-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
753 lines (595 loc) · 22.5 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
import math
import cv2
import torch
import os
import sys
import json
'''
output states:
0: has rewards?
1: stopped?
2: num steps
3:
'''
STATE_REWARD_DIM = 0
STATE_STOPPED_DIM = 1
STATE_STEP_DIM = 2
STATE_DROPOUT_BEGIN = 3
def save_img(img, img_path, save_path, prefix=None, format="CHW", is_train=True):
if isinstance(img, torch.Tensor):
img = img.detach().cpu().numpy()
# print(img.shape, len(img.shape))
if len(img.shape) > 3:
img = img.squeeze(0)
if format.upper() == "CHW":
img = np.transpose(img, (1, 2, 0))
img[np.isnan(img)] = 0.
# print(img.shape, format)
img = np.clip(img, a_min=0.0, a_max=1.0)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
_, fullflname = os.path.split(img_path)
fname, ext = os.path.splitext(fullflname)
if is_train:
os.makedirs(os.path.join(save_path, fname), exist_ok=True)
cv2.imwrite(os.path.join(save_path, fname, fname + ('' if prefix is None else f'_{prefix}.png')), img * 255.0)
else:
cv2.imwrite(os.path.join(save_path, fname + ('' if prefix is None else f'_{prefix}')) + ext, img * 255.0)
def save_params(params_steps, img_path, save_path, prefix=None, is_train=True, only_ret_dict=False):
# params -> list of each_step_param -> list of tensor for each filter
params_steps_l = []
for params in params_steps:
params_steps_l.append(params[0].tolist())
params_dict = {}
for i, params in enumerate(params_steps_l):
params_dict[f"step{i}"] = params
if only_ret_dict:
return params_dict
_, fullflname = os.path.split(img_path)
fname, ext = os.path.splitext(fullflname)
if is_train:
os.makedirs(os.path.join(save_path, fname), exist_ok=True)
path = os.path.join(save_path, fname, fname + ('' if prefix is None else f'_{prefix}.json'))
else:
path = os.path.join(save_path, fname + ('' if prefix is None else f'_{prefix}')) + ".json"
with open(path, 'w') as json_file:
json.dump(params_dict, json_file)
def save_params_steps(params_steps, img_path, save_path, prefix=None, is_train=True, only_ret_dict=False):
# params -> list of each_step_param -> list of tensor for each filter
params_steps_l = []
for params in params_steps:
param_l = []
for param in params:
param_l.append(param[0].tolist())
params_steps_l.append(param_l)
params_dict = {}
for i, params in enumerate(params_steps_l):
params_dict[f"step{i}"] = params
if only_ret_dict:
return params_dict
_, fullflname = os.path.split(img_path)
fname, ext = os.path.splitext(fullflname)
if is_train:
os.makedirs(os.path.join(save_path, fname), exist_ok=True)
path = os.path.join(save_path, fname, fname + ('' if prefix is None else f'_{prefix}.json'))
else:
path = os.path.join(save_path, fname + ('' if prefix is None else f'_{prefix}')) + ".json"
with open(path, 'w') as json_file:
json.dump(params_dict, json_file)
import matplotlib.pyplot as plt
def show(x, title="a", format="HWC", is_finish=True):
if len(x.shape) > 3:
print(f"Warning input image shape is {x.shape}, just show first image")
x = x[0]
if format == 'CHW':
x = np.transpose(x, (1, 2, 0))
plt.figure()
plt.cla()
plt.title(title)
plt.imshow(x)
if is_finish:
plt.show()
def get_expert_file_path(expert):
expert_path = 'data/artists/fk_%s/' % expert
return expert_path
def enrich_image_input_tf(cfg, net, states):
import tensorflow as tf
if cfg.img_include_states:
