-
Notifications
You must be signed in to change notification settings - Fork 0
/
3-h-p_full_blank.nb
2029 lines (1998 loc) · 93.1 KB
/
3-h-p_full_blank.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 93147, 2021]
NotebookOptionsPosition[ 91100, 1978]
NotebookOutlinePosition[ 91500, 1994]
CellTagsIndexPosition[ 91457, 1991]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ContourPlot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"4", " ",
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"p", " ",
RowBox[{"Cos", "[", "x", "]"}]}]}], ")"}], "^", "2"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"Cos", "[", "x", "]"}], "^", "2"}], "+",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"2", "-",
RowBox[{"p", " ",
RowBox[{"Cos", "[", "x", "]"}]}]}], ")"}], "^", "2"}], " ",
RowBox[{
RowBox[{"Sin", "[", "x", "]"}], "^", "2"}]}]}], ")"}]}], "-",
RowBox[{
RowBox[{"p", "^", "2"}], " ",
RowBox[{
RowBox[{"Cos", "[", "x", "]"}], "^", "2"}], " ",
RowBox[{
RowBox[{"(",
RowBox[{"2", "-",
RowBox[{"p", " ",
RowBox[{"Cos", "[", "x", "]"}]}]}], ")"}], "^", "2"}]}]}],
"\[Equal]", "0"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "Pi"}], ",", "Pi"}], "}"}], ",",
RowBox[{"{",
RowBox[{"p", ",", "0", ",",
RowBox[{"2", " ", "Pi"}]}], "}"}], ",",
RowBox[{"ContourStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Thick", ",", "Blue"}], "}"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<x\>\"", ",", "\"\<p\>\""}], "}"}]}]}], "]"}]], "Input",
CellChangeTimes->{{3.8159934141122007`*^9, 3.8159934141187763`*^9}, {
3.8159937056111383`*^9, 3.8159937122122746`*^9}, {3.816017606078062*^9,
3.8160176156427603`*^9}, {3.8160177007137227`*^9, 3.8160177225478997`*^9}},
CellLabel->"In[12]:=",ExpressionUUID->"6c504210-4d0b-4d79-9500-8fe31c0f9661"],
Cell[BoxData[
GraphicsBox[{GraphicsComplexBox[CompressedData["
1:eJxdfHVUVN8XLzUzdKeBgokKKKHyFT3bQrA7EQW7G7ALUVERW8BAwQIsFDDQ
MyYgIIiYiLR0zQwDisC7v+fZ9603/uPa6wJz595z9v7EPtvKZ93UJSpKSkqt
AiWl//3fM0y8Q++lQGxuO2p6i5UFGJevnvfulUAcaCL7sVdgARZWjeW/uPjm
xhVnLqWZw0i3/m133gjEp4bN+GJ61xxivGx8ApIF4viq657iEHN48nzE7iNc
PDk573zUFnMYVXVM1zxVIB5c4RYzdZ45VBoVBy/m4o+h2SKvmebQ+mfQ+/Vc
rDt56VwHV3MYMnmRsneaQLxCrWNITUdz2JzdX3sOF49ba3M7uMIMDpQbpM3M
EIgPe/vlTUg1gy7W/ZR8MgXihtjkU+o3zEDJSuf3LC52q2y/lHvcDMb3iG7x
4GIHm6YbV/3NwEbi3ujzQSBW23Ro4YqZZrBv5cwhodkC8ZGcGRpfwQwEl12+
+H8UiP+0T4kxd+B+/sADwf/ily361k2dzKAhPiHmQo5ArLRfd/8ydTOwFmSF
hH3ins8MvZAzTaZg4fh24zku3h0QWhxQbArZg7Xff/0iEAe//u2g9swU4r7W
F13n4txrSVbq50zh44IBJ+XfuM87E700Yr0pnJuyMXnqD4H4Ruqsx0VjTOHW
nU51Zlw89WpxH8+ephA/9PjK6XkC8ZYbTyuetprA0Nd/t/4uEIjfX+lWHJ1t
Ah9XjOvymIu9DbTdUuJN4OU930qVIoG4/lH66i9BJhBp/mVWZqlAbHZ4jN+8
+Sbg13z7+DEutl85UXniaBNw/Txgv225QLzqXV6dxMwE0otCWj9XCsQ747f3
kpYZg31leNYjLu49ben9PT+NoYdf6sC+VdzzGFIza/AnY4A9JjELagTivXXD
T7reNgaj2ktNU7j4V27tRt1rxjCz52xno3qB2KnHreD1G41BtzV+ye86gThq
sZ/ThVXGUNzDUN2Du54befVV0WJj6GBtK30i4dZH/zEbogcZwybrl0fvcrF3
TXujjYMxjJu/4U9go0DsGG5rn/3XCHQShhdv5mJL30OJic1GkLByQao3F9NZ
c28EyYxga1VQiUezQPyjTX/raGoEeQ/rdji3cPe3p3296UEjOLVfNqE3F99q
jF99OMAI/j1n7u9LPh8ym24Eu4+UDrZuE4hn6Vv/XTjeCErkk1YVKQnF6eLN
bXuNjcCnSXu3ibJQbBwa/azW0AhW5/8YMIGLzVtDLXoaGMEw55NrOqgJxdlW
jrt3fDOEYSfFO64IheLGLsM0d0YZwqElWifei4TiwDSjGqVwQ/B2n3JnnqZQ
PMFxlMr5pYbwWO1u8w1toTh2pVtauJMhpG51vXpZVygumHq07EF3QxDovDep
0heKU0bNOPBAagA/u31zaTEUip8cqa4teG0AOqt0w96YcPGqh2td7xjAwql+
A9+bCcUjZy5Vz9xjAIbPvvW+YiEUZ1bsXDFphgHMC/Y2cessFB+r6vjw3CAD
OGuq3Vuri1D8fJnfkUodA5it4jwpoqtQXHMxaXdlqT58T6uy6tVDKPb4WXbv
pVgfDGtDIt9xscvWQ7rCcH2o7nmmpr2XUBz3ovVDvK8+aC2cPmadrVAcc22U
1RMPfVhsmvnptp1Q/DAo9IRVb30of/DDJMWeux7qsCJepA9KZ9JCegwUime7
OLXLovTg59PuDdaDhGKvwTNstq3UA5+G3FTlwULx21OBR3MH6IHhRvVzU4hQ
7Lrbor09Xhcs3ox5qw9C8fR5fvb3A3Th/etbXRK5uHeQb3nydF3IzzkU1OIu
FC8hTw2OvdUB7y1l5mYeQvHYXaHO5Zd0YOngotVSLk7o+mHIEH8duJGWN7Tf
NKH41KpDi0991obVZ13e7uJiuPJ0SJfH2lDk67PtFRf33rdp0ogL2uB066F9
zXyh+O+9j/4av7Qg88OkJBMvoXjg67zhMz9qwZqhQS+dufjWqmcXq8Ra8LOo
z2n3FUKxe9juDqUyTQgTOI+fxsX9ytrHHKvRhHS7y0lzubhtt+zimF+a8C+P
CMXViYFfP87ThAubetbKNgvFr8sufjLX1oS2nOduMVuEYmtN64mvRZqwJ7x6
5zFfofiCWsHAL8qaYNlpf8uO/UJWDzRghF2q67ZjQvHM8gAuEavDltyJ0XBS
yPK1OhiGbKnqel4ols8I/3TfWB10Bo3rr3tVyPKrCJz2J0ScviUUs/9BOF7N
T+mBkOU7ISQeV5u66blQPPTC5O0Z1kK4fmpsjfMbIctXAugytU/m+lShOO3v
eDWRgwBsOs8fPjRNKDZZdGVCTLsaKE0NmV/7UcjyixoY3dOtDcsTijNeBFUZ
DVaDuVYtp9O5+F++UIMhR7o9k3FxZ9nhzNB+avAvTwvFkdkzQ+fVq4IgwmFB
YLmQ5QdVCJwsDGho4NbXj+ALGXNVoe+JmB+Tm7j1qKqvemawKph2y+wXoiRi
+1kFTtceLDwmEol9LjooXQlSgfgfe1dcMRaJzXLn7djurAJ3Ok/5dK2DiO1P
ZciWdzdw6iISn01pcN6VpAx7PG/vP9RbxPajMjzvt26IlZNIrHYn5J5Df2U4
EN3zvHCQiO0/ZUio2mQx2EUkXl/gM+pxvRLUJnWfLJkhEr+D1ivneytBU/JF
zxYu/reflGBAd7mDykyRuHCIaPGTXkrA3pNYpu89tq67EizevPPK5RUitp/a
SbZ/Zp99viJx/VLB66LXbWTzy8UDPXaJ2P5pI52fq6hcPSwSd3uzr5pYtpED
om7L4sJE4hHv6t3vD28lZ622O29LELH98Jec/D7Cbt4Lkbh7tlvEkOIWsiZ/
Ue/pr0TiVprwxSe5hbhb97ecUSti6/sPMdXqeiZUJhK7zt/0bJ7XHzJiYard
Imt18X3tXTGhM34T4aRzJ4/YqLP1+ps8DutxeKCtunjty5f3VdV+E7ZOxQGX
zPub3G0mjg+1c3I81dn6bSbBbu8Ntviri9UWzs6sfd9EdJwWRapcVmfrt4n8
wznq4gbNH2p/OjcR43da69eWqotbY83OT8qTE7ZPxB1aV51bcUlOxgfOmdLq
00QRTzXs83JXW95EO9+aGHa6swVMaNn+KHJJEy0/lxozq9ocDII+5s3j4s/x
6SaHy83h0GCprikXb1FzqMwrMQf3yJC8c9zfixp7ztc6zhz0TQq/lnk1UcRf
W047PEjm4kEJ0SPaY83h9ZGuq8Rzm+iwmdqd3YeaQwn1zrjLxYivrmmbBF3m
4us2qlndh5jDnN4bLQNnN9H0r7UdxSrmbD000XfRZ3+FpZlB64Qhb3pzcVr0
