + overlap_mat = trans_presence_df @ presence_df + + min_overlap = data_set.shape[0] * min_seg_ratio + + corr_mat.where(overlap_mat > min_overlap, inplace=True) + + return corr_mat.mean().mean() +======= + return None +>>>>>>> main diff --git a/src/readers.py b/src/readers.py index 1410c95..5e421f6 100644 --- a/src/readers.py +++ b/src/readers.py @@ -44,7 +44,7 @@ import pandas as pd import numpy as np -def readers(filename, skip_lines=0, header=False): +def readers(filename: str, skip_lines=0, header=False): """ This function imports common ring width data files into Python as arrays Accepted file types are CSV and RWL @@ -58,18 +58,26 @@ def readers(filename, skip_lines=0, header=False): elif filename.upper().endswith(".RWL"): series_data = process_rwl_pandas(filename, skip_lines, header) else: - print("\nUnable to read file, please check that you're using a supported type\n") - print("Accepted file types: .csv and .rwl") - print("example usages:\n>>> import dplpy as dpl") - print(">>> data = dpl.readers('../tests/data/csv/filename.csv')") - print(">>> data = dpl.readers('../tests/data/rwl/filename.rwl'), header=True") - return + errorMsg = """ + +Unable to read file, please check that you're using a supported type +Accepted file types are .csv and .rwl + +Example usages: +>>> import dplpy as dpl +>>> data = dpl.readers('../tests/data/csv/filename.csv') +>>> data = dpl.readers('../tests/data/rwl/filename.rwl'), header=True +""" + + raise ValueError(errorMsg) # If no data is returned, then an error was encountered when reading the file. if series_data is None: - print("\nError reading file. Check that file exists and that file formatting is consistent with " + FORMAT + " format.") - print("If your file contains headers, run dpl.readers(file_path, header=True)") - return + errorMsg = """ + Error reading file. Check that file exists and that file formatting is consistent with {format} format. + If your file contains headers, run dpl.headers(file_path, header=True) + """.format(format=FORMAT) + raise errorMsg series_data.set_index('Year', inplace = True, drop = True) # Display message to show that reading was successful diff --git a/src/series_corr.py b/src/series_corr.py index 0bf1a7f..91ff8e4 100644 --- a/src/series_corr.py +++ b/src/series_corr.py @@ -44,27 +44,46 @@ import scipy import matplotlib.pyplot as plt +<<<<<<< HEAD +======= # Analyzes the crossdating of one series compared to the master chronology def series_corr(data, series_name, prewhiten=True, corr="Spearman", seg_length=50, bin_floor=100, p_val=0.05, plot=True): # Identify first and last valid indexes, for separating into bins. rwi_data = detrend(data, fit="horizontal", plot=False) +>>>>>>> main - # if detrending returns error, raise to output - if isinstance(rwi_data, ValueError) or isinstance(rwi_data, TypeError): - raise rwi_data +# Analyzes the crossdating of one series compared to the master chronology +def series_corr(data: pd.DataFrame, series_name: str, prewhiten=True, corr="Spearman", seg_length=50, bin_floor=100, p_val=0.05): + # Check types of inputs + if not isinstance(data, pd.DataFrame): + errorMsg = "Expected dataframe input, got " + str(type(data)) + " instead." + raise TypeError(errorMsg) + + if not isinstance(series_name, str): + errorMsg = "Expected string input as series name, got " + str(type(series_name)) + " instead." + raise TypeError(errorMsg) + + if series_name not in data.columns: + errorMsg = "Series named " + series_name + " not found in provided dataframe." + raise ValueError(errorMsg) + + rwi_data = detrend(data, fit="horizontal", plot=False) # drop nans, prewhiten series if necessary - ready_series = {} + df_start = pd.DataFrame(index=pd.Index(data.index)) + to_concat = [df_start] for series in rwi_data: nullremoved_data = rwi_data[series].dropna() if prewhiten is True: res = ar_func_series(nullremoved_data, get_ar_lag(nullremoved_data)) offset = len(nullremoved_data) - len(res) - ready_series[series] = pd.Series(data=res, name=series, index=nullremoved_data.index.to_numpy()[offset:]) + to_concat.append(pd.Series(data=res, name=series, index=nullremoved_data.index.to_numpy()[offset:])) else: - ready_series[series] = nullremoved_data + to_concat.append(nullremoved_data) + ready_series = pd.concat(to_concat, axis=1) + ready_series = ready_series.rename_axis(data.index.name) removed = ready_series.pop(series_name) new_chron = chron(ready_series, plot=False)["Mean RWI"] @@ -79,7 +98,11 @@ def series_corr(data, series_name, prewhiten=True, corr="Spearman", seg_length=5 start, end = get_rel_range(data_first, data_last, ser_first, ser_last, bin_floor, seg_length) +<<<<<<< HEAD + plt.style.use('seaborn-v0_8-darkgrid') +======= plt.style.use('seaborn-darkgrid') +>>>>>>> main wid = max((end - start)//30, 1) hei = 10 base_corr = get_crit(p_val) diff --git a/src/stats.py b/src/stats.py index 838ca4f..ae42600 100644 --- a/src/stats.py +++ b/src/stats.py @@ -50,7 +50,7 @@ from readers import readers from statsmodels.tsa.ar_model import AutoReg -def stats(inp): +def stats(inp: pd.DataFrame | str): if isinstance(inp, pd.DataFrame): series_data = inp elif isinstance(inp, str): diff --git a/src/summary.py b/src/summary.py index d1f0062..8ced575 100644 --- a/src/summary.py +++ b/src/summary.py @@ -40,20 +40,27 @@ import numpy as np from readers import readers -def summary(inp): +def summary(inp: pd.DataFrame | str): if isinstance(inp, pd.DataFrame): series_data = inp elif isinstance(inp, str): series_data = readers(inp) else: - print("\nUnable to generate summary report. Invalid input") - print("Note: for file pathname inputs, only CSV and RWL file formats are accepted\n") - print("example usages:") - print(">>> import dplpy as dpl") - print(">>> data = dpl.readers('../tests/data/csv/file.csv')") - print(">>> dpl.summary(data)\n") - print(">>> dpl.summary('../tests/data/csv/file.csv')\n") + errorMsg = """ +Unable to generate summary report. Input must be string path to file to be read +or Dataframe object. +Note: for file pathname inputs, only CSV and RWL file formats are accepted + +Example usages: + +>>> import dplpy as dpl +>>> data = dpl.readers('../tests/data/csv/file.csv') +>>> dpl.summary(data) +>>> dpl.summary('../tests/data/csv/file.csv') + +""" + raise TypeError(errorMsg) summary = series_data.describe() return summary \ No newline at end of file diff --git a/src/unittests/__init__.py b/src/unittests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/src/unittests/test_autoreg.py b/src/unittests/test_autoreg.py new file mode 100644 index 0000000..4da2669 --- /dev/null +++ b/src/unittests/test_autoreg.py @@ -0,0 +1,85 @@ +import dplpy as dpl +import pandas as pd +import numpy as np +import pytest +from autoreg import fitted_values, ar_func_series +from unittest.mock import patch, Mock + +def mock_ar_sel_order_method(inp_ser, max_lag, ic='aic', old_names=False): + inp_ser_name = inp_ser.name + param_name = inp_ser_name + ".L1" + res = pd.Series(data=[0.5, 0.5], index=pd.Index(data=['const', param_name])) + mock_results = Mock() + mock_model = Mock() + mock_fit = Mock() + mock_fit.params = res + mock_model.fit = Mock(return_value=mock_fit) + mock_results.model = mock_model + return mock_results + + +@patch('autoreg.ar_select_order') +def test_ar_func_invalid_dtype(mock_ar_sel_order: Mock): + with pytest.raises(TypeError) as errorMsg: + dpl.ar_func("input_df") + expected_errMsg = "Data argument should be either pandas dataframe or pandas series." + assert expected_errMsg == str(errorMsg.value) + mock_ar_sel_order.assert_not_called() + + +@patch('autoreg.ar_select_order') +def test_ar_func_on_series(mock_ar_sel_order: Mock): + mock_ar_sel_order.side_effect = mock_ar_sel_order_method + + data = pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5], + "SeriesB": [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + actual_ser_output = dpl.ar_func(data['SeriesA']) + + expected_ser_output = pd.Series(name="SeriesA", + data=[0.55, 0.65, 0.75, 0.85, 0.95, 1.05, 1.15], + index=pd.Index(name="Year", data=[2, 3, 4, 5, 6, 7, 8])) + pd.testing.assert_series_equal(expected_ser_output, actual_ser_output) + mock_ar_sel_order.assert_called_once() + + +@patch('autoreg.ar_select_order') +def test_ar_func_on_df(mock_ar_sel_order: Mock): + mock_ar_sel_order.side_effect = mock_ar_sel_order_method + + data = pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5], + "SeriesB": [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + actual_ser_output = dpl.ar_func(data) + + expected_ser_output = pd.DataFrame(data={"SeriesA":[np.nan, 0.55, 0.65, 0.75, 0.85, 0.95, 1.05, 1.15], + "SeriesB":[np.nan, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3]}, + index=pd.Index(name="Year", data=[1, 2, 3, 4, 5, 6, 7, 8])) + pd.testing.assert_frame_equal(expected_ser_output, actual_ser_output) + mock_ar_sel_order.assert_called() + + +@patch('autoreg.ar_select_order') +def test_autoreg_invalid_input(mock_ar_sel_order: Mock): + mock_ar_sel_order.side_effect = mock_ar_sel_order_method + with pytest.raises(TypeError) as errorMsg: + dpl.autoreg("input_df") + expected_errMsg = "Data argument should be pandas series. Received instead." + assert expected_errMsg == str(errorMsg.value) + mock_ar_sel_order.assert_not_called() + + +@patch('autoreg.ar_select_order') +def test_autoreg_valid_input(mock_ar_sel_order: Mock): + mock_ar_sel_order.side_effect = mock_ar_sel_order_method + data = pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5], + "SeriesB": [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + actual_res = dpl.autoreg(data['SeriesA']) + expected_res = pd.Series(data=[0.5, 0.5], + index=pd.Index(data=['const', 'SeriesA.L1'])) + pd.testing.assert_series_equal(expected_res, actual_res) + mock_ar_sel_order.assert_called_once() \ No newline at end of file diff --git a/src/unittests/test_chron.py b/src/unittests/test_chron.py new file mode 100644 index 0000000..2a75c66 --- /dev/null +++ b/src/unittests/test_chron.py @@ -0,0 +1,81 @@ +import pandas as pd +import dplpy as dpl +import pytest +from unittest.mock import patch, Mock + +def mock_tbrm_out(inp): + return sum(inp) + +def mock_ar_func_out(inp_series): + inp_series += 0.01 + return inp_series.to_numpy() + +def test_chron_simple_means(): + input_df = pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5], + "SeriesB": [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + + expected_df = pd.DataFrame(data={"Mean RWI": [0.15, 0.35, 0.55, 0.75, 0.95, 1.15, 1.35, 1.55], + "Sample depth": [2, 2, 2, 2, 2, 2, 2, 2]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + + result_df = dpl.chron(input_df, biweight=False, prewhiten=False, plot=False) + + pd.testing.assert_frame_equal(expected_df, result_df) + + +def test_wrong_input(): + with pytest.raises(TypeError) as errorMsg: + dpl.chron("string") + + assert "Expected pandas dataframe as input, got instead" == str(errorMsg.value) + + +@patch('chron.tbrm') +@patch('chron.ar_func') +def test_chron_biweight_means(mock_ar_func: Mock, mock_tbrm: Mock): + mock_tbrm.side_effect = mock_tbrm_out + mock_ar_func.side_effect = mock_ar_func_out + + input_df = pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5], + "SeriesB": [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + + expected_df = pd.DataFrame(data={"Mean RWI": [0.3, 0.7, 1.1, 1.5, 1.9, 2.3, 2.7, 3.1], + "Sample depth": [2, 2, 2, 2, 2, 2, 2, 2]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + + result_df = dpl.chron(input_df, biweight=True, prewhiten=False, plot=False) + pd.testing.assert_frame_equal(expected_df, result_df) + mock_tbrm.assert_called() + mock_ar_func.assert_not_called() + + +@patch('chron.tbrm') +@patch('chron.ar_func') +def test_chron_prewhiten(mock_ar_func: Mock, mock_tbrm: Mock): + mock_tbrm.side_effect = mock_tbrm_out + mock_ar_func.side_effect = mock_ar_func_out + + input_df = pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5], + "SeriesB": [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + + expected_df = pd.DataFrame(data={"Mean RWI": [0.15, 0.35, 0.55, 0.75, 0.95, 1.15, 1.35, 1.55], + "Mean Res": [0.16, 0.36, 0.56, 0.76, 0.96, 1.16, 1.36, 1.56], + "Sample depth": [2, 2, 2, 2, 2, 2, 2, 2]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + result_df = dpl.chron(input_df, biweight=False, prewhiten=True, plot=False) + pd.testing.assert_frame_equal(expected_df, result_df) + mock_tbrm.assert_not_called() + mock_ar_func.assert_called() + +# TODO: Add unit test for plot +def test_chron_plot(): + pass \ No newline at end of file diff --git a/src/unittests/test_chron_stabilized.py b/src/unittests/test_chron_stabilized.py new file mode 100644 index 0000000..3037eea --- /dev/null +++ b/src/unittests/test_chron_stabilized.py @@ -0,0 +1,132 @@ +import dplpy as dpl +import pandas as pd +import numpy as np +import pytest +from rbar import get_running_rbar, mean_series_intercorrelation +from chron import chron +from unittest.mock import patch, Mock + +def mock_get_running_rbar_method(data, min_seg_ratio, method="osborn", corr_type="pearson"): + return 1.0 + +def mock_get_mean_series_intercorr_method(data_set, corr_type, min_seg_ratio): + return 0.0 + +def mock_chron_method(input_df, biweight=False, prewhiten=False, plot=False): + return pd.DataFrame(data={"Mean RWI": [0.015, 0.035, 0.055, 0.075, 0.095, 0.115, 0.135, 0.155, 0.175, 0.195, 0.215, 0.235, 0.255, 0.275, 0.295, 0.315, 0.335, 0.355, 0.375, 0.395, 0.415, 0.435, 0.455, 0.475, 0.495, 0.515, 0.535, 0.555, 0.575, 0.595, 0.615, 0.635, 0.655, 0.675, 0.695, 0.715, 0.735, 0.755, 0.775, 0.795, 0.815, 0.835, 0.855, 0.875, 0.895, 0.915, 0.935, 0.955, 0.975, 0.995, 1.015, 1.035, 1.055, 1.075, 1.095, 1.115, 1.135, 1.155, 1.175, 1.195, 1.215, 1.235, 1.255, 1.275, 1.295, 1.315, 1.335, 1.355, 1.375, 1.395, 1.415, 1.435, 1.455, 1.475, 1.495, 1.515, 1.535, 1.555, 1.575, 1.595, 1.615, 1.635, 1.655, 1.675, 1.695, 1.715, 1.735, 1.755, 1.775, 1.795, 1.815, 1.835, 1.855, 1.875, 1.895, 1.915, 1.935, 1.955, 1.975, 1.995], + "Sample depth": [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100], + name="Year")) + +@patch('chron_stabilized.get_running_rbar') +@patch('chron_stabilized.chron') +@patch('chron_stabilized.mean_series_intercorrelation') +def test_chron_stabilized_valid_input(mock_mean_series_corr: Mock, mock_chron: Mock, mock_get_running_rbar: Mock): + mock_mean_series_corr.side_effect = mock_get_mean_series_intercorr_method + mock_chron.side_effect = mock_chron_method + mock_get_running_rbar.side_effect = mock_get_running_rbar_method + + input_df = pd.DataFrame(data={"SeriesA": [0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.13, 0.15, 0.17, 0.19, 0.21, 0.23, 0.25, 0.27, 0.29, 0.31, 0.33, 0.35, 0.37, 0.39, 0.41, 0.43, 0.45, 0.47, 0.49, 0.51, 0.53, 0.55, 0.57, 0.59, 0.61, 0.63, 0.65, 0.67, 0.69, 0.71, 0.73, 0.75, 0.77, 0.79, 0.81, 0.83, 0.85, 0.87, 0.89, 0.91, 0.93, 0.95, 0.97, 0.99, 1.01, 1.03, 1.05, 1.07, 1.09, 1.11, 1.13, 1.15, 1.17, 1.19, 1.21, 1.23, 1.25, 1.27, 1.29, 1.31, 1.33, 1.35, 1.37, 1.39, 1.41, 1.43, 1.45, 1.47, 1.49, 1.51, 1.53, 1.55, 1.57, 1.59, 1.61, 1.63, 1.65, 1.67, 1.69, 1.71, 1.73, 1.75, 1.77, 1.79, 1.81, 1.83, 1.85, 1.87, 1.89, 1.91, 1.93, 1.95, 1.97, 1.99], + "SeriesB": [0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2, 0.22, 0.24, 0.26, 0.28, 0.3, 0.32, 0.34, 0.36, 0.38, 0.4, 0.42, 0.44, 0.46, 0.48, 0.5, 0.52, 0.54, 0.56, 0.58, 0.6, 0.62, 0.64, 0.66, 0.68, 0.7, 0.72, 0.74, 0.76, 0.78, 0.8, 0.82, 0.84, 0.86, 0.88, 0.9, 0.92, 0.94, 0.96, 0.98, 1.0, 1.02, 1.04, 1.06, 1.08, 1.1, 1.12, 1.14, 1.16, 1.18, 1.2, 1.22, 1.24, 1.26, 1.28, 1.3, 1.32, 1.34, 1.36, 1.38, 1.4, 1.42, 1.44, 1.46, 1.48, 1.5, 1.52, 1.54, 1.56, 1.58, 1.6, 1.62, 1.64, 1.66, 1.68, 1.7, 1.72, 1.74, 1.76, 1.78, 1.8, 1.82, 1.84, 1.86, 1.88, 1.9, 1.92, 1.94, 1.96, 1.98, 2.0]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100], + name="Year")) + + result_chron = dpl.chron_stabilized(input_df, running_rbar=True) + expected_chron = pd.DataFrame(data={"Adjusted CRN": [1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005], + "Running rbar": [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], + "Sample depth": [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100], + name="Year")) + + pd.testing.assert_frame_equal(expected_chron, result_chron) + + # add test for specific args + mock_mean_series_corr.assert_called_once() + mock_chron.assert_called_once() + + mock_get_running_rbar.assert_called() + + +@patch('chron_stabilized.get_running_rbar') +@patch('chron_stabilized.chron') +@patch('chron_stabilized.mean_series_intercorrelation') +def test_chron_stabilized_wrong_input_type(mock_mean_series_corr: Mock, mock_chron: Mock, mock_get_running_rbar: Mock): + mock_mean_series_corr.side_effect = mock_get_mean_series_intercorr_method + mock_chron.side_effect = mock_chron_method + mock_get_running_rbar.side_effect = mock_get_running_rbar_method + + with pytest.raises(TypeError) as errorMsg: + dpl.chron_stabilized("data") + expected_msg = "Expected data input to be a pandas dataframe, not ." + assert expected_msg == str(errorMsg.value) + + mock_mean_series_corr.assert_not_called() + mock_chron.assert_not_called() + mock_get_running_rbar.assert_not_called() + + +@patch('chron_stabilized.get_running_rbar') +@patch('chron_stabilized.chron') +@patch('chron_stabilized.mean_series_intercorrelation') +def test_chron_stabilized_invalid_winlen(mock_mean_series_corr: Mock, mock_chron: Mock, mock_get_running_rbar: Mock): + mock_mean_series_corr.side_effect = mock_get_mean_series_intercorr_method + mock_chron.side_effect = mock_chron_method + mock_get_running_rbar.side_effect = mock_get_running_rbar_method + + input_df = pd.DataFrame(data={"SeriesA": [0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.13, 0.15, 0.17, 0.19, 0.21, 0.23, 0.25, 0.27, 0.29, 0.31, 0.33, 0.35, 0.37, 0.39, 0.41, 0.43, 0.45, 0.47, 0.49, 0.51, 0.53, 0.55, 0.57, 0.59, 0.61, 0.63, 0.65, 0.67, 0.69, 0.71, 0.73, 0.75, 0.77, 0.79, 0.81, 0.83, 0.85, 0.87, 0.89, 0.91, 0.93, 0.95, 0.97, 0.99, 1.01, 1.03, 1.05, 1.07, 1.09, 1.11, 1.13, 1.15, 1.17, 1.19, 1.21, 1.23, 1.25, 1.27, 1.29, 1.31, 1.33, 1.35, 1.37, 1.39, 1.41, 1.43, 1.45, 1.47, 1.49, 1.51, 1.53, 1.55, 1.57, 1.59, 1.61, 1.63, 1.65, 1.67, 1.69, 1.71, 1.73, 1.75, 1.77, 1.79, 1.81, 1.83, 1.85, 1.87, 1.89, 1.91, 1.93, 1.95, 1.97, 1.99], + "SeriesB": [0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2, 0.22, 0.24, 0.26, 0.28, 0.3, 0.32, 0.34, 0.36, 0.38, 0.4, 0.42, 0.44, 0.46, 0.48, 0.5, 0.52, 0.54, 0.56, 0.58, 0.6, 0.62, 0.64, 0.66, 0.68, 0.7, 0.72, 0.74, 0.76, 0.78, 0.8, 0.82, 0.84, 0.86, 0.88, 0.9, 0.92, 0.94, 0.96, 0.98, 1.0, 1.02, 1.04, 1.06, 1.08, 1.1, 1.12, 1.14, 1.16, 1.18, 1.2, 1.22, 1.24, 1.26, 1.28, 1.3, 1.32, 1.34, 1.36, 1.38, 1.4, 1.42, 1.44, 1.46, 1.48, 1.5, 1.52, 1.54, 1.56, 1.58, 1.6, 1.62, 1.64, 1.66, 1.68, 1.7, 1.72, 1.74, 1.76, 1.78, 1.8, 1.82, 1.84, 1.86, 1.88, 1.9, 1.92, 1.94, 1.96, 1.98, 2.0]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100], + name="Year")) + + with pytest.raises(ValueError) as errorMsg: + dpl.chron_stabilized(input_df, win_length=101) + + expected_msg = "Window length should not be greater than the number of rows in the dataset" + assert expected_msg == str(errorMsg.value) + + mock_mean_series_corr.assert_not_called() + mock_chron.assert_not_called() + mock_get_running_rbar.assert_not_called() + + +@patch('chron_stabilized.get_running_rbar') +@patch('chron_stabilized.chron') +@patch('chron_stabilized.mean_series_intercorrelation') +def test_chron_stabilized_invalid_min_seg_ratio(mock_mean_series_corr: Mock, mock_chron: Mock, mock_get_running_rbar: Mock): + mock_mean_series_corr.side_effect = mock_get_mean_series_intercorr_method + mock_chron.side_effect = mock_chron_method + mock_get_running_rbar.side_effect = mock_get_running_rbar_method + + + input_df = pd.DataFrame(data={"SeriesA": [0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.13, 0.15, 0.17, 0.19, 0.21, 0.23, 0.25, 0.27, 0.29, 0.31, 0.33, 0.35, 0.37, 0.39, 0.41, 0.43, 0.45, 0.47, 0.49, 0.51, 0.53, 0.55, 0.57, 0.59, 0.61, 0.63, 0.65, 0.67, 0.69, 0.71, 0.73, 0.75, 0.77, 0.79, 0.81, 0.83, 0.85, 0.87, 0.89, 0.91, 0.93, 0.95, 0.97, 0.99, 1.01, 1.03, 1.05, 1.07, 1.09, 1.11, 1.13, 1.15, 1.17, 1.19, 1.21, 1.23, 1.25, 1.27, 1.29, 1.31, 1.33, 1.35, 1.37, 1.39, 1.41, 1.43, 1.45, 1.47, 1.49, 1.51, 1.53, 1.55, 1.57, 1.59, 1.61, 1.63, 1.65, 1.67, 1.69, 1.71, 1.73, 1.75, 1.77, 1.79, 1.81, 1.83, 1.85, 1.87, 1.89, 1.91, 1.93, 1.95, 1.97, 1.99], + "SeriesB": [0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2, 0.22, 0.24, 0.26, 0.28, 0.3, 0.32, 0.34, 0.36, 0.38, 0.4, 0.42, 0.44, 0.46, 0.48, 0.5, 0.52, 0.54, 0.56, 0.58, 0.6, 0.62, 0.64, 0.66, 0.68, 0.7, 0.72, 0.74, 0.76, 0.78, 0.8, 0.82, 0.84, 0.86, 0.88, 0.9, 0.92, 0.94, 0.96, 0.98, 1.0, 1.02, 1.04, 1.06, 1.08, 1.1, 1.12, 1.14, 1.16, 1.18, 1.2, 1.22, 1.24, 1.26, 1.28, 1.3, 1.32, 1.34, 1.36, 1.38, 1.4, 1.42, 1.44, 1.46, 1.48, 1.5, 1.52, 1.54, 1.56, 1.58, 1.6, 1.62, 1.64, 1.66, 1.68, 1.7, 1.72, 1.74, 1.76, 1.78, 1.8, 1.82, 1.84, 1.86, 1.88, 1.9, 1.92, 1.94, 1.96, 1.98, 2.0]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100], + name="Year")) + + with pytest.raises(ValueError) as errorMsg: + dpl.chron_stabilized(input_df, min_seg_ratio=1.1) + + expected_msg = "min_seg_ratio cannot be <= 0 or > 1" + assert expected_msg == str(errorMsg.value) + + mock_mean_series_corr.assert_not_called() + mock_chron.assert_not_called() + mock_get_running_rbar.assert_not_called() + + +@patch('chron_stabilized.get_running_rbar') +@patch('chron_stabilized.chron') +@patch('chron_stabilized.mean_series_intercorrelation') +def test_chron_stabilized_weird_winlen(mock_mean_series_corr: Mock, mock_chron: Mock, mock_get_running_rbar: Mock): + mock_mean_series_corr.side_effect = mock_get_mean_series_intercorr_method + mock_chron.side_effect = mock_chron_method + mock_get_running_rbar.side_effect = mock_get_running_rbar_method + + input_df = pd.DataFrame(data={"SeriesA": [0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.13, 0.15, 0.17, 0.19, 0.21, 0.23, 0.25, 0.27, 0.29, 0.31, 0.33, 0.35, 0.37, 0.39, 0.41, 0.43, 0.45, 0.47, 0.49, 0.51, 0.53, 0.55, 0.57, 0.59, 0.61, 0.63, 0.65, 0.67, 0.69, 0.71, 0.73, 0.75, 0.77, 0.79, 0.81, 0.83, 0.85, 0.87, 0.89, 0.91, 0.93, 0.95, 0.97, 0.99, 1.01, 1.03, 1.05, 1.07, 1.09, 1.11, 1.13, 1.15, 1.17, 1.19, 1.21, 1.23, 1.25, 1.27, 1.29, 1.31, 1.33, 1.35, 1.37, 1.39, 1.41, 1.43, 1.45, 1.47, 1.49, 1.51, 1.53, 1.55, 1.57, 1.59, 1.61, 1.63, 1.65, 1.67, 1.69, 1.71, 1.73, 1.75, 1.77, 1.79, 1.81, 1.83, 1.85, 1.87, 1.89, 1.91, 1.93, 1.95, 1.97, 1.99], + "SeriesB": [0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2, 0.22, 0.24, 0.26, 0.28, 0.3, 0.32, 0.34, 0.36, 0.38, 0.4, 0.42, 0.44, 0.46, 0.48, 0.5, 0.52, 0.54, 0.56, 0.58, 0.6, 0.62, 0.64, 0.66, 0.68, 0.7, 0.72, 0.74, 0.76, 0.78, 0.8, 0.82, 0.84, 0.86, 0.88, 0.9, 0.92, 0.94, 0.96, 0.98, 1.0, 1.02, 1.04, 1.06, 1.08, 1.1, 1.12, 1.14, 1.16, 1.18, 1.2, 1.22, 1.24, 1.26, 1.28, 1.3, 1.32, 1.34, 1.36, 1.38, 1.4, 1.42, 1.44, 1.46, 1.48, 1.5, 1.52, 1.54, 1.56, 1.58, 1.6, 1.62, 1.64, 1.66, 1.68, 1.7, 1.72, 1.74, 1.76, 1.78, 1.8, 1.82, 1.84, 1.86, 1.88, 1.9, 1.92, 1.94, 1.96, 1.98, 2.0]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100], + name="Year")) + + expected_msg = "We recommend using a window length greater than 30%% but less than 50%% of the chronology length\n" + with pytest.warns(UserWarning, match=expected_msg): + result_df = dpl.chron_stabilized(input_df, win_length=100) diff --git a/src/unittests/test_detrend.py b/src/unittests/test_detrend.py new file mode 100644 index 0000000..4370d14 --- /dev/null +++ b/src/unittests/test_detrend.py @@ -0,0 +1,240 @@ +import dplpy as dpl +import pandas as pd +import pytest +from detrend import residual, difference +from unittest.mock import patch, Mock + +def mock_spline_method(x, inp_arr, period): + return inp_arr + +def mock_negex_method(x, inp_arr): + return inp_arr * 0.5 + +def mock_hugershoff_method(x, inp_arr): + return inp_arr * 0.25 + +def mock_linear_method(x, inp_arr): + return inp_arr * 4 + +def mock_horizontal_method(x, inp_arr): + return inp_arr * 2 + +def test_detrend_with_invalid_input(): + with pytest.raises(TypeError) as errorMsg: + dpl.detrend("input_df", fit="spline", plot=False) + invalid_input_msg = "argument should be either pandas dataframe or pandas series." + assert invalid_input_msg == str(errorMsg.value) + +@patch('curvefit.horizontal') +@patch('curvefit.linear') +@patch('curvefit.hugershoff') +@patch('curvefit.negex') +@patch('detrend.spline') +def test_detrend_with_spline(mock_spline: Mock, mock_negex: Mock, mock_hugershoff: Mock, mock_linear: Mock, mock_horizontal: Mock): + mock_spline.side_effect = mock_spline_method + mock_negex.side_effect = mock_negex_method + mock_hugershoff.side_effect = mock_hugershoff_method + mock_linear.side_effect = mock_linear_method + mock_horizontal.side_effect = mock_horizontal_method + + expected_df = pd.DataFrame(data={"SeriesA": [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], + "SeriesB": [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + + input_df = pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5], + "SeriesB": [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + result_df = dpl.detrend(input_df, fit="spline", plot=False) + pd.testing.assert_frame_equal(expected_df, result_df) + + mock_spline.assert_called() + mock_negex.assert_not_called() + mock_hugershoff.assert_not_called() + mock_linear.assert_not_called() + mock_horizontal.assert_not_called() + +@patch('curvefit.horizontal') +@patch('curvefit.linear') +@patch('curvefit.hugershoff') +@patch('curvefit.negex') +@patch('detrend.spline') +def test_detrend_with_modnegex(mock_spline: Mock, mock_negex: Mock, mock_hugershoff: Mock, mock_linear: Mock, mock_horizontal: Mock): + mock_spline.side_effect = mock_spline_method + mock_negex.side_effect = mock_negex_method + mock_hugershoff.side_effect = mock_hugershoff_method + mock_linear.side_effect = mock_linear_method + mock_horizontal.side_effect = mock_horizontal_method + + expected_df = pd.DataFrame(data={"SeriesA": [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0], + "SeriesB": [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + + input_df = pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5], + "SeriesB": [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + result_df = dpl.detrend(input_df, fit="ModNegEx", plot=False) + pd.testing.assert_frame_equal(expected_df, result_df) + + mock_spline.assert_not_called() + mock_negex.assert_called() + mock_hugershoff.assert_not_called() + mock_linear.assert_not_called() + mock_horizontal.assert_not_called() + + +@patch('curvefit.horizontal') +@patch('curvefit.linear') +@patch('curvefit.hugershoff') +@patch('curvefit.negex') +@patch('detrend.spline') +def test_detrend_with_hugershoff(mock_spline: Mock, mock_negex: Mock, mock_hugershoff: Mock, mock_linear: Mock, mock_horizontal: Mock): + mock_spline.side_effect = mock_spline_method + mock_negex.side_effect = mock_negex_method + mock_hugershoff.side_effect = mock_hugershoff_method + mock_linear.side_effect = mock_linear_method + mock_horizontal.side_effect = mock_horizontal_method + + expected_df = pd.DataFrame(data={"SeriesA": [4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0], + "SeriesB": [4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + + input_df = pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5], + "SeriesB": [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + result_df = dpl.detrend(input_df, fit="Hugershoff", plot=False) + pd.testing.assert_frame_equal(expected_df, result_df) + + mock_spline.assert_not_called() + mock_negex.assert_not_called() + mock_hugershoff.assert_called() + mock_linear.assert_not_called() + mock_horizontal.assert_not_called() + + +@patch('curvefit.horizontal') +@patch('curvefit.linear') +@patch('curvefit.hugershoff') +@patch('curvefit.negex') +@patch('detrend.spline') +def test_detrend_with_linear(mock_spline: Mock, mock_negex: Mock, mock_hugershoff: Mock, mock_linear: Mock, mock_horizontal: Mock): + mock_spline.side_effect = mock_spline_method + mock_negex.side_effect = mock_negex_method + mock_hugershoff.side_effect = mock_hugershoff_method + mock_linear.side_effect = mock_linear_method + mock_horizontal.side_effect = mock_horizontal_method + + expected_df = pd.DataFrame(data={"SeriesA": [0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25], + "SeriesB": [0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + + input_df = pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5], + "SeriesB": [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + result_df = dpl.detrend(input_df, fit="linear", plot=False) + pd.testing.assert_frame_equal(expected_df, result_df) + + mock_spline.assert_not_called() + mock_negex.assert_not_called() + mock_hugershoff.assert_not_called() + mock_linear.assert_called() + mock_horizontal.assert_not_called() + +@patch('curvefit.horizontal') +@patch('curvefit.linear') +@patch('curvefit.hugershoff') +@patch('curvefit.negex') +@patch('detrend.spline') +def test_detrend_with_horizontal(mock_spline: Mock, mock_negex: Mock, mock_hugershoff: Mock, mock_linear: Mock, mock_horizontal: Mock): + mock_spline.side_effect = mock_spline_method + mock_negex.side_effect = mock_negex_method + mock_hugershoff.side_effect = mock_hugershoff_method + mock_linear.side_effect = mock_linear_method + mock_horizontal.side_effect = mock_horizontal_method + + expected_df = pd.DataFrame(data={"SeriesA": [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], + "SeriesB": [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + + input_df = pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5], + "SeriesB": [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + result_df = dpl.detrend(input_df, fit="horizontal", plot=False) + pd.testing.assert_frame_equal(expected_df, result_df) + + mock_spline.assert_not_called() + mock_negex.assert_not_called() + mock_hugershoff.assert_not_called() + mock_linear.assert_not_called() + mock_horizontal.assert_called() + + +@patch('detrend.difference') +@patch('detrend.residual') +@patch('detrend.spline') +def test_detrend_residual(mock_spline: Mock, mock_res: Mock, mock_diff: Mock): + mock_spline.side_effect = mock_spline_method + mock_res.side_effect = residual + mock_diff.side_effect = difference + + expected_df = pd.DataFrame(data={"SeriesA": [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], + "SeriesB": [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + + input_df = pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5], + "SeriesB": [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + result_df = dpl.detrend(input_df, method='residual', plot=False) + pd.testing.assert_frame_equal(expected_df, result_df) + mock_res.assert_called() + mock_diff.assert_not_called() + + +@patch('detrend.difference') +@patch('detrend.residual') +@patch('detrend.spline') +def test_detrend_difference(mock_spline: Mock, mock_res: Mock, mock_diff: Mock): + mock_spline.side_effect = mock_spline_method + mock_res.side_effect = residual + mock_diff.side_effect = difference + + expected_df = pd.DataFrame(data={"SeriesA": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], + "SeriesB": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + + input_df = pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5], + "SeriesB": [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + result_df = dpl.detrend(input_df, method='difference', plot=False) + pd.testing.assert_frame_equal(expected_df, result_df) + mock_res.assert_not_called() + mock_diff.assert_called() + + +# add assertion to make sure none of the curvefit methods are called +def test_detrend_invalid_fit(): + input_df = pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5], + "SeriesB": [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + with pytest.raises(ValueError) as errorMsg: + dpl.detrend(input_df, fit="vertical", plot=False) + invalid_fit_msg = "unsupported keyword for curve-fit type. See documentation for more info." + assert invalid_fit_msg == str(errorMsg.value) + + +def test_detrend_invalid_method(): + pass \ No newline at end of file diff --git a/src/unittests/test_readers.py b/src/unittests/test_readers.py new file mode 100644 index 0000000..6b0c77c --- /dev/null +++ b/src/unittests/test_readers.py @@ -0,0 +1,144 @@ +import dplpy as dpl +import pandas as pd +import pytest +import io +from unittest.mock import patch, Mock + +''' + Test that when given an incorrect file extension, program raises + an error with expected message. +''' +def test_wrong_file_extension(): + with pytest.raises(ValueError) as errorMsg: + dpl.readers("filename.txt") + + wrong_ext_msg = """ + +Unable to read file, please check that you're using a supported type +Accepted file types are .csv and .rwl + +Example usages: +>>> import dplpy as dpl +>>> data = dpl.readers('../tests/data/csv/filename.csv') +>>> data = dpl.readers('../tests/data/rwl/filename.rwl'), header=True +""" + assert wrong_ext_msg == str(errorMsg.value) + + +''' + Mocks output of pd.read_csv to return appropriate dataframe only if the + parameter used is the expected file name. +''' +def mock_read_csv_output(file_path, skiprows=0): + if file_path == "correct_file.csv": + return pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7], + "SeriesB": [0.2, 0.4, 0.6, 0.8], + "Year": [1, 2, 3, 4]}) + return None + +''' + Mocks output of builtins.open to return an io.TextIOWrapper object that contains the lines + that will be read for processing +''' +def mock_open_output(file_path, open_type): + # Verify that file is opened in read