print(("states for enriching", states.shape))
states = states[:, None, None, :] + (net[:, :, :, 0:1] * 0)
net = tf.concat([net, states], axis=3)
return net
def enrich_image_input(cfg, net, states):
if cfg.img_include_states:
# print(("states for enriching", states.shape))
states = states[:, :, None, None] + (net[:, 0:1, :, :] * 0)
net = torch.cat([net, states], dim=1)
return net
def enrich_image_input_w_target(cfg, net, targets, states):
if cfg.img_include_states:
# print(("states for enriching", states.shape))
states = states[:, :, None, None] + (net[:, 0:1, :, :] * 0)
net = torch.cat([net, targets], dim=1)
net = torch.cat([net, states], dim=1)
return net
def quantize_param(param, l, r, quantized_step=32):
l = torch.tensor(l).to(param.device)
r = torch.tensor(r).to(param.device)
quantized_step = torch.tensor(quantized_step).to(param.device)
res = torch.round(quantized_step * (param - l) / (r - l))
res = res * (r - l) / quantized_step + l
return res
def obj_to_class_name(obj) -> str:
return obj.__class__.__name__
def random_tensor(low, high, size):
return (high - low) * torch.rand(size) + low
'''
param sel noise scale schedule list generator: linear halving cosine
'''
def linear_schedule(initial, steps):
return [max(0, initial - i * initial / (steps - 1)) for i in range(steps)]
def halving_schedule(initial, steps):
return [max(0, initial * 0.5**i) for i in range(steps)]
def cosine_schedule(initial, steps):
return [max(0, initial * 0.5 * (1 + np.cos(np.pi * i / steps))) for i in range(steps)]
# based on https://stackoverflow.com/questions/2352181/how-to-use-a-dot-to-access-members-of-dictionary
class Dict(dict):
"""
Example:
m = Dict({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer'])
"""
def __init__(self, *args, **kwargs):
super(Dict, self).__init__(*args, **kwargs)
for arg in args:
if isinstance(arg, dict):
for k, v in arg.items():
self[k] = v
if kwargs:
for k, v in kwargs.items():
self[k] = v
def __getattr__(self, attr):
return self[attr]
def __setattr__(self, key, value):
self.__setitem__(key, value)
def __setitem__(self, key, value):
super(Dict, self).__setitem__(key, value)
self.__dict__.update({key: value})
def __delattr__(self, item):
self.__delitem__(item)
def __delitem__(self, key):
super(Dict, self).__delitem__(key)
del self.__dict__[key]
def make_image_grid(images, per_row=2, padding=2): # per_row =8
npad = ((0, 0), (padding, padding), (padding, padding), (0, 0))
images = np.pad(images, pad_width=npad, mode='constant', constant_values=1.0)
assert images.shape[0] % per_row == 0
num_rows = images.shape[0] // per_row
image_rows = []
for i in range(num_rows):
image_rows.append(np.hstack(images[i * per_row:(i + 1) * per_row]))
return np.vstack(image_rows)
def get_image_center(image):
if image.shape[0] > image.shape[1]:
start = (image.shape[0] - image.shape[1]) // 2
image = image[start:start + image.shape[1], :]
if image.shape[1] > image.shape[0]:
start = (image.shape[1] - image.shape[0]) // 2
image = image[:, start:start + image.shape[0]]
return image
def rotate_image(image, angle):
"""
Rotates an OpenCV 2 / NumPy image about it's centre by the given angle
(in degrees). The returned image will be large enough to hold the entire
new image, with a black background
"""
# Get the image size
# No that's not an error - NumPy stores image matricies backwards
image_size = (image.shape[1], image.shape[0])
