-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvgg_face.py
56 lines (48 loc) · 2.09 KB
/
vgg_face.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import tensorflow as tf
import numpy as np
from scipy.io import loadmat
def vgg_face(param_path, input_maps):
data = loadmat(param_path)
# read meta info
meta = data['meta']
classes = meta['classes']
class_names = classes[0][0]['description'][0][0]
normalization = meta['normalization']
average_image = np.squeeze(normalization[0][0]['averageImage'][0][0][0][0])
image_size = np.squeeze(normalization[0][0]['imageSize'][0][0])
#print '>>>',image_size,len(image_size)
input_maps = tf.image.resize_images(input_maps, [image_size[0], image_size[1]])
# read layer info
layers = data['layers']
current = input_maps
network = {}
for layer in layers[0]:
name = layer[0]['name'][0][0]
layer_type = layer[0]['type'][0][0]
if layer_type == 'conv':
if name[:2] == 'fc':
padding = 'VALID'
else:
padding = 'SAME'
stride = layer[0]['stride'][0][0]
kernel, bias = layer[0]['weights'][0][0]
# kernel = np.transpose(kernel, (1, 0, 2, 3))
bias = np.squeeze(bias).reshape(-1)
conv = tf.nn.conv2d(current, tf.constant(kernel),
strides=(1, stride[0], stride[0], 1), padding=padding)
current = tf.nn.bias_add(conv, bias)
print name, 'stride:', stride, 'kernel size:', np.shape(kernel)
elif layer_type == 'relu':
current = tf.nn.relu(current)
print name
elif layer_type == 'pool':
stride = layer[0]['stride'][0][0]
pool = layer[0]['pool'][0][0]
current = tf.nn.max_pool(current, ksize=(1, pool[0], pool[1], 1),
strides=(1, stride[0], stride[0], 1), padding='SAME')
print name, 'stride:', stride
elif layer_type == 'softmax':
current = tf.nn.softmax(tf.reshape(current, [-1, len(class_names)]))
print name
network[name] = current
return network, average_image, class_names