-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Co-authored-by: Annie Wilce <wilcea@wwu.edu>
- Loading branch information
Showing
7 changed files
with
2,312 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,157 @@ | ||
import numpy as np #are there issues here? seeing some on my end | ||
import pandas as pd #same, not sure these are needed since they are in the dependancies file anyway | ||
|
||
# Date: 07/18/2024 | ||
# Author: Anne Wilce | ||
# Title: agedepspline.py | ||
# Description: Applies an age-dependent smoothing spline to y. | ||
|
||
|
||
def ads_R2Py(y, nyrs0=50, pos_slope=True): | ||
nobs = len(y) | ||
nyrs = np.arange(1, nobs + 1) + nyrs0 - 1 | ||
ySpl = np.zeros(nobs) | ||
|
||
|
||
if nobs < 3: | ||
raise ValueError("there must be at least 3 data points") | ||
if nobs > 10000: | ||
raise ValueError("y shouldn't be longer than 1e4. ask for help. the f77 code will need to be recompiled.") | ||
if not isinstance(nyrs0, int) or nyrs0 <= 1: | ||
raise ValueError("'nyrs0' must be an integer greater than 1") | ||
# Use 1-based indexing to better match the FORTRAN/R code and avoid confusion | ||
# Row/Col 0 exisits here but is not used and does not affect the result due to current index handling | ||
def ads95_inPy(y, n, stiffness): | ||
nm2 = n - 2 | ||
pi = np.pi | ||
c1 = [0, 1, -4, 6, -2] #add zero in idx 0 for future mirror index of R | ||
c2 = [0, 0, 1/3, 4/3] #add zero in idx 0 for future mirror index of R | ||
|
||
# Convert stiffness vector to p vector | ||
p = np.zeros(nm2+1) | ||
|
||
for i in range(1,nm2+1): #use R indexing | ||
v = stiffness[i] | ||
arg = (2 * pi) / v | ||
p[i] = (6 * (np.cos(arg) - 1)**2) / (np.cos(arg) + 2) | ||
#p[i]= round(p[i], 10) | ||
|
||
# Initialize arrays | ||
a = np.zeros((nm2+1, 5)) | ||
#print(a.shape) | ||
res = np.zeros(n+1) #maybe change here AMW | ||
y = np.insert(y, 0, 0) | ||
|
||
# Fill a array | ||
for i in range(1,nm2+1): | ||
for j in range(1,4): | ||
a[i, j] = c1[j] + p[i] * c2[j] | ||
a[i, 4] = y[i] + c1[4] * y[i + 1] + y[i + 2] | ||
|
||
a[1, 1] = c2[1] | ||
a[1, 2] = c2[1] | ||
a[2, 1] = c2[1] | ||
|
||
nc = 2 | ||
rn = 1 / (nm2 * 16) | ||
|
||
d1 = 1 | ||
d2 = 0 | ||
ncp1 = nc + 1 | ||
|
||
|
||
# Luelpb section | ||
for i in range(1,nm2+1): | ||
#print("Working on i number", i) | ||
imncp1 = i - ncp1 | ||
|
||
i1 = max(1, 1 - imncp1) | ||
|
||
for j in range(i1, ncp1+1): | ||
l = imncp1 + j | ||
|
||
i2 = ncp1 - j | ||
|
||
sum_val = a[i, j] | ||
|
||
jm1 = j-1 | ||
|
||
if jm1 > 0: | ||
for k in range(1,jm1+1): | ||
m = i2 + k | ||
sum_val -= a[i, k] * a[l, m] | ||
|
||
if j == (ncp1): | ||
if a[i, j] + sum_val * rn <= a[i, j]: | ||
res[0] = -9999 | ||
return res | ||
a[i, j] = 1 / np.sqrt(sum_val) | ||
|
||
d1 *= sum_val | ||
while abs(d1) > 1: | ||
d1 *= 0.0625 | ||
d2 += 4 | ||
while abs(d1) <= 0.0625: | ||
d1 *= 16 | ||
d2 -= 4 | ||
else: | ||
a[i, j] = sum_val * a[l, ncp1] | ||
|
||
|
||
# Luelpb section | ||
nc1 = nc + 1 | ||
iw = 0 | ||
l = 0 | ||
for i in range(1,nm2+1): | ||
sum_val = a[i, 4] | ||
if nc > 0: | ||
if iw != 0: | ||
l = l + 1 | ||
if l > nc: | ||
l = nc | ||
k = nc1 - l | ||
kl = i - l | ||
|
||
for j in range(k, nc+1): | ||
sum_val = sum_val - a[kl, 4] * a[i, j] | ||
kl = kl + 1 | ||
elif sum_val != 0: | ||
iw = 1 | ||
a[i, 4] = sum_val * a[i, nc1] | ||
a[nm2, 4] = a[nm2, 4] * a[nm2, nc1] | ||
|
||
n1 = nm2 + 1 | ||
for i in range(2, nm2+1): | ||
k = n1 - i | ||
sum_val = a[k, 4] | ||
if nc > 0: | ||
kl = k + 1 | ||
k1 = min(nm2, k + nc) | ||
l = 1 | ||
for j in range(kl, k1+1): | ||
sum_val = sum_val - a[j, 4] * a[j, nc1 - l] | ||
l = l + 1 | ||
a[k, 4] = sum_val * a[k, nc1] | ||
|
||
for i in range(3, nm2+1): | ||
res[i] = a[i - 2, 4] + c1[4] * a[i - 1, 4] + a[i, 4] | ||
|
||
res[1] = a[1, 4] | ||
res[2] = c1[4] * a[1, 4] + a[2, 4] | ||
res[n - 1] = a[nm2 - 1, 4] + c1[4] * a[nm2, 4] | ||
res[n] = a[nm2, 4] | ||
|
||
for i in range(1,n+1): | ||
res[i] = y[i] - res[i] | ||
res = res[1:] | ||
return res | ||
|
||
ySpl = ads95_inPy(y, n=nobs, stiffness=nyrs) | ||
|
||
if not pos_slope: | ||
ySplDiff = np.diff(ySpl, prepend=0) | ||
ySplCutoff = np.max(np.where(ySplDiff <= 0)[0]) | ||
ySpl[ySplCutoff:nobs] = ySpl[ySplCutoff] | ||
ySpl = ads95_inPy(ySpl, n=nobs, stiffness=nyrs) | ||
|
||
return ySpl |
Oops, something went wrong.