mode and read mode only + if open_type != "r": + wrapper = io.TextIOWrapper( + io.UnsupportedOperation(), + encoding='cp1252', + line_buffering=True, + ) + + wrapper.mode = open_type + return wrapper + + output = io.BytesIO() + wrapper = io.TextIOWrapper( + output, + encoding='cp1252', + line_buffering=True, + ) + + if file_path == "valid_rwl_correct_format.rwl": + wrapper.write("SeriesA 1 10 30 50 70 999\n") + wrapper.write("SeriesB 1 200 400 600 800 -9999\n") + wrapper.seek(0,0) + elif file_path == "valid_rwl_with_headers.rwl": + wrapper.write("Header line 1\n") + wrapper.write("Header line 2\n") + wrapper.write("Header line 3\n") + wrapper.write("SeriesA 1 10 30 50 70 999\n") + wrapper.write("SeriesB 1 200 400 600 800 -9999\n") + wrapper.seek(0,0) + else: + raise OSError("File not found") + + wrapper.mode = open_type + + return wrapper + +''' + Given input file.csv, test that readers produces the expected dataframe. +''' +@patch('pandas.read_csv') +def test_correct_csv_format(mock_read_csv: Mock): + mock_read_csv.side_effect = mock_read_csv_output + results = dpl.readers("correct_file.csv") + mock_read_csv.assert_called_once_with("correct_file.csv", skiprows=0) + + expected_df = pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7], + "SeriesB": [0.2, 0.4, 0.6, 0.8]}, + index=pd.Index(data=[1, 2, 3, 4], + name="Year") + ) + pd.testing.assert_frame_equal(results, expected_df) + +''' + Given input file valid_rwl_correct_format.rwl, test that readers produces + the expected dataframe. +''' +@patch('builtins.open') +def test_correct_rwl_format(mock_open: Mock): + mock_open.side_effect = mock_open_output + + results = dpl.readers("valid_rwl_correct_format.rwl") + mock_open.assert_called_once_with("valid_rwl_correct_format.rwl", "r") + + expected_df = pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7], + "SeriesB": [0.2, 0.4, 0.6, 0.8]}, + index=pd.Index(data=[1, 2, 3, 4], + name="Year")) + pd.testing.assert_frame_equal(results, expected_df) + +''' + Given input valid_rwl_correct_format.rwl, and skip_lines=1, test that readers + produces the expected dataframe. +''' +@patch('builtins.open') +def test_correct_rwl_skip_lines(mock_open: Mock): + mock_open.side_effect = mock_open_output + + results = dpl.readers("valid_rwl_correct_format.rwl", skip_lines=1) + mock_open.assert_called_once_with("valid_rwl_correct_format.rwl", "r") + + expected_df = pd.DataFrame(data={"SeriesB": [0.2, 0.4, 0.6, 0.8]}, + index=pd.Index(data=[1, 2, 3, 4], + name="Year")) + pd.testing.assert_frame_equal(results, expected_df) + +''' + Given input valid_rwl_correct_format.rwl, and header=True, test that readers + correctly skips header lines to produce the expected dataframe. +''' +@patch('builtins.open') +def test_correct_rwl_with_headers(mock_open: Mock): + mock_open.side_effect = mock_open_output + + results = dpl.readers("valid_rwl_with_headers.rwl", header=True) + mock_open.assert_called_once_with("valid_rwl_with_headers.rwl", "r") + + expected_df = pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7], + "SeriesB": [0.2, 0.4, 0.6, 0.8]}, + index=pd.Index(data=[1, 2, 3, 4], + name="Year")) + pd.testing.assert_frame_equal(results, expected_df) \ No newline at end of file diff --git a/src/unittests/test_series_corr.py b/src/unittests/test_series_corr.py new file mode 100644 index 0000000..6141080 --- /dev/null +++ b/src/unittests/test_series_corr.py @@ -0,0 +1,35 @@ +import dplpy as dpl +import pandas as pd +import pytest +import io +from unittest.mock import patch, Mock + +def test_series_corr_wrong_data_type(): + with pytest.raises(TypeError) as errorMsg: + dpl.series_corr("input_df", "series_name") + expected_errorMsg = "Expected dataframe input, got instead." + assert expected_errorMsg == str(errorMsg.value) + + +def test_series_corr_wrong_series_name_type(): + input_df = pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5], + "SeriesB": [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + with pytest.raises(TypeError) as errorMsg: + dpl.series_corr(input_df, 3) + expected_errorMsg = "Expected string input as series name, got instead." + assert expected_errorMsg == str(errorMsg.value) + + +def test_series_corr_series_name_not_in_df(): + input_df = pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5], + "SeriesB": [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + with pytest.raises(ValueError) as errorMsg: + dpl.series_corr(input_df, "SeriesC") + expected_errorMsg = "Series named SeriesC not found in provided dataframe." + assert expected_errorMsg == str(errorMsg.value) + +# TODO: Add tests that validates plotted data diff --git a/src/unittests/test_stats.py b/src/unittests/test_stats.py new file mode 100644 index 0000000..3839e33 --- /dev/null +++ b/src/unittests/test_stats.py @@ -0,0 +1,72 @@ +import dplpy as dpl +import pandas as pd +from unittest.mock import patch, Mock +from statsmodels.tsa.ar_model import AutoReg, AutoRegResultsWrapper + +# Data being read: +# SeriesA 1 10 30 50 70 90 110 130 150 999 +# SeriesB 1 20 40 60 80 100 120 140 160 999 + +def mock_auto_reg_fit(self): + return Mock(**{"params":[1.0, 1.0]}) + +def mock_readers_output(file_name): + if file_name == "valid_file": + return pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5], + "SeriesB": [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + + +# Need to mock autoreg +# Need to mock output of readers + +@patch('stats.readers') +@patch.object(AutoReg, 'fit', new=mock_auto_reg_fit) +def test_stats_with_inp_string(mock_readers: Mock): + mock_readers.side_effect = mock_readers_output + + expected_df = pd.DataFrame(data={"series": ["SeriesA", "SeriesB"], + "first": [1, 1], + "last": [8, 8], + "year": [8, 8], + "mean": [0.8, 0.9], + "median": [0.8, 0.9], + "stdev": [0.49, 0.49], + "skew": [0.0, 0.0], + "gini": [0.328, 0.292], + "ar1": [1.0, 1.0] + }, + index=[1, 2]) + results = dpl.stats("valid_file") + + mock_readers.assert_called_once_with("valid_file") + pd.testing.assert_frame_equal(results, expected_df) + + +@patch('stats.readers') +@patch.object(AutoReg, 'fit', new=mock_auto_reg_fit) +def test_stats_with_inp_df(mock_readers: Mock): + mock_readers.side_effect = mock_readers_output + + expected_df = pd.DataFrame(data={"series": ["SeriesA", "SeriesB"], + "first": [1, 1], + "last": [8, 8], + "year": [8, 8], + "mean": [0.8, 0.9], + "median": [0.8, 0.9], + "stdev": [0.49, 0.49], + "skew": [0.0, 0.0], + "gini": [0.328, 0.292], + "ar1": [1.0, 1.0] + }, + index=[1, 2]) + + input_df = pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5], + "SeriesB": [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + + results = dpl.stats(input_df) + mock_readers.assert_not_called() + pd.testing.assert_frame_equal(results, expected_df) diff --git a/src/unittests/test_summary.py b/src/unittests/test_summary.py new file mode 100644 index 0000000..6f70f51 --- /dev/null +++ b/src/unittests/test_summary.py @@ -0,0 +1,63 @@ +from unittest.mock import patch, Mock +import dplpy as dpl +import pytest +import pandas as pd + +def mock_readers_output(file_name): + if file_name == "valid_file": + return pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5], + "SeriesB": [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + +def mock_dataframe_summary(self): + return pd.DataFrame(data={"Col":[1, 2, 3, 4, 5, 6, 7, 8]}, + index=pd.Index(["count", "mean", "std", "min", "25%", "50%", "75%", "max"])) + +@patch('summary.readers') +@patch.object(pd.DataFrame, 'describe', new=mock_dataframe_summary) +def test_summary_given_filename(mock_readers: Mock): + mock_readers.side_effect = mock_readers_output + results = dpl.summary("valid_file") + + expected_df = pd.DataFrame(data={"Col":[1, 2, 3, 4, 5, 6, 7, 8]}, + index=pd.Index(["count", "mean", "std", "min", "25%", "50%", "75%", "max"])) + + mock_readers.assert_called_once_with("valid_file") + pd.testing.assert_frame_equal(results, expected_df) + +@patch('summary.readers') +@patch.object(pd.DataFrame, 'describe', new=mock_dataframe_summary) +def test_summary_given_dataframe(mock_readers: Mock): + mock_readers.side_effect = mock_readers_output + + input_df = pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5], + "SeriesB": [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]}, + index=pd.Index(data=[1, 2, 3, 4, 5, 6, 7, 8], + name="Year")) + results = dpl.summary(input_df) + + expected_df = pd.DataFrame(data={"Col":[1, 2, 3, 4, 5, 6, 7, 8]}, + index=pd.Index(["count", "mean", "std", "min", "25%", "50%", "75%", "max"])) + mock_readers.assert_not_called() + pd.testing.assert_frame_equal(results, expected_df) + +def test_summary_given_wrong_type(): + with pytest.raises(TypeError) as errorMsg: + dpl.summary(1) + + expected_err_msg = """ +Unable to generate summary report. Input must be string path to file to be read +or Dataframe object. + +Note: for file pathname inputs, only CSV and RWL file formats are accepted + +Example usages: + +>>> import dplpy as dpl +>>> data = dpl.readers('../tests/data/csv/file.csv') +>>> dpl.summary(data) +>>> dpl.summary('../tests/data/csv/file.csv') + +""" + assert expected_err_msg == str(errorMsg.value) \ No newline at end of file diff --git a/src/unittests/test_tbrm.py b/src/unittests/test_tbrm.py new file mode 100644 index 0000000..177db20 --- /dev/null +++ b/src/unittests/test_tbrm.py @@ -0,0 +1,8 @@ +from src.tbrm import tbrm +import pandas as pd +import pytest +import io +from unittest.mock import patch, Mock + +def test_tbrm(): + assert tbrm([-72, 2, 2, 2]) == 2 \ No newline at end of file diff --git a/src/unittests/test_writers.py b/src/unittests/test_writers.py new file mode 100644 index 0000000..c088de4 --- /dev/null +++ b/src/unittests/test_writers.py @@ -0,0 +1,81 @@ +import dplpy as dpl +import pandas as pd +import pytest +import io +from unittest.mock import patch, Mock + +open_wrapper = io.TextIOWrapper( + io.BytesIO(), + encoding='cp1252', + line_buffering=True, +) +open_wrapper.mode = "w" + +def test_write_invalid_type_data(): + input_df = pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7], + "SeriesB": [0.2, 0.4, 0.6, 0.8], + "Year": [1, 2, 3, 4]}) + + with pytest.raises(TypeError) as errorMsg: + dpl.write(input_df['SeriesA'], "label", "ext") + expected_msg = "Expected input data to be pandas dataframe, not " + assert expected_msg == str(errorMsg.value) + + +def test_write_invalid_type_label(): + input_df = pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7], + "SeriesB": [0.2, 0.4, 0.6, 0.8], + "Year": [1, 2, 3, 4]}) + + with pytest.raises(TypeError) as errorMsg: + dpl.write(input_df, 1, "ext") + expected_msg = "Expected label to be of type str, not " + assert expected_msg == str(errorMsg.value) + + +def test_write_invalid_type_format(): + input_df = pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7], + "SeriesB": [0.2, 0.4, 0.6, 0.8], + "Year": [1, 2, 3, 4]}) + + with pytest.raises(TypeError) as errorMsg: + dpl.write(input_df, "label", 1) + expected_msg = "Expected format to be of type str, not " + assert expected_msg == str(errorMsg.value) + + +def test_write_csv(tmpdir): + input_df = pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7], + "SeriesB": [0.2, 0.4, 0.6, 0.8]}, + index=pd.Index(data=[1, 2, 3, 4], name="Year")) + + file = tmpdir.join('output.csv') + + dpl.write(input_df, file.strpath[:-4], "csv") + + expected_csv_lines = ['"Year","SeriesA","SeriesB"\n', + '1,0.1,0.2\n', + '2,0.3,0.4\n', + '3,0.5,0.6\n', + '4,0.7,0.8\n'] + + assert expected_csv_lines == file.readlines() + + + +def test_write_rwl(tmpdir): + input_df = pd.DataFrame(data={"SeriesA": [0.1, 0.3, 0.5, 0.7], + "SeriesB": [0.2, 0.4, 0.6, 0.8]}, + index=pd.Index(data=[1, 2, 3, 4], name="Year")) + + file = tmpdir.join('output.rwl') + + dpl.write(input_df, file.strpath[:-4], "rwl") + + expected_rwl_lines = ['SeriesA\t 1\t0100\t0300\t0500\t0700\t-9999\n', + 'SeriesB\t 1\t0200\t0400\t0600\t0800\t-9999\n'] + + assert expected_rwl_lines == file.readlines() + + +#TODO: Add tests for crn and txt \ No newline at end of file diff --git a/src/writers.py b/src/writers.py index 872898e..a5de6db 100644 --- a/src/writers.py +++ b/src/writers.py @@ -48,14 +48,23 @@ from detrend import detrend, detrend_series import os -def write(data, label, format): - print("Entered function") - """ +""" This function converts common ring width data files from one type to another It also allows you to append files that are missing metadata and write them back out - Accepted file types are CSV, RWL, TXT - """ + Accepted file types are CSV, RWL, CRN (in dev) and TXT (in dev) +""" +def write(data, label, format): + + if not isinstance(data, pd.DataFrame): + raise TypeError("Expected input data to be pandas dataframe, not " + str(type(data))) + + if not isinstance(label, str): + raise TypeError("Expected label to be of type str, not " + str(type(label))) + + if not isinstance(format, str): + raise TypeError("Expected format to be of type str, not " + str(type(format))) + filename = label + "." + format print("Writing to " + filename) output = open(filename, "w") @@ -67,6 +76,12 @@ def write(data, label, format): write_crn(data, label, output) elif format == "txt": write_txt(data, output) +<<<<<<< HEAD + else: + output.close() + raise ValueError("Invalid file format given as parameter. Accepted file formats are csv, rwl, crn and txt") +======= +>>>>>>> main output.close() print("Done.") @@ -97,14 +112,22 @@ def write_rwl(data, file): file.write(series.rjust(6) + "\t") file.write(str(i).rjust(4) + "\t") while i <= end: +<<<<<<< HEAD + file.write((f"{data[series][i]:.3f}").lstrip('0').replace('.', '').rjust(4, '0') + "\t") +======= file.write((f"{data[series][i]:.2f}").lstrip('0').replace('.', '').rjust(3) + "\t") +>>>>>>> main i += 1 if i % 10 == 0: file.write("\n") file.write(series.rjust(6) + "\t") file.write(str(i).rjust(4) + "\t") +<<<<<<< HEAD + file.write(str(-9999)) +======= file.write(str(999)) +>>>>>>> main file.write("\n") diff --git a/src/xdate.py b/src/xdate.py index 24206a1..f8949c8 100644 --- a/src/xdate.py +++ b/src/xdate.py @@ -47,6 +47,14 @@ # Main crossdating function, returns a dataframe of each series' segment correlations compared to the same # segments in the master chronology. def xdate(data, prewhiten=True, corr="Spearman", slide_period=50, bin_floor=100, p_val=0.05, show_flags=True): +<<<<<<< HEAD + # Check types of inputs + if not isinstance(data, pd.DataFrame): + errorMsg = "Expected dataframe input, got " + str(type(data)) + " instead." + raise TypeError(errorMsg) + +======= +>>>>>>> main # Identify first and last valid indexes, for separating into bins. bins, bin_data = get_bins(data.first_valid_index(), data.last_valid_index(), bin_floor, slide_period) @@ -57,18 +65,36 @@ def xdate(data, prewhiten=True, corr="Spearman", slide_period=50, bin_floor=100, raise rwi_data # drop nans, prewhiten series if necessary +<<<<<<< HEAD + df_start = pd.DataFrame(index=pd.Index(data.index)) + to_concat = [df_start] +======= ready_series = {} +>>>>>>> main for series in rwi_data: nullremoved_data = rwi_data[series].dropna() if prewhiten is True: res = ar_func_series(nullremoved_data, get_ar_lag(nullremoved_data)) offset = len(nullremoved_data) - len(res) +<<<<<<< HEAD + to_concat.append(pd.Series(data=res, name=series, index=nullremoved_data.index.to_numpy()[offset:])) + else: + to_concat.append(nullremoved_data) + + ready_series = pd.concat(to_concat, axis=1) + + ready_series_copy = ready_series.copy() + ready_series = ready_series.rename_axis(data.index.name) + print(ready_series) + +======= ready_series[series] = pd.Series(data=res, name=series, index=nullremoved_data.index.to_numpy()[offset:]) else: ready_series[series] = nullremoved_data ready_series_copy = ready_series.copy() +>>>>>>> main series_names = [] series_corr = [] @@ -122,7 +148,11 @@ def xdate_plot(data): series_by_start_date = data_stats.sort_values(by='first')['series'] # Change the style of plot +<<<<<<< HEAD + plt.style.use('seaborn-v0_8-darkgrid') +======= plt.style.use('seaborn-darkgrid') +>>>>>>> main years = data.index.to_numpy() diff --git a/tests/data/.DS_Store b/tests/data/.DS_Store index 46b488fe0e766417b1ce71ae546a5a6208314752..a2051588df352b2b32b72300435963c83d756dc1 100644 GIT binary patch delta 437 zcmZoMXfc=|#>B)qu~3YagMop8V`8C*G!u{k0&GCc$iN`Lke{5Clb;0S32ZD}$*2wz zXJ$xdC}t@0%t6QjMIC`y?>`tYFig~utY>B@Vkl?GK~uIKSsBy7CR*tMT2-D`T03XFm_^6SY~Q@ynu*v zeqKppW?pK25m-lNN-9uIOn7EqN`ARheraAxF<5gjM1q5pgEL-0qPp71%s@xM*u=b6 zN1@u%2*@@uHmj}Wcq3 z1BF1!nHfqLDi}&o!-7#3C<6_$jfE3gCL4&bY~}{~6&NWS3%@f@<`+?91x1L$WJ3|@ J%>g1?m;te0aL@n% delta 114 zcmZoMXfc=|#>AjHu~68Yk%57MnIV~>n4zpJxF|0tKQA390up6lU;>j69#BMp0U^J+ sk-3d!^8{vj=FRLJ{2V~TfFj?SC-aLaa)LA`fV56F;ZfckBeH@S0J1q1FaQ7m diff --git a/tests/data/rwl/ca533.rwl b/tests/data/rwl/ca533.rwl index 2c831b2..7d558b7 100644 --- a/tests/data/rwl/ca533.rwl +++ b/tests/data/rwl/ca533.rwl @@ -1,2362 +1,2362 @@ -CAM011 1530 104 89 103 70 69 115 101 109 77 136 -CAM011 1540 102 61 56 49 52 77 55 44 52 82 -CAM011 1550 91 64 82 74 86 102 95 63 68 78 -CAM011 1560 75 78 87 83 85 82 77 90 115 110 -CAM011 1570 107 68 99 62 89 92 113 55 41 48 -CAM011 1580 35 46 69 98 66 63 47 74 81 81 -CAM011 1590 43 59 54 70 87 51 84 84 93 82 -CAM011 1600 64 64 41 88 72 56 39 42 60 56 -CAM011 1610 60 69 61 50 104 48 85 93 16 54 -CAM011 1620 46 84 47 68 41 55 48 57 64 67 -CAM011 1630 64 32 55 67 75 50 59 83 55 49 -CAM011 1640 57 34 23 43 51 38 35 31 54 70 -CAM011 1650 47 50 24 40 39 23 45 44 56 66 -CAM011 1660 85 54 58 55 65 81 70 41 43 20 -CAM011 1670 18 43 37 50 37 24 33 13 51 64 -CAM011 1680 60 13 43 60 76 53 38 50 61 46 -CAM011 1690 18 43 59 50 56 67 32 34 35 27 -CAM011 1700 46 48 30 13 28 19 38 38 15 27 -CAM011 1710 37 20 55 51 33 41 34 17 28 30 -CAM011 1720 44 46 26 11 20 25 29 37 41 26 -CAM011 1730 34 21 17 22 20 12 19 36 24 30 -CAM011 1740 27 36 22 31 36 16 35 27 33 37 -CAM011 1750 37 42 15 0 18 21 16 20 28 27 -CAM011 1760 44 40 36 28 23 42 34 32 7 23 -CAM011 1770 23 45 32 52 22 33 44 34 46 37 -CAM011 1780 29 8 0 30 12 26 19 21 19 16 -CAM011 1790 30 29 20 21 34 28 42 38 27 48 -CAM011 1800 44 49 47 44 46 40 39 21 28 37 -CAM011 1810 28 24 26 26 33 28 22 47 16 31 -CAM011 1820 30 34 29 27 28 32 52 52 35 44 -CAM011 1830 25 51 11 35 42 30 17 15 20 14 -CAM011 1840 30 26 23 30 24 26 38 28 47 39 -CAM011 1850 40 42 60 51 57 48 29 17 10 31 -CAM011 1860 38 27 33 26 32 22 42 30 14 22 -CAM011 1870 35 43 42 42 22 22 13 35 38 23 -CAM011 1880 34 22 32 41 30 21 37 36 33 51 -CAM011 1890 28 31 41 32 28 35 33 15 45 9 -CAM011 1900 45 58 42 41 54 44 41 36 49 37 -CAM011 1910 25 38 37 32 22 46 40 38 38 56 -CAM011 1920 41 50 43 52 47 59 50 49 61 11 -CAM011 1930 33 25 28 44 34 22 8 23 36 26 -CAM011 1940 39 35 35 40 29 49 43 52 49 40 -CAM011 1950 43 57 29 59 37 47 34 58 48 49 -CAM011 1960 30 9 24 43 36 30 29 31 30 14 -CAM011 1970 32 37 32 35 32 32 46 39 49 40 -CAM011 1980 45 48 47 68 999 -CAM021 1433 68 40 81 77 52 47 46 -CAM021 1440 70 63 37 55 45 40 34 34 25 45 -CAM021 1450 26 38 39 46 43 32 38 35 26 19 -CAM021 1460 15 25 22 33 35 28 25 32 29 44 -CAM021 1470 48 35 54 43 52 29 58 64 68 59 -CAM021 1480 54 72 75 69 52 75 73 44 59 55 -CAM021 1490 70 69 45 64 70 80 44 45 40 65 -CAM021 1500 58 77 63 80 94 86 56 61 46 85 -CAM021 1510 92 100 111 98 105 79 79 104 88 91 -CAM021 1520 95 106 71 68 73 91 85 100 81 94 -CAM021 1530 102 76 67 42 32 100 78 77 70 76 -CAM021 1540 49 40 47 53 41 47 43 28 40 60 -CAM021 1550 58 49 67 55 66 52 56 57 46 54 -CAM021 1560 63 55 70 65 66 65 52 70 84 82 -CAM021 1570 66 47 51 44 86 62 61 41 37 34 -CAM021 1580 22 34 38 45 45 46 31 39 54 46 -CAM021 1590 36 32 34 63 70 58 65 78 83 64 -CAM021 1600 48 58 45 62 52 38 23 22 37 35 -CAM021 1610 36 33 30 38 51 30 49 51 11 23 -CAM021 1620 41 35 36 55 21 41 20 32 40 54 -CAM021 1630 50 24 42 34 51 35 42 49 38 53 -CAM021 1640 58 31 39 69 58 53 59 31 54 33 -CAM021 1650 48 56 43 30 21 8 37 51 43 57 -CAM021 1660 56 57 36 25 47 45 35 47 16 14 -CAM021 1670 17 29 29 38 47 24 27 14 29 29 -CAM021 1680 25 13 37 40 33 32 21 36 42 37 -CAM021 1690 18 34 37 49 22 32 17 26 30 20 -CAM021 1700 32 37 36 16 22 27 29 29 14 28 -CAM021 1710 25 18 31 46 36 28 27 21 32 41 -CAM021 1720 50 56 41 17 42 42 42 38 43 47 -CAM021 1730 37 32 44 20 48 25 34 41 52 38 -CAM021 1740 45 56 41 44 48 29 39 48 40 45 -CAM021 1750 43 58 21 12 12 35 19 14 39 27 -CAM021 1760 64 67 44 31 38 59 45 64 25 39 -CAM021 1770 33 41 49 44 29 49 57 37 43 30 -CAM021 1780 32 5 12 27 23 26 19 31 34 29 -CAM021 1790 24 28 32 32 28 29 28 40 31 40 -CAM021 1800 52 50 36 32 48 31 19 18 27 35 -CAM021 1810 33 36 21 29 22 42 43 52 42 35 -CAM021 1820 26 18 24 41 25 36 50 46 39 28 -CAM021 1830 25 21 19 35 49 26 13 8 28 35 -CAM021 1840 29 32 17 23 36 22 25 24 32 29 -CAM021 1850 29 27 37 34 36 23 21 11 11 28 -CAM021 1860 30 24 35 27 34 21 40 25 38 32 -CAM021 1870 29 24 37 30 21 16 20 36 36 26 -CAM021 1880 25 17 37 38 41 29 44 43 36 41 -CAM021 1890 31 42 35 31 29 33 26 27 38 9 -CAM021 1900 45 54 48 58 42 52 48 54 47 58 -CAM021 1910 37 63 45 31 48 45 39 38 36 52 -CAM021 1920 43 43 50 49 31 52 51 54 65 10 -CAM021 1930 47 49 47 53 11 25 14 42 46 43 -CAM021 1940 49 40 27 43 24 32 44 40 37 35 -CAM021 1950 29 51 34 53 15 44 38 49 38 39 -CAM021 1960 25 17 30 44 41 33 21 38 32 44 -CAM021 1970 29 44 31 49 27 31 38 48 50 42 -CAM021 1980 59 57 50 57 999 -CAM031 1356 22 23 23 19 -CAM031 1360 15 9 2 21 22 13 18 25 28 21 -CAM031 1370 21 22 22 18 22 26 36 25 24 30 -CAM031 1380 33 37 38 34 34 29 37 22 26 28 -CAM031 1390 20 33 32 28 33 46 41 40 28 27 -CAM031 1400 32 30 40 34 32 32 38 21 24 32 -CAM031 1410 32 37 41 38 32 28 33 33 29 26 -CAM031 1420 27 32 24 26 37 22 15 28 24 31 -CAM031 1430 29 29 31 45 29 33 31 28 19 26 -CAM031 1440 40 22 25 18 16 8 5 16 13 20 -CAM031 1450 13 15 24 21 15 23 7 6 10 15 -CAM031 1460 16 15 12 16 17 15 10 17 7 17 -CAM031 1470 25 18 22 16 16 14 34 23 22 18 -CAM031 1480 17 24 22 23 25 33 16 27 24 27 -CAM031 1490 27 18 16 21 35 24 11 0 11 23 -CAM031 1500 0 18 18 18 23 21 5 14 16 25 -CAM031 1510 24 25 27 10 17 8 19 21 15 17 -CAM031 1520 18 15 16 0 21 27 13 21 11 15 -CAM031 1530 18 17 15 0 14 30 20 23 16 26 -CAM031 1540 0 22 0 11 18 0 10 10 4 14 -CAM031 1550 13 7 10 17 14 18 9 14 7 17 -CAM031 1560 10 21 19 15 12 9 11 18 25 15 -CAM031 1570 23 3 7 6 17 16 20 17 0 0 -CAM031 1580 0 15 12 10 12 14 18 15 21 22 -CAM031 1590 8 18 7 17 18 21 17 16 25 21 -CAM031 1600 13 19 16 24 28 39 36 19 26 15 -CAM031 1610 22 29 6 9 17 20 25 19 9 19 -CAM031 1620 18 20 11 18 8 19 13 21 23 35 -CAM031 1630 29 22 15 15 25 20 28 27 34 32 -CAM031 1640 24 9 24 28 26 25 20 11 32 26 -CAM031 1650 30 38 20 12 1 0 17 22 25 13 -CAM031 1660 31 16 15 31 40 35 19 21 0 15 -CAM031 1670 0 17 20 22 14 17 12 24 19 17 -CAM031 1680 9 0 30 21 26 19 16 20 23 21 -CAM031 1690 5 21 22 35 32 35 31 33 35 49 -CAM031 1700 32 40 40 24 28 13 37 10 11 31 -CAM031 1710 27 36 35 32 27 33 32 18 44 29 -CAM031 1720 35 53 40 35 51 39 37 29 25 30 -CAM031 1730 26 34 46 22 54 19 25 27 18 18 -CAM031 1740 32 45 20 48 39 51 26 35 41 45 -CAM031 1750 33 50 62 37 31 54 20 17 54 45 -CAM031 1760 84 50 62 36 35 46 24 60 66 60 -CAM031 1770 50 39 75 56 63 42 48 48 47 62 -CAM031 1780 55 35 14 36 55 45 46 63 67 65 -CAM031 1790 52 55 63 61 51 17 40 62 42 52 -CAM031 1800 51 53 35 68 45 43 67 64 59 71 -CAM031 1810 50 30 30 38 51 39 48 42 64 56 -CAM031 1820 21 63 48 69 63 68 43 37 48 29 -CAM031 1830 69 55 67 45 47 43 23 49 36 49 -CAM031 1840 40 64 41 44 33 29 28 26 31 39 -CAM031 1850 54 46 77 60 51 65 38 25 19 32 -CAM031 1860 46 35 61 45 74 53 58 59 53 49 -CAM031 1870 42 54 70 60 65 74 65 82 78 67 -CAM031 1880 43 55 73 69 58 64 78 67 60 60 -CAM031 1890 91 85 69 56 57 72 60 91 80 36 -CAM031 1900 74 57 78 64 55 73 57 77 63 62 -CAM031 1910 72 82 76 60 66 67 66 60 59 78 -CAM031 1920 66 67 74 66 67 81 85 87 91 33 -CAM031 1930 81 82 71 79 103 60 56 69 60 63 -CAM031 1940 52 30 60 69 51 81 88 89 61 61 -CAM031 1950 78 84 79 74 95 75 62 66 70 38 -CAM031 1960 25 30 56 55 47 49 52 59 69 86 -CAM031 1970 49 55 57 51 63 62 53 70 47 33 -CAM031 1980 77 69 76 53 999 -CAM032 1435 64 62 53 47 42 -CAM032 1440 48 53 41 24 21 18 28 31 29 38 -CAM032 1450 25 33 25 25 22 41 24 17 6 23 -CAM032 1460 32 14 15 27 40 21 20 14 25 23 -CAM032 1470 29 19 45 17 26 12 53 27 10 33 -CAM032 1480 25 54 45 32 52 53 49 45 20 36 -CAM032 1490 43 37 10 22 33 34 18 0 18 35 -CAM032 1500 10 13 20 22 51 31 23 19 16 53 -CAM032 1510 46 43 45 32 28 22 29 47 25 25 -CAM032 1520 40 20 5 0 17 27 38 38 40 19 -CAM032 1530 44 51 42 12 32 58 46 49 23 47 -CAM032 1540 40 29 2 26 22 9 13 28 9 32 -CAM032 1550 28 29 23 36 32 22 17 17 33 21 -CAM032 1560 22 33 27 34 36 32 25 28 42 47 -CAM032 1570 52 27 26 16 24 41 23 30 25 0 -CAM032 1580 8 32 19 33 20 16 19 27 43 36 -CAM032 1590 27 18 17 27 34 37 24 20 47 22 -CAM032 1600 10 21 15 35 26 16 12 19 24 20 -CAM032 1610 19 14 13 7 32 8 18 17 8 15 -CAM032 1620 23 37 17 26 15 16 10 20 23 28 -CAM032 1630 39 23 22 21 24 13 40 32 23 20 -CAM032 1640 44 9 9 25 10 15 20 14 16 13 -CAM032 1650 18 23 24 16 0 3 19 22 16 13 -CAM032 1660 30 36 13 25 43 34 11 20 14 17 -CAM032 1670 0 21 25 21 17 10 14 16 22 19 -CAM032 1680 24 0 31 24 16 18 16 20 20 31 -CAM032 1690 7 36 39 40 33 40 18 45 27 27 -CAM032 1700 20 19 18 13 14 3 13 12 8 21 -CAM032 1710 21 12 11 11 5 23 11 8 17 10 -CAM032 1720 12 33 18 15 26 15 23 32 29 21 -CAM032 1730 25 14 19 12 35 21 10 28 24 22 -CAM032 1740 39 34 31 32 44 31 25 36 24 16 -CAM032 1750 24 32 28 20 9 34 6 8 42 29 -CAM032 1760 39 32 50 14 19 30 16 47 24 27 -CAM032 1770 25 20 23 23 18 23 17 8 12 24 -CAM032 1780 22 6 0 21 16 28 28 24 44 29 -CAM032 1790 14 24 22 14 31 9 20 34 22 21 -CAM032 1800 28 46 32 33 35 23 29 27 21 37 -CAM032 1810 10 27 4 6 2 12 9 18 15 15 -CAM032 1820 8 3 13 14 7 9 28 13 23 2 -CAM032 1830 18 22 16 29 27 10 5 8 12 14 -CAM032 1840 18 10 19 24 18 9 17 22 16 26 -CAM032 1850 25 30 36 34 29 34 11 10 5 23 -CAM032 1860 27 19 28 28 38 26 35 37 36 32 -CAM032 1870 35 34 37 33 34 41 29 37 35 28 -CAM032 1880 21 18 20 32 28 33 39 32 37 45 -CAM032 1890 32 42 44 50 37 41 29 41 47 11 -CAM032 1900 48 56 62 51 45 51 49 61 48 50 -CAM032 1910 50 57 47 35 50 54 63 62 56 78 -CAM032 1920 85 53 52 54 45 60 62 69 64 18 -CAM032 1930 52 43 67 69 71 52 37 85 51 62 -CAM032 1940 63 35 49 45 41 48 75 70 51 56 -CAM032 1950 70 79 50 51 57 42 47 47 44 44 -CAM032 1960 12 16 58 65 68 37 35 50 48 61 -CAM032 1970 57 41 64 70 57 54 57 68 53 61 -CAM032 1980 67 55 71 58 999 -CAM041 1683 33 32 25 17 24 27 25 -CAM041 1690 17 18 20 23 19 24 18 21 26 36 -CAM041 1700 25 25 28 27 18 30 29 23 17 34 -CAM041 1710 22 31 35 28 13 24 38 41 42 36 -CAM041 1720 37 53 32 21 57 33 35 58 69 60 -CAM041 1730 60 63 47 27 75 71 54 66 65 55 -CAM041 1740 78 82 70 92 67 73 72 47 55 32 -CAM041 1750 68 98 62 75 72 54 55 40 61 91 -CAM041 1760 118 72 76 69 58 94 44 60 72 56 -CAM041 1770 60 74 88 90 90 63 56 48 49 79 -CAM041 1780 77 63 30 56 46 55 62 50 46 55 -CAM041 1790 70 31 54 50 46 27 61 101 107 109 -CAM041 1800 86 138 86 89 86 81 65 53 86 98 -CAM041 1810 35 34 50 36 44 38 33 36 28 27 -CAM041 1820 29 32 19 35 19 17 33 44 25 20 -CAM041 1830 33 45 31 37 42 40 10 20 32 24 -CAM041 1840 20 31 17 29 24 26 35 29 53 53 -CAM041 1850 57 46 74 57 56 65 42 36 27 39 -CAM041 1860 65 39 55 51 68 67 81 72 47 42 -CAM041 1870 54 55 72 70 72 79 84 84 85 62 -CAM041 1880 46 49 72 64 59 71 77 60 73 62 -CAM041 1890 64 75 80 73 74 75 51 77 81 28 -CAM041 1900 55 56 88 82 69 68 48 67 50 59 -CAM041 1910 65 74 53 52 78 67 52 39 35 42 -CAM041 1920 44 35 40 25 47 34 37 27 54 19 -CAM041 1930 44 43 46 33 63 52 33 56 43 57 -CAM041 1940 33 35 45 41 44 52 74 80 41 45 -CAM041 1950 64 65 57 58 49 64 64 57 49 60 -CAM041 1960 22 22 58 44 56 38 36 48 61 75 -CAM041 1970 46 55 63 66 73 56 60 80 65 75 -CAM041 1980 109 76 102 116 999 -CAM042 1538 119 178 -CAM042 1540 141 86 51 102 93 111 135 211 129 206 -CAM042 1550 234 228 303 206 276 172 155 133 110 103 -CAM042 1560 119 132 119 138 92 73 86 93 124 106 -CAM042 1570 86 63 62 53 61 69 95 78 58 26 -CAM042 1580 31 57 67 77 63 60 45 53 50 49 -CAM042 1590 46 46 53 57 61 48 64 51 67 45 -CAM042 1600 37 38 29 90 83 56 46 43 70 54 -CAM042 1610 56 69 91 75 84 54 68 67 40 42 -CAM042 1620 50 52 41 49 44 62 36 45 54 54 -CAM042 1630 52 36 40 56 62 64 64 72 65 42 -CAM042 1640 51 29 46 41 33 47 30 22 42 38 -CAM042 1650 46 55 36 45 37 20 41 39 45 38 -CAM042 1660 47 48 47 38 45 40 37 26 11 14 -CAM042 1670 16 23 18 17 21 7 20 8 19 21 -CAM042 1680 24 7 22 32 33 24 25 24 30 44 -CAM042 1690 26 33 34 34 33 38 25 24 26 28 -CAM042 1700 32 29 27 15 27 19 32 25 25 36 -CAM042 1710 29 32 36 34 34 42 36 36 36 42 -CAM042 1720 40 44 34 34 42 47 34 41 36 40 -CAM042 1730 46 36 36 24 52 38 43 47 33 18 -CAM042 1740 29 40 24 24 37 39 26 30 24 15 -CAM042 1750 30 23 29 15 30 16 21 17 28 30 -CAM042 1760 37 23 31 33 25 21 20 33 40 40 -CAM042 1770 25 49 57 38 33 33 42 29 34 28 -CAM042 1780 28 34 10 12 23 20 31 28 29 44 -CAM042 1790 30 25 38 39 19 12 36 30 28 31 -CAM042 1800 38 43 31 48 42 45 35 31 52 43 -CAM042 1810 21 35 26 41 25 25 13 41 25 26 -CAM042 1820 24 18 25 22 18 17 20 15 18 12 -CAM042 1830 11 18 20 17 21 10 14 9 12 20 -CAM042 1840 15 25 8 12 21 13 16 29 24 33 -CAM042 1850 31 24 29 24 27 32 16 12 15 19 -CAM042 1860 32 21 32 26 38 28 47 40 29 37 -CAM042 1870 44 31 40 33 31 36 35 29 39 42 -CAM042 1880 26 29 39 41 35 38 53 38 52 50 -CAM042 1890 39 42 38 34 34 33 22 43 40 11 -CAM042 1900 33 45 30 43 24 34 38 48 32 31 -CAM042 1910 38 55 30 31 39 42 38 33 37 48 -CAM042 1920 43 33 33 27 29 29 27 47 42 17 -CAM042 1930 41 43 36 26 41 31 24 41 39 33 -CAM042 1940 39 30 33 31 24 34 43 34 24 35 -CAM042 1950 35 33 41 45 32 44 38 38 42 36 -CAM042 1960 9 20 44 39 37 37 43 44 36 54 -CAM042 1970 35 43 36 30 40 36 34 61 57 50 -CAM042 1980 65 56 59 59 999 -CAM051 1247 76 132 99 -CAM051 1250 64 46 73 80 34 57 62 73 47 47 -CAM051 1260 54 83 75 74 69 61 76 76 54 57 -CAM051 1270 80 68 85 46 66 82 49 65 27 60 -CAM051 1280 55 41 38 24 20 36 50 47 41 46 -CAM051 1290 38 45 40 32 30 54 31 24 47 42 -CAM051 1300 41 50 46 26 29 33 37 23 33 25 -CAM051 1310 28 35 44 51 56 36 29 28 45 32 -CAM051 1320 51 60 51 27 42 62 58 37 48 28 -CAM051 1330 21 27 14 37 32 24 8 25 7 15 -CAM051 1340 24 15 19 28 23 26 42 29 30 27 -CAM051 1350 11 22 31 38 28 33 26 29 27 24 -CAM051 1360 27 30 18 18 21 23 16 37 37 22 -CAM051 1370 33 18 39 17 24 20 35 26 21 9 -CAM051 1380 30 16 30 28 26 41 31 38 48 49 -CAM051 1390 27 48 38 46 29 46 41 41 30 34 -CAM051 1400 30 30 43 44 30 29 26 35 37 42 -CAM051 1410 43 34 28 26 32 31 36 28 24 24 -CAM051 1420 25 22 22 27 35 24 30 31 43 38 -CAM051 1430 37 34 31 33 21 41 46 42 13 24 -CAM051 1440 37 18 19 21 30 26 28 31 22 36 -CAM051 1450 14 23 21 32 27 15 18 15 13 12 -CAM051 1460 12 16 13 15 11 10 9 14 8 15 -CAM051 1470 17 14 11 13 10 0 10 27 23 26 -CAM051 1480 24 17 19 15 14 25 12 6 19 16 -CAM051 1490 23 19 3 23 17 28 20 6 13 19 -CAM051 1500 9 39 29 37 37 33 22 35 22 14 -CAM051 1510 32 17 38 28 31 21 44 39 35 49 -CAM051 1520 39 28 38 7 28 50 42 40 39 36 -CAM051 1530 42 20 38 23 30 41 41 46 35 45 -CAM051 1540 28 15 9 23 24 21 27 25 19 25 -CAM051 1550 32 31 34 26 26 31 23 31 29 31 -CAM051 1560 31 28 34 33 37 20 28 37 46 39 -CAM051 1570 39 26 55 32 47 47 51 48 23 18 -CAM051 1580 14 36 38 50 28 30 21 24 26 37 -CAM051 1590 21 29 30 43 42 24 34 33 41 34 -CAM051 1600 23 31 23 38 32 25 30 25 36 31 -CAM051 1610 35 34 25 7 44 25 38 46 15 16 -CAM051 1620 16 20 19 28 32 48 22 36 35 43 -CAM051 1630 33 26 21 29 30 33 40 32 34 27 -CAM051 1640 36 14 6 26 25 34 30 24 46 56 -CAM051 1650 46 38 27 26 23 17 37 39 42 41 -CAM051 1660 50 43 38 34 50 42 35 19 11 14 -CAM051 1670 18 22 22 24 27 6 24 17 18 24 -CAM051 1680 27 4 32 25 25 19 31 32 23 24 -CAM051 1690 5 25 29 21 25 26 16 17 18 15 -CAM051 1700 15 25 20 14 19 10 19 20 11 24 -CAM051 1710 13 15 23 22 20 24 21 22 26 13 -CAM051 1720 30 33 21 22 29 26 24 23 20 22 -CAM051 1730 20 14 23 8 26 12 19 23 23 15 -CAM051 1740 27 27 17 18 26 14 19 18 9 12 -CAM051 1750 16 22 18 12 19 12 14 21 20 17 -CAM051 1760 24 24 24 22 17 26 21 26 17 24 -CAM051 1770 13 30 23 19 26 18 19 12 25 13 -CAM051 1780 24 19 6 26 22 18 24 21 26 24 -CAM051 1790 17 26 14 12 18 13 16 17 14 28 -CAM051 1800 26 43 31 30 32 31 28 37 36 31 -CAM051 1810 20 28 21 27 31 23 15 33 20 19 -CAM051 1820 25 32 26 30 23 29 31 30 22 20 -CAM051 1830 19 19 12 21 25 14 9 13 10 14 -CAM051 1840 13 14 9 24 22 17 24 19 23 25 -CAM051 1850 19 20 22 22 25 27 19 8 10 24 -CAM051 1860 19 15 14 11 12 11 16 15 26 17 -CAM051 1870 26 29 22 24 24 17 29 24 20 19 -CAM051 1880 16 20 17 21 12 9 24 15 19 26 -CAM051 1890 17 18 25 15 9 20 19 15 24 15 -CAM051 1900 22 21 26 22 23 23 24 25 24 26 -CAM051 1910 23 27 19 17 14 26 24 23 24 25 -CAM051 1920 20 21 24 12 12 13 10 19 19 11 -CAM051 1930 24 19 26 28 16 19 18 14 16 19 -CAM051 1940 26 13 17 16 16 26 20 16 17 20 -CAM051 1950 17 22 18 17 19 21 22 22 19 18 -CAM051 1960 7 11 18 13 14 15 10 14 17 16 -CAM051 1970 6 17 10 13 15 14 13 15 14 25 -CAM051 1980 36 32 25 22 999 -CAM061 1357 54 34 47 -CAM061 1360 54 3 21 40 50 4 41 52 56 66 -CAM061 1370 63 8 49 54 53 51 57 5 46 7 -CAM061 1380 74 81 66 71 76 77 69 61 78 45 -CAM061 1390 8 55 74 60 84 92 78 83 82 79 -CAM061 1400 75 51 77 72 82 90 94 40 63 83 -CAM061 1410 49 81 68 72 48 68 62 83 64 67 -CAM061 1420 76 41 60 69 86 66 16 52 63 77 -CAM061 1430 66 34 67 73 14 73 68 70 51 65 -CAM061 1440 85 58 59 65 62 53 35 45 18 37 -CAM061 1450 4 29 43 54 45 47 20 7 21 36 -CAM061 1460 43 35 38 44 46 43 47 45 18 57 -CAM061 1470 67 44 45 46 45 25 53 70 64 55 -CAM061 1480 57 99 51 61 74 75 77 63 47 53 -CAM061 1490 65 50 12 30 57 52 15 0 20 35 -CAM061 1500 53 50 43 83 73 45 28 30 25 42 -CAM061 1510 57 65 85 45 72 20 54 68 72 80 -CAM061 1520 86 51 19 0 32 44 45 67 50 67 -CAM061 1530 69 27 37 11 40 70 68 69 61 93 -CAM061 1540 80 33 0 56 13 0 22 0 6 28 -CAM061 1550 29 27 35 39 45 38 45 47 32 39 -CAM061 1560 43 38 47 24 36 49 22 57 66 66 -CAM061 1570 64 58 59 57 62 62 55 50 