-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathpair_diff_demo.py
516 lines (403 loc) · 22.4 KB
/
pair_diff_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
import cv2
import einops
import gradio as gr
import numpy as np
import torch
import random
import os
import json
import datetime
from huggingface_hub import hf_hub_url, hf_hub_download
from pytorch_lightning import seed_everything
from annotator.util import resize_image, HWC3
from annotator.OneFormer import OneformerSegmenter
from cldm.model import create_model, load_state_dict
from cldm.ddim_hacked import DDIMSamplerSpaCFG
from ldm.models.autoencoder import DiagonalGaussianDistribution
SEGMENT_MODEL_DICT = {
'Oneformer': OneformerSegmenter,
}
MASK_MODEL_DICT = {
'Oneformer': OneformerSegmenter,
}
urls = {
'shi-labs/oneformer_coco_swin_large': ['150_16_swin_l_oneformer_coco_100ep.pth'],
'PAIR/PAIR-diffusion-sdv15-coco-finetune': ['model_e91.ckpt']
}
WTS_DICT = {
}
if os.path.exists('checkpoints') == False:
os.mkdir('checkpoints')
for repo in urls:
files = urls[repo]
for file in files:
url = hf_hub_url(repo, file)
name_ckp = url.split('/')[-1]
WTS_DICT[repo] = hf_hub_download(repo_id=repo, filename=file)
#main model
model = create_model('configs/pair_diff.yaml').cpu()
model.load_state_dict(load_state_dict(WTS_DICT['PAIR/PAIR-diffusion-sdv15-coco-finetune'], location='cuda'))
save_dir = 'results/'
model = model.cuda()
ddim_sampler = DDIMSamplerSpaCFG(model)
save_memory = False
class ImageComp:
def __init__(self, edit_operation):
self.input_img = None
self.input_pmask = None
self.input_segmask = None
self.input_mask = None
self.input_points = []
self.input_scale = 1
self.ref_img = None
self.ref_pmask = None
self.ref_segmask = None
self.ref_mask = None
self.ref_points = []
self.ref_scale = 1
self.multi_modal = False
self.H = None
self.W = None
self.kernel = np.ones((5, 5), np.uint8)
self.edit_operation = edit_operation
self.init_segmentation_model()
os.makedirs(save_dir, exist_ok=True)
self.base_prompt = 'A picture of {}'
def init_segmentation_model(self, mask_model='Oneformer', segment_model='Oneformer'):
self.segment_model_name = segment_model
self.mask_model_name = mask_model
self.segment_model = SEGMENT_MODEL_DICT[segment_model](WTS_DICT['shi-labs/oneformer_coco_swin_large'])
if mask_model == 'Oneformer' and segment_model == 'Oneformer':
self.mask_model_inp = self.segment_model
self.mask_model_ref = self.segment_model
else:
self.mask_model_inp = MASK_MODEL_DICT[mask_model]()
self.mask_model_ref = MASK_MODEL_DICT[mask_model]()
print(f"Segmentation Models initialized with {mask_model} as mask and {segment_model} as segment")
def init_input_canvas(self, img):
img = HWC3(img)
img = resize_image(img, 512)
if self.segment_model_name == 'Oneformer':
detected_seg = self.segment_model(img, 'semantic')
elif self.segment_model_name == 'SAM':
raise NotImplementedError
if self.mask_model_name == 'Oneformer':
detected_mask = self.mask_model_inp(img, 'panoptic')[0]
elif self.mask_model_name == 'SAM':
detected_mask = self.mask_model_inp(img)
self.input_points = []
self.input_img = img
self.input_pmask = detected_mask
self.input_segmask = detected_seg
self.H = img.shape[0]
self.W = img.shape[1]
return img
def init_ref_canvas(self, img):
img = HWC3(img)
img = resize_image(img, 512)
if self.segment_model_name == 'Oneformer':
detected_seg = self.segment_model(img, 'semantic')
elif self.segment_model_name == 'SAM':
raise NotImplementedError
if self.mask_model_name == 'Oneformer':
detected_mask = self.mask_model_ref(img, 'panoptic')[0]
elif self.mask_model_name == 'SAM':
detected_mask = self.mask_model_ref(img)
self.ref_points = []
print("Initialized ref", img.shape)
self.ref_img = img
self.ref_pmask = detected_mask
self.ref_segmask = detected_seg
return img
def select_input_object(self, evt: gr.SelectData):
idx = list(np.array(evt.index) * self.input_scale)
self.input_points.append(idx)
if self.mask_model_name == 'Oneformer':
mask = self._get_mask_from_panoptic(np.array(self.input_points), self.input_pmask)
else:
mask = self.mask_model_inp(self.input_img, self.input_points)
c_ids = self.input_segmask[np.array(self.input_points)[:,1], np.array(self.input_points)[:,0]]
unique_ids, counts = torch.unique(c_ids, return_counts=True)
