-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathyolo_loss.py
207 lines (176 loc) · 7.49 KB
/
yolo_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
from ..bbox_utils import decode_yolo, xywh2xyxy, batch_iou_similarity
__all__ = ['YOLOv3Loss']
def bbox_transform(pbox, anchor, downsample):
pbox = decode_yolo(pbox, anchor, downsample)
pbox = xywh2xyxy(pbox)
return pbox
@register
class YOLOv3Loss(nn.Layer):
__inject__ = ['iou_loss', 'iou_aware_loss']
__shared__ = ['num_classes']
def __init__(self,
num_classes=80,
ignore_thresh=0.7,
label_smooth=False,
downsample=[32, 16, 8],
scale_x_y=1.,
iou_loss=None,
iou_aware_loss=None):
"""
YOLOv3Loss layer
Args:
num_calsses (int): number of foreground classes
ignore_thresh (float): threshold to ignore confidence loss
label_smooth (bool): whether to use label smoothing
downsample (list): downsample ratio for each detection block
scale_x_y (float): scale_x_y factor
iou_loss (object): IoULoss instance
iou_aware_loss (object): IouAwareLoss instance
"""
super(YOLOv3Loss, self).__init__()
self.num_classes = num_classes
self.ignore_thresh = ignore_thresh
self.label_smooth = label_smooth
self.downsample = downsample
self.scale_x_y = scale_x_y
self.iou_loss = iou_loss
self.iou_aware_loss = iou_aware_loss
self.distill_pairs = []
def obj_loss(self, pbox, gbox, pobj, tobj, anchor, downsample):
# pbox
pbox = decode_yolo(pbox, anchor, downsample)
pbox = xywh2xyxy(pbox)
pbox = paddle.concat(pbox, axis=-1)
b = pbox.shape[0]
pbox = pbox.reshape((b, -1, 4))
# gbox
gxy = gbox[:, :, 0:2] - gbox[:, :, 2:4] * 0.5
gwh = gbox[:, :, 0:2] + gbox[:, :, 2:4] * 0.5
gbox = paddle.concat([gxy, gwh], axis=-1)
iou = batch_iou_similarity(pbox, gbox)
iou.stop_gradient = True
iou_max = iou.max(2) # [N, M1]
iou_mask = paddle.cast(iou_max <= self.ignore_thresh, dtype=pbox.dtype)
iou_mask.stop_gradient = True
pobj = pobj.reshape((b, -1))
tobj = tobj.reshape((b, -1))
obj_mask = paddle.cast(tobj > 0, dtype=pbox.dtype)
obj_mask.stop_gradient = True
loss_obj = F.binary_cross_entropy_with_logits(
pobj, obj_mask, reduction='none')
loss_obj_pos = (loss_obj * tobj)
loss_obj_neg = (loss_obj * (1 - obj_mask) * iou_mask)
return loss_obj_pos + loss_obj_neg
def cls_loss(self, pcls, tcls):
if self.label_smooth:
delta = min(1. / self.num_classes, 1. / 40)
pos, neg = 1 - delta, delta
# 1 for positive, 0 for negative
tcls = pos * paddle.cast(
tcls > 0., dtype=tcls.dtype) + neg * paddle.cast(
tcls <= 0., dtype=tcls.dtype)
loss_cls = F.binary_cross_entropy_with_logits(
pcls, tcls, reduction='none')
return loss_cls
def yolov3_loss(self, p, t, gt_box, anchor, downsample, scale=1.,
eps=1e-10):
na = len(anchor)
b, c, h, w = p.shape
if self.iou_aware_loss:
ioup, p = p[:, 0:na, :, :], p[:, na:, :, :]
ioup = ioup.unsqueeze(-1)
p = p.reshape((b, na, -1, h, w)).transpose((0, 1, 3, 4, 2))
x, y = p[:, :, :, :, 0:1], p[:, :, :, :, 1:2]
w, h = p[:, :, :, :, 2:3], p[:, :, :, :, 3:4]
obj, pcls = p[:, :, :, :, 4:5], p[:, :, :, :, 5:]
self.distill_pairs.append([x, y, w, h, obj, pcls])
t = t.transpose((0, 1, 3, 4, 2))
tx, ty = t[:, :, :, :, 0:1], t[:, :, :, :, 1:2]
tw, th = t[:, :, :, :, 2:3], t[:, :, :, :, 3:4]
tscale = t[:, :, :, :, 4:5]
tobj, tcls = t[:, :, :, :, 5:6], t[:, :, :, :, 6:]
tscale_obj = tscale * tobj
loss = dict()
x = scale * F.sigmoid(x) - 0.5 * (scale - 1.)
y = scale * F.sigmoid(y) - 0.5 * (scale - 1.)
if abs(scale - 1.) < eps:
loss_x = F.binary_cross_entropy(x, tx, reduction='none')
loss_y = F.binary_cross_entropy(y, ty, reduction='none')
loss_xy = tscale_obj * (loss_x + loss_y)
else:
loss_x = paddle.abs(x - tx)
loss_y = paddle.abs(y - ty)
loss_xy = tscale_obj * (loss_x + loss_y)
loss_xy = loss_xy.sum([1, 2, 3, 4]).mean()
loss_w = paddle.abs(w - tw)
loss_h = paddle.abs(h - th)
loss_wh = tscale_obj * (loss_w + loss_h)
loss_wh = loss_wh.sum([1, 2, 3, 4]).mean()
loss['loss_xy'] = loss_xy
loss['loss_wh'] = loss_wh
if self.iou_loss is not None:
# warn: do not modify x, y, w, h in place
box, tbox = [x, y, w, h], [tx, ty, tw, th]
pbox = bbox_transform(box, anchor, downsample)
gbox = bbox_transform(tbox, anchor, downsample)
loss_iou = self.iou_loss(pbox, gbox)
loss_iou = loss_iou * tscale_obj
loss_iou = loss_iou.sum([1, 2, 3, 4]).mean()
loss['loss_iou'] = loss_iou
if self.iou_aware_loss is not None:
box, tbox = [x, y, w, h], [tx, ty, tw, th]
pbox = bbox_transform(box, anchor, downsample)
gbox = bbox_transform(tbox, anchor, downsample)
loss_iou_aware = self.iou_aware_loss(ioup, pbox, gbox)
loss_iou_aware = loss_iou_aware * tobj
loss_iou_aware = loss_iou_aware.sum([1, 2, 3, 4]).mean()
loss['loss_iou_aware'] = loss_iou_aware
box = [x, y, w, h]
loss_obj = self.obj_loss(box, gt_box, obj, tobj, anchor, downsample)
loss_obj = loss_obj.sum(-1).mean()
loss['loss_obj'] = loss_obj
loss_cls = self.cls_loss(pcls, tcls) * tobj
loss_cls = loss_cls.sum([1, 2, 3, 4]).mean()
loss['loss_cls'] = loss_cls
return loss
def forward(self, inputs, targets, anchors):
np = len(inputs)
gt_targets = [targets['target{}'.format(i)] for i in range(np)]
gt_box = targets['gt_bbox']
yolo_losses = dict()
self.distill_pairs.clear()
for x, t, anchor, downsample in zip(inputs, gt_targets, anchors,
self.downsample):
yolo_loss = self.yolov3_loss(
x.astype('float32'), t, gt_box, anchor, downsample,
self.scale_x_y)
for k, v in yolo_loss.items():
if k in yolo_losses:
yolo_losses[k] += v
else:
yolo_losses[k] = v
loss = 0
for k, v in yolo_losses.items():
loss += v
yolo_losses['loss'] = loss
return yolo_losses