20 0 -CAM061 1580 22 45 46 67 37 36 50 53 59 49 -CAM061 1590 20 35 23 60 56 34 62 55 71 59 -CAM061 1600 14 49 45 73 60 56 45 36 68 61 -CAM061 1610 50 49 17 28 48 48 58 76 43 55 -CAM061 1620 58 64 68 70 15 53 20 39 52 66 -CAM061 1630 53 49 21 46 66 57 73 82 65 66 -CAM061 1640 84 52 54 69 49 44 40 29 46 46 -CAM061 1650 54 71 24 29 0 0 35 41 38 37 -CAM061 1660 52 61 60 37 57 50 43 35 0 27 -CAM061 1670 0 24 0 31 39 20 33 33 39 37 -CAM061 1680 37 6 42 42 40 27 6 31 18 30 -CAM061 1690 5 40 41 52 55 60 43 43 28 36 -CAM061 1700 34 36 31 24 29 33 43 17 15 27 -CAM061 1710 30 28 47 41 38 47 43 31 53 43 -CAM061 1720 58 75 46 46 35 48 35 44 56 55 -CAM061 1730 38 43 63 29 54 21 52 54 49 55 -CAM061 1740 55 67 30 52 58 41 45 51 56 53 -CAM061 1750 61 70 22 18 18 29 19 22 37 39 -CAM061 1760 63 55 37 21 40 48 49 59 45 65 -CAM061 1770 55 65 51 43 37 43 49 19 47 55 -CAM061 1780 35 20 0 36 46 50 34 38 41 41 -CAM061 1790 22 42 46 34 27 8 41 57 57 51 -CAM061 1800 56 67 52 59 67 53 43 26 38 48 -CAM061 1810 31 54 30 12 39 41 46 59 59 43 -CAM061 1820 7 30 24 34 39 46 56 52 46 26 -CAM061 1830 34 52 44 55 67 35 3 34 40 59 -CAM061 1840 48 51 19 39 37 13 28 23 36 48 -CAM061 1850 42 32 57 54 59 41 18 3 0 18 -CAM061 1860 34 23 48 43 69 49 59 65 79 50 -CAM061 1870 41 28 49 22 30 40 25 60 63 57 -CAM061 1880 19 18 35 41 47 51 73 57 54 68 -CAM061 1890 44 60 66 52 35 52 17 43 44 16 -CAM061 1900 44 57 64 63 34 56 56 74 56 76 -CAM061 1910 59 67 34 38 67 73 72 75 94 109 -CAM061 1920 84 82 83 71 76 86 77 94 76 7 -CAM061 1930 76 48 58 29 53 33 27 52 42 47 -CAM061 1940 62 27 19 33 36 33 49 50 10 53 -CAM061 1950 26 38 32 44 27 26 40 31 48 7 -CAM061 1960 0 29 19 27 32 33 26 37 62 65 -CAM061 1970 31 55 24 46 26 22 21 64 57 42 -CAM061 1980 69 64 67 70 999 -CAM062 1525 47 47 65 55 61 -CAM062 1530 63 42 46 10 36 51 49 49 48 50 -CAM062 1540 39 33 0 25 6 0 17 0 0 17 -CAM062 1550 18 23 30 33 34 36 42 44 27 35 -CAM062 1560 40 37 33 23 35 37 25 45 54 52 -CAM062 1570 58 11 59 46 56 71 46 31 11 0 -CAM062 1580 12 36 38 51 35 33 48 65 52 57 -CAM062 1590 22 50 44 60 70 41 65 67 79 66 -CAM062 1600 17 24 53 88 71 59 39 32 61 62 -CAM062 1610 53 42 12 31 57 42 50 67 40 39 -CAM062 1620 45 59 67 45 16 31 11 32 43 56 -CAM062 1630 50 44 35 51 69 59 67 92 65 77 -CAM062 1640 91 62 65 67 60 56 50 35 61 71 -CAM062 1650 78 80 33 34 0 0 25 32 35 35 -CAM062 1660 46 54 54 48 76 66 66 62 7 29 -CAM062 1670 0 27 0 40 43 23 37 40 45 50 -CAM062 1680 58 33 59 65 67 44 15 39 38 40 -CAM062 1690 13 56 64 76 81 91 56 80 43 58 -CAM062 1700 43 41 46 26 43 44 48 26 19 41 -CAM062 1710 45 54 65 58 50 64 50 56 66 63 -CAM062 1720 70 86 43 48 39 55 62 59 66 57 -CAM062 1730 59 66 70 35 72 23 64 71 60 49 -CAM062 1740 61 76 44 73 72 51 59 67 74 67 -CAM062 1750 75 88 28 34 25 49 18 22 46 44 -CAM062 1760 70 68 63 34 45 55 43 56 41 59 -CAM062 1770 54 75 64 54 48 59 73 29 58 56 -CAM062 1780 46 17 0 34 48 53 43 45 57 57 -CAM062 1790 38 49 41 46 28 8 31 48 51 54 -CAM062 1800 60 67 54 63 56 52 20 22 33 56 -CAM062 1810 41 60 26 12 36 37 44 64 51 38 -CAM062 1820 9 31 25 31 34 41 59 58 60 31 -CAM062 1830 34 56 56 58 61 30 0 44 35 51 -CAM062 1840 41 35 14 42 27 14 28 24 31 44 -CAM062 1850 50 40 60 54 60 46 13 0 0 21 -CAM062 1860 26 25 26 23 44 25 46 38 43 37 -CAM062 1870 32 18 37 19 36 25 21 52 46 46 -CAM062 1880 12 6 27 43 47 53 58 52 51 51 -CAM062 1890 27 53 43 39 27 34 12 38 38 7 -CAM062 1900 37 62 73 42 27 64 64 74 64 68 -CAM062 1910 50 68 63 29 65 66 53 46 40 39 -CAM062 1920 47 56 59 34 61 57 74 59 44 0 -CAM062 1930 49 44 55 38 59 34 13 50 36 41 -CAM062 1940 48 32 24 37 35 49 59 64 9 35 -CAM062 1950 28 36 36 43 33 30 36 35 37 8 -CAM062 1960 1 22 65 59 49 48 23 40 48 66 -CAM062 1970 32 47 15 49 25 23 30 52 52 58 -CAM062 1980 71 51 57 37 999 -CAM071 1037 25 29 32 -CAM071 1040 27 32 39 31 36 28 30 35 10 15 -CAM071 1050 31 37 25 25 30 26 29 26 27 30 -CAM071 1060 27 36 37 28 33 25 18 12 17 26 -CAM071 1070 21 24 23 22 23 22 25 24 22 25 -CAM071 1080 27 33 31 19 33 27 23 25 41 33 -CAM071 1090 39 41 38 18 30 36 42 50 26 31 -CAM071 1100 44 33 25 16 32 23 20 41 30 35 -CAM071 1110 26 30 31 24 11 31 40 29 28 20 -CAM071 1120 18 11 31 27 27 43 20 21 31 34 -CAM071 1130 29 38 22 7 16 14 26 28 31 26 -CAM071 1140 22 40 20 27 31 23 12 13 13 17 -CAM071 1150 23 2 22 23 30 29 28 24 24 33 -CAM071 1160 30 25 18 28 15 27 28 28 33 39 -CAM071 1170 25 22 16 28 23 16 29 17 21 31 -CAM071 1180 33 35 25 32 24 30 27 27 29 26 -CAM071 1190 29 15 22 30 33 36 14 27 27 25 -CAM071 1200 32 34 35 31 25 30 17 31 31 30 -CAM071 1210 39 51 47 44 41 22 36 19 5 24 -CAM071 1220 31 35 40 34 35 35 35 15 42 32 -CAM071 1230 22 34 50 24 18 37 33 32 40 34 -CAM071 1240 38 36 45 36 30 34 35 29 48 38 -CAM071 1250 34 34 44 38 12 13 9 33 24 48 -CAM071 1260 37 43 49 35 16 22 34 22 20 0 -CAM071 1270 17 18 24 13 22 35 19 22 30 43 -CAM071 1280 40 36 49 41 38 11 32 31 15 21 -CAM071 1290 29 31 36 26 29 27 19 24 20 14 -CAM071 1300 23 27 21 23 29 24 23 11 15 8 -CAM071 1310 19 23 23 31 36 28 15 18 24 22 -CAM071 1320 19 21 28 12 16 29 25 34 27 18 -CAM071 1330 38 40 25 28 8 20 9 34 22 15 -CAM071 1340 24 30 31 38 35 34 47 35 29 30 -CAM071 1350 32 37 47 54 39 41 62 62 31 45 -CAM071 1360 36 17 27 42 45 28 42 51 47 42 -CAM071 1370 32 21 35 36 44 47 52 26 47 30 -CAM071 1380 41 46 52 52 51 55 35 37 49 49 -CAM071 1390 20 30 49 39 50 45 36 41 43 36 -CAM071 1400 47 20 37 35 30 46 42 24 28 36 -CAM071 1410 26 30 35 31 24 27 27 32 23 22 -CAM071 1420 38 22 24 36 41 24 17 34 38 35 -CAM071 1430 29 28 36 36 19 35 35 26 19 22 -CAM071 1440 26 20 17 23 16 22 19 27 22 18 -CAM071 1450 5 21 22 24 20 22 11 6 11 19 -CAM071 1460 10 14 13 13 15 8 13 15 11 13 -CAM071 1470 19 12 16 10 15 15 24 28 24 27 -CAM071 1480 26 35 19 16 32 26 27 24 26 23 -CAM071 1490 24 20 11 22 26 19 11 0 0 20 -CAM071 1500 15 15 17 30 37 27 18 25 23 31 -CAM071 1510 30 28 40 24 28 13 22 40 34 33 -CAM071 1520 37 27 22 0 12 33 36 40 27 27 -CAM071 1530 44 34 23 13 22 46 41 42 22 40 -CAM071 1540 36 19 0 12 8 6 5 0 7 10 -CAM071 1550 17 16 26 30 32 33 33 38 21 31 -CAM071 1560 28 24 33 18 30 33 18 36 40 34 -CAM071 1570 39 10 26 32 41 40 31 39 0 0 -CAM071 1580 12 28 32 32 22 24 31 34 41 34 -CAM071 1590 11 18 20 25 40 15 37 42 52 45 -CAM071 1600 15 37 20 43 46 36 34 26 34 38 -CAM071 1610 27 18 0 14 20 24 35 36 28 31 -CAM071 1620 26 38 25 24 4 17 8 17 23 30 -CAM071 1630 25 27 10 20 29 43 35 38 32 38 -CAM071 1640 37 25 33 30 20 22 24 15 25 24 -CAM071 1650 30 33 4 13 4 0 0 17 13 13 -CAM071 1660 17 23 18 16 17 15 10 8 0 8 -CAM071 1670 0 10 0 10 0 5 10 9 17 15 -CAM071 1680 16 9 21 20 23 15 6 11 13 13 -CAM071 1690 0 18 22 21 26 28 20 17 12 11 -CAM071 1700 15 16 17 8 13 14 16 0 0 19 -CAM071 1710 13 18 22 20 14 15 11 19 24 27 -CAM071 1720 27 26 9 15 18 16 27 29 30 17 -CAM071 1730 28 32 40 19 22 5 23 25 29 18 -CAM071 1740 29 33 12 26 28 29 28 29 23 19 -CAM071 1750 16 26 8 8 11 16 0 10 20 14 -CAM071 1760 38 37 31 5 21 29 24 31 20 26 -CAM071 1770 26 25 14 21 19 26 23 6 21 35 -CAM071 1780 16 11 0 17 26 25 17 17 21 20 -CAM071 1790 19 21 18 22 12 0 15 20 17 17 -CAM071 1800 25 22 19 19 29 27 14 14 13 33 -CAM071 1810 21 30 10 4 22 27 25 34 28 21 -CAM071 1820 0 20 9 19 18 20 27 29 27 9 -CAM071 1830 14 27 24 28 23 12 0 14 24 28 -CAM071 1840 23 18 4 25 14 0 21 18 16 30 -CAM071 1850 25 23 28 26 30 18 7 0 0 9 -CAM071 1860 21 21 23 27 41 34 32 27 36 29 -CAM071 1870 14 9 29 14 15 23 11 24 29 24 -CAM071 1880 13 10 14 19 29 22 37 41 33 37 -CAM071 1890 29 38 30 18 13 29 2 21 26 4 -CAM071 1900 22 38 28 18 15 17 30 36 35 33 -CAM071 1910 30 28 34 30 35 40 36 34 19 36 -CAM071 1920 24 19 27 22 0 26 31 32 36 27 -CAM071 1930 27 26 35 20 14 14 18 26 32 28 -CAM071 1940 26 18 19 21 23 18 29 26 0 22 -CAM071 1950 17 13 18 17 17 17 12 21 21 2 -CAM071 1960 0 12 26 27 21 22 14 21 32 26 -CAM071 1970 14 12 16 29 18 12 22 33 17 11 -CAM071 1980 14 27 30 32 999 -CAM072 1114 38 36 52 30 38 24 -CAM072 1120 29 23 29 27 42 42 16 29 38 38 -CAM072 1130 30 47 31 5 18 14 32 37 27 26 -CAM072 1140 21 47 18 23 27 25 18 11 12 23 -CAM072 1150 15 3 28 28 26 39 36 37 38 50 -CAM072 1160 43 43 13 20 14 24 27 21 25 39 -CAM072 1170 27 32 19 22 14 25 24 17 30 41 -CAM072 1180 40 43 41 37 27 55 43 30 35 38 -CAM072 1190 28 26 32 43 37 48 16 34 38 35 -CAM072 1200 38 38 42 51 40 39 18 30 28 31 -CAM072 1210 30 59 49 49 42 14 26 16 0 23 -CAM072 1220 32 24 33 25 34 38 45 11 29 33 -CAM072 1230 22 21 32 28 17 28 23 19 26 37 -CAM072 1240 40 35 34 30 25 27 20 19 43 34 -CAM072 1250 23 30 36 40 14 7 11 29 11 17 -CAM072 1260 32 30 33 19 5 18 22 26 17 9 -CAM072 1270 19 31 34 11 25 31 17 20 22 34 -CAM072 1280 25 22 29 23 18 9 20 18 10 13 -CAM072 1290 13 15 22 16 20 22 17 18 13 14 -CAM072 1300 20 30 24 26 25 30 28 19 25 11 -CAM072 1310 26 20 25 33 40 25 17 31 32 31 -CAM072 1320 23 35 29 14 11 25 18 26 20 22 -CAM072 1330 38 39 22 28 11 10 5 14 13 11 -CAM072 1340 18 15 22 23 26 27 29 26 21 23 -CAM072 1350 24 22 28 28 26 25 33 33 19 24 -CAM072 1360 17 6 9 16 23 18 25 35 34 32 -CAM072 1370 35 17 30 29 31 35 40 11 26 16 -CAM072 1380 21 29 40 56 68 58 50 41 48 46 -CAM072 1390 20 35 49 40 49 34 36 42 35 34 -CAM072 1400 38 26 28 35 42 36 39 24 35 44 -CAM072 1410 35 31 29 35 32 31 29 35 24 38 -CAM072 1420 36 19 19 39 36 32 19 30 38 41 -CAM072 1430 39 35 48 53 27 45 38 30 26 25 -CAM072 1440 34 34 17 17 20 24 17 24 15 30 -CAM072 1450 7 18 26 24 20 27 16 4 12 15 -CAM072 1460 9 23 22 19 26 23 17 23 15 19 -CAM072 1470 24 11 15 11 20 13 27 30 28 27 -CAM072 1480 23 33 26 26 26 21 19 25 32 32 -CAM072 1490 28 22 7 17 22 23 7 0 0 11 -CAM072 1500 14 16 18 23 24 26 11 21 23 24 -CAM072 1510 20 34 36 32 37 17 29 31 26 27 -CAM072 1520 28 22 12 0 3 13 14 21 17 14 -CAM072 1530 17 9 6 0 8 12 15 19 0 18 -CAM072 1540 11 17 0 15 4 0 0 0 4 14 -CAM072 1550 10 3 10 11 12 14 11 18 8 14 -CAM072 1560 14 9 11 13 23 18 8 16 23 23 -CAM072 1570 22 0 19 19 22 28 24 19 3 0 -CAM072 1580 0 21 16 24 14 17 28 32 26 25 -CAM072 1590 0 25 12 13 41 21 36 31 43 44 -CAM072 1600 20 37 17 38 61 59 35 17 36 37 -CAM072 1610 39 22 2 13 19 30 43 48 26 36 -CAM072 1620 32 40 21 20 5 22 10 16 20 22 -CAM072 1630 25 15 4 17 20 32 30 30 26 34 -CAM072 1640 38 20 18 21 21 12 17 8 22 34 -CAM072 1650 26 48 12 16 0 0 7 25 25 21 -CAM072 1660 32 35 35 18 37 32 22 17 0 19 -CAM072 1670 0 22 0 16 11 0 14 13 20 17 -CAM072 1680 20 4 22 17 23 18 11 17 20 17 -CAM072 1690 0 21 17 27 40 46 36 50 46 43 -CAM072 1700 39 35 37 19 22 19 24 10 8 16 -CAM072 1710 19 20 26 24 26 31 21 23 35 33 -CAM072 1720 39 66 50 36 38 42 48 50 42 55 -CAM072 1730 45 42 52 31 36 23 46 48 50 32 -CAM072 1740 36 66 38 58 64 53 55 60 55 50 -CAM072 1750 48 67 36 35 28 36 18 22 35 34 -CAM072 1760 71 61 42 31 27 27 30 42 38 44 -CAM072 1770 47 53 53 44 36 46 41 27 47 61 -CAM072 1780 58 49 5 32 32 42 41 55 59 58 -CAM072 1790 57 58 50 55 33 11 29 55 54 66 -CAM072 1800 63 77 59 78 76 60 53 56 50 58 -CAM072 1810 36 50 30 21 26 26 23 38 41 42 -CAM072 1820 17 32 25 31 24 35 37 42 32 25 -CAM072 1830 37 38 32 31 31 32 11 21 30 44 -CAM072 1840 35 36 26 48 37 31 42 37 51 52 -CAM072 1850 44 33 40 31 42 29 15 16 9 16 -CAM072 1860 25 34 46 44 60 57 51 60 49 56 -CAM072 1870 46 31 54 48 57 50 52 58 59 45 -CAM072 1880 33 30 46 47 48 39 52 40 61 60 -CAM072 1890 44 47 52 45 40 55 40 25 48 22 -CAM072 1900 43 57 66 47 46 64 63 82 56 55 -CAM072 1910 44 66 53 57 59 56 122 102 83 73 -CAM072 1920 72 51 61 60 51 78 58 63 53 14 -CAM072 1930 56 46 74 51 78 64 38 58 41 67 -CAM072 1940 55 29 49 49 48 47 67 62 33 29 -CAM072 1950 43 68 55 62 66 49 52 44 40 23 -CAM072 1960 3 19 40 54 48 37 21 47 53 65 -CAM072 1970 40 39 37 51 39 50 36 45 43 34 -CAM072 1980 50 44 36 34 999 -CAM081 1081 32 33 20 35 32 38 33 30 40 -CAM081 1090 43 37 31 18 25 28 30 26 16 25 -CAM081 1100 30 27 22 11 24 23 26 27 27 23 -CAM081 1110 23 26 32 20 20 28 31 26 22 24 -CAM081 1120 26 20 27 21 29 19 17 14 18 20 -CAM081 1130 27 29 23 5 11 6 14 18 16 14 -CAM081 1140 20 29 21 22 26 21 19 7 11 23 -CAM081 1150 18 8 16 20 24 25 26 26 20 27 -CAM081 1160 20 23 24 27 20 27 22 13 18 23 -CAM081 1170 22 19 18 21 18 23 21 8 17 20 -CAM081 1180 20 23 18 26 25 26 28 24 29 33 -CAM081 1190 35 25 22 32 29 34 10 20 25 23 -CAM081 1200 28 25 36 31 21 28 18 27 11 25 -CAM081 1210 24 37 30 26 23 15 21 26 0 35 -CAM081 1220 41 32 42 43 42 42 29 11 21 27 -CAM081 1230 12 30 36 26 30 39 37 19 30 17 -CAM081 1240 23 24 28 30 25 34 26 20 38 32 -CAM081 1250 27 29 33 31 14 7 24 29 13 23 -CAM081 1260 26 34 34 31 22 27 25 28 36 23 -CAM081 1270 31 34 34 24 36 36 26 29 22 43 -CAM081 1280 44 30 37 36 30 14 32 34 16 26 -CAM081 1290 20 26 26 20 30 28 27 23 25 25 -CAM081 1300 29 36 29 24 30 34 27 24 23 15 -CAM081 1310 18 28 24 26 30 32 15 22 30 30 -CAM081 1320 31 45 40 22 24 24 25 32 30 21 -CAM081 1330 29 34 18 27 16 9 0 16 18 10 -CAM081 1340 9 11 8 17 15 11 15 12 13 18 -CAM081 1350 14 15 19 20 14 17 19 24 20 22 -CAM081 1360 18 9 7 16 15 16 19 29 33 26 -CAM081 1370 17 22 23 22 26 26 29 24 24 16 -CAM081 1380 24 33 31 27 26 40 40 30 53 49 -CAM081 1390 29 32 43 36 40 36 32 37 30 38 -CAM081 1400 39 13 28 28 33 31 32 27 27 30 -CAM081 1410 26 21 32 26 17 31 35 36 23 32 -CAM081 1420 37 34 28 18 24 22 19 28 31 27 -CAM081 1430 29 16 37 33 18 43 34 36 26 38 -CAM081 1440 44 37 20 23 20 22 20 26 21 38 -CAM081 1450 21 27 42 50 24 44 21 18 21 16 -CAM081 1460 20 20 19 24 22 19 23 24 25 22 -CAM081 1470 29 15 22 32 24 26 37 41 42 30 -CAM081 1480 25 38 35 45 51 56 51 37 54 42 -CAM081 1490 46 35 28 35 40 38 33 17 18 34 -CAM081 1500 26 34 36 34 39 43 29 40 35 32 -CAM081 1510 38 34 43 37 38 26 28 25 27 31 -CAM081 1520 35 35 23 12 23 31 27 32 32 33 -CAM081 1530 48 43 28 22 26 46 36 40 28 37 -CAM081 1540 34 30 11 29 30 19 22 20 16 17 -CAM081 1550 28 17 30 28 38 31 40 36 37 30 -CAM081 1560 40 32 37 43 43 43 33 36 28 34 -CAM081 1570 36 20 28 27 22 28 47 48 33 23 -CAM081 1580 15 30 39 43 48 37 29 36 32 29 -CAM081 1590 22 26 32 35 40 20 35 34 39 38 -CAM081 1600 37 33 25 43 33 33 26 27 28 37 -CAM081 1610 31 26 22 28 28 24 39 40 25 31 -CAM081 1620 28 33 26 31 27 40 23 28 26 33 -CAM081 1630 39 28 25 29 33 29 34 41 32 28 -CAM081 1640 42 18 17 26 21 30 25 17 28 21 -CAM081 1650 28 37 36 23 27 29 41 45 39 37 -CAM081 1660 51 56 49 37 50 56 45 31 41 38 -CAM081 1670 27 40 34 50 53 45 32 25 31 34 -CAM081 1680 34 11 29 38 30 35 27 37 36 28 -CAM081 1690 48 63 53 47 49 36 31 32 38 28 -CAM081 1700 27 31 24 19 11 11 18 15 17 26 -CAM081 1710 30 32 41 36 34 35 31 32 32 29 -CAM081 1720 34 39 35 33 44 26 25 23 38 37 -CAM081 1730 36 43 50 28 42 39 42 49 44 34 -CAM081 1740 41 45 39 47 45 46 37 48 29 39 -CAM081 1750 44 49 34 25 30 35 31 27 37 37 -CAM081 1760 48 41 44 34 33 41 35 51 43 44 -CAM081 1770 39 47 48 42 40 44 50 40 35 44 -CAM081 1780 41 33 11 30 41 33 41 44 53 49 -CAM081 1790 44 49 36 35 31 15 36 55 56 49 -CAM081 1800 51 58 48 53 52 50 43 42 48 40 -CAM081 1810 11 31 37 38 44 33 29 46 39 33 -CAM081 1820 29 39 44 43 48 39 43 44 42 41 -CAM081 1830 41 44 44 38 41 43 27 30 27 32 -CAM081 1840 23 28 23 30 24 21 28 35 42 38 -CAM081 1850 37 26 41 31 32 41 25 16 29 34 -CAM081 1860 48 25 36 29 41 26 41 51 49 66 -CAM081 1870 49 38 38 45 41 39 50 59 52 35 -CAM081 1880 33 37 46 45 37 42 49 53 55 47 -CAM081 1890 62 43 53 42 41 48 34 42 44 25 -CAM081 1900 54 53 60 62 46 63 57 76 60 69 -CAM081 1910 57 72 55 48 69 55 47 55 46 45 -CAM081 1920 47 51 57 46 42 58 60 63 52 54 -CAM081 1930 82 50 72 60 68 68 48 63 55 61 -CAM081 1940 53 59 26 37 51 53 46 47 37 39 -CAM081 1950 48 46 48 30 44 40 45 48 57 42 -CAM081 1960 26 18 51 34 40 61 51 43 43 70 -CAM081 1970 51 70 54 66 60 51 48 60 55 44 -CAM081 1980 66 49 65 68 999 -CAM082 977 38 44 32 -CAM082 980 25 24 41 39 24 33 45 41 38 49 -CAM082 990 36 49 46 76 63 31 41 61 69 74 -CAM082 1000 67 53 56 62 58 41 44 64 59 53 -CAM082 1010 64 51 56 44 26 26 21 29 37 36 -CAM082 1020 35 43 36 43 46 40 28 35 36 45 -CAM082 1030 39 41 51 45 48 38 40 36 46 42 -CAM082 1040 40 42 50 39 42 49 41 56 24 24 -CAM082 1050 36 41 49 36 30 30 28 34 35 39 -CAM082 1060 31 33 38 31 33 37 29 22 16 27 -CAM082 1070 22 23 26 31 31 32 33 24 18 28 -CAM082 1080 30 35 31 28 43 46 39 36 39 38 -CAM082 1090 41 40 40 29 36 39 44 39 28 39 -CAM082 1100 47 51 41 26 43 39 44 46 54 42 -CAM082 1110 32 57 54 40 31 38 43 36 34 24 -CAM082 1120 25 26 37 38 46 47 39 25 33 32 -CAM082 1130 31 39 35 16 23 16 23 35 33 33 -CAM082 1140 33 43 34 33 40 35 30 13 11 20 -CAM082 1150 20 13 21 30 29 32 40 33 29 42 -CAM082 1160 41 37 51 48 39 50 40 37 33 39 -CAM082 1170 37 36 26 29 22 37 35 24 36 29 -CAM082 1180 29 40 43 49 45 42 48 40 49 40 -CAM082 1190 35 31 28 40 45 54 33 33 43 33 -CAM082 1200 34 26 42 42 27 40 35 38 28 33 -CAM082 1210 37 56 48 43 43 31 27 23 2 25 -CAM082 1220 40 43 43 39 53 45 29 22 30 29 -CAM082 1230 17 34 40 31 35 36 40 29 37 19 -CAM082 1240 29 27 34 36 31 38 28 24 39 30 -CAM082 1250 35 33 30 24 16 9 17 23 18 31 -CAM082 1260 26 27 32 24 23 19 32 27 29 26 -CAM082 1270 36 35 37 27 34 36 36 20 19 31 -CAM082 1280 29 28 36 39 28 27 28 28 16 16 -CAM082 1290 11 19 30 22 25 36 26 23 27 32 -CAM082 1300 33 35 27 24 34 31 28 27 31 17 -CAM082 1310 19 27 29 35 34 37 18 23 32 30 -CAM082 1320 34 36 36 24 27 30 31 44 35 29 -CAM082 1330 30 32 9 19 16 12 5 22 18 11 -CAM082 1340 11 11 9 11 23 12 18 14 13 13 -CAM082 1350 9 15 14 20 14 9 15 19 17 13 -CAM082 1360 12 10 0 12 22 24 12 22 20 21 -CAM082 1370 14 12 20 18 31 24 27 23 20 20 -CAM082 1380 22 30 35 33 25 37 37 31 31 39 -CAM082 1390 19 21 34 37 40 37 27 34 32 31 -CAM082 1400 37 30 38 39 45 33 42 39 33 51 -CAM082 1410 36 35 56 43 38 42 50 53 32 32 -CAM082 1420 44 50 47 49 48 36 31 37 44 46 -CAM082 1430 41 37 41 44 26 42 38 38 38 31 -CAM082 1440 34 37 31 25 34 34 31 30 27 41 -CAM082 1450 32 28 30 36 24 34 26 24 25 22 -CAM082 1460 23 27 25 33 25 23 25 27 29 27 -CAM082 1470 34 26 32 31 21 25 31 28 40 29 -CAM082 1480 24 38 33 31 40 45 28 37 36 33 -CAM082 1490 37 35 31 28 40 29 29 16 21 19 -CAM082 1500 26 32 31 44 44 37 24 28 25 35 -CAM082 1510 36 36 46 41 41 31 31 42 50 46 -CAM082 1520 50 41 31 13 32 39 35 45 38 39 -CAM082 1530 31 27 21 10 23 41 39 43 30 46 -CAM082 1540 39 26 11 18 31 11 18 21 22 19 -CAM082 1550 31 33 37 32 29 30 33 36 31 28 -CAM082 1560 32 33 38 33 27 30 30 32 35 36 -CAM082 1570 37 17 27 32 30 34 38 43 28 19 -CAM082 1580 13 31 34 42 34 27 26 32 37 36 -CAM082 1590 23 22 29 29 39 23 34 31 36 31 -CAM082 1600 34 30 18 38 28 35 29 28 40 38 -CAM082 1610 41 37 25 28 34 26 39 37 25 30 -CAM082 1620 27 35 28 33 30 33 24 27 32 26 -CAM082 1630 24 22 20 16 21 23 27 32 24 19 -CAM082 1640 32 19 17 22 18 17 17 15 23 23 -CAM082 1650 25 30 27 21 16 14 17 21 28 29 -CAM082 1660 37 42 33 25 32 30 21 22 13 10 -CAM082 1670 8 20 18 13 16 17 12 17 15 21 -CAM082 1680 21 6 20 21 17 14 15 15 19 17 -CAM082 1690 22 22 18 25 32 31 21 19 16 9 -CAM082 1700 11 15 13 9 6 8 12 8 6 10 -CAM082 1710 12 11 17 16 15 18 17 17 22 22 -CAM082 1720 27 34 26 22 22 14 21 24 19 23 -CAM082 1730 21 17 32 13 19 21 21 21 23 20 -CAM082 1740 27 30 24 23 30 28 27 33 13 17 -CAM082 1750 23 33 18 17 17 17 24 19 20 20 -CAM082 1760 28 25 26 25 23 28 23 34 28 30 -CAM082 1770 30 35 29 24 20 24 27 17 18 20 -CAM082 1780 22 19 6 15 15 24 29 31 35 26 -CAM082 1790 28 26 25 22 22 7 15 20 24 28 -CAM082 1800 39 42 29 37 37 34 32 25 20 32 -CAM082 1810 15 29 26 17 20 19 19 28 25 23 -CAM082 1820 21 26 22 24 23 21 21 21 14 13 -CAM082 1830 8 12 17 17 13 16 7 7 10 10 -CAM082 1840 11 6 6 10 10 8 13 10 8 9 -CAM082 1850 12 8 13 12 10 13 7 3 0 9 -CAM082 1860 11 9 10 8 7 0 10 12 17 15 -CAM082 1870 15 11 14 11 10 8 9 18 11 12 -CAM082 1880 11 14 11 12 13 12 12 8 17 24 -CAM082 1890 23 14 19 20 17 22 11 13 20 15 -CAM082 1900 20 23 17 19 10 18 21 34 26 30 -CAM082 1910 22 37 27 25 30 27 22 22 20 22 -CAM082 1920 22 25 31 23 26 25 28 27 35 12 -CAM082 1930 29 30 27 34 30 33 18 31 30 41 -CAM082 1940 34 25 28 23 25 36 32 39 16 22 -CAM082 1950 22 24 32 27 25 26 29 24 31 19 -CAM082 1960 4 14 30 25 38 27 32 23 33 29 -CAM082 1970 24 18 25 20 21 26 37 39 36 41 -CAM082 1980 42 33 47 54 999 -CAM091 1460 33 30 39 47 52 46 69 66 28 63 -CAM091 1470 71 43 69 38 43 30 62 69 64 74 -CAM091 1480 74 107 52 59 89 96 90 81 52 77 -CAM091 1490 72 63 40 69 81 61 19 8 36 62 -CAM091 1500 27 66 57 81 67 59 35 39 39 67 -CAM091 1510 63 69 81 79 76 55 93 89 75 61 -CAM091 1520 87 70 44 7 50 76 89 105 67 75 -CAM091 1530 91 68 42 15 41 73 77 90 57 78 -CAM091 1540 69 34 5 37 17 12 13 10 8 29 -CAM091 1550 39 39 33 38 40 29 53 64 35 45 -CAM091 1560 50 45 57 47 51 55 43 57 61 67 -CAM091 1570 69 24 67 56 55 68 54 62 40 16 -CAM091 1580 15 54 56 81 31 42 46 60 46 42 -CAM091 1590 12 46 34 43 66 38 69 53 72 57 -CAM091 1600 46 57 38 99 108 90 86 54 68 61 -CAM091 1610 52 30 12 11 25 14 13 27 13 12 -CAM091 1620 18 26 26 34 13 29 13 22 31 42 -CAM091 1630 39 23 12 35 49 34 36 50 32 46 -CAM091 1640 56 25 43 57 35 41 42 26 52 64 -CAM091 1650 63 103 63 29 17 0 44 69 49 38 -CAM091 1660 62 87 52 60 98 83 66 56 7 0 -CAM091 1670 0 39 30 42 52 38 44 46 47 62 -CAM091 1680 76 36 79 86 84 60 23 48 39 40 -CAM091 1690 6 56 53 66 76 83 72 78 43 64 -CAM091 1700 68 49 37 26 25 29 41 11 7 32 -CAM091 1710 43 47 40 37 38 58 36 40 47 53 -CAM091 1720 60 77 43 48 47 58 68 82 79 54 -CAM091 1730 51 44 65 36 30 13 30 27 41 35 -CAM091 1740 43 64 17 46 56 47 62 66 73 67 -CAM091 1750 83 105 33 43 32 36 14 17 48 38 -CAM091 1760 77 78 68 26 41 42 49 66 49 72 -CAM091 1770 71 82 68 59 64 62 71 35 48 51 -CAM091 1780 44 23 0 33 55 52 27 44 53 50 -CAM091 1790 33 54 44 50 34 6 39 60 53 54 -CAM091 1800 42 38 31 57 61 54 30 27 37 74 -CAM091 1810 40 60 32 16 43 44 45 58 52 40 -CAM091 1820 11 45 53 50 20 54 66 52 46 39 -CAM091 1830 46 64 73 63 49 35 8 30 42 67 -CAM091 1840 53 56 12 42 32 16 27 32 56 54 -CAM091 1850 56 59 78 76 82 77 17 3 0 26 -CAM091 1860 46 46 42 25 50 38 51 51 68 56 -CAM091 1870 49 48 56 40 63 46 16 34 47 37 -CAM091 1880 14 7 37 41 53 60 59 68 87 98 -CAM091 1890 55 97 100 87 56 72 22 33 53 2 -CAM091 1900 47 62 72 49 27 61 67 96 102 105 -CAM091 1910 106 115 96 71 95 106 90 66 73 89 -CAM091 1920 45 54 72 49 54 58 95 86 50 8 -CAM091 1930 60 73 90 57 69 39 33 77 69 117 -CAM091 1940 120 82 76 90 66 71 102 119 17 72 -CAM091 1950 34 39 45 57 71 80 70 98 92 40 -CAM091 1960 6 12 48 90 101 85 66 93 121 134 -CAM091 1970 77 59 43 93 63 49 69 124 117 92 -CAM091 1980 123 154 135 102 999 -CAM092 1591 40 22 34 54 35 65 59 73 73 -CAM092 1600 40 77 44 82 70 61 45 8 72 69 -CAM092 1610 75 50 11 26 53 39 76 87 47 65 -CAM092 1620 58 75 37 48 0 44 14 30 30 46 -CAM092 1630 49 27 7 36 52 50 56 72 14 53 -CAM092 1640 76 38 45 65 54 30 44 28 51 57 -CAM092 1650 53 67 33 19 0 0 15 25 16 12 -CAM092 1660 35 43 24 30 51 56 38 21 12 19 -CAM092 1670 0 25 0 23 19 0 18 0 10 19 -CAM092 1680 25 14 34 44 48 28 7 34 25 9 -CAM092 1690 0 28 23 32 47 55 48 30 10 21 -CAM092 1700 41 38 12 0 15 0 16 0 0 16 -CAM092 1710 0 9 14 18 13 17 6 7 22 25 -CAM092 1720 35 50 31 42 25 34 42 45 52 22 -CAM092 1730 25 21 46 0 24 25 31 21 32 32 -CAM092 1740 50 77 31 73 74 62 72 76 82 84 -CAM092 1750 98 96 15 0 13 30 0 0 47 33 -CAM092 1760 69 75 70 27 35 38 39 39 19 50 -CAM092 1770 46 60 45 37 0 14 21 0 49 19 -CAM092 1780 16 0 0 0 0 13 13 11 16 5 -CAM092 1790 15 22 17 13 11 0 24 31 24 24 -CAM092 1800 23 29 17 31 38 38 27 0 19 38 -CAM092 1810 36 52 39 11 29 29 32 52 57 44 -CAM092 1820 13 25 12 23 0 35 38 33 25 0 -CAM092 1830 7 40 37 44 49 16 0 10 24 40 -CAM092 1840 43 51 5 36 10 0 26 9 24 28 -CAM092 1850 28 29 52 62 67 94 7 0 0 10 -CAM092 1860 30 20 31 2 38 2 52 31 44 26 -CAM092 1870 59 54 57 39 52 26 9 14 47 56 -CAM092 1880 36 3 13 35 41 45 60 49 48 55 -CAM092 1890 29 57 56 35 27 24 9 18 18 0 -CAM092 1900 39 47 35 9 0 49 61 63 72 72 -CAM092 1910 78 82 75 56 96 75 60 70 45 63 -CAM092 1920 30 48 37 17 39 62 62 46 38 0 -CAM092 1930 43 49 48 39 14 9 0 52 42 65 -CAM092 1940 80 55 30 38 25 45 79 71 14 51 -CAM092 1950 18 35 45 61 32 30 36 39 43 7 -CAM092 1960 4 0 37 45 44 44 13 25 45 53 -CAM092 1970 34 77 31 65 19 6 22 54 49 36 -CAM092 1980 65 39 71 67 999 -CAM101 1727 55 59 48 -CAM101 1730 52 59 54 40 47 31 44 50 33 25 -CAM101 1740 40 56 19 39 51 65 59 76 63 65 -CAM101 1750 73 98 93 29 28 72 23 18 55 39 -CAM101 1760 60 57 53 39 62 62 51 58 57 68 -CAM101 1770 58 71 70 61 45 50 51 23 35 40 -CAM101 1780 24 13 0 0 12 24 21 34 39 31 -CAM101 1790 37 31 35 43 26 11 26 39 27 32 -CAM101 1800 46 46 48 59 67 61 48 30 39 49 -CAM101 1810 29 60 37 22 30 38 32 44 35 38 -CAM101 1820 28 42 22 31 18 42 55 56 52 35 -CAM101 1830 40 60 77 72 60 35 17 21 41 40 -CAM101 1840 43 38 29 36 27 10 22 18 26 42 -CAM101 1850 51 49 75 97 80 81 16 19 7 42 -CAM101 1860 50 35 50 37 55 37 54 67 76 65 -CAM101 1870 70 68 82 75 78 86 47 87 99 62 -CAM101 1880 35 27 60 66 56 68 91 60 91 66 -CAM101 1890 53 80 79 70 69 56 24 42 53 0 -CAM101 1900 44 62 80 67 52 85 92 123 109 106 -CAM101 1910 96 126 103 80 114 104 105 97 82 102 -CAM101 1920 72 84 80 54 41 41 74 76 79 0 -CAM101 1930 64 75 64 56 57 54 39 72 60 69 -CAM101 1940 83 54 51 61 58 76 81 96 37 66 -CAM101 1950 44 74 72 87 84 60 84 80 83 72 -CAM101 1960 20 32 69 80 86 102 99 92 92 108 -CAM101 1970 60 84 66 72 68 40 70 99 95 96 -CAM101 1980 119 104 125 112 999 -CAM102 1665 62 54 70 7 0 -CAM102 1670 13 52 47 53 71 56 54 55 61 61 -CAM102 1680 68 56 62 62 49 51 33 58 48 31 -CAM102 1690 0 44 50 55 58 59 48 62 57 61 -CAM102 1700 44 44 52 24 35 33 40 23 26 45 -CAM102 1710 49 67 70 59 32 49 21 39 48 59 -CAM102 1720 62 69 48 54 51 64 60 69 91 58 -CAM102 1730 82 90 99 66 90 48 68 75 60 39 -CAM102 1740 63 83 45 83 78 91 83 100 85 74 -CAM102 1750 78 95 88 18 29 68 18 24 67 62 -CAM102 1760 93 76 81 66 75 82 68 85 90 101 -CAM102 1770 75 87 81 71 66 78 80 37 71 89 -CAM102 1780 62 27 0 29 39 60 50 64 57 56 -CAM102 1790 68 63 66 81 53 18 51 79 67 83 -CAM102 1800 97 104 106 142 143 128 100 77 115 108 -CAM102 1810 92 133 86 45 61 71 80 110 90 90 -CAM102 1820 63 84 49 68 28 57 72 76 80 65 -CAM102 1830 63 38 28 17 17 15 5 17 24 31 -CAM102 1840 30 33 28 42 29 8 32 28 46 68 -CAM102 1850 83 84 100 99 81 88 12 16 0 44 -CAM102 1860 49 42 33 32 36 22 43 39 45 35 -CAM102 1870 37 38 37 30 30 43 26 40 42 34 -CAM102 1880 15 22 41 45 46 52 68 51 55 65 -CAM102 1890 54 56 56 64 35 44 22 42 50 0 -CAM102 1900 45 61 70 54 39 65 74 95 76 73 -CAM102 1910 81 65 71 56 83 98 86 104 79 88 -CAM102 1920 76 76 84 57 39 41 70 58 62 0 -CAM102 1930 72 75 105 83 65 88 71 95 70 95 -CAM102 1940 96 47 51 46 59 74 86 80 31 51 -CAM102 1950 43 75 69 96 81 70 78 71 46 50 -CAM102 1960 13 30 73 68 66 75 76 59 77 120 -CAM102 1970 65 102 83 64 62 46 58 93 96 95 -CAM102 1980 125 99 81 73 999 -CAM111 1446 45 57 40 69 -CAM111 1450 25 46 69 85 47 93 49 51 34 33 -CAM111 1460 32 35 20 28 30 22 27 29 17 34 -CAM111 1470 32 32 34 26 20 12 38 42 45 49 -CAM111 1480 39 53 51 67 78 76 59 60 72 76 -CAM111 1490 77 63 38 49 65 61 34 16 30 45 -CAM111 1500 16 37 43 47 55 45 33 46 37 54 -CAM111 1510 64 70 91 65 88 44 76 80 68 61 -CAM111 1520 83 86 42 12 65 71 55 74 41 41 -CAM111 1530 52 42 41 8 34 65 65 77 58 82 -CAM111 1540 66 27 0 38 20 12 13 16 17 30 -CAM111 1550 45 38 48 57 61 56 53 53 46 54 -CAM111 1560 52 56 76 56 60 68 56 85 89 88 -CAM111 1570 77 40 48 47 67 71 64 52 28 8 -CAM111 1580 9 42 33 55 34 33 53 75 63 66 -CAM111 1590 43 47 31 37 69 53 72 75 80 80 -CAM111 1600 51 78 55 97 93 83 74 43 82 87 -CAM111 1610 102 82 47 74 108 79 112 118 70 76 -CAM111 1620 61 88 60 50 19 26 18 35 50 75 -CAM111 1630 43 40 33 45 56 51 50 47 45 55 -CAM111 1640 66 34 38 55 61 75 61 40 65 73 -CAM111 1650 62 63 33 38 29 7 38 50 53 71 -CAM111 1660 77 77 66 57 91 83 79 82 28 9 -CAM111 1670 10 39 36 42 44 22 32 30 39 38 -CAM111 1680 46 13 47 50 54 63 36 55 46 51 -CAM111 1690 15 52 50 56 85 80 56 82 86 61 -CAM111 1700 64 71 66 44 47 38 55 42 30 32 -CAM111 1710 54 57 67 72 61 74 58 49 63 70 -CAM111 1720 94 105 66 60 68 61 77 81 83 91 -CAM111 1730 95 82 115 65 100 44 80 95 73 64 -CAM111 1740 86 99 53 99 98 94 79 96 102 88 -CAM111 1750 90 105 57 37 51 64 48 37 52 58 -CAM111 1760 103 81 82 56 58 99 72 103 85 103 -CAM111 1770 75 96 107 104 83 104 97 82 85 78 -CAM111 1780 74 19 16 49 44 59 71 51 65 59 -CAM111 1790 64 68 63 62 72 34 53 68 69 55 -CAM111 1800 81 101 62 75 73 102 66 44 57 69 -CAM111 1810 33 60 47 36 40 49 48 70 54 50 -CAM111 1820 57 77 53 67 46 59 59 59 39 37 -CAM111 1830 55 56 44 59 72 48 32 31 42 51 -CAM111 1840 42 52 38 64 42 34 38 35 41 47 -CAM111 1850 53 46 76 79 73 85 28 31 23 50 -CAM111 1860 66 50 59 62 69 46 85 83 93 83 -CAM111 1870 87 91 98 73 87 101 74 103 94 71 -CAM111 1880 22 47 92 72 83 65 105 71 87 73 -CAM111 1890 81 83 83 86 77 92 47 80 81 24 -CAM111 1900 78 78 92 91 67 77 74 83 55 66 -CAM111 1910 75 69 69 63 119 72 66 56 53 100 -CAM111 1920 104 62 99 91 56 75 82 135 97 17 -CAM111 1930 102 113 104 91 142 87 79 86 104 115 -CAM111 1940 131 79 54 71 72 63 84 112 49 60 -CAM111 1950 57 85 68 79 74 90 94 74 65 60 -CAM111 1960 30 35 65 84 96 105 84 89 113 118 -CAM111 1970 57 93 89 87 84 63 98 138 80 73 -CAM111 1980 122 141 114 93 999 -CAM112 1471 77 78 48 37 21 47 49 54 55 -CAM112 1480 40 55 54 46 54 69 57 66 62 80 -CAM112 1490 73 60 35 56 62 48 32 23 25 46 -CAM112 1500 22 48 46 74 85 50 34 34 48 48 -CAM112 1510 59 70 95 63 81 55 68 82 69 71 -CAM112 1520 94 82 43 15 62 77 51 72 49 47 -CAM112 1530 47 42 44 9 42 67 65 75 59 74 -CAM112 1540 67 26 0 47 21 21 17 17 27 29 -CAM112 1550 42 37 37 39 43 42 47 50 38 44 -CAM112 1560 46 59 63 55 54 60 38 63 73 74 -CAM112 1570 75 40 55 41 56 53 53 41 23 3 -CAM112 1580 12 37 29 45 27 31 42 52 51 50 -CAM112 1590 33 35 20 36 54 35 44 44 47 42 -CAM112 1600 21 50 40 57 58 48 48 32 62 68 -CAM112 1610 56 54 44 58 67 57 60 71 30 49 -CAM112 1620 41 58 48 55 24 46 20 34 36 43 -CAM112 1630 36 33 35 41 64 39 61 59 61 57 -CAM112 1640 67 37 15 54 28 47 44 36 54 51 -CAM112 1650 47 58 35 32 40 15 36 39 57 77 -CAM112 1660 72 76 58 47 76 72 74 88 29 16 -CAM112 1670 23 52 44 53 56 34 42 38 46 47 -CAM112 1680 48 13 44 49 53 61 46 59 56 53 -CAM112 1690 15 59 64 70 78 84 60 81 80 77 -CAM112 1700 68 65 66 37 48 58 61 48 31 44 -CAM112 1710 53 55 68 66 58 80 63 54 66 103 -CAM112 1720 127 126 63 69 83 96 94 93 94 91 -CAM112 1730 69 76 88 47 76 39 65 78 82 79 -CAM112 1740 83 100 57 113 94 106 89 117 91 84 -CAM112 1750 87 92 56 28 36 71 40 29 46 59 -CAM112 1760 89 79 70 45 53 68 53 71 76 77 -CAM112 1770 75 74 86 85 73 73 82 69 74 77 -CAM112 1780 69 17 14 35 41 61 60 51 61 61 -CAM112 1790 50 74 73 62 71 42 54 69 55 68 -CAM112 1800 89 85 70 81 86 93 51 45 60 75 -CAM112 1810 38 76 49 39 61 65 65 79 62 71 -CAM112 1820 58 68 45 61 32 48 47 56 41 37 -CAM112 1830 51 73 49 52 49 33 20 35 37 52 -CAM112 1840 43 49 36 67 39 33 40 36 55 66 -CAM112 1850 61 66 84 83 73 70 18 15 17 39 -CAM112 1860 51 37 29 39 43 24 55 47 57 52 -CAM112 1870 57 44 79 49 55 73 54 87 85 52 -CAM112 1880 13 23 58 56 49 65 59 67 80 74 -CAM112 1890 51 77 58 56 48 61 32 64 68 11 -CAM112 1900 59 58 51 53 41 52 44 47 45 52 -CAM112 1910 45 59 55 42 62 60 61 57 59 85 -CAM112 1920 83 70 55 75 59 47 64 89 80 13 -CAM112 1930 70 86 79 70 83 59 61 72 49 51 -CAM112 1940 52 43 55 49 49 51 105 115 44 88 -CAM112 1950 67 66 51 87 102 84 81 85 59 70 -CAM112 1960 21 59 94 72 88 81 88 73 70 101 -CAM112 1970 75 55 86 87 42 39 66 114 92 95 -CAM112 1980 101 62 108 112 999 -CAM121 1000 40 26 47 52 44 13 32 33 27 36 -CAM121 1010 36 30 28 22 20 28 14 12 15 16 -CAM121 1020 29 18 25 33 25 25 18 18 28 25 -CAM121 1030 19 26 26 25 27 31 28 28 35 30 -CAM121 1040 34 35 45 37 33 34 34 27 10 17 -CAM121 1050 31 33 39 21 38 20 25 23 29 38 -CAM121 1060 32 50 46 38 35 35 28 23 13 16 -CAM121 1070 9 13 12 18 24 32 28 22 23 34 -CAM121 1080 28 38 37 32 34 34 36 35 34 28 -CAM121 1090 32 17 15 0 8 11 12 11 7 15 -CAM121 1100 19 17 18 17 27 41 39 36 32 19 -CAM121 1110 24 27 33 24 29 30 36 22 27 25 -CAM121 1120 19 17 25 22 29 25 30 26 28 35 -CAM121 1130 34 30 25 7 15 7 22 24 31 37 -CAM121 1140 32 37 27 31 29 26 19 8 12 23 -CAM121 1150 18 7 37 30 35 37 35 30 34 37 -CAM121 1160 36 33 22 36 25 40 27 33 19 34 -CAM121 1170 26 28 15 24 28 30 27 16 21 26 -CAM121 1180 13 29 27 29 33 23 20 23 25 19 -CAM121 1190 31 21 25 29 24 34 12 25 18 18 -CAM121 1200 21 16 28 19 11 13 6 12 10 14 -CAM121 1210 6 27 20 19 24 11 20 5 0 17 -CAM121 1220 19 18 24 24 30 29 20 16 26 26 -CAM121 1230 16 29 26 21 16 25 15 17 21 25 -CAM121 1240 29 27 22 23 24 22 11 20 31 36 -CAM121 1250 29 32 28 31 0 9 27 30 11 34 -CAM121 1260 26 32 38 32 13 24 26 26 11 17 -CAM121 1270 25 23 33 12 28 27 13 19 6 31 -CAM121 1280 23 23 23 23 16 7 22 18 7 11 -CAM121 1290 6 12 8 11 13 16 10 14 16 16 -CAM121 1300 18 24 24 19 16 13 15 14 18 5 -CAM121 1310 16 17 17 23 27 8 7 20 21 13 -CAM121 1320 12 24 22 13 19 23 24 21 21 14 -CAM121 1330 21 30 10 19 17 13 11 28 8 10 -CAM121 1340 20 21 14 23 17 20 27 22 15 21 -CAM121 1350 13 15 23 16 11 12 20 20 14 17 -CAM121 1360 12 0 3 17 14 0 21 20 23 15 -CAM121 1370 23 11 24 27 27 23 27 7 21 11 -CAM121 1380 19 26 27 31 27 37 26 26 29 33 -CAM121 1390 15 32 30 21 28 26 24 25 20 22 -CAM121 1400 23 15 22 19 20 25 27 18 19 21 -CAM121 1410 23 28 25 18 22 25 26 31 26 28 -CAM121 1420 30 21 25 23 32 22 15 17 18 18 -CAM121 1430 21 14 21 25 13 28 25 18 16 21 -CAM121 1440 26 17 11 18 14 18 13 19 10 18 -CAM121 1450 15 17 25 18 17 14 14 16 7 3 -CAM121 1460 0 15 0 15 10 15 14 20 0 23 -CAM121 1470 18 13 14 0 11 0 18 18 19 17 -CAM121 1480 19 29 17 15 31 24 28 23 23 21 -CAM121 1490 24 17 0 23 24 19 8 0 10 17 -CAM121 1500 7 25 20 29 29 19 16 16 19 33 -CAM121 1510 23 25 40 35 27 15 38 42 24 33 -CAM121 1520 40 29 17 10 24 18 29 34 25 19 -CAM121 1530 29 21 21 10 22 31 32 34 29 35 -CAM121 1540 33 11 0 20 0 0 14 0 8 15 -CAM121 1550 15 14 14 20 26 25 28 34 27 27 -CAM121 1560 28 27 31 32 36 28 16 27 36 35 -CAM121 1570 37 14 24 17 34 31 31 34 16 7 -CAM121 1580 7 29 26 31 20 32 28 33 38 29 -CAM121 1590 11 24 15 23 32 10 22 18 27 21 -CAM121 1600 0 24 13 26 20 18 18 16 31 24 -CAM121 1610 18 21 13 22 36 23 39 48 23 31 -CAM121 1620 26 35 28 39 23 41 15 33 35 44 -CAM121 1630 37 32 22 41 40 38 43 34 36 37 -CAM121 1640 47 18 24 44 39 29 31 20 30 31 -CAM121 1650 29 32 26 23 17 15 34 35 31 41 -CAM121 1660 41 49 42 35 47 43 41 37 20 23 -CAM121 1670 10 26 21 30 28 20 29 15 33 35 -CAM121 1680 37 15 39 39 36 32 17 31 26 31 -CAM121 1690 12 