-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathmahony.c
330 lines (281 loc) · 9.66 KB
/
mahony.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
//==============================================================================================
// MahonyAHRS.c
//==============================================================================================
//
// Madgwick's implementation of Mayhony's AHRS algorithm.
// See: http://www.x-io.co.uk/open-source-imu-and-ahrs-algorithms/
//
// From the x-io website "Open-source resources available on this website are
// provided under the GNU General Public Licence unless an alternative licence
// is provided in source."
//
// Date Author Notes
// 29/09/2011 SOH Madgwick Initial release
// 02/10/2011 SOH Madgwick Optimised for reduced CPU load
//
// Algorithm paper:
// http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4608934&url=http%3A%2F%2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D%26arnumber%3D4608934
//
//==============================================================================================
//----------------------------------------------------------------------------------------------
#include "imuread.h"
#ifdef USE_MAHONY_FUSION
//----------------------------------------------------------------------------------------------
// Definitions
#define twoKpDef (2.0f * 0.02f) // 2 * proportional gain
#define twoKiDef (2.0f * 0.0f) // 2 * integral gain
#define INV_SAMPLE_RATE (1.0f / SENSORFS)
//----------------------------------------------------------------------------------------------
// Variable definitions
static float twoKp = twoKpDef; // 2 * proportional gain (Kp)
static float twoKi = twoKiDef; // 2 * integral gain (Ki)
static float q0 = 1.0f, q1 = 0.0f, q2 = 0.0f, q3 = 0.0f; // quaternion of sensor frame relative to auxiliary frame
static float integralFBx = 0.0f, integralFBy = 0.0f, integralFBz = 0.0f; // integral error terms scaled by Ki
//==============================================================================================
// Functions
static float invSqrt(float x);
static void mahony_init();
static void mahony_update(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz);
void mahony_updateIMU(float gx, float gy, float gz, float ax, float ay, float az);
static int reset_next_update=0;
void fusion_init(void)
{
mahony_init();
}
void fusion_update(const AccelSensor_t *Accel, const MagSensor_t *Mag, const GyroSensor_t *Gyro,
const MagCalibration_t *MagCal)
{
int i;
float ax, ay, az, gx, gy, gz, mx, my, mz;
float factor = M_PI / 180.0;
ax = Accel->Gp[0];
ay = Accel->Gp[1];
az = Accel->Gp[2];
mx = Mag->Bc[0];
my = Mag->Bc[1];
mz = Mag->Bc[2];
for (i=0; i < OVERSAMPLE_RATIO; i++) {
gx = Gyro->YpFast[i][0];
gy = Gyro->YpFast[i][1];
gz = Gyro->YpFast[i][2];
gx *= factor;
gy *= factor;
gz *= factor;
mahony_update(gx, gy, gz, ax, ay, az, mx, my, mz);
}
}
void fusion_read(Quaternion_t *q)
{
q->q0 = q0;
q->q1 = q1;
q->q2 = q2;
q->q3 = q3;
}
//----------------------------------------------------------------------------------------------
// AHRS algorithm update
static void mahony_init()
{
static int first=1;
twoKp = twoKpDef; // 2 * proportional gain (Kp)
twoKi = twoKiDef; // 2 * integral gain (Ki)
if (first) {
q0 = 1.0f;
q1 = 0.0f; // TODO: set a flag to immediately capture
q2 = 0.0f; // magnetic orientation on next update
q3 = 0.0f;
first = 0;
}
reset_next_update = 1;
integralFBx = 0.0f;
integralFBy = 0.0f;
integralFBz = 0.0f;
}
static void mahony_update(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz)
{
float recipNorm;
float q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3;
float hx, hy, bx, bz;
float halfvx, halfvy, halfvz, halfwx, halfwy, halfwz;
float halfex, halfey, halfez;
float qa, qb, qc;
// Use IMU algorithm if magnetometer measurement invalid
// (avoids NaN in magnetometer normalisation)
if((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f)) {
mahony_updateIMU(gx, gy, gz, ax, ay, az);
return;
}
// Compute feedback only if accelerometer measurement valid
// (avoids NaN in accelerometer normalisation)
if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
// Normalise accelerometer measurement
recipNorm = invSqrt(ax * ax + ay * ay + az * az);
ax *= recipNorm;
ay *= recipNorm;
az *= recipNorm;
// Normalise magnetometer measurement
recipNorm = invSqrt(mx * mx + my * my + mz * mz);
mx *= recipNorm;
my *= recipNorm;
mz *= recipNorm;
#if 0
// crazy experiement - no filter, just use magnetometer...
