-
Notifications
You must be signed in to change notification settings - Fork 0
/
plotting.py
309 lines (254 loc) · 11.8 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
"""
File: plotting.py
Declares a Plotter class. An instance may be initialized by providing a matplotlib figure and axis objects, on which
the plotting will be done. Contains methods to plot the bubble, trajectories according to many different colorings,
and others.
"""
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
from matplotlib.collections import LineCollection
import tools
class Plotter:
def __init__(self, figure, axis, A, R, ALPHA):
self.fig = figure
self.ax = axis
self.A = A
self.R = R
self.ALPHA = ALPHA
self.has_colorbar = False
self.has_bubble = False
self.has_title = False
self.has_legend = False
def plot_bubble(self):
A, R = self.A, self.R
ax = self.ax
ext_c = plt.Circle((0, 0), (A ** 2 + R ** 2) ** 0.5, fill=False) #, linewidth=3)
int_c = plt.Circle((0, 0), (A ** 2 - R ** 2) ** 0.5, fill=False) #, linewidth=3)
ax.add_artist(ext_c)
ax.add_artist(int_c)
ax.set_xlim([-150, 150])
ax.set_ylim([-150, 150])
ax.set_aspect('equal')
# Small: 20, 22
# Medium:
ax.tick_params(axis='both', which='major', labelsize=16)
self.ax.set_xlabel(r'$x$', fontsize=18)
self.ax.set_ylabel(r'$t$', rotation=0, fontsize=18)
plt.grid(animated=True)
plt.tight_layout()
self.has_bubble = True
# Weird code to achieve a multicoloured continuous line. Amazingly it works...
@staticmethod
def get_solid_line(y, c_map, width, color, onecolor=None, limits=None):
points = np.array([y[3, :], y[2, :]]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
if onecolor:
color = np.array([onecolor] * len(y[0, :]))
lc = LineCollection(segments, colors=color)
else:
if limits:
norm = plt.Normalize(limits[0], limits[1])
lc = LineCollection(segments, cmap=c_map, norm=norm)
else:
lc = LineCollection(segments, cmap=c_map)
lc.set_array(color)
lc.set_linewidth(width)
#lc.set_joinstyle('bevel')
lc.set_snap(False)
lc.set_capstyle('round') #projecting
lc.set_antialiased(True)
return lc
# Specify either a color (onecolor) or a colormap
def plot_trajectory(self, y, lam, step, error, limits=None,
colormap=None, onecolor=None, colorbar="plot", solid=False, width=2, nature="geodesic"):
# Get type of trajectory:
m = tools.get_squared_mod(*y[:,0])
mod = 0
if m < -0.01:
mod = -1
if nature == "ctc":
y = tools.cut_outside_bubble(y)
# Get the colormap!
color = []
cbtitle = ''
c_map = 'gnuplot' #nipy_spectral_r #jet_r #gnuplot #plasma
if colormap == "energy": # E/Rest mass (or simply E/E0 = f/f0 for m=0 particles)
color = tools.get_energy_on_trajectory(y)
cbtitle = r'$E/m$'
if mod == 0:
cbtitle = r'$E/E_0 = f/f_0$'
color /= color[0]
elif colormap == "log_energy":
lcolor = tools.get_energy_on_trajectory(y)
color = np.log10(lcolor)
cbtitle = r'$\log {(E/m)}$'
if mod == 0:
cbtitle = r'$\log{(E/E_0)} = \log{(f/f_0)}$'
lcolor /= lcolor[0]
color = np.log10(lcolor)
elif colormap == "k_energy": # T/Rest mass (Only for massive particles)
cbtitle = r'$T/m$'
if mod == 0:
print("Beware: This colormap is not well defined for massless particles!")
color = tools.get_energy_on_trajectory(y) - 1
elif colormap == "local_speed": # speed as seen by an observer in a local inertiar reference frame at rest w/ respect to the original coordinate system (with respect to the bubble)
cbtitle = r'$v$ (local)'
color = tools.get_3speed_on_trajectory(y, local=True)
elif colormap == "local_speed_angle":
cbtitle = r'$v$ angle (º) (local)'
color = tools.get_3speed_on_trajectory(y, local=True, angle=True)
elif colormap == "ext_speed":
cbtitle = r'$v$ (º) (external obsever)'
color = tools.get_3speed_on_trajectory(y, local=False)
elif colormap == "ext_speed_angle":
cbtitle = r'$v$ angle (º) (external observer)'
color = tools.get_3speed_on_trajectory(y, local=False, angle=True)
elif colormap == "ext_speed_supra":
color = tools.get_3speed_on_trajectory(y, local=False, angle=False)
for i in range(len(color)):
color[i] = 0 if color[i] < 1-10e-5 else 1
c_map = 'brg_r'
elif colormap == "mod":
color = tools.get_squared_mod(*y)
elif colormap == "step_size":
cbtitle = r'Step size'
color = step
elif type(colormap) == list:
start, end = tools.get_origin(y)
colors = ['red', 'green', 'blue', '#ff8c00', 'purple']
# Set legend
if not self.has_legend:
patches = []
all_patches = [mpatches.Patch(color=colors[0], label='Starts and ends at past infinity'),
mpatches.Patch(color=colors[1], label='Starts and ends at future infinity'),
mpatches.Patch(color=colors[2], label='From past to future infinity'),
mpatches.Patch(color=colors[3], label='From past infinity to singularity'),
mpatches.Patch(color=colors[4], label='From future infinity to singularity')]
for i in range(len(colors)):
if colormap[i] == 1:
patches.append(all_patches[i])
self.ax.legend(handles=patches, loc='upper center', bbox_to_anchor=(0.5, -0.07), ncol=3)
self.has_legend = True
self.has_colorbar = True
# Start and end at same endpoints
if start == end:
if start == -1:
if colormap[0] == 0:
return
onecolor = colors[0]
else:
if colormap[1] == 0:
return
onecolor = colors[1]
# 'Normal' curves
elif start + end == 0:
if colormap[2] == 0:
return
onecolor = colors[2]
# Start or end at singularities
elif end == 0:
if start == - 1:
if colormap[3] == 0:
return
onecolor = colors[3]
elif start == 1:
if colormap[4] == 0:
return
onecolor = colors[4]
else:
onecolor = "black"
# Plot the line
if solid:
lc = self.get_solid_line(y, c_map, width, color, onecolor=onecolor,limits=limits)
img = self.ax.add_collection(lc)
else:
if onecolor:
print("Onecolor not supported yet for scatter plot. Sorry!")
