-
Notifications
You must be signed in to change notification settings - Fork 0
/
resnet.py
83 lines (70 loc) · 3.23 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import torch
import torch.nn.functional as F
from utils import conv_params, linear_params, bnparams, bnstats, \
flatten_params, flatten_stats
def resnet(depth, width, num_classes):
assert (depth - 4) % 6 == 0, 'depth should be 6n+4'
n = (depth - 4) // 6
widths = torch.Tensor([16, 32, 64]).mul(width).int()
def gen_block_params(ni, no):
return {
'conv0': conv_params(ni, no, 3),
'conv1': conv_params(no, no, 3),
'bn0': bnparams(ni),
'bn1': bnparams(no),
'convdim': conv_params(ni, no, 1) if ni != no else None,
}
def gen_group_params(ni, no, count):
return {'block%d' % i: gen_block_params(ni if i == 0 else no, no)
for i in range(count)}
def gen_group_stats(ni, no, count):
return {'block%d' % i: {'bn0': bnstats(ni if i == 0 else no), 'bn1': bnstats(no)}
for i in range(count)}
params = {
'conv0': conv_params(3,16,3),
'group0': gen_group_params(16, widths[0], n),
'group1': gen_group_params(widths[0], widths[1], n),
'group2': gen_group_params(widths[1], widths[2], n),
'bn': bnparams(widths[2]),
'fc': linear_params(widths[2], num_classes),
}
stats = {
'group0': gen_group_stats(16, widths[0], n),
'group1': gen_group_stats(widths[0], widths[1], n),
'group2': gen_group_stats(widths[1], widths[2], n),
'bn': bnstats(widths[2]),
}
flat_params = flatten_params(params)
flat_stats = flatten_stats(stats)
def activation(x, params, stats, base, mode):
return F.relu(F.batch_norm(x, weight=params[base + '.weight'],
bias=params[base + '.bias'],
running_mean=stats[base + '.running_mean'],
running_var=stats[base + '.running_var'],
training=mode, momentum=0.1, eps=1e-5), inplace=True)
def block(x, params, stats, base, mode, stride):
o1 = activation(x, params, stats, base + '.bn0', mode)
y = F.conv2d(o1, params[base + '.conv0'], stride=stride, padding=1)
o2 = activation(y, params, stats, base + '.bn1', mode)
o2d = F.dropout(o2, p=0.3, training=mode)
z = F.conv2d(o2d, params[base + '.conv1'], stride=1, padding=1)
if base + '.convdim' in params:
return z + F.conv2d(o1, params[base + '.convdim'], stride=stride)
else:
return z + x
def group(o, params, stats, base, mode, stride):
for i in range(n):
o = block(o, params, stats, '%s.block%d' % (base,i), mode, stride if i == 0 else 1)
return o
def f(input, params, stats, mode):
assert input.get_device() == params['conv0'].get_device()
x = F.conv2d(input, params['conv0'], padding=1)
g0 = group(x, params, stats, 'group0', mode, 1)
g1 = group(g0, params, stats, 'group1', mode, 2)
g2 = group(g1, params, stats, 'group2', mode, 2)
o = activation(g2, params, stats, 'bn', mode)
o = F.avg_pool2d(o, 8, 1, 0)
o = o.view(o.size(0), -1)
o = F.linear(o, params['fc.weight'], params['fc.bias'])
return o
return f, flat_params, flat_stats