35 34 35 37 31 27 30 30 35 -CAM121 1700 28 27 27 17 18 21 27 14 8 24 -CAM121 1710 25 29 35 37 30 38 28 36 39 36 -CAM121 1720 36 44 34 32 34 41 38 37 42 36 -CAM121 1730 42 33 36 27 44 18 37 37 28 24 -CAM121 1740 41 39 28 36 33 28 28 35 31 39 -CAM121 1750 41 54 31 14 28 40 23 29 42 44 -CAM121 1760 59 56 44 46 41 43 41 48 42 44 -CAM121 1770 44 47 33 39 32 28 34 24 30 36 -CAM121 1780 34 35 5 18 22 36 42 48 48 50 -CAM121 1790 35 46 40 36 19 18 38 55 51 55 -CAM121 1800 45 40 39 44 46 50 18 33 35 37 -CAM121 1810 21 41 25 23 30 25 28 27 26 29 -CAM121 1820 20 25 28 36 28 41 37 47 38 20 -CAM121 1830 47 53 51 42 32 30 17 25 27 32 -CAM121 1840 25 29 20 36 20 18 25 25 37 53 -CAM121 1850 42 35 43 42 47 40 7 8 8 16 -CAM121 1860 31 31 35 27 26 23 27 37 38 41 -CAM121 1870 29 24 33 20 42 34 35 39 44 27 -CAM121 1880 17 37 44 48 45 46 41 31 29 31 -CAM121 1890 27 22 26 32 25 27 18 27 36 0 -CAM121 1900 38 44 46 46 28 33 32 27 24 31 -CAM121 1910 21 28 24 25 27 26 18 26 28 37 -CAM121 1920 42 21 42 33 37 35 37 45 32 14 -CAM121 1930 33 39 45 43 25 26 30 51 29 31 -CAM121 1940 44 34 32 35 23 23 33 33 15 24 -CAM121 1950 23 21 29 27 32 23 28 34 31 16 -CAM121 1960 0 13 16 35 30 29 19 31 23 46 -CAM121 1970 31 37 21 29 17 21 28 38 37 25 -CAM121 1980 47 41 45 35 999 -CAM122 1000 24 17 22 30 32 9 16 26 21 23 -CAM122 1010 25 18 20 12 5 14 3 11 20 19 -CAM122 1020 23 23 21 31 27 27 20 19 27 26 -CAM122 1030 32 34 27 20 30 22 25 23 26 26 -CAM122 1040 26 29 41 25 29 30 34 31 10 19 -CAM122 1050 29 26 38 17 25 17 20 18 29 26 -CAM122 1060 25 39 39 28 23 31 34 20 21 22 -CAM122 1070 20 24 29 36 32 39 38 33 31 40 -CAM122 1080 31 49 46 27 40 38 36 33 27 14 -CAM122 1090 22 22 27 13 28 23 20 25 23 30 -CAM122 1100 28 26 24 15 26 26 27 24 25 23 -CAM122 1110 28 32 30 16 19 24 18 0 14 10 -CAM122 1120 6 8 17 13 18 27 22 15 26 25 -CAM122 1130 20 20 7 0 10 11 18 17 20 21 -CAM122 1140 15 28 18 16 19 17 9 0 9 9 -CAM122 1150 5 3 16 21 17 23 28 22 21 26 -CAM122 1160 18 13 12 11 15 22 27 22 20 28 -CAM122 1170 24 26 16 21 12 8 8 0 7 13 -CAM122 1180 4 11 16 17 19 15 16 18 16 15 -CAM122 1190 31 28 25 30 29 32 15 31 23 24 -CAM122 1200 30 22 32 27 22 24 15 21 14 21 -CAM122 1210 19 33 27 26 27 17 23 10 0 24 -CAM122 1220 23 29 29 30 29 27 23 12 22 24 -CAM122 1230 15 30 25 17 20 26 15 23 27 26 -CAM122 1240 29 28 30 33 32 32 15 20 36 39 -CAM122 1250 32 27 24 31 0 9 15 26 10 27 -CAM122 1260 31 29 41 33 17 33 36 39 35 23 -CAM122 1270 28 31 35 11 28 26 20 21 21 36 -CAM122 1280 29 26 26 32 21 9 24 21 12 18 -CAM122 1290 14 24 18 25 26 40 28 34 32 29 -CAM122 1300 29 32 22 18 21 23 23 22 26 21 -CAM122 1310 23 30 23 34 47 23 21 28 23 21 -CAM122 1320 27 37 29 15 13 26 16 14 12 9 -CAM122 1330 22 19 14 23 17 21 14 30 13 18 -CAM122 1340 18 19 18 25 20 24 34 27 25 27 -CAM122 1350 15 17 32 28 21 16 28 24 21 19 -CAM122 1360 12 0 9 14 11 9 16 24 28 26 -CAM122 1370 29 18 26 27 35 25 25 15 25 13 -CAM122 1380 21 26 23 28 23 38 32 30 39 36 -CAM122 1390 24 36 42 35 49 49 31 32 33 33 -CAM122 1400 36 27 38 36 44 45 57 46 41 40 -CAM122 1410 42 44 56 43 35 38 40 47 38 48 -CAM122 1420 56 51 51 53 55 38 29 29 47 49 -CAM122 1430 47 25 37 41 21 45 36 28 19 26 -CAM122 1440 33 24 15 22 16 18 16 19 21 32 -CAM122 1450 8 26 24 31 18 28 19 13 14 11 -CAM122 1460 4 21 19 17 16 15 13 23 5 23 -CAM122 1470 30 17 26 11 11 0 31 34 23 17 -CAM122 1480 25 35 19 16 37 37 37 34 31 24 -CAM122 1490 28 26 4 25 29 14 10 0 10 16 -CAM122 1500 8 22 26 28 22 23 25 23 23 31 -CAM122 1510 31 31 39 29 34 18 41 37 33 34 -CAM122 1520 44 33 23 14 28 23 34 44 33 27 -CAM122 1530 37 31 33 15 31 42 43 44 33 50 -CAM122 1540 41 10 4 17 13 10 11 10 11 19 -CAM122 1550 24 19 22 23 29 26 31 35 24 33 -CAM122 1560 33 33 40 38 43 35 31 34 39 33 -CAM122 1570 35 18 22 18 30 27 33 33 17 12 -CAM122 1580 9 30 27 28 21 33 30 35 35 31 -CAM122 1590 21 30 20 24 33 19 16 20 20 20 -CAM122 1600 8 21 8 26 17 12 13 19 31 27 -CAM122 1610 33 29 26 27 32 22 35 37 26 25 -CAM122 1620 34 36 25 31 22 41 16 20 28 30 -CAM122 1630 26 17 15 26 28 25 30 26 21 34 -CAM122 1640 45 22 32 43 31 24 30 16 33 32 -CAM122 1650 34 48 25 29 21 12 19 26 27 25 -CAM122 1660 33 37 30 22 46 50 25 22 7 6 -CAM122 1670 0 17 12 23 26 17 25 19 23 23 -CAM122 1680 22 4 32 36 33 27 17 29 32 28 -CAM122 1690 10 30 25 37 42 40 36 34 31 24 -CAM122 1700 25 27 24 11 16 17 24 20 15 25 -CAM122 1710 29 26 38 34 24 27 23 24 31 23 -CAM122 1720 30 35 28 28 26 31 19 31 30 31 -CAM122 1730 29 21 32 21 31 15 29 23 17 23 -CAM122 1740 29 43 28 40 38 41 37 51 53 50 -CAM122 1750 50 56 32 13 28 37 27 27 38 31 -CAM122 1760 62 62 53 39 39 38 38 54 44 54 -CAM122 1770 51 61 51 50 40 47 47 32 38 36 -CAM122 1780 37 25 3 18 19 31 33 35 36 34 -CAM122 1790 28 39 35 31 25 17 23 30 28 28 -CAM122 1800 25 27 26 28 31 36 24 25 27 34 -CAM122 1810 23 28 25 28 30 24 26 41 34 33 -CAM122 1820 24 35 24 32 22 29 34 37 31 23 -CAM122 1830 34 43 36 42 50 42 19 37 31 46 -CAM122 1840 39 41 25 35 24 14 27 22 31 36 -CAM122 1850 32 29 31 37 43 28 9 10 10 15 -CAM122 1860 23 13 33 26 43 31 49 54 53 38 -CAM122 1870 46 35 39 38 39 40 31 42 46 33 -CAM122 1880 16 19 33 33 29 26 39 28 42 37 -CAM122 1890 30 29 39 40 37 35 24 35 41 8 -CAM122 1900 33 39 28 28 23 38 26 20 33 33 -CAM122 1910 29 16 16 27 23 28 27 26 18 22 -CAM122 1920 24 19 40 23 26 27 34 34 36 11 -CAM122 1930 35 36 39 40 34 36 39 51 46 63 -CAM122 1940 56 46 38 33 30 30 31 36 24 28 -CAM122 1950 25 23 25 28 30 29 30 32 36 26 -CAM122 1960 16 18 26 41 36 26 21 41 39 52 -CAM122 1970 39 32 53 45 33 32 52 56 43 53 -CAM122 1980 73 53 47 64 999 -CAM131 695 028 024 036 043 033 -CAM131 700 037 045 070 067 082 098 094 080 110 102 -CAM131 710 093 107 106 111 092 088 063 063 082 085 -CAM131 720 079 083 076 088 112 088 090 087 087 078 -CAM131 730 073 071 086 069 077 096 068 069 076 066 -CAM131 740 030 065 086 067 067 066 081 075 072 069 -CAM131 750 072 078 091 098 106 106 099 089 082 094 -CAM131 760 073 062 065 087 080 089 100 084 093 104 -CAM131 770 094 110 098 075 087 083 083 082 077 065 -CAM131 780 054 074 059 057 066 066 078 080 064 062 -CAM131 790 052 064 067 054 062 060 068 050 047 034 -CAM131 800 052 058 048 058 062 071 069 065 069 031 -CAM131 810 042 037 069 082 074 089 068 055 044 064 -CAM131 820 063 068 068 083 084 071 078 075 071 064 -CAM131 830 073 078 078 078 075 059 061 053 042 048 -CAM131 840 056 048 074 081 090 085 075 044 066 088 -CAM131 850 093 081 095 087 071 061 089 073 068 054 -CAM131 860 068 074 048 067 054 068 047 060 037 045 -CAM131 870 053 068 076 080 074 111 086 057 042 062 -CAM131 880 073 066 076 071 072 081 055 070 054 069 -CAM131 890 056 069 063 048 067 069 066 051 058 044 -CAM131 900 044 053 046 048 044 046 038 025 046 055 -CAM131 910 049 058 051 050 047 060 065 066 057 047 -CAM131 920 044 049 042 041 019 037 034 035 025 048 -CAM131 930 050 035 034 039 056 049 042 048 049 041 -CAM131 940 038 046 036 043 033 043 041 048 046 032 -CAM131 950 045 052 033 044 059 051 055 037 034 041 -CAM131 960 056 060 056 063 059 050 062 075 071 053 -CAM131 970 072 052 052 063 077 049 061 054 061 046 -CAM131 980 028 025 057 039 023 035 032 031 055 052 -CAM131 990 046 053 056 050 041 026 033 025 036 044 -CAM131 1000 041 028 037 046 049 029 040 049 052 045 -CAM131 1010 040 036 035 054 039 048 053 053 061 064 -CAM131 1020 061 060 048 052 051 049 063 056 068 077 -CAM131 1030 065 063 058 068 050 050 040 057 056 049 -CAM131 1040 047 064 076 070 046 043 057 076 051 045 -CAM131 1050 059 068 069 065 059 048 066 066 071 053 -CAM131 1060 064 073 050 061 057 048 036 044 037 048 -CAM131 1070 056 046 055 056 054 055 055 041 029 043 -CAM131 1080 044 043 042 053 053 043 053 053 044 044 -CAM131 1090 046 062 072 033 035 056 097 097 060 076 -CAM131 1100 078 054 049 033 053 045 052 058 064 048 -CAM131 1110 050 053 054 034 031 038 052 033 041 034 -CAM131 1120 016 021 029 026 037 044 056 048 050 034 -CAM131 1130 026 042 038 022 023 026 033 047 042 039 -CAM131 1140 036 055 040 038 045 027 031 013 015 027 -CAM131 1150 035 034 054 042 053 070 082 058 060 055 -CAM131 1160 047 050 042 049 042 056 048 064 040 050 -CAM131 1170 059 056 041 045 051 067 057 043 039 043 -CAM131 1180 027 047 037 048 048 059 045 058 053 057 -CAM131 1190 068 044 052 054 051 045 042 050 051 047 -CAM131 1200 049 040 042 039 023 028 028 041 032 035 -CAM131 1210 042 036 048 031 043 037 032 033 019 031 -CAM131 1220 035 045 051 039 053 051 040 040 034 044 -CAM131 1230 025 035 044 043 037 036 046 030 055 032 -CAM131 1240 043 041 039 043 041 053 039 045 066 067 -CAM131 1250 053 055 072 060 050 042 055 054 038 065 -CAM131 1260 054 047 059 062 050 057 052 049 040 049 -CAM131 1270 062 047 072 050 051 067 067 047 037 053 -CAM131 1280 074 049 052 053 044 047 050 045 017 027 -CAM131 1290 031 038 044 045 046 059 058 039 040 034 -CAM131 1300 043 059 049 044 064 058 047 046 060 040 -CAM131 1310 036 054 044 060 067 056 068 062 052 049 -CAM131 1320 053 056 055 040 052 057 081 071 068 068 -CAM131 1330 070 062 047 044 022 022 024 014 015 016 -CAM131 1340 028 018 026 021 025 018 022 013 009 010 -CAM131 1350 009 012 017 013 010 015 021 015 016 007 -CAM131 1360 006 000 008 016 031 020 031 027 040 043 -CAM131 1370 046 034 045 047 043 067 062 041 043 036 -CAM131 1380 052 078 083 087 085 072 071 055 062 066 -CAM131 1390 066 048 049 056 060 073 046 065 052 045 -CAM131 1400 062 031 061 047 073 079 085 064 058 058 -CAM131 1410 054 049 070 063 050 046 059 059 068 079 -CAM131 1420 060 058 042 062 054 043 031 045 049 062 -CAM131 1430 057 031 056 057 031 069 065 052 046 041 -CAM131 1440 041 036 038 044 035 038 034 042 024 031 -CAM131 1450 026 029 052 040 043 043 044 036 024 028 -CAM131 1460 031 048 038 030 036 030 037 031 025 039 -CAM131 1470 042 014 034 018 032 027 040 037 034 048 -CAM131 1480 041 072 049 052 052 056 067 075 058 051 -CAM131 1490 064 053 056 059 064 064 057 042 049 081 -CAM131 1500 070 062 060 082 078 079 072 071 072 105 -CAM131 1510 079 090 091 098 097 064 077 096 104 087 -CAM131 1520 089 093 080 065 084 104 078 120 096 107 -CAM131 1530 102 093 089 058 062 072 069 077 066 080 -CAM131 1540 059 049 033 042 025 021 032 022 025 031 -CAM131 1550 037 034 039 041 038 039 035 024 023 037 -CAM131 1560 033 042 044 045 064 052 064 070 062 078 -CAM131 1570 072 067 075 064 068 067 071 068 040 028 -CAM131 1580 039 051 040 043 031 038 036 033 045 037 -CAM131 1590 022 040 049 051 065 047 039 044 042 036 -CAM131 1600 037 039 028 048 059 032 022 020 025 037 -CAM131 1610 027 028 028 031 049 034 043 040 022 034 -CAM131 1620 032 048 055 044 040 057 036 040 051 056 -CAM131 1630 060 039 033 042 058 061 064 058 042 053 -CAM131 1640 068 038 042 056 049 047 052 033 047 044 -CAM131 1650 062 068 065 047 049 031 080 068 072 058 -CAM131 1660 097 084 071 076 098 084 078 073 065 035 -CAM131 1670 031 052 042 039 040 031 041 027 034 037 -CAM131 1680 049 025 039 037 052 035 031 041 034 043 -CAM131 1690 038 060 058 066 074 058 049 042 045 043 -CAM131 1700 029 037 032 027 019 019 026 028 027 042 -CAM131 1710 055 059 057 068 052 053 042 059 048 063 -CAM131 1720 057 078 070 064 053 071 052 063 063 073 -CAM131 1730 079 068 079 052 084 093 102 108 097 090 -CAM131 1740 081 089 073 074 069 072 071 093 084 078 -CAM131 1750 077 090 079 062 055 079 070 062 077 079 -CAM131 1760 100 099 088 065 058 066 049 058 058 053 -CAM131 1770 048 053 065 055 031 053 059 041 048 055 -CAM131 1780 059 048 030 056 046 055 061 056 083 063 -CAM131 1790 083 071 065 094 085 066 079 085 070 053 -CAM131 1800 044 050 033 042 038 031 033 033 038 040 -CAM131 1810 035 053 039 031 029 037 038 041 030 029 -CAM131 1820 032 033 035 045 047 045 053 068 062 066 -CAM131 1830 078 085 086 071 058 071 042 057 037 059 -CAM131 1840 049 054 060 052 047 066 073 054 059 053 -CAM131 1850 046 048 067 058 053 055 049 031 042 043 -CAM131 1860 057 048 053 045 080 045 065 049 060 045 -CAM131 1870 052 050 054 068 055 051 056 068 074 065 -CAM131 1880 058 048 065 061 064 059 092 057 062 071 -CAM131 1890 086 076 065 060 057 070 041 075 062 039 -CAM131 1900 099 077 081 074 054 080 063 082 076 069 -CAM131 1910 056 072 071 048 076 069 060 054 038 061 -CAM131 1920 066 069 063 066 078 080 095 101 101 054 -CAM131 1930 077 095 083 073 089 107 077 097 090 094 -CAM131 1940 103 078 087 095 078 075 082 087 077 058 -CAM131 1950 068 082 076 088 087 091 084 075 069 061 -CAM131 1960 038 051 050 067 078 064 047 046 081 087 -CAM131 1970 084 999 -CAM132 710 045 044 058 049 050 046 036 038 034 041 -CAM132 720 040 034 034 040 054 041 044 052 058 054 -CAM132 730 056 059 053 042 042 050 031 033 037 032 -CAM132 740 012 032 045 027 033 032 050 040 053 057 -CAM132 750 053 060 054 055 074 060 073 067 065 089 -CAM132 760 062 052 043 044 057 064 066 058 058 064 -CAM132 770 068 082 077 060 068 059 057 049 049 047 -CAM132 780 043 040 035 042 043 051 050 047 047 041 -CAM132 790 045 037 051 039 055 041 045 043 042 022 -CAM132 800 036 032 028 036 032 038 039 041 048 027 -CAM132 810 038 029 048 056 047 057 058 041 039 052 -CAM132 820 050 062 044 060 060 051 049 045 049 053 -CAM132 830 046 037 034 046 040 038 037 030 027 025 -CAM132 840 033 021 039 038 039 049 045 039 039 050 -CAM132 850 051 058 067 075 061 050 058 041 038 030 -CAM132 860 025 039 028 029 028 030 023 029 022 036 -CAM132 870 035 051 052 061 062 089 085 080 055 081 -CAM132 880 074 073 099 089 071 088 061 082 065 079 -CAM132 890 067 063 077 059 074 070 063 057 064 047 -CAM132 900 047 045 042 047 042 041 037 023 036 039 -CAM132 910 041 048 047 040 043 049 047 046 049 039 -CAM132 920 038 043 033 028 013 026 026 025 024 042 -CAM132 930 035 035 030 022 048 032 031 033 035 031 -CAM132 940 029 035 028 035 032 035 038 040 045 031 -CAM132 950 033 039 028 042 040 038 040 024 037 055 -CAM132 960 053 046 044 067 061 066 076 069 065 058 -CAM132 970 058 049 047 056 038 038 045 051 049 034 -CAM132 980 028 025 051 048 031 043 041 042 056 065 -CAM132 990 045 049 047 041 024 019 023 026 028 034 -CAM132 1000 033 033 032 040 035 029 025 037 033 030 -CAM132 1010 046 028 035 040 029 036 038 035 041 040 -CAM132 1020 041 042 036 052 044 053 043 043 043 060 -CAM132 1030 062 055 042 037 033 037 037 033 037 039 -CAM132 1040 032 049 046 039 034 036 033 051 031 031 -CAM132 1050 040 045 034 036 035 036 034 048 050 040 -CAM132 1060 043 047 041 039 040 037 030 026 027 026 -CAM132 1070 025 025 029 021 029 033 035 033 030 030 -CAM132 1080 028 048 033 043 045 039 036 036 037 037 -CAM132 1090 035 032 042 023 039 036 039 040 025 035 -CAM132 1100 045 031 034 026 032 039 035 026 030 021 -CAM132 1110 021 027 025 019 016 017 031 022 024 019 -CAM132 1120 017 014 023 020 026 034 027 028 034 036 -CAM132 1130 031 034 030 015 023 013 022 030 026 035 -CAM132 1140 024 031 021 022 027 020 018 010 014 021 -CAM132 1150 021 017 026 021 033 036 042 028 032 035 -CAM132 1160 032 038 024 027 035 034 038 043 036 042 -CAM132 1170 045 035 033 032 024 037 036 024 020 027 -CAM132 1180 013 021 022 027 021 027 026 027 031 035 -CAM132 1190 037 025 022 034 028 033 024 029 033 028 -CAM132 1200 028 019 027 025 008 020 016 019 023 021 -CAM132 1210 017 028 031 030 030 030 018 019 011 024 -CAM132 1220 023 034 042 031 041 048 030 039 026 040 -CAM132 1230 018 026 024 999 -CAM141 1030 106 121 119 133 129 117 113 123 120 123 -CAM141 1040 103 117 125 110 112 118 098 085 068 066 -CAM141 1050 085 095 086 076 067 068 092 111 107 090 -CAM141 1060 114 137 132 112 106 113 079 098 101 119 -CAM141 1070 089 093 110 109 110 096 102 088 083 101 -CAM141 1080 107 116 080 077 098 097 091 086 091 096 -CAM141 1090 091 105 118 080 110 112 102 132 077 107 -CAM141 1100 120 087 139 082 095 101 119 113 106 098 -CAM141 1110 091 092 111 072 094 104 099 080 094 094 -CAM141 1120 086 093 092 065 076 099 075 069 088 080 -CAM141 1130 101 079 058 034 049 045 047 040 050 054 -CAM141 1140 046 067 049 045 063 050 045 027 029 048 -CAM141 1150 039 035 049 036 057 055 062 050 058 075 -CAM141 1160 058 051 039 058 050 080 069 085 059 090 -CAM141 1170 075 054 061 077 074 071 065 041 050 062 -CAM141 1180 053 070 057 064 062 065 059 053 071 082 -CAM141 1190 080 066 075 100 088 101 061 103 100 105 -CAM141 1200 098 074 094 091 079 075 066 077 065 064 -CAM141 1210 098 102 088 084 083 066 069 056 025 052 -CAM141 1220 069 068 067 062 084 078 056 055 068 077 -CAM141 1230 044 078 079 061 069 061 058 059 070 056 -CAM141 1240 066 061 057 059 053 057 054 056 089 086 -CAM141 1250 067 056 067 075 039 045 057 065 061 076 -CAM141 1260 063 081 082 071 051 060 064 063 073 052 -CAM141 1270 061 062 081 049 058 078 067 067 061 081 -CAM141 1280 060 054 064 063 044 032 059 060 039 046 -CAM141 1290 039 048 048 044 057 073 055 051 057 057 -CAM141 1300 060 060 058 054 064 055 046 037 056 038 -CAM141 1310 054 063 066 064 078 075 068 058 070 071 -CAM141 1320 064 063 080 064 077 077 090 097 082 073 -CAM141 1330 076 080 044 065 050 035 019 050 046 039 -CAM141 1340 045 046 044 055 049 055 050 042 037 039 -CAM141 1350 035 030 034 034 038 031 046 046 032 040 -CAM141 1360 028 016 024 031 037 037 043 044 044 043 -CAM141 1370 047 037 046 043 053 044 059 039 040 033 -CAM141 1380 042 062 058 064 062 066 058 059 061 068 -CAM141 1390 049 055 078 064 074 068 051 053 055 074 -CAM141 1400 067 038 062 057 065 064 070 057 057 067 -CAM141 1410 044 057 074 056 055 069 070 077 064 061 -CAM141 1420 081 060 078 085 088 063 061 075 085 088 -CAM141 1430 073 070 091 103 056 103 100 077 070 080 -CAM141 1440 093 075 064 067 070 067 065 076 066 069 -CAM141 1450 030 053 060 067 070 063 040 042 036 031 -CAM141 1460 029 037 033 047 041 037 030 043 034 043 -CAM141 1470 044 027 038 028 030 018 042 043 045 034 -CAM141 1480 040 053 038 034 055 056 052 056 050 055 -CAM141 1490 053 050 040 048 062 048 035 026 044 050 -CAM141 1500 024 054 062 073 074 070 061 050 050 077 -CAM141 1510 078 082 085 075 077 053 084 079 070 052 -CAM141 1520 059 068 061 039 064 079 057 079 065 061 -CAM141 1530 064 080 059 032 057 077 062 073 065 085 -CAM141 1540 076 043 014 041 040 027 034 045 049 048 -CAM141 1550 053 053 061 055 052 058 061 055 051 049 -CAM141 1560 065 062 074 080 073 065 070 070 074 080 -CAM141 1570 086 054 057 067 068 055 061 053 030 031 -CAM141 1580 018 050 057 058 058 060 050 052 048 056 -CAM141 1590 046 056 057 058 082 065 077 073 086 069 -CAM141 1600 063 076 036 078 079 067 061 054 072 064 -CAM141 1610 058 066 068 064 075 057 078 069 058 053 -CAM141 1620 049 067 047 057 048 057 040 056 071 072 -CAM141 1630 057 048 039 056 058 058 074 084 077 071 -CAM141 1640 085 029 029 021 020 033 037 025 046 047 -CAM141 1650 052 059 051 049 048 032 049 053 053 053 -CAM141 1660 060 068 059 071 074 069 050 049 019 020 -CAM141 1670 037 047 032 034 039 042 040 034 047 049 -CAM141 1680 048 021 051 058 059 044 042 052 058 057 -CAM141 1690 052 061 064 071 074 077 064 065 064 061 -CAM141 1700 047 062 057 053 042 047 048 049 043 051 -CAM141 1710 052 062 060 058 043 056 053 056 068 057 -CAM141 1720 077 070 050 064 068 060 060 058 063 049 -CAM141 1730 066 049 069 047 065 053 056 057 061 045 -CAM141 1740 067 063 045 065 053 063 055 075 056 067 -CAM141 1750 068 067 068 049 042 055 036 052 068 066 -CAM141 1760 083 065 057 048 056 066 057 075 064 069 -CAM141 1770 066 066 086 073 075 076 056 059 064 064 -CAM141 1780 057 048 019 036 048 060 061 048 059 065 -CAM141 1790 063 067 072 067 057 034 055 068 059 060 -CAM141 1800 072 067 051 060 063 079 068 056 074 074 -CAM141 1810 060 074 051 048 060 059 066 077 063 063 -CAM141 1820 057 073 048 057 044 065 058 055 052 052 -CAM141 1830 066 057 073 053 061 045 027 042 042 051 -CAM141 1840 045 046 044 054 042 033 041 039 056 050 -CAM141 1850 055 052 070 065 053 053 025 027 023 034 -CAM141 1860 047 038 035 042 053 038 058 045 055 047 -CAM141 1870 059 052 055 051 057 060 051 057 057 047 -CAM141 1880 037 047 061 044 058 055 067 063 064 051 -CAM141 1890 069 071 058 060 060 068 035 060 064 017 -CAM141 1900 060 074 059 068 063 064 067 073 052 054 -CAM141 1910 060 058 055 052 070 057 057 041 056 066 -CAM141 1920 057 060 065 055 039 059 060 076 070 011 -CAM141 1930 065 082 071 077 102 063 059 072 063 075 -CAM141 1940 064 054 052 070 056 065 081 078 048 061 -CAM141 1950 069 070 069 073 078 074 080 074 081 073 -CAM141 1960 024 039 072 078 074 080 081 069 067 107 -CAM141 1970 058 999 -CAM151 1222 145 091 130 113 094 087 081 120 -CAM151 1230 065 116 115 133 137 109 064 093 100 106 -CAM151 1240 110 092 071 073 062 064 075 091 088 072 -CAM151 1250 094 089 077 079 028 060 084 082 050 107 -CAM151 1260 108 088 095 097 066 093 094 087 080 061 -CAM151 1270 079 071 104 071 090 101 067 084 079 090 -CAM151 1280 079 060 075 068 076 072 107 119 063 096 -CAM151 1290 106 075 081 076 085 103 097 066 076 076 -CAM151 1300 074 077 070 053 069 062 045 048 085 043 -CAM151 1310 050 079 064 090 095 076 055 104 108 106 -CAM151 1320 072 122 125 092 144 095 107 118 111 128 -CAM151 1330 109 128 093 105 063 040 028 048 035 038 -CAM151 1340 064 057 037 043 061 061 067 063 054 061 -CAM151 1350 058 080 116 050 044 057 085 049 041 047 -CAM151 1360 034 021 020 065 051 038 054 065 057 046 -CAM151 1370 048 051 068 048 045 048 064 040 164 146 -CAM151 1380 079 083 069 090 074 086 051 064 086 082 -CAM151 1390 050 082 066 064 077 074 058 071 064 073 -CAM151 1400 081 037 084 076 061 086 097 047 076 069 -CAM151 1410 070 081 071 057 051 041 058 065 052 061 -CAM151 1420 056 056 047 070 064 055 045 046 067 068 -CAM151 1430 057 033 069 063 038 080 067 051 044 061 -CAM151 1440 058 040 031 078 036 022 032 026 012 029 -CAM151 1450 006 031 019 030 034 031 014 018 026 005 -CAM151 1460 017 013 015 018 023 018 010 026 009 021 -CAM151 1470 030 010 016 011 016 004 026 033 026 014 -CAM151 1480 022 033 019 010 040 044 048 046 035 037 -CAM151 1490 041 032 022 041 044 035 022 014 022 059 -CAM151 1500 032 042 038 046 054 036 044 015 034 046 -CAM151 1510 037 033 061 039 044 026 041 058 030 046 -CAM151 1520 048 037 033 037 067 058 044 075 046 036 -CAM151 1530 053 046 049 009 061 069 057 066 046 063 -CAM151 1540 060 042 026 044 015 015 027 018 012 033 -CAM151 1550 033 022 037 023 026 024 034 031 010 018 -CAM151 1560 017 035 029 034 041 035 023 033 056 067 -CAM151 1570 040 016 025 029 039 032 037 047 018 013 -CAM151 1580 017 041 033 042 029 037 025 037 046 027 -CAM151 1590 012 034 024 037 056 034 044 039 070 041 -CAM151 1600 036 036 013 063 061 042 014 002 020 019 -CAM151 1610 022 015 013 019 026 018 025 025 011 012 -CAM151 1620 019 023 017 019 006 028 028 030 035 047 -CAM151 1630 026 013 008 036 042 031 035 036 024 040 -CAM151 1640 046 017 022 034 021 024 035 012 027 027 -CAM151 1650 021 039 024 032 033 015 041 040 041 031 -CAM151 1660 041 046 037 036 048 035 031 030 008 013 -CAM151 1670 000 024 011 014 026 010 020 019 025 027 -CAM151 1680 033 005 026 026 023 012 006 020 023 020 -CAM151 1690 002 025 015 019 036 039 021 019 014 014 -CAM151 1700 014 010 013 000 010 001 017 012 015 046 -CAM151 1710 025 018 024 033 013 019 010 017 023 013 -CAM151 1720 025 032 024 024 036 023 023 023 029 024 -CAM151 1730 026 007 019 008 019 019 033 026 014 013 -CAM151 1740 030 038 019 026 024 024 013 027 018 025 -CAM151 1750 020 035 022 008 014 025 021 030 035 017 -CAM151 1760 047 042 029 008 018 034 026 040 016 023 -CAM151 1770 028 029 041 038 026 041 037 025 039 050 -CAM151 1780 034 025 008 017 032 030 043 031 029 041 -CAM151 1790 024 030 041 038 029 017 040 033 021 034 -CAM151 1800 044 031 032 036 039 048 024 015 042 042 -CAM151 1810 029 042 011 018 014 014 019 036 017 021 -CAM151 1820 011 023 013 023 014 034 040 030 026 014 -CAM151 1830 023 028 035 019 029 023 010 029 030 028 -CAM151 1840 015 021 012 029 014 012 024 018 050 041 -CAM151 1850 026 035 051 035 020 022 007 018 014 033 -CAM151 1860 046 031 037 024 061 028 051 048 026 018 -CAM151 1870 040 038 053 043 029 038 020 050 042 038 -CAM151 1880 011 033 052 041 041 037 044 048 045 057 -CAM151 1890 050 056 039 043 029 045 024 046 049 011 -CAM151 1900 062 070 047 050 051 057 060 075 034 056 -CAM151 1910 037 057 041 039 048 042 048 039 039 050 -CAM151 1920 048 049 049 049 030 060 046 054 044 008 -CAM151 1930 066 051 062 047 066 030 024 062 058 059 -CAM151 1940 042 049 052 063 028 038 063 063 031 038 -CAM151 1950 052 057 068 071 054 053 054 068 063 071 -CAM151 1960 015 012 060 062 064 066 023 062 060 074 -CAM151 1970 049 999 -CAM152 1221 056 125 107 084 081 050 062 099 094 -CAM152 1230 051 059 039 038 040 050 038 044 057 046 -CAM152 1240 061 060 058 068 061 066 075 070 082 066 -CAM152 1250 067 073 065 079 048 054 083 085 041 065 -CAM152 1260 059 055 068 056 054 083 048 060 057 049 -CAM152 1270 045 056 082 061 067 080 075 099 055 085 -CAM152 1280 050 054 061 055 044 026 067 057 035 052 -CAM152 1290 039 049 051 054 053 054 075 068 071 071 -CAM152 1300 050 057 049 050 058 044 040 035 041 027 -CAM152 1310 037 045 047 048 073 058 048 057 075 084 -CAM152 1320 080 098 095 074 095 077 076 087 059 074 -CAM152 1330 062 049 042 045 036 008 011 027 010 014 -CAM152 1340 018 018 019 025 025 035 042 036 048 053 -CAM152 1350 029 041 057 061 044 055 071 052 040 051 -CAM152 1360 024 014 023 031 041 037 044 052 059 038 -CAM152 1370 043 046 045 045 051 045 051 064 067 043 -CAM152 1380 062 074 077 081 066 086 074 064 082 075 -CAM152 1390 054 075 085 067 074 066 043 058 055 059 -CAM152 1400 050 035 061 068 051 051 058 046 050 062 -CAM152 1410 035 058 057 048 040 051 053 059 038 046 -CAM152 1420 044 037 038 043 045 042 029 033 042 043 -CAM152 1430 040 034 042 047 024 052 060 034 039 042 -CAM152 1440 054 037 026 036 024 025 022 015 006 023 -CAM152 1450 999 -CAM161 1106 054 048 044 032 -CAM161 1110 032 051 062 041 026 024 037 031 028 025 -CAM161 1120 034 019 038 036 043 055 043 039 049 039 -CAM161 1130 041 063 056 026 031 029 032 038 041 037 -CAM161 1140 034 039 033 034 035 030 034 019 012 022 -CAM161 1150 034 027 039 032 042 045 058 049 043 060 -CAM161 1160 060 053 041 048 037 049 051 056 053 061 -CAM161 1170 055 049 043 054 043 060 045 035 029 028 -CAM161 1180 026 035 040 048 050 051 056 056 083 072 -CAM161 1190 087 079 077 090 071 077 068 068 075 056 -CAM161 1200 056 030 068 039 021 033 024 022 023 026 -CAM161 1210 016 037 035 030 038 044 028 028 016 023 -CAM161 1220 025 043 049 040 052 045 045 039 039 044 -CAM161 1230 023 058 046 038 033 039 045 036 040 041 -CAM161 1240 048 047 043 045 033 055 044 048 063 059 -CAM161 1250 046 041 053 049 035 025 032 043 026 045 -CAM161 1260 046 048 044 040 036 029 039 041 023 041 -CAM161 1270 036 021 039 031 037 032 042 042 016 062 -CAM161 1280 050 036 059 045 027 028 035 034 024 029 -CAM161 1290 022 029 037 029 028 038 029 025 041 033 -CAM161 1300 025 042 037 039 047 041 036 031 044 029 -CAM161 1310 037 040 037 040 055 039 045 044 043 059 -CAM161 1320 057 051 069 058 070 077 070 076 066 058 -CAM161 1330 052 053 025 035 021 023 006 020 016 015 -CAM161 1340 018 019 016 020 013 018 020 023 015 017 -CAM161 1350 012 014 019 019 022 014 019 020 026 019 -CAM161 1360 019 020 024 021 022 019 024 029 026 026 -CAM161 1370 027 034 038 024 031 032 034 034 028 029 -CAM161 1380 028 036 035 037 038 036 038 037 048 037 -CAM161 1390 027 041 042 036 049 053 046 041 038 033 -CAM161 1400 036 042 049 050 048 055 049 047 044 045 -CAM161 1410 043 043 041 038 037 036 026 043 026 028 -CAM161 1420 028 034 025 030 034 026 019 025 029 032 -CAM161 1430 029 027 033 027 036 040 036 050 031 045 -CAM161 1440 045 031 043 029 030 034 031 036 025 032 -CAM161 1450 016 010 032 026 024 037 031 024 016 016 -CAM161 1460 010 016 018 018 016 012 011 007 012 021 -CAM161 1470 010 009 016 010 009 009 017 012 016 019 -CAM161 1480 004 021 015 016 011 021 015 018 015 020 -CAM161 1490 020 013 014 011 017 013 011 014 018 015 -CAM161 1500 013 011 019 018 015 014 015 010 018 022 -CAM161 1510 011 020 015 017 013 022 022 018 020 023 -CAM161 1520 025 020 016 000 023 033 025 027 043 033 -CAM161 1530 036 034 035 019 032 058 048 051 046 049 -CAM161 1540 045 037 031 026 031 040 030 028 039 035 -CAM161 1550 042 036 048 035 042 038 040 041 026 028 -CAM161 1560 037 041 037 033 031 025 035 038 036 032 -CAM161 1570 034 029 036 022 032 033 035 033 015 029 -CAM161 1580 027 031 025 033 025 021 020 031 032 025 -CAM161 1590 027 027 033 031 040 022 038 041 033 028 -CAM161 1600 026 019 008 024 011 007 003 012 015 016 -CAM161 1610 999 -CAM162 971 057 053 045 055 049 051 053 068 042 -CAM162 980 028 018 062 061 040 056 055 047 049 055 -CAM162 990 039 040 050 062 044 030 049 055 058 054 -CAM162 1000 059 010 058 048 044 023 054 055 056 057 -CAM162 1010 064 051 076 066 059 060 058 075 073 091 -CAM162 1020 068 080 078 087 081 079 074 068 096 104 -CAM162 1030 086 088 067 067 057 072 056 057 069 064 -CAM162 1040 063 073 072 072 075 082 075 096 059 064 -CAM162 1050 076 095 081 072 067 062 065 066 064 070 -CAM162 1060 058 079 075 073 056 055 053 063 044 056 -CAM162 1070 078 080 089 076 076 082 087 070 060 062 -CAM162 1080 072 083 061 073 089 082 080 075 085 089 -CAM162 1090 089 092 095 071 078 082 082 077 062 069 -CAM162 1100 086 077 066 060 069 053 056 044 048 038 -CAM162 1110 041 049 061 034 028 028 042 025 032 029 -CAM162 1120 035 026 051 041 052 057 058 055 056 047 -CAM162 1130 046 051 039 022 024 024 026 032 045 035 -CAM162 1140 038 054 044 046 051 052 049 040 031 050 -CAM162 1150 062 062 078 060 071 072 079 063 061 086 -CAM162 1160 077 066 057 052 047 053 048 061 055 059 -CAM162 1170 075 051 049 050 047 071 052 052 048 057 -CAM162 1180 049 058 063 066 061 052 058 046 061 049 -CAM162 1190 064 053 042 064 047 055 044 051 050 058 -CAM162 1200 052 030 052 038 023 027 021 022 030 026 -CAM162 1210 023 035 038 032 055 044 044 037 011 026 -CAM162 1220 038 037 044 041 048 054 042 049 040 048 -CAM162 1230 023 058 051 047 040 041 050 040 046 043 -CAM162 1240 056 049 057 054 048 067 052 061 073 075 -CAM162 1250 063 050 064 056 057 027 043 046 040 055 -CAM162 1260 066 058 056 045 048 030 041 046 042 049 -CAM162 1270 037 022 038 033 040 031 042 044 022 052 -CAM162 1280 049 032 054 040 024 026 029 031 021 026 -CAM162 1290 022 025 033 028 026 025 030 019 036 030 -CAM162 1300 020 034 029 037 034 035 033 026 036 029 -CAM162 1310 032 040 037 040 051 039 044 046 046 068 -CAM162 1320 074 067 090 074 073 070 074 076 062 055 -CAM162 1330 059 058 032 048 030 035 010 015 023 020 -CAM162 1340 015 020 017 024 023 021 020 025 021 029 -CAM162 1350 025 018 024 018 032 029 029 033 029 029 -CAM162 1360 028 022 021 019 022 021 023 021 022 027 -CAM162 1370 025 022 025 021 024 020 026 023 024 023 -CAM162 1380 026 031 027 030 037 032 034 042 048 042 -CAM162 1390 040 049 056 036 049 058 052 046 044 043 -CAM162 1400 057 051 069 056 058 070 054 060 051 049 -CAM162 1410 038 035 040 030 033 029 028 049 029 037 -CAM162 1420 043 040 032 037 031 025 022 025 030 042 -CAM162 1430 029 027 038 024 036 049 033 042 028 034 -CAM162 1440 040 031 033 033 031 035 033 039 027 042 -CAM162 1450 036 026 035 029 025 043 031 022 013 021 -CAM162 1460 016 008 024 019 016 013 013 004 015 018 -CAM162 1470 016 012 020 012 013 003 022 019 021 019 -CAM162 1480 018 030 017 021 024 032 027 033 038 037 -CAM162 1490 036 030 025 027 035 031 018 001 023 031 -CAM162 1500 027 032 027 033 036 033 027 030 026 046 -CAM162 1510 042 035 040 035 040 030 048 042 042 042 -CAM162 1520 041 042 038 015 039 046 030 043 049 044 -CAM162 1530 030 035 031 018 029 050 040 046 040 041 -CAM162 1540 047 020 028 025 023 025 016 018 023 024 -CAM162 1550 025 024 037 023 031 032 032 029 030 032 -CAM162 1560 031 046 044 041 037 027 038 040 037 044 -CAM162 1570 041 034 037 032 033 032 036 041 024 028 -CAM162 1580 029 031 026 031 031 028 025 031 031 025 -CAM162 1590 021 018 026 025 030 019 028 029 028 023 -CAM162 1600 019 010 017 032 021 012 007 013 015 012 -CAM162 1610 012 017 010 015 016 010 025 025 000 014 -CAM162 1620 019 019 026 016 000 018 017 022 017 024 -CAM162 1630 022 025 020 017 016 024 028 029 037 032 -CAM162 1640 028 000 023 029 021 024 037 025 027 018 -CAM162 1650 007 021 016 023 026 010 010 017 026 026 -CAM162 1660 027 043 030 032 053 054 046 035 032 024 -CAM162 1670 025 033 022 027 024 024 023 014 020 016 -CAM162 1680 015 004 022 018 021 015 012 020 021 027 -CAM162 1690 023 029 027 029 032 006 015 031 032 016 -CAM162 1700 023 027 022 010 017 004 014 009 008 017 -CAM162 1710 009 003 017 017 013 026 022 022 025 016 -CAM162 1720 022 025 025 021 032 029 026 032 036 039 -CAM162 1730 045 025 038 015 038 017 038 038 040 038 -CAM162 1740 039 043 033 046 040 049 039 045 042 045 -CAM162 1750 040 047 026 019 034 030 024 033 030 019 -CAM162 1760 037 029 027 015 020 032 025 034 019 028 -CAM162 1770 031 035 036 029 025 038 035 018 035 036 -CAM162 1780 032 037 014 035 031 036 039 036 038 037 -CAM162 1790 030 027 033 021 029 028 028 027 030 030 -CAM162 1800 039 044 040 037 040 047 042 043 039 032 -CAM162 1810 015 030 021 020 016 014 014 018 016 016 -CAM162 1820 016 020 017 026 024 029 033 034 026 032 -CAM162 1830 033 033 037 028 037 030 017 022 025 027 -CAM162 1840 025 029 020 028 020 026 027 027 035 027 -CAM162 1850 024 032 034 037 040 041 036 026 035 036 -CAM162 1860 047 047 042 043 056 036 063 056 041 048 -CAM162 1870 065 053 044 048 041 038 038 046 050 048 -CAM162 1880 028 031 044 042 041 047 057 050 037 041 -CAM162 1890 038 042 045 041 033 042 035 043 050 027 -CAM162 1900 050 057 053 052 046 052 048 066 066 062 -CAM162 1910 061 065 047 040 056 060 043 027 033 043 -CAM162 1920 036 041 046 049 040 052 041 063 056 039 -CAM162 1930 058 063 044 039 040 044 043 046 047 033 -CAM162 1940 053 044 048 060 048 062 072 069 049 055 -CAM162 1950 072 080 066 074 076 084 047 042 033 045 -CAM162 1960 016 026 045 047 052 044 030 040 047 047 -CAM162 1970 039 999 -CAM171 1213 114 079 075 072 070 060 075 -CAM171 1220 106 123 150 123 128 101 098 121 104 154 -CAM171 1230 067 109 110 114 091 083 067 070 070 060 -CAM171 1240 059 058 054 059 060 068 078 066 087 087 -CAM171 1250 087 078 095 098 057 072 091 084 072 072 -CAM171 1260 063 077 081 068 068 071 052 072 058 067 -CAM171 1270 067 051 090 073 067 084 089 079 103 110 -CAM171 1280 091 066 064 069 047 045 082 044 034 046 -CAM171 