-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmcmc_gamma.pyx
605 lines (487 loc) · 18.5 KB
/
mcmc_gamma.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
import random, copy
import numpy as np
cimport numpy as np
from scipy import linalg
np.random.seed(1234)
random.seed(1234)
from scipy.stats import dirichlet
from scipy.special import gammainc
from scipy.stats import chi2
from libc.math cimport exp as c_exp
from libc.math cimport log as c_log
from libc.stdlib cimport rand, RAND_MAX
import config
from multiprocessing import Pool
cdef double bl_exp_scale = 0.1
cdef double scaler_alpha = 1.0
cdef double epsilon = 1e-10
cpdef get_path2root(dict X, int internal_node, int root):
cdef list paths = []
cdef int parent
#print("Internal node ", internal_node)
while(1):
parent = X[internal_node]
#paths += [parent]
paths.append(parent)
internal_node = parent
if parent == root:
break
return paths
cpdef scale_edge(dict temp_edges_dict):
cdef tuple rand_edge
cdef double rand_bl, rand_bl_new, log_c, c, prior_ratio
rand_edge = random.choice(list(temp_edges_dict))
rand_bl = temp_edges_dict[rand_edge]
log_c = scaler_alpha*(random.random()-0.5)
c = c_exp(log_c)
rand_bl_new = rand_bl*c
temp_edges_dict[rand_edge] = rand_bl_new
#prior_ratio = expon.logpdf(rand_bl_new, scale=bl_exp_scale) - expon.logpdf(rand_bl, scale=bl_exp_scale)
prior_ratio = -(rand_bl_new-rand_bl)/bl_exp_scale
#prior_ratio = -math.log(bl_exp_scale*rand_bl_new) + math.log(bl_exp_scale*rand_bl)
#prior_ratio = bl_exp_scale*(rand_bl-rand_bl_new)
return temp_edges_dict, log_c, prior_ratio, rand_edge
cpdef node_slider(dict temp_edges_dict, int root_node):
cdef tuple rand_edge
cdef double rand_bl, rand_bl_new, log_c, c, prior_ratio
nodes_dict = adjlist2reverse_nodes_dict(temp_edges_dict)
while(1):
rand_edge = random.choice(list(temp_edges_dict))
if rand_edge[0] != root_node:
break
parent_a = nodes_dict[rand_edge[0]]
bl_a = temp_edges_dict[parent_a, rand_edge[0]]
bl_b = temp_edges_dict[rand_edge]
rand_bl = bl_a+bl_b
log_c = scaler_alpha*(random.random()-0.5)
c = c_exp(log_c)
rand_bl_new = rand_bl*c
temp_edges_dict[parent_a, rand_edge[0]] = rand_bl_new*random.random()
temp_edges_dict[rand_edge] = rand_bl_new - temp_edges_dict[parent_a, rand_edge[0]]
#prior_ratio = expon.logpdf(rand_bl_new, scale=bl_exp_scale) - expon.logpdf(rand_bl, scale=bl_exp_scale)
prior_ratio = -(rand_bl_new-rand_bl)/bl_exp_scale
#prior_ratio = -math.log(bl_exp_scale*rand_bl_new) + math.log(bl_exp_scale*rand_bl)
#prior_ratio = bl_exp_scale*(rand_bl-rand_bl_new)
return temp_edges_dict, log_c, prior_ratio, rand_edge, (parent_a, rand_edge[0])
cpdef scale_alpha(float alpha):
log_c = scaler_alpha*(random.random()-0.5)
c = c_exp(log_c)
new_alpha = alpha*c
pr_ratio = -(new_alpha-alpha)
return new_alpha, log_c, pr_ratio
cpdef rooted_NNI(dict temp_edges_list, int root_node):
"""Performs Nearest Neighbor Interchange on a edges list.