image_center = tuple(np.array(image_size) // 2)
# Convert the OpenCV 3x2 rotation matrix to 3x3
rot_mat = np.vstack(
[cv2.getRotationMatrix2D(image_center, angle, 1.0), [0, 0, 1]])
rot_mat_notranslate = np.matrix(rot_mat[0:2, 0:2])
# Shorthand for below calcs
image_w2 = image_size[0] * 0.5
image_h2 = image_size[1] * 0.5
# Obtain the rotated coordinates of the image corners
rotated_coords = [
(np.array([-image_w2, image_h2]) * rot_mat_notranslate).A[0],
(np.array([image_w2, image_h2]) * rot_mat_notranslate).A[0],
(np.array([-image_w2, -image_h2]) * rot_mat_notranslate).A[0],
(np.array([image_w2, -image_h2]) * rot_mat_notranslate).A[0]
]
# Find the size of the new image
x_coords = [pt[0] for pt in rotated_coords]
x_pos = [x for x in x_coords if x > 0]
x_neg = [x for x in x_coords if x < 0]
y_coords = [pt[1] for pt in rotated_coords]
y_pos = [y for y in y_coords if y > 0]
y_neg = [y for y in y_coords if y < 0]
right_bound = max(x_pos)
left_bound = min(x_neg)
top_bound = max(y_pos)
bot_bound = min(y_neg)
new_w = int(abs(right_bound - left_bound))
new_h = int(abs(top_bound - bot_bound))
# We require a translation matrix to keep the image centred
trans_mat = np.matrix([[1, 0, int(new_w * 0.5 - image_w2)],
[0, 1, int(new_h * 0.5 - image_h2)], [0, 0, 1]])
# Compute the tranform for the combined rotation and translation
affine_mat = (np.matrix(trans_mat) * np.matrix(rot_mat))[0:2, :]
# Apply the transform
result = cv2.warpAffine(
image, affine_mat, (new_w, new_h), flags=cv2.INTER_LINEAR)
return result
def largest_rotated_rect(w, h, angle):
"""
Given a rectangle of size wxh that has been rotated by 'angle' (in
radians), computes the width and height of the largest possible
axis-aligned rectangle within the rotated rectangle.
Original JS code by 'Andri' and Magnus Hoff from Stack Overflow
Converted to Python by Aaron Snoswell
"""
quadrant = int(math.floor(angle / (math.pi / 2))) & 3
sign_alpha = angle if ((quadrant & 1) == 0) else math.pi - angle
alpha = (sign_alpha % math.pi + math.pi) % math.pi
bb_w = w * math.cos(alpha) + h * math.sin(alpha)
bb_h = w * math.sin(alpha) + h * math.cos(alpha)
gamma = math.atan2(bb_w, bb_w) if (w < h) else math.atan2(bb_w, bb_w)
delta = math.pi - alpha - gamma
length = h if (w < h) else w
d = length * math.cos(alpha)
a = d * math.sin(alpha) / math.sin(delta)
y = a * math.cos(gamma)
x = y * math.tan(gamma)
return (bb_w - 2 * x, bb_h - 2 * y)
def crop_around_center(image, width, height):
"""
Given a NumPy / OpenCV 2 image, crops it to the given width and height,
around it's centre point
"""
image_size = (image.shape[1], image.shape[0])
image_center = (int(image_size[0] * 0.5), int(image_size[1] * 0.5))
if (width > image_size[0]):
width = image_size[0]
if (height > image_size[1]):
height = image_size[1]
x1 = int(image_center[0] - width * 0.5)
x2 = int(image_center[0] + width * 0.5)
y1 = int(image_center[1] - height * 0.5)
y2 = int(image_center[1] + height * 0.5)
return image[y1:y2, x1:x2]
# angle: degrees
def rotate_and_crop(image, angle):
image_width, image_height = image.shape[:2]
image_rotated = rotate_image(image, angle)
image_rotated_cropped = crop_around_center(image_rotated,
*largest_rotated_rect(
image_width, image_height,
math.radians(angle)))
return image_rotated_cropped
class Tee(object):
def __init__(self, name):
self.file = open(name, 'w')
self.stdout = sys.stdout
self.stderr = sys.stderr
sys.stdout = self