c_id = int(unique_ids[torch.argmax(counts)].cpu().detach().numpy())
category = self.segment_model.metadata.stuff_classes[c_id]
# print(self.segment_model.metadata.stuff_classes)
self.input_mask = mask
mask = mask.cpu().numpy()
output = mask[:,:,None] * self.input_img + (1 - mask[:,:,None]) * self.input_img * 0.2
return output.astype(np.uint8), self.base_prompt.format(category)
def select_ref_object(self, evt: gr.SelectData):
idx = list(np.array(evt.index) * self.ref_scale)
self.ref_points.append(idx)
if self.mask_model_name == 'Oneformer':
mask = self._get_mask_from_panoptic(np.array(self.ref_points), self.ref_pmask)
else:
mask = self.mask_model_ref(self.ref_img, self.ref_points)
c_ids = self.ref_segmask[np.array(self.ref_points)[:,1], np.array(self.ref_points)[:,0]]
unique_ids, counts = torch.unique(c_ids, return_counts=True)
c_id = int(unique_ids[torch.argmax(counts)].cpu().detach().numpy())
category = self.segment_model.metadata.stuff_classes[c_id]
print("Category of reference object is:", category)
self.ref_mask = mask
mask = mask.cpu().numpy()
output = mask[:,:,None] * self.ref_img + (1 - mask[:,:,None]) * self.ref_img * 0.2
return output.astype(np.uint8)
def clear_points(self):
self.input_points = []
self.ref_points = []
zeros_inp = np.zeros(self.input_img.shape)
zeros_ref = np.zeros(self.ref_img.shape)
return zeros_inp, zeros_ref
def return_input_img(self):
return self.input_img
def _get_mask_from_panoptic(self, points, panoptic_mask):
panoptic_mask_ = panoptic_mask + 1
ids = panoptic_mask_[points[:,1], points[:,0]]
unique_ids, counts = torch.unique(ids, return_counts=True)
mask_id = unique_ids[torch.argmax(counts)]
final_mask = torch.zeros(panoptic_mask.shape).cuda()
final_mask[panoptic_mask_ == mask_id] = 1
return final_mask
def _process_mask(self, mask, panoptic_mask, segmask):
obj_class = mask * (segmask + 1)
unique_ids, counts = torch.unique(obj_class, return_counts=True)
obj_class = unique_ids[torch.argmax(counts[1:]) + 1] - 1
return mask, obj_class
def _edit_app(self, whole_ref):
"""
Manipulates the panoptic mask of input image to change appearance
"""
input_pmask = self.input_pmask
input_segmask = self.input_segmask
if whole_ref:
reference_mask = torch.ones(self.ref_pmask.shape).cuda()
else:
reference_mask, _ = self._process_mask(self.ref_mask, self.ref_pmask, self.ref_segmask)
edit_mask, _ = self._process_mask(self.input_mask, self.input_pmask, self.input_segmask)
# tmp = cv2.dilate(edit_mask.squeeze().cpu().numpy(), self.kernel, iterations = 2)
# region_mask = torch.tensor(tmp).cuda()
region_mask = edit_mask
ma = torch.max(input_pmask)
input_pmask[edit_mask == 1] = ma + 1
return reference_mask, input_pmask, input_segmask, region_mask, ma
def _add_object(self, input_mask, dilation_fac):
"""
Manipulates the panooptic mask of input image for adding objects
Args:
input_mask (numpy array): Region where new objects needs to be added
dilation factor (float): Controls edge merging region for adding objects
"""
input_pmask = self.input_pmask
input_segmask = self.input_segmask
reference_mask, obj_class = self._process_mask(self.ref_mask, self.ref_pmask, self.ref_segmask)
tmp = cv2.dilate(input_mask['mask'][:, :, 0], self.kernel, iterations = int(dilation_fac))
region = torch.tensor(tmp)
region_mask = torch.zeros_like(region).cuda()
region_mask[region > 127] = 1
mask_ = torch.tensor(input_mask['mask'][:, :, 0])
edit_mask = torch.zeros_like(mask_).cuda()
edit_mask[mask_ > 127] = 1
ma = torch.max(input_pmask)
input_pmask[edit_mask == 1] = ma + 1
print(obj_class)
input_segmask[edit_mask == 1] = obj_class.long()
return reference_mask, input_pmask, input_segmask, region_mask, ma
def _edit(self, input_mask, ref_mask, dilation_fac=1, whole_ref=False, inter=1):
"""
Entry point for all the appearance editing and add objects operations. The function manipulates the
appearance vectors and structure based on user input
Args:
input mask (numpy array): Region in input image which needs to be edited
dilation factor (float): Controls edge merging region for adding objects
whole_ref (bool): Flag for specifying if complete reference image should be used
inter (float): Interpolation of appearance between the reference appearance and the input appearance.
