diff --git a/ogcore/household.py b/ogcore/household.py index 11f5ae7cf..6a5b81827 100644 --- a/ogcore/household.py +++ b/ogcore/household.py @@ -6,6 +6,7 @@ # Packages import numpy as np +import scipy.optimize as opt from ogcore import tax, utils """ @@ -44,7 +45,6 @@ def marg_ut_cons(c, sigma): return output - def marg_ut_labor(n, chi_n, p): r""" Compute the marginal disutility of labor. @@ -135,6 +135,56 @@ def marg_ut_labor(n, chi_n, p): output = np.squeeze(output) return output +def marg_ut_beq(b, sigma, j, p): + r""" + Compute the marginal utility of savings. + + .. math:: + MU_{b} = \chi^b_{j}b_{j,s,t}^{-\sigma} + + Args: + b (array_like): household savings + chi_b (array_like): utility weights on savings + p (OG-Core Specifications object): model parameters + + Returns: + output (array_like): marginal utility of savings + + """ + if np.ndim(b) == 0: + b = np.array([b]) + epsilon = 0.0001 + bvec_cnstr = b < epsilon + MU_b = np.zeros(b.shape) + MU_b[~bvec_cnstr] = p.chi_b[j] * b[~bvec_cnstr] ** (-sigma) + b2 = (-sigma * (epsilon ** (-sigma - 1))) / 2 + b1 = (epsilon ** (-sigma)) - 2 * b2 * epsilon + MU_b[bvec_cnstr] = 2 * b2 * b[bvec_cnstr] + b1 + output = MU_b + output = np.squeeze(output) + return output + +def inv_mu_c(value, sigma): + r""" + Compute the inverse of the marginal utility of consumption. + + .. math:: + c = \left(\frac{1}{val}\right)^{-1/\sigma} + + Args: + value (array_like): marginal utility of consumption + sigma (scalar): coefficient of relative risk aversion + + Returns: + output (array_like): household consumption + + """ + if np.ndim(value) == 0: + value = np.array([value]) + output = value ** (-1 / sigma) # need value > 0 + output = np.squeeze(output) + return output + def get_bq(BQ, j, p, method): r""" @@ -238,7 +288,156 @@ def get_tr(TR, j, p, method): return tr -def get_cons(r, w, p_tilde, b, b_splus1, n, bq, net_tax, e, p): +def c_from_n( +n, +b, +p_tilde, +r, +w, +factor, +e, +z, +chi_n, +etr_params, +mtrx_params, +t, +j, +p, +method +): + r""" + Calculate household consumption from labor supply Euler equation for group j. + + .. math:: + c_{j,s,t} = \left[ \frac{p_t e^{g_y(1-\sigma)}\chi_s^n h'(n_{j,s,t})}{ + w_t e_{j, s}z_{j, s}(1- \tau^{mtrx}_{s,t})} \right]^{-1/\sigma} + + Args: + n (array_like): household labor supply + b (array_like): household savings + p_tilde (array_like): composite good price + r (array_like): the real interest rate + w (array_like): the real wage rate + factor (scalar): scaling factor converting model units to dollars + e (array_like): effective labor units (deterministic) + z (array_like): productivity (stochastic) + chi_n (array_like): utility weight on the disutility of labor + etr_params (list): parameters of the effective tax rate + functions + mtrx_params (list): parameters of the marginal tax rate + on labor income functions + t (int): model period + j (int): index of ability type + p (OG-Core Specifications object): model parameters + method (str): adjusts calculation dimensions based on 'SS' or 'TPI' + + Returns: + c (array_like): consumption implied by labor choice + """ + if method == "SS": + tau_payroll = p.tau_payroll[-1] + elif method == "TPI_scalar": # for 1st donut ring only + tau_payroll = p.tau_payroll[0] + else: + length = r.shape[0] + tau_payroll = p.tau_payroll[t : t + length] + if j is not None: + if method == "SS": + tax_noncompliance = p.labor_income_tax_noncompliance_rate[-1, j] + e = np.squeeze(p.e[-1, :, j]) + elif method == "TPI_scalar": + tax_noncompliance = p.labor_income_tax_noncompliance_rate[0, j] + e = np.squeeze(p.e[0, -1, j]) + else: + tax_noncompliance = p.labor_income_tax_noncompliance_rate[ + t : t + length, j + ] + e_long = np.concatenate( + ( + p.e, + np.tile(p.e[-1, :, :].reshape(1, p.S, p.J), (p.S, 1, 1)), + ), + axis=0, + ) + e = np.diag(e_long[t : t + p.S, :, j], max(p.S - length, 0)) + else: + if method == "SS": + tax_noncompliance = p.labor_income_tax_noncompliance_rate[-1, :] + e = np.squeeze(p.e[-1, :, :]) + elif method == "TPI_scalar": + tax_noncompliance = p.labor_income_tax_noncompliance_rate[0, :] + e = np.squeeze(p.e[0, -1, :]) + else: + tax_noncompliance = p.labor_income_tax_noncompliance_rate[ + t : t + length, : + ] + e_long = np.concatenate( + ( + p.e, + np.tile(p.e[-1, :, :].reshape(1, p.S, p.J), (p.S, 1, 1)), + ), + axis=0, + ) + e = np.diag(e_long[t : t + p.S, :, j], max(p.S - length, 0)) + if method == "SS": + tau_payroll = p.tau_payroll[-1] + elif method == "TPI_scalar": # for 1st donut ring only + tau_payroll = p.tau_payroll[0] + else: + length = r.shape[0] + tau_payroll = p.tau_payroll[t : t + length] + if method == "TPI": + if b.ndim == 2: + r = r.reshape(r.shape[0], 1) + w = w.reshape(w.shape[0], 1) + tau_payroll = tau_payroll.reshape(tau_payroll.shape[0], 1) + + deriv = ( + 1 + - tau_payroll + - tax.MTR_income( + r, + w, + b, + n, + factor, + False, + e*z, + etr_params, + mtrx_params, + tax_noncompliance, + p, + ) + ) + numerator = p_tilde * np.exp(p.g_y * (1-p.sigma)) * marg_ut_labor(n, chi_n, p) + denominator = w * e * z * deriv + c = inv_mu_c(numerator / denominator, p.sigma) + + return c + + +def b_from_c_EOL(c, p_tilde, j, sigma, p): + r""" + Calculate household bequests at the end of life from the savings Euler equation. + + .. math:: + b_{j, E+S+1, t+1} = [\chi_j^b \tilde p_t]^{\frac{1}{\sigma}} * c_{j, E+S, t} + + Args: + c (array_like): household consumption + p_tilde (array_like): composite good price + j (int): index of ability type + sigma (scalar): coefficient of relative risk aversion + p (OG-Core Specifications object): model parameters + + Returns: + b (array_like): household savings at the end of life + """ + b = c * (p.chi_b[j] * p_tilde) ** (1 / sigma) + return b + + +def get_cons(r, w, p_tilde, b, b_splus1, n, bq, net_tax, e, z, p): r""" Calculate household consumption. @@ -257,6 +456,7 @@ def get_cons(r, w, p_tilde, b, b_splus1, n, bq, net_tax, e, p): bq (Numpy array): household bequests received net_tax (Numpy array): household net taxes paid e (Numpy array): effective labor units + z (array_like): labor productivity p (OG-Core Specifications object): model parameters Returns: @@ -264,7 +464,7 @@ def get_cons(r, w, p_tilde, b, b_splus1, n, bq, net_tax, e, p): """ cons = ( - (1 + r) * b + w * e * n + bq - b_splus1 * np.exp(p.g_y) - net_tax + (1 + r) * b + w * e * z * n + bq - b_splus1 * np.exp(p.g_y) - net_tax ) / p_tilde return cons @@ -312,190 +512,106 @@ def get_ci(c_s, p_i, p_tilde, tau_c, alpha_c, method="SS"): return c_si -def FOC_savings( - r, - w, +def c_from_b_splus1( + r_splus1, + w_splus1, + p_tilde_splus1, p_tilde, - b, b_splus1, - n, - bq, + n_splus1_policy, + c_splus1_policy, factor, - tr, - ubi, - theta, rho, etr_params, mtry_params, - t, j, + t, + e_splus1, + z_index, p, - method, + method ): r""" - Computes Euler errors for the FOC for savings in the steady state. - This function is usually looped through over J, so it does one - lifetime income group at a time. + Calculate household consumption in period s from assets at period s+1 using + the savings Euler equation. .. math:: - \frac{c_{j,s,t}^{-\sigma}}{\tilde{p}_{t}} = e^{-\sigma g_y} + c_{j,s,t} = (\tilde{p}_t)^{-\frac{1}{\sigma}} e^{g_y} \biggl[\chi^b_j\rho_s(b_{j,s+1,t+1})^{-\sigma} + \beta_j\bigl(1 - \rho_s\bigr)\Bigl(\frac{1 + r_{t+1} \bigl[1 - \tau^{mtry}_{s+1,t+1}\bigr]}{\tilde{p}_{t+1}}\Bigr) - (c_{j,s+1,t+1})^{-\sigma}\biggr] + \mathbb{E}[(c_{j,s+1,t+1})^{-\sigma}]\biggr]^{-\frac{1}{\sigma}} Args: r (array_like): the real interest rate w (array_like): the real wage rate p_tilde (array_like): composite good price - b (Numpy array): household savings - b_splus1 (Numpy array): household savings one period ahead - b_splus2 (Numpy array): household savings two periods ahead - n (Numpy array): household labor supply - bq (Numpy array): household bequests received + b_splus1 (array_like): household savings one period ahead + n_splus1_policy (array_like): household labor supply one period ahead across b, z + c_splus1_policy (array_like): household consumption one period ahead across b, z factor (scalar): scaling factor converting model units to dollars - tr (Numpy array): government transfers to household - ubi (Numpy array): universal basic income payment - theta (Numpy array): social security replacement rate for each - lifetime income group - rho (Numpy array): mortality rates + rho (array_like): mortality rates etr_params (list): parameters of the effective tax rate functions mtry_params (list): parameters of the marginal tax rate on capital income functions - t (int): model period j (int): index of ability type + t (int): model period + e_splus1 (array_like): effective labor units one period ahead + z_index (array_like): index in productivity grid p (OG-Core Specifications object): model parameters - method (str): adjusts calculation dimensions based on 'SS' or - 'TPI' - - Returns: - euler (Numpy array): Euler error from FOC for savings - + method (str): adjusts calculation dimensions based on 'SS' or 'TPI' + + returns: + c (array_like): household consumption in current period """ - if j is not None: - chi_b = p.chi_b[j] - beta = p.beta[j] - if method == "SS": - tax_noncompliance = p.capital_income_tax_noncompliance_rate[-1, j] - e = np.squeeze(p.e[-1, :, j]) - elif method == "TPI_scalar": - tax_noncompliance = p.capital_income_tax_noncompliance_rate[0, j] - e = np.squeeze(p.e[0, :, j]) - else: - length = r.shape[0] - tax_noncompliance = p.capital_income_tax_noncompliance_rate[ - t : t + length, j - ] - e_long = np.concatenate( - ( - p.e, - np.tile(p.e[-1, :, :].reshape(1, p.S, p.J), (p.S, 1, 1)), - ), - axis=0, - ) - e = np.diag(e_long[t : t + p.S, :, j], max(p.S - length, 0)) - else: - chi_b = p.chi_b - beta = p.beta - if method == "SS": - tax_noncompliance = p.capital_income_tax_noncompliance_rate[-1, :] - e = np.squeeze(p.e[-1, :, :]) - elif method == "TPI_scalar": - tax_noncompliance = p.capital_income_tax_noncompliance_rate[0, :] - e = np.squeeze(p.e[0, :, :]) - else: - length = r.shape[0] - tax_noncompliance = p.capital_income_tax_noncompliance_rate[ - t : t + length, : - ] - e_long = np.concatenate( - ( - p.e, - np.tile(p.e[-1, :, :].reshape(1, p.S, p.J), (p.S, 1, 1)), - ), - axis=0, - ) - e = np.diag(e_long[t : t + p.S, :, :], max(p.S - length, 0)) - e = np.squeeze(e) + beta = p.beta[j] if method == "SS": + tax_noncompliance = p.capital_income_tax_noncompliance_rate[-1, j] h_wealth = p.h_wealth[-1] m_wealth = p.m_wealth[-1] p_wealth = p.p_wealth[-1] - p_tilde = np.ones_like(p.rho[-1, :]) * p_tilde elif method == "TPI_scalar": + tax_noncompliance = p.capital_income_tax_noncompliance_rate[0, j] h_wealth = p.h_wealth[0] m_wealth = p.m_wealth[0] p_wealth = p.p_wealth[0] else: + tax_noncompliance = p.capital_income_tax_noncompliance_rate[t, j] h_wealth = p.h_wealth[t] m_wealth = p.m_wealth[t] p_wealth = p.p_wealth[t] - taxes = tax.net_taxes( - r, - w, - b, - n, - bq, - factor, - tr, - ubi, - theta, - t, - j, - False, - method, - e, - etr_params, - p, - ) - cons = get_cons(r, w, p_tilde, b, b_splus1, n, bq, taxes, e, p) - deriv = ( - (1 + r) - - ( - r - * tax.MTR_income( - r, - w, - b, - n, - factor, - True, - e, - etr_params, - mtry_params, - tax_noncompliance, - p, + bequest_utility = rho * marg_ut_beq(b_splus1, p.sigma, j, p) + consumption_utility = np.zeros_like(b_splus1) # length nb vector + for (zp_index, zp) in enumerate(p.z_grid): + deriv = ( + (1 + r_splus1) + - ( + r_splus1 + * tax.MTR_income( + r_splus1, + w_splus1, + b_splus1, + n_splus1_policy[:, zp_index], + factor, + True, + e_splus1*zp, + etr_params, + mtry_params, + tax_noncompliance, + p, + ) ) + - tax.MTR_wealth(b_splus1, h_wealth, m_wealth, p_wealth) ) - - tax.MTR_wealth(b, h_wealth, m_wealth, p_wealth) - ) - savings_ut = ( - rho * np.exp(-p.sigma * p.g_y) * chi_b * b_splus1 ** (-p.sigma) + consumption_utility += deriv * marg_ut_cons(c_splus1_policy[:, zp_index], p.sigma) / p_tilde_splus1 + prob_z_splus1 = p.Z[z_index, :] # markov matrix for z transition - need to add to parameters + E_MU_c = consumption_utility @ prob_z_splus1 + c = inv_mu_c( + (p_tilde * np.exp(-p.sigma * p.g_y) * (bequest_utility + beta * (1 - rho) * E_MU_c)), + p.sigma ) - euler_error = np.zeros_like(n) - if n.shape[0] > 1: - euler_error[:-1] = ( - marg_ut_cons(cons[:-1], p.sigma) * (1 / p_tilde[:-1]) - - beta - * (1 - rho[:-1]) - * deriv[1:] - * marg_ut_cons(cons[1:], p.sigma) - * (1 / p_tilde[1:]) - * np.exp(-p.sigma * p.g_y) - - savings_ut[:-1] - ) - euler_error[-1] = ( - marg_ut_cons(cons[-1], p.sigma) * (1 / p_tilde[-1]) - - savings_ut[-1] - ) - else: - euler_error[-1] = ( - marg_ut_cons(cons[-1], p.sigma) * (1 / p_tilde[-1]) - - savings_ut[-1] - ) - - return euler_error + return c def FOC_labor( @@ -503,13 +619,11 @@ def FOC_labor( w, p_tilde, b, - b_splus1, + c, n, - bq, factor, - tr, - ubi, - theta, + e, + z, chi_n, etr_params, mtrx_params, @@ -524,7 +638,7 @@ def FOC_labor( one lifetime income group at a time. .. math:: - w_t e_{j,s}\bigl(1 - \tau^{mtrx}_{s,t}\bigr) + w_t z e_{j,s}\bigl(1 - \tau^{mtrx}_{s,t}\bigr) \frac{(c_{j,s,t})^{-\sigma}}{ \tilde{p}_{t}} = \chi^n_{s} \biggl(\frac{b}{\tilde{l}}\biggr)\biggl(\frac{n_{j,s,t}} {\tilde{l}}\biggr)^{\upsilon-1}\Biggl[1 - @@ -563,81 +677,14 @@ def FOC_labor( """ if method == "SS": tau_payroll = p.tau_payroll[-1] + tax_noncompliance = p.labor_income_tax_noncompliance_rate[-1, j] elif method == "TPI_scalar": # for 1st donut ring only tau_payroll = p.tau_payroll[0] + tax_noncompliance = p.labor_income_tax_noncompliance_rate[0, j] else: - length = r.shape[0] - tau_payroll = p.tau_payroll[t : t + length] - if j is not None: - if method == "SS": - tax_noncompliance = p.labor_income_tax_noncompliance_rate[-1, j] - e = np.squeeze(p.e[-1, :, j]) - elif method == "TPI_scalar": - tax_noncompliance = p.labor_income_tax_noncompliance_rate[0, j] - e = np.squeeze(p.e[0, -1, j]) - else: - tax_noncompliance = p.labor_income_tax_noncompliance_rate[ - t : t + length, j - ] - e_long = np.concatenate( - ( - p.e, - np.tile(p.e[-1, :, :].reshape(1, p.S, p.J), (p.S, 1, 1)), - ), - axis=0, - ) - e = np.diag(e_long[t : t + p.S, :, j], max(p.S - length, 0)) - else: - if method == "SS": - tax_noncompliance = p.labor_income_tax_noncompliance_rate[-1, :] - e = np.squeeze(p.e[-1, :, :]) - elif method == "TPI_scalar": - tax_noncompliance = p.labor_income_tax_noncompliance_rate[0, :] - e = np.squeeze(p.e[0, -1, :]) - else: - tax_noncompliance = p.labor_income_tax_noncompliance_rate[ - t : t + length, : - ] - e_long = np.concatenate( - ( - p.e, - np.tile(p.e[-1, :, :].reshape(1, p.S, p.J), (p.S, 1, 1)), - ), - axis=0, - ) - e = np.diag(e_long[t : t + p.S, :, j], max(p.S - length, 0)) - if method == "SS": - tau_payroll = p.tau_payroll[-1] - elif method == "TPI_scalar": # for 1st donut ring only - tau_payroll = p.tau_payroll[0] - else: - length = r.shape[0] - tau_payroll = p.tau_payroll[t : t + length] - if method == "TPI": - if b.ndim == 2: - r = r.reshape(r.shape[0], 1) - w = w.reshape(w.shape[0], 1) - tau_payroll = tau_payroll.reshape(tau_payroll.shape[0], 1) + tau_payroll = p.tau_payroll[t] + tax_noncompliance = p.labor_income_tax_noncompliance_rate[t, j] - taxes = tax.net_taxes( - r, - w, - b, - n, - bq, - factor, - tr, - ubi, - theta, - t, - j, - False, - method, - e, - etr_params, - p, - ) - cons = get_cons(r, w, p_tilde, b, b_splus1, n, bq, taxes, e, p) deriv = ( 1 - tau_payroll @@ -655,9 +702,9 @@ def FOC_labor( p, ) ) - FOC_error = marg_ut_cons(cons, p.sigma) * ( + FOC_error = marg_ut_cons(c, p.sigma) * ( 1 / p_tilde - ) * w * deriv * e - marg_ut_labor(n, chi_n, p) + ) * w * deriv * e * z - marg_ut_labor(n, chi_n, p) return FOC_error @@ -769,3 +816,274 @@ def constraint_checker_TPI(b_dist, n_dist, c_dist, t, ltilde): "\tWARNING: Consumption violates nonnegativity", " constraints in period %.f." % t, ) + +def BC_residual( + c, + n, + b, + b_splus1, + r, + w, + p_tilde, + e, + z, + bq, + net_tax, + p +): + r""" + Compute the residuals of the household budget constraint. + + .. math:: + c_{j,s,t} + b_{j,s+1,t+1} - (1 + r_{t})b_{j,s,t} = w_{t}e_{j,s}n_{j,s,t} + bq_{j,s,t} + tr_{j,s,t} - T_{j,s,t} + """ + + BC_error = ( + (1 + r) * b + w * e * z * n + bq - b_splus1 * np.exp(p.g_y) - net_tax + ) - p_tilde * c + return BC_error + + +def EOL_system( + n, + b, + p_tilde, + r, + w, + tr, + ubi, + bq, + theta, + factor, + e, + z, + chi_n, + etr_params, + mtrx_params, + t, + j, + p, + method +): + r""" + Compute the residuals of the household budget constraint at the end of life given a + guess for labor supply. Solve first for consumption given labor supply and then for + savings given consumption. Then check the budget constraint. + + Args: + n (array_like): household labor supply + b (array_like): household savings + p_tilde (array_like): composite good price + r (scalar): the real interest rate + w (scalar): the real wage rate + factor (scalar): scaling factor converting model units to dollars + e (scalar): effective labor units + z (scalar): productivity + chi_n (scalar): utility weight on the disutility of labor + etr_params (list): parameters of the effective tax rate functions + mtrx_params (list): parameters of the marginal tax rate on labor income functions + t (int): model period + j (int): index of ability type + p (OG-Core Specifications object): model parameters + method (str): adjusts calculation dimensions based on 'SS' or 'TPI' + + Returns: + BC_error (array_like): residuals of the household budget constraint""" + c = c_from_n(n, b, p_tilde, r, w, factor, e, z, chi_n, etr_params, mtrx_params, t, j, p, method) + b_splus1 = b_from_c_EOL(c, p_tilde, j, p.sigma, p) + net_tax = tax.net_taxes(r, w, b, n, bq, factor, tr, ubi, theta, t, j, False, method, e, etr_params, p) + BC_error = BC_residual(c, n, b, b_splus1, r, w, p_tilde, e, z, bq, net_tax, p) + return BC_error + + +def HH_system(x, + c, + b_splus1, + r, + w, + p_tilde, + factor, + tr, + ubi, + bq, + theta, + e, + z, + chi_n, + etr_params, + mtrx_params, + j, + t, + p, + method): + r""" + Compute the residuals of the household budget constraint and labor supply Euler equation given a guess + of household assets and labor choice. This is for use in a root finder to solve the household problem at + age s < E+S. + + Args: + x (array_like): vector containing household assets b and labor supply n + c (array_like): household consumption + b_splus1 (array_like): household savings one period ahead + r (scalar): the real interest rate + w (scalar): the real wage rate + p_tilde (scalar): composite good price + factor (scalar): scaling factor converting model units to dollars + e (scalar): effective labor units + z (scalar): productivity + chi_n (scalar): utility weight on the disutility of labor + etr_params (list): parameters of the effective tax rate functions + mtrx_params (list): parameters of the marginal tax rate on labor income functions + j (int): index of ability type + t (int): model period + p (OG-Core Specifications object): model parameters + method (str): adjusts calculation dimensions based on 'SS' or 'TPI' + + Returns: + HH_error (array_like): residuals of the household budget constraint and labor supply Euler equation""" + b = x[0] + n = x[1] + net_tax = tax.net_taxes(r, w, b, n, bq, factor, tr, ubi, theta, t, j, False, method, e, etr_params, p) + BC_error = BC_residual(c, n, b, b_splus1, r, w, p_tilde, e, z, bq, net_tax, p) + FOC_error = FOC_labor(r, w, p_tilde, b, c, n, factor, e, z, chi_n, etr_params, mtrx_params, t, j, p, method) + HH_error = np.array([BC_error, FOC_error]) + return HH_error + + +def solve_HH( + r, + w, + p_tilde, + factor, + tr, + bq, + ubi, + b_grid, + sigma, + theta, + chi_n, + rho, + e, + etr_params, + mtrx_params, + mtry_params, + j, + t, + p, + method, +): + # solve household problem on transition path using endogenous grid method + nb = len(b_grid) + + + if method == "SS": + r = np.repeat(r, p.S) + w = np.repeat(w, p.S) + p_tilde = np.repeat(p_tilde, p.S) + + + # initialize policy functions on grid + b_policy = np.zeros((p.S, nb, p.nz)) + c_policy = np.zeros((p.S, nb, p.nz)) + n_policy = np.zeros((p.S, nb, p.nz)) + + # start at the end of life + for z_index, z in enumerate(p.z_grid): # need to add z_grid to parameters + for b_index, b in enumerate(b_grid): + + # use root finder to solve problem at end of life + args = (b, + p_tilde[-1], + r[-1], + w[-1], + tr[-1], + ubi, + bq[-1], + theta, + factor, + e[-1], + z, + chi_n[-1], + etr_params, + mtrx_params, + t[-1], + j + p.S, + p, + method) + n = opt.brentq(EOL_system, + 0.0, + p.ltilde, + args=args) + n_policy[-1, b_index, z_index] = n + c_policy[-1, b_index, z_index] = c_from_n(n, + b, + p_tilde[-1], + r[-1], + w[-1], + factor, + e[-1], + z, + chi_n[-1], + etr_params, + mtrx_params, + t + p.S, + j, + p, + method) + b_policy[-1, b_index, z_index] = b_from_c_EOL(c_policy[-1, b_index, z_index], + p_tilde[-1], + j, + p.sigma, + p) + + # iterate backwards with Euler equation + for s in range(p.S-2, -1, -1): + for z_index, z in enumerate(p.z_grid): + c = c_from_b_splus1(r[s+1], + w[s+1], + p_tilde[s+1], + b_grid, + n_policy[s+1, :, z_index], + c_policy[s+1, :, z_index], + factor, + rho[s], + etr_params, + mtry_params, + j, + t[s+1], + e[s+1], + z_index, + p, + method) + b = np.zeros_like(b_grid) + n = np.zeros_like(b_grid) + for b_splus1_index, b_splus1 in b_grid: + + args = (c[b_splus1_index], + b_grid, + r[s], + w[s], + p_tilde[s], + factor, + tr[s], + ubi, + bq[s], + theta, + e[s], + z, + chi_n[s], + etr_params, + mtrx_params, + j, + t[s], + p, + method) + initial_guess = np.array([b_splus1, n_policy[s+1, b_splus1_index, z_index]]) + x = opt.root(HH_system, initial_guess, args=args) + b[b_splus1_index] = x[0] + n[b_splus1_index] = x[1] + c_policy[s, :, z_index] = np.interp(b_grid, b, c) + n_policy[s, :, z_index] = np.interp(b_grid, b, n) + b_policy[s, :, z_index] = np.interp(b_grid, b, b_grid) + + return b_policy, c_policy, n_policy \ No newline at end of file diff --git a/tests/test_household.py b/tests/test_household.py index e7a26eb48..fdbabb71c 