sys.stderr = self
def __del__(self):
self.file.close()
def write(self, data):
self.file.write(data)
self.stdout.write(data)
self.file.flush()
self.stdout.flush()
def write_to_file(self, data):
self.file.write(data)
def flush(self):
self.file.flush()
def merge_dict(a, b):
ret = a.copy()
for key, val in list(b.items()):
if key in ret:
assert False, 'Item ' + key + 'already exists'
else:
ret[key] = val
return ret
def update_dict(a, b):
ret = a.copy()
for key, val in list(b.items()):
ret[key] = val
return ret
def lerp(a, b, l):
return (1 - l) * a + l * b
def read_tiff16(fn):
import tifffile
import numpy as np
img = tifffile.imread(fn)
if img.dtype == np.uint8:
depth = 8
elif img.dtype == np.uint16:
depth = 16
else:
print("Warning: unsupported data type {}. Assuming 16-bit.", img.dtype)
depth = 16
return (img * (1.0 / (2**depth - 1))).astype(np.float32)
def load_config(config_name):
scope = {}
exec('from config_%s import cfg' % config_name, scope)
return scope['cfg']
# ======================================================================================================================
# added by Hao He
# ======================================================================================================================
def get_artist_batch(folder, size=128, num=64):
import os
js = os.listdir(folder)
np.random.shuffle(js)
imgs = np.zeros((num, size, size, 3))
for i, jpg in enumerate(js[:num]):
img = cv2.imread(folder + '/' + jpg)
img = get_image_center(img) / 255.
imgs[i] = cv2.resize(img, dsize=(size, size))
return imgs
def show_artist_subnails(folder, size=128, num_row=8, num_column=8):
imgs = get_artist_batch(folder, size, num_row * num_column)
return make_image_grid(imgs, per_row=num_row)
def np_tanh_range(l, r):
def get_activation(left, right):
def activation(x):
return np.tanh(x) * (right - left) + left
return activation
return get_activation(l, r)
class WB2:
def filter_param_regressor(self, features):
log_wb_range = np.log(5)
color_scaling = np.exp(
np_tanh_range(-log_wb_range, log_wb_range)(features[:, :3]))
# There will be no division by zero here unless the WB range lower bound is 0
return color_scaling
def process(self, img, param):
lum = (img[:, :, :, 0] * 0.27 + img[:, :, :, 1] * 0.67 +
img[:, :, :, 2] * 0.06 + 1e-5)[:, :, :, None]
tmp = img * param[:, None, None, :]
tmp = tmp / (tmp[:, :, :, 0] * 0.27 + tmp[:, :, :, 1] * 0.67 +
tmp[:, :, :, 2] * 0.06 + 1e-5)[:, :, :, None] * lum
return tmp
def degrade_images_in_folder(
folder,
dst_folder_suffix,
LIGHTDOWN=True,
UNBALANCECOLOR=True,):
import os
js = os.listdir(folder)
dst_folder = folder + '-' + dst_folder_suffix
try:
os.mkdir(dst_folder)
except:
print('dir exist!')
print('in ' + dst_folder)
num = 3
for j in js:
img = cv2.imread(folder + '/' + j) / 255.
if LIGHTDOWN:
for _ in range(num - 1):
out = pow(img, np.random.uniform(0.4, 0.6)) * np.random.uniform(
0.25, 0.5)
cv2.imwrite(dst_folder + '/' + ('L%d-' % _) + j, out * 255.)
out = img * img
out = out * (1.0 / out.max())
cv2.imwrite(dst_folder + '/' + ('L%d-' % num) + j, out * 255.)
if UNBALANCECOLOR:
filter = WB2()
outs = np.array([img] * num)
features = np.abs(np.random.rand(num, 3))
for _, out in enumerate(
filter.process(outs, filter.filter_param_regressor(features))):
# print out.max()
out /= out.max()
out *= np.random.uniform(0.7, 1)
cv2.imwrite(dst_folder + '/' + ('C%d-' % _) + j, out * 255.)