"""
input_img = (self.input_img/127.5 - 1)
input_img = torch.from_numpy(input_img.astype(np.float32)).cuda().unsqueeze(0).permute(0,3,1,2)
reference_img = (self.ref_img/127.5 - 1)
reference_img = torch.from_numpy(reference_img.astype(np.float32)).cuda().unsqueeze(0).permute(0,3,1,2)
if self.edit_operation == 'add_obj':
reference_mask, input_pmask, input_segmask, region_mask, ma = self._add_object(input_mask, dilation_fac)
elif self.edit_operation == 'edit_app':
reference_mask, input_pmask, input_segmask, region_mask, ma = self._edit_app(whole_ref)
#concat featurees
input_pmask = input_pmask.float().cuda().unsqueeze(0).unsqueeze(1)
_, mean_feat_inpt_conc, one_hot_inpt_conc, _ = model.get_appearance(model.appearance_net_conc, model.app_layer_conc, input_img, input_pmask, return_all=True)
reference_mask = reference_mask.float().cuda().unsqueeze(0).unsqueeze(1)
_, mean_feat_ref_conc, _, _ = model.get_appearance(model.appearance_net_conc, model.app_layer_conc, reference_img, reference_mask, return_all=True)
# if mean_feat_ref.shape[1] > 1:
if isinstance(mean_feat_inpt_conc, list):
appearance_conc = []
for i in range(len(mean_feat_inpt_conc)):
mean_feat_inpt_conc[i][:, ma + 1] = (1 - inter) * mean_feat_inpt_conc[i][:, ma + 1] + inter*mean_feat_ref_conc[i][:, 1]
splatted_feat_conc = torch.einsum('nmc, nmhw->nchw', mean_feat_inpt_conc[i], one_hot_inpt_conc)
splatted_feat_conc = torch.nn.functional.normalize(splatted_feat_conc)
splatted_feat_conc = torch.nn.functional.interpolate(splatted_feat_conc, (self.H//8, self.W//8))
appearance_conc.append(splatted_feat_conc)
appearance_conc = torch.cat(appearance_conc, dim=1)
else:
print("manipulating")
mean_feat_inpt_conc[:, ma + 1] = (1 - inter) * mean_feat_inpt_conc[:, ma + 1] + inter*mean_feat_ref_conc[:, 1]
splatted_feat_conc = torch.einsum('nmc, nmhw->nchw', mean_feat_inpt_conc, one_hot_inpt_conc)
appearance_conc = torch.nn.functional.normalize(splatted_feat_conc) #l2 normaliz
appearance_conc = torch.nn.functional.interpolate(appearance_conc, (self.H//8, self.W//8))
#cross attention features
_, mean_feat_inpt_ca, one_hot_inpt_ca, _ = model.get_appearance(model.appearance_net_ca, model.app_layer_ca, input_img, input_pmask, return_all=True)
_, mean_feat_ref_ca, _, _ = model.get_appearance(model.appearance_net_ca, model.app_layer_ca, reference_img, reference_mask, return_all=True)
# if mean_feat_ref.shape[1] > 1:
if isinstance(mean_feat_inpt_ca, list):
appearance_ca = []
for i in range(len(mean_feat_inpt_ca)):
mean_feat_inpt_ca[i][:, ma + 1] = (1 - inter) * mean_feat_inpt_ca[i][:, ma + 1] + inter*mean_feat_ref_ca[i][:, 1]
splatted_feat_ca = torch.einsum('nmc, nmhw->nchw', mean_feat_inpt_ca[i], one_hot_inpt_ca)
splatted_feat_ca = torch.nn.functional.normalize(splatted_feat_ca)
splatted_feat_ca = torch.nn.functional.interpolate(splatted_feat_ca, (self.H//8, self.W//8))
appearance_ca.append(splatted_feat_ca)
else:
print("manipulating")
mean_feat_inpt_ca[:, ma + 1] = (1 - inter) * mean_feat_inpt_ca[:, ma + 1] + inter*mean_feat_ref_ca[:, 1]
splatted_feat_ca = torch.einsum('nmc, nmhw->nchw', mean_feat_inpt_ca, one_hot_inpt_ca)
appearance_ca = torch.nn.functional.normalize(splatted_feat_ca) #l2 normaliz
appearance_ca = torch.nn.functional.interpolate(appearance_ca, (self.H//8, self.W//8))
input_segmask = ((input_segmask+1)/ 127.5 - 1.0).cuda().unsqueeze(0).unsqueeze(1)
structure = torch.nn.functional.interpolate(input_segmask, (self.H//8, self.W//8))
return structure, appearance_conc, appearance_ca, region_mask, input_img
def _edit_obj_var(self, input_mask, ignore_structure):
