title | emoji | colorFrom | colorTo | sdk | sdk_version | app_file | pinned | license |
---|---|---|---|---|---|---|---|---|
NGC5128 SDXL |
🫓🥽 |
blue |
purple |
gradio |
4.31.5 |
app.py |
false |
creativeml-openrail-m |
🚀Check out the configuration reference at : https://huggingface.co/docs/hub/spaces-config-reference
🚀Huggingface space : https://huggingface.co/spaces/prithivMLmods/Stable-Diffusion-Base
🚀The GitHub Model Workspace :
# Make sure you have git-lfs installed (https://git-lfs.com)
git lfs install
git clone https://huggingface.co/spaces/prithivMLmods/Stable-Diffusion-Base
# If you want to clone without large files - just their pointers
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/spaces/prithivMLmods/Stable-Diffusion-Base
Use the gradio_client Python library or the @gradio/client Javascript package to query the app via API.
1. Install the client if you don't already have it installed.
$ pip install gradio_client
2. Find the API endpoint below corresponding to your desired function in the app. Copy the code snippet, replacing the placeholder values with your own input data. If this is a private Space, you may need to pass your Hugging Face token as well (read more). Or
to automatically generate your API requests.
api_name: /predict
from gradio_client import Client
client = Client("prithivMLmods/Stable-Diffusion-Base")
result = client.predict(
param_0="Hello!!",
api_name="/predict"
)
print(result)
Accepts 1 parameter:
param_0 str Required
The input value that is provided in the "Input" Textbox component.
Returns 1 element
filepath
The output value that appears in the "Output" Image component.
ℹ️Generated Result in Huggingface Spaces:
Prompt 1
Fashion shoot, Jacquemus and moncler collaboration: light pink translucent fur sneakers, hyper-realistic, detailed 8k, realistic.
prompt 2
a painting of an eye with purple and orange flowers, in the style of james jean, mysterious jungle, martin ansin, 32k uhd, papua new guinea art, light blue and red, poster --ar 37:61 --stylize 750 --v 6
prompt 3
(Pirate ship sailing into a bioluminescence sea with a galaxy in the sky), epic, 4k, ultra,
prompt 4
front view, capture a urban style, Hoodie, technical materials, fabric small point label on text 'Graytheory', the design is minimal, with a raised collar, fabric is a dark grey, low angle to capture the Hoodie's form and detailing, f/5.6 to focus on the hoodie's craftsmanship, solid grey background, studio light setting
gradio
gradio-client
import requests
API_URL = "https://api-inference.huggingface.co/models/prithivMLmods/NGC5128-StableDiffusion-XL-v4"
headers = {"Authorization": "Bearer xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.content
image_bytes = query({
"inputs": "Astronaut riding a horse",
})
# You can access the image with PIL.Image for example
import io
from PIL import Image
image = Image.open(io.BytesIO(image_bytes))
.
.
.
.