Skip to content

Latest commit

 

History

History
206 lines (190 loc) · 8.76 KB

README.md

File metadata and controls

206 lines (190 loc) · 8.76 KB

ad_metrics

Facebook and Google Ad Campaigns Analysis

Combining data from two tables (Facebook and Google ad campaigns) in the PostgreSQL database, the analysis aims to:

  • Extract the campaign name (utm_campaign) from the url_parameters string.
  • Decode Cyrillic characters in utm_campaign.
  • Calculate the following metrics for the campaigns: CTR (Click-Through Rate), CPC (Cost Per Click), CPM (Cost Per Thousand Impressions), ROMI (Return on Marketing Investment).
  • Determine the differences for CPM, CTR, and ROMI in the current month compared to the previous month in percentage terms.
  • Build an interactive Dashboard using Looker Studio to display the results.

Advanced Functions and Approaches Used

  • CTEs (Common Table Expressions): To structure the query and make it more readable.
  • COALESCE Function: To handle missing values by replacing them with 0.
  • Substring and Case Functions: To extract and handle the utm_campaign from url_parameters.
  • Custom Function: decode_cyrillic_url to decode Cyrillic characters.
  • Aggregation and Grouping: To calculate the metrics by month.
  • Self-Join: To shift the metrics by one month for comparison.
  • Conditional Logic: To avoid division by zero and handle edge cases in percentage change calculations.

Dashboard

Click the image below to view the interactive Dashboard on Looker Studio website.

Revenue Metrics Dashboard

The results of the analysis are visualized using an interactive dashboard built with Looker Studio. The dashboard displays:

  • Monthly metrics (CTR, CPC, CPM, ROMI) for each campaign.
  • The percentage change in CPM, CTR, and ROMI compared to the previous month.

Steps

  1. Create Temporary Function

    • Function: decode_cyrillic_url
    • Purpose: Decodes Cyrillic characters in the URL parameters to make the campaign names readable.
    • Code:
      create or replace function public.decode_cyrillic_url(url_encoded_text text)
      returns text
      language plpgsql
      as $function$
      declare
      decoded_text TEXT := upper(url_encoded_text);
      begin
        decoded_text := REPLACE(decoded_text, '%D0%87', 'ї'); -- ї
        decoded_text := REPLACE(decoded_text, '%D0%B0', 'а'); -- а
        decoded_text := REPLACE(decoded_text, '%D0%B1', 'б'); -- б
        decoded_text := REPLACE(decoded_text, '%D0%B2', 'в'); -- в
        decoded_text := REPLACE(decoded_text, '%D0%B3', 'г'); -- г
        decoded_text := REPLACE(decoded_text, '%D0%B4', 'д'); -- д
        decoded_text := REPLACE(decoded_text, '%D0%B5', 'е'); -- е
        decoded_text := REPLACE(decoded_text, '%D0%B6', 'ж'); -- ж
        decoded_text := REPLACE(decoded_text, '%D0%B7', 'з'); -- з
        decoded_text := REPLACE(decoded_text, '%D0%B8', 'и'); -- и
        decoded_text := REPLACE(decoded_text, '%D0%B9', 'й'); -- й
        decoded_text := REPLACE(decoded_text, '%D0%BA', 'к'); -- к
        decoded_text := REPLACE(decoded_text, '%D0%BB', 'л'); -- л
        decoded_text := REPLACE(decoded_text, '%D0%BC', 'м'); -- м
        decoded_text := REPLACE(decoded_text, '%D0%BD', 'н'); -- н
        decoded_text := REPLACE(decoded_text, '%D0%BE', 'о'); -- о
        decoded_text := REPLACE(decoded_text, '%D0%BF', 'п'); -- п
        decoded_text := REPLACE(decoded_text, '%D1%80', 'р'); -- р
        decoded_text := REPLACE(decoded_text, '%D1%81', 'с'); -- с
        decoded_text := REPLACE(decoded_text, '%D1%82', 'т'); -- т
        decoded_text := REPLACE(decoded_text, '%D1%83', 'у'); -- у
        decoded_text := REPLACE(decoded_text, '%D1%84', 'ф'); -- ф
        decoded_text := REPLACE(decoded_text, '%D1%85', 'х'); -- х
        decoded_text := REPLACE(decoded_text, '%D1%86', 'ц'); -- ц
        decoded_text := REPLACE(decoded_text, '%D1%87', 'ч'); -- ч
        decoded_text := REPLACE(decoded_text, '%D1%88', 'ш'); -- ш
        decoded_text := REPLACE(decoded_text, '%D1%89', 'щ'); -- щ
        decoded_text := REPLACE(decoded_text, '%D1%8C', 'ь'); -- ь
        decoded_text := REPLACE(decoded_text, '%D1%8D', 'э'); -- э
        decoded_text := REPLACE(decoded_text, '%D1%8E', 'ю'); -- ю
        decoded_text := REPLACE(decoded_text, '%D1%8F', 'я'); -- я
      return lower(decoded_text);
      end;
      $function$;
  2. Combine Data from Facebook and Google Ad Campaigns