1290 087 058 054 038 043 065 073 049 072 083 -CAM171 1300 073 065 072 053 049 039 035 043 045 026 -CAM171 1310 051 046 047 060 066 060 069 071 086 074 -CAM171 1320 069 065 074 086 087 094 095 095 084 083 -CAM171 1330 059 073 025 060 049 056 019 043 037 038 -CAM171 1340 038 037 024 037 031 042 043 044 041 051 -CAM171 1350 049 062 073 023 039 028 052 040 050 048 -CAM171 1360 037 039 037 053 071 062 058 072 085 064 -CAM171 1370 063 061 070 062 055 047 053 046 053 052 -CAM171 1380 054 066 064 062 058 069 053 062 063 075 -CAM171 1390 061 076 076 061 065 073 044 070 062 075 -CAM171 1400 090 060 075 062 051 089 080 067 068 059 -CAM171 1410 056 060 041 052 049 052 054 065 039 062 -CAM171 1420 066 030 051 050 056 044 042 045 057 066 -CAM171 1430 053 044 047 071 043 064 074 066 057 041 -CAM171 1440 061 041 043 035 040 041 038 047 033 040 -CAM171 1450 023 035 041 045 034 040 025 029 027 023 -CAM171 1460 024 037 032 027 033 034 029 041 027 047 -CAM171 1470 058 033 037 027 029 030 038 050 047 036 -CAM171 1480 030 050 031 037 050 045 056 050 043 041 -CAM171 1490 049 029 023 037 044 034 034 024 025 036 -CAM171 1500 022 040 049 058 051 056 037 046 048 068 -CAM171 1510 057 060 062 055 055 031 050 058 040 050 -CAM171 1520 058 040 063 056 061 075 050 064 060 046 -CAM171 1530 058 054 050 038 046 053 055 062 040 061 -CAM171 1540 049 019 016 026 029 020 021 017 022 029 -CAM171 1550 039 036 043 033 032 033 031 036 028 035 -CAM171 1560 043 033 041 036 054 068 054 040 051 059 -CAM171 1570 056 037 030 031 027 043 040 041 016 029 -CAM171 1580 020 039 040 060 048 033 033 040 042 037 -CAM171 1590 030 032 030 048 069 026 058 052 057 047 -CAM171 1600 034 052 019 041 039 040 027 020 034 036 -CAM171 1610 034 032 025 023 032 031 037 038 014 019 -CAM171 1620 025 029 028 030 026 041 019 038 039 031 -CAM171 1630 033 033 023 037 040 040 041 043 038 034 -CAM171 1640 044 024 023 032 033 031 033 020 027 028 -CAM171 1650 030 041 037 036 029 026 044 037 047 051 -CAM171 1660 064 058 052 040 057 058 043 037 017 032 -CAM171 1670 031 034 031 033 039 031 028 038 040 035 -CAM171 1680 053 018 032 038 033 035 020 033 025 028 -CAM171 1690 027 036 020 034 042 041 033 038 040 028 -CAM171 1700 022 019 017 016 023 018 025 026 023 039 -CAM171 1710 031 023 033 033 036 043 031 030 026 027 -CAM171 1720 018 026 029 023 029 022 020 020 031 024 -CAM171 1730 030 008 033 011 020 031 033 031 032 012 -CAM171 1740 022 025 022 022 023 022 024 033 027 031 -CAM171 1750 030 024 024 023 021 021 024 031 034 027 -CAM171 1760 043 030 028 023 022 027 027 030 017 026 -CAM171 1770 024 034 029 026 023 030 024 016 031 029 -CAM171 1780 032 033 021 022 026 035 040 032 032 020 -CAM171 1790 030 033 029 024 021 022 032 038 032 034 -CAM171 1800 035 046 028 028 036 047 044 041 038 040 -CAM171 1810 017 025 022 021 031 023 018 030 020 026 -CAM171 1820 019 026 025 029 026 034 029 023 021 011 -CAM171 1830 028 034 024 029 026 031 022 016 027 032 -CAM171 1840 032 019 027 024 026 016 025 021 031 017 -CAM171 1850 030 029 059 043 027 034 017 014 019 025 -CAM171 1860 040 030 041 027 038 035 033 038 037 020 -CAM171 1870 024 019 031 030 035 028 044 051 048 038 -CAM171 1880 039 046 055 044 055 039 051 045 045 060 -CAM171 1890 039 033 042 049 023 032 026 033 032 017 -CAM171 1900 035 045 031 033 035 045 041 046 040 041 -CAM171 1910 033 050 028 030 041 041 046 030 024 033 -CAM171 1920 041 031 043 036 021 038 037 050 031 023 -CAM171 1930 046 033 045 051 059 057 058 074 071 043 -CAM171 1940 082 061 066 081 056 061 079 077 062 048 -CAM171 1950 048 052 059 064 060 049 056 053 061 067 -CAM171 1960 037 036 057 068 056 062 049 070 063 099 -CAM171 1970 071 999 -CAM172 1174 108 155 127 124 105 099 -CAM172 1180 136 145 146 186 198 129 149 128 126 113 -CAM172 1190 109 071 073 093 095 062 081 124 101 072 -CAM172 1200 095 027 049 035 013 036 022 037 048 056 -CAM172 1210 045 065 039 060 068 065 053 048 036 061 -CAM172 1220 081 084 117 074 078 084 066 080 093 094 -CAM172 1230 046 058 051 038 036 053 038 050 048 046 -CAM172 1240 059 055 045 058 049 062 059 043 063 064 -CAM172 1250 047 050 054 067 034 042 056 067 053 067 -CAM172 1260 058 059 080 059 059 053 070 093 067 065 -CAM172 1270 077 082 138 098 112 105 108 111 095 089 -CAM172 1280 083 078 081 078 064 065 083 070 046 076 -CAM172 1290 074 075 065 069 062 076 070 065 090 118 -CAM172 1300 098 086 087 068 079 067 052 062 081 045 -CAM172 1310 073 069 075 092 088 067 110 109 092 089 -CAM172 1320 086 109 111 084 115 096 080 069 080 089 -CAM172 1330 077 074 038 070 044 050 025 078 037 053 -CAM172 1340 047 044 047 047 039 057 057 043 044 051 -CAM172 1350 042 046 056 030 034 068 072 047 038 041 -CAM172 1360 026 044 048 052 050 049 050 058 071 056 -CAM172 1370 052 050 065 072 071 064 056 056 059 055 -CAM172 1380 068 078 081 085 072 057 062 089 087 099 -CAM172 1390 068 059 090 077 083 073 062 071 070 081 -CAM172 1400 085 048 063 070 056 075 080 077 071 089 -CAM172 1410 074 101 095 058 059 071 078 087 065 086 -CAM172 1420 085 077 089 083 105 069 055 057 067 080 -CAM172 1430 061 057 064 077 063 087 086 094 082 074 -CAM172 1440 093 062 058 060 056 074 065 062 041 043 -CAM172 1450 035 030 032 040 017 031 028 027 019 018 -CAM172 1460 019 030 022 028 021 030 023 035 022 039 -CAM172 1470 041 016 029 018 017 021 029 029 029 031 -CAM172 1480 025 040 029 033 046 048 045 040 040 031 -CAM172 1490 043 030 042 046 049 050 036 032 034 049 -CAM172 1500 033 048 050 062 045 060 051 042 048 053 -CAM172 1510 067 064 066 063 059 040 058 065 047 050 -CAM172 1520 049 053 066 058 073 085 055 070 072 059 -CAM172 1530 069 052 054 033 050 057 055 058 032 051 -CAM172 1540 039 023 022 027 025 025 023 022 033 033 -CAM172 1550 031 018 045 038 036 041 043 037 030 036 -CAM172 1560 054 033 034 034 046 051 049 039 045 047 -CAM172 1570 044 028 032 028 033 034 029 045 019 022 -CAM172 1580 013 030 032 041 033 021 028 031 034 035 -CAM172 1590 027 027 028 040 044 025 049 037 043 046 -CAM172 1600 034 032 028 050 047 045 034 019 026 031 -CAM172 1610 033 033 032 022 041 031 040 051 019 036 -CAM172 1620 032 033 023 030 025 037 020 025 036 033 -CAM172 1630 026 024 022 031 041 039 045 044 035 034 -CAM172 1640 054 023 032 034 034 035 037 020 039 035 -CAM172 1650 030 037 032 021 020 018 030 028 037 028 -CAM172 1660 045 057 035 033 042 040 041 024 015 030 -CAM172 1670 024 033 021 023 024 019 023 027 029 028 -CAM172 1680 031 008 033 034 029 020 015 022 028 025 -CAM172 1690 018 028 026 030 033 030 025 036 028 019 -CAM172 1700 029 024 019 019 024 023 034 020 016 037 -CAM172 1710 024 033 030 025 019 026 026 034 047 036 -CAM172 1720 046 042 035 037 044 040 036 045 046 034 -CAM172 1730 038 030 046 027 048 033 039 050 040 022 -CAM172 1740 042 044 030 040 042 040 036 042 033 038 -CAM172 1750 039 043 044 019 023 033 031 033 039 028 -CAM172 1760 048 041 037 033 025 036 035 042 038 044 -CAM172 1770 035 049 045 039 041 045 041 034 047 045 -CAM172 1780 037 041 019 021 038 038 044 041 031 049 -CAM172 1790 028 033 044 041 035 023 031 032 039 043 -CAM172 1800 048 045 043 042 046 050 036 034 039 035 -CAM172 1810 023 033 021 030 024 023 024 038 026 027 -CAM172 1820 019 031 029 028 022 030 034 031 035 024 -CAM172 1830 040 040 038 039 034 024 019 030 031 028 -CAM172 1840 025 024 020 030 019 017 022 015 027 033 -CAM172 1850 022 025 034 026 031 027 016 012 020 022 -CAM172 1860 032 021 020 012 030 016 039 032 023 024 -CAM172 1870 030 025 031 035 039 036 034 036 038 033 -CAM172 1880 023 034 035 033 036 042 048 041 038 046 -CAM172 1890 037 042 041 043 030 040 032 042 038 014 -CAM172 1900 039 049 030 037 036 044 042 061 048 044 -CAM172 1910 041 053 044 039 057 047 051 038 032 039 -CAM172 1920 043 035 047 029 025 045 047 050 040 014 -CAM172 1930 045 058 044 042 045 040 033 052 062 048 -CAM172 1940 051 046 042 052 038 042 050 051 031 031 -CAM172 1950 031 050 041 043 044 046 045 038 045 048 -CAM172 1960 022 023 046 065 044 045 048 054 050 055 -CAM172 1970 027 999 -CAM181 1190 072 058 042 058 048 055 038 060 045 046 -CAM181 1200 055 039 051 044 038 041 029 043 033 045 -CAM181 1210 051 053 049 041 040 028 027 018 007 023 -CAM181 1220 028 025 039 030 048 043 028 020 024 041 -CAM181 1230 028 045 041 038 040 036 030 018 028 020 -CAM181 1240 024 021 028 024 026 024 025 029 026 028 -CAM181 1250 027 033 025 036 021 017 015 031 002 033 -CAM181 1260 029 036 041 034 023 043 044 043 045 032 -CAM181 1270 036 028 036 011 028 030 031 028 012 033 -CAM181 1280 029 024 027 021 021 019 031 029 013 025 -CAM181 1290 019 024 019 022 025 029 023 026 019 024 -CAM181 1300 022 029 017 010 015 019 017 011 022 012 -CAM181 1310 023 027 027 032 035 021 036 033 029 036 -CAM181 1320 024 035 033 018 047 038 039 037 042 043 -CAM181 1330 052 042 029 030 021 018 002 016 005 010 -CAM181 1340 015 018 010 017 013 021 016 015 014 013 -CAM181 1350 011 021 028 026 024 018 034 027 029 026 -CAM181 1360 020 016 011 023 030 023 022 025 035 035 -CAM181 1370 035 025 040 040 038 042 035 034 021 018 -CAM181 1380 028 033 032 033 033 033 036 040 039 030 -CAM181 1390 021 024 022 017 028 031 021 029 034 033 -CAM181 1400 030 019 033 024 028 043 033 019 028 027 -CAM181 1410 019 023 026 021 015 017 017 028 020 025 -CAM181 1420 022 024 020 022 022 019 014 021 023 021 -CAM181 1430 016 012 021 015 003 019 016 016 005 018 -CAM181 1440 016 009 002 015 009 005 007 007 008 013 -CAM181 1450 000 011 009 014 009 011 005 005 004 007 -CAM181 1460 004 009 009 010 009 009 008 008 006 012 -CAM181 1470 014 007 013 007 007 003 016 014 017 016 -CAM181 1480 012 026 013 010 015 016 016 012 013 016 -CAM181 1490 016 011 010 012 016 011 009 004 013 013 -CAM181 1500 008 016 012 016 020 015 021 015 005 017 -CAM181 1510 026 026 021 027 023 013 028 031 034 026 -CAM181 1520 027 021 018 000 015 013 017 020 010 016 -CAM181 1530 018 019 013 004 014 011 013 012 010 011 -CAM181 1540 012 008 002 010 005 006 008 005 003 013 -CAM181 1550 016 013 017 017 016 015 024 022 012 017 -CAM181 1560 022 022 024 021 020 017 017 023 017 022 -CAM181 1570 015 012 019 010 017 011 016 014 006 009 -CAM181 1580 012 018 016 030 020 027 032 038 038 024 -CAM181 1590 022 034 032 034 046 036 037 043 053 041 -CAM181 1600 034 028 038 051 025 025 018 010 024 028 -CAM181 1610 017 014 013 020 026 012 028 022 014 020 -CAM181 1620 018 025 010 014 006 019 008 018 017 024 -CAM181 1630 013 013 008 020 024 019 023 023 025 023 -CAM181 1640 033 020 022 025 018 021 015 011 022 021 -CAM181 1650 037 040 022 028 025 009 025 029 035 028 -CAM181 1660 040 051 041 051 048 043 051 046 028 022 -CAM181 1670 018 027 017 017 019 012 018 008 021 018 -CAM181 1680 025 010 022 025 029 020 013 018 017 017 -CAM181 1690 012 027 022 028 032 033 031 027 022 032 -CAM181 1700 024 020 020 009 010 002 015 013 010 021 -CAM181 1710 024 022 028 041 027 040 033 037 050 045 -CAM181 1720 044 066 060 042 053 064 061 054 063 066 -CAM181 1730 080 053 067 033 045 048 043 056 038 024 -CAM181 1740 038 040 028 033 023 032 015 032 023 024 -CAM181 1750 022 035 033 028 018 026 022 022 027 024 -CAM181 1760 032 032 024 013 022 023 020 032 021 024 -CAM181 1770 029 024 028 021 022 034 039 028 032 044 -CAM181 1780 051 029 010 040 041 037 041 033 045 048 -CAM181 1790 040 031 047 058 044 067 052 071 071 053 -CAM181 1800 048 043 047 050 044 051 033 037 045 042 -CAM181 1810 021 023 015 022 030 031 038 036 038 035 -CAM181 1820 034 032 040 044 037 037 056 041 046 033 -CAM181 1830 037 036 040 034 040 044 025 025 017 033 -CAM181 1840 015 024 021 028 019 029 016 019 023 021 -CAM181 1850 014 026 029 023 024 021 023 010 014 015 -CAM181 1860 021 012 016 009 031 017 021 024 027 029 -CAM181 1870 040 056 066 067 071 054 045 049 047 046 -CAM181 1880 032 043 067 041 068 048 076 063 065 065 -CAM181 1890 066 062 043 046 033 037 022 034 047 025 -CAM181 1900 041 033 029 026 021 028 030 047 026 031 -CAM181 1910 031 039 022 019 023 019 027 018 020 040 -CAM181 1920 035 031 030 039 031 051 046 057 051 046 -CAM181 1930 051 045 038 046 060 032 045 044 044 039 -CAM181 1940 051 047 048 054 052 057 060 052 030 056 -CAM181 1950 057 054 045 054 046 055 049 060 051 043 -CAM181 1960 027 023 050 060 063 062 057 062 066 069 -CAM181 1970 057 999 -CAM191 1180 138 176 217 254 209 131 179 140 133 130 -CAM191 1190 164 092 140 170 204 149 092 140 158 141 -CAM191 1200 189 082 116 072 050 090 075 085 069 073 -CAM191 1210 098 193 129 104 103 032 060 050 007 037 -CAM191 1220 085 124 126 115 144 133 091 073 096 137 -CAM191 1230 077 127 132 104 111 121 096 102 122 114 -CAM191 1240 120 086 086 067 066 094 088 084 102 101 -CAM191 1250 099 080 087 103 029 030 077 094 024 072 -CAM191 1260 089 095 107 094 050 024 016 029 031 023 -CAM191 1270 037 053 070 049 063 101 081 068 049 079 -CAM191 1280 075 046 058 061 051 019 052 063 041 061 -CAM191 1290 051 066 064 056 050 066 065 057 038 036 -CAM191 1300 057 068 065 051 061 068 061 061 086 063 -CAM191 1310 057 076 082 080 086 086 048 051 059 042 -CAM191 1320 046 060 082 021 080 086 096 101 091 068 -CAM191 1330 069 077 024 067 024 039 023 033 025 024 -CAM191 1340 028 038 037 049 042 042 047 051 037 049 -CAM191 1350 047 045 059 066 041 048 063 052 037 048 -CAM191 1360 026 006 013 022 036 029 026 048 043 063 -CAM191 1370 058 034 051 071 068 066 065 033 052 029 -CAM191 1380 047 067 072 075 077 087 068 062 061 077 -CAM191 1390 067 058 077 064 078 071 061 052 043 041 -CAM191 1400 056 021 048 051 045 062 058 030 041 058 -CAM191 1410 046 052 062 057 038 051 046 070 043 052 -CAM191 1420 056 043 043 053 051 042 036 055 041 055 -CAM191 1430 044 030 052 059 017 060 061 042 034 041 -CAM191 1440 056 046 038 033 025 025 016 019 007 017 -CAM191 1450 006 012 013 019 011 021 010 008 007 012 -CAM191 1460 006 016 014 015 013 014 019 017 019 019 -CAM191 1470 021 016 013 014 011 000 019 017 014 014 -CAM191 1480 020 025 016 021 021 023 033 024 024 022 -CAM191 1490 032 031 025 038 042 030 019 000 012 025 -CAM191 1500 009 026 027 028 020 019 014 017 020 022 -CAM191 1510 022 025 032 024 025 016 033 027 026 027 -CAM191 1520 038 034 008 000 019 027 024 037 019 016 -CAM191 1530 028 020 025 000 020 033 033 045 031 040 -CAM191 1540 038 010 000 016 014 003 011 017 021 016 -CAM191 1550 023 017 028 024 024 028 018 026 000 024 -CAM191 1560 024 030 016 028 027 010 030 034 020 030 -CAM191 1570 018 000 008 008 015 016 014 013 000 001 -CAM191 1580 003 019 013 023 016 015 018 019 019 015 -CAM191 1590 008 015 009 015 026 016 026 026 033 030 -CAM191 1600 014 022 008 026 025 026 016 002 029 029 -CAM191 1610 023 018 009 018 026 014 029 026 000 017 -CAM191 1620 019 014 020 010 017 023 017 019 023 027 -CAM191 1630 022 015 012 019 028 031 025 028 021 026 -CAM191 1640 033 015 020 028 017 019 019 014 021 021 -CAM191 1650 020 028 023 017 010 000 015 026 026 025 -CAM191 1660 031 031 020 019 028 023 018 020 000 021 -CAM191 1670 000 012 015 019 007 000 005 000 013 012 -CAM191 1680 015 002 018 016 016 018 011 020 018 017 -CAM191 1690 000 019 021 028 023 027 020 018 013 009 -CAM191 1700 009 011 013 003 009 000 013 007 003 015 -CAM191 1710 014 015 018 017 014 022 017 010 018 015 -CAM191 1720 016 028 020 017 017 020 024 031 031 029 -CAM191 1730 032 020 024 013 018 023 021 019 023 022 -CAM191 1740 027 027 016 022 023 016 022 031 026 024 -CAM191 1750 021 028 023 015 015 011 012 007 017 019 -CAM191 1760 029 028 025 015 019 023 015 022 014 021 -CAM191 1770 013 018 015 017 010 021 020 000 002 021 -CAM191 1780 024 015 003 013 014 019 017 017 023 005 -CAM191 1790 012 014 014 009 012 007 016 021 017 018 -CAM191 1800 020 026 023 025 021 026 020 014 018 022 -CAM191 1810 009 023 012 009 016 015 017 030 021 021 -CAM191 1820 011 024 019 024 018 024 019 019 012 016 -CAM191 1830 017 021 015 018 014 013 002 009 014 017 -CAM191 1840 017 018 012 018 009 007 015 010 016 015 -CAM191 1850 016 015 027 024 024 026 010 007 004 017 -CAM191 1860 027 011 023 017 028 012 026 022 032 025 -CAM191 1870 030 026 023 032 023 028 026 035 027 021 -CAM191 1880 008 011 023 022 021 018 027 024 029 029 -CAM191 1890 025 031 028 028 029 028 024 025 028 004 -CAM191 1900 025 038 033 028 017 034 030 039 031 024 -CAM191 1910 027 035 022 018 024 023 029 031 028 027 -CAM191 1920 028 028 028 023 021 022 021 030 025 000 -CAM191 1930 031 026 022 023 026 025 021 029 019 025 -CAM191 1940 028 019 015 020 018 022 027 035 017 015 -CAM191 1950 024 032 023 033 027 027 029 027 026 031 -CAM191 1960 016 015 031 035 037 037 028 032 034 037 -CAM191 1970 033 999 -CAM201 990 068 031 030 030 019 007 022 032 037 031 -CAM201 1000 026 021 022 029 021 004 021 037 020 013 -CAM201 1010 027 016 025 031 022 022 032 038 032 032 -CAM201 1020 026 027 023 032 033 029 036 024 032 030 -CAM201 1030 034 034 034 036 027 047 034 028 038 038 -CAM201 1040 046 048 041 043 023 030 030 033 011 026 -CAM201 1050 039 047 040 028 036 025 042 048 041 047 -CAM201 1060 055 055 064 050 043 034 046 044 056 055 -CAM201 1070 057 035 053 046 049 052 059 043 038 041 -CAM201 1080 039 056 037 039 059 036 049 044 044 050 -CAM201 1090 056 045 053 031 051 059 063 078 063 086 -CAM201 1100 083 094 100 065 072 077 105 105 075 069 -CAM201 1110 059 063 066 034 037 056 074 043 043 046 -CAM201 1120 034 040 040 036 050 037 039 053 037 041 -CAM201 1130 076 054 041 037 039 050 065 059 052 052 -CAM201 1140 065 096 049 056 051 047 035 022 030 034 -CAM201 1150 024 021 043 043 048 047 051 040 050 056 -CAM201 1160 048 051 056 052 045 053 038 030 057 065 -CAM201 1170 056 057 050 084 077 081 071 070 065 054 -CAM201 1180 033 048 067 063 062 062 066 059 061 050 -CAM201 1190 071 062 070 092 087 095 064 058 079 065 -CAM201 1200 048 017 033 045 034 050 058 056 052 060 -CAM201 1210 068 051 039 042 032 017 027 021 003 031 -CAM201 1220 047 068 058 044 070 057 038 031 048 054 -CAM201 1230 044 057 040 041 039 028 020 016 045 038 -CAM201 1240 049 049 044 040 028 029 003 034 038 039 -CAM201 1250 036 046 043 044 009 008 052 053 022 047 -CAM201 1260 050 041 038 032 028 031 043 034 044 028 -CAM201 1270 049 044 050 023 033 040 040 039 023 041 -CAM201 1280 042 028 051 044 039 031 030 050 031 046 -CAM201 1290 025 042 047 040 046 049 051 042 059 041 -CAM201 1300 055 044 037 030 046 057 055 053 049 047 -CAM201 1310 049 062 058 064 073 054 032 039 049 060 -CAM201 1320 066 063 059 045 071 071 055 058 061 047 -CAM201 1330 055 064 052 064 047 077 038 036 034 032 -CAM201 1340 029 035 037 039 048 054 056 037 041 037 -CAM201 1350 056 047 063 065 065 065 066 058 048 055 -CAM201 1360 036 032 039 044 055 063 051 053 043 060 -CAM201 1370 051 061 047 057 047 049 049 053 053 044 -CAM201 1380 046 067 063 059 056 059 049 059 065 056 -CAM201 1390 049 050 058 058 070 070 080 060 057 058 -CAM201 1400 052 047 065 067 066 064 024 017 021 016 -CAM201 1410 027 030 042 047 044 058 053 062 053 071 -CAM201 1420 059 065 063 063 062 054 038 048 048 057 -CAM201 1430 043 049 066 081 048 068 063 054 044 041 -CAM201 1440 053 051 047 038 039 051 039 044 029 046 -CAM201 1450 022 039 051 049 037 043 033 028 015 027 -CAM201 1460 035 027 032 042 033 023 024 029 033 030 -CAM201 1470 030 018 035 029 029 015 029 027 028 018 -CAM201 1480 021 032 035 031 027 031 039 035 041 043 -CAM201 1490 059 050 034 027 035 027 027 023 033 054 -CAM201 1500 036 052 051 060 049 050 056 042 040 040 -CAM201 1510 050 054 054 042 040 035 038 041 045 037 -CAM201 1520 035 041 030 000 045 066 051 043 108 124 -CAM201 1530 100 102 091 019 078 149 099 089 081 088 -CAM201 1540 067 050 018 051 053 042 047 071 078 067 -CAM201 1550 071 076 072 072 077 078 077 070 059 055 -CAM201 1560 060 058 073 064 054 061 066 075 071 071 -CAM201 1570 067 066 047 049 056 054 061 058 038 038 -CAM201 1580 027 043 047 999 -CAM211 626 17 13 14 19 -CAM211 630 22 27 31 22 28 34 42 38 50 32 -CAM211 640 20 50 33 53 36 0 37 32 13 39 -CAM211 650 57 38 59 39 62 52 55 42 43 56 -CAM211 660 47 59 77 53 56 67 86 65 62 73 -CAM211 670 60 31 50 47 67 66 54 43 88 110 -CAM211 680 76 48 38 44 33 39 42 34 24 32 -CAM211 690 36 31 34 30 39 36 36 43 35 16 -CAM211 700 46 50 69 44 87 79 55 39 61 55 -CAM211 710 71 53 46 15 54 44 50 32 13 39 -CAM211 720 29 17 41 33 33 43 70 67 84 57 -CAM211 730 57 56 56 35 76 97 69 49 66 30 -CAM211 740 5 37 56 29 46 41 60 80 76 68 -CAM211 750 69 65 52 66 58 42 65 33 47 79 -CAM211 760 75 36 0 40 43 48 55 36 40 55 -CAM211 770 18 9 32 33 45 39 56 53 38 63 -CAM211 780 64 56 49 28 65 59 61 52 51 62 -CAM211 790 39 46 59 35 19 22 37 37 38 12 -CAM211 800 23 23 19 40 40 54 46 58 39 0 -CAM211 810 38 37 47 44 35 54 50 24 20 34 -CAM211 820 35 42 51 60 41 32 43 47 38 35 -CAM211 830 36 31 34 30 17 19 20 13 22 15 -CAM211 840 24 19 38 44 38 36 44 0 24 5 -CAM211 850 41 53 41 59 76 61 52 56 41 45 -CAM211 860 34 38 51 38 29 29 29 3 3 17 -CAM211 870 22 25 26 24 27 33 32 19 7 26 -CAM211 880 22 20 46 26 11 37 30 16 16 18 -CAM211 890 30 42 37 37 43 45 48 54 41 18 -CAM211 900 14 15 17 20 5 23 15 2 18 17 -CAM211 910 10 11 15 8 17 31 24 28 29 15 -CAM211 920 21 38 19 19 0 20 24 23 18 34 -CAM211 930 23 16 5 19 25 25 35 42 40 29 -CAM211 940 24 31 21 38 13 17 20 21 23 25 -CAM211 950 11 7 12 16 22 15 10 0 12 21 -CAM211 960 20 19 40 38 17 18 29 30 51 36 -CAM211 970 49 19 6 30 43 25 32 37 36 17 -CAM211 980 23 17 32 29 13 29 33 18 24 34 -CAM211 990 24 38 27 33 26 8 23 6 8 22 -CAM211 1000 21 16 27 38 31 10 23 34 38 41 -CAM211 1010 51 40 59 56 0 38 34 32 40 62 -CAM211 1020 49 50 48 22 43 51 56 36 27 48 -CAM211 1030 63 56 54 40 26 39 39 39 40 51 -CAM211 1040 49 38 57 74 47 19 36 42 57 40 -CAM211 1050 33 46 59 48 21 27 15 28 34 45 -CAM211 1060 48 60 77 70 40 43 46 42 28 49 -CAM211 1070 30 19 46 56 57 64 48 26 39 53 -CAM211 1080 55 67 64 43 74 66 62 62 77 47 -CAM211 1090 81 75 94 67 64 62 54 47 32 75 -CAM211 1100 76 61 32 2 47 58 56 61 65 60 -CAM211 1110 33 6 16 13 9 23 27 23 0 18 -CAM211 1120 10 27 15 0 20 39 31 29 37 35 -CAM211 1130 27 48 12 0 16 13 19 28 21 23 -CAM211 1140 14 36 20 31 39 23 11 0 1 20 -CAM211 1150 28 11 31 30 37 43 46 20 28 19 -CAM211 1160 29 19 28 31 19 40 55 69 83 96 -CAM211 1170 87 81 51 60 65 80 78 44 47 41 -CAM211 1180 19 42 44 30 33 30 32 34 5 0 -CAM211 1190 36 18 15 30 25 38 22 36 27 26 -CAM211 1200 34 26 37 28 10 23 21 31 23 27 -CAM211 1210 47 75 56 54 65 30 43 23 4 36 -CAM211 1220 47 38 57 47 74 52 44 27 37 45 -CAM211 1230 13 46 42 35 25 45 47 35 32 31 -CAM211 1240 28 35 31 33 23 50 16 32 51 47 -CAM211 1250 44 39 41 49 32 19 29 36 18 18 -CAM211 1260 24 21 18 12 23 16 17 18 15 16 -CAM211 1270 26 26 32 11 24 34 38 44 28 45 -CAM211 1280 40 39 47 35 25 34 27 35 25 27 -CAM211 1290 23 29 29 20 29 39 37 20 18 3 -CAM211 1300 29 39 31 24 22 26 23 12 33 29 -CAM211 1310 30 33 33 43 52 37 15 7 8 14 -CAM211 1320 19 23 29 9 29 40 29 33 48 35 -CAM211 1330 38 40 20 37 23 27 5 20 21 18 -CAM211 1340 20 17 17 20 20 19 27 24 23 20 -CAM211 1350 0 24 20 27 20 23 21 21 15 14 -CAM211 1360 21 9 5 9 15 10 16 18 8 15 -CAM211 1370 17 12 12 17 20 34 21 25 17 14 -CAM211 1380 25 31 31 46 0 26 11 11 17 22 -CAM211 1390 22 28 27 31 31 37 30 13 13 24 -CAM211 1400 31 23 31 33 36 40 52 45 38 45 -CAM211 1410 49 47 37 39 18 25 28 37 22 30 -CAM211 1420 34 32 31 38 36 24 8 24 35 37 -CAM211 1430 32 19 31 32 8 34 34 20 4 26 -CAM211 1440 29 19 10 20 15 13 5 12 2 16 -CAM211 1450 6 16 20 19 15 17 14 13 10 2 -CAM211 1460 7 15 6 17 20 13 16 22 0 24 -CAM211 1470 33 40 25 31 30 20 30 28 28 24 -CAM211 1480 10 28 29 23 30 35 33 28 31 29 -CAM211 1490 31 33 32 32 38 38 31 14 36 42 -CAM211 1500 31 48 47 48 51 41 41 47 17 34 -CAM211 1510 54 50 61 51 62 54 54 60 55 51 -CAM211 1520 56 60 54 3 11 37 32 44 36 48 -CAM211 1530 59 44 71 17 27 58 47 54 24 50 -CAM211 1540 46 39 16 30 34 28 10 13 26 35 -CAM211 1550 32 27 30 33 37 41 36 41 35 28 -CAM211 1560 36 47 51 52 54 23 24 45 59 58 -CAM211 1570 71 0 58 51 40 50 36 58 34 6 -CAM211 1580 1 30 26 31 13 21 26 27 31 29 -CAM211 1590 27 25 28 40 45 40 50 58 71 58 -CAM211 1600 47 45 30 49 41 32 32 25 42 40 -CAM211 1610 28 27 28 29 37 27 36 45 24 33 -CAM211 1620 33 38 34 31 28 27 24 25 41 31 -CAM211 1630 22 35 33 50 41 38 52 39 51 59 -CAM211 1640 31 0 30 9 20 22 20 10 22 17 -CAM211 1650 16 21 18 16 14 3 21 33 35 32 -CAM211 1660 42 49 38 43 56 63 42 42 42 19 -CAM211 1670 19 31 26 38 34 21 18 5 15 21 -CAM211 1680 18 4 23 19 19 12 7 25 26 29 -CAM211 1690 3 27 21 29 23 34 21 18 19 14 -CAM211 1700 17 22 15 7 14 14 24 21 15 29 -CAM211 1710 33 25 31 41 40 32 22 4 21 20 -CAM211 1720 23 35 26 18 29 23 23 33 30 26 -CAM211 1730 40 49 60 22 24 26 60 60 45 52 -CAM211 1740 67 70 36 53 50 43 47 70 54 51 -CAM211 1750 54 85 46 10 37 58 58 51 52 38 -CAM211 1760 71 69 58 31 30 49 32 49 38 50 -CAM211 1770 46 52 49 57 46 54 48 42 47 47 -CAM211 1780 34 5 5 15 1 28 25 23 29 10 -CAM211 1790 20 23 19 20 31 26 22 23 23 25 -CAM211 1800 38 38 47 47 49 60 49 35 53 69 -CAM211 1810 36 47 34 31 33 35 33 38 32 44 -CAM211 1820 41 49 45 58 45 43 49 54 44 45 -CAM211 1830 37 23 4 10 20 14 3 12 15 20 -CAM211 1840 19 20 20 32 32 29 47 38 52 45 -CAM211 1850 36 34 36 47 54 58 49 33 22 28 -CAM211 1860 43 37 42 41 68 37 69 67 63 56 -CAM211 1870 64 70 64 75 55 51 34 79 77 64 -CAM211 1880 45 46 88 64 61 47 57 69 68 70 -CAM211 1890 30 53 57 33 26 35 20 27 41 14 -CAM211 1900 45 57 47 42 24 26 22 53 37 52 -CAM211 1910 37 41 41 35 42 57 43 39 51 53 -CAM211 1920 65 81 79 46 46 78 61 66 74 39 -CAM211 1930 85 80 62 81 78 56 37 59 40 38 -CAM211 1940 57 40 46 37 20 23 46 49 62 48 -CAM211 1950 50 72 50 68 72 76 46 56 52 54 -CAM211 1960 49 16 60 79 97 62 71 68 73 999 +CAM011 1530 104 89 103 70 69 115 101 109 77 136 +CAM011 1540 102 61 56 49 52 77 55 44 52 82 +CAM011 1550 91 64 82 74 86 102 95 63 68 78 +CAM011 1560 75 78 87 83 85 82 77 90 115 110 +CAM011 1570 107 68 99 62 89 92 113 55 41 48 +CAM011 1580 35 46 69 98 66 63 47 74 81 81 +CAM011 1590 43 59 54 70 87 51 84 84 93 82 +CAM011 1600 64 64 41 88 72 56 39 42 60 56 +CAM011 1610 60 69 61 50 104 48 85 93 16 54 +CAM011 1620 46 84 47 68 41 55 48 57 64 67 +CAM011 1630 64 32 55 67 75 50 59 83 55 49 +CAM011 1640 57 34 23 43 51 38 35 31 54 70 +CAM011 1650 47 50 24 40 39 23 45 44 56 66 +CAM011 1660 85 54 58 55 65 81 70 41 43 20 +CAM011 1670 18 43 37 50 37 24 33 13 51 64 +CAM011 1680 60 13 43 60 76 53 38 50 61 46 +CAM011 1690 18 43 59 50 56 67 32 34 35 27 +CAM011 1700 46 48 30 13 28 19 38 38 15 27 +CAM011 1710 37 20 55 51 33 41 34 17 28 30 +CAM011 1720 44 46 26 11 20 25 29 37 41 26 +CAM011 1730 34 21 17 22 20 12 19 36 24 30 +CAM011 1740 27 36 22 31 36 16 35 27 33 37 +CAM011 1750 37 42 15 0 18 21 16 20 28 27 +CAM011 1760 44 40 36 28 23 42 34 32 7 23 +CAM011 1770 23 45 32 52 22 33 44 34 46 37 +CAM011 1780 29 8 0 30 12 26 19 21 19 16 +CAM011 1790 30 29 20 21 34 28 42 38 27 48 +CAM011 1800 44 49 47 44 46 40 39 21 28 37 +CAM011 1810 28 24 26 26 33 28 22 47 16 31 +CAM011 1820 30 34 29 27 28 32 52 52 35 44 +CAM011 1830 25 51 11 35 42 30 17 15 20 14 +CAM011 1840 30 26 23 30 24 26 38 28 47 39 +CAM011 1850 40 42 60 51 57 48 29 17 10 31 +CAM011 1860 38 27 33 26 32 22 42 30 14 22 +CAM011 1870 35 43 42 42 22 22 13 35 38 23 +CAM011 1880 34 22 32 41 30 21 37 36 33 51 +CAM011 1890 28 31 41 32 28 35 33 15 45 9 +CAM011 1900 45 58 42 41 54 44 41 36 49 37 +CAM011 1910 25 38 37 32 22 46 40 38 38 56 +CAM011 1920 41 50 43 52 47 59 50 49 61 11 +CAM011 1930 33 25 28 44 34 22 8 23 36 26 +CAM011 1940 39 35 35 40 29 49 43 52 49 40 +CAM011 1950 43 57 29 59 37 47 34 58 48 49 +CAM011 1960 30 9 24 43 36 30 29 31 30 14 +CAM011 1970 32 37 32 35 32 32 46 39 49 40 +CAM011 1980 45 48 47 68 999 +CAM021 1433 68 40 81 77 52 47 46 +CAM021 1440 70 63 37 55 45 40 34 34 25 45 +CAM021 1450 26 38 39 46 43 32 38 35 26 19 +CAM021 1460 15 25 22 33 35 28 25 32 29 44 +CAM021 1470 48 35 54 43 52 29 58 64 68 59 +CAM021 1480 54 72 75 69 52 75 73 44 59 55 +CAM021 1490 70 69 45 64 70 80 44 45 40 65 +CAM021 1500 58 77 63 80 94 86 56 61 46 85 +CAM021 1510 92 100 111 98 105 79 79 104 88 91 +CAM021 1520 95 106 71 68 73 91 85 100 81 94 +CAM021 1530 102 76 67 42 32 100 78 77 70 76 +CAM021 1540 49 40 47 53 41 47 43 28 40 60 +CAM021 1550 58 49 67 55 66 52 56 57 46 54 +CAM021 1560 63 55 70 65 66 65 52 70 84 82 +CAM021 1570 66 47 51 44 86 62 61 41 37 34 +CAM021 1580 22 34 38 45 45 46 31 39 54 46 +CAM021 1590 36 32 34 63 70 58 65 78 83 64 +CAM021 1600 48 58 45 62 52 38 23 22 37 35 +CAM021 1610 36 33 30 38 51 30 49 51 11 23 +CAM021 1620 41 35 36 55 21 41 20 32 40 54 +CAM021 1630 50 24 42 34 51 35 42 49 38 53 +CAM021 1640 58 31 39 69 58 53 59 31 54 33 +CAM021 1650 48 56 43 30 21 8 37 51 43 57 +CAM021 1660 56 57 36 25 47 45 35 47 16 14 +CAM021 1670 17 29 29 38 47 24 27 14 29 29 +CAM021 1680 25 13 37 40 33 32 21 36 42 37 +CAM021 1690 18 34 37 49 22 32 17 26 30 20 +CAM021 1700 32 37 36 16 22 27 29 29 14 28 +CAM021 1710 25 18 31 46 36 28 27 21 32 41 +CAM021 1720 50 56 41 17 42 42 42 38 43 47 +CAM021 1730 37 32 44 20 48 25 34 41 52 38 +CAM021 1740 45 56 41 44 48 29 39 48 40 45 +CAM021 1750 43 58 21 12 12 35 19 14 39 27 +CAM021 1760 64 67 44 31 38 59 45 64 25 39 +CAM021 1770 33 41 49 44 29 49 57 37 43 30 +CAM021 1780 32 5 12 27 23 26 19 31 34 29 +CAM021 1790 24 28 32 32 28 29 28 40 31 40 +CAM021 1800 52 50 36 32 48 31 19 18 27 35 +CAM021 1810 33 36 21 29 22 42 43 52 42 35 +CAM021 1820 26 18 24 41 25 36 50 46 39 28 +CAM021 1830 25 21 19 35 49 26 13 8 28 35 +CAM021 1840 29 32 17 23 36 22 25 24 32 29 +CAM021 1850 29 27 37 34 36 23 21 11 11 28 +CAM021 1860 30 24 35 27 34 21 40 25 38 32 +CAM021 1870 29 24 37 30 21 16 20 36 36 26 +CAM021 1880 25 17 37 38 41 29 44 43 36 41 +CAM021 1890 31 42 35 31 29 33 26 27 38 9 +CAM021 1900 45 54 48 58 42 52 48 54 47 58 +CAM021 1910 37 63 45 31 48 45 39 38 36 52 +CAM021 1920 43 43 50 49 31 52 51 54 65 10 +CAM021 1930 47 49 47 53 11 25 14 42 46 43 +CAM021 1940 49 40 27 43 24 32 44 40 37 35 +CAM021 1950 29 51 34 53 15 44 38 49 38 39 +CAM021 1960 25 17 30 44 41 33 21 38 32 44 +CAM021 1970 29 44 31 49 27 31 38 48 50 42 +CAM021 1980 59 57 50 57 999 +CAM031 1356 22 23 23 19 +CAM031 1360 15 9 2 21 22 13 18 25 28 21 +CAM031 1370 21 22 22 18 22 26 36 25 24 30 +CAM031 1380 33 37 38 34 34 29 37 22 26 28 +CAM031 1390 20 33 32 28 33 46 41 40 28 27 +CAM031 1400 32 30 40 34 32 32 38 21 24 32 +CAM031 1410 32 37 41 38 32 28 33 33 29 26 +CAM031 1420 27 32 24 26 37 22 15 28 24 31 +CAM031 1430 29 29 31 45 29 33 31 28 19 26 +CAM031 1440 40 22 25 18 16 8 5 16 13 20 +CAM031 1450 13 15 24 21 15 23 7 6 10 15 +CAM031 1460 16 15 12 16 17 15 10 17 7 17 +CAM031 1470 25 18 22 16 16 14 34 23 22 18 +CAM031 1480 17 24 22 23 25 33 16 27 24 27 +CAM031 1490 27 18 16 21 35 24 11 0 11 23 +CAM031 1500 0 18 18 18 23 21 5 14 16 25 +CAM031 1510 24 25 27 10 17 8 19 21 15 17 +CAM031 1520 18 15 16 0 21 27 13 21 11 15 +CAM031 1530 18 17 15 0 14 30 20 23 16 26 +CAM031 1540 0 22 0 11 18 0 10 10 4 14 +CAM031 1550 13 7 10 17 14 18 9 14 7 17 +CAM031 1560 10 21 19 15 12 9 11 18 25 15 +CAM031 1570 23 3 7 6 17 16 20 17 0 0 +CAM031 1580 0 15 12 10 12 14 18 15 21 22 +CAM031 1590 8 18 7 17 18 21 17 16 25 21 +CAM031 1600 13 19 16 24 28 39 36 19 26 15 +CAM031 1610 22 29 6 9 17 20 25 19 9 19 +CAM031 1620 18 20 11 18 8 19 13 21 23 35 +CAM031 1630 29 22 15 15 25 20 28 27 34 32 +CAM031 1640 24 9 24 28 26 25 20 11 32 26 +CAM031 1650 30 38 20 12 1 0 17 22 25 13 +CAM031 1660 31 16 15 31 40 35 19 21 0 15 +CAM031 1670 0 17 20 22 14 17 12 24 19 17 +CAM031 1680 9 0 30 21 26 19 16 20 23 21 +CAM031 1690 5 21 22 35 32 35 31 33 35 49 +CAM031 1700 32 40 40 24 28 13 37 10 11 31 +CAM031 1710 27 36 35 32 27 33 32 18 44 29 +CAM031 1720 35 53 40 35 51 39 37 29 25 30 +CAM031 1730 26 34 46 22 54 19 25 27 18 18 +CAM031 1740 32 45 20 48 39 51 26 35 41 45 +CAM031 1750 33 50 62 37 31 54 20 17 54 45 +CAM031 1760 84 50 62 36 35 46 24 60 66 60 +CAM031 1770 50 39 75 56 63 42 48 48 47 62 +CAM031 1780 55 35 14 36 55 45 46 63 67 65 +CAM031 1790 52 55 63 61 51 17 40 62 42 52 +CAM031 1800 51 53 35 68 45 43 67 64 59 71 +CAM031 1810 50 30 30 38 51 39 48 42 64 56 +CAM031 1820 21 63 48 69 63 68 43 37 48 29 +CAM031 1830 69 55 67 45 47 43 23 49 36 49 +CAM031 1840 40 64 41 44 33 29 28 26 31 39 +CAM031 1850 54 46 77 60 51 65 38 25 19 32 +CAM031 1860 46 35 61 45 74 53 58 59 53 49 +CAM031 1870 42 54 70 60 65 74 65 82 78 67 +CAM031 1880 43 55 73 69 58 64 78 67 60 60 +CAM031 1890 91 85 69 56 57 72 60 91 80 36 +CAM031 1900 74 57 78 64 55 73 57 77 63 62 +CAM031 1910 72 82 76 60 66 67 66 60 59 78 +CAM031 1920 66 67 74 66 67 81 85 87 91 33 +CAM031 1930 81 82 71 79 103 60 56 69 60 63 +CAM031 1940 52 30 60 69 51 81 88 89 61 61 +CAM031 1950 78 84 79 74 95 75 62 66 70 38 +CAM031 1960 25 30 56 55 47 49 52 59 69 86 +CAM031 1970 49 55 57 51 63 62 53 70 47 33 +CAM031 1980 77 69 76 53 999 +CAM032 1435 64 62 53 47 42 +CAM032 1440 48 53 41 24 21 18 28 31 29 38 +CAM032 1450 25 33 25 25 22 41 24 17 6 23 +CAM032 1460 32 14 15 27 40 21 20 14 25 23 +CAM032 1470 29 19 45 17 26 12 53 27 10 33 +CAM032 1480 25 54 45 32 52 53 49 45 20 36 +CAM032 1490 43 37 10 22 33 34 18 0 18 35 +CAM032 1500 10 13 20 22 51 31 23 19 16 53 +CAM032 1510 46 43 45 32 28 22 29 47 25 25 +CAM032 1520 40 20 5 0 17 27 38 38 40 19 +CAM032 1530 44 51 42 12 32 58 46 49 23 47 +CAM032 1540 40 29 2 26 22 9 13 28 9 32 +CAM032 1550 28 29 23 36 32 22 17 17 33 21 +CAM032 1560 22 33 27 34 36 32 25 28 42 47 +CAM032 1570 52 27 26 16 24 41 23 30 25 0 +CAM032 1580 8 32 19 33 20 16 19 27 43 36 +CAM032 1590 27 18 17 27 34 37 24 20 47 22 +CAM032 1600 10 21 15 35 26 16 12 19 24 20 +CAM032 1610 19 14 13 7 32 8 18 17 8 15 +CAM032 1620 23 37 17 26 15 16 10 20 23 28 +CAM032 1630 39 23 22 21 24 13 40 32 23 20 +CAM032 1640 44 9 9 25 10 15 20 14 16 13 +CAM032 1650 18 23 24 16 0 3 19 22 16 13 +CAM032 1660 30 36 13 25 43 34 11 20 14 17 +CAM032 1670 0 21 25 21 17 10 14 16 22 19 +CAM032 1680 24 0 31 24 16 18 16 20 20 31 +CAM032 1690 7 36 39 40 33 40 18 45 27 27 +CAM032 1700 20 19 18 13 14 3 13 12 8 21 +CAM032 1710 21 12 11 11 5 23 11 8 17 10 +CAM032 1720 12 33 18 15 26 15 23 32 29 21 +CAM032 1730 25 14 19 12 35 21 10 28 24 22 +CAM032 1740 39 34 31 32 44 31 25 36 24 16 +CAM032 1750 24 32 28 20 9 34 6 8 42 29 +CAM032 1760 39 32 50 14 19 30 16 47 24 27 +CAM032 1770 25 20 23 23 18 23 17 8 12 24 +CAM032 1780 22 6 0 21 16 28 28 24 44 29 +CAM032 