-
Notifications
You must be signed in to change notification settings - Fork 226
/
Copy pathgradio_demo_controlnet.py
93 lines (88 loc) · 5 KB
/
gradio_demo_controlnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import gradio as gr
from diffusers import ControlNetModel, AutoencoderKL
from pipeline_demofusion_sdxl import DemoFusionSDXLPipeline
from pipeline_demofusion_sdxl_controlnet import DemoFusionSDXLControlNetPipeline
from gradio_imageslider import ImageSlider
import torch, gc
from torchvision import transforms
from PIL import Image
import numpy as np
import cv2
def load_and_process_image(pil_image):
transform = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
]
)
image = transform(pil_image)
image = image.unsqueeze(0).half()
return image
def pad_image(image):
w, h = image.size
if w == h:
return image
elif w > h:
new_image = Image.new(image.mode, (w, w), (0, 0, 0))
pad_w = 0
pad_h = (w - h) // 2
new_image.paste(image, (0, pad_h))
return new_image
else:
new_image = Image.new(image.mode, (h, h), (0, 0, 0))
pad_w = (h - w) // 2
pad_h = 0
new_image.paste(image, (pad_w, 0))
return new_image
def generate_images(prompt, negative_prompt, controlnet_conditioning_scale, height, width, num_inference_steps, guidance_scale, cosine_scale_1, cosine_scale_2, cosine_scale_3, sigma, view_batch_size, stride, seed, input_image):
padded_image = pad_image(input_image).resize((1024, 1024)).convert("RGB")
image_lr = load_and_process_image(padded_image).to('cuda')
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained("madebyollin/stable-diffusion-xl-base-1.0/vae-fix", torch_dtype=torch.float16)
pipe = DemoFusionSDXLControlNetPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
generator = torch.Generator(device='cuda')
generator = generator.manual_seed(int(seed))
# get canny image
canny_image = np.array(padded_image)
canny_image = cv2.Canny(canny_image, 100, 200)
canny_image = canny_image[:, :, None]
canny_image = np.concatenate([canny_image, canny_image, canny_image], axis=2)
canny_image = Image.fromarray(canny_image)
images = pipe(prompt, negative_prompt=negative_prompt, controlnet_conditioning_scale=controlnet_conditioning_scale,
condition_image=canny_image, generator=generator,
height=int(height), width=int(width), view_batch_size=int(view_batch_size), stride=int(stride),
num_inference_steps=int(num_inference_steps), guidance_scale=guidance_scale,
cosine_scale_1=cosine_scale_1, cosine_scale_2=cosine_scale_2, cosine_scale_3=cosine_scale_3, sigma=sigma,
multi_decoder=True, show_image=False, lowvram=False
)
for i, image in enumerate(images):
image.save('image_'+str(i)+'.png')
pipe = None
gc.collect()
torch.cuda.empty_cache()
return (canny_image, images[-1])
with gr.Blocks(title=f"DemoFusion") as demo:
with gr.Column():
with gr.Row():
with gr.Group():
image_input = gr.Image(type="pil", label="Input Image")
prompt = gr.Textbox(label="Prompt", value="")
negative_prompt = gr.Textbox(label="Negative Prompt", value="blurry, ugly, duplicate, poorly drawn, deformed, mosaic")
controlnet_conditioning_scale = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.5, label="ControlNet Conditioning Scale")
width = gr.Slider(minimum=1024, maximum=4096, step=1024, value=2048, label="Width")
height = gr.Slider(minimum=1024, maximum=4096, step=1024, value=2048, label="Height")
num_inference_steps = gr.Slider(minimum=10, maximum=100, step=1, value=50, label="Num Inference Steps")
guidance_scale = gr.Slider(minimum=1, maximum=20, step=0.1, value=7.5, label="Guidance Scale")
cosine_scale_1 = gr.Slider(minimum=0, maximum=5, step=0.1, value=3, label="Cosine Scale 1")
cosine_scale_2 = gr.Slider(minimum=0, maximum=5, step=0.1, value=1, label="Cosine Scale 2")
cosine_scale_3 = gr.Slider(minimum=0, maximum=5, step=0.1, value=1, label="Cosine Scale 3")
sigma = gr.Slider(minimum=0.1, maximum=1, step=0.1, value=0.8, label="Sigma")
view_batch_size = gr.Slider(minimum=4, maximum=32, step=4, value=16, label="View Batch Size")
stride = gr.Slider(minimum=8, maximum=96, step=8, value=64, label="Stride")
seed = gr.Number(label="Seed", value=2013)
button = gr.Button()
output_images = ImageSlider(show_label=False)
button.click(fn=generate_images, inputs=[prompt, negative_prompt, controlnet_conditioning_scale, height, width, num_inference_steps, guidance_scale, cosine_scale_1, cosine_scale_2, cosine_scale_3, sigma, view_batch_size, stride, seed, image_input], outputs=[output_images], show_progress=True)
demo.queue().launch(inline=False, share=True, debug=True)