exit()
if limits:
img = self.ax.scatter(y[3, :], y[2, :], s=width, c=color, cmap=c_map, vmin=limits[0], vmax=limits[1])
else:
img = self.ax.scatter(y[3, :], y[2, :], s=width, c=color, cmap=c_map)
# Plot the colorbar
if colorbar == "plot":
c = plt.colorbar(img)
c.ax.set_title(cbtitle)
if colorbar == "once" and not self.has_colorbar:
if np.max(color) > limits[1]*1.001:
print(np.max(color))
c = plt.colorbar(img) # orientation="horizontal", fraction=0.046, pad=0.16)#, extend='both')
c.ax.tick_params(labelsize=14)
else:
#c = plt.colorbar(img)
c = plt.colorbar(img) #, orientation="horizontal", fraction=0.046, pad=0.12)
c.ax.tick_params(labelsize=14)
c.ax.set_title(cbtitle, fontsize='15')
self.has_colorbar = True
if not limits:
print("Warning! You have set no limits, hence the colorbar is only representative of one trajectory!")
# Set title
if not self.has_title:
geo = 'Null' if mod == 0 else 'Timelike'
nat = 'geodesic' if nature == 'geodesic' else 'curve'
sing = 's' if colorbar == 'once' else ''
title = '{} {}{}'.format(geo, nat, sing)
self.ax.set_title(title, fontsize=15)
self.has_title = True
def plot_lightcone(self, t, x, size):
d = tools.find_local_lightcone(t, x)
for j in range(len(d)):
self.ax.arrow(x, t, d[j][1] * size, d[j][0] * size, head_width=1.5*size/6, width=0.1*size/6, color="orange")
def plot_time_arrow(self, t, x, size):
v = tools.find_local_rest_velocity(t, x)
norm = (v[1][0]**2+v[1][1]**2)**0.5
for j in range(1, len(v)):
self.ax.arrow(x, t, v[j][1] * size/norm, v[j][0] * size/norm, head_width=1.5*size/6, width=0.1*size/6, color="blue")
# Plot a series of lightcones, time arrows or tangent vectors
# Specify either a radius (not for tangent vectors) or a trajectory and a parameter on it (lam).
def plot_light_time(self, num, size, lightcones=False, time_arrows=False, tangents=False, param_direction=False,
radius=None, trajectory=None, param=None):
fig, ax = self.fig, self.ax
if radius:
for i in range(num):
theta = 2 * np.pi * i / num
x = radius * np.cos(theta)
t = radius * np.sin(theta)
if lightcones:
self.plot_lightcone(t, x, size)
if time_arrows:
self.plot_time_arrow(t,x, size)
if trajectory is not None and param is not None:
y = trajectory
# Idea: plot arrows in an equispaced way, only in the visible space.
length = len(y[0, :])
cutoff = length - 1
for i in range(length):
if abs(y[2, i]) > 150 or abs(y[3, i]) > 150:
cutoff = i
break
spacing = (param[cutoff] - param[0]) / num
n = 0
for i in range(cutoff):
if param[i] > spacing * n:
n+=1
else:
continue
z = y[: , i]
u0, u1, t, x = z[0], z[1], z[2], z[3]
if lightcones:
self.plot_lightcone(t, x, size)
if time_arrows:
self.plot_time_arrow(t, x, size)
if param_direction:
norm = (u0**2 + u1**2)**0.5
u0 /= norm
u1 /= norm
self.ax.arrow(x, t, u1, u0, head_width=5, head_length=3, width=0.15, color="black", shape="full", length_includes_head=False, zorder=2)
#self.ax.annotate(r'$\tau$', xy=(x+2, t+2))
#ax.annotate(r'$\tau$', xy=(x+u1, t+u0), xytext=(x, t), arrowprops={'arrowstyle': '->', "color":'red'})
if tangents:
norm = (u0 ** 2 + u1 ** 2) ** 0.5
u0 /= norm
u1 /= norm
self.ax.arrow(x, t, u1*size, u0*size, head_width=2.5, width=0.3, color="black", shape="full", zorder=2)