1790 14 24 22 14 31 9 20 34 22 21 +CAM032 1800 28 46 32 33 35 23 29 27 21 37 +CAM032 1810 10 27 4 6 2 12 9 18 15 15 +CAM032 1820 8 3 13 14 7 9 28 13 23 2 +CAM032 1830 18 22 16 29 27 10 5 8 12 14 +CAM032 1840 18 10 19 24 18 9 17 22 16 26 +CAM032 1850 25 30 36 34 29 34 11 10 5 23 +CAM032 1860 27 19 28 28 38 26 35 37 36 32 +CAM032 1870 35 34 37 33 34 41 29 37 35 28 +CAM032 1880 21 18 20 32 28 33 39 32 37 45 +CAM032 1890 32 42 44 50 37 41 29 41 47 11 +CAM032 1900 48 56 62 51 45 51 49 61 48 50 +CAM032 1910 50 57 47 35 50 54 63 62 56 78 +CAM032 1920 85 53 52 54 45 60 62 69 64 18 +CAM032 1930 52 43 67 69 71 52 37 85 51 62 +CAM032 1940 63 35 49 45 41 48 75 70 51 56 +CAM032 1950 70 79 50 51 57 42 47 47 44 44 +CAM032 1960 12 16 58 65 68 37 35 50 48 61 +CAM032 1970 57 41 64 70 57 54 57 68 53 61 +CAM032 1980 67 55 71 58 999 +CAM041 1683 33 32 25 17 24 27 25 +CAM041 1690 17 18 20 23 19 24 18 21 26 36 +CAM041 1700 25 25 28 27 18 30 29 23 17 34 +CAM041 1710 22 31 35 28 13 24 38 41 42 36 +CAM041 1720 37 53 32 21 57 33 35 58 69 60 +CAM041 1730 60 63 47 27 75 71 54 66 65 55 +CAM041 1740 78 82 70 92 67 73 72 47 55 32 +CAM041 1750 68 98 62 75 72 54 55 40 61 91 +CAM041 1760 118 72 76 69 58 94 44 60 72 56 +CAM041 1770 60 74 88 90 90 63 56 48 49 79 +CAM041 1780 77 63 30 56 46 55 62 50 46 55 +CAM041 1790 70 31 54 50 46 27 61 101 107 109 +CAM041 1800 86 138 86 89 86 81 65 53 86 98 +CAM041 1810 35 34 50 36 44 38 33 36 28 27 +CAM041 1820 29 32 19 35 19 17 33 44 25 20 +CAM041 1830 33 45 31 37 42 40 10 20 32 24 +CAM041 1840 20 31 17 29 24 26 35 29 53 53 +CAM041 1850 57 46 74 57 56 65 42 36 27 39 +CAM041 1860 65 39 55 51 68 67 81 72 47 42 +CAM041 1870 54 55 72 70 72 79 84 84 85 62 +CAM041 1880 46 49 72 64 59 71 77 60 73 62 +CAM041 1890 64 75 80 73 74 75 51 77 81 28 +CAM041 1900 55 56 88 82 69 68 48 67 50 59 +CAM041 1910 65 74 53 52 78 67 52 39 35 42 +CAM041 1920 44 35 40 25 47 34 37 27 54 19 +CAM041 1930 44 43 46 33 63 52 33 56 43 57 +CAM041 1940 33 35 45 41 44 52 74 80 41 45 +CAM041 1950 64 65 57 58 49 64 64 57 49 60 +CAM041 1960 22 22 58 44 56 38 36 48 61 75 +CAM041 1970 46 55 63 66 73 56 60 80 65 75 +CAM041 1980 109 76 102 116 999 +CAM042 1538 119 178 +CAM042 1540 141 86 51 102 93 111 135 211 129 206 +CAM042 1550 234 228 303 206 276 172 155 133 110 103 +CAM042 1560 119 132 119 138 92 73 86 93 124 106 +CAM042 1570 86 63 62 53 61 69 95 78 58 26 +CAM042 1580 31 57 67 77 63 60 45 53 50 49 +CAM042 1590 46 46 53 57 61 48 64 51 67 45 +CAM042 1600 37 38 29 90 83 56 46 43 70 54 +CAM042 1610 56 69 91 75 84 54 68 67 40 42 +CAM042 1620 50 52 41 49 44 62 36 45 54 54 +CAM042 1630 52 36 40 56 62 64 64 72 65 42 +CAM042 1640 51 29 46 41 33 47 30 22 42 38 +CAM042 1650 46 55 36 45 37 20 41 39 45 38 +CAM042 1660 47 48 47 38 45 40 37 26 11 14 +CAM042 1670 16 23 18 17 21 7 20 8 19 21 +CAM042 1680 24 7 22 32 33 24 25 24 30 44 +CAM042 1690 26 33 34 34 33 38 25 24 26 28 +CAM042 1700 32 29 27 15 27 19 32 25 25 36 +CAM042 1710 29 32 36 34 34 42 36 36 36 42 +CAM042 1720 40 44 34 34 42 47 34 41 36 40 +CAM042 1730 46 36 36 24 52 38 43 47 33 18 +CAM042 1740 29 40 24 24 37 39 26 30 24 15 +CAM042 1750 30 23 29 15 30 16 21 17 28 30 +CAM042 1760 37 23 31 33 25 21 20 33 40 40 +CAM042 1770 25 49 57 38 33 33 42 29 34 28 +CAM042 1780 28 34 10 12 23 20 31 28 29 44 +CAM042 1790 30 25 38 39 19 12 36 30 28 31 +CAM042 1800 38 43 31 48 42 45 35 31 52 43 +CAM042 1810 21 35 26 41 25 25 13 41 25 26 +CAM042 1820 24 18 25 22 18 17 20 15 18 12 +CAM042 1830 11 18 20 17 21 10 14 9 12 20 +CAM042 1840 15 25 8 12 21 13 16 29 24 33 +CAM042 1850 31 24 29 24 27 32 16 12 15 19 +CAM042 1860 32 21 32 26 38 28 47 40 29 37 +CAM042 1870 44 31 40 33 31 36 35 29 39 42 +CAM042 1880 26 29 39 41 35 38 53 38 52 50 +CAM042 1890 39 42 38 34 34 33 22 43 40 11 +CAM042 1900 33 45 30 43 24 34 38 48 32 31 +CAM042 1910 38 55 30 31 39 42 38 33 37 48 +CAM042 1920 43 33 33 27 29 29 27 47 42 17 +CAM042 1930 41 43 36 26 41 31 24 41 39 33 +CAM042 1940 39 30 33 31 24 34 43 34 24 35 +CAM042 1950 35 33 41 45 32 44 38 38 42 36 +CAM042 1960 9 20 44 39 37 37 43 44 36 54 +CAM042 1970 35 43 36 30 40 36 34 61 57 50 +CAM042 1980 65 56 59 59 999 +CAM051 1247 76 132 99 +CAM051 1250 64 46 73 80 34 57 62 73 47 47 +CAM051 1260 54 83 75 74 69 61 76 76 54 57 +CAM051 1270 80 68 85 46 66 82 49 65 27 60 +CAM051 1280 55 41 38 24 20 36 50 47 41 46 +CAM051 1290 38 45 40 32 30 54 31 24 47 42 +CAM051 1300 41 50 46 26 29 33 37 23 33 25 +CAM051 1310 28 35 44 51 56 36 29 28 45 32 +CAM051 1320 51 60 51 27 42 62 58 37 48 28 +CAM051 1330 21 27 14 37 32 24 8 25 7 15 +CAM051 1340 24 15 19 28 23 26 42 29 30 27 +CAM051 1350 11 22 31 38 28 33 26 29 27 24 +CAM051 1360 27 30 18 18 21 23 16 37 37 22 +CAM051 1370 33 18 39 17 24 20 35 26 21 9 +CAM051 1380 30 16 30 28 26 41 31 38 48 49 +CAM051 1390 27 48 38 46 29 46 41 41 30 34 +CAM051 1400 30 30 43 44 30 29 26 35 37 42 +CAM051 1410 43 34 28 26 32 31 36 28 24 24 +CAM051 1420 25 22 22 27 35 24 30 31 43 38 +CAM051 1430 37 34 31 33 21 41 46 42 13 24 +CAM051 1440 37 18 19 21 30 26 28 31 22 36 +CAM051 1450 14 23 21 32 27 15 18 15 13 12 +CAM051 1460 12 16 13 15 11 10 9 14 8 15 +CAM051 1470 17 14 11 13 10 0 10 27 23 26 +CAM051 1480 24 17 19 15 14 25 12 6 19 16 +CAM051 1490 23 19 3 23 17 28 20 6 13 19 +CAM051 1500 9 39 29 37 37 33 22 35 22 14 +CAM051 1510 32 17 38 28 31 21 44 39 35 49 +CAM051 1520 39 28 38 7 28 50 42 40 39 36 +CAM051 1530 42 20 38 23 30 41 41 46 35 45 +CAM051 1540 28 15 9 23 24 21 27 25 19 25 +CAM051 1550 32 31 34 26 26 31 23 31 29 31 +CAM051 1560 31 28 34 33 37 20 28 37 46 39 +CAM051 1570 39 26 55 32 47 47 51 48 23 18 +CAM051 1580 14 36 38 50 28 30 21 24 26 37 +CAM051 1590 21 29 30 43 42 24 34 33 41 34 +CAM051 1600 23 31 23 38 32 25 30 25 36 31 +CAM051 1610 35 34 25 7 44 25 38 46 15 16 +CAM051 1620 16 20 19 28 32 48 22 36 35 43 +CAM051 1630 33 26 21 29 30 33 40 32 34 27 +CAM051 1640 36 14 6 26 25 34 30 24 46 56 +CAM051 1650 46 38 27 26 23 17 37 39 42 41 +CAM051 1660 50 43 38 34 50 42 35 19 11 14 +CAM051 1670 18 22 22 24 27 6 24 17 18 24 +CAM051 1680 27 4 32 25 25 19 31 32 23 24 +CAM051 1690 5 25 29 21 25 26 16 17 18 15 +CAM051 1700 15 25 20 14 19 10 19 20 11 24 +CAM051 1710 13 15 23 22 20 24 21 22 26 13 +CAM051 1720 30 33 21 22 29 26 24 23 20 22 +CAM051 1730 20 14 23 8 26 12 19 23 23 15 +CAM051 1740 27 27 17 18 26 14 19 18 9 12 +CAM051 1750 16 22 18 12 19 12 14 21 20 17 +CAM051 1760 24 24 24 22 17 26 21 26 17 24 +CAM051 1770 13 30 23 19 26 18 19 12 25 13 +CAM051 1780 24 19 6 26 22 18 24 21 26 24 +CAM051 1790 17 26 14 12 18 13 16 17 14 28 +CAM051 1800 26 43 31 30 32 31 28 37 36 31 +CAM051 1810 20 28 21 27 31 23 15 33 20 19 +CAM051 1820 25 32 26 30 23 29 31 30 22 20 +CAM051 1830 19 19 12 21 25 14 9 13 10 14 +CAM051 1840 13 14 9 24 22 17 24 19 23 25 +CAM051 1850 19 20 22 22 25 27 19 8 10 24 +CAM051 1860 19 15 14 11 12 11 16 15 26 17 +CAM051 1870 26 29 22 24 24 17 29 24 20 19 +CAM051 1880 16 20 17 21 12 9 24 15 19 26 +CAM051 1890 17 18 25 15 9 20 19 15 24 15 +CAM051 1900 22 21 26 22 23 23 24 25 24 26 +CAM051 1910 23 27 19 17 14 26 24 23 24 25 +CAM051 1920 20 21 24 12 12 13 10 19 19 11 +CAM051 1930 24 19 26 28 16 19 18 14 16 19 +CAM051 1940 26 13 17 16 16 26 20 16 17 20 +CAM051 1950 17 22 18 17 19 21 22 22 19 18 +CAM051 1960 7 11 18 13 14 15 10 14 17 16 +CAM051 1970 6 17 10 13 15 14 13 15 14 25 +CAM051 1980 36 32 25 22 999 +CAM061 1357 54 34 47 +CAM061 1360 54 3 21 40 50 4 41 52 56 66 +CAM061 1370 63 8 49 54 53 51 57 5 46 7 +CAM061 1380 74 81 66 71 76 77 69 61 78 45 +CAM061 1390 8 55 74 60 84 92 78 83 82 79 +CAM061 1400 75 51 77 72 82 90 94 40 63 83 +CAM061 1410 49 81 68 72 48 68 62 83 64 67 +CAM061 1420 76 41 60 69 86 66 16 52 63 77 +CAM061 1430 66 34 67 73 14 73 68 70 51 65 +CAM061 1440 85 58 59 65 62 53 35 45 18 37 +CAM061 1450 4 29 43 54 45 47 20 7 21 36 +CAM061 1460 43 35 38 44 46 43 47 45 18 57 +CAM061 1470 67 44 45 46 45 25 53 70 64 55 +CAM061 1480 57 99 51 61 74 75 77 63 47 53 +CAM061 1490 65 50 12 30 57 52 15 0 20 35 +CAM061 1500 53 50 43 83 73 45 28 30 25 42 +CAM061 1510 57 65 85 45 72 20 54 68 72 80 +CAM061 1520 86 51 19 0 32 44 45 67 50 67 +CAM061 1530 69 27 37 11 40 70 68 69 61 93 +CAM061 1540 80 33 0 56 13 0 22 0 6 28 +CAM061 1550 29 27 35 39 45 38 45 47 32 39 +CAM061 1560 43 38 47 24 36 49 22 57 66 66 +CAM061 1570 64 58 59 57 62 62 55 50 20 0 +CAM061 1580 22 45 46 67 37 36 50 53 59 49 +CAM061 1590 20 35 23 60 56 34 62 55 71 59 +CAM061 1600 14 49 45 73 60 56 45 36 68 61 +CAM061 1610 50 49 17 28 48 48 58 76 43 55 +CAM061 1620 58 64 68 70 15 53 20 39 52 66 +CAM061 1630 53 49 21 46 66 57 73 82 65 66 +CAM061 1640 84 52 54 69 49 44 40 29 46 46 +CAM061 1650 54 71 24 29 0 0 35 41 38 37 +CAM061 1660 52 61 60 37 57 50 43 35 0 27 +CAM061 1670 0 24 0 31 39 20 33 33 39 37 +CAM061 1680 37 6 42 42 40 27 6 31 18 30 +CAM061 1690 5 40 41 52 55 60 43 43 28 36 +CAM061 1700 34 36 31 24 29 33 43 17 15 27 +CAM061 1710 30 28 47 41 38 47 43 31 53 43 +CAM061 1720 58 75 46 46 35 48 35 44 56 55 +CAM061 1730 38 43 63 29 54 21 52 54 49 55 +CAM061 1740 55 67 30 52 58 41 45 51 56 53 +CAM061 1750 61 70 22 18 18 29 19 22 37 39 +CAM061 1760 63 55 37 21 40 48 49 59 45 65 +CAM061 1770 55 65 51 43 37 43 49 19 47 55 +CAM061 1780 35 20 0 36 46 50 34 38 41 41 +CAM061 1790 22 42 46 34 27 8 41 57 57 51 +CAM061 1800 56 67 52 59 67 53 43 26 38 48 +CAM061 1810 31 54 30 12 39 41 46 59 59 43 +CAM061 1820 7 30 24 34 39 46 56 52 46 26 +CAM061 1830 34 52 44 55 67 35 3 34 40 59 +CAM061 1840 48 51 19 39 37 13 28 23 36 48 +CAM061 1850 42 32 57 54 59 41 18 3 0 18 +CAM061 1860 34 23 48 43 69 49 59 65 79 50 +CAM061 1870 41 28 49 22 30 40 25 60 63 57 +CAM061 1880 19 18 35 41 47 51 73 57 54 68 +CAM061 1890 44 60 66 52 35 52 17 43 44 16 +CAM061 1900 44 57 64 63 34 56 56 74 56 76 +CAM061 1910 59 67 34 38 67 73 72 75 94 109 +CAM061 1920 84 82 83 71 76 86 77 94 76 7 +CAM061 1930 76 48 58 29 53 33 27 52 42 47 +CAM061 1940 62 27 19 33 36 33 49 50 10 53 +CAM061 1950 26 38 32 44 27 26 40 31 48 7 +CAM061 1960 0 29 19 27 32 33 26 37 62 65 +CAM061 1970 31 55 24 46 26 22 21 64 57 42 +CAM061 1980 69 64 67 70 999 +CAM062 1525 47 47 65 55 61 +CAM062 1530 63 42 46 10 36 51 49 49 48 50 +CAM062 1540 39 33 0 25 6 0 17 0 0 17 +CAM062 1550 18 23 30 33 34 36 42 44 27 35 +CAM062 1560 40 37 33 23 35 37 25 45 54 52 +CAM062 1570 58 11 59 46 56 71 46 31 11 0 +CAM062 1580 12 36 38 51 35 33 48 65 52 57 +CAM062 1590 22 50 44 60 70 41 65 67 79 66 +CAM062 1600 17 24 53 88 71 59 39 32 61 62 +CAM062 1610 53 42 12 31 57 42 50 67 40 39 +CAM062 1620 45 59 67 45 16 31 11 32 43 56 +CAM062 1630 50 44 35 51 69 59 67 92 65 77 +CAM062 1640 91 62 65 67 60 56 50 35 61 71 +CAM062 1650 78 80 33 34 0 0 25 32 35 35 +CAM062 1660 46 54 54 48 76 66 66 62 7 29 +CAM062 1670 0 27 0 40 43 23 37 40 45 50 +CAM062 1680 58 33 59 65 67 44 15 39 38 40 +CAM062 1690 13 56 64 76 81 91 56 80 43 58 +CAM062 1700 43 41 46 26 43 44 48 26 19 41 +CAM062 1710 45 54 65 58 50 64 50 56 66 63 +CAM062 1720 70 86 43 48 39 55 62 59 66 57 +CAM062 1730 59 66 70 35 72 23 64 71 60 49 +CAM062 1740 61 76 44 73 72 51 59 67 74 67 +CAM062 1750 75 88 28 34 25 49 18 22 46 44 +CAM062 1760 70 68 63 34 45 55 43 56 41 59 +CAM062 1770 54 75 64 54 48 59 73 29 58 56 +CAM062 1780 46 17 0 34 48 53 43 45 57 57 +CAM062 1790 38 49 41 46 28 8 31 48 51 54 +CAM062 1800 60 67 54 63 56 52 20 22 33 56 +CAM062 1810 41 60 26 12 36 37 44 64 51 38 +CAM062 1820 9 31 25 31 34 41 59 58 60 31 +CAM062 1830 34 56 56 58 61 30 0 44 35 51 +CAM062 1840 41 35 14 42 27 14 28 24 31 44 +CAM062 1850 50 40 60 54 60 46 13 0 0 21 +CAM062 1860 26 25 26 23 44 25 46 38 43 37 +CAM062 1870 32 18 37 19 36 25 21 52 46 46 +CAM062 1880 12 6 27 43 47 53 58 52 51 51 +CAM062 1890 27 53 43 39 27 34 12 38 38 7 +CAM062 1900 37 62 73 42 27 64 64 74 64 68 +CAM062 1910 50 68 63 29 65 66 53 46 40 39 +CAM062 1920 47 56 59 34 61 57 74 59 44 0 +CAM062 1930 49 44 55 38 59 34 13 50 36 41 +CAM062 1940 48 32 24 37 35 49 59 64 9 35 +CAM062 1950 28 36 36 43 33 30 36 35 37 8 +CAM062 1960 1 22 65 59 49 48 23 40 48 66 +CAM062 1970 32 47 15 49 25 23 30 52 52 58 +CAM062 1980 71 51 57 37 999 +CAM071 1037 25 29 32 +CAM071 1040 27 32 39 31 36 28 30 35 10 15 +CAM071 1050 31 37 25 25 30 26 29 26 27 30 +CAM071 1060 27 36 37 28 33 25 18 12 17 26 +CAM071 1070 21 24 23 22 23 22 25 24 22 25 +CAM071 1080 27 33 31 19 33 27 23 25 41 33 +CAM071 1090 39 41 38 18 30 36 42 50 26 31 +CAM071 1100 44 33 25 16 32 23 20 41 30 35 +CAM071 1110 26 30 31 24 11 31 40 29 28 20 +CAM071 1120 18 11 31 27 27 43 20 21 31 34 +CAM071 1130 29 38 22 7 16 14 26 28 31 26 +CAM071 1140 22 40 20 27 31 23 12 13 13 17 +CAM071 1150 23 2 22 23 30 29 28 24 24 33 +CAM071 1160 30 25 18 28 15 27 28 28 33 39 +CAM071 1170 25 22 16 28 23 16 29 17 21 31 +CAM071 1180 33 35 25 32 24 30 27 27 29 26 +CAM071 1190 29 15 22 30 33 36 14 27 27 25 +CAM071 1200 32 34 35 31 25 30 17 31 31 30 +CAM071 1210 39 51 47 44 41 22 36 19 5 24 +CAM071 1220 31 35 40 34 35 35 35 15 42 32 +CAM071 1230 22 34 50 24 18 37 33 32 40 34 +CAM071 1240 38 36 45 36 30 34 35 29 48 38 +CAM071 1250 34 34 44 38 12 13 9 33 24 48 +CAM071 1260 37 43 49 35 16 22 34 22 20 0 +CAM071 1270 17 18 24 13 22 35 19 22 30 43 +CAM071 1280 40 36 49 41 38 11 32 31 15 21 +CAM071 1290 29 31 36 26 29 27 19 24 20 14 +CAM071 1300 23 27 21 23 29 24 23 11 15 8 +CAM071 1310 19 23 23 31 36 28 15 18 24 22 +CAM071 1320 19 21 28 12 16 29 25 34 27 18 +CAM071 1330 38 40 25 28 8 20 9 34 22 15 +CAM071 1340 24 30 31 38 35 34 47 35 29 30 +CAM071 1350 32 37 47 54 39 41 62 62 31 45 +CAM071 1360 36 17 27 42 45 28 42 51 47 42 +CAM071 1370 32 21 35 36 44 47 52 26 47 30 +CAM071 1380 41 46 52 52 51 55 35 37 49 49 +CAM071 1390 20 30 49 39 50 45 36 41 43 36 +CAM071 1400 47 20 37 35 30 46 42 24 28 36 +CAM071 1410 26 30 35 31 24 27 27 32 23 22 +CAM071 1420 38 22 24 36 41 24 17 34 38 35 +CAM071 1430 29 28 36 36 19 35 35 26 19 22 +CAM071 1440 26 20 17 23 16 22 19 27 22 18 +CAM071 1450 5 21 22 24 20 22 11 6 11 19 +CAM071 1460 10 14 13 13 15 8 13 15 11 13 +CAM071 1470 19 12 16 10 15 15 24 28 24 27 +CAM071 1480 26 35 19 16 32 26 27 24 26 23 +CAM071 1490 24 20 11 22 26 19 11 0 0 20 +CAM071 1500 15 15 17 30 37 27 18 25 23 31 +CAM071 1510 30 28 40 24 28 13 22 40 34 33 +CAM071 1520 37 27 22 0 12 33 36 40 27 27 +CAM071 1530 44 34 23 13 22 46 41 42 22 40 +CAM071 1540 36 19 0 12 8 6 5 0 7 10 +CAM071 1550 17 16 26 30 32 33 33 38 21 31 +CAM071 1560 28 24 33 18 30 33 18 36 40 34 +CAM071 1570 39 10 26 32 41 40 31 39 0 0 +CAM071 1580 12 28 32 32 22 24 31 34 41 34 +CAM071 1590 11 18 20 25 40 15 37 42 52 45 +CAM071 1600 15 37 20 43 46 36 34 26 34 38 +CAM071 1610 27 18 0 14 20 24 35 36 28 31 +CAM071 1620 26 38 25 24 4 17 8 17 23 30 +CAM071 1630 25 27 10 20 29 43 35 38 32 38 +CAM071 1640 37 25 33 30 20 22 24 15 25 24 +CAM071 1650 30 33 4 13 4 0 0 17 13 13 +CAM071 1660 17 23 18 16 17 15 10 8 0 8 +CAM071 1670 0 10 0 10 0 5 10 9 17 15 +CAM071 1680 16 9 21 20 23 15 6 11 13 13 +CAM071 1690 0 18 22 21 26 28 20 17 12 11 +CAM071 1700 15 16 17 8 13 14 16 0 0 19 +CAM071 1710 13 18 22 20 14 15 11 19 24 27 +CAM071 1720 27 26 9 15 18 16 27 29 30 17 +CAM071 1730 28 32 40 19 22 5 23 25 29 18 +CAM071 1740 29 33 12 26 28 29 28 29 23 19 +CAM071 1750 16 26 8 8 11 16 0 10 20 14 +CAM071 1760 38 37 31 5 21 29 24 31 20 26 +CAM071 1770 26 25 14 21 19 26 23 6 21 35 +CAM071 1780 16 11 0 17 26 25 17 17 21 20 +CAM071 1790 19 21 18 22 12 0 15 20 17 17 +CAM071 1800 25 22 19 19 29 27 14 14 13 33 +CAM071 1810 21 30 10 4 22 27 25 34 28 21 +CAM071 1820 0 20 9 19 18 20 27 29 27 9 +CAM071 1830 14 27 24 28 23 12 0 14 24 28 +CAM071 1840 23 18 4 25 14 0 21 18 16 30 +CAM071 1850 25 23 28 26 30 18 7 0 0 9 +CAM071 1860 21 21 23 27 41 34 32 27 36 29 +CAM071 1870 14 9 29 14 15 23 11 24 29 24 +CAM071 1880 13 10 14 19 29 22 37 41 33 37 +CAM071 1890 29 38 30 18 13 29 2 21 26 4 +CAM071 1900 22 38 28 18 15 17 30 36 35 33 +CAM071 1910 30 28 34 30 35 40 36 34 19 36 +CAM071 1920 24 19 27 22 0 26 31 32 36 27 +CAM071 1930 27 26 35 20 14 14 18 26 32 28 +CAM071 1940 26 18 19 21 23 18 29 26 0 22 +CAM071 1950 17 13 18 17 17 17 12 21 21 2 +CAM071 1960 0 12 26 27 21 22 14 21 32 26 +CAM071 1970 14 12 16 29 18 12 22 33 17 11 +CAM071 1980 14 27 30 32 999 +CAM072 1114 38 36 52 30 38 24 +CAM072 1120 29 23 29 27 42 42 16 29 38 38 +CAM072 1130 30 47 31 5 18 14 32 37 27 26 +CAM072 1140 21 47 18 23 27 25 18 11 12 23 +CAM072 1150 15 3 28 28 26 39 36 37 38 50 +CAM072 1160 43 43 13 20 14 24 27 21 25 39 +CAM072 1170 27 32 19 22 14 25 24 17 30 41 +CAM072 1180 40 43 41 37 27 55 43 30 35 38 +CAM072 1190 28 26 32 43 37 48 16 34 38 35 +CAM072 1200 38 38 42 51 40 39 18 30 28 31 +CAM072 1210 30 59 49 49 42 14 26 16 0 23 +CAM072 1220 32 24 33 25 34 38 45 11 29 33 +CAM072 1230 22 21 32 28 17 28 23 19 26 37 +CAM072 1240 40 35 34 30 25 27 20 19 43 34 +CAM072 1250 23 30 36 40 14 7 11 29 11 17 +CAM072 1260 32 30 33 19 5 18 22 26 17 9 +CAM072 1270 19 31 34 11 25 31 17 20 22 34 +CAM072 1280 25 22 29 23 18 9 20 18 10 13 +CAM072 1290 13 15 22 16 20 22 17 18 13 14 +CAM072 1300 20 30 24 26 25 30 28 19 25 11 +CAM072 1310 26 20 25 33 40 25 17 31 32 31 +CAM072 1320 23 35 29 14 11 25 18 26 20 22 +CAM072 1330 38 39 22 28 11 10 5 14 13 11 +CAM072 1340 18 15 22 23 26 27 29 26 21 23 +CAM072 1350 24 22 28 28 26 25 33 33 19 24 +CAM072 1360 17 6 9 16 23 18 25 35 34 32 +CAM072 1370 35 17 30 29 31 35 40 11 26 16 +CAM072 1380 21 29 40 56 68 58 50 41 48 46 +CAM072 1390 20 35 49 40 49 34 36 42 35 34 +CAM072 1400 38 26 28 35 42 36 39 24 35 44 +CAM072 1410 35 31 29 35 32 31 29 35 24 38 +CAM072 1420 36 19 19 39 36 32 19 30 38 41 +CAM072 1430 39 35 48 53 27 45 38 30 26 25 +CAM072 1440 34 34 17 17 20 24 17 24 15 30 +CAM072 1450 7 18 26 24 20 27 16 4 12 15 +CAM072 1460 9 23 22 19 26 23 17 23 15 19 +CAM072 1470 24 11 15 11 20 13 27 30 28 27 +CAM072 1480 23 33 26 26 26 21 19 25 32 32 +CAM072 1490 28 22 7 17 22 23 7 0 0 11 +CAM072 1500 14 16 18 23 24 26 11 21 23 24 +CAM072 1510 20 34 36 32 37 17 29 31 26 27 +CAM072 1520 28 22 12 0 3 13 14 21 17 14 +CAM072 1530 17 9 6 0 8 12 15 19 0 18 +CAM072 1540 11 17 0 15 4 0 0 0 4 14 +CAM072 1550 10 3 10 11 12 14 11 18 8 14 +CAM072 1560 14 9 11 13 23 18 8 16 23 23 +CAM072 1570 22 0 19 19 22 28 24 19 3 0 +CAM072 1580 0 21 16 24 14 17 28 32 26 25 +CAM072 1590 0 25 12 13 41 21 36 31 43 44 +CAM072 1600 20 37 17 38 61 59 35 17 36 37 +CAM072 1610 39 22 2 13 19 30 43 48 26 36 +CAM072 1620 32 40 21 20 5 22 10 16 20 22 +CAM072 1630 25 15 4 17 20 32 30 30 26 34 +CAM072 1640 38 20 18 21 21 12 17 8 22 34 +CAM072 1650 26 48 12 16 0 0 7 25 25 21 +CAM072 1660 32 35 35 18 37 32 22 17 0 19 +CAM072 1670 0 22 0 16 11 0 14 13 20 17 +CAM072 1680 20 4 22 17 23 18 11 17 20 17 +CAM072 1690 0 21 17 27 40 46 36 50 46 43 +CAM072 1700 39 35 37 19 22 19 24 10 8 16 +CAM072 1710 19 20 26 24 26 31 21 23 35 33 +CAM072 1720 39 66 50 36 38 42 48 50 42 55 +CAM072 1730 45 42 52 31 36 23 46 48 50 32 +CAM072 1740 36 66 38 58 64 53 55 60 55 50 +CAM072 1750 48 67 36 35 28 36 18 22 35 34 +CAM072 1760 71 61 42 31 27 27 30 42 38 44 +CAM072 1770 47 53 53 44 36 46 41 27 47 61 +CAM072 1780 58 49 5 32 32 42 41 55 59 58 +CAM072 1790 57 58 50 55 33 11 29 55 54 66 +CAM072 1800 63 77 59 78 76 60 53 56 50 58 +CAM072 1810 36 50 30 21 26 26 23 38 41 42 +CAM072 1820 17 32 25 31 24 35 37 42 32 25 +CAM072 1830 37 38 32 31 31 32 11 21 30 44 +CAM072 1840 35 36 26 48 37 31 42 37 51 52 +CAM072 1850 44 33 40 31 42 29 15 16 9 16 +CAM072 1860 25 34 46 44 60 57 51 60 49 56 +CAM072 1870 46 31 54 48 57 50 52 58 59 45 +CAM072 1880 33 30 46 47 48 39 52 40 61 60 +CAM072 1890 44 47 52 45 40 55 40 25 48 22 +CAM072 1900 43 57 66 47 46 64 63 82 56 55 +CAM072 1910 44 66 53 57 59 56 122 102 83 73 +CAM072 1920 72 51 61 60 51 78 58 63 53 14 +CAM072 1930 56 46 74 51 78 64 38 58 41 67 +CAM072 1940 55 29 49 49 48 47 67 62 33 29 +CAM072 1950 43 68 55 62 66 49 52 44 40 23 +CAM072 1960 3 19 40 54 48 37 21 47 53 65 +CAM072 1970 40 39 37 51 39 50 36 45 43 34 +CAM072 1980 50 44 36 34 999 +CAM081 1081 32 33 20 35 32 38 33 30 40 +CAM081 1090 43 37 31 18 25 28 30 26 16 25 +CAM081 1100 30 27 22 11 24 23 26 27 27 23 +CAM081 1110 23 26 32 20 20 28 31 26 22 24 +CAM081 1120 26 20 27 21 29 19 17 14 18 20 +CAM081 1130 27 29 23 5 11 6 14 18 16 14 +CAM081 1140 20 29 21 22 26 21 19 7 11 23 +CAM081 1150 18 8 16 20 24 25 26 26 20 27 +CAM081 1160 20 23 24 27 20 27 22 13 18 23 +CAM081 1170 22 19 18 21 18 23 21 8 17 20 +CAM081 1180 20 23 18 26 25 26 28 24 29 33 +CAM081 1190 35 25 22 32 29 34 10 20 25 23 +CAM081 1200 28 25 36 31 21 28 18 27 11 25 +CAM081 1210 24 37 30 26 23 15 21 26 0 35 +CAM081 1220 41 32 42 43 42 42 29 11 21 27 +CAM081 1230 12 30 36 26 30 39 37 19 30 17 +CAM081 1240 23 24 28 30 25 34 26 20 38 32 +CAM081 1250 27 29 33 31 14 7 24 29 13 23 +CAM081 1260 26 34 34 31 22 27 25 28 36 23 +CAM081 1270 31 34 34 24 36 36 26 29 22 43 +CAM081 1280 44 30 37 36 30 14 32 34 16 26 +CAM081 1290 20 26 26 20 30 28 27 23 25 25 +CAM081 1300 29 36 29 24 30 34 27 24 23 15 +CAM081 1310 18 28 24 26 30 32 15 22 30 30 +CAM081 1320 31 45 40 22 24 24 25 32 30 21 +CAM081 1330 29 34 18 27 16 9 0 16 18 10 +CAM081 1340 9 11 8 17 15 11 15 12 13 18 +CAM081 1350 14 15 19 20 14 17 19 24 20 22 +CAM081 1360 18 9 7 16 15 16 19 29 33 26 +CAM081 1370 17 22 23 22 26 26 29 24 24 16 +CAM081 1380 24 33 31 27 26 40 40 30 53 49 +CAM081 1390 29 32 43 36 40 36 32 37 30 38 +CAM081 1400 39 13 28 28 33 31 32 27 27 30 +CAM081 1410 26 21 32 26 17 31 35 36 23 32 +CAM081 1420 37 34 28 18 24 22 19 28 31 27 +CAM081 1430 29 16 37 33 18 43 34 36 26 38 +CAM081 1440 44 37 20 23 20 22 20 26 21 38 +CAM081 1450 21 27 42 50 24 44 21 18 21 16 +CAM081 1460 20 20 19 24 22 19 23 24 25 22 +CAM081 1470 29 15 22 32 24 26 37 41 42 30 +CAM081 1480 25 38 35 45 51 56 51 37 54 42 +CAM081 1490 46 35 28 35 40 38 33 17 18 34 +CAM081 1500 26 34 36 34 39 43 29 40 35 32 +CAM081 1510 38 34 43 37 38 26 28 25 27 31 +CAM081 1520 35 35 23 12 23 31 27 32 32 33 +CAM081 1530 48 43 28 22 26 46 36 40 28 37 +CAM081 1540 34 30 11 29 30 19 22 20 16 17 +CAM081 1550 28 17 30 28 38 31 40 36 37 30 +CAM081 1560 40 32 37 43 43 43 33 36 28 34 +CAM081 1570 36 20 28 27 22 28 47 48 33 23 +CAM081 1580 15 30 39 43 48 37 29 36 32 29 +CAM081 1590 22 26 32 35 40 20 35 34 39 38 +CAM081 1600 37 33 25 43 33 33 26 27 28 37 +CAM081 1610 31 26 22 28 28 24 39 40 25 31 +CAM081 1620 28 33 26 31 27 40 23 28 26 33 +CAM081 1630 39 28 25 29 33 29 34 41 32 28 +CAM081 1640 42 18 17 26 21 30 25 17 28 21 +CAM081 1650 28 37 36 23 27 29 41 45 39 37 +CAM081 1660 51 56 49 37 50 56 45 31 41 38 +CAM081 1670 27 40 34 50 53 45 32 25 31 34 +CAM081 1680 34 11 29 38 30 35 27 37 36 28 +CAM081 1690 48 63 53 47 49 36 31 32 38 28 +CAM081 1700 27 31 24 19 11 11 18 15 17 26 +CAM081 1710 30 32 41 36 34 35 31 32 32 29 +CAM081 1720 34 39 35 33 44 26 25 23 38 37 +CAM081 1730 36 43 50 28 42 39 42 49 44 34 +CAM081 1740 41 45 39 47 45 46 37 48 29 39 +CAM081 1750 44 49 34 25 30 35 31 27 37 37 +CAM081 1760 48 41 44 34 33 41 35 51 43 44 +CAM081 1770 39 47 48 42 40 44 50 40 35 44 +CAM081 1780 41 33 11 30 41 33 41 44 53 49 +CAM081 1790 44 49 36 35 31 15 36 55 56 49 +CAM081 1800 51 58 48 53 52 50 43 42 48 40 +CAM081 1810 11 31 37 38 44 33 29 46 39 33 +CAM081 1820 29 39 44 43 48 39 43 44 42 41 +CAM081 1830 41 44 44 38 41 43 27 30 27 32 +CAM081 1840 23 28 23 30 24 21 28 35 42 38 +CAM081 1850 37 26 41 31 32 41 25 16 29 34 +CAM081 1860 48 25 36 29 41 26 41 51 49 66 +CAM081 1870 49 38 38 45 41 39 50 59 52 35 +CAM081 1880 33 37 46 45 37 42 49 53 55 47 +CAM081 1890 62 43 53 42 41 48 34 42 44 25 +CAM081 1900 54 53 60 62 46 63 57 76 60 69 +CAM081 1910 57 72 55 48 69 55 47 55 46 45 +CAM081 1920 47 51 57 46 42 58 60 63 52 54 +CAM081 1930 82 50 72 60 68 68 48 63 55 61 +CAM081 1940 53 59 26 37 51 53 46 47 37 39 +CAM081 1950 48 46 48 30 44 40 45 48 57 42 +CAM081 1960 26 18 51 34 40 61 51 43 43 70 +CAM081 1970 51 70 54 66 60 51 48 60 55 44 +CAM081 1980 66 49 65 68 999 +CAM082 977 38 44 32 +CAM082 980 25 24 41 39 24 33 45 41 38 49 +CAM082 990 36 49 46 76 63 31 41 61 69 74 +CAM082 1000 67 53 56 62 58 41 44 64 59 53 +CAM082 1010 64 51 56 44 26 26 21 29 37 36 +CAM082 1020 35 43 36 43 46 40 28 35 36 45 +CAM082 1030 39 41 51 45 48 38 40 36 46 42 +CAM082 1040 40 42 50 39 42 49 41 56 24 24 +CAM082 1050 36 41 49 36 30 30 28 34 35 39 +CAM082 1060 31 33 38 31 33 37 29 22 16 27 +CAM082 1070 22 23 26 31 31 32 33 24 18 28 +CAM082 1080 30 35 31 28 43 46 39 36 39 38 +CAM082 1090 41 40 40 29 36 39 44 39 28 39 +CAM082 1100 47 51 41 26 43 39 44 46 54 42 +CAM082 1110 32 57 54 40 31 38 43 36 34 24 +CAM082 1120 25 26 37 38 46 47 39 25 33 32 +CAM082 1130 31 39 35 16 23 16 23 35 33 33 +CAM082 1140 33 43 34 33 40 35 30 13 11 20 +CAM082 1150 20 13 21 30 29 32 40 33 29 42 +CAM082 1160 41 37 51 48 39 50 40 37 33 39 +CAM082 1170 37 36 26 29 22 37 35 24 36 29 +CAM082 1180 29 40 43 49 45 42 48 40 49 40 +CAM082 1190 35 31 28 40 45 54 33 33 43 33 +CAM082 1200 34 26 42 42 27 40 35 38 28 33 +CAM082 1210 37 56 48 43 43 31 27 23 2 25 +CAM082 1220 40 43 43 39 53 45 29 22 30 29 +CAM082 1230 17 34 40 31 35 36 40 29 37 19 +CAM082 1240 29 27 34 36 31 38 28 24 39 30 +CAM082 1250 35 33 30 24 16 9 17 23 18 31 +CAM082 1260 26 27 32 24 23 19 32 27 29 26 +CAM082 1270 36 35 37 27 34 36 36 20 19 31 +CAM082 1280 29 28 36 39 28 27 28 28 16 16 +CAM082 1290 11 19 30 22 25 36 26 23 27 32 +CAM082 1300 33 35 27 24 34 31 28 27 31 17 +CAM082 1310 19 27 29 35 34 37 18 23 32 30 +CAM082 1320 34 36 36 24 27 30 31 44 35 29 +CAM082 1330 30 32 9 19 16 12 5 22 18 11 +CAM082 1340 11 11 9 11 23 12 18 14 13 13 +CAM082 1350 9 15 14 20 14 9 15 19 17 13 +CAM082 1360 12 10 0 12 22 24 12 22 20 21 +CAM082 1370 14 12 20 18 31 24 27 23 20 20 +CAM082 1380 22 30 35 33 25 37 37 31 31 39 +CAM082 1390 19 21 34 37 40 37 27 34 32 31 +CAM082 1400 37 30 38 39 45 33 42 39 33 51 +CAM082 1410 36 35 56 43 38 42 50 53 32 32 +CAM082 1420 44 50 47 49 48 36 31 37 44 46 +CAM082 1430 41 37 41 44 26 42 38 38 38 31 +CAM082 1440 34 37 31 25 34 34 31 30 27 41 +CAM082 1450 32 28 30 36 24 34 26 24 25 22 +CAM082 1460 23 27 25 33 25 23 25 27 29 27 +CAM082 1470 34 26 32 31 21 25 31 28 40 29 +CAM082 1480 24 38 33 31 40 45 28 37 36 33 +CAM082 1490 37 35 31 28 40 29 29 16 21 19 +CAM082 1500 26 32 31 44 44 37 24 28 25 35 +CAM082 1510 36 36 46 41 41 31 31 42 50 46 +CAM082 1520 50 41 31 13 32 39 35 45 38 39 +CAM082 1530 31 27 21 10 23 41 39 43 30 46 +CAM082 1540 39 26 11 18 31 11 18 21 22 19 +CAM082 1550 31 33 37 32 29 30 33 36 31 28 +CAM082 1560 32 33 38 33 27 30 30 32 35 36 +CAM082 1570 37 17 27 32 30 34 38 43 28 19 +CAM082 1580 13 31 34 42 34 27 26 32 37 36 +CAM082 1590 23 22 29 29 39 23 34 31 36 31 +CAM082 1600 34 30 18 38 28 35 29 28 40 38 +CAM082 1610 41 37 25 28 34 26 39 37 25 30 +CAM082 1620 27 35 28 33 30 33 24 27 32 26 +CAM082 1630 24 22 20 16 21 23 27 32 24 19 +CAM082 1640 32 19 17 22 18 17 17 15 23 23 +CAM082 1650 25 30 27 21 16 14 17 21 28 29 +CAM082 1660 37 42 33 25 32 30 21 22 13 10 +CAM082 1670 8 20 18 13 16 17 12 17 15 21 +CAM082 1680 21 6 20 21 17 14 15 15 19 17 +CAM082 1690 22 22 18 25 32 31 21 19 16 9 +CAM082 1700 11 15 13 9 6 8 12 8 6 10 +CAM082 1710 12 11 17 16 15 18 17 17 22 22 +CAM082 1720 27 34 26 22 22 14 21 24 19 23 +CAM082 1730 21 17 32 13 19 21 21 21 23 20 +CAM082 1740 27 30 24 23 30 28 27 33 13 17 +CAM082 1750 23 33 18 17 17 17 24 19 20 20 +CAM082 1760 28 25 26 25 23 28 23 34 28 30 +CAM082 1770 30 35 29 24 20 24 27 17 18 20 +CAM082 1780 22 19 6 15 15 24 29 31 35 26 +CAM082 1790 28 26 25 22 22 7 15 20 24 28 +CAM082 1800 39 42 29 37 37 34 32 25 20 32 +CAM082 1810 15 29 26 17 20 19 19 28 25 23 +CAM082 1820 21 26 22 24 23 21 21 21 14 13 +CAM082 1830 8 12 17 17 13 16 7 7 10 10 +CAM082 1840 11 6 6 10 10 8 13 10 8 9 +CAM082 1850 12 8 13 12 10 13 7 3 0 9 +CAM082 1860 11 9 10 8 7 0 10 12 17 15 +CAM082 1870 15 11 14 11 10 8 9 18 11 12 +CAM082 1880 11 14 11 12 13 12 12 8 17 24 +CAM082 1890 23 14 19 20 17 22 11 13 20 15 +CAM082 1900 20 23 17 19 10 18 21 34 26 30 +CAM082 1910 22 37 27 25 30 27 22 22 20 22 +CAM082 1920 22 25 31 23 26 25 28 27 35 12 +CAM082 1930 29 30 27 34 30 33 18 31 30 41 +CAM082 1940 34 25 28 23 25 36 32 39 16 22 +CAM082 1950 22 24 32 27 25 26 29 24 31 19 +CAM082 1960 4 14 30 25 38 27 32 23 33 29 +CAM082 1970 24 18 25 20 21 26 37 39 36 41 +CAM082 1980 42 33 47 54 999 +CAM091 1460 33 30 39 47 52 46 69 66 28 63 +CAM091 1470 71 43 69 38 43 30 62 69 64 74 +CAM091 1480 74 107 52 59 89 96 90 81 52 77 +CAM091 1490 72 63 40 69 81 61 19 8 36 62 +CAM091 1500 27 66 57 81 67 59 35 39 39 67 +CAM091 1510 63 69 81 79 76 55 93 89 75 61 +CAM091 1520 87 70 44 7 50 76 89 105 67 75 +CAM091 1530 91 68 42 15 41 73 77 90 57 78 +CAM091 1540 69 34 5 37 17 12 13 10 8 29 +CAM091 1550 39 39 33 38 40 29 53 64 35 45 +CAM091 1560 50 45 57 47 51 55 43 57 61 67 +CAM091 1570 69 24 67 56 55 68 54 62 40 16 +CAM091 1580 15 54 56 81 31 42 46 60 46 42 +CAM091 1590 12 46 34 43 66 38 69 53 72 57 +CAM091 1600 46 57 38 99 108 90 86 54 68 61 +CAM091 1610 52 30 12 11 25 14 13 27 13 12 +CAM091 1620 18 26 26 34 13 29 13 22 31 42 +CAM091 1630 39 23 12 35 49 34 36 50 32 46 +CAM091 1640 56 25 43 57 35 41 42 26 52 64 +CAM091 1650 63 103 63 29 17 0 44 69 49 38 +CAM091 1660 62 87 52 60 98 83 66 56 7 0 +CAM091 1670 0 39 30 42 52 38 44 46 47 62 +CAM091 1680 76 36 79 86 84 60 23 48 39 40 +CAM091 1690 6 56 53 66 76 83 72 78 43 64 +CAM091 1700 68 49 37 26 25 29 41 11 7 32 +CAM091 1710 43 47 40 37 38 58 36 40 47 53 +CAM091 1720 60 77 43 48 47 58 68 82 79 54 +CAM091 1730 51 44 65 36 30 13 30 27 41 35 +CAM091 1740 43 64 17 46 56 47 62 66 73 67 +CAM091 1750 83 105 33 43 32 36 14 17 48 38 +CAM091 1760 77 78 68 26 41 42 49 66 49 72 +CAM091 1770 71 82 68 59 64 62 71 35 48 51 +CAM091 1780 44 23 0 33 55 52 27 44 53 50 +CAM091 1790 33 54 44 50 34 6 39 60 53 54 +CAM091 1800 42 38 31 57 61 54 30 27 37 74 +CAM091 1810 40 60 32 16 43 44 45 58 52 40 +CAM091 1820 11 45 53 50 20 54 66 52 46 39 +CAM091 1830 46 64 73 63 49 35 8 30 42 67 +CAM091 1840 53 56 12 42 32 16 27 32 56 54 +CAM091 1850 56 59 78 76 82 77 17 3 0 26 +CAM091 1860 46 46 42 25 50 38 51 51 68 56 +CAM091 1870 49 48 56 40 63 46 16 34 47 37 +CAM091 1880 14 7 37 41 53 60 59 68 87 98 +CAM091 1890 55 97 100 87 56 72 22 33 53 2 +CAM091 1900 47 62 72 49 27 61 67 96 102 105 +CAM091 1910 106 115 96 71 95 106 90 66 73 89 +CAM091 1920 45 54 72 49 54 58 95 86 50 8 +CAM091 1930 60 73 90 57 69 39 33 77 69 117 +CAM091 1940 120 82 76 90 66 71 102 119 17 72 +CAM091 1950 34 39 45 57 71 80 70 98 92 40 +CAM091 1960 6 12 48 90 101 85 66 93 121 134 +CAM091 1970 77 59 43 93 63 49 69 124 117 92 +CAM091 1980 123 154 135 102 999 +CAM092 1591 40 22 34 54 35 65 59 73 73 +CAM092 1600 40 77 44 82 70 61 45 8 72 69 +CAM092 1610 75 50 11 26 53 39 76 87 47 65 +CAM092 1620 58 75 37 48 0 44 14 30 30 46 +CAM092 1630 49 27 7 36 52 50 56 72 14 53 +CAM092 1640 76 38 45 65 54 30 44 28 51 57 +CAM092 1650 53 67 33 19 0 0 15 25 16 12 +CAM092 1660 35 43 24 30 51 56 38 21 12 19 +CAM092 1670 0 25 0 23 19 0 18 0 10 19 +CAM092 1680 25 14 34 44 48 28 7 34 25 9 +CAM092 1690 0 28 23 32 47 55 48 30 10 21 +CAM092 1700 41 38 12 0 15 0 16 0 0 16 +CAM092 1710 0 9 14 18 13 17 6 7 22 25 +CAM092 1720 35 50 31 42 25 34 42 45 52 22 +CAM092 1730 25 21 46 0 24 25 31 21 32 32 +CAM092 1740 50 77 31 73 74 62 72 76 82 84 +CAM092 1750 98 96 15 0 13 30 0 0 47 33 +CAM092 1760 69 75 70 27 35 38 39 39 19 50 +CAM092 1770 46 60 45 37 0 14 21 0 49 19 +CAM092 1780 16 0 0 0 0 13 13 11 16 5 +CAM092 1790 15 22 17 13 11 0 24 31 24 24 +CAM092 1800 23 29 17 31 38 38 27 0 19 38 +CAM092 1810 36 52 39 11 29 29 32 52 57 44 +CAM092 1820 13 25 12 23 0 35 38 33 25 0 +CAM092 1830 7 40 37 44 49 16 0 10 24 40 +CAM092 1840 43 51 5 36 10 0 26 9 24 28 +CAM092 1850 28 29 52 62 67 94 7 0 0 10 +CAM092 1860 30 20 31 2 38 2 52 31 44 26 +CAM092 1870 59 54 57 39 52 26 9 14 47 56 +CAM092 1880 36 3 13 35 41 45 60 49 48 55 +CAM092 1890 29 57 56 35 27 24 9 18 18 0 +CAM092 1900 39 47 35 9 0 49 61 63 72 72 +CAM092 1910 78 82 75 56 96 75 60 70 45 63 +CAM092 1920 30 48 37 17 39 62 62 46 38 0 +CAM092 1930 43 49 48 39 14 9 0 52 42 65 +CAM092 1940 80 55 30 38 25 45 79 71 14 51 +CAM092 1950 18 35 45 61 32 30 36 39 43 7 +CAM092 1960 4 0 37 45 44 44 13 25 45 53 +CAM092 1970 34 77 31 65 19 6 22 54 49 36 +CAM092 1980 65 39 71 67 999 +CAM101 1727 55 59 48 +CAM101 1730 52 59 54 40 47 31 44 50 33 25 +CAM101 1740 40 56 19 39 51 65 59 76 63 65 +CAM101 1750 73 98 93 29 28 72 23 18 55 39 +CAM101 1760 60 57 53 39 62 62 51 58 57 68 +CAM101 1770 58 71 70 61 45 50 51 23 35 40 +CAM101 1780 24 13 0 0 12 24 21 34 39 31 +CAM101 1790 37 31 35 43 26 11 26 39 27 32 +CAM101 1800 46 46 48 59 67 61 48 30 39 49 +CAM101 1810 29 60 37 22 30 38 32 44 35 38 +CAM101 1820 28 42 22 31 18 42 55 56 52 35 +CAM101 1830 40 60 77 72 60 35 17 21 41 40 +CAM101 1840 43 38 29 36 27 10 22 18 26 42 +CAM101 1850 51 49 75 97 80 81 16 19 7 42 +CAM101 1860 50 35 50 37 55 37 54 67 76 65 +CAM101 1870 70 68 82 75 78 86 47 87 99 62 +CAM101 1880 35 27 60 66 56 68 91 60 91 66 +CAM101 1890 53 80 79 70 69 56 24 42 53 0 +CAM101 1900 44 62 80 67 52 85 92 123 109 106 +CAM101 1910 96 126 103 80 114 104 105 97 82 102 +CAM101 1920 72 84 80 54 41 41 74 76 79 0 +CAM101 1930 64 75 64 56 57 54 39 72 60 69 +CAM101 1940 83 54 51 61 58 76 81 96 37 66 +CAM101 1950 44 74 72 87 84 60 84 80 83 72 +CAM101 1960 20 32 69 80 86 102 99 92 92 108 +CAM101 1970 60 84 66 72 68 40 70 99 95 96 +CAM101 1980 119 104 125 112 999 +CAM102 1665 62 54 70 7 0 +CAM102 1670 13 52 47 53 71 56 54 55 61 61 +CAM102 1680 68 56 62 62 49 51 33 58 48 31 +CAM102 1690 0 44 50 55 58 59 48 62 57 61 +CAM102 1700 44 44 52 24 35 33 40 23 26 45 +CAM102 1710 49 67 70 59 32 49 21 39 48 59 +CAM102 1720 62 69 48 54 51 64 60 69 91 58 +CAM102 1730 82 90 99 66 90 48 68 75 60 39 +CAM102 1740 63 83 45 83 78 91 83 100 85 74 +CAM102 1750 78 95 88 18 29 68 18 24 67 62 +CAM102 1760 93 76 81 66 75 82 68 85 90 101 +CAM102 1770 75 87 81 71 66 78 80 37 71 89 +CAM102 1780 62 27 0 29 39 60 50 64 57 56 +CAM102 1790 68 63 66 81 53 18 51 79 67 83 +CAM102 1800 97 104 106 142 143 128 100 77 115 108 +CAM102 1810 92 133 86 45 61 71 80 110 90 90 +CAM102 1820 63 84 49 68 28 57 72 76 