100644 --- a/tests/test_household.py +++ b/tests/test_household.py @@ -18,67 +18,107 @@ @pytest.mark.parametrize( "c,sigma,expected", test_data, ids=["Scalar 0", "Scalar 1", "Vector"] ) -def test_marg_ut_cons(c, sigma, expected): +def test_mu_c(c, sigma, expected): # Test marginal utility of consumption calculation - test_value = household.marg_ut_cons(c, sigma) + test_value = household.mu_c(c, sigma) assert np.allclose(test_value, expected) + +test_data = [ + (10, 1, .1), + (55.90169944, 2.5, 0.2), + ( + np.array([9.18958684, 0.002913041, 0.273217159]), + 3.2, + np.array([0.5, 6.2, 1.5]), + ), +] + +@pytest.mark.parametrize( + "value,sigma,expected", test_data, ids=["Scalar 0", "Scalar 1", "Vector"] +) +def test_inv_mu_c(value, sigma, expected): + # Test inverse marginal utility of consumption calculation + test_value = household.inv_mu_c(value, sigma) + + assert np.allclose(test_value, expected) + + + # Tuples in order: n, p, expected result p1 = Specifications() -p1.b_ellipse = 0.527 -p1.upsilon = 1.497 -p1.ltilde = 1.0 +p1.theta = 0.4 p1.chi_n = 3.3 p2 = Specifications() -p2.b_ellipse = 0.527 -p2.upsilon = 0.9 -p2.ltilde = 1.0 -p2.chi_n = 3.3 +p2.theta = 0.4 +p2.chi_n = 2.0 p3 = Specifications() -p3.b_ellipse = 0.527 -p3.upsilon = 0.9 -p3.ltilde = 2.3 +p3.theta = 0.5 p3.chi_n = 3.3 p4 = Specifications() -p4.b_ellipse = 2.6 -p4.upsilon = 1.497 -p4.ltilde = 1.0 +p4.theta = 1.5 p4.chi_n = 3.3 test_data = [ - (0.87, p1, 2.825570309), - (0.0, p1, 0.0009117852028298067), - (0.99999, p1, 69.52423604), - (0.00001, p1, 0.005692782), - (0.8, p2, 1.471592068), - (0.8, p3, 0.795937549), - (0.8, p4, 11.66354267), + (0.87, p1, 2.329764758), + (0.0, p1, 0.0), + (0.99999, p1, 3.299917501), + (0.001, p1, 0.0000001043551628), + (0.8, p2, 1.144866804), + (0.8, p3, 2.112), + (0.8, p4, 2.843853791), ( - np.array([[0.8, 0.9, 0.3], [0.5, 0.2, 0.99]]), + np.array([[0.87, 0.0], [0.99999, 0.001]]), p1, np.array( [ - [2.364110379, 3.126796062, 1.014935377], - [1.4248841, 0.806333875, 6.987729463], + [2.329764758, 0.0], + [3.299917501, 0.0000001043551628], ] ), ), ] - @pytest.mark.parametrize( "n,params,expected", test_data, ids=["1", "2", "3", "4", "5", "6", "7", "8"], ) -def test_marg_ut_labor(n, params, expected): +def test_mu_n(n, params, expected): # Test marginal utility of labor calculation - test_value = household.marg_ut_labor(n, params.chi_n, params) + test_value = household.mu_n(n, params.chi_n, params) + + assert np.allclose(test_value, expected) + + +test_data = [ + (2.329764758, p1, 0.87), + (0.0, p1, 0.0), + (3.299917501, p1, 0.99999), + (0.0000001043551628, p1, 0.001), + (1.144866804, p2, 0.8), + (2.112, p3, 0.8), + (2.843853791, p4, 0.8), + ( + np.array([[2.329764758, 0.0], [3.299917501, 0.0000001043551628]]), + p1, + np.array([[0.87, 0.0], [0.99999, 0.001]]), + ), +] + +@pytest.mark.parametrize( + "value,params,expected", + test_data, + ids=["1", "2", "3", "4", "5", "6", "7", "8"], +) +def test_inv_mu_n(value, params, expected): + # Test inverse marginal utility of labor calculation + test_value = household.inv_mu_n(value, params.chi_n, params) assert np.allclose(test_value, expected)