input_img = (self.input_img/127.5 - 1)
input_img = torch.from_numpy(input_img.astype(np.float32)).cuda().unsqueeze(0).permute(0,3,1,2)
input_pmask = self.input_pmask
input_segmask = self.input_segmask
ma = torch.max(input_pmask)
mask_ = torch.tensor(input_mask['mask'][:, :, 0])
edit_mask = torch.zeros_like(mask_).cuda()
edit_mask[mask_ > 127] = 1
tmp = edit_mask * (input_pmask + ma + 1)
if ignore_structure:
tmp = edit_mask
input_pmask = tmp * edit_mask + (1 - edit_mask) * input_pmask
input_pmask = input_pmask.float().cuda().unsqueeze(0).unsqueeze(1)
mask_ca_feat = self.input_pmask.float().cuda().unsqueeze(0).unsqueeze(1) if ignore_structure else input_pmask
print(torch.unique(mask_ca_feat))
appearance_conc,_,_,_ = model.get_appearance(model.appearance_net_conc, model.app_layer_conc, input_img, input_pmask, return_all=True)
appearance_ca = model.get_appearance(model.appearance_net_ca, model.app_layer_ca, input_img, mask_ca_feat)
appearance_conc = torch.nn.functional.interpolate(appearance_conc, (self.H//8, self.W//8))
appearance_ca = [torch.nn.functional.interpolate(ap, (self.H//8, self.W//8)) for ap in appearance_ca]
input_segmask = ((input_segmask+1)/ 127.5 - 1.0).cuda().unsqueeze(0).unsqueeze(1)
structure = torch.nn.functional.interpolate(input_segmask, (self.H//8, self.W//8))
tmp = input_mask['mask'][:, :, 0]
region = torch.tensor(tmp)
mask = torch.zeros_like(region).cuda()
mask[region > 127] = 1
return structure, appearance_conc, appearance_ca, mask, input_img
def get_caption(self, mask):
"""
Generates the captions based on a set template
Args:
mask (numpy array): Region of image based on which caption needs to be generated
"""
mask = mask['mask'][:, :, 0]
region = torch.tensor(mask).cuda()
mask = torch.zeros_like(region)
mask[region > 127] = 1
if torch.sum(mask) == 0:
return ""
c_ids = self.input_segmask * mask
unique_ids, counts = torch.unique(c_ids, return_counts=True)
c_id = int(unique_ids[torch.argmax(counts[1:]) + 1].cpu().detach().numpy())
category = self.segment_model.metadata.stuff_classes[c_id]
return self.base_prompt.format(category)
def save_result(self, input_mask, prompt, a_prompt, n_prompt,
ddim_steps, scale_s, scale_f, scale_t, seed, dilation_fac=1,inter=1,
free_form_obj_var=False, ignore_structure=False):
"""
Saves the current results with all the meta data
"""
meta_data = {}
meta_data['prompt'] = prompt
meta_data['a_prompt'] = a_prompt
meta_data['n_prompt'] = n_prompt
meta_data['seed'] = seed
meta_data['ddim_steps'] = ddim_steps
meta_data['scale_s'] = scale_s
meta_data['scale_f'] = scale_f
meta_data['scale_t'] = scale_t
meta_data['inter'] = inter
meta_data['dilation_fac'] = dilation_fac
meta_data['edit_operation'] = self.edit_operation
uuid = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
os.makedirs(f'{save_dir}/{uuid}')
with open(f'{save_dir}/{uuid}/meta.json', "w") as outfile:
json.dump(meta_data, outfile)
cv2.imwrite(f'{save_dir}/{uuid}/input.png', self.input_img[:,:,::-1])
cv2.imwrite(f'{save_dir}/{uuid}/ref.png', self.ref_img[:,:,::-1])
if self.ref_mask is not None:
cv2.imwrite(f'{save_dir}/{uuid}/ref_mask.png', self.ref_mask.cpu().squeeze().numpy() * 200)
for i in range(len(self.results)):
cv2.imwrite(f'{save_dir}/{uuid}/edit{i}.png', self.results[i][:,:,::-1])
if self.edit_operation == 'add_obj' or free_form_obj_var:
cv2.imwrite(f'{save_dir}/{uuid}/input_mask.png', input_mask['mask'] * 200)
else:
cv2.imwrite(f'{save_dir}/{uuid}/input_mask.png', self.input_mask.cpu().squeeze().numpy() * 200)
print("Saved results at", f'{save_dir}/{uuid}')