WDUvDm/dIFotylyM+Mt7aUnB/+KFXsGtjlxstcNtp9n4Jor4q+dJV7F4RBMd
sir80LR5ZnAyYaxmIhcj/lLWeVJ9g4v3fzutunWKGez9VeSV5dJEEW91rRjb
aeuAJtr866ZMXG0Kxo9ql87gYsRXk2fmLOrFxVN3rl7s9N0UHr1+k+9i00Rd
dayvGUabwoz/jpo8s2qiPaNWbE3baQrajlHam7gY8daBJX1qLbg4zNAoaPwi
U+i1sv/WJosm+sjSsbfdIFOwLgmtHmzURO3GJQoP6ZqC55zOyc8NuffD8Ffo
8Li4/lzcoaPb89vVJtA2IiLghVYTdeg/KsbjtQl0HTxnc4ygid46+LVMeNkE
yufKNX6rNVHEY5sHvr1qy8XpNp473X05vBYZ5rmgTU7vDJ9ht2SKCZSkvKoq
aJZTqUxXZ4a9CXQYYW5W1ySniM9c7nuW/ZTLafO3k1P0lUxgnefl6ZENcor4
zLJOZd3dajnNd51ct4NyeMzm7mW/KjlFPKYc7XWnY6WcXl+xWNhy2Bh2TB1b
vKxUThGP3evafZOsQE7lynMGHJzE/X7maK/1+XKK+OuVs6TgRZ6cGnh1MFUy
NoY5/rPOH/smp4i/lJ9tkp38JKee/UyNt+cbwcrVYbOTPsop4q8F90b6Pfwg
p47v6TDzS0Yw4Oz4i78z5DTsYOh/Hw8YwUttYZeN7+S0/Na+dK91RhDlder0
iBQ5Rfxld/HF4O9v5LRwbn+Hob2N4LGZ5dnTL+UU8Vfxk9Hjd1A5/Z458vWg
dkMYFLa/c02SnCL+0lzeLaXTE+7n8y3mrIgzhDk2w954JMppSPRT0IwwBKvw
ANdLD+XUzWZ0muZxQ+gyzHbEzftyinjMsdvfkmV35HR2F+/Ic66GoHXm0AJh
rJxqJqW/6mFrCH1b5m5/e0tOn1+NGPbD0hA8Sh1avK/LKeIzvfTZH29elVOt
eRo+r94awMre81UeR8hpYEae2/AnBnC3kRaVXJLT0C1fe93j8FrssjVrNcLl
FPFaZt+5PzPOyumW1997lU82gPgHnUdMOSOnSvm1qZ5jDODOSlunylNy+tEm
eGbQMAPInZAaGHycux+G39o179a8CZLTZzov7ijn6sOlvvke9LCc7qhvH++f
ow/+p9e8SD7Eva/+k3zXvtcH3fINYYX75RTx3GvLjF57dnHrLWqOWGuJPpyV
5gVKd/5vvRhknfLWh/OSoV3XcfH7PrFWC704/LZ8dwepn5wivpvlbHqhaoOc
npT/BrWfelA+e8O8n1xc3HPUda88PQgOby/5wMUWURZlb37oMXwjp38CNWx3
vNWDExpT4O9SOT3Vttd1/Dru9wO+ftmzSE4RD/58Nb7Olbs+edL1Ne5L9MD6
ptkR13ly+kZsHzZGRQ+GmGqeT58mp988lsaeadIF8q4w9+AcOW0pVl6mUa0L
Y3dkFGVNktN+5UsazM/owjKjGzFZo+QU8eOjG43HjQfLaX1x0UVDO11YlLJ0
+YaBcpq5+lBcuoEudNy3/0szcPuvSFbZ/FsHkrctefbahft+Wq6aM5/oQENO
p8azveUU8eVow7dU4Cyn6117FXXYqwOVa8Zm6NrLaUbk3APp43VgpPqak/06
cvd/PPqRaj8d8IvpLHK1kdP9HUoOTVHXgSG9vkbs7S6nl79GXbLL1wa/PB+N
rrpyinjUOO/VhROdub83KuXzuePaYPNG9ZFxBznt3rHr2T0btGHF9U17RpnK
6dO49Of/uWnDWuWt3VsNuPVV/qBzhak2tJQ8HSjWk9P4Tp/mvFXVhv+qN9wu
lDVSxK+Vb1p/3ahppI+HvlGrvaIFM5MKl50ub6T3P9W+3rBQCwQmI3Vjirif
N3lq7mehBW1Dfh5e86ORIp4tmTrg7efPjdQhbEL4sWRNcB/+qI9PViO90ayf
dnObJuSox6zITWmkxg4nxr/tqQm9Bt7ovfx1I0U8O/BE/Ni14kbaftE2v7la
A5a8u6ji+6iRXuzo+CH/tAb02PbHoye3qR7o5L60dtKAGa9mJe6LbaSIdy/d
LXrfO7qRvhjgEjnVUAP2LFH/8N+ZRjqzZ4D24uHqkN3Jba/v6UaK+Lf+2caa
QO568ASjsO8Dufj/5vVGenm8KDypUATpP+e2JgU20vCJ/U3mpYkg9+7cT9sP
NLL6KYJeHb8adOWuXzNstZe8FUHxNKv5vpsaaVAPr3ILHxEsW50RG7y6kSKe
DnTT7p67rpFmuvR2rXIXwcjUyXofF3L3t2OW4cFmIcwbVTHr/fRGVh+FUK90
I856LhffDAzsk8ZdP+2c9GBiIx3VWz4sLlgIm3t3LFca1kgRj1v4ul/wGNxI
j29evmvOGCFk2O9wb+zVyOqdAEqTisaP69BI5QkvdnR+JYBn53Tc9ho2UsTr
DdZ12x6qc3FNnvSNhwAcQ27o7GmVsXolANkzf6d+Mhld/M1cb3G9GnyIm9me
VS6jiN9HB6wy2fxdRkOGD0v+MV4NXNYuEc/MkVHE7y6mM4+NyZTRQZPTl+t0
VgMz66TtciqjiNf/67+u25ZYGd37n89048mqEPkwZtS5GBmrF6oA++41FkTL
aJ+hL574eajCv8+VUdXzWWc39VYFq76m83JOyKjTti5HLIpV4KTri3N9j8oo
4vsu74+n53NxXZhqvyUZKnBNEGe711dG114qivq5UwWue+s2dV4hY/VBBaYP
Chuvt1JG1Qot1pl7qMBjqy8SE08Z/Wnl/cbeXAVqXt3eEDBGRpEPGFSu0s7l
4p9pRtkWb5Qh61DfRXNHyOj79jH6NnEcH8haaKncS0aRH/hnWfTs11NGt9QU
3p83QRk+Gt9ZOMVaRh9LRu9eT5RB/vjOklEiGUW+UCVtjSkTcM+vRmljaKUS
rPpQqdyxSUr3+jRm1ycogWFC+XSNcinL70pQ4vI54usvKY3PvbbN9aASvDrf
8dj1dCm9+eVSx2w7JVhikvbZMFVKkV/UPn6VdTZZSvvaikubuynBv/cipYEp
o3vEqimBawe7BouLUor8ItJIw+tTmJT2mDBBV9OtnfzO0NDJ3iOlg47uCu/+
qo1M2hPo6eQrpcg3lBeOm7p0qZRuTbqvnt23jTzOWOAYMV9K19wdu/2YUhvR
Ck/u1J1IWT5tJcM37TJ7O1BKc/tNvHiJ4yMhwi/uBv2ktO3AAsFDrVayaIp/
6mJDKUV+0rubhat7pYQeffOqzaqkheh9+fVt7S8Jy28tZFjleKOiYgl91/Lq
dn1KC/m3LiR0ilWsxeITLaRJPkoSmCihIsPanH16LcRqj3/loBgJRT6zqdu9
o8+vSmhG+Y4ZmQl/yOVVbe/nHpbQGeKZbaWz/pCJW6ef2uQrYfnsD/m3jiQ0
xPL4nZTk32SQqGpL/FwJfTDm6PyXEb/J3PiNWsZTJTT6ovf3eXt+kx1acz3u
2Uso8qG5n7T+uvWU0MALx/KW1TUTd6HjVeXGBhpsMMpvz9BmcuriXFmgrIEi
H/q3Dhsoh3n7dnFpJtGZ6xZaPWmg1uVrDrQcbyKbrq5YcutKA0V+9Lzp9oDb
2xronx6F2os4PvThWfYYn6kNLJ/IyQSVhA7nhzXQVS2rvkiInPxbhw00Rr5u
+fxrjUQenjx1iEoDyx+NZPm3rqDzt56G9fG1+uPfSNZu23Px2Yt6OjC1dOGQ
BhnRUF3wZ054PcsXMlKeV+3svaOexh0Kf/9+sox47hvy22lcPQ2QxxXMLpKS
E+srLx79r57lByn5M3967WKnenq278xOKg+k5N+6rachlbc3njsvJUmCr/bG
u+vYfpeQrU/aizvY1VGQ1EYlB0hIksnyj/6htfTvlQmzzNoayILRxolfjtay
/dtA/q3TWuoW8sDOvbqBVHs16rV/qaGSJYPDRy5uIJbHj/X841XD9mMD+bfu
qunNIbvXSoPrye6mG4+Dvavp6QWR2RXT6smMU6OdPnWoZvurnvxbR5XUwjnT
eEFaLSlbmX45K72Shn6J/rLmWi2ZLl6SNOVOJdsvtWSQT7nW2MYK6tzzo5/P
/RrGVyvog/u/NMbnVBN7R6+li4wrqE34FZvEt9XkeX8tjdeCCrYfqklbmr9D
uU05dXNPWxFRWkX+vfcyOschqmlonyoy4mnqxM/OZbT20vM5XXWryNMBY1Om
6pSx9V5J/r3XUurz+7fJ+WcVRC3KwOHVgFKqNqI9WG97Bbn60Cj0zP0Stl4r
yL/3VEwjDhp4DNpdTnKtLWlnrWIqmLS9wwnNclIweEfaNMMi2mnZ3esaW8rY
ei2k2k5OE5UWlxHX/x7VGVYV0pCdPeQaC8rI1jrfrNTvhWy9lpHErH1l+5MK
qLLtZU3Ry1/s/RfQFSOtVydu/0Vqzs08GKKbT+80PXlyr+8vEuHjsn2zUR6N
CD2irfKolL2vH/SOyZhhj6+VEoHlx0v3T/2gx/7AkOCLpSQvd4JngdMPtp5L
2fP+RkfkJDsGNZeQt5/7VVWQL1QQfcF24r0S9nw+UZ+DJndaFpaQV6OeizRH
ZdPvu0Y/WV9WzL7fB3rdVhzU/qOYJAXvIINefqBFc1rDVb8Wk753TTm6lcXW
dzG7v3Q6bt6Yjbb+xeRUUuOxnzuSqfTZ23uvRhSzz3tD38XqvVPqW0ye5ixv
s8p/STMF/p1nG+PvJ1HtT/61TZIi4rhSmFUL8TS6Ku3k46Iidj2W/nwxKbEp
q4i4Vm0tHf41jFob7z295V0RUWL/rG8vu3viDX+d4HX298j///eSiFvghc/P
Vfn7IXg/7P4J3j/7fgS/H/v+uG7w+RB8Pux5Enye7HkTfN7sfRB8H+x9EXxf
7H3iOsb3TfB9s/VAcD2w9UJwvbD1RHA9sfVGcL2x9UhwPbL1ivsM1zPB9czW
O8H1zvYDwf3A9gvB/YLPBfcT22+YB8gtFbOQuX1LyYLi3/3991bw3xP3K9vP
mHdwvxPc73ifmA9YviCYL1g+wTyH+YZgvsH7wHzE8hfmUcxvBPMb3gfmP5Yf
MY9j/iSYP/FzMb+y/It1CPMzwfyMn4v5m+V3rItE9WyfMzld6sj2gDnplUck