"""
cdef double hastings_ratio = 0.0
cdef double tgt_bl, src_bl
cdef int a, b, src, tgt
cdef list new_postorder
cdef list nodes_recompute, x, y
cdef dict temp_nodes_dict
cdef dict nodes_dict
cdef list shuffle_keys
nodes_dict = adjlist2nodes_dict(temp_edges_list)
shuffle_keys = list(temp_edges_list.keys())
random.shuffle(shuffle_keys)
for a, b in shuffle_keys:
if b > config.N_TAXA:# and a != root_node:
x, y = nodes_dict[a], nodes_dict[b]
break
#print("selected NNI ", a,b)
#print("leaves ", x, y)
if x[0] == b: src = x[1]
else: src = x[0]
tgt = random.choice(y)
src_bl, tgt_bl = temp_edges_list[a, src], temp_edges_list[b, tgt]
del temp_edges_list[a,src], temp_edges_list[b, tgt]
temp_edges_list[a, tgt] = tgt_bl
temp_edges_list[b, src] = src_bl
temp_nodes_dict = adjlist2nodes_dict(temp_edges_list)
new_postorder = postorder(temp_nodes_dict, root_node)[::-1]
nodes_recompute = [b]+get_path2root(adjlist2reverse_nodes_dict(temp_edges_list), b, root_node)
return temp_edges_list, new_postorder, hastings_ratio, nodes_recompute, [a,b,src, tgt]
cpdef externalSPR(dict edges_list,int root_node):
"""Performs Subtree-Pruning and Regrafting of an branch connected to terminal leaf
"""
cdef double hastings_ratio, x, y, r, u
cdef int leaf
cdef int parent_leaf
cdef tuple tgt
cdef list new_postorder
cdef dict temp_nodes_dict
rev_nodes_dict = adjlist2reverse_nodes_dict(edges_list)
nodes_dict = adjlist2nodes_dict(edges_list)
#print("\n##### Old dictionary ########\n",nodes_dict,"\n")
leaf = random.randint(1, config.N_TAXA)
parent_leaf = rev_nodes_dict[leaf]
tgt = random.choice(list(edges_list))
if parent_leaf == root_node or parent_leaf in tgt:
hastings_ratio = 0.0
elif rev_nodes_dict[parent_leaf] in tgt:
hastings_ratio = 0.0
else:
children_parent_leaf = nodes_dict[parent_leaf]
other_child_parent_leaf = children_parent_leaf[0]
if leaf == other_child_parent_leaf:
other_child_parent_leaf = children_parent_leaf[1]
x = edges_list[rev_nodes_dict[parent_leaf], parent_leaf]
y = edges_list[parent_leaf, other_child_parent_leaf]
r = edges_list[tgt]
del edges_list[rev_nodes_dict[parent_leaf], parent_leaf]
del edges_list[parent_leaf, other_child_parent_leaf]
del edges_list[tgt]
u = random.random()
edges_list[tgt[0],parent_leaf] = r*u
edges_list[parent_leaf,tgt[1]] = r*(1.0-u)
edges_list[rev_nodes_dict[parent_leaf], other_child_parent_leaf]=x+y
hastings_ratio = r/(x+y)
temp_nodes_dict = adjlist2nodes_dict(edges_list)
new_postorder = postorder(temp_nodes_dict, root_node)[::-1]
return edges_list, new_postorder, hastings_ratio
cpdef mvDualSlider(double[:] pi):
cdef int i, j
i, j = random.sample(range(pi.shape[0]), 2)
# i, j = random.sample(range(config.N_CHARS), 2)
cdef double sum_ij = pi[i]+pi[j]
#cdef double x = random.uniform(epsilon, sum_ij)
cdef double x = sum_ij*random.random()
cdef double y = sum_ij -x
pi[i], pi[j] = x, y
return pi, 0.0
cpdef postorder(dict nodes_dict, int node):
"""Return the post-order of edges to be processed.
"""
cdef list edges_ordered_list = []
cdef int x, y
#print node, nodes_dict[node]
x, y = nodes_dict[node]
#print node, x, y
edges_ordered_list.append((node,x))
edges_ordered_list.append((node,y))
if x > config.N_TAXA:
#z = postorder(nodes_dict, x, leaves)
edges_ordered_list += postorder(nodes_dict, x)
if y > config.N_TAXA:
#w = postorder(nodes_dict, y, leaves)
edges_ordered_list += postorder(nodes_dict, y)
return edges_ordered_list
cpdef adjlist2nodes_dict(dict edges_dict):
"""Converts a adjacency list representation to a nodes dictionary
which stores the information about neighboring nodes.
"""
cdef tuple edge
cdef dict nodes_dict = {}
for edge in edges_dict:
if edge[0] not in nodes_dict:
nodes_dict[edge[0]] = [edge[1]]
else:
nodes_dict[edge[0]].append(edge[1])
return nodes_dict
cpdef adjlist2reverse_nodes_dict(edges_dict):
"""Converts a adjacency list representation to a nodes dictionary
which stores the information about neighboring nodes.