q0 = 0;
q1 = mx;
q2 = my;
q3 = mz;
return;
#endif
// Auxiliary variables to avoid repeated arithmetic
q0q0 = q0 * q0;
q0q1 = q0 * q1;
q0q2 = q0 * q2;
q0q3 = q0 * q3;
q1q1 = q1 * q1;
q1q2 = q1 * q2;
q1q3 = q1 * q3;
q2q2 = q2 * q2;
q2q3 = q2 * q3;
q3q3 = q3 * q3;
// Reference direction of Earth's magnetic field
hx = 2.0f * (mx * (0.5f - q2q2 - q3q3) + my * (q1q2 - q0q3) + mz * (q1q3 + q0q2));
hy = 2.0f * (mx * (q1q2 + q0q3) + my * (0.5f - q1q1 - q3q3) + mz * (q2q3 - q0q1));
bx = sqrtf(hx * hx + hy * hy);
bz = 2.0f * (mx * (q1q3 - q0q2) + my * (q2q3 + q0q1) + mz * (0.5f - q1q1 - q2q2));
// Estimated direction of gravity and magnetic field
halfvx = q1q3 - q0q2;
halfvy = q0q1 + q2q3;
halfvz = q0q0 - 0.5f + q3q3;
halfwx = bx * (0.5f - q2q2 - q3q3) + bz * (q1q3 - q0q2);
halfwy = bx * (q1q2 - q0q3) + bz * (q0q1 + q2q3);
halfwz = bx * (q0q2 + q1q3) + bz * (0.5f - q1q1 - q2q2);
// Error is sum of cross product between estimated direction
// and measured direction of field vectors
halfex = (ay * halfvz - az * halfvy) + (my * halfwz - mz * halfwy);
halfey = (az * halfvx - ax * halfvz) + (mz * halfwx - mx * halfwz);
halfez = (ax * halfvy - ay * halfvx) + (mx * halfwy - my * halfwx);
// Compute and apply integral feedback if enabled
if(twoKi > 0.0f) {
// integral error scaled by Ki
integralFBx += twoKi * halfex * INV_SAMPLE_RATE;
integralFBy += twoKi * halfey * INV_SAMPLE_RATE;
integralFBz += twoKi * halfez * INV_SAMPLE_RATE;
gx += integralFBx; // apply integral feedback
gy += integralFBy;
gz += integralFBz;
} else {
integralFBx = 0.0f; // prevent integral windup
integralFBy = 0.0f;
integralFBz = 0.0f;
}
//printf("err = %.3f, %.3f, %.3f\n", halfex, halfey, halfez);
// Apply proportional feedback
if (reset_next_update) {
gx += 2.0f * halfex;
gy += 2.0f * halfey;
gz += 2.0f * halfez;
reset_next_update = 0;
} else {
gx += twoKp * halfex;
gy += twoKp * halfey;
gz += twoKp * halfez;
}
}
// Integrate rate of change of quaternion
gx *= (0.5f * INV_SAMPLE_RATE); // pre-multiply common factors
gy *= (0.5f * INV_SAMPLE_RATE);
gz *= (0.5f * INV_SAMPLE_RATE);
qa = q0;
qb = q1;
qc = q2;
q0 += (-qb * gx - qc * gy - q3 * gz);
q1 += (qa * gx + qc * gz - q3 * gy);
q2 += (qa * gy - qb * gz + q3 * gx);
q3 += (qa * gz + qb * gy - qc * gx);
// Normalise quaternion
recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
q0 *= recipNorm;
q1 *= recipNorm;
q2 *= recipNorm;
q3 *= recipNorm;
}
//---------------------------------------------------------------------------------------------
// IMU algorithm update
void mahony_updateIMU(float gx, float gy, float gz, float ax, float ay, float az)
{
float recipNorm;
float halfvx, halfvy, halfvz;
float halfex, halfey, halfez;
float qa, qb, qc;
// Compute feedback only if accelerometer measurement valid
// (avoids NaN in accelerometer normalisation)
if (!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
// Normalise accelerometer measurement
recipNorm = invSqrt(ax * ax + ay * ay + az * az);
ax *= recipNorm;
ay *= recipNorm;
az *= recipNorm;
// Estimated direction of gravity and vector perpendicular to magnetic flux
halfvx = q1 * q3 - q0 * q2;
halfvy = q0 * q1 + q2 * q3;
halfvz = q0 * q0 - 0.5f + q3 * q3;
// Error is sum of cross product between estimated and measured direction of gravity
halfex = (ay * halfvz - az * halfvy);
halfey = (az * halfvx - ax * halfvz);
halfez = (ax * halfvy - ay * halfvx);
// Compute and apply integral feedback if enabled
if(twoKi > 0.0f) {
// integral error scaled by Ki
integralFBx += twoKi * halfex * INV_SAMPLE_RATE;
integralFBy += twoKi * halfey * INV_SAMPLE_RATE;
integralFBz += twoKi * halfez * INV_SAMPLE_RATE;
gx += integralFBx; // apply integral feedback
gy += integralFBy;
gz += integralFBz;
} else {
integralFBx = 0.0f; // prevent integral windup
integralFBy = 0.0f;
integralFBz = 0.0f;
}
// Apply proportional feedback
gx += twoKp * halfex;
gy += twoKp * halfey;
gz += twoKp * halfez;
}
// Integrate rate of change of quaternion
gx *= (0.5f * INV_SAMPLE_RATE); // pre-multiply common factors
gy *= (0.5f * INV_SAMPLE_RATE);
gz *= (0.5f * INV_SAMPLE_RATE);
qa = q0;
qb = q1;
qc = q2;
q0 += (-qb * gx - qc * gy - q3 * gz);
q1 += (qa * gx + qc * gz - q3 * gy);
q2 += (qa * gy - qb * gz + q3 * gx);
q3 += (qa * gz + qb * gy - qc * gx);
// Normalise quaternion
recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
q0 *= recipNorm;
q1 *= recipNorm;
q2 *= recipNorm;
q3 *= recipNorm;
}
//---------------------------------------------------------------------------------------------
// Fast inverse square-root
// See: http://en.wikipedia.org/wiki/Fast_inverse_square_root
static float invSqrt(float x) {
union {
float f;
int32_t i;
} y;
float halfx = 0.5f * x;
y.f = x;
y.i = 0x5f375a86 - (y.i >> 1);
y.f = y.f * (1.5f - (halfx * y.f * y.f));
y.f = y.f * (1.5f - (halfx * y.f * y.f));
y.f = y.f * (1.5f - (halfx * y.f * y.f));
return y.f;
}
//==============================================================================================
// END OF CODE
//==============================================================================================
#endif // USE_MAHONY_FUSION