WC8QB/D3gfWE1RuC9abZbdvevi71BOsRq1cE6xWrZwTrGat3BOsdq4cE6yGr
lwTrJaunBOspfk+st6weE6zHrF4TrNesnhOs56zeE6z3fSY5qaU9aCBXl98q
nHK2iX8uiBcYniCIJxjeIIg3GB4hiEcYXiGIV94bVz244C4hlq3f9pX4cnim
9E+Z+2oJQTzE8BJBvMTwFEE8xfAWQbyF7wXxGcNvBPEbw3sE8R7DgwTx4Jwu
Ji7hfaXk1Z7E7anjWxFfEsSXUS5dktQ8paTT2QMb11u1kdp698u2a6QE8WpG
ytnz/f2lZNGJBr23aW38e5/R+1GNrlAJxm9zKFBORhyiBJZjd8/XT+Ou38tS
FdnxeJwgHmd4nSBeZ3ieIJ5neJ8g3j90seLhIhMZMU5cdOv3YJ4/EOQPjF8Q
5BeMfxDkH4yfEOQnjL8Q5C+M3xDkN4z/EOQ/jB8R5EeMPxHkT4xfEeRXjH8R
5F+47pGfMf5GkL8xvkeQ7zE+SJAPMr5IkC8yPkmQTzK+SZBvMj5KkI8yvkqQ
rzJ+S5DfMv5LkP8yfkyQHzP+TJA/M35NkF8z/k2QfzN+TpCfM/5OeP7+j98T
5Pf95a9XB6xsJFEnAgqIG68XENQLmJ5AUE9gegNBvYHpEQT1CKZXENQrMI+g
nsH0DoJ6B9ND0GdBvYSgXrJ72qGbByIa0UdBfYWgvsL0F/RRUJ8hqM8w/Yag
fsP0HYL6DtN/COo/TB8iqA8x/YigfsT0JYL6EtOfCOpPTJ8iqE8x/YqgfsX0
LYL6FtO/COpfTB8jqI8x/YygfnZ9cflAb2U5QX2N6W8E9TemzxHU55h+R1C/
Y/oe4fW9f/ofQf2P6YME9UGmHxLUD5m+SFBfZPojQf2R6ZME9UmmXxLUL5m+
SVDfPN1naHzsKDnZZ02OvO2lC37be/zXdYKcGL13smjYyOulBPVSpqcS1FOZ
3kpQb2V6LEE9lum1BPVapucS1HOZ3ktQ72V6MEE9GOsa6sVMTyaoJzO9maDe
zPRogno006sJ6tVMzyaoZzO9m6DezfRwgno408sJ6uVMTyeopzO9naDezvR4
gno80+sJ6vVMzyeo5zO9n6Dez/wAgn4A8wsI+gXMTyDoJzC/gaDfwPwIgn4E
8ysI+hXMzyDoZzC/g6DfwfwQgn4I80sI+iXMTyHopzC/haDfwvwYgn4M82sI
+jXMzyHo5zC/h6Dfw/wggn4Q84sI+kXMTyLoJzG/iaDfxPwogn4U86sI+lXM
zyLoZzG/i6Dfxfwwgn4Y88sI+mXMTyPopzG/jaDfxvw4gn4c8+sI+nXMzyPo
5zG/j6Dfx/xAgn4g8wsJ+oXMTyToJzK/kaDfyPxIgn4k8ysJ+pXMzyToZzK/
k6DfyfxQgn4o80sJ+qXMTyXopzK/laDfyvxYgn4s82sJ+rXMzyXo5zK/l6Df
y/xggn4w84sJ+sXMTyboJzO/maDfzPxogn4086sJ+tXMzyboZzO/m6Dfzfxw
gn4488sJ+uXMTyfopyOuRr+d+fEE/Xjm1xP065mfT9DPV9t43cLfs4m8z7yt
njDUHOoiOv11XNBEPj1tbtiwyRwiNx13z+KuYz9m7yWO+w5z17/td79S7WcO
i1TSrXr6NJGnc9Vu9Io1B0GgUj8vH+x74PsPCPYfsP4Egv0JrH+BYP8C628g
2N/A+h8I9j+w/giC/REa6XF9/wwo5vslkmKXntF2LqYdlEY4ZP02h/++DpYn
9i6mKvc3LEn8ZA5Z9X3yH/Ut5vsfbk6f377frpieczVOSTpoDsJjibN+dC2m
JqFxm794m0OLR1bpiW7FfP/DgYRlrw16FtMvygEnf5mYw993hyvfmhbTyZLO
Y+/VmMFnwX49W4tivr9h+a3BR7w6FtNG2ZMds6PM4LzbaSctzWI6bNr6mU5b
zcC5p1KxpXYx38+QTtcqK+kW06iRgg9dHM1gmGVQQrc/RfROF3HFVDUzaDIa
O7y4pYjvX3jcrfDIptYiekU9pWj8S1OoHX3m8spfRdTyrMSjKdgUvHca9fpc
VsT3K1iMStM3qyii+p+HNEqnmMLusN0PrH8U8f0KHe1kOXrvi2hEwN1NIgtT
0O2m+sQms4jvV/hsd0SlS1YRdaw03mZXxO13H4e7KeIivl/BxDbdTOteEf19
puMCn6smkLjx9oKvXIz7/8f03XMP3S+itb69sjttMoGEObBc/UgR1bAdcjSv
jwk8LelSEsLFmG+o27Q1akeLaD/Nn9nlatzPt3neGDe/iHb/aO83PM4YLvye
viuUizG/jU6N2DdvchGduWr0pq2hxjD3rpNltmsRlU85JRJvNoa8mcfLo0cU
8f0JKZ4B168M5uK9U9a3+RiDeuPWgrauRXTF/sXeHwcZg1/YuPDQLkV8v8Jl
rZXmUyyLaOD0iyM/9zOG9jgTZYlyES3dr3Rw9x8jCPIPNe6gWsT3LziGCy8b
cdenjJv6UKvJCFBvvKgfd7yNy//hxr6qNSWFXFEd72H5gqsn0ePEz7kY60X/
jUdmRhYW0sOvB21SfWYE9T3+q+iWWki3VHWy63HECPqoNR45kVLI9zuUZ42N
uBtXSD96vfLfO90IDC1ut4y6Vcj3O6w7l2MiCC2ksX8G2GkNNwJr76wVloe4
v+/c0du7qxGMmNz+bFVgId//4BEX2792TSF9HWhiNFDFCIpqBN1avAvpXe2d
Rx5UGcKmWzGrAxYU8v0QEZ3XHlk8tJDWuMovx73k6vEbl9uzBhXSQx3o0zOJ
hrB9ktcTmWMh3x/xXNZVUqZeSCc+i97csN8QXFLWDyKiQtraoT1h+z5DiJzZ
ZKOqWsj3SySGdxV0yS+gtlM+Tns0yRACts782DWzgJbOUYsVjDCE7p9Pv3qf
VsD3T9wMik1cfq+Aantq5nfqxH3+uRjXpccLqHdgYocLSoZgW7D378hjBXw/
Rdz7HSObtxdQ9x/mdwdXGMBxn9v9HroV0L3uEGb03AASZg+4rsPFiHd6LTpo
nQ0F1M9Q7NQ30QBQDy7Zu+Hws0gD2KUaGKiqWsD3W2xa/ithya18mnnrQcS7
KQZwfmu1+u89+Xy/xWb7SOfEUfn0SoGJVtRAA8jLDHJ8UPGT77f41GHn5IJb
P2mPyX23/azVh12pG7fecf3J91t0uNj4svBMHm0y/zsw+6Y+OL+lF9ZsyeP7
LZoHm1UOWJBHn9GrxVEh+oB6dODDtFHDV+mD1kj/TV/O/eD7LxbnnwkacvgH
/Xqt7fQZDq8e7Z15ergsl5Kp6qvXOemDYXtvtScpuXw/Rtagw+v95+bSzot/
dR9kqA83jmittXLIpWnGrfZdRPrQM+FmgvO373x/xl/zIP9Ta77TpSueXql6
oAfDGnyvH5N8o8Uh4ZuOBuhBm6zNMenFN74fA/Xwg0GTOzTZ6cHzhBnXk8Vf
aZR5d+skVT04+9j8dLrjV7oid2FO5jdd2NzLzu3C9C98v8Vwh5BU2+rPtE/1
z0WBs3WhMmtUr17fP/H9FqinT3YqU+vVogPxCxpXdojNoRtW5HyiHJ+5UNxX
Robl8P0WIp1Ku9RtH+nI0qV7BGt1YItFmsnFjGw6b+zjShjDXY+IurHFK5vv
t0i5mS/565JNR4/8HfRfNx1Aff7kUxnRMdaBO527+Fn1zeL7LXJ9JBk3qt7T
Xs7n4+RntAH1+do3alevLtWGMXXyT6bSd3y/RY8/MS7T/FPojedtyovMtAH1
+vj8yZtPlWuB3/JlRrPfveL7LU5e6fv5Yq6Y9iqb7bUkRgtQv1drS71w5oQW
TGn2Wfv+8iP6O2zOONe9WmATUbN+aXEsvX3xVWEHb/z5WPqy65SDXzl+GxTe
+DY8Mpam1LzITuZio33NnZLbYvj+DaWtH+K2ft9FZatNDqlN4WL2z2NDbtiW
Sfx1gtfZ7/P8mf19gn+ffT4Rv604kbuQvz+C98fun+D9o1/gkXK3Xe+UFqzW
qbx0s/0ZkY1fqloSqgXmU0wtB2eKib3r98d9Y/nnxfNz9jwJPk/2vAk+b/Y+
eH6OfgO+L/Y+Cb5P9r55fs7WA8H1wNYLwfXC1hPPz9l6I/x6+7ceCa5Htl55
fs7WM8H1jH4Grne2H3h+zvYLwf3C9hPPx9l+I7jf7ry0vjj4zFeef7P9SXB/
oj+C+5ftb55/s/1PcP+z/EAwP3wY064z++V3nm//012+k4Y5BbFHG/Qw3xDM
NywfEcxHLF/xfJzlM4L5jOU7gvmO5UOen6Nfg/mS5VOC+ZTlW56vs3xMMB+z
fM3zdZbPCeZzlu95vs7qAcF6wOoFz9dZPSFYT1i94fk6+kVYj1i9IlivWD3j
+TurdwTrHauHBOshq5c8n2f1lGA9ZfWWYL1l9Zjn96xeE6zXrJ4TrOes3vN8
n+EBgniA4QWCeIHhif/H///hDYJ4g+ERgniE4RVeD2B4hiCeYXiHIN5heIjX
BxheIoiXGJ4iiKcY3uL1giPzXwXPii4kZIJs29EZRgCVHVUW0ULi4enQx2M3
j994/YDhO4L4juE/gviP4UNeTwgcMfXv0V+FpPuCAWMrxTy+JIgvGR7l9QWG
VwniVYZnCeLZ4ftXLojqXsTrDQwPE8TDDC8TxMsMT/P6A8PbBPE2w+ME8TjD
67wewfA8QTzP8D5BvM/4AK8/ML5AkC8wPkGQTzC+wesNjI8Q5COMvxDkL4zf
8PoC4z8E+Q/jSwT5EuNTvJ7A+BZBvsX4GEE+xvgarx8wPkeQzzG+R5DvMT7I
6wWMLxLki4xPEuSTjG/y+gDjowT5KOOrBPkq47M8/2d8lyDfZXyYIB9mfJnn
84xPE+TTjG8T5NuMj/P8fMP+N/bibBnPzy+Hzq7JzJLR6Ge3GjXNLGDZixMq
19JkdOC6+Md2EnNY3CejZdZbGX+eYXH3LVe8UmQ0oVtfzfh8c+gw1jZv/UsZ
7fq9ZMO6BHMoj/V9HfZcxvP5oH2dVtVSGa3M8fjmddMc6gZ9Fzg/ltGpl84P
vbPNHCyapVcTE2QU9Yx0H+e8rYkyeq7H+OcaG8yhaMR136q7MpphMz28Ypg5
jATtlBt3ZDz/r9s827WFi9MrtHonupjDFPO61GPXZbSs7E5DF1VzIJX3WhZx