80 65 +CAM102 1830 63 38 28 17 17 15 5 17 24 31 +CAM102 1840 30 33 28 42 29 8 32 28 46 68 +CAM102 1850 83 84 100 99 81 88 12 16 0 44 +CAM102 1860 49 42 33 32 36 22 43 39 45 35 +CAM102 1870 37 38 37 30 30 43 26 40 42 34 +CAM102 1880 15 22 41 45 46 52 68 51 55 65 +CAM102 1890 54 56 56 64 35 44 22 42 50 0 +CAM102 1900 45 61 70 54 39 65 74 95 76 73 +CAM102 1910 81 65 71 56 83 98 86 104 79 88 +CAM102 1920 76 76 84 57 39 41 70 58 62 0 +CAM102 1930 72 75 105 83 65 88 71 95 70 95 +CAM102 1940 96 47 51 46 59 74 86 80 31 51 +CAM102 1950 43 75 69 96 81 70 78 71 46 50 +CAM102 1960 13 30 73 68 66 75 76 59 77 120 +CAM102 1970 65 102 83 64 62 46 58 93 96 95 +CAM102 1980 125 99 81 73 999 +CAM111 1446 45 57 40 69 +CAM111 1450 25 46 69 85 47 93 49 51 34 33 +CAM111 1460 32 35 20 28 30 22 27 29 17 34 +CAM111 1470 32 32 34 26 20 12 38 42 45 49 +CAM111 1480 39 53 51 67 78 76 59 60 72 76 +CAM111 1490 77 63 38 49 65 61 34 16 30 45 +CAM111 1500 16 37 43 47 55 45 33 46 37 54 +CAM111 1510 64 70 91 65 88 44 76 80 68 61 +CAM111 1520 83 86 42 12 65 71 55 74 41 41 +CAM111 1530 52 42 41 8 34 65 65 77 58 82 +CAM111 1540 66 27 0 38 20 12 13 16 17 30 +CAM111 1550 45 38 48 57 61 56 53 53 46 54 +CAM111 1560 52 56 76 56 60 68 56 85 89 88 +CAM111 1570 77 40 48 47 67 71 64 52 28 8 +CAM111 1580 9 42 33 55 34 33 53 75 63 66 +CAM111 1590 43 47 31 37 69 53 72 75 80 80 +CAM111 1600 51 78 55 97 93 83 74 43 82 87 +CAM111 1610 102 82 47 74 108 79 112 118 70 76 +CAM111 1620 61 88 60 50 19 26 18 35 50 75 +CAM111 1630 43 40 33 45 56 51 50 47 45 55 +CAM111 1640 66 34 38 55 61 75 61 40 65 73 +CAM111 1650 62 63 33 38 29 7 38 50 53 71 +CAM111 1660 77 77 66 57 91 83 79 82 28 9 +CAM111 1670 10 39 36 42 44 22 32 30 39 38 +CAM111 1680 46 13 47 50 54 63 36 55 46 51 +CAM111 1690 15 52 50 56 85 80 56 82 86 61 +CAM111 1700 64 71 66 44 47 38 55 42 30 32 +CAM111 1710 54 57 67 72 61 74 58 49 63 70 +CAM111 1720 94 105 66 60 68 61 77 81 83 91 +CAM111 1730 95 82 115 65 100 44 80 95 73 64 +CAM111 1740 86 99 53 99 98 94 79 96 102 88 +CAM111 1750 90 105 57 37 51 64 48 37 52 58 +CAM111 1760 103 81 82 56 58 99 72 103 85 103 +CAM111 1770 75 96 107 104 83 104 97 82 85 78 +CAM111 1780 74 19 16 49 44 59 71 51 65 59 +CAM111 1790 64 68 63 62 72 34 53 68 69 55 +CAM111 1800 81 101 62 75 73 102 66 44 57 69 +CAM111 1810 33 60 47 36 40 49 48 70 54 50 +CAM111 1820 57 77 53 67 46 59 59 59 39 37 +CAM111 1830 55 56 44 59 72 48 32 31 42 51 +CAM111 1840 42 52 38 64 42 34 38 35 41 47 +CAM111 1850 53 46 76 79 73 85 28 31 23 50 +CAM111 1860 66 50 59 62 69 46 85 83 93 83 +CAM111 1870 87 91 98 73 87 101 74 103 94 71 +CAM111 1880 22 47 92 72 83 65 105 71 87 73 +CAM111 1890 81 83 83 86 77 92 47 80 81 24 +CAM111 1900 78 78 92 91 67 77 74 83 55 66 +CAM111 1910 75 69 69 63 119 72 66 56 53 100 +CAM111 1920 104 62 99 91 56 75 82 135 97 17 +CAM111 1930 102 113 104 91 142 87 79 86 104 115 +CAM111 1940 131 79 54 71 72 63 84 112 49 60 +CAM111 1950 57 85 68 79 74 90 94 74 65 60 +CAM111 1960 30 35 65 84 96 105 84 89 113 118 +CAM111 1970 57 93 89 87 84 63 98 138 80 73 +CAM111 1980 122 141 114 93 999 +CAM112 1471 77 78 48 37 21 47 49 54 55 +CAM112 1480 40 55 54 46 54 69 57 66 62 80 +CAM112 1490 73 60 35 56 62 48 32 23 25 46 +CAM112 1500 22 48 46 74 85 50 34 34 48 48 +CAM112 1510 59 70 95 63 81 55 68 82 69 71 +CAM112 1520 94 82 43 15 62 77 51 72 49 47 +CAM112 1530 47 42 44 9 42 67 65 75 59 74 +CAM112 1540 67 26 0 47 21 21 17 17 27 29 +CAM112 1550 42 37 37 39 43 42 47 50 38 44 +CAM112 1560 46 59 63 55 54 60 38 63 73 74 +CAM112 1570 75 40 55 41 56 53 53 41 23 3 +CAM112 1580 12 37 29 45 27 31 42 52 51 50 +CAM112 1590 33 35 20 36 54 35 44 44 47 42 +CAM112 1600 21 50 40 57 58 48 48 32 62 68 +CAM112 1610 56 54 44 58 67 57 60 71 30 49 +CAM112 1620 41 58 48 55 24 46 20 34 36 43 +CAM112 1630 36 33 35 41 64 39 61 59 61 57 +CAM112 1640 67 37 15 54 28 47 44 36 54 51 +CAM112 1650 47 58 35 32 40 15 36 39 57 77 +CAM112 1660 72 76 58 47 76 72 74 88 29 16 +CAM112 1670 23 52 44 53 56 34 42 38 46 47 +CAM112 1680 48 13 44 49 53 61 46 59 56 53 +CAM112 1690 15 59 64 70 78 84 60 81 80 77 +CAM112 1700 68 65 66 37 48 58 61 48 31 44 +CAM112 1710 53 55 68 66 58 80 63 54 66 103 +CAM112 1720 127 126 63 69 83 96 94 93 94 91 +CAM112 1730 69 76 88 47 76 39 65 78 82 79 +CAM112 1740 83 100 57 113 94 106 89 117 91 84 +CAM112 1750 87 92 56 28 36 71 40 29 46 59 +CAM112 1760 89 79 70 45 53 68 53 71 76 77 +CAM112 1770 75 74 86 85 73 73 82 69 74 77 +CAM112 1780 69 17 14 35 41 61 60 51 61 61 +CAM112 1790 50 74 73 62 71 42 54 69 55 68 +CAM112 1800 89 85 70 81 86 93 51 45 60 75 +CAM112 1810 38 76 49 39 61 65 65 79 62 71 +CAM112 1820 58 68 45 61 32 48 47 56 41 37 +CAM112 1830 51 73 49 52 49 33 20 35 37 52 +CAM112 1840 43 49 36 67 39 33 40 36 55 66 +CAM112 1850 61 66 84 83 73 70 18 15 17 39 +CAM112 1860 51 37 29 39 43 24 55 47 57 52 +CAM112 1870 57 44 79 49 55 73 54 87 85 52 +CAM112 1880 13 23 58 56 49 65 59 67 80 74 +CAM112 1890 51 77 58 56 48 61 32 64 68 11 +CAM112 1900 59 58 51 53 41 52 44 47 45 52 +CAM112 1910 45 59 55 42 62 60 61 57 59 85 +CAM112 1920 83 70 55 75 59 47 64 89 80 13 +CAM112 1930 70 86 79 70 83 59 61 72 49 51 +CAM112 1940 52 43 55 49 49 51 105 115 44 88 +CAM112 1950 67 66 51 87 102 84 81 85 59 70 +CAM112 1960 21 59 94 72 88 81 88 73 70 101 +CAM112 1970 75 55 86 87 42 39 66 114 92 95 +CAM112 1980 101 62 108 112 999 +CAM121 1000 40 26 47 52 44 13 32 33 27 36 +CAM121 1010 36 30 28 22 20 28 14 12 15 16 +CAM121 1020 29 18 25 33 25 25 18 18 28 25 +CAM121 1030 19 26 26 25 27 31 28 28 35 30 +CAM121 1040 34 35 45 37 33 34 34 27 10 17 +CAM121 1050 31 33 39 21 38 20 25 23 29 38 +CAM121 1060 32 50 46 38 35 35 28 23 13 16 +CAM121 1070 9 13 12 18 24 32 28 22 23 34 +CAM121 1080 28 38 37 32 34 34 36 35 34 28 +CAM121 1090 32 17 15 0 8 11 12 11 7 15 +CAM121 1100 19 17 18 17 27 41 39 36 32 19 +CAM121 1110 24 27 33 24 29 30 36 22 27 25 +CAM121 1120 19 17 25 22 29 25 30 26 28 35 +CAM121 1130 34 30 25 7 15 7 22 24 31 37 +CAM121 1140 32 37 27 31 29 26 19 8 12 23 +CAM121 1150 18 7 37 30 35 37 35 30 34 37 +CAM121 1160 36 33 22 36 25 40 27 33 19 34 +CAM121 1170 26 28 15 24 28 30 27 16 21 26 +CAM121 1180 13 29 27 29 33 23 20 23 25 19 +CAM121 1190 31 21 25 29 24 34 12 25 18 18 +CAM121 1200 21 16 28 19 11 13 6 12 10 14 +CAM121 1210 6 27 20 19 24 11 20 5 0 17 +CAM121 1220 19 18 24 24 30 29 20 16 26 26 +CAM121 1230 16 29 26 21 16 25 15 17 21 25 +CAM121 1240 29 27 22 23 24 22 11 20 31 36 +CAM121 1250 29 32 28 31 0 9 27 30 11 34 +CAM121 1260 26 32 38 32 13 24 26 26 11 17 +CAM121 1270 25 23 33 12 28 27 13 19 6 31 +CAM121 1280 23 23 23 23 16 7 22 18 7 11 +CAM121 1290 6 12 8 11 13 16 10 14 16 16 +CAM121 1300 18 24 24 19 16 13 15 14 18 5 +CAM121 1310 16 17 17 23 27 8 7 20 21 13 +CAM121 1320 12 24 22 13 19 23 24 21 21 14 +CAM121 1330 21 30 10 19 17 13 11 28 8 10 +CAM121 1340 20 21 14 23 17 20 27 22 15 21 +CAM121 1350 13 15 23 16 11 12 20 20 14 17 +CAM121 1360 12 0 3 17 14 0 21 20 23 15 +CAM121 1370 23 11 24 27 27 23 27 7 21 11 +CAM121 1380 19 26 27 31 27 37 26 26 29 33 +CAM121 1390 15 32 30 21 28 26 24 25 20 22 +CAM121 1400 23 15 22 19 20 25 27 18 19 21 +CAM121 1410 23 28 25 18 22 25 26 31 26 28 +CAM121 1420 30 21 25 23 32 22 15 17 18 18 +CAM121 1430 21 14 21 25 13 28 25 18 16 21 +CAM121 1440 26 17 11 18 14 18 13 19 10 18 +CAM121 1450 15 17 25 18 17 14 14 16 7 3 +CAM121 1460 0 15 0 15 10 15 14 20 0 23 +CAM121 1470 18 13 14 0 11 0 18 18 19 17 +CAM121 1480 19 29 17 15 31 24 28 23 23 21 +CAM121 1490 24 17 0 23 24 19 8 0 10 17 +CAM121 1500 7 25 20 29 29 19 16 16 19 33 +CAM121 1510 23 25 40 35 27 15 38 42 24 33 +CAM121 1520 40 29 17 10 24 18 29 34 25 19 +CAM121 1530 29 21 21 10 22 31 32 34 29 35 +CAM121 1540 33 11 0 20 0 0 14 0 8 15 +CAM121 1550 15 14 14 20 26 25 28 34 27 27 +CAM121 1560 28 27 31 32 36 28 16 27 36 35 +CAM121 1570 37 14 24 17 34 31 31 34 16 7 +CAM121 1580 7 29 26 31 20 32 28 33 38 29 +CAM121 1590 11 24 15 23 32 10 22 18 27 21 +CAM121 1600 0 24 13 26 20 18 18 16 31 24 +CAM121 1610 18 21 13 22 36 23 39 48 23 31 +CAM121 1620 26 35 28 39 23 41 15 33 35 44 +CAM121 1630 37 32 22 41 40 38 43 34 36 37 +CAM121 1640 47 18 24 44 39 29 31 20 30 31 +CAM121 1650 29 32 26 23 17 15 34 35 31 41 +CAM121 1660 41 49 42 35 47 43 41 37 20 23 +CAM121 1670 10 26 21 30 28 20 29 15 33 35 +CAM121 1680 37 15 39 39 36 32 17 31 26 31 +CAM121 1690 12 35 34 35 37 31 27 30 30 35 +CAM121 1700 28 27 27 17 18 21 27 14 8 24 +CAM121 1710 25 29 35 37 30 38 28 36 39 36 +CAM121 1720 36 44 34 32 34 41 38 37 42 36 +CAM121 1730 42 33 36 27 44 18 37 37 28 24 +CAM121 1740 41 39 28 36 33 28 28 35 31 39 +CAM121 1750 41 54 31 14 28 40 23 29 42 44 +CAM121 1760 59 56 44 46 41 43 41 48 42 44 +CAM121 1770 44 47 33 39 32 28 34 24 30 36 +CAM121 1780 34 35 5 18 22 36 42 48 48 50 +CAM121 1790 35 46 40 36 19 18 38 55 51 55 +CAM121 1800 45 40 39 44 46 50 18 33 35 37 +CAM121 1810 21 41 25 23 30 25 28 27 26 29 +CAM121 1820 20 25 28 36 28 41 37 47 38 20 +CAM121 1830 47 53 51 42 32 30 17 25 27 32 +CAM121 1840 25 29 20 36 20 18 25 25 37 53 +CAM121 1850 42 35 43 42 47 40 7 8 8 16 +CAM121 1860 31 31 35 27 26 23 27 37 38 41 +CAM121 1870 29 24 33 20 42 34 35 39 44 27 +CAM121 1880 17 37 44 48 45 46 41 31 29 31 +CAM121 1890 27 22 26 32 25 27 18 27 36 0 +CAM121 1900 38 44 46 46 28 33 32 27 24 31 +CAM121 1910 21 28 24 25 27 26 18 26 28 37 +CAM121 1920 42 21 42 33 37 35 37 45 32 14 +CAM121 1930 33 39 45 43 25 26 30 51 29 31 +CAM121 1940 44 34 32 35 23 23 33 33 15 24 +CAM121 1950 23 21 29 27 32 23 28 34 31 16 +CAM121 1960 0 13 16 35 30 29 19 31 23 46 +CAM121 1970 31 37 21 29 17 21 28 38 37 25 +CAM121 1980 47 41 45 35 999 +CAM122 1000 24 17 22 30 32 9 16 26 21 23 +CAM122 1010 25 18 20 12 5 14 3 11 20 19 +CAM122 1020 23 23 21 31 27 27 20 19 27 26 +CAM122 1030 32 34 27 20 30 22 25 23 26 26 +CAM122 1040 26 29 41 25 29 30 34 31 10 19 +CAM122 1050 29 26 38 17 25 17 20 18 29 26 +CAM122 1060 25 39 39 28 23 31 34 20 21 22 +CAM122 1070 20 24 29 36 32 39 38 33 31 40 +CAM122 1080 31 49 46 27 40 38 36 33 27 14 +CAM122 1090 22 22 27 13 28 23 20 25 23 30 +CAM122 1100 28 26 24 15 26 26 27 24 25 23 +CAM122 1110 28 32 30 16 19 24 18 0 14 10 +CAM122 1120 6 8 17 13 18 27 22 15 26 25 +CAM122 1130 20 20 7 0 10 11 18 17 20 21 +CAM122 1140 15 28 18 16 19 17 9 0 9 9 +CAM122 1150 5 3 16 21 17 23 28 22 21 26 +CAM122 1160 18 13 12 11 15 22 27 22 20 28 +CAM122 1170 24 26 16 21 12 8 8 0 7 13 +CAM122 1180 4 11 16 17 19 15 16 18 16 15 +CAM122 1190 31 28 25 30 29 32 15 31 23 24 +CAM122 1200 30 22 32 27 22 24 15 21 14 21 +CAM122 1210 19 33 27 26 27 17 23 10 0 24 +CAM122 1220 23 29 29 30 29 27 23 12 22 24 +CAM122 1230 15 30 25 17 20 26 15 23 27 26 +CAM122 1240 29 28 30 33 32 32 15 20 36 39 +CAM122 1250 32 27 24 31 0 9 15 26 10 27 +CAM122 1260 31 29 41 33 17 33 36 39 35 23 +CAM122 1270 28 31 35 11 28 26 20 21 21 36 +CAM122 1280 29 26 26 32 21 9 24 21 12 18 +CAM122 1290 14 24 18 25 26 40 28 34 32 29 +CAM122 1300 29 32 22 18 21 23 23 22 26 21 +CAM122 1310 23 30 23 34 47 23 21 28 23 21 +CAM122 1320 27 37 29 15 13 26 16 14 12 9 +CAM122 1330 22 19 14 23 17 21 14 30 13 18 +CAM122 1340 18 19 18 25 20 24 34 27 25 27 +CAM122 1350 15 17 32 28 21 16 28 24 21 19 +CAM122 1360 12 0 9 14 11 9 16 24 28 26 +CAM122 1370 29 18 26 27 35 25 25 15 25 13 +CAM122 1380 21 26 23 28 23 38 32 30 39 36 +CAM122 1390 24 36 42 35 49 49 31 32 33 33 +CAM122 1400 36 27 38 36 44 45 57 46 41 40 +CAM122 1410 42 44 56 43 35 38 40 47 38 48 +CAM122 1420 56 51 51 53 55 38 29 29 47 49 +CAM122 1430 47 25 37 41 21 45 36 28 19 26 +CAM122 1440 33 24 15 22 16 18 16 19 21 32 +CAM122 1450 8 26 24 31 18 28 19 13 14 11 +CAM122 1460 4 21 19 17 16 15 13 23 5 23 +CAM122 1470 30 17 26 11 11 0 31 34 23 17 +CAM122 1480 25 35 19 16 37 37 37 34 31 24 +CAM122 1490 28 26 4 25 29 14 10 0 10 16 +CAM122 1500 8 22 26 28 22 23 25 23 23 31 +CAM122 1510 31 31 39 29 34 18 41 37 33 34 +CAM122 1520 44 33 23 14 28 23 34 44 33 27 +CAM122 1530 37 31 33 15 31 42 43 44 33 50 +CAM122 1540 41 10 4 17 13 10 11 10 11 19 +CAM122 1550 24 19 22 23 29 26 31 35 24 33 +CAM122 1560 33 33 40 38 43 35 31 34 39 33 +CAM122 1570 35 18 22 18 30 27 33 33 17 12 +CAM122 1580 9 30 27 28 21 33 30 35 35 31 +CAM122 1590 21 30 20 24 33 19 16 20 20 20 +CAM122 1600 8 21 8 26 17 12 13 19 31 27 +CAM122 1610 33 29 26 27 32 22 35 37 26 25 +CAM122 1620 34 36 25 31 22 41 16 20 28 30 +CAM122 1630 26 17 15 26 28 25 30 26 21 34 +CAM122 1640 45 22 32 43 31 24 30 16 33 32 +CAM122 1650 34 48 25 29 21 12 19 26 27 25 +CAM122 1660 33 37 30 22 46 50 25 22 7 6 +CAM122 1670 0 17 12 23 26 17 25 19 23 23 +CAM122 1680 22 4 32 36 33 27 17 29 32 28 +CAM122 1690 10 30 25 37 42 40 36 34 31 24 +CAM122 1700 25 27 24 11 16 17 24 20 15 25 +CAM122 1710 29 26 38 34 24 27 23 24 31 23 +CAM122 1720 30 35 28 28 26 31 19 31 30 31 +CAM122 1730 29 21 32 21 31 15 29 23 17 23 +CAM122 1740 29 43 28 40 38 41 37 51 53 50 +CAM122 1750 50 56 32 13 28 37 27 27 38 31 +CAM122 1760 62 62 53 39 39 38 38 54 44 54 +CAM122 1770 51 61 51 50 40 47 47 32 38 36 +CAM122 1780 37 25 3 18 19 31 33 35 36 34 +CAM122 1790 28 39 35 31 25 17 23 30 28 28 +CAM122 1800 25 27 26 28 31 36 24 25 27 34 +CAM122 1810 23 28 25 28 30 24 26 41 34 33 +CAM122 1820 24 35 24 32 22 29 34 37 31 23 +CAM122 1830 34 43 36 42 50 42 19 37 31 46 +CAM122 1840 39 41 25 35 24 14 27 22 31 36 +CAM122 1850 32 29 31 37 43 28 9 10 10 15 +CAM122 1860 23 13 33 26 43 31 49 54 53 38 +CAM122 1870 46 35 39 38 39 40 31 42 46 33 +CAM122 1880 16 19 33 33 29 26 39 28 42 37 +CAM122 1890 30 29 39 40 37 35 24 35 41 8 +CAM122 1900 33 39 28 28 23 38 26 20 33 33 +CAM122 1910 29 16 16 27 23 28 27 26 18 22 +CAM122 1920 24 19 40 23 26 27 34 34 36 11 +CAM122 1930 35 36 39 40 34 36 39 51 46 63 +CAM122 1940 56 46 38 33 30 30 31 36 24 28 +CAM122 1950 25 23 25 28 30 29 30 32 36 26 +CAM122 1960 16 18 26 41 36 26 21 41 39 52 +CAM122 1970 39 32 53 45 33 32 52 56 43 53 +CAM122 1980 73 53 47 64 999 +CAM131 695 028 024 036 043 033 +CAM131 700 037 045 070 067 082 098 094 080 110 102 +CAM131 710 093 107 106 111 092 088 063 063 082 085 +CAM131 720 079 083 076 088 112 088 090 087 087 078 +CAM131 730 073 071 086 069 077 096 068 069 076 066 +CAM131 740 030 065 086 067 067 066 081 075 072 069 +CAM131 750 072 078 091 098 106 106 099 089 082 094 +CAM131 760 073 062 065 087 080 089 100 084 093 104 +CAM131 770 094 110 098 075 087 083 083 082 077 065 +CAM131 780 054 074 059 057 066 066 078 080 064 062 +CAM131 790 052 064 067 054 062 060 068 050 047 034 +CAM131 800 052 058 048 058 062 071 069 065 069 031 +CAM131 810 042 037 069 082 074 089 068 055 044 064 +CAM131 820 063 068 068 083 084 071 078 075 071 064 +CAM131 830 073 078 078 078 075 059 061 053 042 048 +CAM131 840 056 048 074 081 090 085 075 044 066 088 +CAM131 850 093 081 095 087 071 061 089 073 068 054 +CAM131 860 068 074 048 067 054 068 047 060 037 045 +CAM131 870 053 068 076 080 074 111 086 057 042 062 +CAM131 880 073 066 076 071 072 081 055 070 054 069 +CAM131 890 056 069 063 048 067 069 066 051 058 044 +CAM131 900 044 053 046 048 044 046 038 025 046 055 +CAM131 910 049 058 051 050 047 060 065 066 057 047 +CAM131 920 044 049 042 041 019 037 034 035 025 048 +CAM131 930 050 035 034 039 056 049 042 048 049 041 +CAM131 940 038 046 036 043 033 043 041 048 046 032 +CAM131 950 045 052 033 044 059 051 055 037 034 041 +CAM131 960 056 060 056 063 059 050 062 075 071 053 +CAM131 970 072 052 052 063 077 049 061 054 061 046 +CAM131 980 028 025 057 039 023 035 032 031 055 052 +CAM131 990 046 053 056 050 041 026 033 025 036 044 +CAM131 1000 041 028 037 046 049 029 040 049 052 045 +CAM131 1010 040 036 035 054 039 048 053 053 061 064 +CAM131 1020 061 060 048 052 051 049 063 056 068 077 +CAM131 1030 065 063 058 068 050 050 040 057 056 049 +CAM131 1040 047 064 076 070 046 043 057 076 051 045 +CAM131 1050 059 068 069 065 059 048 066 066 071 053 +CAM131 1060 064 073 050 061 057 048 036 044 037 048 +CAM131 1070 056 046 055 056 054 055 055 041 029 043 +CAM131 1080 044 043 042 053 053 043 053 053 044 044 +CAM131 1090 046 062 072 033 035 056 097 097 060 076 +CAM131 1100 078 054 049 033 053 045 052 058 064 048 +CAM131 1110 050 053 054 034 031 038 052 033 041 034 +CAM131 1120 016 021 029 026 037 044 056 048 050 034 +CAM131 1130 026 042 038 022 023 026 033 047 042 039 +CAM131 1140 036 055 040 038 045 027 031 013 015 027 +CAM131 1150 035 034 054 042 053 070 082 058 060 055 +CAM131 1160 047 050 042 049 042 056 048 064 040 050 +CAM131 1170 059 056 041 045 051 067 057 043 039 043 +CAM131 1180 027 047 037 048 048 059 045 058 053 057 +CAM131 1190 068 044 052 054 051 045 042 050 051 047 +CAM131 1200 049 040 042 039 023 028 028 041 032 035 +CAM131 1210 042 036 048 031 043 037 032 033 019 031 +CAM131 1220 035 045 051 039 053 051 040 040 034 044 +CAM131 1230 025 035 044 043 037 036 046 030 055 032 +CAM131 1240 043 041 039 043 041 053 039 045 066 067 +CAM131 1250 053 055 072 060 050 042 055 054 038 065 +CAM131 1260 054 047 059 062 050 057 052 049 040 049 +CAM131 1270 062 047 072 050 051 067 067 047 037 053 +CAM131 1280 074 049 052 053 044 047 050 045 017 027 +CAM131 1290 031 038 044 045 046 059 058 039 040 034 +CAM131 1300 043 059 049 044 064 058 047 046 060 040 +CAM131 1310 036 054 044 060 067 056 068 062 052 049 +CAM131 1320 053 056 055 040 052 057 081 071 068 068 +CAM131 1330 070 062 047 044 022 022 024 014 015 016 +CAM131 1340 028 018 026 021 025 018 022 013 009 010 +CAM131 1350 009 012 017 013 010 015 021 015 016 007 +CAM131 1360 006 000 008 016 031 020 031 027 040 043 +CAM131 1370 046 034 045 047 043 067 062 041 043 036 +CAM131 1380 052 078 083 087 085 072 071 055 062 066 +CAM131 1390 066 048 049 056 060 073 046 065 052 045 +CAM131 1400 062 031 061 047 073 079 085 064 058 058 +CAM131 1410 054 049 070 063 050 046 059 059 068 079 +CAM131 1420 060 058 042 062 054 043 031 045 049 062 +CAM131 1430 057 031 056 057 031 069 065 052 046 041 +CAM131 1440 041 036 038 044 035 038 034 042 024 031 +CAM131 1450 026 029 052 040 043 043 044 036 024 028 +CAM131 1460 031 048 038 030 036 030 037 031 025 039 +CAM131 1470 042 014 034 018 032 027 040 037 034 048 +CAM131 1480 041 072 049 052 052 056 067 075 058 051 +CAM131 1490 064 053 056 059 064 064 057 042 049 081 +CAM131 1500 070 062 060 082 078 079 072 071 072 105 +CAM131 1510 079 090 091 098 097 064 077 096 104 087 +CAM131 1520 089 093 080 065 084 104 078 120 096 107 +CAM131 1530 102 093 089 058 062 072 069 077 066 080 +CAM131 1540 059 049 033 042 025 021 032 022 025 031 +CAM131 1550 037 034 039 041 038 039 035 024 023 037 +CAM131 1560 033 042 044 045 064 052 064 070 062 078 +CAM131 1570 072 067 075 064 068 067 071 068 040 028 +CAM131 1580 039 051 040 043 031 038 036 033 045 037 +CAM131 1590 022 040 049 051 065 047 039 044 042 036 +CAM131 1600 037 039 028 048 059 032 022 020 025 037 +CAM131 1610 027 028 028 031 049 034 043 040 022 034 +CAM131 1620 032 048 055 044 040 057 036 040 051 056 +CAM131 1630 060 039 033 042 058 061 064 058 042 053 +CAM131 1640 068 038 042 056 049 047 052 033 047 044 +CAM131 1650 062 068 065 047 049 031 080 068 072 058 +CAM131 1660 097 084 071 076 098 084 078 073 065 035 +CAM131 1670 031 052 042 039 040 031 041 027 034 037 +CAM131 1680 049 025 039 037 052 035 031 041 034 043 +CAM131 1690 038 060 058 066 074 058 049 042 045 043 +CAM131 1700 029 037 032 027 019 019 026 028 027 042 +CAM131 1710 055 059 057 068 052 053 042 059 048 063 +CAM131 1720 057 078 070 064 053 071 052 063 063 073 +CAM131 1730 079 068 079 052 084 093 102 108 097 090 +CAM131 1740 081 089 073 074 069 072 071 093 084 078 +CAM131 1750 077 090 079 062 055 079 070 062 077 079 +CAM131 1760 100 099 088 065 058 066 049 058 058 053 +CAM131 1770 048 053 065 055 031 053 059 041 048 055 +CAM131 1780 059 048 030 056 046 055 061 056 083 063 +CAM131 1790 083 071 065 094 085 066 079 085 070 053 +CAM131 1800 044 050 033 042 038 031 033 033 038 040 +CAM131 1810 035 053 039 031 029 037 038 041 030 029 +CAM131 1820 032 033 035 045 047 045 053 068 062 066 +CAM131 1830 078 085 086 071 058 071 042 057 037 059 +CAM131 1840 049 054 060 052 047 066 073 054 059 053 +CAM131 1850 046 048 067 058 053 055 049 031 042 043 +CAM131 1860 057 048 053 045 080 045 065 049 060 045 +CAM131 1870 052 050 054 068 055 051 056 068 074 065 +CAM131 1880 058 048 065 061 064 059 092 057 062 071 +CAM131 1890 086 076 065 060 057 070 041 075 062 039 +CAM131 1900 099 077 081 074 054 080 063 082 076 069 +CAM131 1910 056 072 071 048 076 069 060 054 038 061 +CAM131 1920 066 069 063 066 078 080 095 101 101 054 +CAM131 1930 077 095 083 073 089 107 077 097 090 094 +CAM131 1940 103 078 087 095 078 075 082 087 077 058 +CAM131 1950 068 082 076 088 087 091 084 075 069 061 +CAM131 1960 038 051 050 067 078 064 047 046 081 087 +CAM131 1970 084 999 +CAM132 710 045 044 058 049 050 046 036 038 034 041 +CAM132 720 040 034 034 040 054 041 044 052 058 054 +CAM132 730 056 059 053 042 042 050 031 033 037 032 +CAM132 740 012 032 045 027 033 032 050 040 053 057 +CAM132 750 053 060 054 055 074 060 073 067 065 089 +CAM132 760 062 052 043 044 057 064 066 058 058 064 +CAM132 770 068 082 077 060 068 059 057 049 049 047 +CAM132 780 043 040 035 042 043 051 050 047 047 041 +CAM132 790 045 037 051 039 055 041 045 043 042 022 +CAM132 800 036 032 028 036 032 038 039 041 048 027 +CAM132 810 038 029 048 056 047 057 058 041 039 052 +CAM132 820 050 062 044 060 060 051 049 045 049 053 +CAM132 830 046 037 034 046 040 038 037 030 027 025 +CAM132 840 033 021 039 038 039 049 045 039 039 050 +CAM132 850 051 058 067 075 061 050 058 041 038 030 +CAM132 860 025 039 028 029 028 030 023 029 022 036 +CAM132 870 035 051 052 061 062 089 085 080 055 081 +CAM132 880 074 073 099 089 071 088 061 082 065 079 +CAM132 890 067 063 077 059 074 070 063 057 064 047 +CAM132 900 047 045 042 047 042 041 037 023 036 039 +CAM132 910 041 048 047 040 043 049 047 046 049 039 +CAM132 920 038 043 033 028 013 026 026 025 024 042 +CAM132 930 035 035 030 022 048 032 031 033 035 031 +CAM132 940 029 035 028 035 032 035 038 040 045 031 +CAM132 950 033 039 028 042 040 038 040 024 037 055 +CAM132 960 053 046 044 067 061 066 076 069 065 058 +CAM132 970 058 049 047 056 038 038 045 051 049 034 +CAM132 980 028 025 051 048 031 043 041 042 056 065 +CAM132 990 045 049 047 041 024 019 023 026 028 034 +CAM132 1000 033 033 032 040 035 029 025 037 033 030 +CAM132 1010 046 028 035 040 029 036 038 035 041 040 +CAM132 1020 041 042 036 052 044 053 043 043 043 060 +CAM132 1030 062 055 042 037 033 037 037 033 037 039 +CAM132 1040 032 049 046 039 034 036 033 051 031 031 +CAM132 1050 040 045 034 036 035 036 034 048 050 040 +CAM132 1060 043 047 041 039 040 037 030 026 027 026 +CAM132 1070 025 025 029 021 029 033 035 033 030 030 +CAM132 1080 028 048 033 043 045 039 036 036 037 037 +CAM132 1090 035 032 042 023 039 036 039 040 025 035 +CAM132 1100 045 031 034 026 032 039 035 026 030 021 +CAM132 1110 021 027 025 019 016 017 031 022 024 019 +CAM132 1120 017 014 023 020 026 034 027 028 034 036 +CAM132 1130 031 034 030 015 023 013 022 030 026 035 +CAM132 1140 024 031 021 022 027 020 018 010 014 021 +CAM132 1150 021 017 026 021 033 036 042 028 032 035 +CAM132 1160 032 038 024 027 035 034 038 043 036 042 +CAM132 1170 045 035 033 032 024 037 036 024 020 027 +CAM132 1180 013 021 022 027 021 027 026 027 031 035 +CAM132 1190 037 025 022 034 028 033 024 029 033 028 +CAM132 1200 028 019 027 025 008 020 016 019 023 021 +CAM132 1210 017 028 031 030 030 030 018 019 011 024 +CAM132 1220 023 034 042 031 041 048 030 039 026 040 +CAM132 1230 018 026 024 999 +CAM141 1030 106 121 119 133 129 117 113 123 120 123 +CAM141 1040 103 117 125 110 112 118 098 085 068 066 +CAM141 1050 085 095 086 076 067 068 092 111 107 090 +CAM141 1060 114 137 132 112 106 113 079 098 101 119 +CAM141 1070 089 093 110 109 110 096 102 088 083 101 +CAM141 1080 107 116 080 077 098 097 091 086 091 096 +CAM141 1090 091 105 118 080 110 112 102 132 077 107 +CAM141 1100 120 087 139 082 095 101 119 113 106 098 +CAM141 1110 091 092 111 072 094 104 099 080 094 094 +CAM141 1120 086 093 092 065 076 099 075 069 088 080 +CAM141 1130 101 079 058 034 049 045 047 040 050 054 +CAM141 1140 046 067 049 045 063 050 045 027 029 048 +CAM141 1150 039 035 049 036 057 055 062 050 058 075 +CAM141 1160 058 051 039 058 050 080 069 085 059 090 +CAM141 1170 075 054 061 077 074 071 065 041 050 062 +CAM141 1180 053 070 057 064 062 065 059 053 071 082 +CAM141 1190 080 066 075 100 088 101 061 103 100 105 +CAM141 1200 098 074 094 091 079 075 066 077 065 064 +CAM141 1210 098 102 088 084 083 066 069 056 025 052 +CAM141 1220 069 068 067 062 084 078 056 055 068 077 +CAM141 1230 044 078 079 061 069 061 058 059 070 056 +CAM141 1240 066 061 057 059 053 057 054 056 089 086 +CAM141 1250 067 056 067 075 039 045 057 065 061 076 +CAM141 1260 063 081 082 071 051 060 064 063 073 052 +CAM141 1270 061 062 081 049 058 078 067 067 061 081 +CAM141 1280 060 054 064 063 044 032 059 060 039 046 +CAM141 1290 039 048 048 044 057 073 055 051 057 057 +CAM141 1300 060 060 058 054 064 055 046 037 056 038 +CAM141 1310 054 063 066 064 078 075 068 058 070 071 +CAM141 1320 064 063 080 064 077 077 090 097 082 073 +CAM141 1330 076 080 044 065 050 035 019 050 046 039 +CAM141 1340 045 046 044 055 049 055 050 042 037 039 +CAM141 1350 035 030 034 034 038 031 046 046 032 040 +CAM141 1360 028 016 024 031 037 037 043 044 044 043 +CAM141 1370 047 037 046 043 053 044 059 039 040 033 +CAM141 1380 042 062 058 064 062 066 058 059 061 068 +CAM141 1390 049 055 078 064 074 068 051 053 055 074 +CAM141 1400 067 038 062 057 065 064 070 057 057 067 +CAM141 1410 044 057 074 056 055 069 070 077 064 061 +CAM141 1420 081 060 078 085 088 063 061 075 085 088 +CAM141 1430 073 070 091 103 056 103 100 077 070 080 +CAM141 1440 093 075 064 067 070 067 065 076 066 069 +CAM141 1450 030 053 060 067 070 063 040 042 036 031 +CAM141 1460 029 037 033 047 041 037 030 043 034 043 +CAM141 1470 044 027 038 028 030 018 042 043 045 034 +CAM141 1480 040 053 038 034 055 056 052 056 050 055 +CAM141 1490 053 050 040 048 062 048 035 026 044 050 +CAM141 1500 024 054 062 073 074 070 061 050 050 077 +CAM141 1510 078 082 085 075 077 053 084 079 070 052 +CAM141 1520 059 068 061 039 064 079 057 079 065 061 +CAM141 1530 064 080 059 032 057 077 062 073 065 085 +CAM141 1540 076 043 014 041 040 027 034 045 049 048 +CAM141 1550 053 053 061 055 052 058 061 055 051 049 +CAM141 1560 065 062 074 080 073 065 070 070 074 080 +CAM141 1570 086 054 057 067 068 055 061 053 030 031 +CAM141 1580 018 050 057 058 058 060 050 052 048 056 +CAM141 1590 046 056 057 058 082 065 077 073 086 069 +CAM141 1600 063 076 036 078 079 067 061 054 072 064 +CAM141 1610 058 066 068 064 075 057 078 069 058 053 +CAM141 1620 049 067 047 057 048 057 040 056 071 072 +CAM141 1630 057 048 039 056 058 058 074 084 077 071 +CAM141 1640 085 029 029 021 020 033 037 025 046 047 +CAM141 1650 052 059 051 049 048 032 049 053 053 053 +CAM141 1660 060 068 059 071 074 069 050 049 019 020 +CAM141 1670 037 047 032 034 039 042 040 034 047 049 +CAM141 1680 048 021 051 058 059 044 042 052 058 057 +CAM141 1690 052 061 064 071 074 077 064 065 064 061 +CAM141 1700 047 062 057 053 042 047 048 049 043 051 +CAM141 1710 052 062 060 058 043 056 053 056 068 057 +CAM141 1720 077 070 050 064 068 060 060 058 063 049 +CAM141 1730 066 049 069 047 065 053 056 057 061 045 +CAM141 1740 067 063 045 065 053 063 055 075 056 067 +CAM141 1750 068 067 068 049 042 055 036 052 068 066 +CAM141 1760 083 065 057 048 056 066 057 075 064 069 +CAM141 1770 066 066 086 073 075 076 056 059 064 064 +CAM141 1780 057 048 019 036 048 060 061 048 059 065 +CAM141 1790 063 067 072 067 057 034 055 068 059 060 +CAM141 1800 072 067 051 060 063 079 068 056 074 074 +CAM141 1810 060 074 051 048 060 059 066 077 063 063 +CAM141 1820 057 073 048 057 044 065 058 055 052 052 +CAM141 1830 066 057 073 053 061 045 027 042 042 051 +CAM141 1840 045 046 044 054 042 033 041 039 056 050 +CAM141 1850 055 052 070 065 053 053 025 027 023 034 +CAM141 1860 047 038 035 042 053 038 058 045 055 047 +CAM141 1870 059 052 055 051 057 060 051 057 057 047 +CAM141 1880 037 047 061 044 058 055 067 063 064 051 +CAM141 1890 069 071 058 060 060 068 035 060 064 017 +CAM141 1900 060 074 059 068 063 064 067 073 052 054 +CAM141 1910 060 058 055 052 070 057 057 041 056 066 +CAM141 1920 057 060 065 055 039 059 060 076 070 011 +CAM141 1930 065 082 071 077 102 063 059 072 063 075 +CAM141 1940 064 054 052 070 056 065 081 078 048 061 +CAM141 1950 069 070 069 073 078 074 080 074 081 073 +CAM141 1960 024 039 072 078 074 080 081 069 067 107 +CAM141 1970 058 999 +CAM151 1222 145 091 130 113 094 087 081 120 +CAM151 1230 065 116 115 133 137 109 064 093 100 106 +CAM151 1240 110 092 071 073 062 064 075 091 088 072 +CAM151 1250 094 089 077 079 028 060 084 082 050 107 +CAM151 1260 108 088 095 097 066 093 094 087 080 061 +CAM151 1270 079 071 104 071 090 101 067 084 079 090 +CAM151 1280 079 060 075 068 076 072 107 119 063 096 +CAM151 1290 106 075 081 076 085 103 097 066 076 076 +CAM151 1300 074 077 070 053 069 062 045 048 085 043 +CAM151 1310 050 079 064 090 095 076 055 104 108 106 +CAM151 1320 072 122 125 092 144 095 107 118 111 128 +CAM151 1330 109 128 093 105 063 040 028 048 035 038 +CAM151 1340 064 057 037 043 061 061 067 063 054 061 +CAM151 1350 058 080 116 050 044 057 085 049 041 047 +CAM151 1360 034 021 020 065 051 038 054 065 057 046 +CAM151 1370 048 051 068 048 045 048 064 040 164 146 +CAM151 1380 079 083 069 090 074 086 051 064 086 082 +CAM151 1390 050 082 066 064 077 074 058 071 064 073 +CAM151 1400 081 037 084 076 061 086 097 047 076 069 +CAM151 1410 070 081 071 057 051 041 058 065 052 061 +CAM151 1420 056 056 047 070 064 055 045 046 067 068 +CAM151 1430 057 033 069 063 038 080 067 051 044 061 +CAM151 1440 058 040 031 078 036 022 032 026 012 029 +CAM151 1450 006 031 019 030 034 031 014 018 026 005 +CAM151 1460 017 013 015 018 023 018 010 026 009 021 +CAM151 1470 030 010 016 011 016 004 026 033 026 014 +CAM151 1480 022 033 019 010 040 044 048 046 035 037 +CAM151 1490 041 032 022 041 044 035 022 014 022 059 +CAM151 1500 032 042 038 046 054 036 044 015 034 046 +CAM151 1510 037 033 061 039 044 026 041 058 030 046 +CAM151 1520 048 037 033 037 067 058 044 075 046 036 +CAM151 1530 053 046 049 009 061 069 057 066 046 063 +CAM151 1540 060 042 026 044 015 015 027 018 012 033 +CAM151 1550 033 022 037 023 026 024 034 031 010 018 +CAM151 1560 017 035 029 034 041 035 023 033 056 067 +CAM151 1570 040 016 025 029 039 032 037 047 018 013 +CAM151 1580 017 041 033 042 029 037 025 037 046 027 +CAM151 1590 012 034 024 037 056 034 044 039 070 041 +CAM151 1600 036 036 013 063 061 042 014 002 020 019 +CAM151 1610 022 015 013 019 026 018 025 025 011 012 +CAM151 1620 019 023 017 019 006 028 028 030 035 047 +CAM151 1630 026 013 008 036 042 031 035 036 024 040 +CAM151 1640 046 017 022 034 021 024 035 012 027 027 +CAM151 1650 021 039 024 032 033 015 041 040 041 031 +CAM151 1660 041 046 037 036 048 035 031 030 008 013 +CAM151 1670 000 024 011 014 026 010 020 019 025 027 +CAM151 1680 033 005 026 026 023 012 006 020 023 020 +CAM151 1690 002 025 015 019 036 039 021 019 014 014 +CAM151 1700 014 010 013 000 010 001 017 012 015 046 +CAM151 1710 025 018 024 033 013 019 010 017 023 013 +CAM151 1720 025 032 024 024 036 023 023 023 029 024 +CAM151 1730 026 007 019 008 019 019 033 026 014 013 +CAM151 1740 030 038 019 026 024 024 013 027 018 025 +CAM151 1750 020 035 022 008 014 025 021 030 035 017 +CAM151 1760 047 042 029 008 018 034 026 040 016 023 +CAM151 1770 028 029 041 038 026 041 037 025 039 050 +CAM151 1780 034 025 008 017 032 030 043 031 029 041 +CAM151 1790 024 030 041 038 029 017 040 033 021 034 +CAM151 1800 044 031 032 036 039 048 024 015 042 042 +CAM151 1810 029 042 011 018 014 014 019 036 017 021 +CAM151 1820 011 023 013 023 014 034 040 030 026 014 +CAM151 1830 023 028 035 019 029 023 010 029 030 028 +CAM151 1840 015 021 012 029 014 012 024 018 050 041 +CAM151 1850 026 035 051 035 020 022 007 018 014 033 +CAM151 1860 046 031 037 024 061 028 051 048 026 018 +CAM151 1870 040 038 053 043 029 038 020 050 042 038 +CAM151 1880 011 033 052 041 041 037 044 048 045 057 +CAM151 1890 050 056 039 043 029 045 024 046 049 011 +CAM151 1900 062 070 047 050 051 057 060 075 034 056 +CAM151 1910 037 057 041 039 048 042 048 039 039 050 +CAM151 1920 048 049 049 049 030 060 046 054 044 008 +CAM151 1930 066 051 062 047 066 030 024 062 058 059 +CAM151 1940 042 049 052 063 028 038 063 063 031 038 +CAM151 1950 052 057 068 071 054 053 054 068 063 071 +CAM151 1960 015 012 060 062 064 066 023 062 060 074 +CAM151 1970 049 999 +CAM152 1221 056 125 107 084 081 050 062 099 094 +CAM152 1230 051 059 039 038 040 050 038 044 057 046 +CAM152 1240 061 060 058 068 061 066 075 070 082 066 +CAM152 1250 067 073 065 079 048 054 083 085 041 065 +CAM152 1260 059 055 068 056 054 083 048 060 057 049 +CAM152 1270 045 056 082 061 067 080 075 099 055 085 +CAM152 1280 050 054 061 055 044 026 067 057 035 052 +CAM152 1290 039 049 051 054 053 054 075 068 071 071 +CAM152 1300 050 057 049 050 058 044 040 035 041 027 +CAM152 1310 037 045 047 048 073 058 048 057 075 084 +CAM152 1320 080 098 095 074 095 077 076 087 059 074 +CAM152 1330 062 049 042 045 036 008 011 027 010 014 +CAM152 1340 018 018 019 025 025 035 042 036 048 053 +CAM152 1350 029 041 057 061 044 055 071 052 040 051 +CAM152 1360 024 014 023 031 041 037 044 052 059 038 +CAM152 1370 043 046 045 045 051 045 051 064 067 043 +CAM152 1380 062 074 077 081 066 086 074 064 082 075 +CAM152 1390 054 075 085 067 074 066 043 058 055 059 +CAM152 1400 050 035 061 068 051 051 058 046 050 062 +CAM152 1410 035 058 057 048 040 051 053 059 038 046 +CAM152 1420 044 037 038 043 045 042 029 033 042 043 +CAM152 1430 040 034 042 047 024 052 060 034 039 042 +CAM152 1440 054 037 026 036 024 025 022 015 006 023 +CAM152 1450 999 +CAM161 1106 054 048 044 032 +CAM161 1110 032 051 062 041 026 024 037 031 028 025 +CAM161 1120 034 019 038 036 043 055 043 039 049 039 +CAM161 1130 041 063 056 026 031 029 032 038 041 037 +CAM161 1140 034 039 