Skip to content

This is a project of reinforcement learning which contains two different environments. The first environment is the taxi driver problem in 4x4 space with the simple Q-learning update rule. In this task, we compared the performance of the e-greedy policy and Boltzmann policy. As a second environment, we chose the LunarLander from the open gym. Fo…

License

Notifications You must be signed in to change notification settings

OrestisMk/RF-Q_learning-taxi_driver--Lunanlander-Policy-gradient-

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RF-Q_learning-taxi_driver--Lunanlander-Policy-gradient-

This is a project of reinforcement learning which contains two different environments. The first environment is the taxi driver problem in 4x4 space with the simple Q-learning update rule. In this task, we compared the performance of the e-greedy policy and Boltzmann policy. As a second environment, we chose the LunarLander from the open gym. For the implementation of the project, the Policy gradient has been selected.

The project was carried out by Orestis Makris and Victor Ceballos-Espinosa.

About

This is a project of reinforcement learning which contains two different environments. The first environment is the taxi driver problem in 4x4 space with the simple Q-learning update rule. In this task, we compared the performance of the e-greedy policy and Boltzmann policy. As a second environment, we chose the LunarLander from the open gym. Fo…

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published