def vis_images_and_indexs(images, features, dir, name):
# indexs = np.reshape(indexs, (len(indexs),))
# print('visualizing images and indexs: ', images.shape, indexs.shape)
id_imgs = []
for feature in features:
img = np.ones((64, 64, 3))
cv2.putText(img,
str(feature), (4, 33), cv2.FONT_HERSHEY_SIMPLEX, 0.25,
(1.0, 0.0, 0.0))
id_imgs.append(img)
id_imgs = np.stack(id_imgs, axis=0)
# print('id imgs: ', id_imgs.shape)
vis_imgs = np.vstack([images, id_imgs])
image = make_image_grid(vis_imgs, per_row=images.shape[0])
vis_dir = dir
try:
os.mkdir(vis_dir)
except:
pass
cv2.imwrite(os.path.join(vis_dir, name + '.png'), image[:, :, ::-1] * 255.0)
def read_set(name):
if name == 'u_test':
fn = 'data/folds/FiveK_test.txt'
need_reverse = False
elif name == 'u_amt':
fn = 'data/folds/FiveK_test_AMT.txt'
need_reverse = False
elif name == '5k': # add by hao
return list(range(1, 5001))
elif name == '2k_train':
fn = 'data/folds/FiveK_train_first2k.txt'
need_reverse = False
elif name == '2k_target':
fn = 'data/folds/FiveK_train_second2k.txt'
need_reverse = False
else:
assert False, name + ' not found'
l = []
ln = 0
with open(fn, 'r') as f:
for i in f:
if i[0] != '#':
try:
i = int(i)
ln += 1
l.append(i)
except Exception as e:
print(e)
pass
if need_reverse:
l = list(set(range(1, 5001)) - set(l))
return l
'''
util_image.py
Copyright (c) 2014 Zhicheng Yan (zhicheng.yan@live.com)
modified 2017 by Yuanming Hu (yuanmhu@gmail.com)
note that some of the color space conversions are NOT exact, like gamma 1.8 or 2.2
'''
import numpy as np
from skimage import color
import tifffile as tiff
class UtilImageError(Exception):
pass
''' undo gamma correction '''
def linearize_ProPhotoRGB(pp_rgb, reverse=False):
if not reverse:
gamma = 1.8
else:
gamma = 1.0 / 1.8
pp_rgb = np.power(pp_rgb, gamma)
return pp_rgb
def XYZ_chromatic_adapt(xyz, src_white='D65', dest_white='D50'):
if src_white == 'D65' and dest_white == 'D50':
M = [[1.0478112, 0.0228866, -0.0501270], \
[0.0295424, 0.9904844, -0.0170491], \
[-0.0092345, 0.0150436, 0.7521316]]
elif src_white == 'D50' and dest_white == 'D65':
M = [[0.9555766, -0.0230393, 0.0631636], \
[-0.0282895, 1.0099416, 0.0210077], \
[0.0122982, -0.0204830, 1.3299098]]
else:
raise UtilCnnImageEnhanceError('invalid pair of source and destination white reference %s,%s') \
% (src_white, dest_white)
M = np.array(M)
sp = xyz.shape
assert sp[2] == 3
xyz = np.transpose(np.dot(M, np.transpose(xyz.reshape((sp[0] * sp[1], 3)))))
return xyz.reshape((sp[0], sp[1], 3))
# pp_rgb float in range [0,1], linear ProPhotoRGB
# refernce white is D50
def ProPhotoRGB2XYZ(pp_rgb, reverse=False):
if not reverse:
M = [[0.7976749, 0.1351917, 0.0313534], \
[0.2880402, 0.7118741, 0.0000857], \
[0.0000000, 0.0000000, 0.8252100]]
else:
M = [[1.34594337, -0.25560752, -0.05111183], \
[-0.54459882, 1.5081673, 0.02053511], \
[0, 0, 1.21181275]]
M = np.array(M)
sp = pp_rgb.shape
xyz = np.transpose(
np.dot(M, np.transpose(pp_rgb.reshape((sp[0] * sp[1], sp[2])))))