def process(self, input_mask, ref_mask, prompt, a_prompt, n_prompt,
num_samples, ddim_steps, guess_mode, strength,
scale_s, scale_f, scale_t, seed, eta, dilation_fac=1,masking=True,whole_ref=False,inter=1,
free_form_obj_var=False, ignore_structure=False):
print(prompt)
if free_form_obj_var:
print("Free form")
structure, appearance_conc, appearance_ca, mask, img = self._edit_obj_var(input_mask, ignore_structure)
else:
structure, appearance_conc, appearance_ca, mask, img = self._edit(input_mask, ref_mask, dilation_fac=dilation_fac,
whole_ref=whole_ref, inter=inter)
input_pmask = torch.nn.functional.interpolate(self.input_pmask.cuda().unsqueeze(0).unsqueeze(1).float(), (self.H//8, self.W//8))
input_pmask = input_pmask.to(memory_format=torch.contiguous_format)
if isinstance(appearance_ca, list):
null_appearance_ca = [torch.zeros(a.shape).cuda() for a in appearance_ca]
null_appearance_conc = torch.zeros(appearance_conc.shape).cuda()
null_structure = torch.zeros(structure.shape).cuda() - 1
null_control = [torch.cat([null_structure, napp, input_pmask * 0], dim=1) for napp in null_appearance_ca]
structure_control = [torch.cat([structure, napp, input_pmask], dim=1) for napp in null_appearance_ca]
full_control = [torch.cat([structure, napp, input_pmask], dim=1) for napp in appearance_ca]
null_control.append(torch.cat([null_structure, null_appearance_conc, null_structure * 0], dim=1))
structure_control.append(torch.cat([structure, null_appearance_conc, null_structure], dim=1))
full_control.append(torch.cat([structure, appearance_conc, input_pmask], dim=1))
null_control = [torch.cat([nc for _ in range(num_samples)], dim=0) for nc in null_control]
structure_control = [torch.cat([sc for _ in range(num_samples)], dim=0) for sc in structure_control]
full_control = [torch.cat([fc for _ in range(num_samples)], dim=0) for fc in full_control]
#Masking for local edit
if not masking:
mask, x0 = None, None
else:
x0 = model.encode_first_stage(img)
x0 = x0.sample() if isinstance(x0, DiagonalGaussianDistribution) else x0 # todo: check if we can set random number
x0 = x0 * model.scale_factor
mask = 1 - torch.tensor(mask).unsqueeze(0).unsqueeze(1).cuda()
mask = torch.nn.functional.interpolate(mask.float(), x0.shape[2:]).float()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
scale = [scale_s, scale_f, scale_t]
print(scale)
if save_memory:
model.low_vram_shift(is_diffusing=False)
uc_cross = model.get_learned_conditioning([n_prompt] * num_samples)
c_cross = model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)
cond = {"c_concat": [null_control], "c_crossattn": [c_cross]}
un_cond = {"c_concat": None if guess_mode else [null_control], "c_crossattn": [uc_cross]}
un_cond_struct = {"c_concat": None if guess_mode else [structure_control], "c_crossattn": [uc_cross]}
un_cond_struct_app = {"c_concat": None if guess_mode else [full_control], "c_crossattn": [uc_cross]}
shape = (4, self.H // 8, self.W // 8)
if save_memory:
model.low_vram_shift(is_diffusing=True)
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
samples, _ = ddim_sampler.sample(ddim_steps, num_samples,
shape, cond, verbose=False, eta=eta,
unconditional_guidance_scale=scale, mask=mask, x0=x0,
unconditional_conditioning=[un_cond, un_cond_struct, un_cond_struct_app ])
if save_memory:
model.low_vram_shift(is_diffusing=False)
x_samples = (model.decode_first_stage(samples) + 1) * 127.5
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c')).cpu().numpy().clip(0, 255).astype(np.uint8)
results = [x_samples[i] for i in range(num_samples)]
self.results = results
return [] + results