"""
cdef dict reverse_nodes_dict
cdef int k
reverse_nodes_dict = {v:k for k,v in edges_dict}
#print(reverse_nodes_dict)
return reverse_nodes_dict
cpdef init_tree():
t = rtree()
edge_dict, n_nodes = newick2bl(t)
temp_edge_items = edge_dict.copy()
for x, y in temp_edge_items:
if y in config.TAXA:
del edge_dict[x,y]
edge_dict[x, config.TAXA.index(y)+1] = 1
for k, v in edge_dict.items():
edge_dict[k] = random.expovariate(1.0/bl_exp_scale)
#print edge_dict
return edge_dict, n_nodes
cpdef init_alpha_rate():
return random.expovariate(scaler_alpha)
cpdef newick2bl(t):
"""Implement a function that can read branch lengths from a newick tree
"""
n_leaves = len(t.split(","))
n_internal_nodes = n_leaves+t.count("(")
n_nodes = n_leaves+t.count("(")
edges_dict = {}# defaultdict()
t = t.replace(";","")
t = t.replace(" ","")
t = t.replace(")",",)")
t = t.replace("(","(,")
nodes_stack = []
arr = t.split(",")
for i, elem in enumerate(arr[:-1]):
if "(" in elem:
nodes_stack.append(n_internal_nodes)
n_internal_nodes -= 1
elif "(" not in elem and ")" not in elem:
if ":" not in elem:
k, v =elem, 1
else:
k, v = elem.split(":")
edges_dict[nodes_stack[-1], k] = float(v)
elif ")" in elem:
if ":" not in elem:
v = 1
else:
k, v = elem.split(":")
k = nodes_stack.pop()
edges_dict[nodes_stack[-1], k] = float(v)
return edges_dict, n_nodes
cpdef rtree():
"""Generates random Trees
"""
taxa_list = [t for t in config.TAXA]
random.shuffle(taxa_list)
while(len(taxa_list) > 1):
ulti_elem = str(taxa_list.pop())
penulti_elem = str(taxa_list.pop())
taxa_list.insert(0, "(" + penulti_elem + "," + ulti_elem + ")")
random.shuffle(taxa_list)
taxa_list.append(";")
return "".join(taxa_list)
cpdef init_pi_er():
cdef double[:] pi, er
#cdef double[:] er
#print config.N_CHARS
if config.MODEL == "JC":
pi = np.repeat(1.0/config.N_CHARS, config.N_CHARS)
elif config.MODEL in ["F81", "GTR"]:
pi = np.random.dirichlet(np.repeat(1,config.N_CHARS))
#print pi
er = np.random.dirichlet(np.repeat(1,config.N_CHARS*(config.N_CHARS-1)/2))
#print "Rates"
#print er
return pi, er
#def prior_probs(param, val):
# if param == "pi":
# return dirichlet.logpdf(val, alpha=prior_pi)
# elif param == "rates":
# return dirichlet.logpdf(val, alpha=prior_er)
cpdef get_copy_transition_mat(pi, rates, dict edges_dict,dict transition_mat,tuple change_edge):
cdef tuple Edge
cdef int parent, child
cdef double d, x, y
if config.MODEL == "F81":
config.NORM_BETA = 1/(1-np.dot(pi, pi))
cdef dict new_transition_mat = {}
for Edge in edges_dict:
parent, child = Edge
if Edge != change_edge:
new_transition_mat[parent, child] = transition_mat[parent, child].copy()
else:
d = edges_dict[parent,child]
if config.MODEL == "F81":
x = c_exp(-config.NORM_BETA*d)
y = 1.0-x
if config.IN_DTYPE == "multi":
new_transition_mat[parent,child] = ptF81(pi, x, y)
elif config.IN_DTYPE == "bin":
new_transition_mat[parent,child] = binaryptF81(pi, x, y)
elif config.MODEL == "JC":
x = c_exp(-config.NORM_BETA*d)
y = (1.0-x)/config.N_CHARS
#p_t[parent,child] = subst_models.fastJC(n_chars, x, y)
new_transition_mat[parent,child] = ptJC(x, y)
return new_transition_mat
cpdef get_edge_transition_mat(double[:] pi, double[:] rates, double d):
"""Calculates new matrix and remembers the old matrix for a branch.
