-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path31.tex
36 lines (35 loc) · 1.04 KB
/
31.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Video notes: vid19.mp4
\subsection*{Series expansion of 1/(1 - x)}
\begin{itemize}
\item{to show and prove:
\begin{align*}
\ln (\frac{1}{1 - x}) = x +
\frac{x^2}{2} + \frac{x^{3}}{3} + \cdots \frac{x^{k}}{k} + \cdots
\end{align*}
}
\item{
\begin{align*}
f(x) &= f(0) + f'(0)x + \frac{1}{2!}x^2 + \cdots \\
f(0) &= \ln{ \frac{1}{1 - 0} } = ln{1} = 0 \\
f'(x) &= \frac{[(1 - x)^{-1}]'}{(1 - x)^{-1}} =
\frac{
(-1)(1 - x)^{-2}(-1)
} {
(1 - x)^{-1}
}
= (1 - x)^{-1} \stackrel{\longrightarrow}{x \rightarrow 0} 1 \\
f''(x) &= (-1)(1 - x)^{-2}(-1) = \frac{1}{(1 - x)^2} = 1 \\
f'''(x) &= [(1 - x)^2]' = (-2)(1 - x)^{-3}(-1) = 2(1 - x)^3 = 2 \\
f''''(x) &= 2 \cdot (1 - x)^{-3} = 2 \cdot(-3)(1 - x)^{-4}(-1) \\
f^(k)(x) &= (k - 1)!, k = 2, \cdots \\
\end{align*}
}
\item{
Now, lets plug in for the taylor expansion:
\begin{align*}
\ln{\frac{1}{1 - x}} &= f(0) + \frac{f'(0)x}{1!} + f''(0)\frac{x^2}{2!} + \cdots
&= 0 + 1 \cdot x + \frac{1 \cdot x^2}{2!} + \frac{(2!)x^3}{3!} + \cdots
&= x + \frac{x^2}{2} + \frac{x^3}{3} + \cdots
\end{align*}
}
\end{itemize}