MeovP2Mq96zm4vcl684v52LsF/Q8v6PoxW8zEHeuHGR+QUaNTgxefSTNDMxt
PrsODJfx+oFJ4pSxLiEyus2xV4X+GTPw7vwgd9VxGX8+YkHMxT2Hg2W0+6VV
Pv8FmUH0MPPVp/fLeD0hwMKgbPVWGZ27Wv1Afi8zuHRNZc0jPxl/PqKzds9+
2VtkNCvZS7+3gRmYyncfzVsl4/WFaK+gjQ98ZPRIvyFLbj0xBZc362qFC2X8
+YhlVRYzBPNltPOH2Pn6501h6N4mX+fpMl5v6JLmtbHHeO59WM9avnyCKcQ0
fTZc7i7j9Yb2Utc7fUfJ6LArQr9GS1PwCbj4O9xVxusNo2pGvXziLKO5MWvP
WRaYwIbTQ8rS+8t4vcEj2VXVvq+MasXMyvxwzQSerwka19hdxusNb2MOJk/t
wq0fHXuLnI0mENDYZ52uhYw/H6HSQ9Sj0EBGG6flfg/tZwIk6twxfR0Zrz8k
LB256om6jG7uP+XBGYEJJH/aXyJRkvHnI9ZNN5mv1Cyl4xrq+g59YAzw9+6j
GJmU1yPmJTVtvdsgpYH94iWbzhuDe3KUjUuelO7I71503cUY7CI3FG3OlfL6
wtL9H9YUfpPSYemZzfv6GsOuO/5OPV5I6evKymXPuHzvo+/wVZ2LMf/n22nG
1ImlNDfuZPX350Z8v+QPg921NYlGED+mR8yl+1JeH3B32uOozMWN051tRuwz
gqfLHC27R0lpF99vU22mGYFScFzkkytSXi8YHvLHb3mElN7b/OPprVFGkHF5
aMn2M1L6dX2+tXdnI9j49EPz1RNSXi9Itr9XceK4lE5akv1NWWQEx78mtNwP
lNIlMYe9rpQZgmfa0KY5e6W8XpCY4/9myy4p9TCbcNI91RBuf7PLfO7H3b+j
U1XVfUMoP3Ij6ed6Ka8XDAxVL5ywVEoTx7uVf9phCKNVgtfYLpTy+oCrC5k7
fJ6Ulr44/ufsBEOYkKq00mmOlK5LDRFFuxmCtNt+HzJJyusDeT77zH08pDS5
yn9+PwND6Fau3FLqLqWecveSY3rc3w+a7K41TMrrA+Ea7joPBkvpZ82swtJc
A/hRMdFilbOUHqKLa1w/GMDs0YvsD/ST8vqA8tKva9J6Sem2HU5Hbl83ALvl
g37ss5LS78tuXM46aQBjRy06eKmDlNcHrqrviI4yldLjnU63BmwwAB1hSrG1
jpTqmRsvcptuAKEDC1Td1KW8XpARajnWWSClyspO59a6GsDaZ1pDhjZL6LXg
NU/CTAxgutahpcsaJbx+MDDkuHy9VEJ7jI9Ys0ZkACoPO4K4SELVTf4bmvpZ
H3RSF/SpKpTwekL8nqFbx3Lxq9k73wdk6wP2q6pJltcvSdKHafY7HoVnSHh9
Ye7LiHPz0yV0XmHk9Ofn9ME64MKhqU8l1OdWwgTLFfoQvHWvUuQjCa8vRM0b
b2kdL6GrJn8ZtHO2PtjvHZCRcENC8yQWbSc5PH7i4kGNrpESXl/oeDxCZHtR
QoW/Hj7QsdCHNbd8Q2JOSeiRAR+Cuynpw55Xr/rpHJPw+oKyp8BgVYCE/hlp
W/cpTg/+ZB+Tdd0toe/yb9TeOKcH0Y/TNRb6Snh94c6DE1XXV0poldIgXyV7
PQgQXvTWWCDhz3es/7D3z7jJEnrzis7K1jhdaNv46qPMTcLrC1UPxEZjiIS+
jBy+vMxLF67lztyobifh9QXvHa7eFWYSatbhWDfV+zowf+KcLt2NJbyeYDNm
qP9pfQntsLNHkl+IDpywjLN7+ruBRv+dfUxkrwMhW59d7crFyP/uKxen721u
oJPvF5++YIN6QgO9/P1Y/UMTHcgvPb91WEEDjc8KffHtpTZYPTx5mvxs4PUF
qxfPNB98b6Br8te1XYrVhv79Vqz1TG6gIjpi7FJPbWhPKnSPeNnA6wuRQtPC
UU8a6E2j26v322jDJTlcirjdQMdWLYtfINeCa4Lo1oJrDby+YCe75+EV2kAr
wrWi+l7XgsH9N30uP9jA6wETGyfHjtzGXdfd5zS6jxZ4/reo39nlDfx5jv1/
tg/fPLmBaowwul4TrgmHH6x3fjamgT/P8fD6Fxud4dzPfyvYbuatCWczaN+e
PRr48xwqtwxSX1o10D0V0+2/tmoA9g9r1Ph2sXuuAa1VkBKu2kB3znnvIArT
AMMzZ91Xt9fTMXEv70Yc04A1W1dOMMqv5893bN/06I9xcj2Nf/Tw8t5sdbhn
avno6Y16qn325pr27epQuvFO3YpT9fz5Drl94OGEgHq6pnXdzzIddeg/LPTB
ghH19OX4QxsOLRLB2ReDgpuG1vPnM0xybXv8+K+efhz73FR7ggiwv1gte2GY
V1cRHNsTb/LMoJ4/nzErx6e6RrOeTrZp06/KEcJ/qq6rZ/+sowfmLjfueEwI
K6xC9nu/q+PPZ0SFBK2QXK6jqZth8NFRQphtkna4d3Ad3XrDJGSEnRB6aJoO
eLGyjj+vca4xxbfetY6WQJlZbKYApm72rZpjVUftd6eHK8cJgNZP2nlftY4/
v+FLR3klVNTS8gUWVmc3CKAhz95XfK6WGlYdeZHQSQAG6+zc1E7X8uc59rz7
bbHiRC2NsBva+NpYANj/3PH05FXf1QUg06gJ8epdy5/vuF04d6uzai3d+WzZ
gbsBapBkmntU60cNPdh23Wuapxr8PGAXvCa+hj/vsblPzdkL22uo8RHHy0HK
arBotPMLvwU1tGTZurDcclVY/f1+n7eDavjzHwtdN72rt+B+3nyRicENVcD+
6i62WXf3z1CFio3l7bp3q/nzIH1WzY8XRFfTD/uCwsLcVWG34OihPI9q+lK9
vWp8owrscFSZHtmnmj//oXe2szCqoIoKL6fdnx+pAqMvn3QzO1/Fn/co+9Lv
csaGKmrZ5F99cLQKRBmaqr6QVfLnO7B/O355/OHcWmWI0VrqkL63knbLSJ9A
w5XhV2Bz0pzplfz5jvIBdnC9ooJKyje4fSLKEPnBZZL5lQr+PMcZ+Hql6/YK
mu9jOPhKkxJgf/eNQ7Pzvr1SAp3r1zW188v58xzKS8u+m68vp9uS6u3DpivB
vQWT30YZlfPnN7C/+2CkicvTk+1k84aBCSFDy2hPl127fvm2E+cDtQ4m9mX8
+Y2sxPRNI1t/0ddzmxzKhraTMet10g3IL/68Rnb236e3Wkvpoon5IvdxbXw/
uFi1x4m2ylYS3OuDpe20Utrids7z2ZNWMqvziAb1AaX8+Y3N2jckbyJK6C6/
98297FpJls2K7cnBJfRJQplrQddWkvAx+c9G9RL+/Ab2jw/PKtU8EvCXeMal
TjvqVEx9V+7NiTP/S14UNWY9f17En+dAP+fxr9vmu6a1kGsDj/kVniukQ2uL
J/p2bCFjpM+XWbgV8uc30B9oo100l0z5Qx7r5d148CafBh9p6re8zx8ybOW4
Lg498vnzG6jPry6Sznvl+5tY9doVP1nlB4048rHxzqTfJOtBSt5Os1z+vAbq
4xNjVq3Toc3EWPbNaf/vL3TST/CZHNhMqg9dPXhT9TN/XgP17v0JZf7+vZvJ
/vmXRoT8yKGOj78fj9BvJo+Gl3tqbvxIs0P2Rl340cT3kzcPbDftG91EYnd1
stx/I4M/z7G1OGWeuyCDPnsX6FoyvonvJ/ezs+y52aOJzKxM8Ujpmk57dRq7
z2tkE7EJmPem351kejHUN77NoOn/9ZdHt0780SInOdlP9ixqe0GfZfcrsSuS
k4zL2hnji1/QgnUh2v6Fcr7fPPl2WsXdVDkxNvUY90SaSG8/vx8vT5KTCA9v
n1nr4mhQhqQo/b6c7z9PfFxm1y1aTl527pbdqnKdms5t2jDlupw4Cnokjex1
iKoVWNfWRsj5fvTDJd6V7y7z1wleZ79P8PdRj7Zb7+e49yb/+QQ/n90fwfvj
9ei/lbuskvnvR/D7se9P8Puj/ozPhz0/gs+PPV+Czxf1Z3z+7P0QfD/s/fH9
uag/4/tl75/g+2frg+D6QP0Y1w9bX3z/Llt/BNcf6r+4Ptn65ft32fomuL5R
b8X1z/YH38+rn7O8kzPNJ/5hOZmifvz+Iri/2P7j+3nZ/iS4P1Evw/3L9jfB
/e23cGk/W9tistzIcblPJz4/EMwPLH/w/b4svxDMLyz/EMw/LD/x/b/YL4/5
7M0uv6Muar/IyuYrXZTc2zAf8v3ALF8SzJcsnxLMpyzfEsy3HQSdtlPrcr4/
mOVvgvmb5Xe+Pxj76TH/s/pAsD6w+sH3B7P6QrC+sPrD9wez+kSwPmH/PdYv
Vt/4/mBW/wjWP1Yf+X5gVj8J1k9WX/n+3wGj1uxeOqmamD52u1MpVcF6Tfjz
m6yfH+s5q/cE6z3DA3z/L8MLBPECwxME8QTDG3w/MMMjBPEIwysE8QrDM3x/
MJ4XQLzjv0xzXFpILfER/V5ebczjJYJ4ieEpgniK4S2CeIvhMb6fmOE1gniN
4TmCeI7hPb6/mOFBgniQ4UWCeJHhSb7fmOFNgniT4VGCeJThVb7fGM83IJ4t
nTc/x/i/erI6qCddN4HHw3z/McPLBPEyw9ME8TTD23z/MMPjBPE4w+sE8TrD
83y/MMP7BPE+4wME+QCef0C+wPgF3y/M+AdB/sH4Cd8vzPgLQf7C+A3fL8z4
D0H+w/gR73cy/kSQPzF+xfuRjH8R5F+MnxHkZ4y/8X4k43cE+R3jfwT5H+OH
vB/J+CNB/ojnNZBfMv5JkH8yfsr7k4y/EuSvjN8S5LeM//L+JOPHBPkx48+8
H8n4NUF+zfg370cyfk6QnzM+T5DPM77P+41MDyCoBzC9gKBewPQE3m9kegNB
vYHpEQT1CKZX8P4i0zMI6hlM7yCodzA9hPcXmV5CUC9hegpBPYXpLby/iOdT
UI9Jazi1wb1QQnYlLZt8IJvXc3i/kek9BPUepgcR1IOYXsT7j41lH8hHNSnx
s022OOhqAA6llSljtaXka6anp/50Xr/i/UambxHUt5j+RVD/YvoY7zcy/Yyg
fsb0NYL6GtPfeL+R6XME9Tmm3xHU75i+x/uNTP8jqP8xfZCgPsj0Q95vnDO7
a9r55VJS6ym2HbnDENzPfn6vsUZKVurbztx+hNcjeb+R6ZUE9UqmZxLUM5ne
