-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathgenerate_nearest_neightbours.py
103 lines (85 loc) · 4.69 KB
/
generate_nearest_neightbours.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import sys
import numpy as np
np.random.seed(2)
import tensorflow as tf
tf.random.set_random_seed(2)
import pickle
import os
from models.rae import make_raes
from models.std_vae import std_vae
from models.wae_mmd import wae_mmd
from dataloaders.dataloader import DataLoader
from configurations import config
from my_utility import config_parser
import keras.backend as K
from my_utility import accumulate_batches_of_data_frm_generator
from sklearn.neighbors import KDTree
from scipy.misc import imsave
def main():
# Setting up logging
maj_cfg_idx, minor_cfg_idx = config_parser.get_config_idxs(int(sys.argv[1]), config.configurations)
log_root = config.configurations[maj_cfg_idx][0]['log_root']
log_root = os.path.join(log_root, str(maj_cfg_idx))
log_dir = os.path.join(log_root, config.configurations[maj_cfg_idx][minor_cfg_idx]['expt_name'] +\
'_' + str(minor_cfg_idx))
model_name = config.configurations[maj_cfg_idx][0]['base_model_name'] + '_' + \
config.configurations[maj_cfg_idx][0]['dataset_name'] + '.h5'
model_path = os.path.join(log_dir, model_name)
expt_name = config.configurations[maj_cfg_idx][minor_cfg_idx]['expt_name']
n_components = config.configurations[maj_cfg_idx][minor_cfg_idx]['n_components']
# Preparing data Generator
batch_size = config.configurations[maj_cfg_idx][0]['batch_size']
dataloader = DataLoader(batch_size=batch_size)
(train_generator, validation_generator, test_generator), input_shape, (train_steps, val_steps, test_steps) = \
dataloader.get_data_loader(dataset_name=config.configurations[maj_cfg_idx][0]['dataset_name'], shuffle=False)
# Preparing model
if config.configurations[maj_cfg_idx][0]['base_model_name'].upper().find('REDUCED') >= 0:
encoder, decoder, auto_encoder = make_raes.get_vae(input_shape, config.configurations, maj_cfg_idx,
minor_cfg_idx)
compute_z_cov = True
elif config.configurations[maj_cfg_idx][0]['base_model_name'].upper().find('WAE') >= 0:
encoder, decoder, auto_encoder = wae_mmd.get_wae(input_shape, config.configurations, maj_cfg_idx,
minor_cfg_idx)
compute_z_cov = False
elif config.configurations[maj_cfg_idx][0]['base_model_name'].upper().find('STD_VAE') >= 0:
encoder, decoder, auto_encoder = std_vae.get_vae(input_shape, config.configurations, maj_cfg_idx,
minor_cfg_idx)
compute_z_cov = False
else:
raise NotImplementedError("No implemntation for " +
str(config.configurations[maj_cfg_idx][0]['base_model_name']) + " found.")
multi_output_enc = False
if len(encoder.outputs) > 1:
multi_output_enc = True
# Generatig sampled, reconstructed and interpolated images
batches = 100
# auto_encoder.load_weights(model_path + '_model_weights.h5')
auto_encoder.load_weights(model_path+'_best')
# auto_encoder.load_weights(model_path+'_model_weights.h5')
np.random.seed(2)
tf.random.set_random_seed(2)
training_images = accumulate_batches_of_data_frm_generator.get_n_batches_of_input(train_steps, train_generator)
training_images_shape = training_images.shape
tree = KDTree(np.reshape(training_images, [training_images_shape[0], -1]), leaf_size=2)
num_samples = 20
num_neighbours = 3
qz_est_name_list = ['N_0_I', 'GMM_1', 'GMM_10', 'GMM_20', 'GMM_100', 'GMM_200']
for method_name in qz_est_name_list:
if method_name == 'N_0_I':
sampled_images = decoder.predict(np.random.normal(loc=0.0, scale=1.0,
size=(num_samples,
K.get_variable_shape(encoder.outputs[0])[1])))
else:
with open(os.path.join(log_dir, method_name+'_mdl.pkl'), 'rb') as f:
gmm = pickle.load(f)
sampled_images = decoder.predict(gmm.sample(num_samples)[0])
for smpld_img_idx in range(sampled_images.shape[0]):
_, neighbour_inds = tree.query(np.reshape(sampled_images[smpld_img_idx].flatten(), (1, -1)),
k=num_neighbours)
img_together = np.squeeze(np.hstack([np.hstack(training_images[neighbour_inds[0]]), sampled_images[smpld_img_idx]]))
save_dir = os.path.join(log_dir, method_name+"_neighbours")
if not os.path.exists(save_dir):
os.mkdir(save_dir)
imsave(os.path.join(save_dir, str(smpld_img_idx)+'.png'), img_together)
if __name__ == "__main__":
main()