-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathbenchmark.py
130 lines (97 loc) · 5.01 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#
# Copyright 2018 Picovoice Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import logging
import multiprocessing
from dataset import *
from engine import *
from mixer import create_test_files
logging.basicConfig(format='%(asctime)s:%(levelname)s:%(message)s', level=logging.INFO)
def run_sensitivity(pcm, num_frames, labels, num_keywords, engine_type, sensitivity):
detector = Engine.create(engine_type, keyword=args.keyword, sensitivity=sensitivity, access_key=args.access_key)
frame_length = Engine.frame_length()
num_false_alarms = 0
num_true_detects = 0
for i in range(num_frames):
frame = pcm[(i * frame_length):((i + 1) * frame_length)]
if detector.process(frame):
if labels[i]:
num_true_detects += 1
else:
num_false_alarms += 1
detector.release()
miss_rate = (num_keywords - num_true_detects) / num_keywords
pcm_length_hour = pcm.size / (Dataset.sample_rate() * 3600)
false_alarm_per_hour = num_false_alarms / pcm_length_hour
logging.info(
'[%s - %.2f] fr: %.2f fa: %.2f' % (engine_type.value, sensitivity, miss_rate, false_alarm_per_hour))
return miss_rate, false_alarm_per_hour
def run(engine_type, min_false_alarm=0.1, max_false_alarm=0.1):
pcm, sample_rate = soundfile.read(speech_path, dtype=np.int16)
assert sample_rate == Dataset.sample_rate()
keyword_times_sec = list()
with open(label_path, 'r') as f:
for line in f.readlines():
keyword_times_sec.append(tuple(float(x) for x in line.strip('\n').split(', ')))
frame_length = Engine.frame_length()
num_frames = pcm.size // frame_length
labels = np.zeros((num_frames,), dtype=bool)
for start_sec, end_sec in keyword_times_sec:
start_frame = int(start_sec * Dataset.sample_rate() // frame_length)
end_frame = int((end_sec * Dataset.sample_rate() + (frame_length - 1)) // frame_length)
labels[start_frame:(end_frame + 1)] = True
sensitivity_info = Engine.sensitivity_info(engine_type)
res = dict()
sensitivity = (sensitivity_info.min + sensitivity_info.max) / 2
while sensitivity >= sensitivity_info.min and (len(res) == 0 or min(x[1] for x in res.values()) > min_false_alarm):
res[sensitivity] = run_sensitivity(pcm, num_frames, labels, len(keyword_times_sec), engine_type, sensitivity)
sensitivity -= sensitivity_info.step
sensitivity = (sensitivity_info.min + sensitivity_info.max) / 2 + sensitivity_info.step
while sensitivity <= sensitivity_info.max and max(x[1] for x in res.values()) < max_false_alarm:
res[sensitivity] = run_sensitivity(pcm, num_frames, labels, len(keyword_times_sec), engine_type, sensitivity)
sensitivity += sensitivity_info.step
return engine_type, res
def save(results):
for engine, result in results:
path = os.path.join(os.path.dirname(__file__), '%s_%s.csv' % (args.keyword, engine.value))
with open(path, 'w') as f:
for sensitivity in sorted(result.keys()):
miss_rate, false_alarms_per_hour = result[sensitivity]
f.write('%f, %f\n' % (miss_rate, false_alarms_per_hour))
parser = argparse.ArgumentParser()
parser.add_argument('--librispeech_dataset_path', required=True)
parser.add_argument('--demand_dataset_path', required=True)
parser.add_argument('--keyword', required=True)
parser.add_argument('--access-key', required=True)
if __name__ == '__main__':
args = parser.parse_args()
keyword_dataset =\
Dataset.create(Datasets.KEYWORD, os.path.join(os.path.dirname(__file__), 'audio/%s' % args.keyword))
logging.info('loaded keyword dataset with %d examples' % keyword_dataset.size())
background_dataset = Dataset.create(Datasets.LIBRI_SPEECH, args.librispeech_dataset_path, exclude_word=args.keyword)
logging.info('loaded librispeech dataset with %d examples' % background_dataset.size())
noise_dataset = Dataset.create(Datasets.DEMAND, args.demand_dataset_path)
logging.info('loaded demand dataset with %d examples' % noise_dataset.size())
speech_path = os.path.join(os.path.dirname(__file__), '%s_speech.wav' % args.keyword)
label_path = os.path.join(os.path.dirname(__file__), '%s_label.txt' % args.keyword)
create_test_files(
speech_path=speech_path,
label_path=label_path,
keyword_dataset=keyword_dataset,
background_dataset=background_dataset,
noise_dataset=noise_dataset)
with multiprocessing.Pool() as pool:
save(pool.map(run, [x for x in Engines]))