yfuNTA8lqIcyvZSgXsr0VN5vZHorQb2V6bEE9Vim1/J+I9NzCeq5TO8lqPcy
PZj3G/E8EerFf+0v+P0RS8lph7UuX5/zejPvNzI9mqAezfRqgno107N5/5Dp
3QT1bqaHE9TDmV7O+4FMTyeopzO9ne9PZno8QT2e6fW8P8j0fIJ6PtP7+f5k
5gcQ9AOYX8D7hcxPIOgnML+B709mfgRBP4L5Fbx/yPwMgn4G8zv4/mTmhxD0
Q5hfwvuJzE8h6Kcwv4XvT2Z+DEE/hvk1vL/I/ByCfg7ze/j+ZOYHEfSDmF/E
+43MTyLoJzG/ie9PZn4UQT+K+VW8/8j8LIJ+Fp6/Qr+L+WEE/TDml/H9ysxP
I+inMb+NoN/G/Djev2R+HUG/jvl5BP085vfx/cvMDyToBzK/kKBfyPxE3u9k
fiNBv5H5kQT9yEf3XDIbUmV8/zLzMwn6mczvJOh3Mj+U90fZ/FxQmJ8LCvNz
AefnRkaoRWa8FoDC/FzA+bnzbsXpBHPxSPdv0cfm8vNxQWE+LijMxwWF+big
MB8XcD4um4cLCvNwAdfPKqI68vBHAZfX1mzRd+B+3zml8yIuPjfCLOmdyAwc
TiUG7c8RgMJ8W1CYbwsK821BYb4tKMy3BZxv22XAnff7fgpAYb4tKMy3BZxv
675OJWdYsQAU5tuCwnxbwPm2gVMXlBf/EoDCfFvA+baBFVevnufiAbJvOnU5
/PxaUJhfCzi/tvj6dfWfdQKYV1I98vZifj4tKMynBZxPy+bRgsI8WlCYRwsK
82gB59HOC13RP/KvABTmzwLOn2XzZkFh3iwozJsFhXmzoDBvFhTmzYLCvFlQ
mDcLCvNmQWHeLOC82X67+gY/MhWCwrxZUJg3CwrzZkFh3iwozJsFnDcba/X7
7M2eQlCYNwsK82ZBYd4sKMybBYV5s4DzZlvGp3vt4mKFebOgMG8WFObNgsK8
WVCYNws4b9b9qH3nvR5CUJg3CwrzZkFh3iwozJsFhXmzgPNmx43xiPrFxQrz
ZkFh3iwozJsFhXmzoDBvFhTmzYLCvFlQmDcLCvNmQWHeLCjMmwWFebOgMG8W
FObNgsK8WVCYNwsK82YB+faBzgO2934nhA2Lthw826YG2T6nTT58FQLy/W/K
n1vHVQpBtP5Vrk9fNUjo2Gr7u0YIqDf8GHZbsKGeW0/vnC0nzFGFE9ufy7+r
iQD1jRfWY/IOdBKB1pmz6udsVeC8Y9aFW51FoDAPFhTmwYLCPFhQmAcLCvNg
AefBRs19vtvGTQSoD7H5sKAwHxYU5sOCwnxYUJgPCwrzYUFhPiyg3uWZ61J+
JUAEkUHGXaF3G/nRadLQwwdF0PKhZ10v5TZS++H1G8kpEaCeNsb0bbRdmAje
lg3MugWtRMN/7ZmwCBHA5oy0A5qtZG/u+Sm3o0WgME8WFObJAs6TxXPNz/Ls
32adaCGvdTYXXigUgcJ8WcD5sr9iO2ZEqqkD6pNs3iwozJsFhXmzoDBvFhTm
zYLCvFlQmDcLCvNmAefN7nrraXTxpzpkXnv8MzZTTq6dcdUeqKwBBa8fy/vE
8fNnAefP/h80zx1X
"], {{}, {},
TagBox[
TooltipBox[
{RGBColor[0, 0, 1], Thickness[Large],
LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,
69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,
102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,
116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142,
143, 144, 145, 146, 147, 148, 149}], LineBox[CompressedData["
1:eJwl1NOyGAYABNAb27Zt27bR2LadxrZtO2kb27Zt2+7p9OHMfsDObqJG7Su3
CxQQEBAlcEDAVDmN6cxgJrOYzRzmMo/5LGAhi1jMEpayjOWsYCWrWM0a1rKO
9WxgI5v4i7/5h81sYSvb2M4OdrKL3exhL/vYzwEOcojDHOEoxzjOCU5yitOc
4SznOM8FLnKJy1zhKte4zg1ucovb3OEu97jPAx7yiMc84SnPeM4LXvKK17zh
Le94zwc+8onPfOEr3/jOD37yi98EKCwQgQlCUIIRnBCEJBShCUNYwhGeCEQk
EpGJQlSiEZ0YxCQWsYlDXOIRnwQkJBGJSUJSkpGcFKQkFalJQ1rSkZ4MZCQT
mclCVrKRnRzkJBe5yUNe8pGfAhSkEIUpQlGKUZwSlKQUpSlDWcpRngpUpBKV
qUJVqlGdGtTkD2pRmzrUpR71aUBDGtGYJjSlGc1pQUta0Zo2tOW/obWnAx3p
RGe60JVudKcHPelFb/rQl370508GMJBBDGYIQxnGcEYwklGMZgxjGcd4JjCR
SUxmClOZxnRmMJNZzGYOc5nHfBawkEUsZglLWcZyVrCSVaxmDWtZx3o2sJFN
/MXf/MNmtrCVbWxnBzvZxW72sJd97OcABznEYY5wlGMc5wQnOcVpznCWc5zn
Ahe5xGWucJVrXOcGN7nFbe5wl3vc5wEPecRjnvCUZzznBS95xWve8JZ3vOcD
H/nEZ77wlW985wc/+cVvAnx1IAIThKAEIzghCEkoQhOGsIQjPBGISCQiB/7/
96MSjejEICaxiE0c4hKP+CQgIYlITBKSkozkpCAlqUhNGtKSjvRkICOZyEwW
spKN7OQgJ7nITR7yko/8FKAghShMEYpSjOKUoCSlKE0ZylKO8lSgIpWoTBWq
Uo3q1KAmf1CL2tShLvWoTwMa0ojGNKEpzWhOC1rSita0oS3taE8HOtKJznSh
K93oTg960ove9KEv/ejPnwxgIIMYzBCGMozhjGAkoxjNGMYyjvFMYCKTmMwU
pjKN6cxgJrOYzRzmMo/5LGAhi1jMEpayjOX8C9QXDvc=
"]], LineBox[CompressedData["
1:eJwNw0OQHAAAALC92rZt27Z7tW3btm33V9u2bdu2kcwkefMuwZ2DAoHAT1eE
CARWusrVrnGt61zvBje6yc1ucavb3O4Od7rL3e5xr/vc7wEPesjDHvGoxzzu
CU96ytOe8aznPO8FL3rJy17xqte87g1vesvb3vGu97zvAx/6yMc+8anPfO4L
X/rK177xre987wc/+snPfvGr3/zuD3/6y9/+8a//DIQMBIIMYUhDGdowhjWc
4Y1gRCMZ2ShGNZrRjWFMYxnbOMY1nvFNYEITmdgkJjWZyU1hSlOZ2jSmNZ3p
zWBGM5nZLGY1m9nNYU5zmds85jWf+S1gQQtZ2CIWtZjFLWFJS1naMpa1nOWt
YEUrWdkqVrWa1Q22hjWtZW3rWNd61reBDW1kY5vY1GY2t4UtbWVr29jWdra3
gx3tZGe72NVudreHPe1lb/vY1372d4ADHeRghzjUYQ53hCMd5WjHONZxjneC
E53kZKc41WlOd4YzneVs5zjXec53gQtd5GKXuNRlLvc//HKA5A==
"]], LineBox[CompressedData["
1:eJwN0+OD0AcAgOFf3V22XZdt2+Zl12XdpXnVzBpqqC1sy7Zt67Jt27Xnw/P+
B294ZHREVKwgCGJkckgQTGEq05jODGYyi9nMYS7zmM8CFrKIxSxhKctYzgpW
sorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEOEsMhDnOEoxzjOCc4
ySlOc4aznOM8F7jIJS5zhatc4zo3uMktbnOHu9zjPg94yCMe84SnPOM5L3jJ
K17zhre8IwgNgljEJoRQwohDXOIRnwQkJBGJSUJSkpGcFKQkFalJQ1rSkZ4M
ZCQTmclCVrIRTnZykJNc5CYPeclHfgpQkEIUpghFKUZxSlCSUpSmDGUpR3kq
UJFKVKYKValGdWpQk1rUpg51qUd9GtCQRjSmCU1pRgTNaUFLWtGaNrSlHe3p
QEc60ZkudCWSbnSnBz3pRW/60Jd+9GcAUUQzkEEMZghDeY/3+YAP+YiP+YRP
GcZwRvAZn/MFX/IVX/MN3/Id3/MDPzKSUfzEz/zCr4xmDL/xO3/wJ2MZx1/8
zXgmMJFJ/MO//MdkpjCVaUxnBjOZxWzmMJd5zGcBC1nEYpawlGUsZwUrWcVq
1rCWdaxnAxvZxGa2sJVtbGcHO9nFbvawl33s5wAHieEQhznCUY5xnBOc5BSn
OcNZznGeC1zkEpe5wlWucZ0b3OQWt7nDXe5xnwc85BGPecJTnvGcF7zkFa95
w1veEYT5n9iEEEoYcYhLPOKTgIQkIjFJSEoykpOClKQiNWlISzrSk4GMZCIz
WchKNsLJTg5ykovc5CEv+chPAQpSiMIUoSjFKE4JSlKK0pShLOUoTwUqUonK
VKEq1ahODWpSi9rUoS71qE8DGtKIxjShKc2IoDktaEkrWtOGtrSjPR3oSCc6
04WuRNKN7vSgJ73oTR/60o/+DCCKaAYyiMEMYSj/A34L79Y=
"]], LineBox[CompressedData["
1:eJwNw+c21wEAANCfDx6kV/IIHoBPmS3K+FuVRDRkNOyMKGWTmRFCQ7KFkB3O
ce8590pkdERUWBAEIa+GB0GMscYZb4KJXvO6N7zpLZNM9rZ3TDHVNNMNmWGm
WWab413ved9cH5jnQ/Mt8JGFFvnYJz71mcU+t8RSyyz3hS995WsrrLTKamus
tc431ttgo02+tdkW3/neVj/40Tbb7bDTLrvtsdc+P9nvgIMOOeyInx11zHEn
/OKkU0771RlnnfOb3/3hT+f95YK/XXTJZVdcdc11N/zjpltu+9cdd93zn/se
eOiRx5546n/PPPfCS23PZ+s=
"]]},
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-",
SuperscriptBox[
RowBox[{"Cos", "[",
TagBox["x", HoldForm], "]"}], "2"]}], " ",
SuperscriptBox[