return xyz.reshape((sp[0], sp[1], 3))
''' normalize L channel so that minimum of L is 0 and maximum of L is 100 '''
def normalize_Lab_image(lab_image):
h, w, ch = lab_image.shape[0], lab_image.shape[1], lab_image.shape[2]
assert ch == 3
lab_image = lab_image.reshape((h * w, ch))
L_ch = lab_image[:, 0]
L_min, L_max = np.min(L_ch), np.max(L_ch)
# print 'before normalization L min %f,Lmax %f' % (L_min,L_max)
scale = 100.0 / (L_max - L_min)
lab_image[:, 0] = (lab_image[:, 0] - L_min) * scale
# print 'after normalization L min %f,Lmax %f' %\
(np.min(lab_image[:, 0]), np.max(lab_image[:, 0]))
return lab_image.reshape((h, w, ch))
''' white reference 'D65' '''
def read_tiff_16bit_img_into_XYZ(tiff_fn, exposure=0):
pp_rgb = tiff.imread(tiff_fn)
pp_rgb = np.float64(pp_rgb) / (2**16 - 1.0)
if not pp_rgb.shape[2] == 3:
print('pp_rgb shape', pp_rgb.shape)
raise UtilImageError('image channel number is not 3')
pp_rgb = linearize_ProPhotoRGB(pp_rgb)
pp_rgb *= np.power(2, exposure)
xyz = ProPhotoRGB2XYZ(pp_rgb)
xyz = XYZ_chromatic_adapt(xyz, src_white='D50', dest_white='D65')
return xyz
def ProPhotoRGB2Lab(img):
if not img.shape[2] == 3:
print('pp_rgb shape', img.shape)
raise UtilImageError('image channel number is not 3')
img = linearize_ProPhotoRGB(img)
xyz = ProPhotoRGB2XYZ(img)
lab = color.xyz2lab(xyz)
return lab
def linearProPhotoRGB2Lab(img):
if not img.shape[2] == 3:
print('pp_rgb shape', img.shape)
raise UtilImageError('image channel number is not 3')
xyz = ProPhotoRGB2XYZ(img)
lab = color.xyz2lab(xyz)
return lab
import threading
import time
class AsyncTaskManager:
def __init__(self, target, args=(), kwargs={}):
self.target = target
self.args = args
self.kwargs = kwargs
self.condition = threading.Condition()
self.result = None
self.thread = threading.Thread(target=self.worker)
self.stopped = False
self.thread.daemon = True
self.thread.start()
def worker(self):
while True:
self.condition.acquire()
while self.result is not None:
if self.stopped:
self.condition.release()
return
self.condition.notify()
self.condition.wait()
self.condition.notify()
self.condition.release()
result = (self.target(*self.args, **self.kwargs),)
self.condition.acquire()
self.result = result
self.condition.notify()
self.condition.release()
def get_next(self):
self.condition.acquire()
while self.result is None:
self.condition.notify()
self.condition.wait()
result = self.result[0]
self.result = None
self.condition.notify()
self.condition.release()
return result
def stop(self):
while self.thread.is_alive():
self.condition.acquire()
self.stopped = True
self.condition.notify()
self.condition.release()
def test_async_task_manager():
def task():
print('begin sleeping...')
time.sleep(1)
print('end sleeping.')
task.i += 1
print('returns', task.i)
return task.i
task.i = 0
sync = AsyncTaskManager(task)
t = time.time()
for i in range(5):
ret = sync.get_next()
# ret = task()
print('got', ret)
time.sleep(1)
sync.stop()
print(time.time() - t)