-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulation_results.py
128 lines (105 loc) · 4.04 KB
/
simulation_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# simulation_results.py
"""Classes for loading / visualizing data from simulations."""
import json
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
class Result:
"""Single simulation result."""
def __init__(self, params, arrays):
self.params = params
self.arrays = arrays
# Verify arrays are consistent lengths.
expected_len = None
for k in self.arrays:
ln = len(self.arrays[k])
if expected_len is None:
expected_len = ln
continue
if ln != expected_len:
raise RuntimeWarning(f"Inconsistent length {ln} for"
f"metric {k}! Expected {expected_len}")
self.num_timesteps = expected_len
def final_errors(self):
"""Calculate the mean error over the final second."""
res = {}
for k in self.arrays:
# return average error over TODO
res[k] = np.mean(self.arrays[k][-int(1./self.params["dt"]):])
return res
def determine_convergence_rate(self):
"""Estimate the convergence rate."""
true_errs = self.arrays["true_errors"]
steps_per_second = int(1./self.params["dt"])
final_err = self.final_errors()["true_errors"]
convergence_mask = true_errs < final_err
try:
steps_to_convergence = np.where(convergence_mask)[0][0]
except IndexError:
return np.nan
seconds_to_convergence = steps_to_convergence/steps_per_second
initial_err = true_errs[0]
exp_decay_rate = (np.log(final_err) - np.log(initial_err))
exp_decay_rate /= seconds_to_convergence
return -exp_decay_rate
def plot(self, ax=None, save_file=None, params_only=False, **kwargs):
"""Plot the result against time.
Parameters
----------
ax : plt.Axes or None
Axes handle on which to plot. Figure created if not provided.
Returns
-------
ax : plt.Axes
Axes handle for the active subplot.
"""
if ax is None:
fig, ax = plt.subplots(1, 1, **kwargs)
domain = self.params['dt'] * np.arange(self.num_timesteps)
for k in self.arrays:
if params_only and "lambda" not in k:
continue
ax.semilogy(domain, self.arrays[k], lw=1, label=k)
ax.set_xlim(domain[0], domain[-1])
return ax
class SimulationResults():
"""Group multiple simulation results."""
def __init__(self, dirname):
with open(dirname+"/index.json", "r") as fp:
index = json.load(fp)
self.failed_simulations = []
self.results = []
for rec in index:
if 'error' in rec:
self.failed_simulations.append(rec)
continue
fname = dirname+"/"+rec['filename'].split("/")[-1]
ark = np.load(fname)
self.results.append(Result(rec["params"], ark))
def __getitem__(self, ind):
return self.results[ind]
def plot_all(self):
"""Plot each of the result sets in different figures."""
for r in self.results:
print(r.params)
r.plot()
def get_summary(self):
arr = []
for r in self.results:
errs = r.final_errors()
rec = {k: v for k, v in r.params.items() if type(v) != dict}
for k, v in r.params["initial_guess"].items():
rec[k+"_initial_guess"] = v
for k, v in errs.items():
rec[k+"_error" if "error" not in k else k.replace("errors", "error")] = v
rec["convergence_rate"] = r.determine_convergence_rate()
arr.append(rec)
return pd.DataFrame(arr)
def get_result(self, search_params):
for r in self.results:
if all(r.params[k] == v for k,v in search_params.items()):
print("Found matching result", r.params)
return r
if __name__ == "__main__":
# Test
s = SimulationResults("data/multiparam_diffusion1")