TagBox["p", HoldForm], "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"2", "-",
RowBox[{
RowBox[{"Cos", "[",
TagBox["x", HoldForm], "]"}], " ",
TagBox["p", HoldForm]}]}], ")"}], "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{
RowBox[{"Cos", "[",
TagBox["x", HoldForm], "]"}], " ",
TagBox["p", HoldForm]}]}], ")"}], "2"], " ",
RowBox[{"(",
RowBox[{
SuperscriptBox[
RowBox[{"Cos", "[",
TagBox["x", HoldForm], "]"}], "2"], "+",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"2", "-",
RowBox[{
RowBox[{"Cos", "[",
TagBox["x", HoldForm], "]"}], " ",
TagBox["p", HoldForm]}]}], ")"}], "2"], " ",
SuperscriptBox[
RowBox[{"Sin", "[",
TagBox["x", HoldForm], "]"}], "2"]}]}], ")"}]}]}],
"\[Equal]", "0"}]],
Annotation[#, -Cos[
HoldForm[$CellContext`x]]^2 HoldForm[$CellContext`p]^2 (2 - Cos[
HoldForm[$CellContext`x]] HoldForm[$CellContext`p])^2 +
4 (1 - Cos[
HoldForm[$CellContext`x]] HoldForm[$CellContext`p])^2 (Cos[
HoldForm[$CellContext`x]]^2 + (2 - Cos[
HoldForm[$CellContext`x]] HoldForm[$CellContext`p])^2 Sin[
HoldForm[$CellContext`x]]^2) == 0, "Tooltip"]& ]}], {}},
AspectRatio->1,
AxesLabel->{None, None},
AxesOrigin->{0., 0.},
DisplayFunction->Identity,
Frame->True,
FrameLabel->{{
FormBox["\"p\"", TraditionalForm], None}, {
FormBox["\"x\"", TraditionalForm], None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "GridLinesInFront" ->
True},
PlotRange->
NCache[{{-Pi, Pi}, {0, 2 Pi}}, {{-3.141592653589793, 3.141592653589793}, {
0, 6.283185307179586}}],
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.8160033043854866`*^9, 3.816013383161358*^9, {3.816017710889266*^9,
3.8160177234834456`*^9}, {3.8294072338945036`*^9, 3.8294072613776097`*^9}},
CellLabel->"Out[12]=",ExpressionUUID->"704e6fc6-aa12-4483-a477-e3abdb405810"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Clear", "[",
RowBox[{"p", ",", "equ", ",", "h"}], "]"}], "\n",
RowBox[{
RowBox[{"equ", "[",
RowBox[{"p_", ",", "x_"}], "]"}], ":=",
RowBox[{
RowBox[{"4", " ",
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"p", " ",
RowBox[{"Cos", "[", "x", "]"}]}]}], ")"}], "^", "2"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"Cos", "[", "x", "]"}], "^", "2"}], "+",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"2", "-",
RowBox[{"p", " ",
RowBox[{"Cos", "[", "x", "]"}]}]}], ")"}], "^", "2"}], " ",
RowBox[{
RowBox[{"Sin", "[", "x", "]"}], "^", "2"}]}]}], ")"}]}], "-",
RowBox[{
RowBox[{"p", "^", "2"}], " ",
RowBox[{
RowBox[{"Cos", "[", "x", "]"}], "^", "2"}], " ",
RowBox[{
RowBox[{"(",
RowBox[{"2", "-",
RowBox[{"p", " ",
RowBox[{"Cos", "[", "x", "]"}]}]}], ")"}], "^", "2"}]}]}]}], "\n",
RowBox[{
RowBox[{"h", "[",
RowBox[{"p_", ",", "x_"}], "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
RowBox[{"Cos", "[", "x", "]"}]}], "-",
RowBox[{"2", " ",
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"p", " ",
RowBox[{"Cos", "[", "x", "]"}]}]}], ")"}], "/",
RowBox[{"(",
RowBox[{"p", " ",
RowBox[{"(",
RowBox[{"2", "-",
RowBox[{"p", " ",
RowBox[{"Cos", "[", "x", "]"}]}]}], ")"}]}], ")"}]}]}], "-",
RowBox[{"p", " ",
RowBox[{
RowBox[{"Sin", "[", "x", "]"}], "^", "2"}], " ",
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"p", " ",
RowBox[{"Cos", "[", "x", "]"}]}]}], ")"}], "^", "2"}]}], ")"}],
"/",
RowBox[{
RowBox[{"(",
RowBox[{"p", " ",
RowBox[{"Cos", "[", "x", "]"}]}], ")"}], "^",
"2"}]}]}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"dx", "=", "0.01"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{"2", " ",
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"p", " ",
RowBox[{"Cos", "[", "x", "]"}]}]}], ")"}], "/",
RowBox[{"(",
RowBox[{"p", " ",
RowBox[{"Cos", "[", "x", "]"}]}], ")"}]}]}], ")"}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"(*",
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"2", " ",
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"p", " ",
RowBox[{"Cos", "[", "x", "]"}]}]}], ")"}], "/",
RowBox[{"(",
RowBox[{"p", " ",
RowBox[{"Cos", "[", "x", "]"}]}], ")"}]}]}]}], ")"}], "^",
"2"}]}], ")"}], "\[Equal]",
RowBox[{"2",
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"p", " ",
RowBox[{"Cos", "[", "x", "]"}]}]}], ")"}], "^", "2"}]}], ")"}],
"/",
RowBox[{
RowBox[{"(",
RowBox[{"p", " ",
RowBox[{"Cos", "[", "x", "]"}]}], ")"}], "^", "2"}]}]}]}],
"*)"}]}]}], "Input",
CellChangeTimes->{{3.815993761266163*^9, 3.8159937891923466`*^9}, {
3.815994332159029*^9, 3.8159943351091566`*^9}, {3.815994395729149*^9,
3.8159944016765914`*^9}, {3.8159944957968087`*^9, 3.8159945170591326`*^9}, {
3.815994547840782*^9, 3.815994578779073*^9}, {3.815995265910911*^9,
3.8159954488696723`*^9}, {3.8159962168496056`*^9, 3.8159962215192876`*^9}, {
3.8159962657319*^9, 3.815996280479478*^9}, {3.8159964830395575`*^9,
3.815996493388212*^9}, {3.8160128992860994`*^9, 3.816012905347386*^9}},
CellLabel->"In[13]:=",ExpressionUUID->"5df9c0d2-32f1-4277-a2d0-1f48bdaf4311"],
Cell[BoxData["0.01`"], "Output",
CellChangeTimes->{
3.816012949848409*^9, 3.8160133883466682`*^9, {3.829407237877097*^9,
3.829407265372607*^9}},
CellLabel->"Out[16]=",ExpressionUUID->"97ad0641-08d9-4750-8935-3a86046e03f6"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"x", "=",
RowBox[{
RowBox[{"-", "Pi"}], "/", "2"}]}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"Sols1plus", "=",