"""
cdef int parent, child
cdef double x, y
if config.MODEL == "F81":
config.NORM_BETA = 1/(1-np.dot(pi, pi))
#parent,child = change_edge
if config.MODEL == "F81":
x = c_exp(-config.NORM_BETA*d)
y = 1.0-x
if config.IN_DTYPE == "multi":
return ptF81(pi, x, y)
#transition_mat[parent,child] = ptF81(pi, x, y)
elif config.IN_DTYPE == "bin":
return binaryptF81(pi, x, y)
#transition_mat[parent,child] = binaryptF81(pi, x, y)
elif config.MODEL == "JC":
x = c_exp(-config.NORM_BETA*d)
y = (1.0-x)/config.N_CHARS
#transition_mat[parent,child] = ptJC(x, y)
return ptJC(x, y)
elif config.MODEL == "GTR":
Q = fnGTR(rates, pi)
#transition_mat[parent,child] = linalg.expm(Q*d)
return linalg.expm(Q*d)
#return transition_mat
cpdef get_transition_mat_NNI(dict tmat, list nodes_list):
"""Calculates new matrix and remembers the old matrix for a branch.
"""
cdef int a, b, src, tgt
a, b, src, tgt = nodes_list
#p_t_a_src, p_t_b_tgt = tmat[a,src], tmat[b,tgt]
#tmat[a,tgt], tmat[b,src] = np.copy(tmat[b,tgt], order='K'), np.copy(tmat[a,src], order='K')
tmat[a,tgt], tmat[b,src] = copy.deepcopy(tmat[b,tgt]), copy.deepcopy(tmat[a,src])
#del tmat[a,src], tmat[b,tgt]
return tmat
cpdef par_get_JC_prob(edges_dict, move):
cdef p_t = {}
cdef double d, x, y
cdef int parent, child
p = Pool(2)
keys, values= zip(*edges_dict.items())
X = np.exp(-config.NORM_BETA*np.array(values))
Y = 1.0-X
Y /= config.N_CHARS
proc_values = p.starmap(ptJC, zip(X,Y),chunksize=50)
p_t = dict(zip(keys, proc_values))
p.close()
#for parent, child in edges_dict:
# d = edges_dict[parent,child]
# x = c_exp(-config.NORM_BETA*d)
# y = (1.0-x)/config.N_CHARS
# p_t[parent,child] = move(x, y)
return p_t
cpdef get_prob_t(double[:] pi, dict edges_dict, double[:] rates, double mean_rate):
if config.MODEL == "F81":
if config.IN_DTYPE == "multi":
return get_F81_prob(pi, edges_dict, ptF81, mean_rate)
else:
return get_F81_prob(pi, edges_dict, binaryptF81, mean_rate)
elif config.MODEL == "JC":
return get_JC_prob(edges_dict, ptJC, mean_rate)
elif config.MODEL == "GTR":
return get_GTR_prob(pi, rates, edges_dict, mean_rate)
cpdef get_JC_prob(dict edges_dict, move, double mean_rate):
cdef dict p_t = {}
cdef double d, x, y, v
cdef tuple k
for k, v in edges_dict.items():
d = v*mean_rate
x = c_exp(-config.NORM_BETA*d)
y = (1.0-x)/config.N_CHARS
p_t[k] = move(x, y)
return p_t
cpdef get_F81_prob(double[:] pi, dict edges_dict, move, double mean_rate):
cdef dict p_t = {}
cdef double d, x, y, v
cdef tuple k
#cdef int parent, child
config.NORM_BETA = 1/(1-np.dot(pi, pi))
#print "NORM BETA ", config.NORM_BETA
for k, v in edges_dict.items():
d = v*mean_rate
x = c_exp(-config.NORM_BETA*d)
y = 1.0-x
#print x, y
p_t[k] = move(pi, x, y)
return p_t
cpdef get_GTR_prob(pi, rates, edges_dict, mean_rate):
Q = fnGTR(rates, pi)
cdef p_t = {}
for parent, child in edges_dict:
p_t[parent,child] = linalg.expm(Q*edges_dict[parent,child]*mean_rate)
return p_t
cpdef fnGTR(er, pi):
n_states = pi.shape[0]
n_rates = er.shape[0]
R = np.zeros((n_states, n_states))
iu1 = np.triu_indices(n_states,1)
#il1 = np.tril_indices(n_states,-1)
R[iu1] = er
R = R+R.T
