-
Notifications
You must be signed in to change notification settings - Fork 1
/
exam.gi
94 lines (80 loc) · 3.38 KB
/
exam.gi
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
########################################################################################
## Examples of finitely generated nilpotent groups used to check performance ##
########################################################################################
SomeNilpotentGroups := function( n )
local G, #The group to return
et, #Expresion tree
a,b,c,d,e,x,#Expresion tree variables
rengel, #Right engel relations
H, #Denominator of the nilpotent qoutient
ftl; #From the left collectors
if n = 1 then
#Torsion-free of hirsch length 5
ftl := FromTheLeftCollector(5);
SetConjugate( ftl, 2, 1, [2, 1, 3, 11] );
SetConjugate( ftl, 3, 1, [3, 1, 4, 8] );
SetConjugate( ftl, 3, 2, [3, 1, 5, 15] );
SetConjugate( ftl, 4, 1, [4, 1, 5, 16] );
G := PcpGroupByCollector( ftl );
return G;
elif n = 2 then
#[0, 0, 0, 0, 0, 4, 2, 2]
et := ExpressionTrees( "a", "b", "x" );
a := et[1];; b := et[2];; x := et[3];;
rengel := LeftNormedComm( [a,x,x,x] );
H := rec( generators := et, relations := [rengel] );
G := NilpotentQuotient( H, [x] );
return G;
elif n = 3 then
#[0, 0, 0, 0, 3872]
ftl := FromTheLeftCollector(5);
SetRelativeOrder( ftl, 5, 3872);
SetConjugate( ftl, 2 , 1, [2, 1, 3, 22, 4, 88]);
SetConjugate( ftl, 3 , 1, [3, 1, 4, 16, 5, 128]);
SetConjugate( ftl, 3 , 2, [3, 1, 5, 15]);
SetConjugate( ftl, 4 , 1, [4, 1, 5, 352]);
G := PcpGroupByCollector( ftl );
return G;
elif n = 4 then
ftl := FromTheLeftCollector(5);
SetRelativeOrder( ftl, 5, 11264);
SetRelativeOrder( ftl, 4, 352);
SetPower( ftl, 4, [5,5120]);
SetConjugate( ftl, 2 , 1, [2, 1, 3, 22, 4, 88]);
SetConjugate( ftl, 3 , 1, [3, 1, 4, 16, 5, 128]);
SetConjugate( ftl, 3 , 2, [3, 1, 5, 15]);
SetConjugate( ftl, 4 , 1, [4, 1, 5, 32]);
G := PcpGroupByCollector( ftl );
return G;
elif n = 5 then
et := ExpressionTrees( "a", "b", "c", "d", "x" );
a := et[1];; b := et[2];; c := et[3];; d := et[4];; x := et[5];;
rengel := LeftNormedComm( [a,x,x,x] );
H := rec( generators := et, relations := [rengel^3, b^356] );
G := NilpotentQuotient( H, [x], 4);
return G;
elif n = 6 then
et := ExpressionTrees( "a", "b", "x" );
a := et[1];; b := et[2];; x := et[3];;
rengel := LeftNormedComm( [a,x,x,x,x,x] );
H := rec( generators := et, relations := [rengel] );
G := NilpotentQuotient( H, [x], 9 );
return G;
elif n = 7 then
et := ExpressionTrees( 7 );
a := et[1];; b := et[2];; c := et[3];; d := et[4];; e := et[5];; x := et[6];;
rengel := LeftNormedComm( [a,x,x,x] );
H := rec( generators := et, relations := [rengel^2, b^625, d^80, e^512] );
G := NilpotentQuotient( H, [x], 2);
return G;
elif n = 8 then
et := ExpressionTrees( 7 );
a := et[1];; b := et[2];; c := et[3];; x := et[4];;
rengel := LeftNormedComm( [a,x,x,x] );
H := rec( generators := et, relations := [rengel, b^585*c^3, a^255] );
G := NilpotentQuotient( H, [x], 2 );
return G;
else
return fail;
fi;
end;