-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_VQA.py
208 lines (186 loc) · 7.28 KB
/
run_VQA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import utils.arg_parse as arg_parse
import torch
import torch.multiprocessing as mp
from utils.DDP_manager import DDP
from utils.VQA import VQA
from utils.datasets import VQA_dataset
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm
from PIL import Image
import json
import os
class DDP_VQA(DDP):
def __init__(
self,
rank,
world_size,
bias_counts,
vqa_answers,
opt
):
self.vqa_model = opt['vqa_model']
dataset_setting = opt['dataset_setting']
self.proposed_biases_path = dataset_setting['proposed_biases_path']
self.image_paths = dataset_setting['images_path']
self.max_prompts = opt['max_prompts_per_bias']
self.opt = opt
self.vqa_answers = vqa_answers
self.bias_counts = bias_counts
super(DDP_VQA, self).__init__(rank, world_size)
def main(self):
# Initialize VQA model
vqa_model = VQA(self.device, self.opt)
# Initialize dataset
dataset = VQA_dataset(
dataset_setting = self.opt['dataset_setting'],
mode = self.opt['mode'],
max_prompts = self.max_prompts,
filter_threshold = self.opt['filter_threshold'],
hard_threshold = self.opt['hard_threshold'],
merge_threshold = self.opt['merge_threshold'],
valid_bias_fn = self.opt['valid_bias_fn'],
filter_caption_fn = self.opt['dataset_setting']['filter_caption_fn'],
)
loader = DataLoader(
dataset,
batch_size=None,
shuffle=False,
num_workers=self.opt['workers'],
pin_memory=True,
sampler=DistributedSampler(dataset, shuffle=False)
)
# run VQA to quantify bias
for caption_id, caption, image_id, image_path, proposed_biases in tqdm(loader, position=self.rank, desc=f'Rank {self.rank}'):
# load image
image = Image.open(image_path)
answers = {}
image = vqa_model.process_image(image)
# for each proposed bias, run VQA
for bias_cluster, bias_name, class_cluster, question, classes in proposed_biases:
# add UNK class
classes.append(self.opt['UNK_CLASS'])
# run VQA
answer = vqa_model.get_answer(image, question, choices=classes)
# get VQA prediction
class_pred = answer['multiple_choice_answer']
# update answers
answers[bias_name] = (
bias_cluster,
class_cluster,
class_pred,
)
# update bias counts
self.bias_counts[bias_cluster][bias_name][class_cluster][class_pred] += 1
# update vqa answers
self.vqa_answers[image_path] = answers
def run(rank, world_size, bias_counts, vqa_answers, opt):
torch.manual_seed(opt['seed'])
DDP_VQA(rank, world_size, bias_counts, vqa_answers, opt)
# Initialize bias counts dictionary
'''
bias_counts = {
bias_cluster: {
bias_name: {
class_cluster: {
class_name: count
}
}
}
}
'''
def init_bias_counts(manager, bias_classes, UNKNOWN_CLASS = 'unknown'):
bias_counts = manager.dict()
for bias_cluster in bias_classes:
bias_counts[bias_cluster] = manager.dict()
for bias_name in bias_classes[bias_cluster]:
bias_counts[bias_cluster][bias_name] = manager.dict()
for class_cluster in bias_classes[bias_cluster][bias_name]:
bias_counts[bias_cluster][bias_name][class_cluster] = manager.dict()
classes = bias_classes[bias_cluster][bias_name][class_cluster]['classes']
for class_name in classes:
bias_counts[bias_cluster][bias_name][class_cluster][class_name] = 0
bias_counts[bias_cluster][bias_name][class_cluster][UNKNOWN_CLASS] = 0
return bias_counts
def init_answers(manager, data, opt):
vqa_answers = manager.dict()
if opt['mode'] == 'generated':
for caption_id, caption, image_id, image_path, proposed_biases in data:
vqa_answers[image_path] = manager.dict()
elif opt['mode'] == 'original':
for image_id, image_path, proposed_biases in data:
vqa_answers[image_path] = manager.dict()
return vqa_answers
def deserialize_answers(vqa_answers):
vqa_answers = dict(vqa_answers.copy())
for caption_id in vqa_answers:
vqa_answers[caption_id] = dict(vqa_answers[caption_id].copy())
return vqa_answers
def deserialize_dict(bias_counts):
bias_counts = dict(bias_counts.copy())
for bias_cluster in bias_counts:
bias_counts[bias_cluster] = dict(bias_counts[bias_cluster].copy())
for bias_name in bias_counts[bias_cluster]:
bias_counts[bias_cluster][bias_name] = dict(bias_counts[bias_cluster][bias_name].copy())
for class_cluster in bias_counts[bias_cluster][bias_name]:
bias_counts[bias_cluster][bias_name][class_cluster] = dict(bias_counts[bias_cluster][bias_name][class_cluster].copy())
return bias_counts
def main(opt):
opt['logger'].info(f"Initialize MULTI GPUs on {torch.cuda.device_count()} devices")
world_size = torch.cuda.device_count()
manager = mp.Manager()
# Initialize dataset
dataset = VQA_dataset(
dataset_setting = opt['dataset_setting'],
mode = opt['mode'],
max_prompts = opt['max_prompts_per_bias'],
filter_threshold = opt['filter_threshold'],
hard_threshold = opt['hard_threshold'],
merge_threshold = opt['merge_threshold'],
valid_bias_fn = opt['valid_bias_fn'],
filter_caption_fn = opt['dataset_setting']['filter_caption_fn'],
)
# Initialize bias counts dictionary shared across processes (GPUs)
bias_counts = init_bias_counts(
manager,
dataset.get_bias_classes(),
UNKNOWN_CLASS = opt['UNK_CLASS']
)
vqa_answers = init_answers(manager, dataset.get_data(), opt)
mp.spawn(run, args=(
world_size,
bias_counts,
vqa_answers,
opt
), nprocs=world_size)
bias_counts = deserialize_dict(bias_counts)
vqa_answers = deserialize_answers(vqa_answers)
# save bias counts
counts = json.dumps(bias_counts, indent=4)
if opt['mode'] == 'generated':
save_path = os.path.join(
opt['save_path'],
opt['dataset'],
opt['mode'],
opt['generator'],
opt['vqa_model_name'],
)
else:
save_path = os.path.join(
opt['save_path'],
opt['dataset'],
opt['mode'],
opt['vqa_model_name'],
)
os.makedirs(save_path, exist_ok=True)
file_name = 'data_counts.json'
with open(os.path.join(save_path, file_name), 'w+') as f:
f.write(counts)
# save VQA answers
answers = json.dumps(vqa_answers, indent=4)
file_name = 'vqa_answers.json'
with open(os.path.join(save_path, file_name), 'w+') as f:
f.write(answers)
if __name__ == '__main__':
opt = arg_parse.argparse_VQA()
main(opt)