RowBox[{"{", "}"}]}], ";"}], "\n"}], "\n",
RowBox[{
RowBox[{"While", "[",
RowBox[{
RowBox[{"x", "<",
RowBox[{"Pi", "/", "2"}]}], ",",
RowBox[{
RowBox[{"sol", "=",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"equ", "[",
RowBox[{"p", ",", "x"}], "]"}], "\[Equal]", "0"}], ",",
RowBox[{"p", ">",
RowBox[{"2", "-",
RowBox[{"Sqrt", "[", "2", "]"}]}]}]}], "}"}], ",", "p", ",",
"Reals"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"If", "[",
RowBox[{
RowBox[{"sol", "\[NotEqual]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"AppendTo", "[",
RowBox[{"Sols1plus", ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{
RowBox[{"Flatten", "[",
RowBox[{"p", "/.", "sol"}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}], "}"}]}], "]"}]}], "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"x", "+=", "dx"}]}]}], "]"}], "\[IndentingNewLine]"}], "\n",
RowBox[{
RowBox[{"par1plus", "=",
RowBox[{"{", "}"}]}], ";"}], "\n",
RowBox[{"For", "[",
RowBox[{
RowBox[{"k", "=", "1"}], ",",
RowBox[{"k", "\[LessEqual]",
RowBox[{"Length", "[", "Sols1plus", "]"}]}], ",",
RowBox[{"k", "++"}], ",",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"xx", ",", "pp"}], "}"}], "=",
RowBox[{"Sols1plus", "[",
RowBox[{"[", "k", "]"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"Max", "[",
RowBox[{"pp", ",",
RowBox[{"Abs", "[",
RowBox[{"h", "[",
RowBox[{"pp", ",", "xx"}], "]"}], "]"}]}], "]"}], "<", "5"}], ",",
RowBox[{"AppendTo", "[",
RowBox[{"par1plus", ",",
RowBox[{"{",
RowBox[{"pp", ",",
RowBox[{"h", "[",
RowBox[{"pp", ",", "xx"}], "]"}]}], "}"}]}], "]"}]}], "]"}]}]}],
"]"}], "\n",
RowBox[{
RowBox[{"ListLinePlot", "[",
RowBox[{"par1plus", ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Thick", ",", "Blue"}], "}"}]}]}], "]"}],
RowBox[{"(*",
RowBox[{
RowBox[{",",
RowBox[{"AxesStyle", "\[Rule]", "Black"}], ",",
RowBox[{"ImageSize", "\[Rule]", "Full"}]}], "]"}], "*)"}]}]}], "Input",
CellChangeTimes->{
3.815997010936965*^9, {3.8159970613680415`*^9, 3.8159970892486115`*^9}, {
3.8159978282174644`*^9, 3.815997852095396*^9}, {3.8160020167887774`*^9,
3.816002024277196*^9}, {3.8160020682023215`*^9, 3.8160020780826874`*^9},
3.816002142057586*^9, {3.8160022015976324`*^9, 3.816002214880307*^9}, {
3.8160029241982837`*^9, 3.816003014501441*^9}, {3.816003753701867*^9,
3.816003756760462*^9}, {3.816003793156576*^9, 3.816003793899753*^9}, {
3.8160038507214727`*^9, 3.816003851024742*^9}, {3.8160042362659984`*^9,
3.8160042444457703`*^9}, {3.8160128201675835`*^9, 3.816012823667835*^9}, {
3.8160129136555424`*^9, 3.8160130247959504`*^9}, {3.816013064745861*^9,
3.8160131291149626`*^9}, {3.8160131831893344`*^9, 3.816013189066864*^9}, {
3.8160132734759035`*^9, 3.816013279357472*^9}, {3.816019325842639*^9,
3.81601935879711*^9}},
CellLabel->"In[29]:=",ExpressionUUID->"9ee79775-3ca6-4449-808c-c0bb34549183"],
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
{RGBColor[0, 0, 1], PointSize[
NCache[
Rational[1, 72], 0.013888888888888888`]], Thickness[Large],
LineBox[CompressedData["
1:eJwd1nk0Ve0XB/C6SedOXEMyNUpokKRUZEuiFymlCSlCSJQhpahUkjKlSUka
eEslIsm4SRGJJhok7x1xzfPs9/T7466zPuucu845z9n7++y5zj5bXWmTJk3q
IL+/R6mpufcN/UehxEA9/3qdHNZL3zRNKhwBN3HK0Bk/OXTfk5FqIDsC1DJ9
G43pcmj28PdmZ+9heL7e65VyviwG532cdezzEHjTq9yGD8ii5Knv4R1rh+Ch
JCvtkKIseuX7/DFPH4TE0F6RWpUMth6dEDC1BiHEK/L6l/MyqF17Jq7m3wGo
3q6QsNpEBjNTikaXLx4AJ2uvSEWaDF7+ttGp/mU/jM+dp7zqLQfHFXR2BJr2
w7xtuhdcLnEwR24v43VdH+hrpa/2tuXgq/cTSfY+fZCbt2Gz1hwO2mnR7s5i
9sH1XLPzP+ul8f43fY93qb2QsCBeTytEGqck/6lRse4F5spvxkNq0ng6tuKp
uLcHYqgxU8ZHKXTrDQuWvNsDT7+1+cw5KYWVZ/RVjK16IGn/vZkS2lIot158
0Ge0G4ykOCfO8NjYts1/rvfzbvgVfni5ewIbz1/5Hazo2g3eVwvUL+1iY1l1
/sxNM7thOCZqLs5gY/K8nLLWui4Q6vik/vnBQtlzqcY/r3aB89ExLE1koe52
odrwti7gGS7OsHJjYZXD/CLd6V1Qd1xVsEOHhQkReV0Hv3eCVTQnv3SUiSrZ
76Wi73SCRRvT9XglE1m8ieIwl04Y0yjM353AREZsVb/REnKet1/byoeJbg0O
Z//p6ACJApsbq0yZGL3h/XWrCx2g3SJYTKkwcevVPydc53UAK/uhS3IPA6mN
i938sR0S7lo0jFQx8Gtu5kZ7p3bYEfdw8+BjBi5ffCRnTKId5n+e4ht+gYH9
J5Z8Mn7SBvcvaXTdcmOgWCtQlWnbBkL1IPvZ5gy0KokIMp1ohZePz8pJajHw
e80Eq/ZpKxz+L8DEmMXAvm+yaqkOrRB+/HVlUScd3yW5azyVaoUDja7rAmvp
WN+0MLq8RAzan6J/7C6gY76iU0XrMTF4ujq42CfTkTbhuWLaMjF8WV9ucjiK
jiWx55nTxC3wVVreMfIYHcvVTe3qU1rAO6l89qP9dNQOaOkLdGmBjDdmntmb
6ci6cc27Uq0Fsn3rYtMM6VhzX03yPb8Z4u10d1xYSMeUBZUp+/9thobwI/X6
SnQ8y7f9GXWwGax/eDx+RdHR8Yi42GhZM2Sc2ZcwPkhhtmOAlPtgE4hKFFok
WijMDfcZmsAmeOWkrvjmF4VjY2uNRiOaIE/h/uCyjxS65bbIbdvRBKHJ9BSL
YgqL1Sw0RuY1QX2BxynJlxTK1wZfE3eKwG/lu/l7H1PY/99HoQqK4HL0Sz/r
RAor1H7Qz8WI4NzUZec+xlH44vPkzarOInjz4Wryj4sUFnxd7vJbTwSju6vs
PU9TuKy8fgtSIuhoSHM4EUiuZy3wLfwthB3O/pHTfCi08HAN/JQphDg5l0mM
AxTO0i927IkQQu/z693BeylsNJTwnbVfCAWTGt877qLQIPnO+k2GQniWUiv7
yIZCpaz3T4IUhKT+h0K2W1IolGl8e69LAEeSu7jOGyjMzyptK6gSwGGTdr0P
QOHz28cKKlIF4OCicilyDYXxOWWM0nABmO7UUX6wgkKbyzKC5AMC6B2Yrkdf
RqG3ysI4L3MBHLv/wCx/MYUfJGxi5TUFwKT5/szRpLD+nmH0LboAKNab2JH5
FKqv0vceEfOh9EyIxpm5ZH33WYFeNR9iXU28zWZRqCM6t84kkw/dv8M2b1Sh
UCJkaeO8m3w4xP5WcVaRQt83ehlfgvkw6zCnr286hVGLA/y2uvDBb+fngdty
FI5GLGXfseRD39w6jp8MhQpj3hEZy/mg/ulk7DFpCq/qn1KJUuXDvrtbGx6z
KXRY4Sa3TJIPrfqvvSVYFO4Kchbe7OSBztK4D+cZFPqsPKRZ+osHBrZTry6i
UzjnVdGljDIeqB8y8+uZRuGU1/Z/9mbxwE0YvPCXJIWWm66zP97jgVJ3+qXG
qRTSFicrj0TzYCysIGgy8VMfbTVhCA8ak5zbDCQovFL/0y7KmwfjctvFkVPI
