-
Notifications
You must be signed in to change notification settings - Fork 1
/
8.tex
84 lines (48 loc) · 1.73 KB
/
8.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
\subsection*{Simplest Electrical LPF}
video: vid6.mp4
Practical lowpass electrical filter is an RC filter
\paulhint{First electrical diagram made}
\paulhint{See 6a.png}
Resistor: made out of carbon composite. $V=RI$ Material such that when you
put a current across it, the current is proportional to the voltage.
\paulhint{This is the second diagram in the page}
\paulhint{See 6b.png}
Capacitors: charged with voltage. Capacitance %spelling?
how much charge can be held in the plates. $Q = cv$
Current is the dirivative of charge.
\paulhint{This is the third diagram in the page}
Inductor: what is this?
\paulhint{This is the fourth diagram in the page}
RLC circuits
\paulhint{See 6c.png for capacitor and inductor}
Approx: 5:36
Analysis of these filters. (Done more formal than necessary).
\paulhint{This is more diagrams. Worth a rewatch maybe?}
Kirchhoff Loop and Node equations: sum of voltages around a loop is zero.
Loops:
input loope:
$-v_i + v_r + v_c = 0$ \\
$v_i = v_r + v_c$ \\
output loop:
$-v_c + v_0 = 0$ \\
Node: \\
$i_R - i_c + i_0 = 0$\\
$i_c = i_0 + R_c$
Assume output current ($i_0$) is zero.
\paulhint{I'm missing a lot here. Google Kirchhoff}
$V_i = V_r + V_c = V_R + V_0$ \\
$V_0 = V_i - V_R$ \\
Putting it in the laplace domain:\\
$V_0 = V_i - V_R = V_i - IR$ \\
$= V_i - (V_0 c s) * R$
\paulhint{$V_0 c s = I$}
$V_0[I + R c s] = V$
$H(s) = V_0(s) / V_i(s) = 1 / 1 + RCs$
$ = \frac{1/rc}{s + 1/rc} = \frac{1/\tau}{ s + 1/\tau}$
\josquote{Keep swapping in component definitions until you are ready to find the final solution.}
\paulhint{$\tau \stackrel{\Delta}{=} RC$}
$H(s)
= \frac{1}{1 + R C S}
\leftrightarrow
h(t) = \frac{1}{\tau}e^{-t / \tau}$
\josquote{Be comfortable in both the Z plane and the S plane.}