diff --git a/deeprvat/deeprvat/associate.py b/deeprvat/deeprvat/associate.py index 0cfa8407..eb05170f 100644 --- a/deeprvat/deeprvat/associate.py +++ b/deeprvat/deeprvat/associate.py @@ -56,7 +56,7 @@ def get_burden( Parameters: - batch (Dict): A dictionary containing batched data from the DataLoader. - - agg_models (Dict[str, List[nn.Module]]): Loaded PyTorch model(s) for each repeat used for burden computation. + - agg_models (Dict[str, List[nn.Module]]): Loaded PyTorch model(s) for each repeat used for burden computation. Each key in the dictionary corresponds to a respective repeat. - device (torch.device): Device to perform computations on (default is CPU). - skip_burdens (bool): Flag to skip burden computation (default is False). @@ -194,14 +194,14 @@ def compute_burdens_( skip_burdens: bool = False, ) -> Tuple[np.ndarray, zarr.core.Array, zarr.core.Array, zarr.core.Array]: """ - Compute burdens using the PyTorch model for each repeat. + Compute burdens using the PyTorch model for each repeat. Parameters: - debug (bool): Flag for debugging. - config (Dict): Configuration dictionary. - ds (torch.utils.data.Dataset): Torch dataset. - cache_dir (str): Directory to cache zarr files of computed burdens, x phenotypes, and y phenotypes. - - agg_models (Dict[str, List[nn.Module]]): Loaded PyTorch model(s) for each repeat used for burden computation. + - agg_models (Dict[str, List[nn.Module]]): Loaded PyTorch model(s) for each repeat used for burden computation. Each key in the dictionary corresponds to a respective repeat. - n_chunks (Optional[int]): Number of chunks to split data for processing (default is None). - chunk (Optional[int]): Index of the chunk of data (default is None). @@ -446,7 +446,7 @@ def load_models( device: torch.device = torch.device("cpu"), ) -> Dict[str, List[nn.Module]]: """ - Load models from multiple checkpoints for multiple repeats. + Load models from multiple checkpoints for multiple repeats. Parameters: - config (Dict): Configuration dictionary. @@ -558,7 +558,7 @@ def compute_burdens( Returns: Computed burdens, corresponding genes, and targets are saved in the out_dir. - np.ndarray: Corresponding genes, saved as genes.npy + np.ndarray: Corresponding genes, saved as genes.npy zarr.core.Array: Computed burdens, saved as burdens.zarr zarr.core.Array: Target y phenotype, saved as y.zarr zarr.core.Array: X phenotype, saved as x.zarr @@ -612,7 +612,10 @@ def compute_burdens( source_path.symlink_to(link_burdens) -def regress_on_gene_scoretest(gene: str, burdens: np.ndarray, model_score, +def regress_on_gene_scoretest( + gene: str, + burdens: np.ndarray, + model_score, ) -> Tuple[List[str], List[float], List[float]]: """ Perform regression on a gene using the score test. diff --git a/deeprvat/metrics.py b/deeprvat/metrics.py index 5bb3bdc5..9ac30482 100644 --- a/deeprvat/metrics.py +++ b/deeprvat/metrics.py @@ -18,6 +18,7 @@ class RSquared: """ Calculates the R-squared (coefficient of determination) between predictions and targets. """ + def __init__(self): pass @@ -42,6 +43,7 @@ class PearsonCorr: """ Calculates the Pearson correlation coefficient between burdens and targets. """ + def __init__(self): pass @@ -77,6 +79,7 @@ class PearsonCorrTorch: """ Calculates the Pearson correlation coefficient between burdens and targets using PyTorch tensor operations. """ + def __init__(self): pass @@ -125,6 +128,7 @@ class AveragePrecisionWithLogits: """ Calculates the average precision score between logits and targets. """ + def __init__(self): pass