#R[il1] = er
Pi = np.diag(pi)
Q = np.dot(R,Pi)
#X = np.diag(-np.dot(pi,R)/pi)
#R = R + X
Q += np.diag(-np.sum(Q,axis=-1))
beta = -1.0/np.dot(pi,np.diag(Q))
Q = Q*beta
#print("\n")
#print(np.dot(pi,Q))
return Q
cpdef ptJC(double x, double y):
"""Compute the Probability matrix under a F81 model
"""
cdef np.ndarray[double, ndim=2] p_t
p_t = np.empty((config.N_CHARS, config.N_CHARS))
p_t.fill(y)
np.fill_diagonal(p_t, x+y)
return p_t
cpdef binaryptF81(double[:] pi, double x, double y):
"""Compute the probability matrix for binary characters
"""
cdef np.ndarray[double, ndim=2] p_t
p_t = np.empty((2,2))
p_t[0, 0] = pi[0]+pi[1]*x
p_t[0, 1] = pi[1]*y
p_t[1, 0] = pi[0]*y
p_t[1, 1] = pi[1]+pi[0]*x
return p_t
cpdef ptF81(double[:] pi, double x, double y):
"""Compute the Probability matrix under a F81 model
"""
cdef np.ndarray[double, ndim=2] p_t
#print pi, x, y
p_t = np.empty((config.N_CHARS, config.N_CHARS))
cdef int i, j
for i in range(config.N_CHARS):
for j in range(config.N_CHARS):
if i==j:
p_t[i,j] = pi[i]*y+x
else:
p_t[i,j] = pi[j]*y
#for i in range(config.N_CHARS):
# p_t[i] = pi*y
#p_t += np.eye(config.N_CHARS)*x
#p_t = np.tile(pi*y,(config.N_CHARS, 1)) + np.eye(config.N_CHARS)*x
#p_t = np.array([pi*y]*config.N_CHARS)+np.eye(config.N_CHARS)*x
return p_t
cpdef adjlist2newickBL(dict edges_list, dict nodes_dict, int node):
"""Converts from edge list to NEWICK format.
"""
cdef list tree_list = []
cdef int x, y
x, y = nodes_dict[node]
#print(node, x, y)
if x > config.N_TAXA:
#print x, edges_list[node,x]
tree_list.append(adjlist2newickBL(edges_list, nodes_dict, x)+":"+str(edges_list[node,x]))
else:
#print x, edges_list[node,x]
tree_list.append(config.TAXA[x-1]+":"+str(edges_list[node,x]))
if y > config.N_TAXA:
#print(y)
tree_list.append(adjlist2newickBL(edges_list, nodes_dict, y)+":"+str(edges_list[node,y]))
else:
#print(y, edges_list[node,y])
tree_list.append(config.TAXA[y-1]+":"+str(edges_list[node,y]))
#print(tree_list)
return "("+", ".join(map(str, tree_list))+")"
cpdef state_init():
cdef dict state = {}
cdef dict nodes_dict
cdef list edges_ordered_list
#print "Initializing states ", config.N_CHARS
pi, er = init_pi_er()
config.NORM_BETA = 1/(1-np.dot(pi, pi))
state["pi"] = pi
state["rates"] = er
state["tree"], state["root"] = init_tree()
state["srates"] = init_alpha_rate()
nodes_dict = adjlist2nodes_dict(state["tree"])
edges_ordered_list = postorder(nodes_dict, state["root"])[::-1]
state["postorder"] = edges_ordered_list
site_rates = get_siterates(state["srates"])
state["transitionMat"] = []
for mean_rate in site_rates:
state["transitionMat"].append(get_prob_t(state["pi"], state["tree"], state["rates"], mean_rate))
return state
cpdef get_siterates(float alpha):
cutoffs = [chi2.isf(1-p,2*alpha) for p in np.arange(1.0/config.N_CATS,1,1.0/config.N_CATS)]
site_rates = [gammainc(alpha+1,cutoffs[0]*alpha)*config.N_CATS]
for i in range(1,config.N_CATS-1):
site_rates.append((gammainc(alpha+1,cutoffs[i]*alpha)-gammainc(alpha+1,cutoffs[i-1]*alpha))*config.N_CATS)
site_rates.append((1.0-gammainc(alpha+1,cutoffs[-1]*alpha))*config.N_CATS)
return site_rates