+wy3MHoceRCgty+qj0Zhq1d1jNwWHgSfiaUdIV6n+NahYx25/oh32PhkCovK
AzrP6/Hgj/fygwnE85Yk/q7V4EFcn/L0f4gLlXJL/1Phwb6qJyM04nK1nG0p
HB4cW8hOLZ9EoWHRS9P5kjzIuLy36CZx+uy3DvajXHBQVeo4QtysXehp2cOF
leAyeRtx15CKWW8LF0qUTn1ZQ3x4XFS1nceF1c+Vd2kSD77NEvnUcyFlW84N
ZeJfBo9DTGq5oKYlkcEhLpmXGFpVw4Ubnot+0IktpmwWcT5wQcV2icNU4rU/
7z5glXOhP0L9Do04PnswHUu5kDsapTCZWN0uh7GkhAvu5iF2k4hXVxc+s0Eu
GP74LPvXbsi5qV3EhYkZjpP/+sjKq+VvCrmQ/HfzJaZWiIxkyHlJYc7/TTuz
ZUSB/P8S/zn7rxOfVIx/LeaC52rtf/561FrL0pLcf9PG6La/tli1i3e8jAu6
meqb/j6fhVRW5b5KLmDd9M8SxBO1JxiTyPu1r1kwThEfvWb3aOc38nxRYZ7S
xLZyVMaBX1zwVo4qUyTOLZtYrsMl63nct16deHm61YaMZi6IkgfC9Ilf17mP
t3RxQeyvnGdNXLBi6anfw1yQf5Ed6kU8fLqhPVyCB8+lFo7FEqdGLApukyLf
W6fPEYnZWU77mco8GNF06BokzpCLEXDVeXAheZrsWlIPiaLibf66PJg695Fu
FHHMhDETgQeFTgnf24g1fzUGvttE6vt0QsIeUn++1jbTwx14MPeZ58I/xM03
Ag9P9eLB+R8Rxv6kfms6PmjCSR5830tLn0XqO+1VcdeKSB54PZ/j0Ej8MXb+
1ZZEHlT32qzJI/3gVXm5Y08GDz7dH7XJIP2j+qhsJKaUB9efe+aXkv4KWrex
4tx3HoSZFz0coMj9v8RfWNPGg7cpQ+ZWpD8X+349mUnjg0Hu1L5SJoV6lvIy
XYp8uKf8i+VC+nt9Tk9F71I+rBCm0haT/ve9TG1Fcz7M6FF1mE3ywVfT9fD2
fXzIfJ+QYUzy4zFtlnz2cT48rM5Ou0LyxdD36xZ+HB+oqWGyiiR/VqWaO3HT
+HAuUzf9izKFi7pbH72o4EPTwVCf8pkUXjeLeblTRPIn/fimoTkkvx6PG3+V
EMCldOk9HiT/dM/n6S5SEwD7SG+ZCslHsycl9/aaCODXfx7VciQ/rwTvqvV3
FoD1Bp0qWx0KGcwWS++zJE+Phelx9Sg0aRt/sTlZAPEpRnFFqynk/zbqUS0X
QLZs05VOI9KPCpFLfooFcOW21PAxU1LvTw0KL3GE8OBTzDMHC7LeBrth5Uoh
GPizX9zdQurPXuVSg4MQ1tl4LDHbSb53gHvhxXNCKI/3drd1JPmOZw3WPhOC
5e+wmo+uFDrua3g6XiuE9NGYodeHKBx/yaG+ThbBooivd5WPUvjOZCLmzRIR
+C+TT+0LobAyWfv3FzsRmLTioi3hJF9OWtQxL4rAqG/zgaVXKOxcwSvxzRHB
01sva24mUNiw8IAxp1kE382nca78S2H7I3ubVuUm6LU1l5ibSeFC8U8Haesm
WHpwzzvLIrJfujnohYY2QWek0VPFD3/3lypF6xyyf8/faBX1g8KhgfGikx1N
MDPt0+lMEYWcAj87Rc1m2KI2dDC6n/RPSlT8IudmSHJNO6ElScdeoU528Z1m
uBxO876oQEepzspA4c9mqNTB7a806Hh9VbdBilILrH279W7eajomfjw8zrZr
AY9XNIW7VmTeaR91WpTQAnUlkc2e++go/+3Ma1ZjC2xMnZelGUBHnpqqbLG6
GCqyyk9zI+jYf/rT2l2HxLBt2ODz/Xt0tPCV/8PNFsMC/42p/q/JvCO/IMCX
RuazkrTY/Z/pWCHh4aG0pRX6MxKTTrQSl+bOFN9thYZ3Xy+8n8ZAL3nxyEhX
Kzz18rhlN5+B7aoHw5zM2kC+1+m7oQkDl9BtPHXvtMFb/enDIU4MVH9SfSWs
vw3yUwNP6oQyME1/g1Hg1nbwy3JJc3pI5sG+adNnZ7SD4sOxQrVyBk6wVE1u
yXbAh5Wrq8LbGLjLjxYlGdgB8LJ48IE8E3tCak+cbegAVaX1/hfXMjG0MUgv
fj6ZfyOs463dmfjtUO7O2/adwOGPjtGvMdF+8JvA7monrGoOufzlDRNNF9wo
EX/shPX+1QmlvUxsuP2WvZ/ZBV92l3AGNVhoXJZkUPdPF4xIvvCN2MPCR1Fp
S/dFdMENE4UZt66xcAdznt2Mqi7YSN+1zryGhVnrFnyfIdsN/KB1VllsNh7l
Od8I2d0NY14BtVOt2Zj0XjXY80E3PCl173GOZWPNBqfY0Y5ueHPW3amvjo3y
A7nau6AH3Jss3jbPlcKTPyfpP4jtAbvLp1t9fKSwb5Ngk6SoBxqf2SrkoRR2
rJii/Ax6YcLVYgNNQRp3KJhGvrvdC7Y7H8Wf9pFGqVO3V5wf6YV0W+/sgCpp
HHtocGP23j5wbOYoySlycEfEtdiad33gO/0yo92Sgy+002rqdPvBY/21TL9Q
DobejLMKetAPeaHhB6rzOHjdmfGDpjQAKoOT1XQGOdhwrLmsJG4AGBz7rnJ9
GZQ1ot+TlR8EjegHez8FyeCshGU9W28NwtXM1RPni2VwwXt5k7YFQ5BCjxjW
ZMliYpCWwvbcIVj/eLiQZi+LpYYaevTtw5AUc7vIOU0WBzzZU64NDMMXrzbb
JEk59IyV1LpyfwQsO7oKVVzk8NzpVR6pO0YhrrF6M5TJ4f8AnfM+Qw==
"]]}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0.5609410615837961, -2.891081336351683},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{0.5609410615837961,
1.7783781391629563`}, {-4.960535945675419, -3.0000000000003006`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.8160132841069007`*^9, 3.8160133999070864`*^9, {3.816019333698753*^9,
3.816019363373114*^9}, {3.8294072755796375`*^9, 3.82940729335131*^9}},
CellLabel->"Out[34]=",ExpressionUUID->"ee495fb1-84fa-4acb-913f-deb43c7b8e28"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"x", "=",
RowBox[{
RowBox[{"-", "Pi"}], "/", "2"}]}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"Sols1minus", "=",
RowBox[{"{", "}"}]}], ";"}], "\[IndentingNewLine]"}], "\n",
RowBox[{"While", "[",
RowBox[{
RowBox[{"x", "<",
RowBox[{"Pi", "/", "2"}]}], ",",
RowBox[{
RowBox[{"sol", "=",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"equ", "[",
RowBox[{"p", ",", "x"}], "]"}], "\[Equal]", "0"}], ",",
RowBox[{"p", ">",
RowBox[{"2", "+",
RowBox[{"Sqrt", "[", "2", "]"}]}]}]}], "}"}], ",", "p", ",",
"Reals"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"If", "[",
RowBox[{
RowBox[{"sol", "\[NotEqual]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"AppendTo", "[",
RowBox[{"Sols1minus", ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{
RowBox[{"Flatten", "[",
RowBox[{"p", "/.", "sol"}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}], "}"}]}], "]"}]}], "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"x", "+=", "dx"}]}]}], "]"}], "\n",
RowBox[{
RowBox[{"par1minus", "=",
RowBox[{"{", "}"}]}], ";"}], "\n",
RowBox[{"For", "[",
RowBox[{
RowBox[{"k", "=", "1"}], ",",
RowBox[{"k", "\[LessEqual]",
RowBox[{"Length", "[", "Sols1minus", "]"}]}], ",",
RowBox[{"k", "++"}], ",",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"xx", ",", "pp"}], "}"}], "=",
RowBox[{"Sols1minus", "[",
RowBox[{"[", "k", "]"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Abs", "[",
RowBox[{
RowBox[{"h", "[",
RowBox[{"pp", ",", "xx"}], "]"}], "+", "3"}], "]"}], "<", "0.7"}],
"&&",
RowBox[{"pp", "<", "4.95"}]}], ",",
RowBox[{"AppendTo", "[",
RowBox[{"par1minus", ",",
RowBox[{"{",
RowBox[{"pp", ",",
RowBox[{"h", "[",
RowBox[{"pp", ",", "xx"}], "]"}]}], "}"}]}], "]"}]}], "]"}]}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{"par1minus", ",",
RowBox[{"PlotStyle", "\[Rule]",