diff --git a/CITATION.cff b/CITATION.cff new file mode 100644 index 00000000..d7123bb8 --- /dev/null +++ b/CITATION.cff @@ -0,0 +1,65 @@ +cff-version: 1.2.0 +title: DeepRVAT +message: >- + If you use this software, please cite it using the + metadata from this file. +type: software +authors: + - given-names: Brian + family-names: Clarke + orcid: 'https://orcid.org/0000-0002-6695-286X' + - given-names: Eva + family-names: Holtkamp + orcid: 'https://orcid.org/0000-0002-2129-9908' + - given-names: Hakime + family-names: Öztürk + - given-names: Marcel + family-names: Mück + orcid: 'https://orcid.org/0009-0000-3129-2630' + - given-names: Magnus + family-names: Wahlberg + orcid: 'https://orcid.org/0009-0001-9140-2392' + - given-names: Kayla + family-names: Meyer + orcid: 'https://orcid.org/0009-0003-5063-5266' + - given-names: Felix + family-names: Brechtmann + orcid: 'https://orcid.org/0000-0002-0110-152X' + - given-names: Florian Rupert + family-names: Hölzlwimmer + orcid: 'https://orcid.org/0000-0002-5522-2562' + - given-names: Julien + family-names: Gagneur + orcid: 'https://orcid.org/0000-0002-8924-8365' + - given-names: Oliver + family-names: Stegle + orcid: 'https://orcid.org/0000-0002-8818-7193' +identifiers: + - type: doi + value: 10.1101/2023.07.12.548506 +repository-code: 'https://github.com/PMBio/deeprvat' +abstract: >- + Integration of variant annotations using deep set networks + boosts rare variant association genetics. + Rare genetic variants can strongly predispose to disease, + yet accounting for rare variants in genetic analyses is + statistically challenging. While rich variant annotations + hold the promise to enable well-powered rare variant + association tests, methods integrating variant annotations + in a data-driven manner are lacking. Here, we propose + DeepRVAT, a set neural network-based approach to learn + burden scores from rare variants, annotations and + phenotypes. In contrast to existing methods, DeepRVAT + yields a single, trait-agnostic, nonlinear gene impairment + score, enabling both risk prediction and gene discovery in + a unified framework. On 21 quantitative traits and + whole-exome-sequencing data from UK Biobank, DeepRVAT + offers substantial increases in gene discoveries and + improved replication rates in held-out data. Moreover, we + demonstrate that the integrative DeepRVAT gene impairment + score greatly improves detection of individuals at high + genetic risk. We show that pre-trained DeepRVAT scores + generalize across traits, opening up the possibility to + conduct highly computationally efficient rare variant + tests. +license: MIT