    • Common Table Expression (CTE) #1: fgc
    • Purpose: Unite Facebook and Google campaigns from two tables and fill in missing values with 0 using the COALESCE function.
    • Code:
      with fgc as (
          select
              ad_date,
              url_parameters,
              coalesce(spend, 0) as spend,
              coalesce(impressions, 0) as impressions,
              coalesce(reach, 0) as reach,
              coalesce(clicks, 0) as clicks,
              coalesce(leads, 0) as leads,
              coalesce(value, 0) as value
          from facebook_ads_basic_daily
          union
          select
              ad_date,
              url_parameters,
              coalesce(spend, 0) as spend,
              coalesce(impressions, 0) as impressions,
              coalesce(reach, 0) as reach,
              coalesce(clicks, 0) as clicks,
              coalesce(leads, 0) as leads,
              coalesce(value, 0) as value
          from google_ads_basic_daily
          order by 1
      ),
  3. Calculate Metrics

    • Common Table Expression (CTE) #2: metrics
    • Purpose: Calculate metrics such as CTR, CPC, CPM, and ROMI, grouped by month.
    • Code:
      metrics as (
          select
              date(date_trunc('month', ad_date)) as add_month,
              case lower(substring(url_parameters, 'utm_campaign=([^&#$]+)'))
                  when 'nan' then null
                  else lower(substring(url_parameters, 'utm_campaign=([^&#$]+)')) end as utm_campaign,
              sum(spend) as spend,
              sum(impressions) as impressions,
              sum(clicks) as clicks,
              sum(value) as value,
              avg(case impressions
                  when 0 then null
                  else round(clicks/impressions::numeric,2) end) as ctr,
              avg(case clicks
                  when 0 then null
                  else round(spend/clicks::numeric,2) end) as cpc,
              avg(case clicks
                  when 0 then null
                  else round(spend/clicks::numeric,2)*1000 end) as cpm,
              avg(case spend
                  when 0 then null
                  else round((value-spend)/spend::numeric,2) end) as romi
          from fgc
          group by 1,2
      ),
  4. Shift Metrics by One Month

    • Common Table Expression (CTE) #3: shifted
    • Purpose: Self-join the metrics table with a one-month shift to calculate the previous month's metrics.
    • Code:
      shifted as (
          select
              m.add_month,
              case
                  when m.utm_campaign like '%\%%' then decode_cyrillic_url(m.utm_campaign)
                  else m.utm_campaign end as utm_campaign,
              m3.utm_campaign as utm_campaign_prev,
              m.spend,
              m.impressions,
              m.clicks,
              m.value,
              m.cpc,
              m.cpm,
              m.ctr,
              m.romi,
              m3.cpm as prev_cpm,
              m3.ctr as prev_ctr,
              m3.romi as prev_romi
          from metrics m
          left join metrics as m3 on m.add_month = m3.add_month + interval '1 month'
              and m.utm_campaign = m3.utm_campaign
          where m.utm_campaign is not null
      )
  5. Final Query to Calculate Monthly Differences

    • Purpose: Calculate the differences in CPM, CTR, and ROMI for the current month compared to the previous month in percentage terms, and convert values from cents to dollars where applicable.
    • Code:
      select
          add_month,
          utm_campaign,
          spend/100 as spend,
          impressions,
          clicks,
          value/100 as value,
          round(cpc/100, 2) as cpc,
          round(cpm/100, 2) as cpm,
          round(ctr, 2) as ctr,
          round(romi, 2) as romi,
          case
              when cpm > 0 then round(cpm::numeric / prev_cpm - 1, 2) * 100
              when cpm = 0 and prev_cpm > 0 then -100
          end as "cpm_diff_%",
          case
              when prev_ctr > 0 then round(ctr::numeric / prev_ctr - 1, 2) * 100
              when ctr = 0 and prev_ctr > 0 then -100
          end as "ctr_diff_%",
          case
              when prev_romi > 0 then round(romi::numeric / prev_romi - 1, 2) * 100
              when romi = 0 and prev_romi > 0 then -100
          end as "romi_diff_%"
      from shifted