diff --git a/.Rbuildignore b/.Rbuildignore index b9a994a..8c79af2 100644 --- a/.Rbuildignore +++ b/.Rbuildignore @@ -4,3 +4,4 @@ MASTER.R TODO.* cran-comments.md ^CRAN-SUBMISSION$ +revdep diff --git a/CRAN-SUBMISSION b/CRAN-SUBMISSION index b8194e5..47fc187 100644 --- a/CRAN-SUBMISSION +++ b/CRAN-SUBMISSION @@ -1,3 +1,3 @@ -Version: 1.0.0 -Date: 2022-07-07 17:31:28 UTC -SHA: f25c091cb14623d70c2ce89f349d8e338ae4e71d +Version: 1.0.1 +Date: 2024-03-29 15:33:13 UTC +SHA: a6166b74bbd812f1e28652612228db1a837c6e8a diff --git a/DESCRIPTION b/DESCRIPTION index 4913d0c..7967b43 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,6 +1,6 @@ Package: cgaim Title: Constrained Groupwise Additive Index Models -Version: 1.0.0 +Version: 1.0.1 Authors@R: person(given = "Pierre", family = "Masselot", @@ -13,7 +13,7 @@ Encoding: UTF-8 LazyData: true Suggests: testthat (>= 2.1.0) -RoxygenNote: 7.2.0 +RoxygenNote: 7.3.1 Imports: graphics, stats, diff --git a/NAMESPACE b/NAMESPACE index 7c63ecc..21a9eff 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -5,6 +5,8 @@ S3method(confint,cgaim) S3method(plot,cgaim) S3method(predict,cgaim) S3method(print,cgaim) +S3method(vcov,boot.cgaim) +S3method(vcov,cgaim) export(boot.cgaim) export(build_constraints) export(cgaim) diff --git a/NEWS.md b/NEWS.md index 25a4491..e19d8b4 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,3 +1,12 @@ +## 1.0.1 + +### New features +- New `vcov` method + +### Bug fixes +- Adapts `smooth_scam` function to new version of package `gratia` +- Fixes names in confidence intervals from `confint.cgaim` + ## 1.0.0 ### Changes diff --git a/R/confint.boot.cgaim.R b/R/confint.boot.cgaim.R index 34a4d66..fe6c1a0 100644 --- a/R/confint.boot.cgaim.R +++ b/R/confint.boot.cgaim.R @@ -36,7 +36,7 @@ confint.boot.cgaim <- function(object, parm, level = 0.95, ...) alims, na.rm = TRUE)) # Names - rownames(res$alpha) <- names(unlist(object$alpha)) + rownames(res$alpha) <- names(unlist(object$obs$alpha)) colnames(res$alpha) <- level.labels } if (2 %in% parm){ diff --git a/R/smooth_scam.R b/R/smooth_scam.R index 52cf43b..65ed61f 100644 --- a/R/smooth_scam.R +++ b/R/smooth_scam.R @@ -17,7 +17,7 @@ smooth_scam <- function(x, y, formula, Xcov, ...) # print("scam"); flush.console() } else { gfit <- mgcv::gam(formula, data = scam_data, ...) - derivs <- as.data.frame(gratia::derivatives(gfit, newdata = scam_data)) + derivs <- as.data.frame(gratia::derivatives(gfit, data = scam_data)) # print("gam"); flush.console() } # Extract estimated terms @@ -43,8 +43,8 @@ smooth_scam <- function(x, y, formula, Xcov, ...) if (iscons){ dgx[,j] <- scam::derivative.scam(gfit, jind)$d } else { - dgx[,j] <- derivs[derivs$smooth == gfit$smooth[[jind]]$label, - "derivative"] + dgx[,j] <- derivs[derivs$.smooth == gfit$smooth[[jind]]$label, + ".derivative"] } } else { if (is.numeric(scam_data[j])){ diff --git a/R/vcov.boot.cgaim.R b/R/vcov.boot.cgaim.R new file mode 100644 index 0000000..11fa738 --- /dev/null +++ b/R/vcov.boot.cgaim.R @@ -0,0 +1,39 @@ +#' @rdname vcov.cgaim +#' @order 2 +#' +#' @export +vcov.boot.cgaim <- function(object, parm = c("alpha", "beta"), complete = TRUE, + ...) +{ + #----- Header + + # Check parm + parm <- match.arg(parm) + + #----- Create variance covariane matrix + + # Compute vcov + vres <- stats::var(t(object$boot[[parm]])) + + # Set names + rownames(vres) <- colnames(vres) <- names(unlist(object$obs[[parm]])) + + #----- Complete for potentially aliased coefficients + if (isTRUE(complete)){ + + # Check if any aliased coefficients + aliased <- is.na(unlist(object$obs[[parm]])) + + # Complete + vresa <- matrix(NA, length(aliased), length(aliased), + dimnames = list(names(unlist(object$obs[[parm]])), + names(unlist(object$obs[[parm]])))) + vresa[!aliased, !aliased] <- vres + + #----- Return + return(vresa) + } else { + return(vres) + } + +} \ No newline at end of file diff --git a/R/vcov.cgaim.R b/R/vcov.cgaim.R new file mode 100644 index 0000000..0da823c --- /dev/null +++ b/R/vcov.cgaim.R @@ -0,0 +1,124 @@ +#' Calculate Variance-Covariance Matrix for a Fitted CGAIM Object +#' +#' Returns the variance covariance matrix of the main parameters of a fitted \code{cgaim} object. These parameters correspond to the index weights \code{alpha} and the scaling coefficients \code{beta}. +#' +#' @param object A \code{cgaim} or \code{boot.cgaim} object. +#' @param parm The model components for which to get confidence intervals. +#' Either \code{"alpha"} (the default) for index weights or \code{"beta"} for scaling coefficients. +#' @param type The type of confidence intervals. Either \code{"normal"} (the default) +#' or \code{"bootstrap"}. See details. +#' @param B The number of samples to be simulated. +#' @param complete Indicates whether the full variance-covariance matrix should be returned when some of the parameters could not be estimated. If so, the matrix is padded with \code{NA}s. +#' @param ... Additional parameters to be passed to \code{\link{boot.cgaim}} for bootstrap replications. +#' +#' @details +#' Two types of computation are currently implemented in the function. +#' When \code{type = "normal"}, variance-covariance matrices are computed assuming +#' components are normally distributed. Beta coefficients are treated as +#' regular linear regression coefficients and alpha +#' coefficients are assumed to follow a Truncated Multivariate Normal distribution. +#' The latter is obtained by simulating from TMVN (see \code{\link[TruncatedNormal]{tmvnorm}}) +#' and computing the empirical variance covariance matrix from these simulations. The parameter \code{B} controls the number of simulations from the TMVN (and is not used when \code{parm = "beta"}). +#' +#' When \code{type = "bootstrap"}, the variance-covariance matrix is computed on Bootstrap replications. In this case \code{\link{boot.cgaim}} is called internally and \code{B} corresponds to the number of replications. Alternatively, the user can directly call \code{\link{boot.cgaim}} and feed the result into \code{vcov.boot.cgaim} (see examples). +#' +#' @returns A variance-covariance matrix object. +#' +#' @seealso \code{\link{boot.cgaim}} for bootstrapping and \code{\link{confint.cgaim}} for confidence intervals. +#' +#' @references +#' Masselot, P. and others, 2022. Constrained groupwise additive index models. +#' Biostatistics. +#' +#' Pya, N., Wood, S.N., 2015. Shape constrained additive models. +#' Stat. Comput. 25, 543–559. +#' +#' Wood, S.N., 2017. Generalized Additive Models: An Introduction with R, +#' 2nd ed, Texts in Statistical Science. Chapman and Hall/CRC. +#' +#' @examples +#' # A simple CGAIM +#' n <- 200 +#' x1 <- rnorm(n) +#' x2 <- x1 + rnorm(n) +#' z <- x1 + x2 +#' y <- z + rnorm(n) +#' df1 <- data.frame(y, x1, x2) +#' ans <- cgaim(y ~ g(x1, x2, acons = list(monotone = 1)), data = df1) +#' +#' # (Truncated) Normal variance-covariance matrix +#' set.seed(1) +#' vcov(ans, B = 1000) +#' set.seed(1) +#' vcov(ans, parm = "alpha", B = 1000) # Same result +#' vcov(ans, parm = "beta", B = 1000) +#' +#' # Confidence intervals by bootstrap (more computationally intensive, B should be increased) +#' set.seed(2) +#' vcov(ans, type = "boot", B = 10) +#' +#' # Alternatively, bootstrap samples can be performed beforehand +#' set.seed(2) +#' boot1 <- boot.cgaim(ans, B = 10) +#' vcov(boot1) +#' +#' @order 1 +#' @export +vcov.cgaim <- function(object, parm = c("alpha", "beta"), + type = c("normal", "bootstrap"), B = 100, complete = TRUE, ...) +{ + #----- Header + + # Check parm + parm <- match.arg(parm) + + # Check type + type <- match.arg(type) + + #----- Compute vcov if "normal" + if (type == "normal"){ + # For alpha: simulate from truncated normal + if(parm == "alpha"){ + + # Simulate alpha from truncated multivariate normal + simures <- simul_tmvnorm(object, B = B) + + # Compute vcov + vres <- stats::var(simures) + } + + # For beta + if (parm == "beta"){ + + # use the usual vcov matrix + vres <- vcov_beta(object) + } + + # Set names + rownames(vres) <- colnames(vres) <- names(unlist(object[[parm]])) + + # Fill potentially for aliased coefficients + if (isTRUE(complete)){ + + # Check if any aliased coefficients + aliased <- is.na(unlist(object[[parm]])) + + # Complete + vresa <- matrix(NA, length(aliased), length(aliased), + dimnames = list(names(unlist(object[[parm]])), + names(unlist(object[[parm]])))) + vresa[!aliased, !aliased] <- vres + vres <- vresa + } + } else { + + # Simulate + simures <- boot.cgaim(object, B = B, ...) + + # Compute CI + vres <- vcov.boot.cgaim(simures, parm = parm, complete = complete) + } + + #----- Return + return(vres) +} \ No newline at end of file diff --git a/README.md b/README.md index 37c0e27..cd04777 100644 --- a/README.md +++ b/README.md @@ -28,5 +28,5 @@ The package is available for installation from the usual CRAN repository. Altern ## Functions -The main function of the package is the eponymous `cgaim` that fits the model. Then, the `print.cgaim` method allows displaying the results. The `confint.cgaim` method allows computing confidence intervals, either using normal approximation or through bootstrap. Ridge functions can be displayed using the `plot.cgaim` method, with the possibility to add confidence intervals. Finally, `predict.cgaim` allows computing the indices and perform prediction on new observations. +The main function of the package is the eponymous `cgaim` that fits the model. Then, the `print.cgaim` method allows displaying the results. The `confint.cgaim` and `vcov.cgaim` methods allow computing confidence intervals and variance-covariance matrix using various approaches. Ridge functions can be displayed using the `plot.cgaim` method, with the possibility to add confidence intervals. Finally, `predict.cgaim` allows computing the indices and perform prediction on new observations. See the help of each function. diff --git a/cran-comments.md b/cran-comments.md index a6a4ff6..75a6517 100644 --- a/cran-comments.md +++ b/cran-comments.md @@ -1,35 +1,9 @@ -# 1.0.0 +# 1.0.1 -## Resubmission -This is a resubmission. In this version I have: - -* Added a \donttest statement for R CMD check to ignore the most computationally expensive example. -* Added the reference to the methodological paper in the DESCRIPTION file. -* Replaced the T and F that previously escaped me by TRUE and FALSE. -* Added \value fields to the documentation of exported functions missing one. +Package update after check errors from 27/04/2024. Fixes error induced by the update of the `gratia` dependency. ## R CMD check results -There were no ERRORs or WARNINGs. - -There was one NOTE on winbuilder only: - -* checking CRAN incoming feasibility ... NOTE -Maintainer: 'Pierre Masselot ' - -New submission - -Possibly misspelled words in DESCRIPTION: - Campagna (10:182) - Chebana (10:173) - Gosselin (10:209) - Groupwise (2:20) - Lavigne (10:192) - Masselot (10:163) - Ouarda (10:201) - groupwise (10:31, 10:238) - -I believe these notes are just flagging the fact it is a new submission. -Regarding misspelled words, this is how these words are spelled and used in associated publications and are therefore correct (groupwise) and the names of authors in the citation. +0 errors | 0 warnings | 0 notes ## Downstream dependencies -There are currently no downstream dependencies for this package. +Only bug fix and addition of new convenience functions, no change in the specification nor output of the existing function. diff --git a/inst/CITATION b/inst/CITATION index 1ea7c95..62f6fde 100644 --- a/inst/CITATION +++ b/inst/CITATION @@ -1,8 +1,8 @@ citHeader("To cite cgaim in publications use:") -citEntry(entry = "Article", +bibentry(bibtype = "Article", title = "Constrained groupwise additive index models", - author = personList(as.person("Pierre Masselot"), + author = c(as.person("Pierre Masselot"), as.person("Fateh Chebana"), as.person("Céline Campagna"), as.person("Éric Lavigne"), @@ -10,14 +10,14 @@ citEntry(entry = "Article", as.person("Pierre Gosselin")), journal = "Biostatistics", year = "2022", - volume = "00", - number = "00", - pages = "1--19", + volume = "24", + number = "4", + pages = "1066–1084", url = "https://doi.org/10.1093/biostatistics/kxac023", textVersion = - paste("Pierre Masselot, Fateh Chebana, Céline Campagna, Éric Lavigne, Taha B M J Ouarda, Pierre Gosselin (2022).", + paste("Pierre Masselot, Fateh Chebana, Céline Campagna, Éric Lavigne, Taha B.M.J. Ouarda, Pierre Gosselin (2022).", "Constrained groupwise additive index models.", - "Biostatistics, 00(00), 1-19.", + "Biostatistics, 24(4), 1066–1084.", "URL https://doi.org/10.1093/biostatistics/kxac023.") ) diff --git a/man/vcov.cgaim.Rd b/man/vcov.cgaim.Rd new file mode 100644 index 0000000..cc16b94 --- /dev/null +++ b/man/vcov.cgaim.Rd @@ -0,0 +1,85 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/vcov.cgaim.R, R/vcov.boot.cgaim.R +\name{vcov.cgaim} +\alias{vcov.cgaim} +\alias{vcov.boot.cgaim} +\title{Calculate Variance-Covariance Matrix for a Fitted CGAIM Object} +\usage{ +\method{vcov}{cgaim}(object, parm = c("alpha", "beta"), type = c("normal", + "bootstrap"), B = 100, complete = TRUE, ...) + +\method{vcov}{boot.cgaim}(object, parm = c("alpha", "beta"), + complete = TRUE, ...) +} +\arguments{ +\item{object}{A \code{cgaim} or \code{boot.cgaim} object.} + +\item{parm}{The model components for which to get confidence intervals. +Either \code{"alpha"} (the default) for index weights or \code{"beta"} for scaling coefficients.} + +\item{type}{The type of confidence intervals. Either \code{"normal"} (the default) +or \code{"bootstrap"}. See details.} + +\item{B}{The number of samples to be simulated.} + +\item{complete}{Indicates whether the full variance-covariance matrix should be returned when some of the parameters could not be estimated. If so, the matrix is padded with \code{NA}s.} + +\item{...}{Additional parameters to be passed to \code{\link{boot.cgaim}} for bootstrap replications.} +} +\value{ +A variance-covariance matrix object. +} +\description{ +Returns the variance covariance matrix of the main parameters of a fitted \code{cgaim} object. These parameters correspond to the index weights \code{alpha} and the scaling coefficients \code{beta}. +} +\details{ +Two types of computation are currently implemented in the function. +When \code{type = "normal"}, variance-covariance matrices are computed assuming +components are normally distributed. Beta coefficients are treated as +regular linear regression coefficients and alpha +coefficients are assumed to follow a Truncated Multivariate Normal distribution. +The latter is obtained by simulating from TMVN (see \code{\link[TruncatedNormal]{tmvnorm}}) +and computing the empirical variance covariance matrix from these simulations. The parameter \code{B} controls the number of simulations from the TMVN (and is not used when \code{parm = "beta"}). + +When \code{type = "bootstrap"}, the variance-covariance matrix is computed on Bootstrap replications. In this case \code{\link{boot.cgaim}} is called internally and \code{B} corresponds to the number of replications. Alternatively, the user can directly call \code{\link{boot.cgaim}} and feed the result into \code{vcov.boot.cgaim} (see examples). +} +\examples{ +# A simple CGAIM +n <- 200 +x1 <- rnorm(n) +x2 <- x1 + rnorm(n) +z <- x1 + x2 +y <- z + rnorm(n) +df1 <- data.frame(y, x1, x2) +ans <- cgaim(y ~ g(x1, x2, acons = list(monotone = 1)), data = df1) + +# (Truncated) Normal variance-covariance matrix +set.seed(1) +vcov(ans, B = 1000) +set.seed(1) +vcov(ans, parm = "alpha", B = 1000) # Same result +vcov(ans, parm = "beta", B = 1000) + +# Confidence intervals by bootstrap (more computationally intensive, B should be increased) +set.seed(2) +vcov(ans, type = "boot", B = 10) + +# Alternatively, bootstrap samples can be performed beforehand +set.seed(2) +boot1 <- boot.cgaim(ans, B = 10) +vcov(boot1) + +} +\references{ +Masselot, P. and others, 2022. Constrained groupwise additive index models. + Biostatistics. + + Pya, N., Wood, S.N., 2015. Shape constrained additive models. + Stat. Comput. 25, 543–559. + + Wood, S.N., 2017. Generalized Additive Models: An Introduction with R, + 2nd ed, Texts in Statistical Science. Chapman and Hall/CRC. +} +\seealso{ +\code{\link{boot.cgaim}} for bootstrapping and \code{\link{confint.cgaim}} for confidence intervals. +} diff --git a/tests/testthat/test-confint.R b/tests/testthat/test-confint.R deleted file mode 100644 index 6a1c655..0000000 --- a/tests/testthat/test-confint.R +++ /dev/null @@ -1,63 +0,0 @@ - -#----- A model -set.seed(2020) -n <- 200 -x1 <- rnorm(n) -x2 <- rnorm(n) -x3 <- rnorm(n) -x4 <- rnorm(n) -x5 <- rnorm(n) -mu <- 4 * exp(8 * x1) / (1 + exp(8 * x1)) + exp(x3) + sin(x4 + x5) -y <- mu + rnorm(n) -df3 <- data.frame(y, x1, x2, x3, x4, x5) - -ans <- cgaim(y ~ g(x1, x2, label = "i1", s_opts = list(sp = 0)) + - s(x3, s_opts = list(bs = "cr")) + g(x4, x5, label = "i2", fcons = "inc"), - data = df3) - -#----- Check confint - -test_that("both methods work", { - cin <- confint(ans, type = "norm", B = 10) - expect_equal(dim(cin$alpha), c(4, 2)) - expect_equal(dim(cin$beta), c(4, 2)) - - cib <- confint(ans, type = "boot", B = 10) - expect_equal(dim(cib$alpha), c(4, 2)) - expect_equal(dim(cib$beta), c(4, 2)) -}) - -test_that("parm argument works", { - cin <- confint(ans, parm = 1, type = "norm", B = 10) - expect_length(cin, 1) - expect_named(cin, "alpha") - - cin <- confint(ans, parm = 2, type = "norm", B = 10) - expect_length(cin, 1) - expect_named(cin, "beta") - - cin <- confint(ans, parm = c("beta", "alpha"), type = "norm", B = 10) - expect_length(cin, 2) - expect_named(cin, c("alpha", "beta")) - - cib <- confint(ans, parm = c("g", "alpha"), type = "boot", B = 10) - expect_length(cib, 2) - expect_named(cib, c("alpha", "g")) -}) - -test_that("both confint methods are equivalent", { - - # Calling confint.cgaim directly - set.seed(1) - cib1 <- confint(ans, type = "boot", B = 10) - - # Creating replications first - set.seed(1) - bans <- boot.cgaim(ans, B = 10) - cib2 <- confint(bans) - - # Check they are identical - expect_equal(cib1, cib2) -}) - - diff --git a/tests/testthat/test-uncertainty.R b/tests/testthat/test-uncertainty.R new file mode 100644 index 0000000..a8da407 --- /dev/null +++ b/tests/testthat/test-uncertainty.R @@ -0,0 +1,115 @@ + +#----- A model +set.seed(2020) +n <- 200 +x1 <- rnorm(n) +x2 <- rnorm(n) +x3 <- rnorm(n) +x4 <- rnorm(n) +x5 <- rnorm(n) +mu <- 4 * exp(8 * x1) / (1 + exp(8 * x1)) + exp(x3) + sin(x4 + x5) +y <- mu + rnorm(n) +df3 <- data.frame(y, x1, x2, x3, x4, x5) + +ans <- cgaim(y ~ g(x1, x2, label = "i1", s_opts = list(sp = 0)) + + s(x3, s_opts = list(bs = "cr")) + g(x4, x5, label = "i2", fcons = "inc"), + data = df3) + +#----- Check confint + +test_that("both methods work", { + cin <- confint(ans, type = "norm", B = 10) + expect_equal(dim(cin$alpha), c(4, 2)) + expect_equal(dim(cin$beta), c(4, 2)) + + cib <- confint(ans, type = "boot", B = 10) + expect_equal(dim(cib$alpha), c(4, 2)) + expect_equal(dim(cib$beta), c(4, 2)) +}) + +test_that("parm argument works", { + cin <- confint(ans, parm = 1, type = "norm", B = 10) + expect_length(cin, 1) + expect_named(cin, "alpha") + + cin <- confint(ans, parm = 2, type = "norm", B = 10) + expect_length(cin, 1) + expect_named(cin, "beta") + + cin <- confint(ans, parm = c("beta", "alpha"), type = "norm", B = 10) + expect_length(cin, 2) + expect_named(cin, c("alpha", "beta")) + + cib <- confint(ans, parm = c("g", "alpha"), type = "boot", B = 10) + expect_length(cib, 2) + expect_named(cib, c("alpha", "g")) +}) + +test_that("both confint methods are equivalent", { + + # Calling confint.cgaim directly + set.seed(1) + cib1 <- confint(ans, type = "boot", B = 10) + + # Creating replications first + set.seed(1) + bans <- boot.cgaim(ans, B = 10) + cib2 <- confint(bans) + + # Check they are identical + expect_equal(cib1, cib2) +}) + +#----- Check vcov + +test_that("vcov methods work", { + v <- vcov(ans, type = "norm", B = 10) + expect_equal(colnames(v), names(unlist(ans$alpha))) + + v <- vcov(ans, type = "boot", B = 10) + expect_equal(colnames(v), names(unlist(ans$alpha))) +}) + +test_that("vcov parameter specification works", { + v <- vcov(ans); expect_equal(colnames(v), names(unlist(ans$alpha))) + v <- vcov(ans, parm = "alpha"); expect_equal(colnames(v), + names(unlist(ans$alpha))) + v <- vcov(ans, parm = "beta"); expect_equal(colnames(v), names(ans$beta)) + expect_error(vcov(ans, parm = "kappa")) + v <- vcov(ans, parm = "a"); expect_equal(colnames(v), + names(unlist(ans$alpha))) + v <- vcov(ans, parm = "b"); expect_equal(colnames(v), names(ans$beta)) + v <- vcov(ans, parm = NULL); expect_equal(colnames(v), + names(unlist(ans$alpha))) +}) + +test_that("both bootstrap vcov methods are equivalent", { + + # Calling vcov.cgaim directly + set.seed(1) + v1 <- vcov(ans, type = "boot", B = 10) + + # Creating replications first + set.seed(1) + bans <- boot.cgaim(ans, B = 10) + v2 <- vcov(bans) + + # Check they are identical + expect_equal(v1, v2) +}) + +test_that("vcov with constraints work", { + + # new model with constraints on alpha coefficients + ans2 <- cgaim(y ~ g(x1, x2, label = "i1", s_opts = list(sp = 0), + acons = list(monotone = -1)) + s(x3, s_opts = list(bs = "cr")) + + g(x4, x5, label = "i2", fcons = "inc", acons = list(sign = 1)), + data = df3) + + # Check we get results + v <- vcov(ans2, type = "norm", B = 10) + expect_equal(colnames(v), names(unlist(ans$alpha))) + + v <- vcov(ans2, type = "boot", B = 10) + expect_equal(colnames(v), names(unlist(ans$alpha))) +}) \ No newline at end of file diff --git a/tests/testthat/test_updateAlpha.R b/tests/testthat/test_updateAlpha.R index 324c68a..dfaaf85 100644 --- a/tests/testthat/test_updateAlpha.R +++ b/tests/testthat/test_updateAlpha.R @@ -22,8 +22,8 @@ alpha[3:4] <- cgaim:::normalize(alpha[3:4], "1") dfgam <- data.frame(y, i1 = cbind(x1, x2) %*% alpha[1:2], i2 = cbind(x3, x4) %*% alpha[3:4]) gamres <- mgcv::gam(y ~ s(i1) + s(i2), data = dfgam) -derivs <- gratia::derivatives(gamres, newdata = dfgam) -dgz <- matrix(derivs[["derivative"]], ncol = 2) +derivs <- gratia::derivatives(gamres, data = dfgam) +dgz <- matrix(derivs[[".derivative"]], ncol = 2) gz <- stats::predict(gamres, type = "terms") # Test with constraints