033 034 035 030 034 019 012 022 +CAM161 1150 034 027 039 032 042 045 058 049 043 060 +CAM161 1160 060 053 041 048 037 049 051 056 053 061 +CAM161 1170 055 049 043 054 043 060 045 035 029 028 +CAM161 1180 026 035 040 048 050 051 056 056 083 072 +CAM161 1190 087 079 077 090 071 077 068 068 075 056 +CAM161 1200 056 030 068 039 021 033 024 022 023 026 +CAM161 1210 016 037 035 030 038 044 028 028 016 023 +CAM161 1220 025 043 049 040 052 045 045 039 039 044 +CAM161 1230 023 058 046 038 033 039 045 036 040 041 +CAM161 1240 048 047 043 045 033 055 044 048 063 059 +CAM161 1250 046 041 053 049 035 025 032 043 026 045 +CAM161 1260 046 048 044 040 036 029 039 041 023 041 +CAM161 1270 036 021 039 031 037 032 042 042 016 062 +CAM161 1280 050 036 059 045 027 028 035 034 024 029 +CAM161 1290 022 029 037 029 028 038 029 025 041 033 +CAM161 1300 025 042 037 039 047 041 036 031 044 029 +CAM161 1310 037 040 037 040 055 039 045 044 043 059 +CAM161 1320 057 051 069 058 070 077 070 076 066 058 +CAM161 1330 052 053 025 035 021 023 006 020 016 015 +CAM161 1340 018 019 016 020 013 018 020 023 015 017 +CAM161 1350 012 014 019 019 022 014 019 020 026 019 +CAM161 1360 019 020 024 021 022 019 024 029 026 026 +CAM161 1370 027 034 038 024 031 032 034 034 028 029 +CAM161 1380 028 036 035 037 038 036 038 037 048 037 +CAM161 1390 027 041 042 036 049 053 046 041 038 033 +CAM161 1400 036 042 049 050 048 055 049 047 044 045 +CAM161 1410 043 043 041 038 037 036 026 043 026 028 +CAM161 1420 028 034 025 030 034 026 019 025 029 032 +CAM161 1430 029 027 033 027 036 040 036 050 031 045 +CAM161 1440 045 031 043 029 030 034 031 036 025 032 +CAM161 1450 016 010 032 026 024 037 031 024 016 016 +CAM161 1460 010 016 018 018 016 012 011 007 012 021 +CAM161 1470 010 009 016 010 009 009 017 012 016 019 +CAM161 1480 004 021 015 016 011 021 015 018 015 020 +CAM161 1490 020 013 014 011 017 013 011 014 018 015 +CAM161 1500 013 011 019 018 015 014 015 010 018 022 +CAM161 1510 011 020 015 017 013 022 022 018 020 023 +CAM161 1520 025 020 016 000 023 033 025 027 043 033 +CAM161 1530 036 034 035 019 032 058 048 051 046 049 +CAM161 1540 045 037 031 026 031 040 030 028 039 035 +CAM161 1550 042 036 048 035 042 038 040 041 026 028 +CAM161 1560 037 041 037 033 031 025 035 038 036 032 +CAM161 1570 034 029 036 022 032 033 035 033 015 029 +CAM161 1580 027 031 025 033 025 021 020 031 032 025 +CAM161 1590 027 027 033 031 040 022 038 041 033 028 +CAM161 1600 026 019 008 024 011 007 003 012 015 016 +CAM161 1610 999 +CAM162 971 057 053 045 055 049 051 053 068 042 +CAM162 980 028 018 062 061 040 056 055 047 049 055 +CAM162 990 039 040 050 062 044 030 049 055 058 054 +CAM162 1000 059 010 058 048 044 023 054 055 056 057 +CAM162 1010 064 051 076 066 059 060 058 075 073 091 +CAM162 1020 068 080 078 087 081 079 074 068 096 104 +CAM162 1030 086 088 067 067 057 072 056 057 069 064 +CAM162 1040 063 073 072 072 075 082 075 096 059 064 +CAM162 1050 076 095 081 072 067 062 065 066 064 070 +CAM162 1060 058 079 075 073 056 055 053 063 044 056 +CAM162 1070 078 080 089 076 076 082 087 070 060 062 +CAM162 1080 072 083 061 073 089 082 080 075 085 089 +CAM162 1090 089 092 095 071 078 082 082 077 062 069 +CAM162 1100 086 077 066 060 069 053 056 044 048 038 +CAM162 1110 041 049 061 034 028 028 042 025 032 029 +CAM162 1120 035 026 051 041 052 057 058 055 056 047 +CAM162 1130 046 051 039 022 024 024 026 032 045 035 +CAM162 1140 038 054 044 046 051 052 049 040 031 050 +CAM162 1150 062 062 078 060 071 072 079 063 061 086 +CAM162 1160 077 066 057 052 047 053 048 061 055 059 +CAM162 1170 075 051 049 050 047 071 052 052 048 057 +CAM162 1180 049 058 063 066 061 052 058 046 061 049 +CAM162 1190 064 053 042 064 047 055 044 051 050 058 +CAM162 1200 052 030 052 038 023 027 021 022 030 026 +CAM162 1210 023 035 038 032 055 044 044 037 011 026 +CAM162 1220 038 037 044 041 048 054 042 049 040 048 +CAM162 1230 023 058 051 047 040 041 050 040 046 043 +CAM162 1240 056 049 057 054 048 067 052 061 073 075 +CAM162 1250 063 050 064 056 057 027 043 046 040 055 +CAM162 1260 066 058 056 045 048 030 041 046 042 049 +CAM162 1270 037 022 038 033 040 031 042 044 022 052 +CAM162 1280 049 032 054 040 024 026 029 031 021 026 +CAM162 1290 022 025 033 028 026 025 030 019 036 030 +CAM162 1300 020 034 029 037 034 035 033 026 036 029 +CAM162 1310 032 040 037 040 051 039 044 046 046 068 +CAM162 1320 074 067 090 074 073 070 074 076 062 055 +CAM162 1330 059 058 032 048 030 035 010 015 023 020 +CAM162 1340 015 020 017 024 023 021 020 025 021 029 +CAM162 1350 025 018 024 018 032 029 029 033 029 029 +CAM162 1360 028 022 021 019 022 021 023 021 022 027 +CAM162 1370 025 022 025 021 024 020 026 023 024 023 +CAM162 1380 026 031 027 030 037 032 034 042 048 042 +CAM162 1390 040 049 056 036 049 058 052 046 044 043 +CAM162 1400 057 051 069 056 058 070 054 060 051 049 +CAM162 1410 038 035 040 030 033 029 028 049 029 037 +CAM162 1420 043 040 032 037 031 025 022 025 030 042 +CAM162 1430 029 027 038 024 036 049 033 042 028 034 +CAM162 1440 040 031 033 033 031 035 033 039 027 042 +CAM162 1450 036 026 035 029 025 043 031 022 013 021 +CAM162 1460 016 008 024 019 016 013 013 004 015 018 +CAM162 1470 016 012 020 012 013 003 022 019 021 019 +CAM162 1480 018 030 017 021 024 032 027 033 038 037 +CAM162 1490 036 030 025 027 035 031 018 001 023 031 +CAM162 1500 027 032 027 033 036 033 027 030 026 046 +CAM162 1510 042 035 040 035 040 030 048 042 042 042 +CAM162 1520 041 042 038 015 039 046 030 043 049 044 +CAM162 1530 030 035 031 018 029 050 040 046 040 041 +CAM162 1540 047 020 028 025 023 025 016 018 023 024 +CAM162 1550 025 024 037 023 031 032 032 029 030 032 +CAM162 1560 031 046 044 041 037 027 038 040 037 044 +CAM162 1570 041 034 037 032 033 032 036 041 024 028 +CAM162 1580 029 031 026 031 031 028 025 031 031 025 +CAM162 1590 021 018 026 025 030 019 028 029 028 023 +CAM162 1600 019 010 017 032 021 012 007 013 015 012 +CAM162 1610 012 017 010 015 016 010 025 025 000 014 +CAM162 1620 019 019 026 016 000 018 017 022 017 024 +CAM162 1630 022 025 020 017 016 024 028 029 037 032 +CAM162 1640 028 000 023 029 021 024 037 025 027 018 +CAM162 1650 007 021 016 023 026 010 010 017 026 026 +CAM162 1660 027 043 030 032 053 054 046 035 032 024 +CAM162 1670 025 033 022 027 024 024 023 014 020 016 +CAM162 1680 015 004 022 018 021 015 012 020 021 027 +CAM162 1690 023 029 027 029 032 006 015 031 032 016 +CAM162 1700 023 027 022 010 017 004 014 009 008 017 +CAM162 1710 009 003 017 017 013 026 022 022 025 016 +CAM162 1720 022 025 025 021 032 029 026 032 036 039 +CAM162 1730 045 025 038 015 038 017 038 038 040 038 +CAM162 1740 039 043 033 046 040 049 039 045 042 045 +CAM162 1750 040 047 026 019 034 030 024 033 030 019 +CAM162 1760 037 029 027 015 020 032 025 034 019 028 +CAM162 1770 031 035 036 029 025 038 035 018 035 036 +CAM162 1780 032 037 014 035 031 036 039 036 038 037 +CAM162 1790 030 027 033 021 029 028 028 027 030 030 +CAM162 1800 039 044 040 037 040 047 042 043 039 032 +CAM162 1810 015 030 021 020 016 014 014 018 016 016 +CAM162 1820 016 020 017 026 024 029 033 034 026 032 +CAM162 1830 033 033 037 028 037 030 017 022 025 027 +CAM162 1840 025 029 020 028 020 026 027 027 035 027 +CAM162 1850 024 032 034 037 040 041 036 026 035 036 +CAM162 1860 047 047 042 043 056 036 063 056 041 048 +CAM162 1870 065 053 044 048 041 038 038 046 050 048 +CAM162 1880 028 031 044 042 041 047 057 050 037 041 +CAM162 1890 038 042 045 041 033 042 035 043 050 027 +CAM162 1900 050 057 053 052 046 052 048 066 066 062 +CAM162 1910 061 065 047 040 056 060 043 027 033 043 +CAM162 1920 036 041 046 049 040 052 041 063 056 039 +CAM162 1930 058 063 044 039 040 044 043 046 047 033 +CAM162 1940 053 044 048 060 048 062 072 069 049 055 +CAM162 1950 072 080 066 074 076 084 047 042 033 045 +CAM162 1960 016 026 045 047 052 044 030 040 047 047 +CAM162 1970 039 999 +CAM171 1213 114 079 075 072 070 060 075 +CAM171 1220 106 123 150 123 128 101 098 121 104 154 +CAM171 1230 067 109 110 114 091 083 067 070 070 060 +CAM171 1240 059 058 054 059 060 068 078 066 087 087 +CAM171 1250 087 078 095 098 057 072 091 084 072 072 +CAM171 1260 063 077 081 068 068 071 052 072 058 067 +CAM171 1270 067 051 090 073 067 084 089 079 103 110 +CAM171 1280 091 066 064 069 047 045 082 044 034 046 +CAM171 1290 087 058 054 038 043 065 073 049 072 083 +CAM171 1300 073 065 072 053 049 039 035 043 045 026 +CAM171 1310 051 046 047 060 066 060 069 071 086 074 +CAM171 1320 069 065 074 086 087 094 095 095 084 083 +CAM171 1330 059 073 025 060 049 056 019 043 037 038 +CAM171 1340 038 037 024 037 031 042 043 044 041 051 +CAM171 1350 049 062 073 023 039 028 052 040 050 048 +CAM171 1360 037 039 037 053 071 062 058 072 085 064 +CAM171 1370 063 061 070 062 055 047 053 046 053 052 +CAM171 1380 054 066 064 062 058 069 053 062 063 075 +CAM171 1390 061 076 076 061 065 073 044 070 062 075 +CAM171 1400 090 060 075 062 051 089 080 067 068 059 +CAM171 1410 056 060 041 052 049 052 054 065 039 062 +CAM171 1420 066 030 051 050 056 044 042 045 057 066 +CAM171 1430 053 044 047 071 043 064 074 066 057 041 +CAM171 1440 061 041 043 035 040 041 038 047 033 040 +CAM171 1450 023 035 041 045 034 040 025 029 027 023 +CAM171 1460 024 037 032 027 033 034 029 041 027 047 +CAM171 1470 058 033 037 027 029 030 038 050 047 036 +CAM171 1480 030 050 031 037 050 045 056 050 043 041 +CAM171 1490 049 029 023 037 044 034 034 024 025 036 +CAM171 1500 022 040 049 058 051 056 037 046 048 068 +CAM171 1510 057 060 062 055 055 031 050 058 040 050 +CAM171 1520 058 040 063 056 061 075 050 064 060 046 +CAM171 1530 058 054 050 038 046 053 055 062 040 061 +CAM171 1540 049 019 016 026 029 020 021 017 022 029 +CAM171 1550 039 036 043 033 032 033 031 036 028 035 +CAM171 1560 043 033 041 036 054 068 054 040 051 059 +CAM171 1570 056 037 030 031 027 043 040 041 016 029 +CAM171 1580 020 039 040 060 048 033 033 040 042 037 +CAM171 1590 030 032 030 048 069 026 058 052 057 047 +CAM171 1600 034 052 019 041 039 040 027 020 034 036 +CAM171 1610 034 032 025 023 032 031 037 038 014 019 +CAM171 1620 025 029 028 030 026 041 019 038 039 031 +CAM171 1630 033 033 023 037 040 040 041 043 038 034 +CAM171 1640 044 024 023 032 033 031 033 020 027 028 +CAM171 1650 030 041 037 036 029 026 044 037 047 051 +CAM171 1660 064 058 052 040 057 058 043 037 017 032 +CAM171 1670 031 034 031 033 039 031 028 038 040 035 +CAM171 1680 053 018 032 038 033 035 020 033 025 028 +CAM171 1690 027 036 020 034 042 041 033 038 040 028 +CAM171 1700 022 019 017 016 023 018 025 026 023 039 +CAM171 1710 031 023 033 033 036 043 031 030 026 027 +CAM171 1720 018 026 029 023 029 022 020 020 031 024 +CAM171 1730 030 008 033 011 020 031 033 031 032 012 +CAM171 1740 022 025 022 022 023 022 024 033 027 031 +CAM171 1750 030 024 024 023 021 021 024 031 034 027 +CAM171 1760 043 030 028 023 022 027 027 030 017 026 +CAM171 1770 024 034 029 026 023 030 024 016 031 029 +CAM171 1780 032 033 021 022 026 035 040 032 032 020 +CAM171 1790 030 033 029 024 021 022 032 038 032 034 +CAM171 1800 035 046 028 028 036 047 044 041 038 040 +CAM171 1810 017 025 022 021 031 023 018 030 020 026 +CAM171 1820 019 026 025 029 026 034 029 023 021 011 +CAM171 1830 028 034 024 029 026 031 022 016 027 032 +CAM171 1840 032 019 027 024 026 016 025 021 031 017 +CAM171 1850 030 029 059 043 027 034 017 014 019 025 +CAM171 1860 040 030 041 027 038 035 033 038 037 020 +CAM171 1870 024 019 031 030 035 028 044 051 048 038 +CAM171 1880 039 046 055 044 055 039 051 045 045 060 +CAM171 1890 039 033 042 049 023 032 026 033 032 017 +CAM171 1900 035 045 031 033 035 045 041 046 040 041 +CAM171 1910 033 050 028 030 041 041 046 030 024 033 +CAM171 1920 041 031 043 036 021 038 037 050 031 023 +CAM171 1930 046 033 045 051 059 057 058 074 071 043 +CAM171 1940 082 061 066 081 056 061 079 077 062 048 +CAM171 1950 048 052 059 064 060 049 056 053 061 067 +CAM171 1960 037 036 057 068 056 062 049 070 063 099 +CAM171 1970 071 999 +CAM172 1174 108 155 127 124 105 099 +CAM172 1180 136 145 146 186 198 129 149 128 126 113 +CAM172 1190 109 071 073 093 095 062 081 124 101 072 +CAM172 1200 095 027 049 035 013 036 022 037 048 056 +CAM172 1210 045 065 039 060 068 065 053 048 036 061 +CAM172 1220 081 084 117 074 078 084 066 080 093 094 +CAM172 1230 046 058 051 038 036 053 038 050 048 046 +CAM172 1240 059 055 045 058 049 062 059 043 063 064 +CAM172 1250 047 050 054 067 034 042 056 067 053 067 +CAM172 1260 058 059 080 059 059 053 070 093 067 065 +CAM172 1270 077 082 138 098 112 105 108 111 095 089 +CAM172 1280 083 078 081 078 064 065 083 070 046 076 +CAM172 1290 074 075 065 069 062 076 070 065 090 118 +CAM172 1300 098 086 087 068 079 067 052 062 081 045 +CAM172 1310 073 069 075 092 088 067 110 109 092 089 +CAM172 1320 086 109 111 084 115 096 080 069 080 089 +CAM172 1330 077 074 038 070 044 050 025 078 037 053 +CAM172 1340 047 044 047 047 039 057 057 043 044 051 +CAM172 1350 042 046 056 030 034 068 072 047 038 041 +CAM172 1360 026 044 048 052 050 049 050 058 071 056 +CAM172 1370 052 050 065 072 071 064 056 056 059 055 +CAM172 1380 068 078 081 085 072 057 062 089 087 099 +CAM172 1390 068 059 090 077 083 073 062 071 070 081 +CAM172 1400 085 048 063 070 056 075 080 077 071 089 +CAM172 1410 074 101 095 058 059 071 078 087 065 086 +CAM172 1420 085 077 089 083 105 069 055 057 067 080 +CAM172 1430 061 057 064 077 063 087 086 094 082 074 +CAM172 1440 093 062 058 060 056 074 065 062 041 043 +CAM172 1450 035 030 032 040 017 031 028 027 019 018 +CAM172 1460 019 030 022 028 021 030 023 035 022 039 +CAM172 1470 041 016 029 018 017 021 029 029 029 031 +CAM172 1480 025 040 029 033 046 048 045 040 040 031 +CAM172 1490 043 030 042 046 049 050 036 032 034 049 +CAM172 1500 033 048 050 062 045 060 051 042 048 053 +CAM172 1510 067 064 066 063 059 040 058 065 047 050 +CAM172 1520 049 053 066 058 073 085 055 070 072 059 +CAM172 1530 069 052 054 033 050 057 055 058 032 051 +CAM172 1540 039 023 022 027 025 025 023 022 033 033 +CAM172 1550 031 018 045 038 036 041 043 037 030 036 +CAM172 1560 054 033 034 034 046 051 049 039 045 047 +CAM172 1570 044 028 032 028 033 034 029 045 019 022 +CAM172 1580 013 030 032 041 033 021 028 031 034 035 +CAM172 1590 027 027 028 040 044 025 049 037 043 046 +CAM172 1600 034 032 028 050 047 045 034 019 026 031 +CAM172 1610 033 033 032 022 041 031 040 051 019 036 +CAM172 1620 032 033 023 030 025 037 020 025 036 033 +CAM172 1630 026 024 022 031 041 039 045 044 035 034 +CAM172 1640 054 023 032 034 034 035 037 020 039 035 +CAM172 1650 030 037 032 021 020 018 030 028 037 028 +CAM172 1660 045 057 035 033 042 040 041 024 015 030 +CAM172 1670 024 033 021 023 024 019 023 027 029 028 +CAM172 1680 031 008 033 034 029 020 015 022 028 025 +CAM172 1690 018 028 026 030 033 030 025 036 028 019 +CAM172 1700 029 024 019 019 024 023 034 020 016 037 +CAM172 1710 024 033 030 025 019 026 026 034 047 036 +CAM172 1720 046 042 035 037 044 040 036 045 046 034 +CAM172 1730 038 030 046 027 048 033 039 050 040 022 +CAM172 1740 042 044 030 040 042 040 036 042 033 038 +CAM172 1750 039 043 044 019 023 033 031 033 039 028 +CAM172 1760 048 041 037 033 025 036 035 042 038 044 +CAM172 1770 035 049 045 039 041 045 041 034 047 045 +CAM172 1780 037 041 019 021 038 038 044 041 031 049 +CAM172 1790 028 033 044 041 035 023 031 032 039 043 +CAM172 1800 048 045 043 042 046 050 036 034 039 035 +CAM172 1810 023 033 021 030 024 023 024 038 026 027 +CAM172 1820 019 031 029 028 022 030 034 031 035 024 +CAM172 1830 040 040 038 039 034 024 019 030 031 028 +CAM172 1840 025 024 020 030 019 017 022 015 027 033 +CAM172 1850 022 025 034 026 031 027 016 012 020 022 +CAM172 1860 032 021 020 012 030 016 039 032 023 024 +CAM172 1870 030 025 031 035 039 036 034 036 038 033 +CAM172 1880 023 034 035 033 036 042 048 041 038 046 +CAM172 1890 037 042 041 043 030 040 032 042 038 014 +CAM172 1900 039 049 030 037 036 044 042 061 048 044 +CAM172 1910 041 053 044 039 057 047 051 038 032 039 +CAM172 1920 043 035 047 029 025 045 047 050 040 014 +CAM172 1930 045 058 044 042 045 040 033 052 062 048 +CAM172 1940 051 046 042 052 038 042 050 051 031 031 +CAM172 1950 031 050 041 043 044 046 045 038 045 048 +CAM172 1960 022 023 046 065 044 045 048 054 050 055 +CAM172 1970 027 999 +CAM181 1190 072 058 042 058 048 055 038 060 045 046 +CAM181 1200 055 039 051 044 038 041 029 043 033 045 +CAM181 1210 051 053 049 041 040 028 027 018 007 023 +CAM181 1220 028 025 039 030 048 043 028 020 024 041 +CAM181 1230 028 045 041 038 040 036 030 018 028 020 +CAM181 1240 024 021 028 024 026 024 025 029 026 028 +CAM181 1250 027 033 025 036 021 017 015 031 002 033 +CAM181 1260 029 036 041 034 023 043 044 043 045 032 +CAM181 1270 036 028 036 011 028 030 031 028 012 033 +CAM181 1280 029 024 027 021 021 019 031 029 013 025 +CAM181 1290 019 024 019 022 025 029 023 026 019 024 +CAM181 1300 022 029 017 010 015 019 017 011 022 012 +CAM181 1310 023 027 027 032 035 021 036 033 029 036 +CAM181 1320 024 035 033 018 047 038 039 037 042 043 +CAM181 1330 052 042 029 030 021 018 002 016 005 010 +CAM181 1340 015 018 010 017 013 021 016 015 014 013 +CAM181 1350 011 021 028 026 024 018 034 027 029 026 +CAM181 1360 020 016 011 023 030 023 022 025 035 035 +CAM181 1370 035 025 040 040 038 042 035 034 021 018 +CAM181 1380 028 033 032 033 033 033 036 040 039 030 +CAM181 1390 021 024 022 017 028 031 021 029 034 033 +CAM181 1400 030 019 033 024 028 043 033 019 028 027 +CAM181 1410 019 023 026 021 015 017 017 028 020 025 +CAM181 1420 022 024 020 022 022 019 014 021 023 021 +CAM181 1430 016 012 021 015 003 019 016 016 005 018 +CAM181 1440 016 009 002 015 009 005 007 007 008 013 +CAM181 1450 000 011 009 014 009 011 005 005 004 007 +CAM181 1460 004 009 009 010 009 009 008 008 006 012 +CAM181 1470 014 007 013 007 007 003 016 014 017 016 +CAM181 1480 012 026 013 010 015 016 016 012 013 016 +CAM181 1490 016 011 010 012 016 011 009 004 013 013 +CAM181 1500 008 016 012 016 020 015 021 015 005 017 +CAM181 1510 026 026 021 027 023 013 028 031 034 026 +CAM181 1520 027 021 018 000 015 013 017 020 010 016 +CAM181 1530 018 019 013 004 014 011 013 012 010 011 +CAM181 1540 012 008 002 010 005 006 008 005 003 013 +CAM181 1550 016 013 017 017 016 015 024 022 012 017 +CAM181 1560 022 022 024 021 020 017 017 023 017 022 +CAM181 1570 015 012 019 010 017 011 016 014 006 009 +CAM181 1580 012 018 016 030 020 027 032 038 038 024 +CAM181 1590 022 034 032 034 046 036 037 043 053 041 +CAM181 1600 034 028 038 051 025 025 018 010 024 028 +CAM181 1610 017 014 013 020 026 012 028 022 014 020 +CAM181 1620 018 025 010 014 006 019 008 018 017 024 +CAM181 1630 013 013 008 020 024 019 023 023 025 023 +CAM181 1640 033 020 022 025 018 021 015 011 022 021 +CAM181 1650 037 040 022 028 025 009 025 029 035 028 +CAM181 1660 040 051 041 051 048 043 051 046 028 022 +CAM181 1670 018 027 017 017 019 012 018 008 021 018 +CAM181 1680 025 010 022 025 029 020 013 018 017 017 +CAM181 1690 012 027 022 028 032 033 031 027 022 032 +CAM181 1700 024 020 020 009 010 002 015 013 010 021 +CAM181 1710 024 022 028 041 027 040 033 037 050 045 +CAM181 1720 044 066 060 042 053 064 061 054 063 066 +CAM181 1730 080 053 067 033 045 048 043 056 038 024 +CAM181 1740 038 040 028 033 023 032 015 032 023 024 +CAM181 1750 022 035 033 028 018 026 022 022 027 024 +CAM181 1760 032 032 024 013 022 023 020 032 021 024 +CAM181 1770 029 024 028 021 022 034 039 028 032 044 +CAM181 1780 051 029 010 040 041 037 041 033 045 048 +CAM181 1790 040 031 047 058 044 067 052 071 071 053 +CAM181 1800 048 043 047 050 044 051 033 037 045 042 +CAM181 1810 021 023 015 022 030 031 038 036 038 035 +CAM181 1820 034 032 040 044 037 037 056 041 046 033 +CAM181 1830 037 036 040 034 040 044 025 025 017 033 +CAM181 1840 015 024 021 028 019 029 016 019 023 021 +CAM181 1850 014 026 029 023 024 021 023 010 014 015 +CAM181 1860 021 012 016 009 031 017 021 024 027 029 +CAM181 1870 040 056 066 067 071 054 045 049 047 046 +CAM181 1880 032 043 067 041 068 048 076 063 065 065 +CAM181 1890 066 062 043 046 033 037 022 034 047 025 +CAM181 1900 041 033 029 026 021 028 030 047 026 031 +CAM181 1910 031 039 022 019 023 019 027 018 020 040 +CAM181 1920 035 031 030 039 031 051 046 057 051 046 +CAM181 1930 051 045 038 046 060 032 045 044 044 039 +CAM181 1940 051 047 048 054 052 057 060 052 030 056 +CAM181 1950 057 054 045 054 046 055 049 060 051 043 +CAM181 1960 027 023 050 060 063 062 057 062 066 069 +CAM181 1970 057 999 +CAM191 1180 138 176 217 254 209 131 179 140 133 130 +CAM191 1190 164 092 140 170 204 149 092 140 158 141 +CAM191 1200 189 082 116 072 050 090 075 085 069 073 +CAM191 1210 098 193 129 104 103 032 060 050 007 037 +CAM191 1220 085 124 126 115 144 133 091 073 096 137 +CAM191 1230 077 127 132 104 111 121 096 102 122 114 +CAM191 1240 120 086 086 067 066 094 088 084 102 101 +CAM191 1250 099 080 087 103 029 030 077 094 024 072 +CAM191 1260 089 095 107 094 050 024 016 029 031 023 +CAM191 1270 037 053 070 049 063 101 081 068 049 079 +CAM191 1280 075 046 058 061 051 019 052 063 041 061 +CAM191 1290 051 066 064 056 050 066 065 057 038 036 +CAM191 1300 057 068 065 051 061 068 061 061 086 063 +CAM191 1310 057 076 082 080 086 086 048 051 059 042 +CAM191 1320 046 060 082 021 080 086 096 101 091 068 +CAM191 1330 069 077 024 067 024 039 023 033 025 024 +CAM191 1340 028 038 037 049 042 042 047 051 037 049 +CAM191 1350 047 045 059 066 041 048 063 052 037 048 +CAM191 1360 026 006 013 022 036 029 026 048 043 063 +CAM191 1370 058 034 051 071 068 066 065 033 052 029 +CAM191 1380 047 067 072 075 077 087 068 062 061 077 +CAM191 1390 067 058 077 064 078 071 061 052 043 041 +CAM191 1400 056 021 048 051 045 062 058 030 041 058 +CAM191 1410 046 052 062 057 038 051 046 070 043 052 +CAM191 1420 056 043 043 053 051 042 036 055 041 055 +CAM191 1430 044 030 052 059 017 060 061 042 034 041 +CAM191 1440 056 046 038 033 025 025 016 019 007 017 +CAM191 1450 006 012 013 019 011 021 010 008 007 012 +CAM191 1460 006 016 014 015 013 014 019 017 019 019 +CAM191 1470 021 016 013 014 011 000 019 017 014 014 +CAM191 1480 020 025 016 021 021 023 033 024 024 022 +CAM191 1490 032 031 025 038 042 030 019 000 012 025 +CAM191 1500 009 026 027 028 020 019 014 017 020 022 +CAM191 1510 022 025 032 024 025 016 033 027 026 027 +CAM191 1520 038 034 008 000 019 027 024 037 019 016 +CAM191 1530 028 020 025 000 020 033 033 045 031 040 +CAM191 1540 038 010 000 016 014 003 011 017 021 016 +CAM191 1550 023 017 028 024 024 028 018 026 000 024 +CAM191 1560 024 030 016 028 027 010 030 034 020 030 +CAM191 1570 018 000 008 008 015 016 014 013 000 001 +CAM191 1580 003 019 013 023 016 015 018 019 019 015 +CAM191 1590 008 015 009 015 026 016 026 026 033 030 +CAM191 1600 014 022 008 026 025 026 016 002 029 029 +CAM191 1610 023 018 009 018 026 014 029 026 000 017 +CAM191 1620 019 014 020 010 017 023 017 019 023 027 +CAM191 1630 022 015 012 019 028 031 025 028 021 026 +CAM191 1640 033 015 020 028 017 019 019 014 021 021 +CAM191 1650 020 028 023 017 010 000 015 026 026 025 +CAM191 1660 031 031 020 019 028 023 018 020 000 021 +CAM191 1670 000 012 015 019 007 000 005 000 013 012 +CAM191 1680 015 002 018 016 016 018 011 020 018 017 +CAM191 1690 000 019 021 028 023 027 020 018 013 009 +CAM191 1700 009 011 013 003 009 000 013 007 003 015 +CAM191 1710 014 015 018 017 014 022 017 010 018 015 +CAM191 1720 016 028 020 017 017 020 024 031 031 029 +CAM191 1730 032 020 024 013 018 023 021 019 023 022 +CAM191 1740 027 027 016 022 023 016 022 031 026 024 +CAM191 1750 021 028 023 015 015 011 012 007 017 019 +CAM191 1760 029 028 025 015 019 023 015 022 014 021 +CAM191 1770 013 018 015 017 010 021 020 000 002 021 +CAM191 1780 024 015 003 013 014 019 017 017 023 005 +CAM191 1790 012 014 014 009 012 007 016 021 017 018 +CAM191 1800 020 026 023 025 021 026 020 014 018 022 +CAM191 1810 009 023 012 009 016 015 017 030 021 021 +CAM191 1820 011 024 019 024 018 024 019 019 012 016 +CAM191 1830 017 021 015 018 014 013 002 009 014 017 +CAM191 1840 017 018 012 018 009 007 015 010 016 015 +CAM191 1850 016 015 027 024 024 026 010 007 004 017 +CAM191 1860 027 011 023 017 028 012 026 022 032 025 +CAM191 1870 030 026 023 032 023 028 026 035 027 021 +CAM191 1880 008 011 023 022 021 018 027 024 029 029 +CAM191 1890 025 031 028 028 029 028 024 025 028 004 +CAM191 1900 025 038 033 028 017 034 030 039 031 024 +CAM191 1910 027 035 022 018 024 023 029 031 028 027 +CAM191 1920 028 028 028 023 021 022 021 030 025 000 +CAM191 1930 031 026 022 023 026 025 021 029 019 025 +CAM191 1940 028 019 015 020 018 022 027 035 017 015 +CAM191 1950 024 032 023 033 027 027 029 027 026 031 +CAM191 1960 016 015 031 035 037 037 028 032 034 037 +CAM191 1970 033 999 +CAM201 990 068 031 030 030 019 007 022 032 037 031 +CAM201 1000 026 021 022 029 021 004 021 037 020 013 +CAM201 1010 027 016 025 031 022 022 032 038 032 032 +CAM201 1020 026 027 023 032 033 029 036 024 032 030 +CAM201 1030 034 034 034 036 027 047 034 028 038 038 +CAM201 1040 046 048 041 043 023 030 030 033 011 026 +CAM201 1050 039 047 040 028 036 025 042 048 041 047 +CAM201 1060 055 055 064 050 043 034 046 044 056 055 +CAM201 1070 057 035 053 046 049 052 059 043 038 041 +CAM201 1080 039 056 037 039 059 036 049 044 044 050 +CAM201 1090 056 045 053 031 051 059 063 078 063 086 +CAM201 1100 083 094 100 065 072 077 105 105 075 069 +CAM201 1110 059 063 066 034 037 056 074 043 043 046 +CAM201 1120 034 040 040 036 050 037 039 053 037 041 +CAM201 1130 076 054 041 037 039 050 065 059 052 052 +CAM201 1140 065 096 049 056 051 047 035 022 030 034 +CAM201 1150 024 021 043 043 048 047 051 040 050 056 +CAM201 1160 048 051 056 052 045 053 038 030 057 065 +CAM201 1170 056 057 050 084 077 081 071 070 065 054 +CAM201 1180 033 048 067 063 062 062 066 059 061 050 +CAM201 1190 071 062 070 092 087 095 064 058 079 065 +CAM201 1200 048 017 033 045 034 050 058 056 052 060 +CAM201 1210 068 051 039 042 032 017 027 021 003 031 +CAM201 1220 047 068 058 044 070 057 038 031 048 054 +CAM201 1230 044 057 040 041 039 028 020 016 045 038 +CAM201 1240 049 049 044 040 028 029 003 034 038 039 +CAM201 1250 036 046 043 044 009 008 052 053 022 047 +CAM201 1260 050 041 038 032 028 031 043 034 044 028 +CAM201 1270 049 044 050 023 033 040 040 039 023 041 +CAM201 1280 042 028 051 044 039 031 030 050 031 046 +CAM201 1290 025 042 047 040 046 049 051 042 059 041 +CAM201 1300 055 044 037 030 046 057 055 053 049 047 +CAM201 1310 049 062 058 064 073 054 032 039 049 060 +CAM201 1320 066 063 059 045 071 071 055 058 061 047 +CAM201 1330 055 064 052 064 047 077 038 036 034 032 +CAM201 1340 029 035 037 039 048 054 056 037 041 037 +CAM201 1350 056 047 063 065 065 065 066 058 048 055 +CAM201 1360 036 032 039 044 055 063 051 053 043 060 +CAM201 1370 051 061 047 057 047 049 049 053 053 044 +CAM201 1380 046 067 063 059 056 059 049 059 065 056 +CAM201 1390 049 050 058 058 070 070 080 060 057 058 +CAM201 1400 052 047 065 067 066 064 024 017 021 016 +CAM201 1410 027 030 042 047 044 058 053 062 053 071 +CAM201 1420 059 065 063 063 062 054 038 048 048 057 +CAM201 1430 043 049 066 081 048 068 063 054 044 041 +CAM201 1440 053 051 047 038 039 051 039 044 029 046 +CAM201 1450 022 039 051 049 037 043 033 028 015 027 +CAM201 1460 035 027 032 042 033 023 024 029 033 030 +CAM201 1470 030 018 035 029 029 015 029 027 028 018 +CAM201 1480 021 032 035 031 027 031 039 035 041 043 +CAM201 1490 059 050 034 027 035 027 027 023 033 054 +CAM201 1500 036 052 051 060 049 050 056 042 040 040 +CAM201 1510 050 054 054 042 040 035 038 041 045 037 +CAM201 1520 035 041 030 000 045 066 051 043 108 124 +CAM201 1530 100 102 091 019 078 149 099 089 081 088 +CAM201 1540 067 050 018 051 053 042 047 071 078 067 +CAM201 1550 071 076 072 072 077 078 077 070 059 055 +CAM201 1560 060 058 073 064 054 061 066 075 071 071 +CAM201 1570 067 066 047 049 056 054 061 058 038 038 +CAM201 1580 027 043 047 999 +CAM211 626 17 13 14 19 +CAM211 630 22 27 31 22 28 34 42 38 50 32 +CAM211 640 20 50 33 53 36 0 37 32 13 39 +CAM211 650 57 38 59 39 62 52 55 42 43 56 +CAM211 660 47 59 77 53 56 67 86 65 62 73 +CAM211 670 60 31 50 47 67 66 54 43 88 110 +CAM211 680 76 48 38 44 33 39 42 34 24 32 +CAM211 690 36 31 34 30 39 36 36 43 35 16 +CAM211 700 46 50 69 44 87 79 55 39 61 55 +CAM211 710 71 53 46 15 54 44 50 32 13 39 +CAM211 720 29 17 41 33 33 43 70 67 84 57 +CAM211 730 57 56 56 35 76 97 69 49 66 30 +CAM211 740 5 37 56 29 46 41 60 80 76 68 +CAM211 750 69 65 52 66 58 42 65 33 47 79 +CAM211 760 75 36 0 40 43 48 55 36 40 55 +CAM211 770 18 9 32 33 45 39 56 53 38 63 +CAM211 780 64 56 49 28 65 59 61 52 51 62 +CAM211 790 39 46 59 35 19 22 37 37 38 12 +CAM211 800 23 23 19 40 40 54 46 58 39 0 +CAM211 810 38 37 47 44 35 54 50 24 20 34 +CAM211 820 35 42 51 60 41 32 43 47 38 35 +CAM211 830 36 31 34 30 17 19 20 13 22 15 +CAM211 840 24 19 38 44 38 36 44 0 24 5 +CAM211 850 41 53 41 59 76 61 52 56 41 45 +CAM211 860 34 38 51 38 29 29 29 3 3 17 +CAM211 870 22 25 26 24 27 33 32 19 7 26 +CAM211 880 22 20 46 26 11 37 30 16 16 18 +CAM211 890 30 42 37 37 43 45 48 54 41 18 +CAM211 900 14 15 17 20 5 23 15 2 18 17 +CAM211 910 10 11 15 8 17 31 24 28 29 15 +CAM211 920 21 38 19 19 0 20 24 23 18 34 +CAM211 930 23 16 5 19 25 25 35 42 40 29 +CAM211 940 24 31 21 38 13 17 20 21 23 25 +CAM211 950 11 7 12 16 22 15 10 0 12 21 +CAM211 960 20 19 40 38 17 18 29 30 51 36 +CAM211 970 49 19 6 30 43 25 32 37 36 17 +CAM211 980 23 17 32 29 13 29 33 18 24 34 +CAM211 990 24 38 27 33 26 8 23 6 8 22 +CAM211 1000 21 16 27 38 31 10 23 34 38 41 +CAM211 1010 51 40 59 56 0 38 34 32 40 62 +CAM211 1020 49 50 48 22 43 51 56 36 27 48 +CAM211 1030 63 56 54 40 26 39 39 39 40 51 +CAM211 1040 49 38 57 74 47 19 36 42 57 40 +CAM211 1050 33 46 59 48 21 27 15 28 34 45 +CAM211 1060 48 60 77 70 40 43 46 42 28 49 +CAM211 1070 30 19 46 56 57 64 48 26 39 53 +CAM211 1080 55 67 64 43 74 66 62 62 77 47 +CAM211 1090 81 75 94 67 64 62 54 47 32 75 +CAM211 1100 76 61 32 2 47 58 56 61 65 60 +CAM211 1110 33 6 16 13 9 23 27 23 0 18 +CAM211 1120 10 27 15 0 20 39 31 29 37 35 +CAM211 1130 27 48 12 0 16 13 19 28 21 23 +CAM211 1140 14 36 20 31 39 23 11 0 1 20 +CAM211 1150 28 11 31 30 37 43 46 20 28 19 +CAM211 1160 29 19 28 31 19 40 55 69 83 96 +CAM211 1170 87 81 51 60 65 80 78 44 47 41 +CAM211 1180 19 42 44 30 33 30 32 34 5 0 +CAM211 1190 36 18 15 30 25 38 22 36 27 26 +CAM211 1200 34 26 37 28 10 23 21 31 23 27 +CAM211 1210 47 75 56 54 65 30 43 23 4 36 +CAM211 1220 47 38 57 47 74 52 44 27 37 45 +CAM211 1230 13 46 42 35 25 45 47 35 32 31 +CAM211 1240 28 35 31 33 23 50 16 32 51 47 +CAM211 1250 44 39 41 49 32 19 29 36 18 18 +CAM211 1260 24 21 18 12 23 16 17 18 15 16 +CAM211 1270 26 26 32 11 24 34 38 44 28 45 +CAM211 1280 40 39 47 35 25 34 27 35 25 27 +CAM211 1290 23 29 29 20 29 39 37 20 18 3 +CAM211 1300 29 39 31 24 22 26 23 12 33 29 +CAM211 1310 30 33 33 43 52 37 15 7 8 14 +CAM211 1320 19 23 29 9 29 40 29 33 48 35 +CAM211 1330 38 40 20 37 23 27 5 20 21 18 +CAM211 1340 20 17 17 20 20 19 27 24 23 20 +CAM211 1350 0 24 20 27 20 23 21 21 15 14 +CAM211 1360 21 9 5 9 15 10 16 18 8 15 +CAM211 1370 17 12 12 17 20 34 21 25 17 14 +CAM211 1380 25 31 31 46 0 26 11 11 17 22 +CAM211 1390 22 28 27 31 31 37 30 13 13 24 +CAM211 1400 31 23 31 33 36 40 52 45 38 45 +CAM211 1410 49 47 37 39 18 25 28 37 22 30 +CAM211 1420 34 32 31 38 36 24 8 24 35 37 +CAM211 1430 32 19 31 32 8 34 34 20 4 26 +CAM211 1440 29 19 10 20 15 13 5 12 2 16 +CAM211 1450 6 16 20 19 15 17 14 13 10 2 +CAM211 1460 7 15 6 17 20 13 16 22 0 24 +CAM211 1470 33 40 25 31 30 20 30 28 28 24 +CAM211 1480 10 28 29 23 30 35 33 28 31 29 +CAM211 1490 31 33 32 32 38 38 31 14 36 42 +CAM211 1500 31 48 47 48 51 41 41 47 17 34 +CAM211 1510 54 50 61 51 62 54 54 60 55 51 +CAM211 1520 56 60 54 3 11 37 32 44 36 48 +CAM211 1530 59 44 71 17 27 58 47 54 24 50 +CAM211 1540 46 39 16 30 34 28 10 13 26 35 +CAM211 1550 32 27 30 33 37 41 36 41 35 28 +CAM211 1560 36 47 51 52 54 23 24 45 59 58 +CAM211 1570 71 0 58 51 40 50 36 58 34 6 +CAM211 1580 1 30 26 31 13 21 26 27 31 29 +CAM211 1590 27 25 28 40 45 40 50 58 71 58 +CAM211 1600 47 45 30 49 41 32 32 25 42 40 +CAM211 1610 28 27 28 29 37 27 36 45 24 33 +CAM211 1620 33 38 34 31 28 27 24 25 41 31 +CAM211 1630 22 35 33 50 41 38 52 39 51 59 +CAM211 1640 31 0 30 9 20 22 20 10 22 17 +CAM211 1650 16 21 18 16 14 3 21 33 35 32 +CAM211 1660 42 49 38 43 56 63 42 42 42 19 +CAM211 1670 19 31 26 38 34 21 18 5 15 21 +CAM211 1680 18 4 23 19 19 12 7 25 26 29 +CAM211 1690 3 27 21 29 23 34 21 18 19 14 +CAM211 1700 17 22 15 7 14 14 24 21 15 29 +CAM211 1710 33 25 31 41 40 32 22 4 21 20 +CAM211 1720 23 35 26 18 29 23 23 33 30 26 +CAM211 1730 40 49 60 22 24 26 60 60 45 52 +CAM211 1740 67 70 36 53 50 43 47 70 54 51 +CAM211 1750 54 85 46 10 37 58 58 51 52 38 +CAM211 1760 71 69 58 31 30 49 32 49 38 50 +CAM211 1770 46 52 49 57 46 54 48 42 47 47 +CAM211 1780 34 5 5 15 1 28 25 23 29 10 +CAM211 1790 20 23 19 20 31 26 22 23 23 25 +CAM211 1800 38 38 47 47 49 60 49 35 53 69 +CAM211 1810 36 47 34 31 33 35 33 38 32 44 +CAM211 1820 41 49 45 58 45 43 49 54 44 45 +CAM211 1830 37 23 4 10 20 14 3 12 15 20 +CAM211 1840 19 20 20 32 32 29 47 38 52 45 +CAM211 1850 36 34 36 47 54 58 49 33 22 28 +CAM211 1860 43 37 42 41 68 37 69 67 63 56 +CAM211 1870 64 70 64 75 55 51 34 79 77 64 +CAM211 1880 45 46 88 64 61 47 57 69 68 70 +CAM211 1890 30 53 57 33 26 35 20 27 41 14 +CAM211 1900 45 57 47 42 24 26 22 53 37 52 +CAM211 1910 37 41 41 35 42 57 43 39 51 53 +CAM211 1920 65 81 79 46 46 78 61 66 74 39 +CAM211 1930 85 80 62 81 78 56 37 59 40 38 +CAM211 1940 57 40 46 37 20 23 46 49 62 48 +CAM211 1950 50 72 50 68 72 76 46 56 52 54 +CAM211 1960 49 16 60 79 97 62 71 68 73 999 diff --git a/tests/data/rwl/min.rwl b/tests/data/rwl/min.rwl new file mode 100644 index 0000000..481eb82 --- /dev/null +++ b/tests/data/rwl/min.rwl @@ -0,0 +1,2 @@ +SeriesA 1 10 30 50 70 999 +SeriesB 1 200 400 600 800 -9999 \ No newline at end of file diff --git a/update.txt b/update.txt new file mode 100644 index 0000000..e69de29